WO2016090883A1 - Procédé de prévision avancée d'inondation de couche de séparation de toit d'exploitation en étages secondaires reposant sur une intégration d'informations multisource - Google Patents

Procédé de prévision avancée d'inondation de couche de séparation de toit d'exploitation en étages secondaires reposant sur une intégration d'informations multisource Download PDF

Info

Publication number
WO2016090883A1
WO2016090883A1 PCT/CN2015/081601 CN2015081601W WO2016090883A1 WO 2016090883 A1 WO2016090883 A1 WO 2016090883A1 CN 2015081601 W CN2015081601 W CN 2015081601W WO 2016090883 A1 WO2016090883 A1 WO 2016090883A1
Authority
WO
WIPO (PCT)
Prior art keywords
main control
water
stope
roof
control factor
Prior art date
Application number
PCT/CN2015/081601
Other languages
English (en)
Chinese (zh)
Inventor
李文平
王启庆
李小琴
孙如华
乔伟
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2016090883A1 publication Critical patent/WO2016090883A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity

Definitions

  • the invention relates to the field of coal mining, and particularly relates to a method for predicting the fault of the water in the roof of the stope based on multi-source information fusion.
  • Water inrush is one of the four major disasters in coal mines and is a major coal mine disaster alongside gas accidents.
  • a special type of water damage - overburden water and water damage began to appear in Chongqing Nantong Coal Mine, Shandong Jining In the coal mining process of No. 2 Coal Mine, Huaibei Haiyan Coal Mine and Yangliu Coal Mine, Huainan Xinji No. 1 Mine, typical outburst water surges occurred. Because of the sudden large amount of water and great harm during the sudden water outburst, Often the work surface is flooded and even casualties.
  • the prevention and control of the water damage in the layer is mainly realized by the “cut-off hole” or “drainage hole” of the separated layer water.
  • the prevention and control of the water damage in the separated layer has certain blindness.
  • the present invention provides a new type of water damage characteristic of the separation of the water in the roof of the stope, and provides a multi-source information fusion-based prediction of the superimposed water damage of the stope roof.
  • the method can not only guide the safe production of coal mines, but also facilitate the timely adoption of targeted prevention and control measures.
  • a method for predicting the fault of water in the roof of the stope based on multi-source information fusion comprising the following steps:
  • the risk assessment map the statistical analysis of the risk index of the separated water hazard is carried out, and the threshold of the division is determined to form a zone map for the risk assessment of the water damage of the roof of the stope.
  • the main controlling factors affecting the water damage of the roof of the stope include: aquifer thickness, aquifer bearing head, drilling unit water inflow (q value), recoverable coal seam thickness, hard rock thickness , the strength coefficient and the thickness of the aquifer;
  • the aquifer thickness refers to the thickness of the aquifer that replenishes the separation space;
  • the thickness of the hard rock refers to the thickness of the upper hard rock that produces the separation layer opposite to the lower soft rock;
  • the intensity coefficient refers to the ratio of the uniaxial compressive strength of the upper hard rock to the lower soft rock, wherein the upper hard rock is stronger and the lower soft rock is less strong;
  • the thickness of the aquifer is The thickness of the aquifer between the separation layer and the water-conducting fracture zone.
  • a thematic map of each main control factor is established, specifically: first, quantitatively analyzing each main control factor index, and then using GIS to interpolate the quantized point data of each main control factor to generate a research
  • the contour map of the area is finally mapped according to the contour map of the study area.
  • the main control factors are evaluated by the analytic hierarchy process (AHP) method, and the weights of the main control factors on the water damage of the roof are calculated.
  • AHP analytic hierarchy process
  • the specific analysis is as follows: firstly, the hierarchical analysis of each main control factor is constructed. Matrix (AHP matrix), then use the expert scoring method to score the main control factors, construct the judgment matrix of the hierarchical water damage analysis (AHP evaluation), and finally calculate the super-layer water damage from the main control factors according to the judgment matrix. The weight of the influence.
  • the spatial superposition function of the GIS is used to superimpose the thematic maps of the normalized main control factors, and the risk assessment model for the separated water hazard is:
  • VI is the risk index
  • W k is the influence weight of the main control factors
  • f k (x, y) is the single factor influence value function
  • (x, y) is the geographic coordinate
  • n is the number of the main control factors .
  • the partition map of the risk assessment of the water risk of the plate is specifically as follows: Firstly, the frequency histogram statistical analysis of the water risk index of the separated layer is carried out. The natural discontinuous grading method within the GIS can be used to classify the statistical analysis results of the frequency histogram. The area map of the risk assessment of the water damage of the top plate of the field is divided into areas such as A, B, C, D... according to the risk of the outburst water bursting from small to large.
  • the beneficial effects the multi-source information fusion based on the super-predictive prediction method for the off-site water damage of the stope roof, based on the existing geological conditions of the mine, and the GIS as the operation platform according to the multi-source information fusion theory
  • Advance prediction and evaluation analysis of the risk of water damage from the top of the field can achieve the purpose of preventing and controlling the water damage of the roof of the stope.
  • the method for predicting the fault of the water in the roof of the stope based on multi-source information fusion includes the following steps:
  • the main controlling factors affecting the water damage of the roof of the stope include: aquifer thickness, aquifer bearing head, drilling unit water inflow (q value), recoverable coal seam thickness, hard rock thickness, strength coefficient and aquifer thickness
  • the thickness of the aquifer refers to the thickness of the aquifer that replenishes the separation space;
  • the thickness of the hard rock refers to the thickness of the upper hard rock that is separated from the lower soft rock;
  • the strength coefficient refers to The ratio of the uniaxial compressive strength of the upper hard rock to the lower soft rock, wherein the upper hard rock is stronger and the lower soft rock is less strong;
  • the thickness of the aquifer is the separation layer and the water guiding fracture zone. The thickness of the aquifer between the two.
  • the step is specifically as follows: firstly, the main control factor indicators are quantitatively analyzed, and then the quantized point data of each main control factor is interpolated by using GIS to generate a contour map of the study area, and finally according to the contour of the study area.
  • the distribution map establishes a map corresponding to the main control factors.
  • the hierarchical analysis matrix (AHP matrix) of each main control factor is constructed first, and then the expert scoring method is used to score the main control factors, and the judgment matrix of the hierarchical water damage analysis and evaluation (AHP evaluation) is constructed. Finally, according to the judgment matrix, the weight of each main control factor on the water damage of the roof is calculated, and the consistency of the calculation results is tested.
  • the weights of the main control factors are normalized, and the thematic maps of the normalized main control factors are established, which are determined according to AHP.
  • the weight coefficient of each main controlling factor affecting the water damage in the layer is established, and the risk assessment model for the water risk in the study area is established (Formula 1).
  • the risk assessment model for the water risk in the study area is established (Formula 1).
  • VI is the risk index
  • W k is the influence weight of the main control factors
  • f k (x, y) is the single factor influence value function
  • (x, y) is the geographic coordinate
  • n is the number of the main control factors .
  • the frequency histogram statistical analysis is carried out on the water risk index of the separated layer.
  • the natural discontinuous classification method inside the GIS can be used to classify the statistical analysis results of the frequency histogram to form the risk assessment of the water damage of the roof of the stope.
  • the division map is divided into areas such as A, B, C, D... according to the risk of the outburst water bursting from small to large.

Abstract

L'invention concerne un procédé de prévision avancée d'inondation de couche de séparation de toit d'exploitation en étages secondaires reposant sur une intégration d'informations multisource, comprenant les étapes de base suivantes consistant à : déterminer un facteur de commande principale affectant l'inondation de couche de séparation de toit d'exploitation en étages secondaires; établir une carte spécifique à un sujet de chaque facteur de commande principale; évaluer chacun des facteurs de commande principale en utilisant un traitement de hiérarchie analytique (AHP), et calculer l'influence pondérée de chaque facteur sur l'inondation de couche de séparation de toit; normaliser la valeur pondérée de l'influence de chacun des facteurs, et effectuer une superposition complexe de la carte spécifique à un sujet normalisée de chaque facteur de commande principale au moyen d'une fonction de superposition complexe d'espace GIS, pour former une carte d'évaluation de risque de l'inondation de couche de séparation de toit d'exploitation en étages secondaires; analyser statistiquement l'indice de risque de l'inondation de couche de séparation de toit et déterminer un seuil de partitionnement pour former une carte de partitionnement d'évaluation de risque de l'inondation de couche de séparation de toit d'exploitation en étages secondaires. Le procédé peut faire intervenir une prévision avancée d'une inondation de couche de séparation d'exploitation en étages intermédiaires et faire appel à une mesure de prévision correspondante de degré de risque d'une inondation de couche de séparation de toit, ce qui permet d'éviter une inondation de couche de séparation de toit et de protéger une exploitation en étages secondaires sécurisée sur une face de travail.
PCT/CN2015/081601 2014-12-12 2015-06-17 Procédé de prévision avancée d'inondation de couche de séparation de toit d'exploitation en étages secondaires reposant sur une intégration d'informations multisource WO2016090883A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410764456.5A CN104408323A (zh) 2014-12-12 2014-12-12 一种基于多源信息融合的采场顶板离层水害超前预报方法
CN201410764456.5 2014-12-12

Publications (1)

Publication Number Publication Date
WO2016090883A1 true WO2016090883A1 (fr) 2016-06-16

Family

ID=52645954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081601 WO2016090883A1 (fr) 2014-12-12 2015-06-17 Procédé de prévision avancée d'inondation de couche de séparation de toit d'exploitation en étages secondaires reposant sur une intégration d'informations multisource

Country Status (2)

Country Link
CN (1) CN104408323A (fr)
WO (1) WO2016090883A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018214190A1 (fr) * 2017-06-19 2018-11-29 中国科学院南京地理与湖泊研究所 Système et procédé de surveillance stéréoscopique et de fouille de données concernant la prolifération de cyanobactéries lacustres toxiques
CN109740903A (zh) * 2018-12-26 2019-05-10 辽宁工程技术大学 基于ahp的复合动力灾害钻屑多参量危险性评价方法
CN109933954A (zh) * 2019-04-12 2019-06-25 宿州学院 一种残余离层的识别与灾害防治方法
CN111581834A (zh) * 2020-05-13 2020-08-25 中煤能源研究院有限责任公司 一种基于多源信息融合的煤层顶板溃水溃沙危险性评价方法
CN111695303A (zh) * 2020-06-17 2020-09-22 中煤能源研究院有限责任公司 一种煤层顶板砂岩含水层充水强度评价方法
CN112611754A (zh) * 2020-10-26 2021-04-06 中国水利水电第三工程局有限公司 一种清水混凝土外观质量评价方法
CN113190793A (zh) * 2020-09-17 2021-07-30 合肥工业大学 一种松散承压含水层区域富水性动态确定方法
CN113360592A (zh) * 2021-06-29 2021-09-07 中煤能源研究院有限责任公司 基于微震监测的n00工法煤层顶板突水危险性预警方法
CN113565570A (zh) * 2021-08-31 2021-10-29 中煤科工集团重庆研究院有限公司 一种用于水害预警的指标设置方法
CN115526422A (zh) * 2022-10-19 2022-12-27 中国矿业大学 一种煤矿瓦斯爆炸风险预测方法
CN116934262A (zh) * 2023-07-26 2023-10-24 江苏晓宇水利建设有限公司 一种基于人工智能的施工安全监管系统及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104408323A (zh) * 2014-12-12 2015-03-11 中国矿业大学 一种基于多源信息融合的采场顶板离层水害超前预报方法
CN104766242A (zh) * 2015-03-25 2015-07-08 山东科技大学 一种煤层底板突水危险性评价方法
CN106437844B (zh) * 2016-10-26 2020-02-07 重庆大学 一种超前预报隧道涌水位置的方法
CN108256259B (zh) * 2018-02-05 2019-06-25 中煤科工集团西安研究院有限公司 基于模糊层次分析确定煤层底板注浆靶区的方法及装置
CN108549994A (zh) * 2018-04-23 2018-09-18 中国电建集团贵州电力设计研究院有限公司 一种煤矿老空水水害的评价方法
CN110826235A (zh) * 2019-10-18 2020-02-21 山东科技大学 煤层底板突水评价的主成分Logistic回归分析法
CN113294143B (zh) * 2021-04-16 2023-09-26 中煤能源研究院有限责任公司 一种煤层底板灰岩水害地面超前区域探查治理效果评价方法
CN113217103B (zh) * 2021-05-18 2022-09-09 华北科技学院(中国煤矿安全技术培训中心) 一种识别离层突水的方法
CN115034652B (zh) * 2022-06-27 2023-07-04 中国矿业大学 一种采动覆岩携泥砂离层突水危险性评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699451A (zh) * 2009-05-08 2010-04-28 中国矿业大学(北京) 煤层底板突水评价的新型实用方法-脆弱性指数法
CN103853910A (zh) * 2012-12-07 2014-06-11 中国科学院城市环境研究所 一种基于多目标多数据类型变异度模型的空间抽样方法
CN103985057A (zh) * 2014-05-27 2014-08-13 煤炭科学研究总院 煤矿安全风险评价或损失估计方法及装置
CN104408323A (zh) * 2014-12-12 2015-03-11 中国矿业大学 一种基于多源信息融合的采场顶板离层水害超前预报方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726750A (zh) * 2009-11-30 2010-06-09 中国矿业大学(北京) 地裂缝评价的“三图法”
CN102663506A (zh) * 2012-04-28 2012-09-12 清华大学 一种利用生态承载压力模型进行定量化分区的方法
CN103926633B (zh) * 2013-01-16 2016-04-13 中国矿业大学(北京) 煤层底板煤系隔水层防突性能的定量预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699451A (zh) * 2009-05-08 2010-04-28 中国矿业大学(北京) 煤层底板突水评价的新型实用方法-脆弱性指数法
CN103853910A (zh) * 2012-12-07 2014-06-11 中国科学院城市环境研究所 一种基于多目标多数据类型变异度模型的空间抽样方法
CN103985057A (zh) * 2014-05-27 2014-08-13 煤炭科学研究总院 煤矿安全风险评价或损失估计方法及装置
CN104408323A (zh) * 2014-12-12 2015-03-11 中国矿业大学 一种基于多源信息融合的采场顶板离层水害超前预报方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018214190A1 (fr) * 2017-06-19 2018-11-29 中国科学院南京地理与湖泊研究所 Système et procédé de surveillance stéréoscopique et de fouille de données concernant la prolifération de cyanobactéries lacustres toxiques
CN109740903A (zh) * 2018-12-26 2019-05-10 辽宁工程技术大学 基于ahp的复合动力灾害钻屑多参量危险性评价方法
CN109933954B (zh) * 2019-04-12 2022-06-24 宿州学院 一种残余离层的识别与灾害防治方法
CN109933954A (zh) * 2019-04-12 2019-06-25 宿州学院 一种残余离层的识别与灾害防治方法
CN111581834A (zh) * 2020-05-13 2020-08-25 中煤能源研究院有限责任公司 一种基于多源信息融合的煤层顶板溃水溃沙危险性评价方法
CN111581834B (zh) * 2020-05-13 2023-03-24 中煤能源研究院有限责任公司 一种基于多源信息融合的煤层顶板溃水溃沙危险性评价方法
CN111695303B (zh) * 2020-06-17 2023-08-18 中煤能源研究院有限责任公司 一种煤层顶板砂岩含水层充水强度评价方法
CN111695303A (zh) * 2020-06-17 2020-09-22 中煤能源研究院有限责任公司 一种煤层顶板砂岩含水层充水强度评价方法
CN113190793A (zh) * 2020-09-17 2021-07-30 合肥工业大学 一种松散承压含水层区域富水性动态确定方法
CN112611754A (zh) * 2020-10-26 2021-04-06 中国水利水电第三工程局有限公司 一种清水混凝土外观质量评价方法
CN112611754B (zh) * 2020-10-26 2023-12-29 中国水利水电第三工程局有限公司 一种清水混凝土外观质量评价方法
CN113360592A (zh) * 2021-06-29 2021-09-07 中煤能源研究院有限责任公司 基于微震监测的n00工法煤层顶板突水危险性预警方法
CN113360592B (zh) * 2021-06-29 2024-04-02 中煤能源研究院有限责任公司 基于微震监测的n00工法煤层顶板突水危险性预警方法
CN113565570A (zh) * 2021-08-31 2021-10-29 中煤科工集团重庆研究院有限公司 一种用于水害预警的指标设置方法
CN115526422A (zh) * 2022-10-19 2022-12-27 中国矿业大学 一种煤矿瓦斯爆炸风险预测方法
CN115526422B (zh) * 2022-10-19 2024-02-23 中国矿业大学 一种煤矿瓦斯爆炸风险预测方法
CN116934262A (zh) * 2023-07-26 2023-10-24 江苏晓宇水利建设有限公司 一种基于人工智能的施工安全监管系统及方法
CN116934262B (zh) * 2023-07-26 2024-02-02 江苏晓宇水利建设有限公司 一种基于人工智能的施工安全监管系统及方法

Also Published As

Publication number Publication date
CN104408323A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2016090883A1 (fr) Procédé de prévision avancée d'inondation de couche de séparation de toit d'exploitation en étages secondaires reposant sur une intégration d'informations multisource
WO2019233114A1 (fr) Procédé d'évaluation du risque de dégâts des eaux à partir d'une irruption d'eau de strate de strates sus-jacentes dans une zone d'exploitation minière
Wu et al. Prediction of floor water inrush: the application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China
Wu et al. Application of the analytic hierarchy process to assessment of water inrush: a case study for the no. 17 coal seam in the Sanhejian coal mine, China
WO2019091048A1 (fr) Procédé d'exploitation du charbon préservant l'eau appelé "cinq cartes-trois zones-deux sous-zones"
Zhang et al. Overburden fracture evolution laws and water-controlling technologies in mining very thick coal seam under water-rich roof
Chen et al. Prediction of water-inrush risk areas in process of mining under the unconsolidated and confined aquifer: a case study from the Qidong coal mine in China
WO2014166244A1 (fr) Procédé d'évaluation de faiblesse de plancher de veine de charbon par rapport à une irruption d'eau
Cao et al. Risk assessment of fault water inrush during deep mining
Pan et al. Effect of premining on hard roof distress behavior: a case study
Wu et al. Assessment of groundwater inrush from underlying aquifers in Tunbai coal mine, Shanxi province, China
Yang et al. Risk assessment model of tunnel water inrush based on improved attribute mathematical theory
CN105741029A (zh) 一种基于累积应力集中系数的冲击危险评价方法
CN105182412A (zh) 煤矿地下水库煤柱坝体地震安全性的检测方法
CN109707453A (zh) 一种煤矿永久硐室冲击安全性论证方法
Kouame et al. Research on cause of dynamic disaster of deep mining control in China and its further prevention application in Ivory Coast
CN107436349A (zh) 一种用于对煤层顶板的突水溃沙危险性进行评估的评估方法
Ji et al. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China
Liu et al. Assessment of water inrush risk using the principal component logistic regression model in the Pandao coal mine, China
Chen et al. Calculation method of overburden damage height based on fracture mechanics analysis of soft and hard rock layers
CN105242016A (zh) 一种煤与瓦斯突出危险性的预测方法
Niu et al. An improved model to predict the water-inrush risk from an Ordovician limestone aquifer under coal seams: a case study of the Longgu coal mine in China
Duan et al. New evaluation and prediction method to determine the risk of water inrush from mining coal seam floor
Yan et al. Fracture propagation and permeability evolution mechanism of jointed rock mass in coastal mines
Yang et al. An assessment of water yield properties for weathered bedrock zone in Northern Shaanxi Jurassic coalfield: a case study in Jinjitan coal mine, Western China

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867838

Country of ref document: EP

Kind code of ref document: A1