WO2016090530A1 - 无线充电装置及系统 - Google Patents

无线充电装置及系统 Download PDF

Info

Publication number
WO2016090530A1
WO2016090530A1 PCT/CN2014/093252 CN2014093252W WO2016090530A1 WO 2016090530 A1 WO2016090530 A1 WO 2016090530A1 CN 2014093252 W CN2014093252 W CN 2014093252W WO 2016090530 A1 WO2016090530 A1 WO 2016090530A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wireless charging
resonant coil
resonant
sub
Prior art date
Application number
PCT/CN2014/093252
Other languages
English (en)
French (fr)
Inventor
胡沥
Original Assignee
胡沥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 胡沥 filed Critical 胡沥
Priority to PCT/CN2014/093252 priority Critical patent/WO2016090530A1/zh
Publication of WO2016090530A1 publication Critical patent/WO2016090530A1/zh

Links

Images

Definitions

  • the present invention relates to the field of wireless charging technologies, and in particular, to a wireless charging device and system.
  • wireless charging methods such as laser charging, microwave charging, magnetic charging, inductively coupled charging, and magnetic resonance charging
  • laser charging and microwave charging are long-distance charging, charging efficiency is low
  • magnetic charging and inductance Coupling charging is a close-range charging method, but the limitations are large.
  • magnetic resonance charging has a breakthrough in charging efficiency and limitations, the most commonly used is magnetic resonance charging.
  • the existing magnetic resonance wireless charging system (shown in FIG. 1) includes a source coil, a transmitting coil, a receiving coil, and a load coil, and the structure is relatively complicated, and the manufacturing process and cost are relatively high.
  • the present invention provides a wireless charging device and system, which overcomes the problem that the structure of the magnetic resonance charging device in the prior art is relatively complicated, and the manufacturing process and cost are relatively high.
  • the present invention provides the following technical solutions:
  • a wireless charging device comprising:
  • a power amplifier coupled to the output of the oscillator for amplifying the power of the sinusoidal signal
  • a first resonant coil connected to the power amplifier.
  • the first resonant coil is open at both ends and is disconnected from the intermediate position to form a first sub-resonant coil and a second sub-resonant coil;
  • One end of the first sub-resonant coil is open, and the other end is connected to the radio frequency signal output end of the power amplifier;
  • One end of the second sub-resonant coil is open, and the other end is connected to the RF ground of the power amplifier end.
  • the first resonant coil is a planar spiral or a wound helical coil.
  • a wireless charging device comprising:
  • the second resonant coil is open at both ends and is disconnected from the intermediate position to form a third sub-resonant line and a fourth sub-resonant coil.
  • One end of the third sub-resonant coil is open, and the other end is connected to the RF signal input end of the load;
  • the fourth sub-resonant coil has one end open and the other end connected to the RF ground of the load.
  • the second resonant coil is a planar spiral or a wound helical coil.
  • a wireless charging system comprising:
  • An energy transmitting device and an energy receiving device that are disposed at a predetermined distance, wherein the energy transmitting device is the wireless charging device described above, and the energy receiving device is the wireless charging device described above.
  • the resonant frequency of the first resonant coil in the energy transmitting device is the same as the resonant frequency of the second resonant coil in the energy receiving device.
  • the resonant frequency is calculated according to the following formula:
  • f is the resonant frequency
  • L is the equivalent inductance
  • C is the equivalent capacitance
  • the present invention discloses a wireless charging device and a system, the wireless charging system comprising an energy transmitting device and an energy receiving device arranged at a preset distance, wherein the energy transmitting device Included: an oscillator for generating a low power sinusoidal signal; a power amplifier coupled to the output of the oscillator for amplifying the power of the sinusoidal signal; a first resonant coil coupled to the output of the power amplifier, energy
  • the receiving device includes a second resonant coil connected to the load input.
  • FIG. 1 is a schematic structural view of a conventional magnetic resonance wireless charging system
  • FIG. 2 is an equivalent circuit diagram of a conventional magnetic resonance wireless charging system
  • FIG. 3 is a schematic structural diagram of a specific structure of a wireless charging device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a specific structure of a wireless charging device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a specific structure of a wireless charging system according to Embodiment 3 of the present invention.
  • the existing magnetic resonance wireless charging system includes a source coil 13, a transmitting coil 14, a receiving coil 15, and a load coil 16, and oscillates.
  • the device 11 produces a low power sinusoidal signal which, after power amplification 12, can reach a power of a few watts to tens of watts.
  • This high power RF energy is fed into the source coil 13 and the source coil 13 is placed in the transmitting coil 14, due to There is a strong inductive coupling between the source coil 13 and the transmitting coil 14, so that this high power RF energy can be coupled into the transmitting coil 14.
  • the existing magnetic resonance wireless charging system includes four coils of a source coil, a transmitting coil, a receiving coil, and a load coil, and the structure is relatively complicated, and the manufacturing process and cost are relatively high.
  • the inventors of the present invention analyzed the equivalent circuit diagram (Fig. 2) of the magnetic resonance wireless charging system, and found that the spatial transmission of energy mainly occurs between the transmitting coil and the receiving coil, and the source coil and the transmitting coil or the loading coil and the receiving coil.
  • the exchange of energy between them can be equivalent to the function of a transformer, which is not necessary for the transfer of space energy, so that the design of the magnetic resonance coil of the existing magnetic resonance wireless charging system can be simplified. Accordingly, the present invention has been improved in design, and a novel wireless charging device and system are disclosed, which will be described in detail below through the following embodiments.
  • FIG. 3 is a schematic structural diagram of a wireless charging device according to an embodiment of the present invention.
  • the wireless charging device specifically includes:
  • a power amplifier 102 coupled to the output of the oscillator 101 for amplifying the power of the sinusoidal signal
  • a first resonant coil 103 connected to the power amplifier 102.
  • the first resonant coil 103 includes a first sub-resonant coil and a second sub-resonant coil disposed coaxially horizontally; the first sub-resonant coil and the second sub-resonant coil open the two ends of the first resonant coil, Disposed from the middle position.
  • One end of the first sub-resonant coil is open, and the other end is connected to the radio frequency signal output end of the power amplifier;
  • the second sub-resonant coil has one end open and the other end connected to the radio frequency ground of the power amplifier.
  • the first resonant coil is a planar spiral or a wound spiral coil.
  • FIG. 4 is a schematic structural diagram of a wireless charging apparatus according to Embodiment 2 of the present invention.
  • the wireless charging apparatus specifically includes:
  • a second resonant coil 104 connected to the load 105.
  • the second resonant coil 104 includes a third sub-resonant coil and a fourth sub-resonant coil disposed coaxially horizontally; the third sub-resonant coil and the fourth sub-resonant coil open the two ends of the second resonant coil. Disposed from the middle position.
  • One end of the third sub-resonant coil is open, and the other end is connected to the RF signal input end of the load;
  • the fourth sub-resonant coil has one end open and the other end connected to the RF signal ground of the load.
  • the second resonant coil is a planar spiral or a wound spiral coil.
  • FIG. 5 is a schematic structural diagram of a wireless charging system according to Embodiment 3 of the present invention.
  • the wireless charging system specifically includes:
  • the energy transmitting device and the energy receiving device b are disposed at a predetermined distance r, wherein the energy transmitting device is the wireless charging device according to the first embodiment, and the energy receiving device is the wireless charging device according to the second embodiment .
  • the maximum current can be excited, thereby maximally transmitting power.
  • the resonant frequency is calculated according to the following formula:
  • f is the resonant frequency
  • L is the equivalent inductance
  • C is the equivalent capacitance
  • the resonant frequency of the system depends on the size and mutual position of the four coils.
  • the resonant frequency of the system is only related to the parameters of the two coils. Therefore, such a simplified design can not only save costs but also greatly reduce the cost. The complexity and difficulty of coil making.
  • the present invention discloses a wireless charging apparatus and system, the wireless charging system including an energy transmitting device and an energy receiving device disposed at a predetermined distance, wherein the energy transmitting device includes: for generating a low power sinusoidal signal An oscillator coupled to the output of the oscillator for amplifying the power of the sinusoidal signal; a first resonant coil coupled to the output of the power amplifier, the energy receiving device comprising: coupled to the load input The second resonant coil.
  • the structure is relatively simple, and the manufacturing process and cost are relatively low.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is an electrical connection between them, and specifically may be implemented as one or more communication buses or signal lines.

Abstract

一种无线充电装置及系统。无线充电系统包括相隔预设距离设置的能量发送装置(a)及能量接收装置(b)。能量发送装置包括:用于产生低功率正弦信号的振荡器(101);与振荡器的输出端连接的用于放大正弦信号功率的功率放大器(102);与功率放大器输出端连接的第一共振线圈(103)。能量接收装置包括:与负载(105)输入端连接的第二共振线圈(104)。该无线充电装置结构比较简单,对制造的工艺及成本的要求比较低。

Description

无线充电装置及系统 技术领域
本发明涉及无线充电技术领域,尤其涉及一种无线充电装置及系统。
背景技术
随着科技的发展,电子设备的耗电量在大幅增加,这让人们在使用电子设备时不可避免陷入“电池焦虑”。人们渴望可以无限制的使用电子设备而不用担心电池耗尽,这要求电子设备可以“任何地点”、“任何时间”进行充电,无线充电技术作为一种潜在的有效解决方案得到了大家的普遍关注。
目前,有如下多种无线充电方法,如激光充电,微波充电,磁动充电,电感耦合充电以及磁共振充电,其中激光充电和微波充电为远距离充电,充电效率很低,磁动充电和电感耦合充电为近距离充电方式,但是局限性较大。而磁共振充电虽然在充电效率及局限性上均有所突破,因此,目前最常用的是磁共振充电。
但是,现有的磁共振无线充电系统(如图1所示),包含源线圈、发射线圈、接收线圈以及负载线圈,结构比较复杂,对制造的工艺及成本的要求都比较高。
发明内容
有鉴于此,本发明提供了一种无线充电装置及系统,以克服现有技术中磁共振充电装置结构比较复杂,对制造的工艺及成本的要求都比较高的问题。
为实现上述目的,本发明提供如下技术方案:
一种无线充电装置,所述装置包括:
用于产生低功率正弦信号的振荡器;
与所述振荡器的输出端连接的用于放大所述正弦信号功率的功率放大器;
与所述功率放大器连接的第一共振线圈。
优选的,所述第一共振线圈两端开路,从中间位置断开,形成第一子共振线圈与第二子共振线圈;
所述第一子共振线圈的一端开路,另一端连接所述功率放大器的射频信号输出端;
所述第二子共振线圈的一端开路,另一端连接所述功率放大器的射频接地 端。
优选的,所述第一共振线圈为平面螺旋或绕线螺旋线圈。
一种无线充电装置,所述装置包括:
与负载连接的第二共振线圈。
优选的,所述第二共振线圈两端开路,从中间位置断开,形成第三子共振线与第四子共振线圈。
所述第三子共振线圈的一端开路,另一端连接所述负载的射频信号输入端;
所述第四子共振线圈的一端开路,另一端连接所述负载的射频接地端。
优选的,所述第二共振线圈为平面螺旋或绕线螺旋线圈。
一种无线充电系统,所述系统包括:
相隔预设距离设置的能量发送装置及能量接收装置,其中,所述能量发送装置为上述的无线充电装置,所述能量接收装置为上述的无线充电装置。
优选的,所述能量发送装置中的第一共振线圈的谐振频率与所述能量接收装置中的第二共振线圈的谐振频率相同。
优选的,所述谐振频率根据以下公式进行计算:
Figure PCTCN2014093252-appb-000001
其中,f为谐振频率,L为等效电感,C为等效电容。
经由上述的技术方案可知,与现有技术相比,本发明公开了一种无线充电装置及系统,所述无线充电系统包括相隔预设距离设置的能量发送装置及能量接收装置,其中能量发送装置包括:用于产生低功率正弦信号的振荡器;与所述振荡器的输出端连接的用于放大所述正弦信号功率的功率放大器;与所述功率放大器输出端连接的第一共振线圈,能量接收装置包括:与负载输入端连接的第二共振线圈。与现有技术中的磁共振无线充电系统相比,结构比较简单,对制造的工艺及成本的要求比较低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有的磁共振无线充电系统的结构示意图;
图2为现有的磁共振无线充电系统的等效电路图;
图3为本发明实施例一公开的一种无线充电装置具体结构流程示意图;
图4为本发明实施例二公开的一种无线充电装置具体结构流程示意图;
图5为本发明实施例三公开的一种无线充电系统具体结构流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
由背景技术可知,现有技术中常用的是磁共振无线充电系统,如图1所示,现有的磁共振无线充电系统包括源线圈13、发射线圈14、接收线圈15以及负载线圈16,振荡器11产生一个低功率的正弦信号,经过功率放大12后其功率可达到几瓦到几十瓦,此大功率射频能量馈入到源线圈13中,源线圈13放置在发射线圈14内,由于源线圈13与发射线圈14之间存在很强的电感耦合,因此,此大功率射频能量可以被耦合馈入到发射线圈14中。发射线圈14的间距设计得比较大,线径r’比较粗,这样在绕线之间能形成一定的寄生电容Cp,此时,发射线 圈14和源线圈13的电感与上述寄生电容Cp形成并联谐振。当来自源线圈13的激励能量频率与发射谐振频率相同时,发射线圈能产生最强的近场能量,接收线圈15与负载线圈16有着相同的机理,当接收线圈15的谐振频率与发射线圈14相同时能接收最大的能量,并把它通过电感耦合传递给负载线圈16,这就是磁共振无线充电的工作原理。
但是,现有的磁共振无线充电系统,包含源线圈、发射线圈、接收线圈以及负载线圈这四个线圈,结构比较复杂,对制造的工艺及成本的要求都比较高。本发明的发明人通过对磁共振无线充电系统的等效电路图(图2)分析,发现能量的空间传递主要发生在发射线圈与接收线圈之间,而源线圈与发射线圈或者负载线圈与接收线圈之间的能量交换可以等效为变压器的作用,它对空间能量的传递不是必须的,因此,可以将现有的磁共振无线充电系统的磁共振线圈设计予以简化。据此,本发明对此进行了改进设计,公开了一种新型的无线充电装置及系统,下面将通过以下实施例进行详细说明。
实施例一
请参阅附图3,为本发明实施例一公开的一种无线充电装置的具体结构示意图,该无线充电装置具体包括:
用于产生低功率正弦信号的振荡器101;
与所述振荡器101的输出端连接的用于放大所述正弦信号功率的功率放大器102;
与所述功率放大器102连接的第一共振线圈103。
所述第一共振线圈103包括共轴水平设置的第一子共振线圈和第二子共振线圈;所述第一子共振线圈与第二子共振线圈是将所述第一共振线圈两端开路,从中间位置断开形成的。
所述第一子共振线圈的一端开路,另一端连接所述功率放大器的射频信号输出端;
所述第二子共振线圈的一端开路,另一端连接所述功率放大器的射频接地端。
需要说明的是,所述第一共振线圈为平面螺旋或绕线螺旋线圈。
请参阅附图4,为本发明实施例二公开的一种无线充电装置的具体结构示意图,该无线充电装置具体包括:
与负载105连接的第二共振线圈104。
所述第二共振线圈104包括共轴水平设置的第三子共振线圈和第四子共振线圈;所述第三子共振线圈与第四子共振线圈是将所述第二共振线圈两端开路,从中间位置断开形成的。
所述第三子共振线圈的一端开路,另一端连接所述负载的射频信号输入端;
所述第四子共振线圈的一端开路,另一端连接所述负载的射频信号接地端。
需要说明的是,所述第二共振线圈为平面螺旋或绕线螺旋线圈。
请参阅附图5,为本发明实施例三公开的一种无线充电系统的具体结构示意图,该无线充电系统具体包括:
相隔预设距离r设置的能量发送装置a及能量接收装置b,其中,所述能量发送装置为实施例一所述的无线充电装置,所述能量接收装置为实施例二所述的无线充电装置。
所述能量发送装置中的第一共振线圈的谐振频率与所述能量接收装置中的第二共振线圈的谐振频率相同时,能激励起最大的电流,从而最有效的传输功率。
所述谐振频率根据以下公式进行计算:
Figure PCTCN2014093252-appb-000002
其中,f为谐振频率,L为等效电感,C为等效电容。
以前的方案中系统的共振频率取决于四个线圈的尺寸与相互位置,而新方案中系统的共振频率只和两个线圈的参数相关,因此这样的简化设计不仅能节省成本,而且能大大降低线圈制作的复杂度与难度。
综上所述,本发明公开了一种无线充电装置及系统,所述无线充电系统包括相隔预设距离设置的能量发送装置及能量接收装置,其中能量发送装置包括:用于产生低功率正弦信号的振荡器;与所述振荡器的输出端连接的用于放大所述正弦信号功率的功率放大器;与所述功率放大器输出端连接的第一共振线圈,能量接收装置包括:与负载输入端连接的第二共振线圈。与现有技术中的磁共振无线充电系统相比,结构比较简单,对制造的工艺及成本的要求比较低。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有电气连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
综上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照上述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

  1. 一种无线充电装置,其特征在于,所述装置包括:
    用于产生低功率正弦信号的振荡器;
    与所述振荡器的输出端连接的用于放大所述正弦信号功率的功率放大器;
    与所述功率放大器连接的第一共振线圈。
  2. 根据权利要求1所述的无线充电装置,其特征在于,所述第一共振线圈两端开路,从中间位置断开,形成第一子共振线圈与第二子共振线圈;
    所述第一子共振线圈的一端开路,另一端连接所述功率放大器的射频信号输出端;
    所述第二子共振线圈的一端开路,另一端连接所述功率放大器的射频接地端。
  3. 根据权利1所述的无线充电装置,其特征在于,所述第一共振线圈为平面螺旋或绕线螺旋线圈。
  4. 一种无线充电装置,其特征在于,所述装置包括:
    与负载连接的第二共振线圈。
  5. 根据权利要求4所述的装置,其特征在于,所述第二共振线圈两端开路,从中间位置断开,形成第三子共振线与第四子共振线圈;
    所述第三子共振线圈的一端开路,另一端连接所述负载的射频信号输入端;
    所述第四子共振线圈的一端开路,另一端连接所述负载的射频接地端。
  6. 根据权利要求4所述的装置,其特征在于,所述第二共振线圈为平面螺旋或绕线螺旋线圈。
  7. 一种无线充电系统,其特征在于,所述系统包括:
    相隔预设距离设置的能量发送装置及能量接收装置,其中,所述能量发送装置为权利要求1~3任一项所述的无线充电装置,所述能量接收装置为权利要求4~6任一项所述的无线充电装置。
  8. 根据权利要求7所述的系统,其特征在于,
    所述能量发送装置中的第一共振线圈的谐振频率与所述能量接收装置中 的第二共振线圈的谐振频率相同。
  9. 根据权利要求8所述的系统,其特征在于,所述谐振频率根据以下公式进行计算:
    Figure PCTCN2014093252-appb-100001
    其中,f为谐振频率,L为等效电感,C为等效电容。
PCT/CN2014/093252 2014-12-08 2014-12-08 无线充电装置及系统 WO2016090530A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093252 WO2016090530A1 (zh) 2014-12-08 2014-12-08 无线充电装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093252 WO2016090530A1 (zh) 2014-12-08 2014-12-08 无线充电装置及系统

Publications (1)

Publication Number Publication Date
WO2016090530A1 true WO2016090530A1 (zh) 2016-06-16

Family

ID=56106399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093252 WO2016090530A1 (zh) 2014-12-08 2014-12-08 无线充电装置及系统

Country Status (1)

Country Link
WO (1) WO2016090530A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123319A (zh) * 2007-08-22 2008-02-13 林荣聪 电池盖
US20130134795A1 (en) * 2011-11-29 2013-05-30 Panasonic Corporation Wireless electric power transmission apparatus
CN103326475A (zh) * 2012-03-19 2013-09-25 Lg伊诺特有限公司 无线电力传输设备及其方法
CN103811872A (zh) * 2012-11-12 2014-05-21 财团法人车辆研究测试中心 具集中磁场的构型天线
CN104362775A (zh) * 2014-12-08 2015-02-18 胡沥 无线充电装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123319A (zh) * 2007-08-22 2008-02-13 林荣聪 电池盖
US20130134795A1 (en) * 2011-11-29 2013-05-30 Panasonic Corporation Wireless electric power transmission apparatus
CN103326475A (zh) * 2012-03-19 2013-09-25 Lg伊诺特有限公司 无线电力传输设备及其方法
CN103811872A (zh) * 2012-11-12 2014-05-21 财团法人车辆研究测试中心 具集中磁场的构型天线
CN104362775A (zh) * 2014-12-08 2015-02-18 胡沥 无线充电装置及系统

Similar Documents

Publication Publication Date Title
JP4561886B2 (ja) 電力伝送装置、給電装置及び受電装置
Lee et al. Recent progress in mid-range wireless power transfer
US10033225B2 (en) Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power
JP6618006B2 (ja) 無線電力伝送システムおよび送電装置
CN103051068B (zh) 无线电力中继器
JP2018515057A (ja) 無線電場/磁場電力伝送システム、送信機および受信機
US10425049B2 (en) Wireless electric power transmitter
CN103887896B (zh) 一种充电设备可任意放置的无线充电线圈设计方法
US9030053B2 (en) Device for collecting energy wirelessly
Bhutkar et al. Wireless energy transfer using magnetic resonance
KR20130033837A (ko) 무선 전력 전송 기기 및 그 방법
Jolani et al. A novel planar wireless power transfer system with strong coupled magnetic resonances
CN203871932U (zh) 无线电能传输装置
JP2014236409A (ja) 非接触電力伝送システム、および、非接触電力伝送システムのアンテナ設計方法
WO2016090530A1 (zh) 无线充电装置及系统
CN103312052B (zh) 一种用于无线供电系统的天线装置
JP2012191697A (ja) 非接触電力伝送装置
CN104362775B (zh) 无线充电装置及系统
Sahany et al. Receiver coil position selection through magnetic field coupling of a WPT system used for powering multiple electronic devices
KR20150055755A (ko) 공명 전력 신호 및 유도 전력 신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치 및 이를 포함하는 하이브리드 무선 전력 전송 시스템
US9601928B2 (en) Device for collecting energy wirelessly
CN204103575U (zh) 一种无线充电装置
KR101745043B1 (ko) 무선 전력 전송 기기 및 그 방법
WO2016050156A1 (zh) 无线充电系统及装置
Ali et al. A Critical Analysis of a Wireless Power Transmission (WPT) with an Improvement Method for a Non-Radiative WPT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907938

Country of ref document: EP

Kind code of ref document: A1