WO2016090405A1 - Procédé de formation d'un composant composite métallique à fibres - Google Patents
Procédé de formation d'un composant composite métallique à fibres Download PDFInfo
- Publication number
- WO2016090405A1 WO2016090405A1 PCT/AU2015/000728 AU2015000728W WO2016090405A1 WO 2016090405 A1 WO2016090405 A1 WO 2016090405A1 AU 2015000728 W AU2015000728 W AU 2015000728W WO 2016090405 A1 WO2016090405 A1 WO 2016090405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- forming
- composite component
- fibre
- metal composite
- hollow interior
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/78—Making other particular articles propeller blades; turbine blades
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/20—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/46—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
- B29C70/542—Placing or positioning the reinforcement in a covering or packaging element before or during moulding, e.g. drawing in a sleeve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/88—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
- B29C70/882—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
- B29C70/885—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0025—Producing blades or the like, e.g. blades for turbines, propellers, or wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/20—Constructional features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/473—Constructional features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
- F03B17/061—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/12—Blades; Blade-carrying rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2230/00—Manufacture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2230/00—Manufacture
- F05B2230/20—Manufacture essentially without removing material
- F05B2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05B2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2230/00—Manufacture
- F05B2230/30—Manufacture with deposition of material
- F05B2230/31—Layer deposition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2230/00—Manufacture
- F05B2230/50—Building or constructing in particular ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/70—Shape
- F05B2250/71—Shape curved
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/70—Shape
- F05B2250/71—Shape curved
- F05B2250/713—Shape curved inflexed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/10—Inorganic materials, e.g. metals
- F05B2280/103—Heavy metals
- F05B2280/10304—Titanium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/60—Properties or characteristics given to material by treatment or manufacturing
- F05B2280/6003—Composites; e.g. fibre-reinforced
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/36—Application in turbines specially adapted for the fan of turbofan engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41B—WEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
- F41B5/00—Bows; Crossbows
- F41B5/0005—Single stave recurve bows
- F41B5/001—Single stave recurve bows characterised by the material
- F41B5/0015—Single stave recurve bows characterised by the material fibre reinforced
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method of forming a fibre metal composite component.
- the invention has been primarily developed for use in forming turbine blades for a hydro-powered electricity generator. Such generators are used to convert kinetic energy from flowing fluids, such as water and wind, to electrical power.
- the invention is not limited to this particular field of use and is also suitable for forming many other types of components, including gas turbine fan blades, hydrofoils, yacht masts and stays, ship and boat propellers, bone replacements, aircraft wings, rotor blades for lift fans, archery bows, and structural beams in bridges and buildings.
- Fibre composite components are used in applications that require high stiffness, high strength and low weight. It is known to encapsulate metal components into fibre composite components, primarily to provide for fixing points for bolts etc,
- the typical known method of manufacture of fibre composite components requires a reference form such as a machined tool or a solid casting.
- the method of construction involves either a manual fibre layup, which constitutes the greater percentage of the cost, or an automated fibre winding process into the reference form.
- the components are usually constructed with a thin woven fibre skin over an open core or a foam/honeycomb core.
- the fibre skin is hardened, and attach ed to the core, by binding resin or hardened in the contact presence of the foam with a binder.
- the shape of the part dictates the suitability of adoption to composite construction.
- Fibre composite components have several disadvantages. Firstly, they are relatively expensive and have a relatively long production time, both of these issues arising from the relatively high manual labor content required in the fibre layup. Secondly, the fibres are only unidirectionally stress resistant requiring a woven cloth arrangement to provide multi directional stress resistance. This woven arrangement reduces the pure directional strength. Thirdly, they have relatively low corrosion, impact and abrasion resistance, the binding resin becomes the weakest component. Fourthly, they are not suitable for use in a salt water environment, as the salt water penetrates and delaminates the fibre skin, and an electrolytic reaction between the fibres and the salt degrades the resin to fibre bond.
- the present invention a method of forming a fibre metal composite component, the method including the steps of:
- the method preferably includes sealing the first end with an inlet valve arrangement.
- the resin is preferably injected into the hollow interior through the inlet valve arrangement.
- the method preferably includes sealing the second end with an outlet valve arrangement having a pressure relief val ve.
- the metal skin is preferably compressed until the pressure within the interior is high enough to open the pressure relief valve.
- the method preferably includes applying a vacuum to the outlet valve arrangement during the injection of the resin.
- the metal skin is preferably formed from a continuous pipe section or a plurality of cut panels.
- the cut panels are preferably joined together by TIG, Laser, Plasma or compression welding.
- the cut panels are preferably formed into a curved shape before welding.
- the cut panels are welded together flat and then expanded to form the hollow interior, for example by hydroforming.
- the fibres are carbon fibre, most preferably in the form of a dry single bundles of fibres (known as a tow).
- the dry tow is preferably cut to a length slightly shorter than the length of the metal skin.
- the fibres are resin-impregnated (known as prepreg) tow or prepreg tape.
- the fibres are preferably inserted into the hollow interior in a bundle having a volume smaller than the first volume.
- the method preferably includes blowing air into the hollow interior from the first end during or after the fibre insertion step for the purpose of assisting fibre insertion and fibre alignment.
- the method preferably includes applying heat to the metal skin during the curing step.
- the method preferably includes cutting the inlet valve arrangement and the outlet valve arrangement off from the first end and the second end respectively, after the resin has cured.
- the method preferably includes placing a first cap and a second cap on the first end and the second end respectively, after the cutting steps.
- the first cap may be incorporated into a base mounting system.
- the method preferably includes adding nano fibres to the hollow interior during the resin injection step.
- the metal skin is formed by hydroformimg.
- the metal skin is formed by cold spraying.
- FIG. 1 is a perspective view of a pair of curved metal skin panels
- Fig. 2 shows the panels of Fi g. 1 after joining together to form an elongated metal skin with a hollow interior
- Fig. 3 shows a series of carbon fibre dry tows
- FIG. 4 is a perspective view of the skin shown in Fig. 2 after the addition of an inlet valve arrangement to a first end and an outlet valve arrangement with pressure release valve to a second end;
- Fig. 5 is a perspective detailed view of the first end showing the components of the inlet valve arrangement
- Fig. 6 is a side view of the components shown in Fig. 5;
- Fig. 7 is a cross sectional end view of the metal skin with a carbon fibre bundle therein;
- Fig. 8 shows the metal skin of Fig. 7 after resin injection;
- Fig. 9 shows the metal skin of Fig. 8 after in placement between a pair of fom ing dies and;
- Fig. 10 shows the formation of a fibre metal composite component after compression of the metal skin by the forming dies.
- Fig 1 shows a pair of titanium elongate cut panels 20 that are generally elongate and outwardly convex.
- the panels 20 are formed by hydroforming.
- the panels are about 0.5 to 1 mm thick, 3000 mm long, 550 mm wide at a first end 20a and 250 mm wide at a second end 20b.
- the first end 22a and the second end 22b are known as a root and a tip respectively.
- Fig. 2 shows the panels 20 after they have been welded together along their side edges to form an elongated skin 22 with a hollow interior of a first volume, which is about 100mm deep near the first end 22a and about 60 mm deep near the second end 22b.
- Fig. 3 shows three lengths of dry carbon fibre tow 24.
- the fibres 24 are cut to a length slightly shorter than that of the skin 22 using a winding machine with an indexed plate or put a computer controlled robot.
- the fibres 24 are cut at one end and draped over a set of retaining rings, bobbins, pins or plates (bobbins are shown).
- the length of the fibres 24 is also such that there combined compacted volume substantially matches that of the skin after a compression step (which is discussed in more detailed below) has been undertaken.
- the dry tow 24 is cut to varying lengths commensurate with a taper variation in the longitudinal direction of the skin's final (i.e. compressed) volume.
- Fig. 4 shows the skin 22 after an inlet valve arrangement 26 has been mounted to the first end 22a or root and an outlet valve arrangement 28, which incorporates a pressure release valve, has been mounted to the second end 22b or tip.
- FIGs. 5 and 6 show the components of the inlet valve arrangement 26, being an inlet tube 26a, a sealing plate 26b and a sealing clamp 26c.
- Fig. 7 shows the skin 22 after a bundle 30 of the carbon fibre dry tows 24 has been inserted into its holl ow interior.
- the interior of the skin 22 is sufficiently wide enough for all of the fibres 24 to pass freely into the interior.
- air can be blown in through the inlet valve arrangement 26 towards the outlet valve arrangement 28. This air blowing process will both align the fibres 24 to the contour of the interior of the skin 22 and also add a degree of cross tangling.
- the cross tangling will increase the final component's resistance to sheer stress failure and reduce the possibility of delamination of the unidirectional fibres.
- Fig. 8 shows the skin 22 after resin 32 has been injected through the inlet valve arrangement 26.
- the resin 32 flows towards the outlet valve arrangement 28.
- a vacuum can be applied at the outlet val ve arrangement 28 to reduce the possibility of air bubbles and to ensure full saturation of the carbon fibres 24.
- Fig. 9 shows the skin 22 being placed between a pair of forming dies 34, which each have a forming surface 34a.
- the dies 34 are then brought together in the direction of arrows 36, to the position shown in Fig. 10.
- the dies 34 exert a pressure of about 10 mPa. This action
- the pressure release valve incorporated into the outlet valve arrangement 28 controls the internal pressure during this compression stage. Excess resin 32 within the skin 22, in combination with the carbon fibres 24, pushes against the skin 22 forcing the skin 22 to take the shape of the pressed dies 34. The fibres 24 will also flow in directions orthogonal to the
- the resin 32 flows with the fibres 24 and out along the length of the fibres 24 towards the outlet valve arrangement 28. Once the pressure within the interior of the skin 22 is high enough to open the pressure release valve (e.g 10 mPa), the excess resin 34 flows out of the outlet valve arrangement 28. This outflow does two things. Firstly, it provides an even flow of fibres 24 into a final compressed state. Secondly, it provides another level of alignment with a degree of pre-tension to the fibres 24.
- the dies 34 are then heated in order to heat cure the resin 32. As the resin 32 heats up its viscosity will drop with temperature then begin to rise as it cures. The increasing viscosity also causes a pre-tensioning of the fibres 24 from the root, where the fibres 24 are constrained to the inlet valve arrangement 26. After the dies 34 have completely compressed, the skin 22 remains therein until the resin 34 has cured. After the curing cycle, the completed component (i.e. the skin 22 with the fibre/resin 24/32 core bonded thereto) is removed from the dies 34. The first and second ends and associated valve components are then removed. This completes the forming of the fibre metal composite component, which in this embodiment is a turbine blade for a hydro-powered electricity generator. A sealed end cap and base cap can be fitted to the cut ends to prevent moisture from penetrating the fibre/resin core 24/32.
- the above method, and resulting component have several advantages.
- the component is very lightweight, very strong in bending, very stiff and relatively very inexpensive to produce. The latter is due to: the use of low cost carbon fibre tow material; the reduction in manual labour content and processing time, particularly as manual fibre layup is avoided completely; the fact that there is no need for a mould release and preparation, because the resin does not make contact with the tooling; and the fibres being aligned during the compression step, which eliminates any manual work in terms of aligning the fibres to the principle stress direction.
- the method is suitable to produce components with varying shapes and cross sectional areas. Fourthly, the method allows for fixing points to be easily incorporated into the metal skin and the fibre anchors for ease of production and also superior strength .
- the metal of the skin is isotropic in stress loading, as opposed to a fibre which is unidirectional in stress resistance.
- a high tensile steel has an ultimate tensile strength in the region of 1480 Mpa.
- Titanium alloy Ti6A14V has an ultimate tensile strength of 1 170 Mpa.
- a high tensile strength Carbon Fibre has an ultimate tensile strength of up to 6000 MPa.
- a 3000 MPa Cai'bon Fibre will have, in the woven state, a reduced ultimate tensile strength of 1 120 MPa due to the compaction and weave angles of the fibres. This latter value is similar to the value for Titanium. Accordingly, the Titanium skin provides similar skin delamination resistance to a woven cloth outer skin layer.
- the metal skin can also be tailored for different applications where corrosion and abrasion resistance of varying degrees are required.
- the metal skin also provides the required containment of the fibres by resisting delamination.
- the fibres are aligned to resist the dominate bending induced loads with their superior ultimate tensile strength while the metal skin's properties serve a double duty of shear resistance and protection.
- the metal skin also has further advantages over a fibre composite component, such as corrosion resistance, wear and impact resistance and UV light protection.
- the shape of the first end (root) can be tail ored into the forming dies to produce a mount capable of rotation for the purpose of pitch control.
- the orientation and splaying of the fibres in this region is important for reducing the local stress concentrations therein.
- the flexibility of the forming method with the fibre anchor arrangement lends itself to a superior structure.
- the metal skin advantageously resists bird strikes. Fibre composites are not usable in this application as they can not resist the bird strike test.
- the panels 20 can alternatively be formed by cold spraying, in which metal powder is sprayed at supersonic velocity onto a tool die.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Dermatology (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Textile Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Architecture (AREA)
- Power Engineering (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
L'invention concerne un procédé de formation d'un composant composite métallique à fibres. Le procédé comprend les étapes suivantes : formation d'une pellicule métallique sensiblement allongée (22) pourvue d'un intérieur creux ayant un premier volume et des première (22a) et deuxième extrémités (22b) ouvertes opposées. La deuxième extrémité (22b) est ensuite scellée. Des fibres (24) sont ensuite insérée à travers la première extrémité (22a) et dans l'intérieur creux dans une direction sensiblement vers la deuxième extrémité (22b). La première extrémité (22a) est ensuite scellée. De la résine est ensuite injectée dans l'intérieur creux jusqu'à ce que l'intérieur creux soit plein et les fibres (24) saturées. L'extérieur de la pellicule métallique (22) est ensuite comprimée dans une ou plusieurs matrices de formage afin de réduire l'intérieur creux à un deuxième volume qui est plus petit que le premier volume, de sorte que la pression à l'intérieur de la pellicule métallique (22) repousse la résine en excès vers l'extérieur à travers la deuxième extrémité (22b). La compression de la pellicule métallique (22) est maintenue dans la matrice ou les matrices de formage jusqu'à ce que la résine a durci.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014904946 | 2014-12-08 | ||
AU2014904946A AU2014904946A0 (en) | 2014-12-08 | A method of forming a fibre metal composite component |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016090405A1 true WO2016090405A1 (fr) | 2016-06-16 |
Family
ID=56106289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2015/000728 WO2016090405A1 (fr) | 2014-12-08 | 2015-12-02 | Procédé de formation d'un composant composite métallique à fibres |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016090405A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106270093A (zh) * | 2016-09-09 | 2017-01-04 | 哈尔滨工业大学 | 一种空心叶片粘弹塑性软模内压成形方法及成形装置 |
CN107962830A (zh) * | 2017-12-15 | 2018-04-27 | 惠阳航空螺旋桨有限责任公司 | 一种碳纤维结构布层裁片的方法 |
CN109696266A (zh) * | 2018-12-28 | 2019-04-30 | 江苏五星波纹管有限公司 | 一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法 |
CN110524912A (zh) * | 2019-07-26 | 2019-12-03 | 中国航空工业集团公司济南特种结构研究所 | 一种预浸料快速切割去料装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2084507A (en) * | 1980-10-02 | 1982-04-15 | United Technologies Corp | Method of making fiber reinforced articles |
US4594761A (en) * | 1984-02-13 | 1986-06-17 | General Electric Company | Method of fabricating hollow composite airfoils |
DE19803909A1 (de) * | 1998-02-02 | 1999-08-05 | Ver Foerderung Inst Kunststoff | Verfahren zur Herstellung von endlosfaserverstärkten Hohlkörpern im Harzinjektionsverfahren |
US20130207293A1 (en) * | 2002-10-09 | 2013-08-15 | Mitsubishi Heavy Industries, Ltd. | Methods of rtm molding |
-
2015
- 2015-12-02 WO PCT/AU2015/000728 patent/WO2016090405A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2084507A (en) * | 1980-10-02 | 1982-04-15 | United Technologies Corp | Method of making fiber reinforced articles |
US4594761A (en) * | 1984-02-13 | 1986-06-17 | General Electric Company | Method of fabricating hollow composite airfoils |
DE19803909A1 (de) * | 1998-02-02 | 1999-08-05 | Ver Foerderung Inst Kunststoff | Verfahren zur Herstellung von endlosfaserverstärkten Hohlkörpern im Harzinjektionsverfahren |
US20130207293A1 (en) * | 2002-10-09 | 2013-08-15 | Mitsubishi Heavy Industries, Ltd. | Methods of rtm molding |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106270093A (zh) * | 2016-09-09 | 2017-01-04 | 哈尔滨工业大学 | 一种空心叶片粘弹塑性软模内压成形方法及成形装置 |
CN106270093B (zh) * | 2016-09-09 | 2019-04-16 | 哈尔滨工业大学 | 一种空心叶片粘弹塑性软模内压成形方法及成形装置 |
CN107962830A (zh) * | 2017-12-15 | 2018-04-27 | 惠阳航空螺旋桨有限责任公司 | 一种碳纤维结构布层裁片的方法 |
CN109696266A (zh) * | 2018-12-28 | 2019-04-30 | 江苏五星波纹管有限公司 | 一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法 |
CN110524912A (zh) * | 2019-07-26 | 2019-12-03 | 中国航空工业集团公司济南特种结构研究所 | 一种预浸料快速切割去料装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2441571B1 (fr) | Procédé pour la fabrication d'un composant composite en fibres | |
EP2881237B1 (fr) | Procédé de fabrication d'une bande de cisaillement utilisant une bride de pied de bande préformée | |
EP1633624B1 (fr) | Procede de fabrication de la base d'une pale d'eolienne | |
WO2016090405A1 (fr) | Procédé de formation d'un composant composite métallique à fibres | |
US8506258B2 (en) | Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use | |
EP3541613A1 (fr) | Structure de renforcement pour une pale d'éolienne | |
US10730252B2 (en) | Lightweight composite single-skin sandwich lattice structures | |
JP5282036B2 (ja) | リブポスト | |
EP3099471B1 (fr) | Procédé pour la fabrication d'une pièce de pale d'éolienne en deux étapes | |
EP3099477B1 (fr) | Pale d'éolienne avec transition de fibres améliorée | |
US8424805B2 (en) | Airfoil structure | |
EP2094967B1 (fr) | Profil aérodynamique renforcé | |
JP2008068626A (ja) | 複合材角部及び複合材角部の製造方法 | |
US20200398968A1 (en) | Integrated Pultruded Composite Profiles and Method for Making Same | |
WO2015003713A1 (fr) | Pale de turbine éolienne ayant des sections qui sont réunies les unes aux autres | |
JPH08258169A (ja) | 複合材ファスナー | |
US20160279899A1 (en) | Lightweight composite lattice structures | |
US10005267B1 (en) | Formation of complex composite structures using laminate templates | |
DE102007036917A1 (de) | Rotorblatt für Windkraftanlagen, insbesondere für schwimmende Windkraftanlagen, sowie Windkraftanlage mit einem Rotorblatt | |
US20160279884A1 (en) | Method of manufacturing lightweight composite lattice structures | |
JP5628313B2 (ja) | 積層複合ロッド、その製造方法と複合構造における使用 | |
US20200180273A1 (en) | Plastic fiber composite material/aluminum laminate, production and use thereof | |
Falken et al. | From development of multi-material skins to morphing flight hardware production | |
EP4112922A1 (fr) | Procédé de prise en charge de bandes de cisaillement d'une pale d'éolienne et pale d'éolienne | |
RU2470277C1 (ru) | Способ изготовления образца для испытания на прочность лопасти модели воздушного винта |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15868231 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15868231 Country of ref document: EP Kind code of ref document: A1 |