WO2016090100A1 - Longueur de foulée réglable dans une machine d'exercice - Google Patents
Longueur de foulée réglable dans une machine d'exercice Download PDFInfo
- Publication number
- WO2016090100A1 WO2016090100A1 PCT/US2015/063665 US2015063665W WO2016090100A1 WO 2016090100 A1 WO2016090100 A1 WO 2016090100A1 US 2015063665 W US2015063665 W US 2015063665W WO 2016090100 A1 WO2016090100 A1 WO 2016090100A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- connection assembly
- arm support
- foot pedal
- adjustment link
- exercise machine
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0015—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/012—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using frictional force-resisters
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/22—Resisting devices with rotary bodies
- A63B21/225—Resisting devices with rotary bodies with flywheels
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0002—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
- A63B22/001—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by simultaneously exercising arms and legs, e.g. diagonally in anti-phase
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0664—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/04—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0664—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
- A63B2022/067—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on opposite sides of the exercising apparatus with respect to the frontal body-plane of the user, e.g. the crank is behind and handles are in front of the user
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0664—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
- A63B2022/0676—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on the same side of the exercising apparatus with respect to the frontal body-plane of the user, e.g. crank and handles are in front of the user
- A63B2022/0682—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on the same side of the exercising apparatus with respect to the frontal body-plane of the user, e.g. crank and handles are in front of the user with support elements being cantilevered, i.e. the elements being supported only on one side without bearing on tracks on the floor below the user
Definitions
- Aerobic exercise is a popular form of exercise that improves one's cardiovascular health by reducing blood pressure and providing other benefits to the human body. Aerobic exercise generally involves low intensity physical exertion over a long duration of time. Typically, the human body can adequately supply enough oxygen to meet the body's demands at the intensity levels involved with aerobic exercise.
- Popular forms of aerobic exercise include running, jogging, swimming, and cycling among other types of aerobic exercise.
- anaerobic exercise typically involves high intensity exercises over a short duration of time.
- Popular forms of aerobic exercise include strength training and short distance running.
- aerobic exercise machine Many choose to perform aerobic exercises indoors, such as in a gym or their home. Often, a user will use an aerobic exercise machine to have an aerobic workout indoors.
- One such type of aerobic exercise machine is an elliptical exercise machine, which often includes foot supports that move in reciprocating directions when moved by the feet of a user. Often, the foot supports will be mechanically linked to arm levers that can be held by the user during the workout. The arm levers and foot supports move together and collectively provide resistance against the user's motion during the user's workout.
- Other popular exercise machines that allow a user to perform aerobic exercises indoors include treadmills, rowing machines, stepper machines, and bikes to name a few.
- variable stride exercise device utilizes various configurations of linkage assemblies, cam members, and other components, connected with a frame to allow a user to dynamically vary the user's stride path during exercise.
- the exercise device allows for a foot engagement member travel path that adapts to the change in stride length rather than forcing the user into a fixed size path.
- a user's exertion level may have several components impacting the stride length provided by the machine, such as leg power, torso power, and (in versions of the exercise apparatus with arm supports or exercise components) arm power.
- the exercise device may include a lockout device that selectively eliminates the variable stride features of the exercise device and allows the user to exercise in a stepping motion.
- a lockout device that selectively eliminates the variable stride features of the exercise device and allows the user to exercise in a stepping motion.
- an exercise machine comprises a frame.
- a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal.
- the exercise machine comprises a first arm support and a second arm support are pivotally attached to the frame.
- the first arm support is mechanically linked to the first foot pedal
- the second arm support is mechanically linked to the second foot pedal
- the exercise machine comprises a first stride adjustment link is slideably connected to the first arm support at a first connection assembly.
- the exercise machine comprises a second stride adjustment link is slideably connected to the second arm support at a second connection assembly.
- the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly.
- the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly.
- slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- the first stride adjustment link comprises a first sliding end attached to the first slideable connector.
- the second stride adjustment link comprises a second sliding end attached to the second slideable connector.
- the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly.
- the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly.
- the first actuator and the second actuator are mechanical actuators.
- the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly.
- the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly.
- the first actuator comprises a first screw mechanism arranged to move the first slideable connector.
- the second actuator comprises a second screw mechanism arranged to move the second slideable connector.
- the first screw mechanism and the second screw mechanism include a push rod connected to a thread form on a first end and connected the first slideable connector or the second slideable connector on a second end.
- the first screw mechanism and the second screw mechanism include a piston head connected to a thread form and configured to compress a chamber of gas as the first actuator or the second actuator is actuated.
- each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- an exercise machine comprises a frame.
- a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal.
- the exercise machine comprises a first arm support and a second arm support are pivotally attached to the frame.
- the first arm support is mechanically linked to the first foot pedal
- the second arm support is mechanically linked to the second foot pedal
- a first stride adjustment link is slideably connected to the first arm support at a first connection assembly
- a second stride adjustment link is slideably connected to the second arm support at a second connection assembly
- the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly
- the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly, wherein slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- the first stride adjustment link comprises a first sliding end attached to the first slideable connector, and the second stride adjustment link comprising a second sliding end attached to the second slideable connector.
- the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly
- the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly.
- the first actuator and the second actuator are mechanical actuators.
- the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly
- the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly
- the first actuator comprises a first screw mechanism arranged to move the first slideable connector and the second actuator comprises a second screw mechanism arranged to move the second slideable connector.
- each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- an exercise machine comprises a frame.
- a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal.
- a first arm support and a second arm support are pivotally attached to the frame.
- the first arm support is mechanically linked to the first foot pedal
- the second arm support is mechanically linked to the second foot pedal
- a first stride adjustment link is slideably connected to the first arm support at a first connection assembly
- a second stride adjustment link is slideably connected to the second arm support at a second connection assembly
- the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly
- the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly, wherein slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- the first stride adjustment link comprises a first sliding end attached to the first slideable connector, and the second stride adjustment link comprising a second sliding end attached to the second slideable connector.
- the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly
- the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly
- the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly
- the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly.
- each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- FIG. 1 illustrates a perspective view of an example of an exercise machine in accordance with the present disclosure.
- FIG. 2 illustrates a side view of the exercise machine of FIG. 1.
- FIG. 3 illustrates a close up view of an example of an actuator of an example of a stride adjustment link in accordance with the present disclosure.
- FIG. 4 illustrates a cut away view of an example of a stride adjustment link in accordance with the present disclosure.
- FIG. 5 illustrates a cut away view of an example of a stride adjustment link in accordance with the present disclosure.
- FIG. 6 illustrates a close up view of an example of an actuator of a stride adjustment link in accordance with the present disclosure.
- An exercise machine such as an elliptical exercise machine, includes foot pedals that are mechanically linked together. Such foot pedals are often mechanically linked to arm supports that move with the foot pedals of the elliptical exercise machine. Thus, when any of either the foot pedals or either of the arm supports move, each of the foot pedals and each of the arm supports will move. As a result, when a user moves any of these
- each of the components will move together.
- a user can stand on the foot pedals and move his feet along a reciprocating path traveled by the foot pedals while moving the arm supports back and forth.
- a user gets a workout when the collective movement of the foot pedals and arm supports is resisted.
- the resistance to the foot pedal's movement is adjustable. Such resistance may be achieved through any appropriate mechanism.
- a magnetic unit is positioned near a flywheel such that the magnetism of the magnetic unit resists the movement of the flywheel. To adjust the magnetic resistance force, the magnetic unit may be moved closer to or away from the flywheel.
- the magnetic force is proportional to electrical energy applied to the magnetic unit, and the strength of the magnetic field can be adjusted by applying a different level of electrical energy to the flywheel.
- tensioning units, compression pads, pneumatic mechanisms, hydraulic mechanisms, other mechanisms, or combinations thereof are adjusted to change the resistance.
- a resistance mechanism includes those components that directly interact to cause an added degree of resistance during the user's workout.
- a resistance mechanism may include a flywheel when the exercise machine has components that can adjustably impose resistance to the movement of the flywheel, such as imposing a magnetic force on the flywheel to prevent the flywheel's rotation.
- the flywheel is included in the resistance mechanism when other components interact with the flywheel to directly resist the flywheel's movement.
- braking pads, tensioning elements, fan blades, or other components can be used to directly resist the movement of the flywheel.
- both the flywheel and the components interact to adjustably resist the movement of the flywheel and are included as part of the resistance mechanism.
- FIGS. 1-2 depict an example of an exercise machine 100, such as an elliptical exercise machine.
- the exercise machine 100 includes a base 102 that is attached to a frame 104.
- a lower portion 106 of the frame 104 includes a housing 108 that supports a first flywheel 110 and a second flywheel 112.
- the first flywheel 110 and the second flywheel 112 are attached to one another through a crank assembly 114.
- the crank assembly 114 includes a crank arm that is attached to a first shaft that is connected to the first flywheel 110 on a first end and attached to a second shaft 122 that is connected to the second flywheel 112 at a second end 124.
- the base 102 may be any appropriate base in accordance with the principles described in the present disclosure.
- the base 102 is flat and has a center of gravity that is close to a floor or other type of foundation upon which the exercise machine 100 resides.
- the base 102 may be made of a continuous beam of metal with a curvature such that multiple portions of the continuous beam are positioned to make connections with the lower portion of the frame 104.
- cross bars connect the multiple portions of the base 102.
- the frame includes just horizontally positioned beams that are aligned with the floor or the other type of foundation.
- the base 102 may include a vertical support member that is intended to carry a vertical load.
- the first shaft is attached to an underside of a first track 126 that supports a first foot pedal 128, and the second shaft 122 is attached to an underside of a second track 130 that supports a second foot pedal 132.
- the crank assembly 114 is shaped such that the first shaft and the second shaft 122 follow reciprocating paths. Consequently, the first foot pedal 128 follows the path of the first shaft, and the second foot pedal 132 follows the path of the second shaft 122. As a user stands on the first foot pedal 128 and the second foot pedal 132 for a workout, the user's feet will also follow the reciprocating paths of the first foot pedal 128 and the second foot pedal 132.
- the first foot pedal 128 is slideable along the length of the first track 126.
- the second foot pedal 132 is slideable slide along the length of the second track 130.
- the first foot pedal 128 and the second foot pedal 132 are configured to move down the length of the tracks and with the reciprocating paths traveled by the first shaft and the second shaft 122.
- the first foot pedal 128 is connected to a first arm support 134 through a first mechanical linkage 136
- the second foot pedal 132 is connected to a second arm support 138 through a second mechanical linkage 140.
- the first arm support 134 is connected to the frame 104 at a first arm pivot connection 142
- the second arm support 138 is connected to the frame 104 at a second arm pivot connection 144.
- the first mechanical linkage 136 includes a first bottom section of the first arm support 134 being connected to a first far end of the first track 126 at a first joint.
- the second mechanical linkage 140 includes a second bottom section of the second arm support 138 being connected to a second far end of the second track 130 at a second joint.
- a console 158 is connected to a portion of the frame 104.
- the console 158 may include multiple buttons, a display, a cooling vent, a speaker, another device, or combinations thereof.
- the console 158 can include a resistance input mechanism that allows the user to control how much resistance is applied to the movement of the first foot pedal 128, the second foot pedal 132, the first arm support 134, and the second arm support 138.
- the console 158 may also provide the user with an ability to control other functions of the exercise machine 100.
- the console 158 may be used to control a level of a climate control, to control an incline angle between the frame 104 and the base 102, to control speaker volume, to select a preprogrammed workout, to control entertainment through the speakers of the display of the console 158, to monitor a health parameter of the user during a workout, to communicate with a remote trainer or computer, to control other functions, or combinations thereof.
- the first and second foot pedals 128, 132 are movably attached to the first and second tracks 126, 130 respectively so that the foot pedals can slide along the length of the tracks 126, 130.
- the rotary position of the crank assembly 114 can be locked so that the foot pedals 128, 132 do not travel in circular paths while sliding along the length of the tracks 126, 130.
- a resistance mechanism can be incorporated into the tracks 126, 130 to add resistance to the sliding motion of the foot pedals 128, 132.
- Such a resistance mechanism may be positioned on the underside of the tracks 126, 130.
- the foot pedals 128, 132 are locked with respect to the tracks 126, 130 such that the user cannot slide the foot pedals 128, 132 along the tracks' lengths.
- the crank assembly 114 may be free to rotate such that the foot pedals 128, 132 can move along reciprocating paths that include circular motion.
- the exercise machine 100 includes a first stride adjustment link 166 that is slideably connected to the first arm support 134 at a first connection assembly 168, and a second stride adjustment link 170 that is slideably connected to the second arm support 138 at a second connection assembly 172.
- the first and second connection assemblies 168, 172 may include a housing that is either attached or integrally formed into the first and second arm supports 134, 138.
- the first connection assembly 168 includes a first opening 175 configured to receive a first attachment rod 174 to which a first connection end of the first stride adjustment link 166 can attach.
- the second connection assembly 172 includes a second opening 200 configured to receive a second attachment rod 202 to which a second connection end of the second stride adjustment link 170 can attach.
- the first and second attachment rods can be moved along the lengths of the first and second openings 175, 202 respectfully.
- the other ends of the stride adjustment links 166, 170 can be attached to the first and second tracks 126, 130 respectfully proximate the first and second foot pedals 128, 132.
- the other ends of the stride adjustment links 166, 170 can be attached to portions of the crank assembly 114 or other portions of the exercise machine 100 that travel along the reciprocating path.
- the position of the first attachment rod 174 within the first opening 175 of the first connection assembly 168 may be controlled by the first actuator.
- the position of the second attachment rod 202 within the second opening 200 of the second connection assembly 172 may be controlled by the second actuator.
- the first and second attachment links restrict the amount of movement that the tracks 126, 130 and/or the first and second foot pedals 128, 132 can move. In such examples, the reciprocating paths may shrink. Thus, the stride length of the user using the exercise machine 100 accordingly shrinks as well.
- the first and second attachment links increase the amount movement available to the tracks 126, 130 and/or the first and second foot pedals 128, 132.
- the length of the reciprocating paths may increase.
- the stride length of the user using the exercise machine 100 accordingly enlarges as well.
- a user may adjust the stride length of the exercise machine 100 according to the user's height and/or other preferences.
- the user may adjust the stride length to target specific muscle groups or train for specific types of events where training with a specific stride length can be advantageous.
- a rotary dial 180 may be positioned on the first and/or second connection assemblies 168, 172. Such a rotary dial 180 may be rotated in a first direction to cause the stride length to increase. Likewise, such a rotary dial 180 may be rotated in a second direction to cause the stride length to decrease.
- Other mechanical types of input mechanism may be used. For example, linear dials, levers, sliders, push buttons, other types of mechanical inputs mechanisms, or combinations thereof may be used in accordance with the principles described in the present disclosure.
- electronic-type input mechanisms may also be used. For example, a touch screen or another type of electronic- type input mechanism may be incorporated.
- some examples include a single input mechanism that may be used to control both the first and second stride adjustment links.
- just one of the stride adjustment links may incorporate an actuator that includes an input mechanism.
- Such an input mechanism may be in communication with both the local actuator as well as the actuator associated with the other stride adjustment link.
- an electronic signal may be transmitted to both of the stride adjustment links in response to the input mechanism receiving input from the user. Such a signal may cause both of the actuators to move at the same rate and/or distance. As a result, the user does not have to determine whether each of the stride adjustment links is set at the same stride lengths.
- FIG. 3 illustrates a close up view of an example of an actuator of an example of a stride adjustment link in accordance with the present disclosure.
- the actuator includes a rotary dial 180 as the input mechanism.
- a rotary dial 180 include a knob 300 positioned in the center of the input mechanism.
- Numeral characters 302 surround the rotary dial 180 and represent the stride length in inches at which the exercise machine 100 is currently set.
- the numeral indicators 302 may represent another unit of length.
- other symbols, besides numeral indicators 302 are used to represent the stride length.
- FIG. 4 illustrates a cut away view of a stride adjustment link in accordance with the present disclosure.
- the actuator 400 includes a screw mechanism with a thread form 402 that is connected to a rotary dial input mechanism 404.
- the thread form 402 rotates in a corresponding direction causing a carrier 406 to move in a downward direction.
- the carrier 406 is connected to a push rod 408 that is attached to the attachment rod 410.
- the attachment rod 410 will likewise move in the downward direction.
- the stride length adjustment link will move causing the stride length to decrease.
- the thread form 402 rotates in a corresponding direction causing the carrier 406 to move in an upward direction.
- the carrier 406 is connected to a push rod 408 that is attached to the attachment rod 410.
- the attachment rod 410 will also move in the upward direction.
- the stride length adjustment link will move causing the stride length to increase.
- FIG. 5 illustrates a cut away view of a stride adjustment link in accordance with the present disclosure.
- the actuator 400 includes the screw mechanism with the thread form 402 that is connected to the rotary dial input mechanism 404.
- the thread form 402 rotates in a corresponding direction causing a carrier 406 to move in a downward direction.
- the carrier 406 is connected to a piston head 500, which moves downward with the carrier 406.
- the piston head 500, an internal surface of the housing of the connection assembly, and a body that carries the attachment rod collectively form a gas chamber that has a characteristic such that when the piston head 500 moves downward that gas in the gas chamber compresses.
- the force from the compressed gas may cause the body carrying the piston to also move downward, thus changing the position of the stride length adjustment link.
- the thread forms may also rotate in the second direction causing the carrier 406 to move upward.
- the piston head 500 also moves in the upward direction.
- the upward movement of the piston head may relieve at least some of the pressure within the gas chamber resulting in a weaker force pushing the body carrying the adjustment rod downward.
- a force is continuously urging the body carrying the attachment rod upward.
- Such a force may be applied by a spring, an elastomeric material, another mechanism, or combinations thereof.
- the upward force may overcome the downward force resulting in the body moving upward.
- the attachment rod moves upward causing the stride adjustment link to also move upward and modify the stride length.
- FIG. 6 illustrates a close up view of an example of an actuator of a stride adjustment link in accordance with the present disclosure.
- the input mechanism 600 includes a display 602, an increase button 604, and a decrease button 606.
- the user can instruct the exercise machine 100 to change the stride length by pressing either the increase button 604 or the decrease button 606.
- an electronic signal may be generated to cause the actuator to move the stride adjustment link.
- the signals may be sent to a single stride adjustment link or the signals may be sent to both stride adjustment links.
- the signal may be transmitted to yet other exercise machines with adjustable strides such that the stride length of the other exercise machines may be controlled remotely through the input mechanism 600.
- the display 602 may present the current stride adjustment length of both or just the corresponding stride.
- the input mechanisms may include mechanical input mechanisms, electric input mechanisms, other type of input mechanisms, or combinations thereof.
- the examples above have been described with reference to specific types of actuators, any appropriate type of actuator may be used in accordance with the principles described herein.
- such an actuator may include screw type mechanisms, hydraulic mechanisms, pneumatic
- linear actuators linear actuators, motors, analog/digital converters, springs, gears, levers, other types of actuators, or combinations thereof.
- the exercise machine may include any number of flywheels.
- the principles described in the present disclosure can be applied to exercise machines that incorporate just a single flywheel or no flywheel at all.
- the examples above have been described with specific reference to an elliptical exercise machine that provides a user the ability to both work out by sliding the foot pedals and rotating the crank assembly, the principles described in the present disclosure can be applied to exercise machines that provide just one of these types of aforementioned workouts.
- any appropriate type of exercise machine may incorporate the principles described in the present disclosure.
- any appropriate connector and/or fastener may be used to make the attachment.
- a ball and socket connection may be used.
- the stride adjustment link may slide within track where a flange of the stride adjustment link retains the stride adjustment link within the track.
- other types of connection mechanisms may be used.
- the invention disclosed herein may provide an exercise machine that has a convenient mechanism for adjusting the stride length of the exercise machine. For example, users of different heights and/or stride lengths may use the same exercise machine and conveniently adjust the stride. Further, users may conveniently adjust the stride to target different muscle groups.
- the stride adjustment mechanisms may include an input mechanism that is located within a convenient arms reach of a user standing on the foot pedals of the exercise machine.
- the user can adjust the stride while exercising or at least without having to get off of the exercise machine.
- a user may adjust the stride length before getting onto the exercise machine just to find that the adjusted stride is undesirable. In such situations, the user can refine the stride adjustment while still standing on the exercise machine's foot pedals.
- a stride adjustment link may connect the arm support to the foot pedal independent of other mechanical linkages.
- the stride adjustment link may restrict the movement of such mechanical linkages such that the stride length is set at a certain distance.
- the input mechanism is a rotary dial where turning the rotary dial in a first direction causes the stride length to increase while turning the rotary dial in a second direction causes the stride length to decrease.
- any appropriate type of actuator to causes the stride length to adjust may be used in accordance with the principles described in the present disclosure.
- Examples of screw type actuators and pneumatic actuators are described above.
- other types of actuator may be used.
- such actuators may include linear actuators, motors, digital/analog converters, springs, gears, and so forth.
- any appropriate type of input mechanism that is convenient for the user to operate while in a position to use the exercise machine may be used.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Rehabilitation Tools (AREA)
Abstract
La présente invention concerne une machine d'exercice comprenant un cadre, une première pédale à pied et une seconde pédale à pied attachées de manière mobile au cadre et placées de manière à se déplacer le long de trajectoires dans un mouvement de va-et-vient. Un mécanisme de résistance de pédale intégré dans la machine d'exercice est en communication résistive avec la première pédale à pied et la seconde pédale à pied, et un premier support de bras et un second bras support sont fixés de manière pivotante sur le cadre. Le premier support de bras est relié mécaniquement à la première pédale à pied, et le second support de bras est relié mécaniquement à la seconde pédale à pied, et une première liaison de réglage du pas est reliée de manière coulissante au premier support de bras au niveau d'un premier ensemble de connexion, et une seconde liaison de réglage du pas est reliée de manière coulissante au second support de bras au niveau d'un second ensemble de connexion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462087895P | 2014-12-05 | 2014-12-05 | |
US62/087,895 | 2014-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016090100A1 true WO2016090100A1 (fr) | 2016-06-09 |
Family
ID=56092444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/063665 WO2016090100A1 (fr) | 2014-12-05 | 2015-12-03 | Longueur de foulée réglable dans une machine d'exercice |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160158595A1 (fr) |
TW (1) | TWI579019B (fr) |
WO (1) | WO2016090100A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108721834A (zh) * | 2018-05-29 | 2018-11-02 | 安阳工学院 | 一种双侧肢体同步运动装置 |
CN113082639A (zh) * | 2021-04-15 | 2021-07-09 | 河南省中医院(河南中医药大学第二附属医院) | 一种心血管病人用康复护理装置 |
CN117599385A (zh) * | 2023-12-30 | 2024-02-27 | 中国人民解放军空军军医大学 | 一种房颤消融术后锻炼护理装置 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9345948B2 (en) | 2012-10-19 | 2016-05-24 | Todd Martin | System for providing a coach with live training data of an athlete as the athlete is training |
WO2014153158A1 (fr) | 2013-03-14 | 2014-09-25 | Icon Health & Fitness, Inc. | Appareil d'entraînement musculaire ayant un volant, et procédés associés |
US9403047B2 (en) | 2013-12-26 | 2016-08-02 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
US10433612B2 (en) | 2014-03-10 | 2019-10-08 | Icon Health & Fitness, Inc. | Pressure sensor to quantify work |
US10940360B2 (en) | 2015-08-26 | 2021-03-09 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
US9707439B2 (en) * | 2015-11-10 | 2017-07-18 | Superweigh Enterprise Co., Ltd. | Elliptical machine |
US10369404B2 (en) | 2015-12-31 | 2019-08-06 | Nautilus, Inc. | Pedal assembly for exercise machine |
US10493349B2 (en) | 2016-03-18 | 2019-12-03 | Icon Health & Fitness, Inc. | Display on exercise device |
US10293211B2 (en) | 2016-03-18 | 2019-05-21 | Icon Health & Fitness, Inc. | Coordinated weight selection |
US10561894B2 (en) | 2016-03-18 | 2020-02-18 | Icon Health & Fitness, Inc. | Treadmill with removable supports |
US10252109B2 (en) | 2016-05-13 | 2019-04-09 | Icon Health & Fitness, Inc. | Weight platform treadmill |
US11058914B2 (en) | 2016-07-01 | 2021-07-13 | Icon Health & Fitness, Inc. | Cooling methods for exercise equipment |
US10918905B2 (en) | 2016-10-12 | 2021-02-16 | Icon Health & Fitness, Inc. | Systems and methods for reducing runaway resistance on an exercise device |
US10328301B2 (en) | 2016-12-30 | 2019-06-25 | Nautilus, Inc. | Exercise machine with adjustable stride |
TWI722450B (zh) | 2017-08-16 | 2021-03-21 | 美商愛康運動與健康公司 | 用於抗馬達中之軸向衝擊載荷的系統 |
US11187285B2 (en) | 2017-12-09 | 2021-11-30 | Icon Health & Fitness, Inc. | Systems and methods for selectively rotationally fixing a pedaled drivetrain |
WO2019126058A1 (fr) | 2017-12-22 | 2019-06-27 | Icon Health & Fitness, Inc. | Machine d'exercice inclinable |
US11000730B2 (en) | 2018-03-16 | 2021-05-11 | Icon Health & Fitness, Inc. | Elliptical exercise machine |
WO2019241073A1 (fr) | 2018-06-11 | 2019-12-19 | Icon Health & Fitness, Inc. | Actionneur linéaire à durabilité accrue |
TWI721460B (zh) | 2018-07-13 | 2021-03-11 | 美商愛康運動與健康公司 | 自行車鞋功率感測器 |
US10946238B1 (en) | 2018-07-23 | 2021-03-16 | Life Fitness, Llc | Exercise machines having adjustable elliptical striding motion |
TWI761125B (zh) | 2019-01-25 | 2022-04-11 | 美商愛康有限公司 | 互動式腳踏式運動訓練設備 |
US11298577B2 (en) | 2019-02-11 | 2022-04-12 | Ifit Inc. | Cable and power rack exercise machine |
US11426633B2 (en) | 2019-02-12 | 2022-08-30 | Ifit Inc. | Controlling an exercise machine using a video workout program |
US11794070B2 (en) | 2019-05-23 | 2023-10-24 | Ifit Inc. | Systems and methods for cooling an exercise device |
CN112169259A (zh) * | 2019-07-04 | 2021-01-05 | 北京力泰克科技有限公司 | 康复用椭圆机及其步长调节机构 |
US11534651B2 (en) | 2019-08-15 | 2022-12-27 | Ifit Inc. | Adjustable dumbbell system |
TWI776250B (zh) | 2019-10-11 | 2022-09-01 | 美商愛康有限公司 | 模組化運動裝置 |
EP3821959B1 (fr) | 2019-11-12 | 2024-01-03 | iFIT Inc. | Système de stockage d'exercice |
US12011638B2 (en) | 2020-03-09 | 2024-06-18 | Life Fitness, Llc | Exercise machines for facilitating elliptical striding motion |
US11931621B2 (en) | 2020-03-18 | 2024-03-19 | Ifit Inc. | Systems and methods for treadmill drift avoidance |
US12029961B2 (en) | 2020-03-24 | 2024-07-09 | Ifit Inc. | Flagging irregularities in user performance in an exercise machine system |
WO2021195148A1 (fr) | 2020-03-24 | 2021-09-30 | Icon Health & Fitness, Inc. | Tableau de classement avec drapeaux d'irrégularité dans un système d'appareil d'exercice |
US20240157193A1 (en) * | 2022-11-15 | 2024-05-16 | Kenneth W Stearns | Stepper exercise apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788610A (en) * | 1996-09-09 | 1998-08-04 | Eschenbach; Paul William | Elliptical exercise machine with arm exercise |
US6994656B2 (en) * | 2002-06-21 | 2006-02-07 | Johnson Tech, Co., Ltd. | Exercise apparatus |
US7377881B2 (en) * | 2002-08-07 | 2008-05-27 | Daniel Ross Moon | Adjustable stride elliptical motion exercise machine and associated methods |
US7828698B2 (en) * | 2003-12-04 | 2010-11-09 | Rodgers Jr Robert E | Pendulum striding exercise devices |
US20140243157A1 (en) * | 2013-02-25 | 2014-08-28 | Dyaco International Inc. | Elliptical trainer with variable track |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8902470D0 (en) * | 1989-02-03 | 1989-03-22 | Alberta Ltd 357306 | Leg exerciser |
US6027431A (en) * | 1997-04-26 | 2000-02-22 | Stearns; Kenneth W. | Exercise methods and apparatus with an adjustable crank |
US6053847A (en) * | 1997-05-05 | 2000-04-25 | Stearns; Kenneth W. | Elliptical exercise method and apparatus |
US6135923A (en) * | 1998-04-23 | 2000-10-24 | Stearns; Kenneth W. | Exercise methods and apparatus |
US6689020B2 (en) * | 1999-11-05 | 2004-02-10 | Kenneth W. Stearns | Exercise apparatus with elliptical foot motion |
US6620079B2 (en) * | 2000-12-19 | 2003-09-16 | Hai Pin Kuo | Exerciser having adjustable mechanism |
US6648800B2 (en) * | 2001-04-16 | 2003-11-18 | Kenneth W. Stearns | Exercise apparatus with elliptical foot motion |
US6454682B1 (en) * | 2001-07-19 | 2002-09-24 | Hai Pin Kuo | Exercizer having adjustable mechanism |
US6450925B1 (en) * | 2001-07-19 | 2002-09-17 | Hai Pin Kuo | Exerciser having adjustable mechanism |
US7211029B2 (en) * | 2003-07-04 | 2007-05-01 | Jong Jyr Kau | Foldaway threadmill |
TWM286688U (en) * | 2005-05-27 | 2006-02-01 | Motion Fitness Products Inc | Span adjusting structure of elliptical exercise device |
TWI268165B (en) * | 2006-04-07 | 2006-12-11 | Chia Ting Foundries Co Ltd | Adjustable elliptic exercise machine comprises a body, two swinging arms, a track adjustment device, a step device, and a trechometer adjustment device |
US7662069B2 (en) * | 2006-10-30 | 2010-02-16 | Maresh Joseph D | Ellipical exercise apparatus with flexible unitary force imparting member |
US7682288B1 (en) * | 2007-09-04 | 2010-03-23 | Stearns Kenneth W | Elliptical exercise methods and apparatus |
US8469861B1 (en) * | 2008-08-20 | 2013-06-25 | Susan L. McFee | Pushable exercise apparatus for resistance training |
WO2010048348A2 (fr) * | 2008-10-21 | 2010-04-29 | Rakesh Patel | Machine de simulation d'escalier assistée et procédés d'utilisation |
US8079937B2 (en) * | 2009-03-25 | 2011-12-20 | Daniel J Bedell | Exercise apparatus with automatically adjustable foot motion |
US8251874B2 (en) * | 2009-03-27 | 2012-08-28 | Icon Health & Fitness, Inc. | Exercise systems for simulating real world terrain |
US20120071301A1 (en) * | 2010-09-22 | 2012-03-22 | Jemian Fitness Llc | Adjustable inclining and declining exercise bicycle |
TWM427169U (en) * | 2011-11-04 | 2012-04-21 | Great Fitness Ind Co Ltd | Drive structure of elliptical machine |
US8893698B2 (en) * | 2013-03-13 | 2014-11-25 | Sports Attack, Inc. | System and method to pitch soccer balls |
US20140309086A1 (en) * | 2013-04-15 | 2014-10-16 | Yen-Chi Chuang | Oblong Orbital Exercising Machine Having Adjustable and Extendable Trace of Movement |
US9039577B2 (en) * | 2013-06-14 | 2015-05-26 | Mario Contenti Designs Co., Ltd. | Elliptical trainer |
TWM486466U (zh) * | 2014-05-21 | 2014-09-21 | Mario Contenti Designs Co Ltd | 橢圓機 |
-
2015
- 2015-12-03 US US14/957,950 patent/US20160158595A1/en not_active Abandoned
- 2015-12-03 WO PCT/US2015/063665 patent/WO2016090100A1/fr active Application Filing
- 2015-12-04 TW TW104140803A patent/TWI579019B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788610A (en) * | 1996-09-09 | 1998-08-04 | Eschenbach; Paul William | Elliptical exercise machine with arm exercise |
US6994656B2 (en) * | 2002-06-21 | 2006-02-07 | Johnson Tech, Co., Ltd. | Exercise apparatus |
US7377881B2 (en) * | 2002-08-07 | 2008-05-27 | Daniel Ross Moon | Adjustable stride elliptical motion exercise machine and associated methods |
US7828698B2 (en) * | 2003-12-04 | 2010-11-09 | Rodgers Jr Robert E | Pendulum striding exercise devices |
US20140243157A1 (en) * | 2013-02-25 | 2014-08-28 | Dyaco International Inc. | Elliptical trainer with variable track |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108721834A (zh) * | 2018-05-29 | 2018-11-02 | 安阳工学院 | 一种双侧肢体同步运动装置 |
CN108721834B (zh) * | 2018-05-29 | 2020-04-07 | 安阳工学院 | 一种双侧肢体同步运动装置 |
CN113082639A (zh) * | 2021-04-15 | 2021-07-09 | 河南省中医院(河南中医药大学第二附属医院) | 一种心血管病人用康复护理装置 |
CN117599385A (zh) * | 2023-12-30 | 2024-02-27 | 中国人民解放军空军军医大学 | 一种房颤消融术后锻炼护理装置 |
CN117599385B (zh) * | 2023-12-30 | 2024-06-11 | 中国人民解放军空军军医大学 | 一种房颤消融术后锻炼护理装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI579019B (zh) | 2017-04-21 |
TW201632230A (zh) | 2016-09-16 |
US20160158595A1 (en) | 2016-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160158595A1 (en) | Adjustable Stride Length in an Exercise Machine | |
US20150182781A1 (en) | Selective Angular Positioning of the Crank of an Elliptical | |
US10046196B2 (en) | Pedal path of a stepping machine | |
EP3341090B1 (fr) | Trajectoire de pédale de stepper | |
US9468798B2 (en) | Decoupled arm supports in an elliptical machine | |
US10226664B2 (en) | Exercise machine with multiple exercising modes | |
US8808148B2 (en) | Elliptical exercise machine with declining adjustable ramp | |
US10625114B2 (en) | Elliptical and stationary bicycle apparatus including row functionality | |
US7731635B2 (en) | Cross training exercise device | |
EP3097956A1 (fr) | Machine d'exercice avec modes de cyclage allongé et vertical | |
JP2013163022A (ja) | エクササイズ器具の経路トレース | |
US20160263418A1 (en) | Exercise apparatus having a targeted fluid support system | |
US11110318B2 (en) | Linkage mechanism with elliptical motion trajectory | |
US20060189446A1 (en) | Elliptical step mechanism | |
US6976940B2 (en) | Complete body fitness machine | |
US9861852B2 (en) | Game system having full-body exercise apparatus controller with independently operable appendicular members | |
US20100160120A1 (en) | Programmable universal exercise device | |
US9649530B2 (en) | Full-body exercise system including a plurality of independently operable appendicular members | |
WO2012161752A1 (fr) | Appareil d'exercice ayant un système de support à fluide cible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15864556 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15864556 Country of ref document: EP Kind code of ref document: A1 |