WO2016089097A1 - Ultra-high-speed molding method using electroplasticity effect - Google Patents

Ultra-high-speed molding method using electroplasticity effect Download PDF

Info

Publication number
WO2016089097A1
WO2016089097A1 PCT/KR2015/013027 KR2015013027W WO2016089097A1 WO 2016089097 A1 WO2016089097 A1 WO 2016089097A1 KR 2015013027 W KR2015013027 W KR 2015013027W WO 2016089097 A1 WO2016089097 A1 WO 2016089097A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
workpiece
force
stress
electromagnetic
Prior art date
Application number
PCT/KR2015/013027
Other languages
French (fr)
Korean (ko)
Inventor
김정
강범수
노학권
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to US15/533,149 priority Critical patent/US20170326614A1/en
Publication of WO2016089097A1 publication Critical patent/WO2016089097A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/14Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/06Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves

Definitions

  • the present invention relates to an ultra-high speed molding method, and more particularly, by applying a predetermined current to a workpiece to reduce the stress of the workpiece, and then applying a predetermined force at a high speed to the workpiece.
  • the present invention relates to an "ultrafast molding method using an electrical firing effect" for molding a workpiece.
  • a typical method is a hot stamping method of molding at a high temperature.
  • the warm forming method has disadvantages due to high temperature treatment, such as adhesion between the mold and the material, difficulty in lubrication, and life due to the decrease in the strength of the mold.
  • the conduction firing phenomenon is a place where the material is applied to generate heat to lower the flow stress, and metal forming has begun to attract attention from research institutes and industrial fields dealing with metal products.
  • Roth and coworkers were able to improve the maximum elongation of 5754 aluminum alloy to 400% of typical elongation at break under normal tension by using periodic pulsed current instead of continuous current.
  • 1 is an exemplary graph showing the electrical firing effect related to the manufacturing-based technology of ultra-high strength steel and Al5000-based body products of more than 1Gpa using the current-carrying molding, published on page 61 of the 2014 Spring Proceedings of the Korean Society for Manufacturing Manufacturing Systems.
  • this effect occurs instantaneously in a short time of about 1 to 2 ms, and there is a problem in that the conventional molding method having a molding time of 1 to 2 seconds is applied as it is due to the insulation problem with the mold. It is necessary to have a molding method capable of applying a predetermined force in a short time.
  • Explosive molding is a processing method that uses energy from explosive explosives, and has the characteristics that it can be formed into any shape on a very fast and hard material.
  • electromagnetic forming is a technique of forming a metal at high speed (15 to 300 m / s) by using a high-strength magnetic field, and is a molding method that directly uses energy of a magnetic field to form a metal.
  • EMF electromagnetic forming
  • This electromagnetic molding method is limited in the molding range of the workpiece because the molding is formed within the range that the magnetic field of the molding coil acts, and a low conductivity electrical material is a high-conductivity driver such as copper to obtain a sufficient forming force for molding (driver) should be used, but since the magnetic pressure generated by the molding coil is applied directly to the workpiece, the molding is performed without any physical contact (non-contact molding), so that problems such as surface defects, lubrication, and abrasion are not generated. This has the advantage of being possible.
  • electromagnetic molding is a cold working method, it is possible to maintain the mechanical properties as it is. Therefore, the present invention can be applied to various molding processes such as shaft pipe / expansion, flat plate molding, and joining processes.
  • electromagnetic molding can effectively shape complex shapes, it can be applied to various fields such as the home appliance industry, the automobile industry, and the aviation industry [2].
  • Equation (1) ⁇ represents induced electromotive force
  • represents magnetic flux
  • t time.
  • the discharge of attenuated current to the coil through the capacitor instantaneously within a short time of several hundred ⁇ s, as shown in FIG. 2 causes induced electromotive force on the workpieces around due to the change of magnetic flux.
  • This induced electromotive force causes an induced current to flow through the workpiece as a conductor.
  • Lorentz's force The force received by a conductor through which a current flows due to the magnetic field is called Lorentz's force and is represented by equation (2).
  • I is the current flowing through the conductor
  • dl is the length of the conductor
  • B is the magnetic flux density
  • F is the force of Lorentz. Lorentz force is generated as shown in FIG. 3 perpendicular to the plane defined by the conductor length dl and the magnetic flux density B. This force is the forming force in electromagnetic molding [5].
  • Electromagnetic molding equipment is composed of a high-capacitance capacitor, a molding coil, a control circuit for charging the capacitor, a power supply device, a charge / discharge switch, a mold, and the basic circuit diagram is shown in FIG.
  • a high capacity capacitor connected to the power supply device is charged through a charge switch.
  • the impulse current flows through the forming coil by instantaneously discharging through the discharge switch.
  • the input current applied to the coil attenuates within several hundred ⁇ s while generating a strong magnetic field in the forming coil as shown in FIG. 2.
  • the strong magnetic field of the shaping coil generates Faraday's law by inducing current in the opposite direction to the workpiece and shaping force is generated by Lorentz's force.
  • FIG. 5 is an example of a forming coil used in electromagnetic molding
  • FIG. 6 is an external perspective view of the molding coil insulated using epoxy
  • FIG. A work piesce is placed between a die and an electromagnetic forming coil.
  • electromagnetic molding requires the construction of a control system for controlling the storage energy of the capacitor by controlling the input voltage of the electromagnetic molding equipment, a system for charging and discharging, and a control system for stably charging the capacitor through a constant ammeter.
  • An input voltage regulator can be used to control the storage energy of the capacitor, which can be checked with a voltmeter.
  • Korean Patent No. 10-1034592 "A plate forming apparatus including a plurality of forming punches and a plate forming method using the same", 2011.05.04.
  • Korean Patent No. 10-1034593 "A stretching sheet forming apparatus including a plurality of forming punches and a stretching sheet forming method using the same", 2011.05.04. Etc.
  • the present invention aims to propose a method capable of reducing the molding force applied to the workpiece under the same molding conditions.
  • the present invention proposes a method of applying an electromagnetic molding force after generating an electrical firing phenomenon in the workpiece to reduce the stress of the workpiece.
  • the firing treatment for the workpiece to be proposed in the present invention is performed by applying a predetermined current to the workpiece for a predetermined time.
  • the present invention by applying electrical firing to the workpiece to drop the stress of the workpiece immediately and then apply a predetermined molding force to the workpiece for a short time the stress of the workpiece is away from the workpiece A method of molding a molding material is proposed.
  • the molding force applied to the workpiece is preferably applied within a time when the stress of the workpiece is reduced by electrical firing, and this molding force may be provided by an explosive molding or an electromagnetic molding process. .
  • Ultra-fast molding method using the electrical firing effect comprises the steps of (a) performing electrical firing on the molding material; (b) forming the workpiece by providing a predetermined molding force at a high speed with respect to the workpiece.
  • the ultra-fast molding method using the electrical firing effect comprises the steps of (a) flowing a current to the workpiece; (b) the stress of the workpiece is lowered to a predetermined value or less; (c) may be formed by applying a predetermined molding force to the workpiece during a time when the stress of the workpiece is separated below a predetermined value.
  • the intensity of the predetermined pulse current applied to the workpiece is different depending on the type of the workpiece, and the time when the stress of the workpiece is below a predetermined value is the kind of the workpiece. It may differ according to.
  • the present invention has the advantage that the molding to be processed can be molded at a very high speed (molding time: 150 to 300 kPa).
  • the present invention is advantageous in that the energy consumed in the molding force can be reduced compared to the other case because a predetermined molding force is applied to the workpiece in synchronization with the time when the stress of the workpiece is lowered.
  • the present invention is to combine the ultra-fast electromagnetic molding method having a non-contact molding characteristics with the electrical firing effect in addition to the explosion molding which is an ultra-fast molding method to temporarily lower the flow stress of the workpiece to be processed and to apply the electromagnetic molding instantaneously to ultra-high strength even in cold molding It has the advantage of being able to form steel and hard-forming materials.
  • Ultra-high-speed molding considering the electrical firing effect proposed in the present invention for example, electromagnetic molding technology considering the electrical firing effect has not been studied or proposed anywhere in the world at home and abroad, when the present invention is applied to the industrial cold of a product having ultra high strength Due to the molding, not only the production cost can be drastically reduced compared to the existing method but also the molding quality of the product can be improved, and it is expected that it can contribute to the revolutionary development of the next generation ultra high strength steel sheet forming technology.
  • 1 is an exemplary graph showing the electrical firing effect related to the manufacturing-based technology of ultra-high strength steel and Al5000-based body products of more than 1Gpa using the current-carrying molding, published on page 61 of the 2014 Spring Proceedings of the Korean Society for Manufacturing Manufacturing Systems.
  • 2 to 4 are diagrams for explaining the concept of electromagnetic molding.
  • 5 is an example of a forming coil used for electromagnetic forming.
  • FIG. 6 is an external perspective view of a molding coil insulated using epoxy.
  • FIG. 7 is a view showing a state in which a work piesce is disposed between a die and an electromagnetic forming coil in order to perform electromagnetic forming.
  • FIG. 8 is a view showing a concept of a charge and discharge circuit used in the electromagnetic molding equipment.
  • 9 to 10 are diagrams illustrating a method of performing electromagnetic molding using the electrical firing effect according to the present invention.
  • FIG. 11 is a view for explaining an electromagnetic molding method according to the present invention.
  • the ultrafast molding method using the electrical firing effect according to the present invention comprises an electric firing step for the workpiece and an ultrafast molding step for the workpiece.
  • the electrical firing step is a process of lowering the stress of the workpiece under a certain value by flowing a predetermined current to the workpiece.
  • the time that the stress of the workpiece is lowered by the above-described electrical firing effect is different depending on the type of the workpiece, but the time is very short.
  • the molding force applied to the workpiece is to be applied within the time when the stress is lowered by the electrical firing effect, and it will be desirable to be synchronized.
  • the predetermined molding force applied to form the workpiece is to be within A [sec]. .
  • Such molding force may be at least one of explosion molding and electromagnetic molding.
  • the present invention will be described as an example of electromagnetic molding capable of high-speed processing in response to the electrical firing effect, but the embodiment of the present invention is not limited thereto and may be equally applicable to explosion molding.
  • EMF electromagnetic forming
  • the molding since the magnetic force generated by the molding coil is directly applied to the workpiece, the molding is performed without any physical contact, and thus, there is no problem such as surface defects, lubrication, and abrasion, and thus the molding can be repeatedly performed.
  • Electromagnetic molding equipment basically includes a resistor, an inductor, a high capacitance capacitor, a molding coil, and a charge / discharge switch as shown in FIG. 8.
  • the remaining part of the electromagnetic molding equipment illustrated in FIG. 8 except the molding coil is a charge / discharge circuit for supplying a predetermined current to the molding coil (charge / discharge circuit of FIG. 9).
  • such an electromagnetic molding equipment will be understood as a comprehensive concept that further includes a power supply device, a mold as well as a control circuit for controlling the charge-discharge switch.
  • the high-capacity capacitor connected to the power supply is charged through the charge switch, and when the capacitor is charged to the target energy for molding, the discharge current is instantaneously discharged through the discharge switch to impart a shock current to the forming coil. Will flow.
  • the input current applied to the coil attenuates within a few hundred ⁇ s, generating a strong magnetic field in the forming coil.
  • the strong magnetic field of the shaping coil generates Faraday's law by inducing current in the opposite direction to the workpiece and forming force by the Lorentz force.
  • the present invention proposes a method of applying electromagnetic molding in a state in which the stress of the workpiece is lowered, and proposes a method of relatively reducing energy required for electromagnetic molding.
  • 9 and 10 are conceptual views of an electromagnetic molding apparatus for performing an electromagnetic molding method (an example of an ultrafast molding method) using the electrical firing effect proposed in the present invention.
  • FIG. 10 (a) illustrates the workpiece 10 ) Is a view showing a concept of supplying a current for obtaining the electrical firing effect to the workpiece 10 by connecting a pulse current generator)
  • Figure 10 (b) is the same as that shown in Figure 8 to the molding coil It is a figure explaining the concept of electrically connecting similar charge / discharge circuits.
  • the pulsed current generator and the charge / discharge circuit shown in FIG. 10 are connected to the workpiece 10 and the molding coil of FIG. 9, respectively.
  • the forming coil which is a component of the electromagnetic forming apparatus, is maintained in a seating portion, and a mold having a predetermined shape is positioned on the forming coil as shown in the drawing.
  • the workpiece 10 to be processed is placed on the forming coil.
  • the workpiece 10 may be seated on the upper part of the intermediate member of the ferromagnetic material, but this may be optional.
  • a predetermined pulse current is supplied to the workpiece to control the charge and discharge circuit of the electromagnetic molding equipment to supply a predetermined current to the molding coil so as to be synchronized at a time when the stress of the workpiece falls below a predetermined value. Let's do it.
  • FIG. 11 illustrates a concept of processing a workpiece into a predetermined shape by applying a predetermined electromagnetic force to the workpiece by using the electromagnetic molding coil according to the present invention several times.
  • the ultrafast molding method using the electrical firing effect according to the present invention described above has been described as an embodiment for applying the electromagnetic molding force, but the present invention is synchronized at a point when the stress of the workpiece to be processed is lowered below a predetermined value, such as explosion molding.
  • a predetermined value such as explosion molding.

Abstract

The present invention relates to an ultra-high-speed molding method and, more specifically, to "an ultra-high-speed molding method using an electroplasticity effect", the method enabling a predetermined pulse current to be applied to a molding material to be processed so as to instantly lower the stress of the molding material to be processed, and then enabling a predetermined force to be applied, at an ultrahigh speed, to the molding material to be processed so as to mold the molding material to be processed. The ultra-high-speed molding method using an electroplasticity effect, according to the present invention, comprises the steps of: (a) performing electroplasticity on a molding material to be processed; and (b) molding the molding material to be processed by providing, at an ultrahigh speed, a predetermined molding force to the molding material to be processed. The present invention has an advantage of molding, at an ultrahigh speed (molding time: 150-300 ㎲), a molding material to be processed. In addition, the present invention applies a predetermined molding force to a molding material to be processed, in synchronization with the deterioration of the stress of the molding material to be processed, thereby having an advantage of comparatively saving more energy consumed for the molding force.

Description

전기소성효과를 이용한 초고속 성형 방법Ultra-fast molding method using electric firing effect
본 발명은 초고속 성형 방법에 관한 것으로, 보다 구체적으로는 피가공 성형재에 소정의 전류를 인가하여 피가공 성형재의 응력을 순간적으로 떨어뜨린 후 피가공 성형재에 초고속으로 소정의 힘을 인가하여 피가공 성형재를 성형하기 위한 "전기소성효과를 이용한 초고속 성형 방법"에 관한 것이다.The present invention relates to an ultra-high speed molding method, and more particularly, by applying a predetermined current to a workpiece to reduce the stress of the workpiece, and then applying a predetermined force at a high speed to the workpiece. The present invention relates to an "ultrafast molding method using an electrical firing effect" for molding a workpiece.
최근 자동차 또는 항공 산업에서는 연료의 효율을 개선하기 위하여 경량금속의 사용이 늘어나고 있다. Recently, the use of lightweight metals is increasing in the automobile or aviation industry to improve fuel efficiency.
이 때문에, 고강도강판 (High strength steel) 및 알루미늄 합금의 사용이 두드러지고 있다.For this reason, the use of high strength steel and an aluminum alloy stands out.
그러나 이러한 특수한 목적을 가진 소재들은 일반적인 상온 환경에서 본래의 철강 합금에 비하여 제한된 성형성(난성형성)을 같기 때문에 산업적 활용에 어려움이 따른다.However, these special-purpose materials have difficulty in industrial application because they have the same formability (hardening) compared to the original steel alloy in a normal room temperature environment.
이러한 이유로 인하여, 난성형 합금의 성형성을 개선하기 위해서는 다양한 기술들이 연구되고 있다. For this reason, various techniques have been studied to improve the moldability of the hard alloy.
금속의 성형성을 향상시키기 위해서 전형적인 방법으로는 고온에서 성형하는 온간성형(Hot stamping)법이 있다. In order to improve the formability of the metal, a typical method is a hot stamping method of molding at a high temperature.
하지만 온간 성형법은 금형과 재료 사이의 점착, 윤활의 어려움, 그리고 금형의 강도 저하로 인한 수명문제와 같이 고온 처리로 인한 단점들이 발생한다. However, the warm forming method has disadvantages due to high temperature treatment, such as adhesion between the mold and the material, difficulty in lubrication, and life due to the decrease in the strength of the mold.
이 때문에, 고강도강판의 경우, 성형공정 후 스프링백으로 인한 성형치수 정밀도의 불량으로 인해 고강도강판 성형에 적합한 성형공정의 개발이 요구되고 있는 실정이다. For this reason, in the case of high strength steel sheet, the development of a molding process suitable for forming a high strength steel sheet is required due to a poor molding dimension accuracy due to spring back after the forming process.
한편 금속 재료의 속성에 대한 다양한 연구들이 진행되고 있는데 그 중의 하나로 금속에 전기를 통하는 경우 금속 재료의 특성이 변한다는 사실이 밝혀지고 있다. 특히, 금속에 전류를 공급하는 경우 금속의 응력이 변한다는 사실이 다양한 여구들에 의하여 알려지고 있으며 이를 학문적으로는 전기소성이라고 한다.On the other hand, various studies on the properties of metal materials are being conducted, and one of them is revealed that the properties of metal materials change when electricity is applied to the metal. In particular, the fact that the stress of the metal changes when the current is supplied to the metal is known by various sources, which is known in the academic field as electrical baking.
이하에서는 전기소성 기공지된 논문을 참조하여 간단히 설명하기로 한다. Hereinafter, a brief description will be made with reference to the published papers.
울산대학교 자동차선박기술대학원 2013년 5월 "주기적 펄스 전류통전간 5052 알루미늄 합금의 기계적 거동에 관한 연구" 논문에는 다음과 같이 전기소성에 대하여 설명하고 있다.Graduate School of Automotive Ship Technology, University of Ulsan, May 2013 "Study on the Mechanical Behavior of 5052 Aluminum Alloy between Periodic Pulsed Current Conduction" describes the electrical firing as follows.
1969년 Troitskii가 나트륨과 같은 특정 물질에 통전된 전류가 물질의 속성을 변화시킨다는 현상을 설명한 이후로, 1984년에는 Klimov 등, 그리고 2000년에 Conrad는 금속재료의 변형간 펄스형태의 전류가 유동응력을 낮춘다는 연구결과를 밝혔다.Since Troitskii explained in 1969 that currents energized by certain materials, such as sodium, changed the properties of materials, Klimov et al. In 1984, and Conrad in 2000, pulsed currents between strains of metallic materials The study found that it lowers.
이러한 연구를 통하여 전류가 가져오는 응력의 변화, 결정구조의 변화는 저항발열이 원인이 아님을 알 수 있었다. Through this study, it can be seen that the change of the stress and the crystal structure brought by the current are not caused by the resistance heating.
2002년 Conrad의 연구에서는 여러 금속과 세라믹에서 연속된 전류 혹은 펄스형태의 전류를 통한 소성현상과 상변태를 유도하였다.Conrad's work in 2002 led to plastic phenomena and phase transformations through continuous currents or pulsed currents in various metals and ceramics.
이러한 현상을 전기소성(electroplasticity)이라고 정의한 최근의 연구들은 전기 소성 현상을 이용하여 성형성을 향상 시킬 수 있는 Electrically Assisted Manufacturing(EAM) 기술을 선보였다. Recent studies, which define this phenomenon as electroplasticity, have shown Electrically Assisted Manufacturing (EAM) technology to improve formability using electroplastic phenomena.
2007년의 Ross와 동료의 연구, 그리고 Perkins와 동료의 연구에 따르면 연속된 전류를 통전시킴으로써 금속의 유동응력을 비약적으로 감소함을 알 수 있었다.In 2007, Ross and colleagues and Perkins and colleagues found that metal flows were dramatically reduced by energizing a series of currents.
또한 Ross와 Perkins의 연구결과의 비교를 통하여 금속의 변형간 연속된 통전이 인장시험의 경우에는 최대로 얻을 수 있는 연신율이 저하되는 반면 압축시험의 경우에는 비약적으로 연신율이 향상됨을 알 수 있었다. In addition, the comparison between the results of Ross and Perkins showed that the continuous energization between the deformations of the metal decreased the maximum elongation attainable in the tensile test, while the elongation improved dramatically in the compression test.
해당 연구에서 최대 연신율이 저하되는 이유는 인장시험간 시편의 단면이 좁아짐에 따라 단위 면적당 유입된 전기 에너지(electric energy density)가 커지게 되고 이는 시편의 이른 파단을 야기할 정도로 과한 온도상승 효과를 가져왔기 때문이다. The reason why the maximum elongation is lowered in this study is that as the cross section of the specimen narrows during the tensile test, the electric energy density per unit area increases, which causes the temperature rise to be excessive enough to cause early failure of the specimen. Because I came.
이 결과에 따라 연속 전류를 통한 통전 가공기술은 박판 제조 공정에 적용하기에는 최대 연신율의 저하 현상때문에 이용할 수 없었다.As a result, the current-carrying processing technology through the continuous current was not available due to the deterioration of the maximum elongation to be applied to the sheet manufacturing process.
통전소성 현상은 전류를 인가하여 소재에 열을 발생시켜 유동응력을 낮추고자 하는 곳으로 금속 성형을 연구기관들과 금속 제품을 다루는 산업분야로부터 집중을 받기 시작했다. The conduction firing phenomenon is a place where the material is applied to generate heat to lower the flow stress, and metal forming has begun to attract attention from research institutes and industrial fields dealing with metal products.
그리하여 인장하는 금속의 통전소성간 최대연신율이 감소하는 단점을 극복할 방안이 2008년, 2009년, 2010년 Roth와 Salandro에 의해 시도 되었다. Thus, in 2008, 2009, and 2010, Roth and Salandro attempted to overcome the drawback of decreasing maximum elongation between energized plastics of tensile metals.
2008년 Roth와 동료는 연속전류가 아닌 주기적 형태의 펄스 전류를 이용하여 5754 알루미늄합금의 최대 연신율을 전형적인 일반 인장시의 파단 연신율에 400% 정도로 향상시킬 수 있었다. In 2008, Roth and coworkers were able to improve the maximum elongation of 5754 aluminum alloy to 400% of typical elongation at break under normal tension by using periodic pulsed current instead of continuous current.
2009년의 Salandro 등의 연구에서는 AZ31BO 마그네슘합금을 이용하여 통전펄스의 지속시간과 단위면적당 전류변수의 효과를 조사하고 가장 큰 연실율을 가져오는 공정변수를 제안하기도 하였다.A 2009 study by Salandro et al. Investigated the effects of current duration per unit area and duration of energized pulses using AZ31BO magnesium alloy and suggested process variables that resulted in the greatest loss rate.
그 뒤를 이은 연구인 Salandro의 2010년 연구에서는 여러 종의 5xxx계열 및 열처리 조건의 알루미늄 합금을 대상으로 주기적 펄스 전류의 성형성 증가 효과를 연구하였다. In a follow-up study, Salandro's 2010 study examined the effect of increasing the formability of cyclic pulse currents on various 5xxx series and heat-treated aluminum alloys.
이 연구를 통해서 통전 성형이 가져오는 성형성 향상에 관한 유효성이 합금의 종류나 열처리조건에 따라 다르다는 사실을 알 수 있었다. Through this study, it was found that the effectiveness of the moldability improvement by energizing molding differs depending on the alloy type and heat treatment conditions.
추가로 2009년의 Green 등의 연구에 따르면, 단 한번의 높은 전류밀도의 전류를 가공간 하중을 제거하기 직전 혹은 성형의 마지막 단계에 가하여 탄성복원을 제거하거나 그 정도를 줄이기 위한 기술로 활용될 수 있다고 입증하였다. In addition, a 2009 study by Green et al. Found that a single high current density current could be used as a technique to remove or reduce the elasticity of the restoration just before removing the inter-process load or at the end of molding. Proved to be.
이는 통전성형 기술이 더 많이 늘이기 위한 장점만이 아닌 보다 정확한 치수 및 형상을 위하여 사용될 수 있는 가능성을 보여주는 시도였다.This was an attempt to demonstrate the possibility that energization techniques could be used for more accurate dimensions and shapes, not just for the benefit of further stretching.
전류가 가져오는 다양한 금속에서 기계적 거동의 변화 효과는 많은 연구자와 산업계의 관심이 증대 함에도 불구하고, 전류의 지속시간, 전류밀도, 전류 주기를 포함한 펄스 변수의 효과에 관한 양적인 평가에 관한 연구는 매우 제한적이다. Although the effect of changing the mechanical behavior on the various metals brought by current has increased the interest of many researchers and industry, studies on the quantitative evaluation of the effects of pulse variables including duration of current, current density, and current period are very Limited.
2011년에 Salandro는 굽힘 공정에 304 스테인리스 합금을 대상으로 펄스 전류를 통해 통전소성 효과를 조사하였고 3점식 굽힘 공정의 하중 및 변형량 구하기 위한 해석기법을 제시하였다. In 2011, Salandro investigated the effect of energetic firing on the 304 stainless steel alloy through the pulse current in the bending process and presented an analytical method for determining the load and deformation of the three-point bending process.
이 연구에서는 electroplastic bending coefficient를 도입하여 EAB (electrically assisted bending) 공정의 설계를 위해 연구결과를 활용할 수 있도록 하였다. 이 모델은 실험의 결과들과 잘 맞아 떨어졌으며 10~15% 차이 내에서 굽힘 하중을 예측할 수 있었다.In this study, electroplastic bending coefficients were introduced so that the results could be utilized for the design of an electrically assisted bending (EAB) process. The model fits well with the results of the experiment and can predict bending loads within a 10-15% difference.
도 1은 한국생산제조시스템학회 2014년도 춘계학술대회 논문집 61페이지에 게재된 통전 성형을 이용한 1Gpa 이상 초 고강도 강 및 Al5000계 차체제품의 제조 기반 기술 관련 전기소성효과를 보여주는 예시적 그래프이다.1 is an exemplary graph showing the electrical firing effect related to the manufacturing-based technology of ultra-high strength steel and Al5000-based body products of more than 1Gpa using the current-carrying molding, published on page 61 of the 2014 Spring Proceedings of the Korean Society for Manufacturing Manufacturing Systems.
도시된 바와 같이, 소정 크기의 펄스 전류를 0.01s 간격으로 통전시킨 경우 금속의 응력(strain)이 일시적으로 소정치 이하로 다운되는 현상이 나타나는 것을 있다. 특히, 응력 저하의 정도는 통전 전류의 크기에 비례하는 것도 알 수 있다. As shown in the drawing, when a pulse current of a predetermined magnitude is energized at intervals of 0.01 s, a phenomenon in which the stress of the metal temporarily decreases below a predetermined value appears. In particular, it can be seen that the degree of stress reduction is proportional to the magnitude of the energizing current.
이처럼, 전기소성(Electroplascity) 효과는 금속이 소성변형을 하는 동안 연속전류를 흘려주면 Flow stress가 확연하게 감소하는 것을 확인할 수 있었다. As such, the effect of the electrical calcination (Electroplascity) was confirmed that the flow stress is significantly reduced when the continuous current flows during the plastic deformation of the metal.
하지만 이러한 효과는 도 1의 그래프에서도 알 수 있는 바와 같이 1~2ms 정도의 짧은 시간에 순간적으로 발생하고 금형과의 절연문제로 인해 성형시간이 1~2초인 기존의 일반적인 성형공법을 그대로 적용하기에는 문제점을 안고 있으며 이 때문에 단시간에 소정의 힘을 가할 수 있는 성형 방법이 필요하다. However, as shown in the graph of FIG. 1, this effect occurs instantaneously in a short time of about 1 to 2 ms, and there is a problem in that the conventional molding method having a molding time of 1 to 2 seconds is applied as it is due to the insulation problem with the mold. It is necessary to have a molding method capable of applying a predetermined force in a short time.
한편, 초고속의 성형 방법으로는 폭발성형(explosive forming), 전자기 성형 공법(electromagnetic forming:EMF) 등이 알려져 있다. Meanwhile, explosive forming, electromagnetic forming (EMF), and the like are known as ultrafast molding methods.
폭발성형은 화약의 폭발에 의한 에너지를 이용해서 성형하는 가공법으로, 가공속도가 매우 빠르고 단단한 재료에 임의의 형상으로 성형할 수 있다는 특성이 있다Explosive molding is a processing method that uses energy from explosive explosives, and has the characteristics that it can be formed into any shape on a very fast and hard material.
다음, 전자기 성형(electromagnetic forming:EMF)은 고강도의 자기장을 이용하여 고속(15~300m/s)으로 금속을 성형하는 기술로, 자계가 가지는 에너지를 직접 금속의 성형에 이용하는 성형법으로 폭발성형과 더불어 대표적인 고속 성형법 중의 하나이다(high-velocity forming process)[1].Next, electromagnetic forming (EMF) is a technique of forming a metal at high speed (15 to 300 m / s) by using a high-strength magnetic field, and is a molding method that directly uses energy of a magnetic field to form a metal. One of the representative high-velocity forming processes [1].
이러한 전자기 성형법은 성형코일의 자기장이 작용하는 범위 내에서 성형이 이루어지기 때문에 피가공재의 성형 범위에 제한이 있고, 전기전도도가 낮은 소재는 성형을 위한 충분한 성형력을 얻기 위해 구리와 같은 고전도성 드라이버(driver)를 이용해야 하지만, 성형코일에 의해 발생된 자기압력이 가공물에 직접 가해져 어떠한 물리적 접촉없이 성형이 이루어지므로(비접촉식 성형), 표면 결함, 윤활, 마멸 등의 문제가 발생하지 않으며 반복적인 성형이 가능하다는 장점이 있다. This electromagnetic molding method is limited in the molding range of the workpiece because the molding is formed within the range that the magnetic field of the molding coil acts, and a low conductivity electrical material is a high-conductivity driver such as copper to obtain a sufficient forming force for molding (driver) should be used, but since the magnetic pressure generated by the molding coil is applied directly to the workpiece, the molding is performed without any physical contact (non-contact molding), so that problems such as surface defects, lubrication, and abrasion are not generated. This has the advantage of being possible.
또한 전자기 성형은 냉간 가공법으로서 기계적 성질을 그대로 유지하는 것이 가능하다. 따라서, 축관/확관, 평판 성형, 접합 공정 등 다양한 성형공정에 적용이 가능하다. In addition, electromagnetic molding is a cold working method, it is possible to maintain the mechanical properties as it is. Therefore, the present invention can be applied to various molding processes such as shaft pipe / expansion, flat plate molding, and joining processes.
뿐만 아니라 전자기 성형은 복잡한 형상도 효과적으로 성형이 가능하기 때문에 가전제품 산업은 물론, 자동차 산업과 항공 산업 등 다양한 분야에 응용 할 수 있다[2].In addition, since electromagnetic molding can effectively shape complex shapes, it can be applied to various fields such as the home appliance industry, the automobile industry, and the aviation industry [2].
국내에서는 1990년대 초에 국외에서 장비를 도입해 수치적 접근과 실험 결과를 비교하는 등의 연구가 진행 되었고 2005년에는 자동차의 spaceframe에 적용하기 위한 단계로서 알루미늄 튜브의 접합공정에 대한 연구가 진행되었으나 기술 기반과 경험의 부족으로 실용화 되지는 못하고 있다[3].In Korea, in the early 1990s, the introduction of equipment from abroad was conducted to compare the numerical approach and the experimental results. In 2005, a study was conducted on the joining process of aluminum tubes as a step to apply them to the spaceframe of automobiles. It is not practically used due to lack of technology base and experience [3].
국외에서도 미국과 유럽, 일본, 중국 등지에서 전자기 성형에 대한 연구가 활발히 진행되고 있지만 부분적으로만 실용화 되고 있는 실정이다[4].Overseas research on electromagnetic molding has been actively conducted in the United States, Europe, Japan and China, but it is only partially used.
이하에서는 이러한 전자기 성형의 원리 및 방법에 대하여 설명하기로 한다.Hereinafter, the principle and method of the electromagnetic molding will be described.
임의의 폐회로에서 자속이 시간에 따라 변하게 되면 자속의 시간변화율과 같고 방향은 반대인 유도기전력이 유도된다. 이를 패러데이 법칙(Faraday's law)이라 하고 식 (1)과 같이 표현된다.In any closed circuit, when the magnetic flux changes over time, an induced electromotive force equal to the rate of change of the magnetic flux and the opposite direction is induced. This is called Faraday's law and is expressed as Eq. (1).
Figure PCTKR2015013027-appb-I000001
Figure PCTKR2015013027-appb-I000001
식 (1)에서 ε은 유도 기전력, Φ는 자속, t는 시간을 나타낸다. 전자기 성형에서 커패시터를 통해 코일에 순간적으로 도 2와 같이 수백 μs의 짧은 시간 이내에 감쇠하는 전류를 방전하게 되면 자속의 변화로 인해 주위의 피가공재(workpiece)에 유도 기전력이 발생하게 된다. 이 유도 기전력에 의해 도체인 피가공물에 유도전류(induced current)가 흐르게 된다.In Equation (1), ε represents induced electromotive force, Φ represents magnetic flux, and t represents time. In electromagnetic shaping, the discharge of attenuated current to the coil through the capacitor instantaneously within a short time of several hundred μs, as shown in FIG. 2, causes induced electromotive force on the workpieces around due to the change of magnetic flux. This induced electromotive force causes an induced current to flow through the workpiece as a conductor.
자기장으로 인하여 전류가 흐르는 도체가 받는 힘을 로렌쯔의 힘(Lorentz?s force)이라고 하고 식 (2)로 표현된다.The force received by a conductor through which a current flows due to the magnetic field is called Lorentz's force and is represented by equation (2).
F = Idl × B (2) F = Idl × B (2)
여기서 I는 도체에 흐르는 전류, dl은 도체의 길이, B는 자속밀도, F는 로렌쯔의 힘이다. 도체의 길이 dl과 자속밀도 B에 의해 정의 되는 면에 수직으로 도 3과 같이 로렌쯔의 힘이 발생하게 된다. 이 힘이 전자기 성형에서 성형력이 된다[5]. Where I is the current flowing through the conductor, dl is the length of the conductor, B is the magnetic flux density, and F is the force of Lorentz. Lorentz force is generated as shown in FIG. 3 perpendicular to the plane defined by the conductor length dl and the magnetic flux density B. This force is the forming force in electromagnetic molding [5].
전자기 성형 장비는 고용량의 커패시터와 성형코일, 커패시터를 충전하기 위한 제어 회로 및 전력공급장치, 충/방전 스위치, 금형으로 구성되어 있으며 기본적인 회로 구성도는 도 4와 같다.Electromagnetic molding equipment is composed of a high-capacitance capacitor, a molding coil, a control circuit for charging the capacitor, a power supply device, a charge / discharge switch, a mold, and the basic circuit diagram is shown in FIG.
도 4와 같이 전력공급장치와 연결된 고용량의 커패시터(capacitor)는 충전 스위치를 통해 충전이 이루어지게 된다. As shown in FIG. 4, a high capacity capacitor connected to the power supply device is charged through a charge switch.
성형을 하기 위한 목표 에너지까지 커패시터가 충전이 되면 방전스위치를 통해 순간적으로 방전시킴으로써 성형코일(forming coil)에 충격전류가 흐르게 된다. When the capacitor is charged up to the target energy for forming, the impulse current flows through the forming coil by instantaneously discharging through the discharge switch.
코일에 인가되는 입력전류는 도 2과 같이 수백 μs 이내에 감쇠하면서 성형코일에 강력한 자기장을 발생 시키게 된다. 성형코일의 강한 자기장은 패러데이의 법칙에 의해 피가공재에 반대 방향의 유도전류를 발생시키고 로렌쯔의 힘에 의해 성형력이 발생되어 성형이 이루어진다. The input current applied to the coil attenuates within several hundred μs while generating a strong magnetic field in the forming coil as shown in FIG. 2. The strong magnetic field of the shaping coil generates Faraday's law by inducing current in the opposite direction to the workpiece and shaping force is generated by Lorentz's force.
도 5는 전자기 성형에 사용되는 성형 코일의 일예이고, 도 6은 성형코일을 에폭시(Epoxy)를 이용하여 절연을 시킨 상태의 외관 사시도이며, 도 7은 전자기 성형을 실시하기 위하여 피가공 성형재(work piesce)를 금형(die)과 전자기 성형 코일 사이에 배치시킨 상태를 보여주는 도면이다.FIG. 5 is an example of a forming coil used in electromagnetic molding, and FIG. 6 is an external perspective view of the molding coil insulated using epoxy, and FIG. A work piesce is placed between a die and an electromagnetic forming coil.
알려진 바와 같이, 전자기 성형을 위해서는 전자기 성형장비의 입력 전압의 조절을 통한 커패시터의 저장 에너지 제어와 충전 및 방전을 위한 시스템, 일정 전류계를 통해 커패시터를 안정적으로 충전하기 위한 제어 시스템의 구축이 필요하며, 입력 전압 조절 장치를 통해 커패시터의 저장 에너지 조절을 가능하도록 하고 이를 전압계를 통해 커패시터의 전압을 확인 할 수도 있다.As is known, electromagnetic molding requires the construction of a control system for controlling the storage energy of the capacitor by controlling the input voltage of the electromagnetic molding equipment, a system for charging and discharging, and a control system for stably charging the capacitor through a constant ammeter. An input voltage regulator can be used to control the storage energy of the capacitor, which can be checked with a voltmeter.
이러한 전자기 성형 공법을 이용한 관련 선행 특허 기술로는 Related prior arts using such an electromagnetic molding method
1. 한국특허번호 제10-0956027호, "전자기 성형장치 및 이를 이용하여 제작되는 범퍼 스테이성형품", 2010.04.27. 1. Korean Patent No. 10-0956027, "Electromagnetic Molding Apparatus and Bumper Stay Molded Product Made Using It", 2010.04.27.
2. 한국특허번호 제10-1344867호, "하부 성형 수단을 갖는 전자기 성형 장치", 2013.12.18.2. Korean Patent No. 10-1344867, "Electromagnetic molding apparatus having lower molding means", 2013.12.18.
3. 한국특허번호 제10-1034592호, "다수의 성형 펀치를 포함하는 판재 성형 장치 및 이를 이용한 판재 성형 방법", 2011.05.04.3. Korean Patent No. 10-1034592, "A plate forming apparatus including a plurality of forming punches and a plate forming method using the same", 2011.05.04.
4. 한국특허번호 제10-1034593호, "다수의 성형 펀치를 포함하는 스트레칭 판재 성형 장치 및 이를 이용한 스트레칭 판재 성형 방법", 2011.05.04. 등이 있다.4. Korean Patent No. 10-1034593, "A stretching sheet forming apparatus including a plurality of forming punches and a stretching sheet forming method using the same", 2011.05.04. Etc.
그런데, 이러한 전자기 성형을 이용한 성형력은 수십 내지 수백 μs의 짧은 순간에 작용되기 때문에 효과적인 성형이 이루어지기 위해서는 피가공재에 충분한 운동에너지를 줄 수 있을 정도로 소재의 항복응력의 수배 이상이 되는 상당한 성형력이 발생되어야 한다는 문제점을 안고 있다.However, since the forming force using the electromagnetic molding is applied at a short time of several tens to hundreds of micros, a significant forming force that is more than several times the yield stress of the material is sufficient to give sufficient kinetic energy to the workpiece to achieve effective molding. There is a problem that should occur.
이 때문에, 전자기 성형시 상당한 양의 전력이 소모된다는 문제점이 있다. For this reason, there is a problem that a considerable amount of power is consumed during electromagnetic molding.
본 발명은 동일 성형 조건하에서 피가공 성형재에 가해지는 성형력을 감소시킬 수 있는 방법을 제안하고자 한다.The present invention aims to propose a method capable of reducing the molding force applied to the workpiece under the same molding conditions.
이를 위하여, 본 발명에서는 피가공 성형재에 전기소성 현상을 발생시켜 피가공 성형재의 응력을 떨어뜨린 후, 전자기 성형력을 인가하는 방법을 제안한다.To this end, the present invention proposes a method of applying an electromagnetic molding force after generating an electrical firing phenomenon in the workpiece to reduce the stress of the workpiece.
참고로, 본 발명에서 제안하는 피가공 성형재에 대한 소성 처리는 피가공 성형재에 대하여 소정 시간 동안 소정의 전류를 통전시키는 방법으로 이루어진다.For reference, the firing treatment for the workpiece to be proposed in the present invention is performed by applying a predetermined current to the workpiece for a predetermined time.
이를 위하여, 본 발명은 피가공 성형재에 전기소성을 가하여 순간적으로 피가공 성형재의 응력을 떨어뜨린 후 피가공 성형재의 응력이 떨어져 있는 짧은 시간동안 피가공 성형재에 소정의 성형력을 가하여 피가공 성형재를 성형하고자 하는 방법을 제안한다.To this end, the present invention, by applying electrical firing to the workpiece to drop the stress of the workpiece immediately and then apply a predetermined molding force to the workpiece for a short time the stress of the workpiece is away from the workpiece A method of molding a molding material is proposed.
본 발명에 있어서, 피가공 성형재에 인가되는 성형력은 전기소성에 의하여 피가공 성형재의 응력이 떨어진 시간내에 인가되는 것이 바람직하며, 이러한 성형력은 폭발성형 또는 전자기 성형 공법에 의하여 제공될 수 있다. In the present invention, the molding force applied to the workpiece is preferably applied within a time when the stress of the workpiece is reduced by electrical firing, and this molding force may be provided by an explosive molding or an electromagnetic molding process. .
본 발명에 따른 전기소성효과를 이용한 초고속 성형 방법은 (a) 피가공 성형재에 대하여 전기소성을 수행하는 단계; (b) 상기 피가공 성형재에 대하여 소정의 성형력을 초고속으로 제공하여 상기 피가공 성형재를 성형하는 단계로 이루어지는 것을 특징으로 한다. Ultra-fast molding method using the electrical firing effect according to the present invention comprises the steps of (a) performing electrical firing on the molding material; (b) forming the workpiece by providing a predetermined molding force at a high speed with respect to the workpiece.
보다 구체적으로, 본 발명에 따른 전기소성효과를 이용한 초고속 성형 방법은 (a) 피가공 성형재에 대하여 전류를 흘리는 단계; (b) 상기 피가공 성형재의 응력이 일정치 이하로 떨어지는 단계; (c) 상기 피가공 성형재의 응력이 일정치 이하로 떨어져 있는 시간 동안 상기 피가공재에 소정의 성형력을 가하여 성형하는 단계로 이루어질 수 있다.More specifically, the ultra-fast molding method using the electrical firing effect according to the present invention comprises the steps of (a) flowing a current to the workpiece; (b) the stress of the workpiece is lowered to a predetermined value or less; (c) may be formed by applying a predetermined molding force to the workpiece during a time when the stress of the workpiece is separated below a predetermined value.
본 발명에 있어서, 상기 피가공 성형재에 인가되는 상기 소정의 펄스 전류의 세기는 상기 피가공 성형재의 종류에 따라 다르고, 피가공 성형재의 응력이 소정치 이하로 떨어지는 시점은 상기 피가공 성형재의 종류에 따라 상이할 수 있다.In the present invention, the intensity of the predetermined pulse current applied to the workpiece is different depending on the type of the workpiece, and the time when the stress of the workpiece is below a predetermined value is the kind of the workpiece. It may differ according to.
본 발명의 효과는 다음과 같다.The effects of the present invention are as follows.
본 발명은 피가공 성형재를 초고속(성형시간: 150~300㎲)으로 성형할 수 있다는 이점이 있다.The present invention has the advantage that the molding to be processed can be molded at a very high speed (molding time: 150 to 300 kPa).
또한 본 발명은 피가공 성형재의 응력이 저하되는 시점에 동기되어 소정의 성형력을 피가공 성형재에 인가하므로 그렇지 않은 경우보다 성형력에 소비되는 에너지를 절감할 수 있다는 이점이 있다. In addition, the present invention is advantageous in that the energy consumed in the molding force can be reduced compared to the other case because a predetermined molding force is applied to the workpiece in synchronization with the time when the stress of the workpiece is lowered.
또한, 본 발명은 초고속 성형 방법인 폭발 성형 이외에도 비접촉 성형특성을 가지는 초고속 전자기성형공법을 전기소성효과와 접목하여 피가공 성형재의 유동응력을 일시적으로 낮추고 순간적으로 전자기성형을 적용하여 냉간성형에서도 초고강도강과 난성형 소재 성형이 가능하다는 이점이 있다.In addition, the present invention is to combine the ultra-fast electromagnetic molding method having a non-contact molding characteristics with the electrical firing effect in addition to the explosion molding which is an ultra-fast molding method to temporarily lower the flow stress of the workpiece to be processed and to apply the electromagnetic molding instantaneously to ultra-high strength even in cold molding It has the advantage of being able to form steel and hard-forming materials.
본 발명에서 제안하는 전기소성효과를 고려한 초고속 성형 예컨대 전기소성효과를 고려한 전자기성형기술은 아직까지 국내외 어디에서도 연구되거나 제안된 바 없는 것으로 이러한 본 발명을 산업계에 적용하는 경우 초고강도를 가지는 제품의 냉간성형으로 인하여 기존공법 대비 생산비용을 획기적으로 절감시킬 수 있을 뿐만 아니라 제품의 성형 품질에도 개선시킬 수 있으며, 향후 차세대 초고강도강 판재성형기술의 획기적인 발전에 기여가 가능하다고 보여진다. Ultra-high-speed molding considering the electrical firing effect proposed in the present invention, for example, electromagnetic molding technology considering the electrical firing effect has not been studied or proposed anywhere in the world at home and abroad, when the present invention is applied to the industrial cold of a product having ultra high strength Due to the molding, not only the production cost can be drastically reduced compared to the existing method but also the molding quality of the product can be improved, and it is expected that it can contribute to the revolutionary development of the next generation ultra high strength steel sheet forming technology.
도 1은 한국생산제조시스템학회 2014년도 춘계학술대회 논문집 61페이지에 게재된 통전 성형을 이용한 1Gpa 이상 초 고강도 강 및 Al5000계 차체제품의 제조 기반 기술 관련 전기소성효과를 보여주는 예시적 그래프이다.1 is an exemplary graph showing the electrical firing effect related to the manufacturing-based technology of ultra-high strength steel and Al5000-based body products of more than 1Gpa using the current-carrying molding, published on page 61 of the 2014 Spring Proceedings of the Korean Society for Manufacturing Manufacturing Systems.
도 2 내지 도 4는 전자기 성형의 개념을 설명하기 위한 도면이다. 2 to 4 are diagrams for explaining the concept of electromagnetic molding.
도 5는 전자기 성형에 사용되는 성형 코일의 일예이다5 is an example of a forming coil used for electromagnetic forming.
도 6은 성형코일을 에폭시(Epoxy)를 이용하여 절연을 시킨 상태의 외관 사시도이다.FIG. 6 is an external perspective view of a molding coil insulated using epoxy. FIG.
도 7은 전자기 성형을 실시하기 위하여 피가공 성형재(work piesce)를 금형(die)과 전자기 성형 코일 사이에 배치시킨 상태를 보여주는 도면이다.FIG. 7 is a view showing a state in which a work piesce is disposed between a die and an electromagnetic forming coil in order to perform electromagnetic forming.
도 8은 전자기 성형 장비에 사용되는 충방전 회로의 개념을 보여주는 도면이다.8 is a view showing a concept of a charge and discharge circuit used in the electromagnetic molding equipment.
도 9 내지 도 10은 본 발명에 따른 전기소성효과를 이용하여 전자기 성형을 수행하는 방법을 설명하는 도면이다.9 to 10 are diagrams illustrating a method of performing electromagnetic molding using the electrical firing effect according to the present invention.
도 11은 본 발명에 따른 전자기 성형 방법을 설명하는 도면이다.11 is a view for explaining an electromagnetic molding method according to the present invention.
이하, 첨부된 도면에 도시된 일 실시예를 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, with reference to an embodiment shown in the accompanying drawings will be described in detail the technical configuration of the present invention.
본 발명에 따른 전기소성효과를 이용한 초고속 성형 방법은 피가공 성형재에 대한 전기소성 단계 및 피가공 성형재에 대한 초고속 성형 단계로 이루어진다.The ultrafast molding method using the electrical firing effect according to the present invention comprises an electric firing step for the workpiece and an ultrafast molding step for the workpiece.
1. 먼저, 전기소성 단계에 다하여 설명하기로 한다.1. First, it will be described in the electrical firing step.
전기소성 단계는 피가공 성형재에 소정의 전류를 흘려 피가공 성형재의 응력을 일정치 이하로 저하시키는 과정이다The electrical firing step is a process of lowering the stress of the workpiece under a certain value by flowing a predetermined current to the workpiece.
알려진 바와 같이, 피가공 성형재에 대하여 일정 레벨 이상의 전류를 흘리면 피가공 성형재의 응력이 순간적으로 일정치 이하로 저하되는 현상이 발생한다.As is known, when a current of a certain level or more is flowed to the workpiece, a phenomenon occurs in which the stress of the workpiece is momentarily lowered to a predetermined value or less.
*따라서, 피가공 성형재의 응력이 일정치 이하로 저하된 시간에 동기되어 소정의 성형력을 피가공 성형재에 가하는 경우 전기소성 효과를 가하지 않은 경우보다 더 낮은 성형력으로 피가공 성형재를 성형할 수 있다는 이점이 있다.Therefore, in the case where a predetermined molding force is applied to the workpiece in synchronization with the time when the stress of the workpiece is lowered to a certain value or less, molding the workpiece with a lower molding force than without applying an electroplastic effect The advantage is that you can.
2. 다음 초고속 성형 단계에 대하여 설명하기로 한다. 2. The next ultrafast molding step will be described.
전술한 전기소성 효과에 의하여 피가공 성형재의 응력이 저하되는 시간은 피가공 성형재의 종류에 따라 차이가 있기는 하지만 그 시간은 매우 짧다.The time that the stress of the workpiece is lowered by the above-described electrical firing effect is different depending on the type of the workpiece, but the time is very short.
따라서 전기소성 효과를 이용하기 위해서는 피가공 성형재의 응력이 저하되어 있는 시간내에 소정의 성형력을 피가공 성형재에 인가할 필요가 있다.Therefore, in order to take advantage of the electroplastic effect, it is necessary to apply a predetermined molding force to the workpiece, within a time when the stress of the workpiece is reduced.
이 때문에 피가공 성형재에 가해지는 성형력은 전기소성 효과에 의하여 응력이 저하되어 있는 시간내에 가해져야 하며 또한 동기화되는 것이 바람직할 것이다.For this reason, the molding force applied to the workpiece is to be applied within the time when the stress is lowered by the electrical firing effect, and it will be desirable to be synchronized.
예컨대, 전기 소정 효과에 의하여 피가공 성형재의 응력이 저하되어 있는 시간이 약 A[sec] 동안 이라고 하면, 피가공 성형재를 성형하기 위하여 인가되는 소정의 성형력은 A[sec] 이내이어야 할 것이다.For example, if the time during which the stress of the workpiece is lowered due to the above-mentioned predetermined effect is about A [sec], the predetermined molding force applied to form the workpiece is to be within A [sec]. .
통상 전기소성효과가 이루어지는 시간은 매우 짧으므로 일반적인 성형 방법으로는 그 적용이 곤란하다.Since the time for which the electrical firing effect is usually performed is very short, its application is difficult with a general molding method.
따라서, 본 발명에서는 전기소성효과에 따른 피가공 성형재의 짧은 응력 저하 시간 동안 성형력을 제공할 수 있는 방법을 강구하였다.Therefore, in the present invention, a method for providing a molding force during a short stress reduction time of the workpiece to be processed according to the electrical firing effect has been devised.
이러한 성형력은 폭발 성형, 전자기 성형 중 적어도 어느 하나가 가능할 수 있다.Such molding force may be at least one of explosion molding and electromagnetic molding.
왜냐하면, 이들 폭발 성형, 전자기 성형은 초고속으로 소정의 성형력을 피가공 성형재에 가할 수 있기 때문이다.This is because these explosion molding and electromagnetic molding can apply a predetermined molding force to the workpiece to be processed at an extremely high speed.
본 발명에서는 이러한 본 발명의 일 실시예 중의 하나로, 전자기 성형을 이용하여 피가공 성형재의 짧은 응력 저하 시간 동안 성형력을 제공할 수 있는 방법에 대하여 설명하기로 한다. In the present invention, as one embodiment of the present invention, a method for providing a molding force for a short stress reduction time of the workpiece to be processed using electromagnetic molding will be described.
참고로, 본 발명에서는 전기소성효과에 부응하여 고속 처리 가능한 전자기 성형을 일예로 설명하지만 본 발명의 실시예는 이에 제한되지 아니하며 폭발 성형에도 동일하게 적용 가능할 것이다.For reference, the present invention will be described as an example of electromagnetic molding capable of high-speed processing in response to the electrical firing effect, but the embodiment of the present invention is not limited thereto and may be equally applicable to explosion molding.
[본 발명의 실시를 위한 전자기 성형에 대한 설명][Description of Electromagnetic Forming for Implementation of the Present Invention]
당업계에 알진 바와 같이 전자기 성형(Electromagnetic forming: EMF)은 고강도의 자기장을 이용하여 고속(15~300m/s)으로 금속을 성형하는 기술이다. As is known in the art, electromagnetic forming (EMF) is a technique of forming a metal at high speed (15 to 300 m / s) using a high strength magnetic field.
전자기성형법은 성형 코일에 의해 순간적으로 전류가 방전되고 주위의 자속 변화 때문에 피 가공재(workpiece)에 유도기전력이 발생한다. In the electromagnetic molding method, electric current is instantaneously discharged by the forming coil, and induced electromotive force is generated in the workpiece due to the change of the surrounding magnetic flux.
이러한 유도전류가 가공물에 흐르게 되면 로렌쯔 힘(Lorentz force)으로 피 가공물이 성형된다. When the induced current flows through the workpiece, the workpiece is formed by Lorentz force.
전자기성형법은 성형코일에 의해 발생된 자가력이 가공물에 직접 가해져 어떠한 물리적 접촉 없이 성형이 이루어지므로, 표면 결함, 윤활, 마멸 등의 문제가 발생하지 않으며 반복적인 성형이 가능하다는 장점이 있다. In the electromagnetic molding method, since the magnetic force generated by the molding coil is directly applied to the workpiece, the molding is performed without any physical contact, and thus, there is no problem such as surface defects, lubrication, and abrasion, and thus the molding can be repeatedly performed.
전자기 성형 장비는 도 8에 도시된 바와 같이 저항, 인덕터, 고용량의 커패시터, 성형코일, 충/방전 스위치를 기본적으로 구비한다. 참고로 도 8에 도시된 전자기 성형 장비 중에서 성형코일을 제외한 나머지 부분은 성형코일에 소정의 전류를 공급하기 위한 충방전 회로이다(도 9의 충방전 회로). Electromagnetic molding equipment basically includes a resistor, an inductor, a high capacitance capacitor, a molding coil, and a charge / discharge switch as shown in FIG. 8. For reference, the remaining part of the electromagnetic molding equipment illustrated in FIG. 8 except the molding coil is a charge / discharge circuit for supplying a predetermined current to the molding coil (charge / discharge circuit of FIG. 9).
한편, 도시되지는 않았지만 이러한 전자기 성형 장비는 충방전 스위치를 제어하기 위한 제어 회로는 물론 전력공급장치, 금형을 더 포함하는 포괄적인 개념으로 이해하여야 할 것이다. On the other hand, although not shown, such an electromagnetic molding equipment will be understood as a comprehensive concept that further includes a power supply device, a mold as well as a control circuit for controlling the charge-discharge switch.
전력공급장치와 연결되는 고용량의 커패시터(Capacitor)는 충전 스위치를 통해 충전이 이루어지게 되고, 성형하기 위한 목표 에너지까지 커패시터가 충전되면 방전 스위치를 통해 순간적으로 방전시킴으로써 성형 코일(Forming coil)에 충격전류가 흐르게 된다.The high-capacity capacitor connected to the power supply is charged through the charge switch, and when the capacitor is charged to the target energy for molding, the discharge current is instantaneously discharged through the discharge switch to impart a shock current to the forming coil. Will flow.
일반적으로 코일에 인가되는 입력전류는 수백 μs 이내에 감쇠하면서 성형 코일에 강력한 자기장을 발생시키게 된다. In general, the input current applied to the coil attenuates within a few hundred μs, generating a strong magnetic field in the forming coil.
성형 코일의 강한 자기장은 패러데이의 법칙에 의해 피가공재에 반대 방향의 유도전류를 발생시키고 로렌쯔의 힘으로 성형력이 발생하여 성형이 이루어지는 과정을 거친다.The strong magnetic field of the shaping coil generates Faraday's law by inducing current in the opposite direction to the workpiece and forming force by the Lorentz force.
그런데, 이러한 전자기 성형에는 피가공 성형재에 인가되는 성형력이 일정 수준 이상되어야 하며 이 때문에 전자기 성형에는 상당한 양의 에너지가 소비된다.However, in such electromagnetic molding, the molding force applied to the workpiece is required to be above a certain level, and therefore, a considerable amount of energy is consumed in the electromagnetic molding.
이에 본 발명에서는 피가공 성형재의 응력을 저하시킨 상태에서 전자기 성형을 적용하는 방법을 제안하여 전자기 성형에 필요한 에너지를 상대적으로 감소시킬 수 있는 방안을 제시한다.Therefore, the present invention proposes a method of applying electromagnetic molding in a state in which the stress of the workpiece is lowered, and proposes a method of relatively reducing energy required for electromagnetic molding.
도 9 및 도 10은 본 발명에 제안하는 전기소성효과를 이용하여 전자기 성형 방법(초고속 성형 방법 중의 일예)을 실시하는 전자기 성형장비의 개념도이다.9 and 10 are conceptual views of an electromagnetic molding apparatus for performing an electromagnetic molding method (an example of an ultrafast molding method) using the electrical firing effect proposed in the present invention.
도 9의 (a), (b)는 성형코일에 전류가 공급되면 피가공 성형재(10)가 성형되는 과정을 개념적으로 도시한 도면이고, 도 10의 (a)는 피가공 성형재(10)에 펄스 전류 발생기를 연결시켜 피가공 성형재(10)에 전기소성 효과를 얻기 위한 전류를 공급하는 개념을 도시한 도면이고, 도 10의 (b)는 성형코일에 도 8에 도시된 것과 동일 유사한 충방전 회로를 전기적으로 연결한 개념을 설명하는 도면이다. (A) and (b) of FIG. 9 conceptually illustrate a process in which the workpiece 10 is molded when a current is supplied to the molding coil, and FIG. 10 (a) illustrates the workpiece 10 ) Is a view showing a concept of supplying a current for obtaining the electrical firing effect to the workpiece 10 by connecting a pulse current generator), Figure 10 (b) is the same as that shown in Figure 8 to the molding coil It is a figure explaining the concept of electrically connecting similar charge / discharge circuits.
즉, 도 9에서 도시되지는 않았지만 도 9의 피가공 성형재(10)와 성형코일에는 도 10에 도시된 펄스 전류 발생기와 충방전 회로가 각각 연결되어 있다. That is, although not shown in FIG. 9, the pulsed current generator and the charge / discharge circuit shown in FIG. 10 are connected to the workpiece 10 and the molding coil of FIG. 9, respectively.
먼저, 전자기 성형 장비를 준비한다. 도 9와 같이 전자기 성형 장비의 일 구성 요소인 성형 코일은 안착부에 안착되어 있는 상태를 유지하며, 성형 코일 상부에는 도면과 같이 소정 형상의 금형이 위치한다.First, prepare the electromagnetic molding equipment. As shown in FIG. 9, the forming coil, which is a component of the electromagnetic forming apparatus, is maintained in a seating portion, and a mold having a predetermined shape is positioned on the forming coil as shown in the drawing.
다음, 가공하고자 하는 피가공 성형재(10)를 성형 코일 상부에 위치시킨다. 이 때, 필요에 따라서는 성형 코일 상부에 강자성 소재의 중간 부재를 안착시킨 후 피가공 성형재(10)를 강자성 소재의 중간 부재 상부에 안착시킬 수 있으나 이는 선택적인 사항일 수 있다. Next, the workpiece 10 to be processed is placed on the forming coil. At this time, if necessary, after seating the intermediate member of the ferromagnetic material on the upper part of the molding coil, the workpiece 10 may be seated on the upper part of the intermediate member of the ferromagnetic material, but this may be optional.
다음, 피가공 성형재에 도 10의 (a)에 도시된 펄스 전류 발생기를 이용하여 소정의 펄스 전류를 도전시켜 전기 소성 효과를 얻는다. Next, an electric firing effect is obtained by conducting a predetermined pulse current to the workpiece by using the pulse current generator shown in Fig. 10A.
알려진 바와 같이 피가공 성형재의 종류, 인가된 전류의 세기, 펄스 전류의 듀티비에 따라 피가공 성형재의 응력이 소정치 이하로 다운되는 시점에 차이가 있을 수 있다. As is known, there may be a difference in the time when the stress of the workpiece is lowered below a predetermined value depending on the type of the workpiece, the strength of the applied current, and the duty ratio of the pulse current.
다음, 본 발명에서는 소정의 펄스 전류를 피가공 성형재에 공급하여 피가공 성형재의 응력이 소정치 이하로 떨어지는 시점에 동기화되도록 전자기 성형 장비의 충방전 회로를 제어하여 성형 코일에 소정의 전류를 공급시킨다. Next, in the present invention, a predetermined pulse current is supplied to the workpiece to control the charge and discharge circuit of the electromagnetic molding equipment to supply a predetermined current to the molding coil so as to be synchronized at a time when the stress of the workpiece falls below a predetermined value. Let's do it.
도 11은 본 발명에 따른 전자기 성형 코일을 이용하여 피가공 성형재에 소정의 전자기력을 수회 인가하여 피가공 성형재를 소정 형상으로 가공하는 개념을 도시하였다.11 illustrates a concept of processing a workpiece into a predetermined shape by applying a predetermined electromagnetic force to the workpiece by using the electromagnetic molding coil according to the present invention several times.
따라서, 본 발명에서와 같이 피가공 성형재의 응력이 소정치 이하로 떨어지는 시점에 동기화시켜 충방전 회로를 작동시킴으로써 피가공 성형재의 성형을 보다 용이하게 구현할 수 있다. Therefore, as in the present invention, it is possible to implement the molding of the workpiece more easily by operating the charge / discharge circuit in synchronization with the time when the stress of the workpiece is lowered below a predetermined value.
이상에서 설명한 본 발명에 따른 전기소성효과를 이용한 초고속 성형 방법은 전자기 성형력을 인가하는 실시예로 설명되었으나 본 발명은 폭발 성형 등과 같이 피가공 성형재의 응력이 소정치 이하로 다운되는 시점에 동기화되어 소정의 힘을 피가공 성형재에 가할 수 있는 모든 종류의 성형 방법에도 동일하게 적용되며 본 발명의 보호범위는 이러한 기술 분야에까지 미치는 것으로 해석되어야 한다.The ultrafast molding method using the electrical firing effect according to the present invention described above has been described as an embodiment for applying the electromagnetic molding force, but the present invention is synchronized at a point when the stress of the workpiece to be processed is lowered below a predetermined value, such as explosion molding. The same applies to all kinds of molding methods in which a predetermined force can be applied to the workpiece, and the protection scope of the present invention should be interpreted to extend to these technical fields.

Claims (4)

  1. 전기소성효과를 이용한 초고속 성형 방법으로서,As a super fast molding method using the electrical firing effect,
    (a) 소정의 펄스 전류를 피가공 성형재에 인가하여 상기 피가공 성형재의 응력을 소정치 이하로 순간적으로 다운시키는 전기소성효과를 일으키는 단계;(a) applying a predetermined pulse current to the workpiece to produce an electrical firing effect that instantaneously lowers the stress of the workpiece below a predetermined value;
    (b) 상기 피가공 성형재의 응력이 상기 소정치 이하로 떨어져 있는 시간동안 동기되어 상기 피가공 성형재에 대하여 전자기 성형력을 초고속으로 제공하여 상기 전기소성효과가 없을 때보다 더 낮은 성형력으로 상기 피가공 성형재를 성형하는 단계로 이루어지고,(b) provide a high-speed electromagnetic molding force to the workpiece to be synchronized at a time during which the stress of the workpiece is separated below the predetermined value, thereby providing a lower molding force than without the electrical firing effect; Forming the workpiece,
    상기 전자기 성형력이 제공되는 시점은 상기 피가공 성형재의 응력이 소정치 이하로 떨어지는 시점을 포함하여 150~300㎲ 범위내인 것을 특징으로 하는 전기소성효과를 이용한 초고속 성형 방법.The time point at which the electromagnetic molding force is provided is within a range of 150 to 300 kPa, including a time point at which the stress of the workpiece is lower than a predetermined value.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 피가공 성형재에 인가되는 상기 소정의 펄스 전류의 세기는 상기 피가공 성형재의 종류에 따라 변하는 것을 특징으로 하는 전기소성효과를 이용한 초고속 성형 방법.And the intensity of the predetermined pulse current applied to the workpiece is varied according to the type of workpiece to be processed.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 피가공 성형재의 응력이 소정치 이하로 떨어지는 시점은 상기 피가공 성형재의 종류에 따라 상이한 것을 특징으로 하는 전기소성효과를 이용한 초고속 성형 방법.The time point at which the stress of the workpiece is lowered below a predetermined value is different depending on the type of the workpiece.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 전자기 성형력은 로렌쯔 힘을 이용하는 성형 코일을 이용하여 생성하는 것을 특징으로 하는 전기소성효과를 이용한 초고속 성형 방법.The ultra-high molding method using the electrical firing effect, characterized in that the electromagnetic forming force is generated using a forming coil using the Lorentz force.
PCT/KR2015/013027 2014-12-03 2015-12-02 Ultra-high-speed molding method using electroplasticity effect WO2016089097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/533,149 US20170326614A1 (en) 2014-12-03 2015-12-02 Ultra-high-speed forming method using electroplasticity effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0171808 2014-12-03
KR1020140171808A KR101577333B1 (en) 2014-12-03 2014-12-03 High speed forming method using Electroplascity effect

Publications (1)

Publication Number Publication Date
WO2016089097A1 true WO2016089097A1 (en) 2016-06-09

Family

ID=55021032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013027 WO2016089097A1 (en) 2014-12-03 2015-12-02 Ultra-high-speed molding method using electroplasticity effect

Country Status (3)

Country Link
US (1) US20170326614A1 (en)
KR (1) KR101577333B1 (en)
WO (1) WO2016089097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951519B2 (en) 2017-12-15 2024-04-09 Magna International Inc. Electromagnetic extrusion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206943A1 (en) * 2016-04-25 2017-10-26 Bayerische Motoren Werke Aktiengesellschaft Device and method for forming workpieces by magnetic pulse transformation
KR102506754B1 (en) * 2016-12-15 2023-03-07 현대자동차주식회사 High strength aluminum alloy plate parts and manufacturing method thereof
KR102383460B1 (en) 2017-12-05 2022-04-06 현대자동차주식회사 Apparatus and method for forming aluminum plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321847A (en) * 2000-05-18 2001-11-20 Honda Motor Co Ltd Superplastic forming apparatus and superplastic working method
KR20120032968A (en) * 2010-09-29 2012-04-06 현대제철 주식회사 Apparatus and method for deep drawing mold using electromagnetic forming
KR101344867B1 (en) * 2012-08-24 2013-12-24 웰메이트 주식회사 Electromagnetic forming apparatus having lower die
KR101458345B1 (en) * 2014-06-24 2014-11-04 부산대학교 산학협력단 Adjustable coil-forming apparatus using electromagnetic
KR101465464B1 (en) * 2013-12-18 2014-11-26 한국생산기술연구원 Electromagnetic forming coil and electromagnetic forming apparatus having the coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321847A (en) * 2000-05-18 2001-11-20 Honda Motor Co Ltd Superplastic forming apparatus and superplastic working method
KR20120032968A (en) * 2010-09-29 2012-04-06 현대제철 주식회사 Apparatus and method for deep drawing mold using electromagnetic forming
KR101344867B1 (en) * 2012-08-24 2013-12-24 웰메이트 주식회사 Electromagnetic forming apparatus having lower die
KR101465464B1 (en) * 2013-12-18 2014-11-26 한국생산기술연구원 Electromagnetic forming coil and electromagnetic forming apparatus having the coil
KR101458345B1 (en) * 2014-06-24 2014-11-04 부산대학교 산학협력단 Adjustable coil-forming apparatus using electromagnetic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951519B2 (en) 2017-12-15 2024-04-09 Magna International Inc. Electromagnetic extrusion

Also Published As

Publication number Publication date
KR101577333B1 (en) 2015-12-14
US20170326614A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2016089097A1 (en) Ultra-high-speed molding method using electroplasticity effect
CN106513508A (en) Titanium alloy sheet metal part cold-die hot-stamping forming tool and machining method
Xu et al. Effects of process parameters on electromagnetic forming of AZ31 magnesium alloy sheets at room temperature
Lee et al. A finite element analysis of electromagnetic forming for tube expansion
US5202542A (en) Test specimen/jaw assembly that exhibits both self-resistive and self-inductive heating in response to an alternating electrical current flowing therethrough
Jordan et al. Investigation of thermal and mechanical effects during electrically-assisted microbending
Li et al. Pulse current-assisted hot-forming of light metal alloy
Abdul et al. The Relationship Between Surface roughening and Resistance Heating in Austenitic Thin Metal Foils of SUS 304 and SUS 316 During Tensile Test
CN104384701B (en) Magnesium alloy based on sensing heating and electro-magnetic forming/carbon steel pipe fitting composite connecting method
WO2012030835A2 (en) Electrical-assisted double side incremental forming and processes thereof
Yu et al. Experiments on electrohydraulic forming and electromagnetic forming of aluminum tube
KR20120074969A (en) The light weight pannel forming system using electromagnetic power
Xu et al. Deformation behaviour of AZ31 magnesium alloy sheet hybrid actuating with Al driver sheet and temperature in magnetic pulse forming
CN107192615B (en) Lorentz force-based metal electromagnetic loading system
Zhang et al. Effects of percent reduction and specimen orientation on the ratcheting behavior of hot-rolled AZ31B magnesium alloy
Xu et al. A low-density pulse-current-assisted age forming process for high-strength aluminum alloy components
US6422090B1 (en) Apparatus for a thermodynamic material testing system that produces very large strains in crystalline metallic specimens and accompanying methods for use therein
Huang et al. Effect of electromagnetic ring expansion on the mechanical property of A5083 aluminum alloy
RU2558700C2 (en) Device and method for electromagnetic drawing and elimination of dents
Breda et al. Experimental study on electroplastic effect in AISI 316L austenitic stainless steel
Zhang et al. Investigation of current parameters and size effects on mechanical properties during pulsed electrically assisted uniaxial tension in T2 red copper sheets
Nguyen et al. The effect of short duration electric current on the quasi-static tensile behavior of magnesium AZ31 alloy
Lee et al. A Demonstration of Local Heat Treatment for the Preform Annealing Process
Indhiarto et al. Effect of DC pulsed-current on deformation behavior of magnesium alloy thin sheets
CN108495725B (en) Device and method for forming a workpiece by means of magnetic pulse forming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15533149

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865174

Country of ref document: EP

Kind code of ref document: A1