WO2016088837A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2016088837A1
WO2016088837A1 PCT/JP2015/084027 JP2015084027W WO2016088837A1 WO 2016088837 A1 WO2016088837 A1 WO 2016088837A1 JP 2015084027 W JP2015084027 W JP 2015084027W WO 2016088837 A1 WO2016088837 A1 WO 2016088837A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
lithium secondary
lithium
positive electrode
Prior art date
Application number
PCT/JP2015/084027
Other languages
French (fr)
Japanese (ja)
Inventor
牧子 高橋
野口 健宏
加藤 有光
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016562673A priority Critical patent/JP6705384B2/en
Publication of WO2016088837A1 publication Critical patent/WO2016088837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery, a vehicle, and a storage battery.
  • Lithium secondary batteries are characterized by their small size and large capacity, and are widely used as power sources for electronic devices such as mobile phones and laptop computers, and have contributed to improving the convenience of portable IT devices.
  • the use in a larger application such as a power source for driving a motorcycle or an automobile or a storage battery for a smart grid has attracted attention.
  • the battery has higher energy density, life characteristics that can withstand long-term use, and can be used in a wide range of temperature conditions. The characteristics are required.
  • the electrolyte surface When charging / discharging a lithium secondary battery, the electrolyte surface is brought into a very strong reducing or oxidizing environment on the negative electrode surface and the positive electrode surface. Therefore, the electrolytic solution is reduced or oxidized on the electrode surface. Inevitably, the electrolyte solution decomposes by causing a side reaction with the material constituting the electrode (electrode active material). Therefore, when charging / discharging of the lithium secondary battery is repeated over a long period of time, there is a problem that the capacity of the battery is deteriorated. In particular, these problems have remarkably appear in a lithium ion battery using a high-voltage positive electrode that has attracted attention in recent years in increasing energy density.
  • a coating containing a phosphorus compound is formed on the surface of the positive electrode to suppress decomposition of the electrolytic solution on the surface of the positive electrode, to suppress an increase in resistance, and to extend the life.
  • XAFS X-ray absorption fine structure
  • XPS analysis method X-ray photoelectron spectroscopy
  • Patent Document 3 shows an example in which the peak intensity ratio of lithium phosphate ion, lithium borate ion and lithium arsenate ion component on the negative electrode or positive electrode surface is defined by time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • Patent Document 4 discloses an example in which a battery having a protective film mainly composed of at least one of a phosphate derived from a phosphorus compound having a P—OH structure and a metal salt thereof is formed on the surface of the positive electrode. Has been.
  • the film component has a structure such as PO, so that the stability of the film is improved, the effect of suppressing the resistance increase due to the decomposition of the electrolytic solution, and the effect of improving the cycle characteristics are shown.
  • the effect on the high-temperature cycle characteristics of a high energy density battery using a positive electrode operating at a high potential and a high capacity Si-based negative electrode has not been sufficient.
  • the example regarding a cyclic phosphate structure was not shown as a structure of the phosphorus compound which forms a film.
  • Patent Documents 1 to 4 described above the effect of suppressing resistance increase due to the decomposition of the electrolytic solution and the effect of improving cycle characteristics are shown.
  • a positive electrode active material that operates at a high potential is used, a decomposition reaction of the electrolyte occurs at the contact portion between the positive electrode and the electrolyte, and the decomposition product decomposed on the positive electrode side is further reduced at the negative electrode.
  • There are problems such as gas generation and deterioration of charge / discharge cycle characteristics.
  • a decomposition product of the electrolytic solution is likely to be generated on the positive electrode side.
  • the cycle characteristics at a high temperature such as 45 ° C. or higher were not sufficient.
  • An object of the present invention is to provide a lithium secondary battery that is under high voltage and high temperature conditions, effectively suppresses decomposition of the electrolytic solution even with a Si-based negative electrode, and has excellent long-term cycle characteristics.
  • the present invention is a secondary battery having a positive electrode capable of inserting and extracting lithium, a negative electrode, and an electrolyte containing a nonaqueous electrolytic solvent, wherein the negative electrode active material includes a compound containing silicon element.
  • the present invention relates to a lithium secondary battery comprising a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure on the surface of the positive electrode or the negative electrode.
  • the present invention it is possible to provide a lithium secondary battery that is under high voltage and high temperature conditions, effectively suppresses the decomposition of the electrolytic solution even with a Si-based negative electrode, and has excellent long-term cycle characteristics.
  • the present inventors formed a film during a high-temperature cycle (especially when using a positive electrode operating at a high potential). It has been found that by having a compound having a cyclic phosphate structure having —O—P—O— as part of the ring structure as a component, decomposition of the electrolytic solution on the electrode surface can be suppressed.
  • the secondary battery of this embodiment is a secondary battery having a positive electrode capable of inserting and extracting lithium, a negative electrode, and an electrolytic solution containing a nonaqueous electrolytic solvent, wherein the negative electrode active material is silicon element And a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure on the surface of the positive electrode or the negative electrode.
  • a positive electrode active material will not be specifically limited if a lithium ion can be inserted at the time of charge, and can be desorbed at the time of discharge, A well-known thing can be used.
  • the positive electrode active material examples include lithium manganate having a layered structure such as LiMnO 2 and Li x Mn 2 O 4 (0 ⁇ x ⁇ 2) or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2, or these Some transition metals replaced with other metals; LiNi 1/3 Co 1/3 Mn 1/3 O 2 and other specific transition metals such as lithium transition metal oxides; LiFePO 4 and other olivines Those having a structure; in these lithium transition metal oxides, those having an excess of Li rather than the stoichiometric composition can be mentioned.
  • lithium manganate having a layered structure such as LiMnO 2 and Li x Mn 2 O 4 (0 ⁇ x ⁇ 2) or lithium manganate having a spinel structure
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 and other specific transition metals such as lithium transition metal oxides
  • These materials can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode has a charge / discharge region of 4.4 V or higher with respect to lithium.
  • the effect of the present embodiment can be more exerted by the effect of suppressing the decomposition of the electrolytic solution under a high voltage.
  • a lithium manganese composite oxide represented by the following formula (1) can be used as the positive electrode active material that operates at a potential of 4.4 V or higher.
  • M is Co
  • Y is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K, and Ca
  • Z is F or Cl. At least one kind.
  • lithium manganese composite oxide represented by the formula (1) for example, LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFeMnO 4 , LiCoMnO 4 , LiCu 0.5 Mn 1.5 Preferred examples include O 4 .
  • These positive electrode active materials have a high capacity.
  • the positive electrode active material operating at a potential of 4.4 V or higher is more preferably a lithium manganese composite oxide represented by the following formula (1-1) from the viewpoint of obtaining sufficient capacity and extending the life. .
  • LiNi x Mn 2-xy A y O 4 (1-1) (In the formula (1-1), 0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.3, A is at least selected from the group consisting of Li, B, Na, Mg, Al, Ti and Si. It is a kind.)
  • examples of the olivine-type positive electrode active material include those represented by the following formula (2).
  • LiMPO 4 (2) (In Formula (2), M is at least one selected from the group consisting of Co and Ni.)
  • LiCoPO 4 LiCoPO 4 , LiNiPO 4 and the like are preferable.
  • Examples of the positive electrode active material that operates at a potential of 4.4 V or higher include those having a layered structure.
  • Examples of the positive electrode active material having such a layered structure are represented by the following formula (3). And the like.
  • Li (Li x M 1-x -z Mn z) O 2 (3) (In Formula (3), 0 ⁇ x ⁇ 0.3, 0.3 ⁇ z ⁇ 0.7, and M is at least one selected from the group consisting of Co, Ni, and Fe.)
  • examples of the positive electrode active material that operates at a potential of 4.4 V or higher include Si composite oxides, and examples include those represented by the following formula (4).
  • Li 2 MSiO 4 (4) (In formula (4), M is at least one selected from the group consisting of Mn, Fe and Co.)
  • the positive electrode active material can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound.
  • the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element.
  • the layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode can be formed, for example, by applying a positive electrode slurry prepared by mixing a positive electrode active material, a positive electrode binder, and, if necessary, a conductivity-imparting agent onto a current collector.
  • Examples of the conductivity-imparting agent include carbon materials such as acetylene black, carbon black, fibrous carbon and graphite, metal substances such as Al, and conductive oxide powders.
  • the positive electrode binder is not particularly limited.
  • polyvinylidene fluoride PVdF
  • vinylidene fluoride-hexafluoropropylene copolymer vinylidene fluoride-tetrafluoroethylene copolymer
  • styrene-butadiene Copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be used.
  • the content of the conductivity-imparting agent in the positive electrode can be, for example, 1 to 10% by mass.
  • the content of the binder in the positive electrode can be, for example, 1 to 10% by mass. If it exists in such a range, it will be easy to ensure the ratio of the amount of active materials in an electrode, and it will become easy to obtain sufficient capacity
  • the positive electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, and alloys thereof are preferable from the viewpoint of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the negative electrode includes a compound containing a silicon element as a negative electrode active material.
  • the capacity of the negative electrode can be increased, and the energy density of the battery can be increased.
  • M2 is a metal element, Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Sn
  • the negative electrode active material may include a compound containing silicon alone or two or more kinds.
  • M1 is Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Sn.
  • the metal element selected from the group consisting of preferably 80% or more, more preferably 90% or more, and 100% of the composition ratio y of M1.
  • M2 z Si 1-z O w is the silicon composite oxide
  • M2 is Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu , Zn and Sn may be contained in the composition ratio z, preferably 80% or more, more preferably 90% or more, and 100%.
  • M1 and M2 may contain two or more metals.
  • silicon alloys including two types include Si—B—Al, Si—B—Fe, Si—B—Ni, Si—B—Cu, Si—B—Ti, Si—B—Sn, and Si—.
  • the content of the compound containing silicon with respect to the total amount of the negative electrode active material is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 80% by mass or more. Preferably, it may be 100% by mass.
  • the negative electrode active material may contain another negative electrode active material in addition to the silicon-based material.
  • examples thereof include a carbon material (a) that can occlude and release lithium ions, a metal (b) that can be alloyed with lithium, or a metal oxide (c) that can occlude and release lithium ions.
  • the carbon material (a) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the carbon material (a) is preferably 0% by mass or more and 80% by mass or less, more preferably 2% by mass or more and 80% by mass or less in the negative electrode active material, and 2% by mass or more and 30% by mass or less. The following range is more preferable.
  • the carbon material (a) may coat the surface of the compound containing silicon.
  • the metal (b) a metal mainly composed of Al, Pb, Sn, Zn, Cd, Sb, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, La, or the like, or these two kinds
  • the above alloys, or an alloy of these metals or alloys and lithium can be used.
  • the metal (b) is preferably 0% by mass to 90% by mass in the negative electrode active material, more preferably 5% by mass to 90% by mass, and more preferably 20% by mass to 50% by mass. More preferably, it is the range.
  • the metal oxide (c) examples include aluminum oxide, tin oxide such as SnO and SnO 2 , indium oxide, zinc oxide, lithium oxide, or a composite thereof, LiFe 2 O 3 , WO 2 , MoO 2 , CuO, and Nb. 3 O 5 , Li x Ti 2-x O 4 (1 ⁇ x ⁇ 4/3), PbO 2 , Pb 2 O 5 and the like can be used.
  • one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved.
  • the metal oxide (c) is preferably 0% by mass to 90% by mass in the negative electrode active material, preferably in the range of 5% by mass to 90% by mass, and 40% by mass to 70% by mass. The following range is more preferable.
  • the negative electrode active material include metal sulfide (d) that can occlude and release lithium ions.
  • Metal sulfide as (d) are, for example, SnS and FeS 2 or the like.
  • Other examples of the negative electrode active material include metal lithium or lithium alloy, polyacene or polythiophene, or Li 5 (Li 3 N), Li 7 MnN 4 , Li 3 FeN 2 , Li 2.5 Co 0. Examples thereof include lithium nitride such as 5 N or Li 3 CoN.
  • the negative electrode active material may contain the carbon material (a), the metal (b), the metal oxide (c), the metal sulfide (d), or the like alone or in combination. .
  • the shape of the negative electrode active material such as a silicon-based negative electrode active material, carbon material (a), metal (b), metal oxide (c), and metal sulfide (d) is not particularly limited, Particulate materials can be used.
  • the specific surface areas of the negative electrode active material is, for example, 0.01 ⁇ 20m 2 / g, preferably 0.05 ⁇ 15m 2 / g, more preferably 0.1 ⁇ 10m 2 / g, 0.15 ⁇ 8m 2 / g is more preferable.
  • the contact area with the electrolytic solution can be adjusted to an appropriate range. That is, when the specific surface area is 0.01 m 2 / g or more, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced.
  • the central particle size of the negative electrode active material is preferably 0.01 to 50 ⁇ m, more preferably 0.02 to 40 ⁇ m.
  • the particle size can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.
  • the binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer.
  • PVdF polyvinylidene fluoride
  • Polymerized rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be mentioned.
  • the content of the negative electrode binder is preferably in the range of 1 to 40% by mass, more preferably 1.5 to 30% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the content is preferably in the range of 1 to 40% by mass, more preferably 1.5 to 30% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the negative electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, iron, chromium, molybdenum and alloys thereof are preferable from the viewpoint of electrochemical stability.
  • Examples of the shape include a foil shape, a flat plate shape, and a mesh shape.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the surface of the negative electrode after charge / discharge contains a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure.
  • the phosphorus compound having a cyclic phosphate structure can reduce the reactivity at the negative electrode by forming a film on the negative electrode surface. For this reason, long-term cycle characteristics can be achieved even with a Si-based negative electrode having high voltage and high temperature conditions in which electrolyte decomposition products are likely to be generated and having high reactivity with the electrolyte decomposition products.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • Each secondary ion accelerated with the same energy passes through the analyzer at a speed corresponding to the mass, but since the distance to the detector is constant, the time to reach it (time of flight) is By measuring this time-of-flight distribution precisely, a mass distribution of secondary ions, that is, a mass spectrum can be obtained.
  • a mass distribution of secondary ions that is, a mass spectrum can be obtained.
  • organic substances and inorganic substances existing on the sample surface can be identified, and knowledge about the abundance can be obtained from the peak intensity. Further, since the detection depth in the TOF-SIMS method is several nm or less, it is suitable as a method for analyzing the negative electrode surface coating.
  • cyclic phosphate ester ions are detected.
  • Many other types of components are detected as surface coating components of the negative electrode, but the cycle characteristics at high temperatures can be improved by having a certain amount or more of the cyclic phosphate ion count ratio. .
  • the peak intensity ratio of the cyclic phosphate ester ion (the ion count ratio of the peak intensity derived from the cyclic phosphate ion to the total peak intensity derived from all negative electrode surface detection components) is 0.0001 or higher.
  • cyclic phosphate ester ions can be detected even in a cell that has been sufficiently cycled.
  • the peak intensity ratio of cyclic phosphate ion after 200 cycles at 45 ° C. is 0.001 or more.
  • the structure of the cyclic phosphate ester is not particularly limited, but preferably has a cyclic phosphate structure represented by the following formula (5).
  • R 1 represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms.
  • the cyclic phosphate ion is more preferably an ethylene phosphate ion represented by the following formula (6).
  • the ethylene phosphate ion represented by the formula (6) is observed around a mass number of 122.98 in the TOF-SIMS mass spectrum.
  • Peak intensity ratio of ethylene phosphate ion represented by formula (6) (peak intensity ratio derived from ethylene phosphate ion represented by formula (6) with respect to the total peak intensity derived from all negative electrode surface detection components)
  • the peak intensity ratio is preferably 0.0001 or more and 0.1 or less, and more preferably 0.001 or more and 0.05 or less.
  • the cyclic phosphate ion can be detected even in a cell that has been sufficiently cycled.
  • the peak intensity ratio of the cyclic phosphate ions after 200 cycles at 45 ° C. is preferably 0.001 or more.
  • the initial charge / discharge is the first charge / discharge performed on a cell in which a predetermined electrolytic solution is sealed after the secondary battery is assembled, and is generally called a conditioning process.
  • the number of times of charging / discharging as initial charging / discharging should just be 1 time or more, and it is preferable that they are 2 times or more and 5 times or less.
  • the temperature during initial charge / discharge be 20 ° C. or higher and 70 ° C. or lower. More preferably, it is 35 degreeC or more and 55 degrees C or less.
  • the negative electrode surface coating is mainly formed by the decomposition reaction of the electrolytic solution on the negative electrode surface.
  • the temperature is too low, the decomposition reaction of the electrolytic solution is not promoted, and the coating component is difficult to be formed. Becomes worse. If the temperature is too high, the electrolytic solution is excessively decomposed, which causes solvent alteration, gas generation, and resistance increase.
  • the surface of the positive electrode active material preferably also contains a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure.
  • the above compound can be detected by analysis such as TOF-SIMS as in the negative electrode.
  • the peak intensity ratio of cyclic phosphate ester ions by the TOF-SIMS method is the peak intensity ratio. Is preferably 0.0001 or more and 0.1 or less, and more preferably 0.001 or more and 0.05 or less.
  • cyclic phosphate ester ions can be detected even in a cell that has been sufficiently cycled.
  • the peak intensity ratio of cyclic phosphate ion after 200 cycles at 45 ° C. is 0.001 or more.
  • the structure of the cyclic phosphate ester ion is not particularly limited, but preferably has a cyclic phosphate structure represented by the following formula (7).
  • R 1 represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms.
  • the structure of the cyclic phosphate ester ion is more preferably an ethylene phosphate ion represented by the following formula (8).
  • the ethylene phosphate ion represented by the formula (8) is observed around a mass number of 122.98 in the TOF-SIMS mass spectrum.
  • Peak intensity ratio of ethylene phosphate ion represented by formula (8) (the ion count of the peak intensity of ethylene phosphate ion represented by formula (8) with respect to the total peak intensity derived from all positive electrode surface detection components) Ratio) is preferably 0.0001 or more and 0.1 or less, and more preferably 0.001 or more and 0.05 or less.
  • the temperature during initial charge / discharge it is preferable to set the temperature during initial charge / discharge to 20 ° C. or higher and 70 ° C. or lower. More preferably, it is 35 degreeC or more and 55 degrees C or less.
  • the positive electrode surface film is also formed by a decomposition reaction of the electrolytic solution on the positive electrode surface. If the temperature is too low, the decomposition reaction of the electrolytic solution is not promoted, the film component is difficult to be formed, the cycle characteristics are deteriorated, and if the temperature is too high, the electrolytic solution is excessively decomposed and the solvent changes, It causes gas generation and resistance increase.
  • the electrolytic solution in the present embodiment includes a lithium salt and a non-aqueous solvent.
  • the lithium salt preferably contains lithium hexafluorophosphate. It is considered that a part of lithium hexafluorophosphate containing phosphorus reacts on the electrode surface in order to form a good film component.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l. More preferably, it is 0.8 to 1.2 mol / l. If the lithium salt concentration is too low, the coating component is difficult to form and sufficient cycle characteristics cannot be obtained. If the lithium salt concentration is too high, the battery characteristics deteriorate due to an increase in viscosity or excessive film formation.
  • lithium salt in addition to lithium hexafluorophosphate, LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiCl, LiBr, LiI, LiSCN, etc. Can be used. In addition to lithium hexafluorophosphate, these can be used alone or in combination.
  • R 2 and R 3 each independently represents a substituted or unsubstituted alkyl group.
  • the carbon atom of R 2 and the carbon atom of R 3 are bonded through a single bond or a double bond. And a cyclic structure may be formed, and a part of hydrogen of R 2 and R 3 may be substituted with fluorine.
  • a carbonate compound can be used individually by 1 type or in mixture of 2 or more types.
  • the carbonic acid ester compound is selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and a compound having a cyclic carbonic acid ester structure in which some or all of the hydrogen atoms contained therein are substituted with fluorine atoms. It is preferable that there is at least one. Since the compound having a cyclic carbonate structure has a high dielectric constant, the ion dissociation property of the electrolytic solution is improved, and the viscosity of the electrolytic solution is lowered. Therefore, in addition to the film forming effect, ion mobility can be improved.
  • the electrolytic solution in the present embodiment preferably further contains a fluorinated ether compound represented by the following formula (10) as a nonaqueous electrolytic solvent.
  • R 4 and R 5 each independently represents an alkyl group or a fluorinated alkyl group, provided that at least one of R 4 and R 5 is a fluorinated alkyl group.
  • carbon number n 2 with carbon number n 1 R 5 of R 4 are each 1 ⁇ n 1 ⁇ 8,1 ⁇ n 2 ⁇ 8. Further, the total number of carbon atoms of R 4 and R 5 is more preferably 10 or less.
  • the fluorinated alkyl group is preferably a fluorinated alkyl group in which 50% or more, more preferably 60% or more, of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms.
  • fluorine atom content is large, the voltage resistance is further improved, and even when a positive electrode active material that operates at a high potential is used, it is possible to more effectively reduce the deterioration of the battery capacity after the cycle.
  • fluorinated ether compounds a fluorinated ether compound represented by the following formula (10-1) is more preferable.
  • n and m are each independently 1 to 8.
  • X 1 to X 6 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 3 One is a fluorine atom, and at least one of X 4 to X 6 is a fluorine atom, and when n is 2 or more, a plurality of X 2 and X 3 are each independent of each other; When m is 2 or more, a plurality of X 4 and X 5 are independent of each other.
  • the fluorinated ether compound is more preferably a compound represented by the following formula (10-2) from the viewpoint of voltage resistance and compatibility with other electrolytes.
  • n is 1 to 7
  • X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 3 is a fluorine atom. And at least one of X 4 to X 8 is a fluorine atom.
  • n 2 or more
  • a plurality of X 2 may be the same or different
  • a plurality of X 3 are the same or different from each other. Also good.
  • the fluorinated ether compound is more preferably represented by the following formula (10-3).
  • n is 1, 2, 3 or 4.
  • Y 1 to Y 8 are each independently a fluorine atom or a hydrogen atom. However, at least one of Y 1 to Y 4 is a fluorine atom, and at least one of Y 5 to Y 8 is a fluorine atom.
  • n 2 or more
  • the plurality of Y 1 to Y 4 may be the same or different from each other.
  • fluorinated ether compound examples include CF 3 OCH 3 , CF 3 OC 2 H 5 , F (CF 2 ) 2 OCH 3 , F (CF 2 ) 2 OC 2 H 5 , and CF 3 (CF 2 ) CH 2 O.
  • fluorinated ether compound represented by the formula (10) may be used alone or in combination of two or more.
  • the non-aqueous solvent may include a fluorinated phosphate ester represented by the following formula (11).
  • R 6 , R 7 and R 8 each independently represents a substituted or unsubstituted alkyl group, and at least one of R 6 , R 7 and R 8 is a fluorine-substituted alkyl.
  • the carbon atom of R 6 and the carbon atom of R 7 may be bonded via a single bond or a double bond to form a cyclic structure.
  • R 6 , R 7 and R 8 each independently have 1 to 3 carbon atoms. At least one of R 6 , R 7 and R 8 is preferably a fluorine-substituted alkyl group in which 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms. Moreover, all of R 6 , R 7 and R 8 are fluorine-substituted alkyl groups, and 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl groups represented by R 6 , R 7 and R 8 are substituted with fluorine atoms. More preferred is a fluorine-substituted alkyl group. This is because when the fluorine atom content is high, the voltage resistance is further improved, and even when a positive electrode active material that operates at a high potential is used, deterioration of the battery capacity after cycling can be further reduced.
  • the fluorinated phosphate ester is not particularly limited.
  • phosphoric acid tris trifluoromethyl
  • phosphoric acid tris penentafluoroethyl
  • phosphoric acid tris (2,2,2-trifluoroethyl)
  • phosphoric acid Tris (2,2,3,3-tetrafluoropropyl)
  • Tris phosphate (3,3,3-trifluoropropyl)
  • Tris phosphate (2,2,3,3,3-pentafluoropropyl) etc.
  • a fluorinated alkyl phosphate compound may be mentioned.
  • tris (2,2,2-trifluoroethyl) phosphate is preferable. Fluorinated phosphates can be used alone or in combination of two or more.
  • a sulfone compound represented by the following formula (12) may be included as the non-aqueous solvent.
  • R 9 and R 10 each independently represents a substituted or unsubstituted alkyl group.
  • the carbon atom of R 9 and the carbon atom of R 10 are bonded via a single bond or a double bond. And a ring structure may be formed.
  • Preferred examples of the cyclic sulfone compound represented by the formula (12) include tetramethylene sulfone (sulfolane), pentamethylene sulfone, hexamethylene sulfone and the like.
  • Preferred examples of the cyclic sulfone compound having a substituent include 3-methylsulfolane and 2,4-dimethylsulfolane. Since these materials are excellent in oxidation resistance, they can suppress the decomposition of the electrolytic solution under a high voltage, and have a relatively high dielectric constant, so that they have an advantage of excellent dissolution / dissociation action of lithium salt.
  • the sulfone compound may be a chain sulfone compound.
  • the chain sulfone compound include ethyl methyl sulfone, ethyl isopropyl sulfone, ethyl isobutyl sulfone, dimethyl sulfone, and diethyl sulfone.
  • dimethyl sulfone, ethyl methyl sulfone, ethyl isopropyl sulfone, and ethyl isobutyl sulfone are preferable. Since these materials are excellent in oxidation resistance, they can suppress the decomposition of the electrolytic solution under a high voltage, and have a relatively high dielectric constant, so that they have an advantage of excellent dissolution / dissociation action of lithium salt.
  • the sulfone compounds can be used alone or in combination of two or more.
  • the nonaqueous solvent may include a carboxylic acid ester represented by the following formula (13).
  • R 11 and R 12 each independently represents a substituted or unsubstituted alkyl group.
  • the carbon atom of R 11 and the carbon atom of R 12 are bonded via a single bond or a double bond. And a cyclic structure may be formed, and a part of hydrogen of R 11 and R 12 may be substituted with fluorine.
  • the carboxylate ester is not particularly limited, and examples thereof include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, and methyl formate.
  • a compound in which a hydrogen atom is substituted with a fluorine atom is preferable.
  • the chain carboxylic acid ester has a feature that the viscosity is low when the carbon number is short, but the boiling point tends to be low. If the boiling point is low, the battery may vaporize during high temperature operation. If the number of carbon atoms is too large, the viscosity may increase and the conductivity may decrease. For these reasons, the carboxylic acid ester preferably has 3 to 12 carbon atoms. Moreover, oxidation resistance can be improved by substituting with fluorine. If the amount of fluorine substitution is small, it may react with the positive electrode at a high potential, resulting in a decrease in capacity retention rate or generation of gas.
  • the substitution amount of fluorine in the hydrogen atoms is preferably 1% or more and 90% or less, more preferably 10% or more and 85% or less, and 20% or more and 80% or less. More preferably.
  • ⁇ -lactones such as ⁇ -butyrolactone
  • chain ethers such as 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME)
  • tetrahydrofuran 2-methyltetrahydrofuran
  • Cyclic ethers such as dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, 1,3 -Dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolide
  • chain ethers such as 1,2-e
  • the surface of the negative electrode can be coated with more phosphorus compounds having a cyclic phosphate structure, and good cycle characteristics may be achieved.
  • Preferred solvent type combinations include carbonic acid ester / fluorinated ether / fluorinated phosphate ester, carbonic acid ester / fluorinated ether / sulfone compound, fluorinated ether / sulfone compound and carbonic acid ester / fluorinated ether / carboxylic acid ester. It is also possible to add other kinds of solvents to these mixed solvents.
  • the separator is not particularly limited, and a known separator can be used. Specifically, as the separator, for example, a polyolefin microporous film such as polyethylene or polypropylene, or one containing cellulose or glass fiber can be used.
  • a polyolefin microporous film such as polyethylene or polypropylene, or one containing cellulose or glass fiber can be used.
  • an exterior body As an exterior body, as long as it is stable to an electrolytic solution and has a sufficient water vapor barrier property, it can be appropriately selected and used.
  • a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
  • a secondary battery includes, for example, a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a separator as an insulator sandwiched between the positive electrode and the negative electrode, and an electrolyte having lithium ion conductivity. It can take the form sealed in the exterior body.
  • the positive electrode active material releases lithium ions
  • the negative electrode active material occludes lithium ions
  • the battery is charged. In the discharged state, the state is opposite to the charged state.
  • Examples of the shape of the battery include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.
  • Examples of the battery outer package include stainless steel, iron, aluminum, titanium, two or more alloys thereof, or a plated product thereof. As the plating, for example, nickel plating can be used.
  • a secondary battery is, for example, a battery in which a negative electrode and a positive electrode are laminated via a separator in a dry air or inert gas atmosphere, or a laminate of the laminate is accommodated in an outer container such as a can case. And it can manufacture by inject
  • the form of the secondary battery is not particularly limited, and for example, it is possible to take a form such as a positive electrode opposed to a separator, a winding type in which a negative electrode is wound, and a laminated type in which these are stacked.
  • FIG. 1 shows a laminate type secondary battery as an example of the secondary battery.
  • a separator 5 is sandwiched between a positive electrode composed of a positive electrode active material layer 1 containing a positive electrode active material and a positive electrode current collector 3, and a negative electrode composed of a negative electrode active material layer 2 and a negative electrode current collector 4.
  • the positive electrode current collector 3 is connected to the positive electrode lead terminal 8
  • the negative electrode current collector 4 is connected to the negative electrode lead terminal 7.
  • An exterior laminate 6 is used for the exterior body, and the inside of the secondary battery is filled with an electrolytic solution.
  • the secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
  • the battery element 20 is formed by alternately laminating a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41.
  • the secondary battery in FIG. 1 has electrode tabs drawn out on both sides of the outer package. However, in the secondary battery to which the present invention can be applied, the electrode tab is drawn out on one side of the outer package as shown in FIG. It may be a configuration. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 3). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
  • the film outer package 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn out in the same direction from one short side of the film outer package 10 sealed in this way.
  • FIGS. 2 and 3 show examples in which a cup portion is formed on one film 10-1 and a cup portion is not formed on the other film 10-2.
  • a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
  • Examples of the laminate resin film used for the laminate mold include aluminum, an aluminum alloy, and a titanium foil.
  • Examples of the material of the heat-welded portion of the metal laminate resin film include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate.
  • the metal laminate resin layer and the metal foil layer are not limited to one layer, and may be two or more layers.
  • the secondary battery according to the present embodiment can be used for a vehicle.
  • Vehicles according to the present embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheeled vehicles (passenger cars, commercial vehicles such as trucks and buses, light vehicles, etc.), two-wheeled vehicles (motorcycles), and three-wheeled vehicles. ). Since these vehicles include the secondary battery according to the present embodiment, safety is high.
  • the vehicle according to the present embodiment is not limited to an automobile, and may be various power sources for other vehicles, for example, a moving body such as a train.
  • the secondary battery according to the present embodiment can be used for a power storage device.
  • a power storage device for example, a power source connected to a commercial power source supplied to a general household and a load such as a home appliance, and used as a backup power source or auxiliary power at the time of a power failure, Examples include photovoltaic power generation, which is also used for large-scale power storage for stabilizing power output with large time fluctuation due to renewable energy.
  • Example 1 (Preparation of positive electrode) First, powders of MnO 2 , NiO, Li 2 CO 3 , and TiO 2 were weighed so as to have a target composition ratio, and pulverized and mixed. Thereafter, the mixed powder was fired at 750 ° C. for 8 hours to produce LiNi 0.5 Mn 1.37 Ti 0.13 O 4 .
  • This positive electrode active material was confirmed to have a substantially single-phase spinel structure.
  • the produced positive electrode active material and carbon black as a conductivity imparting agent were mixed, and this mixture was dispersed in a solution in which polyvinylidene fluoride (PVDF) as a binder was dissolved in N-methylpyrrolidone to prepare a positive electrode slurry. .
  • PVDF polyvinylidene fluoride
  • the mass ratio of the positive electrode active material, the conductivity-imparting agent, and the positive electrode binder was 93/3/4.
  • the positive electrode slurry was uniformly applied to both surfaces of a current collector made of Al. Then, it was made to dry in vacuum for 12 hours, and the positive electrode was produced by compression molding with a roll press. In addition, the weight of the positive electrode active material layer per unit area after drying was set to 0.040 g / cm 2 .
  • the negative electrode active material As the negative electrode active material, a material obtained by coating the surface of SiO with carbon was used. The mass ratio of SiO to carbon was 95/5. SiO shown below is a composite material in which 5% by mass of carbon is surface-treated. SiO was dispersed in a solution in which a polyimide binder was dissolved in N-methylpyrrolidone to prepare a negative electrode slurry. The mass ratio of the negative electrode active material to the binder material was 85/15. This negative electrode slurry was uniformly coated on a 10 ⁇ m thick Cu current collector. Then, it was dried in vacuum for 12 hours to produce a negative electrode. The weight of the negative electrode active material layer per unit area after drying was 0.0025 g / cm 2 .
  • the positive electrode and the negative electrode were cut into 1.5 cm ⁇ 3 cm. Five layers of the obtained positive electrode and six layers of the negative electrode were alternately stacked while sandwiching a polypropylene porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material are welded respectively, and further, the positive electrode terminal made of aluminum and the negative electrode terminal made of nickel are connected to the welded portion. Each was welded to obtain an electrode element having a planar laminated structure. The electrode element was wrapped with an aluminum laminate film as an outer package, and an electrolyte solution was injected therein, and then sealed while reducing the pressure to produce a secondary battery.
  • TOF-SIMS analysis of negative electrode surface The above-conditioned cell was opened under an argon atmosphere, and the negative electrode was taken out.
  • TOF. SIM5 (trade name) was used.
  • the analysis conditions are: primary ion species: Bi 3 ++ , primary ion energy: 30 keV, pulse width: 3.1 ns, secondary ion polarity: negative, measured mass range (m / z): 0 to 1500, measurement area: 200 ⁇ m ⁇ 200 ⁇ m, latter stage acceleration 10 kV, measurement vacuum (before sample introduction): 4 ⁇ 10 ⁇ 7 Pa or less.
  • the mass analysis, near 122.98m / z - Table 1 shows the one expressed in the ratio of the sum of all the peak intensities of the peak intensity of the (C 2 H 4 PO 4 peaks can be estimated as the peak of the origin) .
  • Example 2 A secondary battery was made in the same manner as Example 1 except that the lithium salt concentration of the non-aqueous electrolyte was 1.0M.
  • FE2 fluorinated ether
  • the solvent composition of the non-aqueous electrolyte is ethylene carbonate (EC), sulfolane (SL), fluorinated ether (FE3) represented by H (CF 2 ) 4 CH 2 O (CF 2 ) H, EC: SL: A secondary battery was fabricated in the same manner as in Example 1, except that the ratio of FE3 was set to 30:20:50 (volume ratio) and the lithium salt concentration was 1.0 M.
  • Example 5 A secondary battery was fabricated in the same manner as in Example 1 except that the lithium salt concentration of the nonaqueous electrolytic solution was 0.8M.
  • EC ethylene carbonate
  • FE1 fluorinated ether
  • PTTFE tris phosphate (2,2,2- (Trifluoroethyl)
  • EC ethylene carbonate
  • PC propylene carbonate
  • FE1 fluorinated ether
  • PTTFE 2,2,2-trifluoroethyl
  • a secondary battery was fabricated in the same manner as in Example 1.
  • SL sulfolane
  • FE1 fluorinated ether
  • the lithium salt concentration was 1.0 M
  • a secondary battery was fabricated in the same manner as in Example 1.
  • Example 9 The solvent composition of the non-aqueous electrolyte is fluorinated ether (FE1) represented by propylene carbonate (PC), H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H, 2,2,3,3-tetrafluoro
  • FE1 fluorinated ether
  • PC propylene carbonate
  • H CF 2
  • CH 2 O CF 2
  • TFMP methyl propionate
  • Example 1 A secondary battery was fabricated in the same manner as in Example 1 except that LiBF 4 was used as the lithium salt and the lithium salt concentration was 1.0 M.
  • EC ethylene carbonate
  • FE1 fluorinated ether
  • PTTFE tris phosphate (2,2,2- Trifluoroethyl)
  • Examples 1 to 9 an ethylene phosphate ion component was detected as a coating component on the negative electrode surface. These 45 ° C. cycle characteristics were better than those of Comparative Examples 1 and 2, which were not detected.
  • the presence of the cyclic phosphate ester compound derived from ethylene phosphate ions as a negative electrode coating component suppresses the reactivity between the silicon negative electrode and the electrolytic solution, and the effect of improving the cycle characteristics at high temperatures is obtained.
  • Examples 1 ⁇ 5 C 2 H 4 PO 4 - If the peak intensity ratio of the components is 0.01 or more, it was found that improvement of more cycle characteristics is large.
  • the electrolyte solution contained a sulfone compound, a carbonate ester, and a fluorinated ether, particularly a large amount of ethylene phosphate ions was detected, and the capacity retention rate after cycling was also high.
  • membrane was formed on the silicon negative electrode, and cycling characteristics improved.
  • This embodiment can be used in, for example, all industrial fields that require a power source and industrial fields related to the transport, storage, and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and notebook computers
  • power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
  • a backup power source such as a UPS
  • a power storage facility for storing power generated by solar power generation, wind power generation, etc .

Abstract

Provided is a lithium secondary battery having excellent high-temperature cycle characteristics, which comprises a positive electrode that is capable of absorbing and desorbing lithium, a negative electrode, and an electrolyte solution that contains a nonaqueous electrolyte solvent. This lithium secondary battery is characterized in that: a negative electrode active material contains a compound containing elemental silicon; and the surface of the negative electrode contains a phosphorus compound having a cyclic phosphoric acid ester structure wherein -O-P-O- constitutes a part of the ring structure.

Description

リチウム二次電池Lithium secondary battery
 本発明は、リチウム二次電池、車両及び蓄電池に関する。 The present invention relates to a lithium secondary battery, a vehicle, and a storage battery.
 リチウム二次電池は小型で大容量であるという特徴を有しており、携帯電話、ノート型パソコン等の電子機器の電源として広く用いられ、携帯用IT機器の利便性向上に貢献してきた。近年では、二輪や自動車などの駆動用電源や、スマートグリッドのための蓄電池といった、大型化した用途での利用も注目を集めている。リチウム二次電池の需要が高まり、様々な分野で使用されるにつれて、電池の更なる高エネルギー密度化や、長期使用に耐え得る寿命特性、広範囲な温度条件での使用が可能であること、などの特性が求められている。 Lithium secondary batteries are characterized by their small size and large capacity, and are widely used as power sources for electronic devices such as mobile phones and laptop computers, and have contributed to improving the convenience of portable IT devices. In recent years, the use in a larger application such as a power source for driving a motorcycle or an automobile or a storage battery for a smart grid has attracted attention. As the demand for lithium secondary batteries rises and is used in various fields, the battery has higher energy density, life characteristics that can withstand long-term use, and can be used in a wide range of temperature conditions. The characteristics are required.
 リチウム二次電池を充放電する際、電解液が接触する負極表面及び正極表面では、電解液の還元作用又は酸化作用が非常に強い環境になるため、電極表面では電解液の還元反応や酸化反応が避けられず、電解液は電極を構成する材料(電極活物質)との間で副反応を起こして分解してしまう。したがって、長期にわたってリチウム二次電池の充放電が繰り返されると、電池の容量劣化が生じるという問題があった。特に、近年、高エネルギー密度化において注目を集める高電圧系正極を用いたリチウムイオン電池では、これら問題が顕著に現れている。 When charging / discharging a lithium secondary battery, the electrolyte surface is brought into a very strong reducing or oxidizing environment on the negative electrode surface and the positive electrode surface. Therefore, the electrolytic solution is reduced or oxidized on the electrode surface. Inevitably, the electrolyte solution decomposes by causing a side reaction with the material constituting the electrode (electrode active material). Therefore, when charging / discharging of the lithium secondary battery is repeated over a long period of time, there is a problem that the capacity of the battery is deteriorated. In particular, these problems have remarkably appear in a lithium ion battery using a high-voltage positive electrode that has attracted attention in recent years in increasing energy density.
 電池の容量劣化の問題に対しては、電極表面上に、安定な被膜を形成させることにより改善を図ろうとする研究がこれまでに行われている。電極被膜は、電池特性と密接な関係があることから、電池特性の向上のために、被膜の構造、組成などの最適化が必要である。 In the past, research has been conducted to improve the battery capacity degradation by forming a stable coating on the electrode surface. Since the electrode coating has a close relationship with the battery characteristics, it is necessary to optimize the structure and composition of the coating in order to improve the battery characteristics.
 リン化合物を含有する被膜を正極表面に形成させることで、正極表面での電解液分解の抑制や、抵抗増加の抑制、長寿命化などが提案されている。正極表面被膜を分析した例として、X-ray absorption fine structure(XAFS)分析法(特許文献1)やX線光電子分光法(XPS分析法)(特許文献2)により正極表面上のリン由来の光電子スペクトル強度を規定したものが示されている。これらの文献中では、適当な量のリン元素が被膜中に存在することで、長寿命化などの効果が見込まれることが示されているが、被膜を形成しているリン化合物の構造は特定されていない。 It has been proposed that a coating containing a phosphorus compound is formed on the surface of the positive electrode to suppress decomposition of the electrolytic solution on the surface of the positive electrode, to suppress an increase in resistance, and to extend the life. As an example of analyzing the positive electrode surface coating, phosphorus-derived photoelectrons on the positive electrode surface by X-ray absorption fine structure (XAFS) analysis method (Patent Document 1) and X-ray photoelectron spectroscopy (XPS analysis method) (Patent Document 2) What defines the spectral intensity is shown. In these documents, it is shown that the presence of an appropriate amount of phosphorus element in the film can be expected to increase the life, but the structure of the phosphorus compound forming the film is specified. It has not been.
 特許文献3は、飛行時間型二次イオン質量分析(TOF-SIMS)法により、負極または正極表面上のリン酸リチウムイオン、ホウ酸リチウムイオン及び砒酸リチウムイオン成分のピーク強度比を規定した例が記載されている。特許文献4では、正極表面に、P-OH構造を有するリン化合物に由来するリン酸塩およびその誘導体の金属塩の少なくとも一方を主成分とする保護被膜が形成された電池を使用した例が開示されている。これらの文献では、被膜成分として、P-Oのような構造を持つことで、被膜の安定性が向上し、電解液の分解による抵抗上昇抑制の効果や、サイクル特性の改善効果が示されているが、高電位で動作する正極と高容量のSi系負極を用いた高エネルギー密度の電池での高温サイクル特性への効果は十分では無かった。また、被膜を形成するリン化合物の構造として、環状リン酸エステル構造に関する例は示されていなかった。 Patent Document 3 shows an example in which the peak intensity ratio of lithium phosphate ion, lithium borate ion and lithium arsenate ion component on the negative electrode or positive electrode surface is defined by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Are listed. Patent Document 4 discloses an example in which a battery having a protective film mainly composed of at least one of a phosphate derived from a phosphorus compound having a P—OH structure and a metal salt thereof is formed on the surface of the positive electrode. Has been. In these documents, the film component has a structure such as PO, so that the stability of the film is improved, the effect of suppressing the resistance increase due to the decomposition of the electrolytic solution, and the effect of improving the cycle characteristics are shown. However, the effect on the high-temperature cycle characteristics of a high energy density battery using a positive electrode operating at a high potential and a high capacity Si-based negative electrode has not been sufficient. Moreover, the example regarding a cyclic phosphate structure was not shown as a structure of the phosphorus compound which forms a film.
特許5277686号Japanese Patent No. 5277686 特許5357517号Japanese Patent No. 5357517 特開2013-62026JP2013-62026A 特開2013-152825JP2013-152825A
 上述した特許文献1~4においては、電解液の分解による抵抗上昇抑制の効果や、サイクル特性の改善効果が示されている。しかしながら高電位で動作する正極活物質を用いた場合では、正極と電解液の接触部分において、電解液の分解反応が発生し、正極側で分解した分解物が、更に負極で還元されることによってガス発生や充放電サイクル特性の低下といった問題が生じている。特に4.5V以上の高電位を示す正極活物質を用いたリチウム二次電池では、正極側で電解液の分解物が生成し易く、また、Si系の負極では、電解液分解物との反応性が高く、45℃以上のような高温下におけるサイクル特性において十分な特性が得られていなかった。 In Patent Documents 1 to 4 described above, the effect of suppressing resistance increase due to the decomposition of the electrolytic solution and the effect of improving cycle characteristics are shown. However, when a positive electrode active material that operates at a high potential is used, a decomposition reaction of the electrolyte occurs at the contact portion between the positive electrode and the electrolyte, and the decomposition product decomposed on the positive electrode side is further reduced at the negative electrode. There are problems such as gas generation and deterioration of charge / discharge cycle characteristics. In particular, in a lithium secondary battery using a positive electrode active material exhibiting a high potential of 4.5 V or more, a decomposition product of the electrolytic solution is likely to be generated on the positive electrode side. The cycle characteristics at a high temperature such as 45 ° C. or higher were not sufficient.
 本発明の目的は、高電圧および高温条件であり、Si系の負極であっても有効に電解液の分解が抑制され、長期サイクル特性に優れるリチウム二次電池を提供することにある。 An object of the present invention is to provide a lithium secondary battery that is under high voltage and high temperature conditions, effectively suppresses decomposition of the electrolytic solution even with a Si-based negative electrode, and has excellent long-term cycle characteristics.
 本発明は、リチウムを吸蔵・放出することが可能な正極と、負極と、非水電解溶媒を含む電解液と、を有する二次電池であって、負極活物質がシリコン元素を含む化合物を含み、 前記正極または負極表面に-O-P-O-を環構成の一部とした環状リン酸エステル構造を有するリン化合物を含有することを特徴とするリチウム二次電池に関する。 The present invention is a secondary battery having a positive electrode capable of inserting and extracting lithium, a negative electrode, and an electrolyte containing a nonaqueous electrolytic solvent, wherein the negative electrode active material includes a compound containing silicon element. The present invention relates to a lithium secondary battery comprising a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure on the surface of the positive electrode or the negative electrode.
 本発明によれば、高電圧および高温条件であり、Si系の負極であっても有効に電解液の分解が抑制され、長期サイクル特性に優れるリチウム二次電池を提供することができる。 According to the present invention, it is possible to provide a lithium secondary battery that is under high voltage and high temperature conditions, effectively suppresses the decomposition of the electrolytic solution even with a Si-based negative electrode, and has excellent long-term cycle characteristics.
本発明のリチウム二次電池の一実施形態の断面図である。It is sectional drawing of one Embodiment of the lithium secondary battery of this invention. フィルム外装電池の基本的構造を示す分解斜視図である。It is a disassembled perspective view which shows the basic structure of a film-clad battery. 図2の電池の断面を模式的に示す断面図である。It is sectional drawing which shows the cross section of the battery of FIG. 2 typically.
 本発明者らは、高温サイクル下での劣化を抑制するために、適した被膜成分について検討を行った結果、高温サイクル時(特に高電位で動作する正極を用いた場合)、被膜を形成する成分として、-O-P-O-を環構成の一部とした環状リン酸エステル構造を有する化合物を有することで、電極表面での電解液の分解を抑制できることを見出した。 As a result of studying suitable film components in order to suppress deterioration under a high-temperature cycle, the present inventors formed a film during a high-temperature cycle (especially when using a positive electrode operating at a high potential). It has been found that by having a compound having a cyclic phosphate structure having —O—P—O— as part of the ring structure as a component, decomposition of the electrolytic solution on the electrode surface can be suppressed.
 以下、本発明のリチウム二次電池の一例を構成要素ごとに説明するが、本発明はそれらの具体的内容に限定されるものではない。 Hereinafter, an example of the lithium secondary battery of the present invention will be described for each component, but the present invention is not limited to the specific contents thereof.
 本実施形態の二次電池は、リチウムを吸蔵・放出することが可能な正極と、負極と、非水電解溶媒を含む電解液と、を有する二次電池であって、負極活物質がシリコン元素を含む化合物を含み、 前記正極または負極表面に-O-P-O-を環構成の一部とした環状リン酸エステル構造を有するリン化合物を含有する。 The secondary battery of this embodiment is a secondary battery having a positive electrode capable of inserting and extracting lithium, a negative electrode, and an electrolytic solution containing a nonaqueous electrolytic solvent, wherein the negative electrode active material is silicon element And a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure on the surface of the positive electrode or the negative electrode.
[正極]
 本実施形態において、正極活物質は、リチウムイオンを充電時に挿入、放電時に脱離することができるものであれば、特に限定されるものでなく、公知のものを用いることができる。
[Positive electrode]
In this embodiment, a positive electrode active material will not be specifically limited if a lithium ion can be inserted at the time of charge, and can be desorbed at the time of discharge, A well-known thing can be used.
 正極活物質としては、例えば、LiMnO、LiMn(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;LiFePOなどのオリビン構造を有するもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの等が挙げられる。特に、LiαNiβCoγAlδ(1≦α≦1.2、α+β+γ+δ=2、β≧0.7、γ≦0.2)またはLiαNiβCoγMnδ(1≦α≦1.2、α+β+γ+δ=2、β≧0.6、γ≦0.2)が好ましい。これらの材料は、一種を単独で、または二種以上を組み合わせて使用することができる。 Examples of the positive electrode active material include lithium manganate having a layered structure such as LiMnO 2 and Li x Mn 2 O 4 (0 <x <2) or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2, or these Some transition metals replaced with other metals; LiNi 1/3 Co 1/3 Mn 1/3 O 2 and other specific transition metals such as lithium transition metal oxides; LiFePO 4 and other olivines Those having a structure; in these lithium transition metal oxides, those having an excess of Li rather than the stoichiometric composition can be mentioned. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 1.2, α + β + γ + δ = 2, β ≧ 0.7, γ ≦ 0.2) or Li α Ni β Co γ Mn δ O 2 (1 ≦ α ≦ 1.2, α + β + γ + δ = 2, β ≧ 0.6, γ ≦ 0.2) are preferable. These materials can be used individually by 1 type or in combination of 2 or more types.
 また、本実施形態においては、正極が、リチウムに対して4.4V以上の充放電領域を有することが好ましい。高電圧下での電解液の分解抑制効果により、本実施形態の効果がより発揮できる。 In the present embodiment, it is preferable that the positive electrode has a charge / discharge region of 4.4 V or higher with respect to lithium. The effect of the present embodiment can be more exerted by the effect of suppressing the decomposition of the electrolytic solution under a high voltage.
 4.4V以上の電位で動作する正極活物質としては、例えば、下記式(1)で表されるリチウムマンガン複合酸化物を用いることができる。 As the positive electrode active material that operates at a potential of 4.4 V or higher, for example, a lithium manganese composite oxide represented by the following formula (1) can be used.
  Li(MMn2-x-y)(O4-w)     (1)
(式(1)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。MはCo、Ni、Fe、Cr及びCuからなる群より選ばれる少なくとも一種である。Yは、Li、B、Na、Mg、Al、Ti、Si、K及びCaからなる群より選ばれる少なくとも一種である。Zは、F又はClの少なくとも一種である。)
Li a (M x Mn 2-xy Y y ) (O 4-w Z w ) (1)
(In the formula (1), 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, 0 ≦ w ≦ 1, M is Co, Ni, Fe, Cr And Y is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K, and Ca, and Z is F or Cl. At least one kind.)
 式(1)で表されるリチウムマンガン複合酸化物として、具体的には、例えば、LiNi0.5Mn1.5、LiCrMnO、LiFeMnO、LiCoMnO、LiCu0.5Mn1.5等が好ましく挙げられる。これらの正極活物質は高容量である。 Specifically, as the lithium manganese composite oxide represented by the formula (1), for example, LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFeMnO 4 , LiCoMnO 4 , LiCu 0.5 Mn 1.5 Preferred examples include O 4 . These positive electrode active materials have a high capacity.
 4.4V以上の電位で動作する正極活物質は、十分な容量を得ることと高寿命化の観点から、下記式(1-1)で表されるリチウムマンガン複合酸化物であることがより好ましい。 The positive electrode active material operating at a potential of 4.4 V or higher is more preferably a lithium manganese composite oxide represented by the following formula (1-1) from the viewpoint of obtaining sufficient capacity and extending the life. .
  LiNiMn2-x-y     (1-1)
(式(1-1)中、0.4<x<0.6、0≦y<0.3、Aは、Li、B、Na、Mg、Al、Ti及びSiからなる群より選ばれる少なくとも一種である。)
LiNi x Mn 2-xy A y O 4 (1-1)
(In the formula (1-1), 0.4 <x <0.6, 0 ≦ y <0.3, A is at least selected from the group consisting of Li, B, Na, Mg, Al, Ti and Si. It is a kind.)
 また、オリビン型の正極活物質としては、例えば、下記式(2)で表されるものが挙げられる。 In addition, examples of the olivine-type positive electrode active material include those represented by the following formula (2).
  LiMPO    (2)
(式(2)中、MはCo及びNiからなる群より選ばれる少なくとも一種である。)
LiMPO 4 (2)
(In Formula (2), M is at least one selected from the group consisting of Co and Ni.)
 オリビン型の正極活物質の中でもLiCoPO、LiNiPO等が好ましい。 Among the olivine type positive electrode active materials, LiCoPO 4 , LiNiPO 4 and the like are preferable.
 また、4.4V以上の電位で動作する正極活物質としては、層状構造を有するものも挙げられ、このような層状構造を有する正極活物質としては、例えば、下記式(3)で表されるもの等が挙げられる。 Examples of the positive electrode active material that operates at a potential of 4.4 V or higher include those having a layered structure. Examples of the positive electrode active material having such a layered structure are represented by the following formula (3). And the like.
  Li(Li1-x-zMn)O    (3)
(式(3)中、0≦x<0.3、0.3≦z≦0.7であり、MはCo、Ni及びFeからなる群より選ばれる少なくとも一種である。)
Li (Li x M 1-x -z Mn z) O 2 (3)
(In Formula (3), 0 ≦ x <0.3, 0.3 ≦ z ≦ 0.7, and M is at least one selected from the group consisting of Co, Ni, and Fe.)
 また、4.4V以上の電位で動作する正極活物質としては、Si複合酸化物も挙げられ、例えば、下記式(4)で表されるものが挙げられる。 Also, examples of the positive electrode active material that operates at a potential of 4.4 V or higher include Si composite oxides, and examples include those represented by the following formula (4).
  LiMSiO    (4)
(式(4)中、MはMn、Fe及びCoからなる群より選ばれる少なくとも一種である。)
Li 2 MSiO 4 (4)
(In formula (4), M is at least one selected from the group consisting of Mn, Fe and Co.)
 正極活物質は、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、リチウム酸ニッケル(LiNiO)またはリチウム酸ニッケルのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。 The positive electrode active material can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound. Examples of the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element. The layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
Li y Ni (1-x) M x O 2 (A)
(However, 0 ≦ x <1, 0 <y ≦ 1.2, and M is at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B.)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。 From the viewpoint of high capacity, the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less. Examples of such a compound include Li α Ni β Co γ Mn δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0. .2), Li α Ni β Co γ Al δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, preferably β ≧ 0.7, γ ≦ 0.2), etc., especially LiNi β Co γ Mn δ O 2 (0.75 ≦ β ≦ 0.85, 0.05 ≦ γ ≦ 0.15, 0.10 ≦ δ ≦ 0.20). ). More specifically, for example, LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。 From the viewpoint of thermal stability, it is also preferable that the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half. Such compounds include Li α Ni β Co γ Mn δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, 0.2 ≦ β ≦ 0.5, 0 0.1 ≦ γ ≦ 0.4, 0.1 ≦ δ ≦ 0.4). More specifically, LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。 In addition, two or more compounds represented by the formula (A) may be used as a mixture. For example, NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1). Furthermore, in the formula (A), a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
 正極は、例えば、正極活物質と正極結着剤と必要に応じて導電付与剤とを混合して調製した正極スラリーを集電体上に塗布等することで形成することができる。 The positive electrode can be formed, for example, by applying a positive electrode slurry prepared by mixing a positive electrode active material, a positive electrode binder, and, if necessary, a conductivity-imparting agent onto a current collector.
 導電付与剤としては、例えば、アセチレンブラック、カーボンブラック、繊維状炭素、黒鉛等の炭素材料や、Al等の金属物質、導電性酸化物の粉末等を挙げることができる。 Examples of the conductivity-imparting agent include carbon materials such as acetylene black, carbon black, fibrous carbon and graphite, metal substances such as Al, and conductive oxide powders.
 正極結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。 The positive electrode binder is not particularly limited. For example, polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene. Copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be used.
 導電付与剤の正極中の含有量は、例えば、1~10質量%とすることができる。また、結着剤の正極中の含有量は、例えば、1~10質量%とすることができる。このような範囲にあれば、電極中の活物質量の割合を十分に確保しやすく、単位質量あたりの十分な容量が得られやすくなる。 The content of the conductivity-imparting agent in the positive electrode can be, for example, 1 to 10% by mass. The content of the binder in the positive electrode can be, for example, 1 to 10% by mass. If it exists in such a range, it will be easy to ensure the ratio of the amount of active materials in an electrode, and it will become easy to obtain sufficient capacity | capacitance per unit mass.
 正極集電体としては、特に制限されるものではないが、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。 The positive electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, and alloys thereof are preferable from the viewpoint of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.
[負極]
 本実施形態において、負極は、負極活物質として、シリコン元素を含む化合物を含む。このような材料を使用することによって、負極の高容量化が可能となり、電池の高エネルギー密度化を図ることができる。
[Negative electrode]
In the present embodiment, the negative electrode includes a compound containing a silicon element as a negative electrode active material. By using such a material, the capacity of the negative electrode can be increased, and the energy density of the battery can be increased.
 シリコンを含む負極活物質としては、
SiOおよびSiOなどのSiO(0<x≦2)で表されるSi酸化物;
M1Si1-y(M1は、金属元素であり、Li、B、Mg,Na、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、ZnおよびSnからなる群より選ばれる少なくとも一種を含み、0<y<1である。)で表されるシリコン合金;
M2Si1-z(M2は、金属元素であり、Li、B、Mg、Na、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、ZnおよびSnからなる群より選ばれる少なくとも一種を含み、0<z<1、0<w<2である。)で表されるシリコン複合酸化物;
Si単体;および
シリコン窒化物などが挙げられる。負極活物質は、シリコンを含む化合物を単独で含んでも、2種以上を含んでもよい。
As a negative electrode active material containing silicon,
Si oxide represented by SiO x (0 <x ≦ 2) such as SiO and SiO 2 ;
M1 y Si 1-y (M1 is a metal element and is composed of Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Sn. A silicon alloy represented by 0 <y <1 including at least one selected from the group;
M2 z Si 1-z O w (M2 is a metal element, Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Sn A silicon composite oxide represented by 0 <z <1, 0 <w <2, including at least one selected from the group consisting of:
Si simple substance; and silicon nitride. The negative electrode active material may include a compound containing silicon alone or two or more kinds.
 上記シリコン合金であるM1Si1-yにおいて、M1は、Li、B、Mg,Na、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、ZnおよびSnからなる群から選ばれる金属元素を、M1の組成比yの好ましくは80%以上含み、より好ましくは90%以上含み、100%で含んでもよい。 In the silicon alloy M1 y Si 1-y , M1 is Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Sn. The metal element selected from the group consisting of preferably 80% or more, more preferably 90% or more, and 100% of the composition ratio y of M1.
 また、上記シリコン複合酸化物であるM2Si1-zにおいて、M2はLi、B、Mg、Na、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、ZnおよびSnからなる群から選ばれる金属元素を組成比zの好ましくは80%以上含み、より好ましくは90%以上含み、100%で含んでもよい。 Further, the M2 z Si 1-z O w is the silicon composite oxide, M2 is Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu , Zn and Sn may be contained in the composition ratio z, preferably 80% or more, more preferably 90% or more, and 100%.
 M1、M2は2種以上の金属を含んでも良い。例えば、2種含むシリコン合金の例としては、Si-B-Al、Si-B-Fe、Si-B-Ni、Si-B-Cu、Si-B-Ti、Si-B-Sn、Si-B-Zn、Si-Ti-Al、Si-Ti-Ge、Si-Ti-Fe、Si-Ti-Ni、Si-Ti-Cu、Si-Ti-Zn、Si-Ti-Sn、Si-Cu-Al、Si-Cu-Fe、Si-Cu-Ni、Si-Cu-Zn、Si-Cu-Sn、Si-Fe-Al、Si-Fe-Ni、Si-Fe-Zn、Si-Fe-Sn、Si-Zn-Al、Si-Zn-V、Si-Zn-Sn、Si-Sn-Al、Si-Sn-Vが適用できる。 M1 and M2 may contain two or more metals. For example, examples of silicon alloys including two types include Si—B—Al, Si—B—Fe, Si—B—Ni, Si—B—Cu, Si—B—Ti, Si—B—Sn, and Si—. B—Zn, Si—Ti—Al, Si—Ti—Ge, Si—Ti—Fe, Si—Ti—Ni, Si—Ti—Cu, Si—Ti—Zn, Si—Ti—Sn, Si—Cu— Al, Si-Cu-Fe, Si-Cu-Ni, Si-Cu-Zn, Si-Cu-Sn, Si-Fe-Al, Si-Fe-Ni, Si-Fe-Zn, Si-Fe-Sn, Si—Zn—Al, Si—Zn—V, Si—Zn—Sn, Si—Sn—Al, and Si—Sn—V are applicable.
 本実施形態において、負極活物質総量に対する上記シリコンを含む化合物の含有量は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、100質量%であってもよい。 In the present embodiment, the content of the compound containing silicon with respect to the total amount of the negative electrode active material is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 80% by mass or more. Preferably, it may be 100% by mass.
 負極活物質としては、シリコン系材料以外に別の負極活物質を含んでいても良い。例えば、リチウムイオンを吸蔵、放出し得る炭素材料(a)、リチウムと合金可能な金属(b)、又はリチウムイオンを吸蔵、放出し得る金属酸化物(c)等が挙げられる。 The negative electrode active material may contain another negative electrode active material in addition to the silicon-based material. Examples thereof include a carbon material (a) that can occlude and release lithium ions, a metal (b) that can be alloyed with lithium, or a metal oxide (c) that can occlude and release lithium ions.
 炭素材料(a)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。炭素材料(a)は、負極活物質中、0質量%以上80質量%以下であることが好ましく、2質量%以上80質量%以下の範囲であることがより好ましく、2質量%以上30質量%以下の範囲であることがさらに好ましい。また、上記シリコンを含む化合物の表面を炭素材料(a)が被覆してもよい。 As the carbon material (a), graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used. Here, graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs. The carbon material (a) is preferably 0% by mass or more and 80% by mass or less, more preferably 2% by mass or more and 80% by mass or less in the negative electrode active material, and 2% by mass or more and 30% by mass or less. The following range is more preferable. Moreover, the carbon material (a) may coat the surface of the compound containing silicon.
 金属(b)としては、Al、Pb、Sn、Zn、Cd、Sb、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、La等を主体とした金属、又はこれらの2種以上の合金、あるいはこれら金属又は合金とリチウムとの合金等を用いることができる。金属(b)は、負極活物質中、0質量%以上90質量%以下であることが好ましく、5質量%以上90質量%以下の範囲であることがより好ましく、20質量%以上50質量%以下の範囲であることがさらに好ましい。 As the metal (b), a metal mainly composed of Al, Pb, Sn, Zn, Cd, Sb, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, La, or the like, or these two kinds The above alloys, or an alloy of these metals or alloys and lithium can be used. The metal (b) is preferably 0% by mass to 90% by mass in the negative electrode active material, more preferably 5% by mass to 90% by mass, and more preferably 20% by mass to 50% by mass. More preferably, it is the range.
 金属酸化物(c)としては、酸化アルミニウム、SnOおよびSnO等の酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物、LiFe、WO、MoO、CuO、Nb、LiTi2-x(1≦x≦4/3)、PbO、ならびにPb等を用いることができる。また、金属酸化物(c)に、窒素、ホウ素および硫黄の中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(c)の電気伝導性を向上させることができる。金属酸化物(c)は、負極活物質中、0質量%以上90質量%以下であることが好ましく、5質量%以上90質量%以下の範囲であることが好ましく、40質量%以上70質量%以下の範囲であることがより好ましい。 Examples of the metal oxide (c) include aluminum oxide, tin oxide such as SnO and SnO 2 , indium oxide, zinc oxide, lithium oxide, or a composite thereof, LiFe 2 O 3 , WO 2 , MoO 2 , CuO, and Nb. 3 O 5 , Li x Ti 2-x O 4 (1 ≦ x ≦ 4/3), PbO 2 , Pb 2 O 5 and the like can be used. In addition, one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved. The metal oxide (c) is preferably 0% by mass to 90% by mass in the negative electrode active material, preferably in the range of 5% by mass to 90% by mass, and 40% by mass to 70% by mass. The following range is more preferable.
 また、負極活物質としては、他にも、例えば、リチウムイオンを吸蔵、放出し得る金属硫化物(d)が挙げられる。金属硫化物(d)としては、例えば、SnSやFeS等が挙げられる。また、負極活物質としては、他にも、例えば、金属リチウム若しくはリチウム合金、ポリアセン若しくはポリチオフェン、又はLi(LiN)、LiMnN、LiFeN、Li2.5Co0.5N若しくはLiCoN等の窒化リチウム等を挙げる事ができる。 Other examples of the negative electrode active material include metal sulfide (d) that can occlude and release lithium ions. Metal sulfide as (d) are, for example, SnS and FeS 2 or the like. Other examples of the negative electrode active material include metal lithium or lithium alloy, polyacene or polythiophene, or Li 5 (Li 3 N), Li 7 MnN 4 , Li 3 FeN 2 , Li 2.5 Co 0. Examples thereof include lithium nitride such as 5 N or Li 3 CoN.
 負極活物質は、シリコンを含む化合物に加え、上記炭素材料(a)、金属(b)、及び金属酸化物(c)および金属硫化物(d)等を、単独でまたは二種以上含んでもよい。 In addition to the compound containing silicon, the negative electrode active material may contain the carbon material (a), the metal (b), the metal oxide (c), the metal sulfide (d), or the like alone or in combination. .
 また、シリコン系負極活物質、炭素材料(a)、金属(b)、金属酸化物(c)、及び金属硫化物(d)等の負極活物質の形状は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。 In addition, the shape of the negative electrode active material such as a silicon-based negative electrode active material, carbon material (a), metal (b), metal oxide (c), and metal sulfide (d) is not particularly limited, Particulate materials can be used.
 これらの負極活物質の比表面積は、例えば0.01~20m/gであり、0.05~15m/gが好ましく、0.1~10m/gがより好ましく、0.15~8m/gがさらに好ましい。比表面積をこのような範囲とすることにより、電解液との接触面積を適当な範囲に調整することができる。つまり、比表面積を0.01m/g以上とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。また、比表面積を20m/g以下とすることにより、電解液の分解が促進することや、活物質の構成元素が溶出することを抑制しやすくなる。 The specific surface areas of the negative electrode active material is, for example, 0.01 ~ 20m 2 / g, preferably 0.05 ~ 15m 2 / g, more preferably 0.1 ~ 10m 2 / g, 0.15 ~ 8m 2 / g is more preferable. By setting the specific surface area in such a range, the contact area with the electrolytic solution can be adjusted to an appropriate range. That is, when the specific surface area is 0.01 m 2 / g or more, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced. Moreover, it becomes easy to suppress that decomposition | disassembly of electrolyte solution accelerates | stimulates and the constituent element of an active material elutes by making a specific surface area into 20 m < 2 > / g or less.
 前記、負極活物質の中心粒径は、0.01~50μmであることが好ましく、0.02~40μmがより好ましい。粒径を0.02μm以上とすることにより、正極材料の構成元素の溶出をより抑制でき、また、電解液との接触による劣化をより抑制できる。また、粒径を50μm以下とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。粒径はレーザー回折・散乱式粒度分布測定装置によって測定することができる。 The central particle size of the negative electrode active material is preferably 0.01 to 50 μm, more preferably 0.02 to 40 μm. By setting the particle size to 0.02 μm or more, elution of constituent elements of the positive electrode material can be further suppressed, and deterioration due to contact with the electrolytic solution can be further suppressed. In addition, when the particle size is 50 μm or less, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced. The particle size can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.
 負極用結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が挙げられる。 The binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer. Polymerized rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be mentioned.
 負極結着剤の含有量は、負極活物質と負極結着剤の総量に対して1~40質量%の範囲であることが好ましく、1.5~30質量%であることがより好ましい。1質量%以上とすることにより、活物質同士あるいは活物質と集電体との密着性が向上し、サイクル特性が良好になる。また、30質量%以下とすることにより、活物質比率が向上し、負極容量を向上することができる。 The content of the negative electrode binder is preferably in the range of 1 to 40% by mass, more preferably 1.5 to 30% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder. By setting the content to 1% by mass or more, the adhesion between the active materials or between the active material and the current collector is improved, and the cycle characteristics are improved. Moreover, by setting it as 30 mass% or less, an active material ratio can improve and a negative electrode capacity | capacitance can be improved.
 負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、鉄、クロム、モリブデンおよびそれらの合金が好ましい。その形状としては、箔状、平板状、メッシュ状が挙げられる。 The negative electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, iron, chromium, molybdenum and alloys thereof are preferable from the viewpoint of electrochemical stability. Examples of the shape include a foil shape, a flat plate shape, and a mesh shape.
 負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。 The negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector. Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
 本発明では、充放電後の負極表面に-O-P-O-を環構成の一部とした環状リン酸エステル構造を有するリン化合物を含有する。環状リン酸エステル構造を有するリン化合物が、負極表面に被膜を形成することによって負極での反応性を低減できる。このため、電解液分解物が発生しやすい高電圧および高温条件であり、さらに電解液分解物との反応性が高いSi系の負極であっても、長期サイクル特性が達成できる。 In the present invention, the surface of the negative electrode after charge / discharge contains a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure. The phosphorus compound having a cyclic phosphate structure can reduce the reactivity at the negative electrode by forming a film on the negative electrode surface. For this reason, long-term cycle characteristics can be achieved even with a Si-based negative electrode having high voltage and high temperature conditions in which electrolyte decomposition products are likely to be generated and having high reactivity with the electrolyte decomposition products.
 上記被膜成分の検出方法として、例えば、飛行時間型二次イオン質量分析(TOF-SIMS)法がある。TOF-SIMS法は、超高真空中においた試料表面にパルス化されたイオン(1次イオン)が照射され、試料表面から放出されたイオン(2次イオン)は一定の運動エネルギーを得て飛行時間型の質量分析計へ導かれる。同じエネルギーで加速された2次イオンのそれぞれは質量に応じた速度で分析計を通過するが、検出器までの距離は一定であるため、そこに到達するまでの時間(飛行時間)は質量の関数となり、この飛行時間の分布を精密に計測することによって2次イオンの質量分布、すなわち質量スペクトルが得られる。この質量スペクトルと電解液の成分から、解析することにより試料表面に存在する有機物や無機物を同定することができ、そのピーク強度から存在量に関する知見を得ることができる。また、TOF-SIMS法における検出深さは数nm以下であることから負極表面被膜の分析方法として適している。 As a method for detecting the coating component, for example, there is a time-of-flight secondary ion mass spectrometry (TOF-SIMS) method. In the TOF-SIMS method, pulsed ions (primary ions) are irradiated onto the sample surface in an ultra-high vacuum, and the ions (secondary ions) emitted from the sample surface fly with a certain kinetic energy. Guided to a time-type mass spectrometer. Each secondary ion accelerated with the same energy passes through the analyzer at a speed corresponding to the mass, but since the distance to the detector is constant, the time to reach it (time of flight) is By measuring this time-of-flight distribution precisely, a mass distribution of secondary ions, that is, a mass spectrum can be obtained. By analyzing from the mass spectrum and the components of the electrolytic solution, organic substances and inorganic substances existing on the sample surface can be identified, and knowledge about the abundance can be obtained from the peak intensity. Further, since the detection depth in the TOF-SIMS method is several nm or less, it is suitable as a method for analyzing the negative electrode surface coating.
 TOF-SIMS法により負極活物質表面に一次イオンを照射し、その際に負極表面から放出される2次イオンを質量分析計により計測すると、環状リン酸エステルイオンが検出される。負極の表面被膜成分として、他にも多数種の成分が検出されるが、環状リン酸エステルイオンのイオンカウント比が一定量以上存在することで、高温下でのサイクル特性を向上させることができる。環状リン酸エステルイオンのピーク強度比(すべての負極表面検出成分に由来するピーク強度の合計値に対する環状リン酸エステルイオンに由来するピーク強度のイオンカウント比)は、ピーク強度比が0.0001以上0.1以下であることが好ましく、0.001以上0.05以下がより好ましい。また、十分にサイクルを繰り返したセルでも環状リン酸エステルイオンを検出することができる。例えば、45℃200サイクル後の環状リン酸エステルイオンのピーク強度比は0.001以上であることが好ましい。 When the surface of the negative electrode active material is irradiated with primary ions by the TOF-SIMS method, and secondary ions released from the surface of the negative electrode are measured with a mass spectrometer, cyclic phosphate ester ions are detected. Many other types of components are detected as surface coating components of the negative electrode, but the cycle characteristics at high temperatures can be improved by having a certain amount or more of the cyclic phosphate ion count ratio. . The peak intensity ratio of the cyclic phosphate ester ion (the ion count ratio of the peak intensity derived from the cyclic phosphate ion to the total peak intensity derived from all negative electrode surface detection components) is 0.0001 or higher. It is preferably 0.1 or less, more preferably 0.001 or more and 0.05 or less. Moreover, cyclic phosphate ester ions can be detected even in a cell that has been sufficiently cycled. For example, it is preferable that the peak intensity ratio of cyclic phosphate ion after 200 cycles at 45 ° C. is 0.001 or more.
 上記環状リン酸エステルの構造は、特に限定されないが、下記式(5)で表される環状リン酸エステル構造を有することが好ましい。 The structure of the cyclic phosphate ester is not particularly limited, but preferably has a cyclic phosphate structure represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000006
(Rは炭素数1~6の置換又は無置換のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000006
(R 1 represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms.)
 前記環状リン酸エステルイオンが下記式(6)で表されるリン酸エチレンイオンであることがより好ましい。式(6)で表されるリン酸エチレンイオンは、TOF-SIMS質量スペクトル中の質量数122.98付近で観測される。 The cyclic phosphate ion is more preferably an ethylene phosphate ion represented by the following formula (6). The ethylene phosphate ion represented by the formula (6) is observed around a mass number of 122.98 in the TOF-SIMS mass spectrum.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(6)で表されるリン酸エチレンイオンのピーク強度比(すべての負極表面検出成分に由来するピーク強度の合計値に対する式(6)で表されるリン酸エチレンイオンに由来するピーク強度のイオンカウント比)は、ピーク強度比が0.0001以上0.1以下であることが好ましく、0.001以上0.05以下がより好ましい。また、十分にサイクルを繰り返したセルでも前記環状リン酸エステルイオンを検出することができる。例えば、45℃200サイクル後の前記環状リン酸エステルイオンのピーク強度比は0.001以上であることが好ましい。 Peak intensity ratio of ethylene phosphate ion represented by formula (6) (peak intensity ratio derived from ethylene phosphate ion represented by formula (6) with respect to the total peak intensity derived from all negative electrode surface detection components) The peak intensity ratio is preferably 0.0001 or more and 0.1 or less, and more preferably 0.001 or more and 0.05 or less. Further, the cyclic phosphate ion can be detected even in a cell that has been sufficiently cycled. For example, the peak intensity ratio of the cyclic phosphate ions after 200 cycles at 45 ° C. is preferably 0.001 or more.
 初期充放電とは、二次電池の組み付け後、所定の電解液を封入したセルに対して行う初回の充放電であり、一般にコンディショニング処理ともいう。初期充放電としての充放電の回数は、1回以上であれば良く、更には2回以上5回以下であることが好ましい。前記環状リン酸エステル構造を有するリン化合物を含む負極被膜を形成させるためには、初期充放電時の温度を20℃以上70℃以下にすることが好ましい。より好ましくは、35℃以上55℃以下である。負極表面被膜は、主に、負極表面上での電解液の分解反応によって形成されるが、温度が低すぎると、電解液の分解反応が促進されず、前記被膜成分が形成されにくく、サイクル特性が悪くなる。温度が高すぎると、電解液の分解が過剰に行われ、溶媒の変質、ガス発生や抵抗上昇の原因となる。 The initial charge / discharge is the first charge / discharge performed on a cell in which a predetermined electrolytic solution is sealed after the secondary battery is assembled, and is generally called a conditioning process. The number of times of charging / discharging as initial charging / discharging should just be 1 time or more, and it is preferable that they are 2 times or more and 5 times or less. In order to form a negative electrode film containing a phosphorus compound having the cyclic phosphate structure, it is preferable that the temperature during initial charge / discharge be 20 ° C. or higher and 70 ° C. or lower. More preferably, it is 35 degreeC or more and 55 degrees C or less. The negative electrode surface coating is mainly formed by the decomposition reaction of the electrolytic solution on the negative electrode surface. However, if the temperature is too low, the decomposition reaction of the electrolytic solution is not promoted, and the coating component is difficult to be formed. Becomes worse. If the temperature is too high, the electrolytic solution is excessively decomposed, which causes solvent alteration, gas generation, and resistance increase.
 正極活物質表面にも、-O-P-O-を環構成の一部とした環状リン酸エステル構造を有するリン化合物を含有することが好ましい。上記化合物は負極同様にTOF-SIMS法等の分析によって検出することができる。TOF-SIMS法による環状リン酸エステルイオンのピーク強度比(すべての正極表面検出成分に由来するピーク強度の合計値に対する環状リン酸エステルイオンに由来するピーク強度のイオンカウント比)は、ピーク強度比が0.0001以上0.1以下であることが好ましく、0.001以上0.05以下がより好ましい。また、十分にサイクルを繰り返したセルでも環状リン酸エステルイオンを検出することができる。例えば、45℃200サイクル後の環状リン酸エステルイオンのピーク強度比は0.001以上であることが好ましい。 The surface of the positive electrode active material preferably also contains a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure. The above compound can be detected by analysis such as TOF-SIMS as in the negative electrode. The peak intensity ratio of cyclic phosphate ester ions by the TOF-SIMS method (the ion count ratio of the peak intensity derived from cyclic phosphate ester ions to the total peak intensity derived from all positive electrode surface detection components) is the peak intensity ratio. Is preferably 0.0001 or more and 0.1 or less, and more preferably 0.001 or more and 0.05 or less. Moreover, cyclic phosphate ester ions can be detected even in a cell that has been sufficiently cycled. For example, it is preferable that the peak intensity ratio of cyclic phosphate ion after 200 cycles at 45 ° C. is 0.001 or more.
 上記環状リン酸エステルイオンの構造は、特に限定されないが、下記式(7)で表される環状リン酸エステル構造を有することが好ましい。 The structure of the cyclic phosphate ester ion is not particularly limited, but preferably has a cyclic phosphate structure represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000008
(Rは炭素数1~6の置換又は無置換のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000008
(R 1 represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms.)
 前記環状リン酸エステルイオンの構造が下記式(8)で表されるリン酸エチレンイオンであることがより好ましい。式(8)で表されるリン酸エチレンイオンは、TOF-SIMS質量スペクトル中の質量数122.98付近で観測される。 The structure of the cyclic phosphate ester ion is more preferably an ethylene phosphate ion represented by the following formula (8). The ethylene phosphate ion represented by the formula (8) is observed around a mass number of 122.98 in the TOF-SIMS mass spectrum.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(8)で表されるリン酸エチレンイオンのピーク強度比(すべての正極表面検出成分に由来するピーク強度の合計値に対する式(8)で表されるリン酸エチレンイオンのピーク強度のイオンカウント比)は、ピーク強度比が0.0001以上0.1以下であることが好ましく、0.001以上0.05以下がより好ましい。正極表面被膜に一定量以上の環状リン酸エステル構造を有するリン化合物を含有することで、電解液の還元分解を抑制でき、高温サイクル時のサイクル特性が向上する。 Peak intensity ratio of ethylene phosphate ion represented by formula (8) (the ion count of the peak intensity of ethylene phosphate ion represented by formula (8) with respect to the total peak intensity derived from all positive electrode surface detection components) Ratio) is preferably 0.0001 or more and 0.1 or less, and more preferably 0.001 or more and 0.05 or less. By containing a certain amount or more of a phosphorus compound having a cyclic phosphate structure in the positive electrode surface coating, reductive decomposition of the electrolytic solution can be suppressed, and cycle characteristics during high-temperature cycling are improved.
 前記環状リン酸エステル構造を有するリン化合物を含む正極被膜を形成させるためには、初期充放電時の温度を20℃以上70℃以下にすることが好ましい。より好ましくは、35℃以上55℃以下である。正極表面被膜も、負極被膜と同様に、正極表面上での電解液の分解反応によって形成される。温度が低すぎると、電解液の分解反応が促進されず、前記被膜成分が形成されにくく、サイクル特性が悪くなり、温度が高すぎると、電解液の分解が過剰に行われ、溶媒の変質、ガス発生や抵抗上昇の原因となる。 In order to form a positive electrode film containing a phosphorus compound having the cyclic phosphate structure, it is preferable to set the temperature during initial charge / discharge to 20 ° C. or higher and 70 ° C. or lower. More preferably, it is 35 degreeC or more and 55 degrees C or less. Similarly to the negative electrode film, the positive electrode surface film is also formed by a decomposition reaction of the electrolytic solution on the positive electrode surface. If the temperature is too low, the decomposition reaction of the electrolytic solution is not promoted, the film component is difficult to be formed, the cycle characteristics are deteriorated, and if the temperature is too high, the electrolytic solution is excessively decomposed and the solvent changes, It causes gas generation and resistance increase.
[電解液]
 本実施形態における電解液は、リチウム塩と非水溶媒を含む。
[Electrolyte]
The electrolytic solution in the present embodiment includes a lithium salt and a non-aqueous solvent.
 前記リチウム塩として、ヘキサフルオロリン酸リチウムを含むことが好ましい。リンを含むヘキサフルオロリン酸リチウムの一部が電極表面において反応することが、良質な被膜成分を形成するために重要であると考えられる。リチウム塩の電解液中の濃度は、0.5~1.5mol/lであることが好ましい。0.8~1.2mol/lであることがより好ましい。リチウム塩濃度が低すぎると、前記被膜成分が形成されにくく、十分なサイクル特性が得られない。リチウム塩濃度が高すぎると、粘度の上昇や過剰な被膜形成により電池特性が低下する。 The lithium salt preferably contains lithium hexafluorophosphate. It is considered that a part of lithium hexafluorophosphate containing phosphorus reacts on the electrode surface in order to form a good film component. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l. More preferably, it is 0.8 to 1.2 mol / l. If the lithium salt concentration is too low, the coating component is difficult to form and sufficient cycle characteristics cannot be obtained. If the lithium salt concentration is too high, the battery characteristics deteriorate due to an increase in viscosity or excessive film formation.
 前記リチウム塩として、ヘキサフルオロリン酸リチウムに加えて、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiCl、LiBr、LiI、LiSCNなどを用いることができる。ヘキサフルオロリン酸リチウムに加えて、これらを単独または混合して用いることができる。 As the lithium salt, in addition to lithium hexafluorophosphate, LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiCl, LiBr, LiI, LiSCN, etc. Can be used. In addition to lithium hexafluorophosphate, these can be used alone or in combination.
 前記非水溶媒として、下記式(9)で表される炭酸エステル化合物を含有することが好ましい。 It is preferable to contain a carbonate compound represented by the following formula (9) as the non-aqueous solvent.
Figure JPOXMLDOC01-appb-C000010
(式(9)において、R及びRは、それぞれ独立に、置換または無置換のアルキル基を示す。Rの炭素原子とRの炭素原子が単結合又は二重結合を介して結合し、環状構造を形成していてもよい。また、R及びRの水素の一部が、フッ素で置換されていても良い。)
Figure JPOXMLDOC01-appb-C000010
(In Formula (9), R 2 and R 3 each independently represents a substituted or unsubstituted alkyl group. The carbon atom of R 2 and the carbon atom of R 3 are bonded through a single bond or a double bond. And a cyclic structure may be formed, and a part of hydrogen of R 2 and R 3 may be substituted with fluorine.)
 上記、炭酸エステル化合物は、それぞれ正極もしくは負極、またはその両方に被膜を形成する作用があることから、これらの化合物を含有することで、リチウム二次電池のサイクル特性を向上できる。炭酸エステル化合物は1種を単独で又は2種以上を混合して用いることができる。 Since the carbonate compound has an action of forming a film on the positive electrode, the negative electrode, or both of them, the inclusion of these compounds can improve the cycle characteristics of the lithium secondary battery. A carbonate compound can be used individually by 1 type or in mixture of 2 or more types.
 前記炭酸エステル化合物としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、及びビニレンカーボネート、並びにこれらが有する水素原子の一部又は全部をフッ素原子に置換した環状炭酸エステル構造を有する化合物からなる群より選ばれる少なくとも1種であることが好ましい。環状炭酸エステル構造を有する化合物は、誘電率が高いことから電解液のイオン解離性が向上し、また電解液の粘度が下がる。そのため、被膜形成効果に加えて、イオン移動度を向上することができる。 The carbonic acid ester compound is selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and a compound having a cyclic carbonic acid ester structure in which some or all of the hydrogen atoms contained therein are substituted with fluorine atoms. It is preferable that there is at least one. Since the compound having a cyclic carbonate structure has a high dielectric constant, the ion dissociation property of the electrolytic solution is improved, and the viscosity of the electrolytic solution is lowered. Therefore, in addition to the film forming effect, ion mobility can be improved.
 本実施形態における電解液は、さらに、非水電解溶媒として下記式(10)で表されるフッ素化エーテル化合物を含むことが好ましい。 The electrolytic solution in the present embodiment preferably further contains a fluorinated ether compound represented by the following formula (10) as a nonaqueous electrolytic solvent.
Figure JPOXMLDOC01-appb-C000011
(式中、R及びRは、それぞれ独立に、アルキル基またはフッ化アルキル基を示し、ただし、R及びRのうち少なくとも一方はフッ化アルキル基である。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 4 and R 5 each independently represents an alkyl group or a fluorinated alkyl group, provided that at least one of R 4 and R 5 is a fluorinated alkyl group.)
 フッ素化エーテルを含むことで、電解液の耐酸化性を維持しつつ、電解液の粘度を下げ、電解液の導電性を向上することができる。 By containing the fluorinated ether, it is possible to reduce the viscosity of the electrolytic solution and improve the conductivity of the electrolytic solution while maintaining the oxidation resistance of the electrolytic solution.
 前記式(10)中、Rの炭素数n、Rの炭素数nはそれぞれ1≦n≦8、1≦n≦8であることが好ましい。また、RおよびRの炭素数の合計が10以下であることがより好ましい。 In the formula (10), it is preferred carbon number n 2 with carbon number n 1, R 5 of R 4 are each 1 ≦ n 1 ≦ 8,1 ≦ n 2 ≦ 8. Further, the total number of carbon atoms of R 4 and R 5 is more preferably 10 or less.
 また、フッ化アルキル基は、対応する無置換のアルキル基が有する水素原子の50%以上、より好ましくは60%以上がフッ素原子に置換されたフッ素化アルキル基であることが好ましい。フッ素原子の含有量が多いと、耐電圧性がより向上し、高電位で動作する正極活物質を用いた場合でも、サイクル後における電池容量の劣化をより有効に低減することが可能である。 The fluorinated alkyl group is preferably a fluorinated alkyl group in which 50% or more, more preferably 60% or more, of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms. When the fluorine atom content is large, the voltage resistance is further improved, and even when a positive electrode active material that operates at a high potential is used, it is possible to more effectively reduce the deterioration of the battery capacity after the cycle.
 前記フッ素化エーテル化合物のうち、下記式(10-1)で表されるフッ素化エーテル化合物がより好ましい。 Of the fluorinated ether compounds, a fluorinated ether compound represented by the following formula (10-1) is more preferable.
  X-(CX-O-(CX-X     (10-1)
(式(10-1)中、n、mはそれぞれ独立に1~8である。X~Xは、それぞれ独立に、フッ素原子または水素原子である。ただし、X~Xの少なくとも1つはフッ素原子であり、X~Xの少なくとも1つはフッ素原子である。また、nが2以上のとき、複数個存在するXおよびXは、それぞれ、互いに独立であり、mが2以上のとき、複数個存在するXおよびXは、それぞれ、互いに独立である。)
X 1- (CX 2 X 3 ) n -O- (CX 4 X 5 ) m -X 6 (10-1)
(In the formula (10-1), n and m are each independently 1 to 8. X 1 to X 6 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 3 One is a fluorine atom, and at least one of X 4 to X 6 is a fluorine atom, and when n is 2 or more, a plurality of X 2 and X 3 are each independent of each other; When m is 2 or more, a plurality of X 4 and X 5 are independent of each other.)
 フッ素化エーテル化合物は、耐電圧性と他の電解質との相溶性の観点から、下記式(10-2)で表される化合物であることが更に好ましい。 The fluorinated ether compound is more preferably a compound represented by the following formula (10-2) from the viewpoint of voltage resistance and compatibility with other electrolytes.
 X-(CX-CHO-CX-CX-X     (10-2)
 (式(10-2)中、nは1~7であり、X~Xは、それぞれ独立に、フッ素原子または水素原子である。ただし、X~Xの少なくとも1つはフッ素原子であり、X~Xの少なくとも1つはフッ素原子である。)
X 1- (CX 2 X 3 ) n -CH 2 O-CX 4 X 5 -CX 6 X 7 -X 8 (10-2)
(In the formula (10-2), n is 1 to 7, and X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 3 is a fluorine atom. And at least one of X 4 to X 8 is a fluorine atom.)
 式(10-2)において、nが2以上のとき、複数個存在するXは互いに同一であっても異なっていてもよく、複数個存在するXは互いに同一であっても異なっていてもよい。 In the formula (10-2), when n is 2 or more, a plurality of X 2 may be the same or different, and a plurality of X 3 are the same or different from each other. Also good.
 また、さらに、耐電圧性と他の電解質との相溶性の観点から、フッ素化エーテル化合物は、下記式(10-3)で表されることがより好ましい。 Furthermore, from the viewpoint of voltage resistance and compatibility with other electrolytes, the fluorinated ether compound is more preferably represented by the following formula (10-3).
  H-(CY-CY-CHO-CY-CY-H     (10-3) H- (CY 1 Y 2 -CY 3 Y 4 ) n -CH 2 O-CY 5 Y 6 -CY 7 Y 8 -H (10-3)
 式(10-3)において、nは1、2、3または4である。Y~Yは、それぞれ独立に、フッ素原子または水素原子である。ただし、Y~Yの少なくとも1つはフッ素原子であり、Y~Yの少なくとも1つはフッ素原子である。 In the formula (10-3), n is 1, 2, 3 or 4. Y 1 to Y 8 are each independently a fluorine atom or a hydrogen atom. However, at least one of Y 1 to Y 4 is a fluorine atom, and at least one of Y 5 to Y 8 is a fluorine atom.
 式(10-3)において、nが2以上のとき、複数個存在するY~Yは互いに同一であっても異なっていてもよい。 In formula (10-3), when n is 2 or more, the plurality of Y 1 to Y 4 may be the same or different from each other.
 フッ素化エーテル化合物としては、例えば、CFOCH、CFOC、F(CFOCH、F(CFOC、CF(CF)CHO(CF)CF、F(CFOCH、F(CFOC、F(CFOCH、F(CFOC、F(CFOCH、F(CFOC、F(CFOCH、F(CFOC、F(CFOCH、CFCHOCH、CFCHOCHF、CFCFCHOCH、CFCFCHOCHF、CFCFCHO(CFH,CFCFCHO(CFF、HCFCHOCH、(CF)(CF)CHO(CFH、H(CFOCHCH、H(CFOCHCF,H(CFCHOCHF、H(CFCHO(CFH、H(CFCHO(CFH、H(CFCHO(CFH、H(CHF)CHO(CFH、(CFCHOCH、(CFCHCFOCH、CFCHFCFOCH、CFCHFCFOCHCH、CFCHFCFCHOCHF、CFCHFCFOCH(CFF、CFCHFCFOCHCFCFH、H(CFCHO(CFH、CHCHO(CFF、F(CFCHO(CFH、H(CFCHOCFCHFCF、F(CFCHOCFCHFCF、H(CFCHO(CF)H、CFOCH(CFF、CFCHFCFOCH(CFF、CHCFOCH(CFF、CHCFOCH(CFF、CHO(CFF、F(CFCHOCH(CFF、F(CFCHOCH(CFF、H(CFCHOCH(CFH、CHCFOCH(CFHなどが挙げられる。 Examples of the fluorinated ether compound include CF 3 OCH 3 , CF 3 OC 2 H 5 , F (CF 2 ) 2 OCH 3 , F (CF 2 ) 2 OC 2 H 5 , and CF 3 (CF 2 ) CH 2 O. (CF 2 ) CF 3 , F (CF 2 ) 3 OCH 3 , F (CF 2 ) 3 OC 2 H 5 , F (CF 2 ) 4 OCH 3 , F (CF 2 ) 4 OC 2 H 5 , F (CF 2 ) 5 OCH 3 , F (CF 2 ) 5 OC 2 H 5 , F (CF 2 ) 8 OCH 3 , F (CF 2 ) 8 OC 2 H 5 , F (CF 2 ) 9 OCH 3 , CF 3 CH 2 OCH 3 , CF 3 CH 2 OCHF 2 , CF 3 CF 2 CH 2 OCH 3 , CF 3 CF 2 CH 2 OCHF 2 , CF 3 CF 2 CH 2 O (CF 2 ) 2 H, CF 3 CF 2 CH 2 O ( CF 2) 2 F, HC 2 CH 2 OCH 3, (CF 3) (CF 2) CH 2 O (CF 2) 2 H, H (CF 2) 2 OCH 2 CH 3, H (CF 2) 2 OCH 2 CF 3, H (CF 2 ) 2 CH 2 OCHF 2 , H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H, H (CF 2 ) 2 CH 2 O (CF 2 ) 3 H, H (CF 2 ) 3 CH 2 O (CF 2) 2 H, H (CHF ) 2 CH 2 O (CF 2) 2 H, (CF 3) 2 CHOCH 3, (CF 3) 2 CHCF 2 OCH 3, CF 3 CHFCF 2 OCH 3, CF 3 CHFCF 2 OCH 2 CH 3 , CF 3 CHFCF 2 CH 2 OCHF 2 , CF 3 CHFCF 2 OCH 2 (CF 2 ) 2 F, CF 3 CHFCF 2 OCH 2 CF 2 CF 2 H, H (CF 2 ) 4 CH 2 O (C F 2 ) 2 H, CH 3 CH 2 O (CF 2 ) 4 F, F (CF 2 ) 4 CH 2 O (CF 2 ) 2 H, H (CF 2 ) 2 CH 2 OCF 2 CHFCF 3 , F (CF 2) 2 CH 2 OCF 2 CHFCF 3, H (CF 2) 4 CH 2 O (CF 2) H, CF 3 OCH 2 (CF 2) 2 F, CF 3 CHFCF 2 OCH 2 (CF 2) 3 F, CH 3 CF 2 OCH 2 (CF 2 ) 2 F, CH 3 CF 2 OCH 2 (CF 2 ) 3 F, CH 3 O (CF 2 ) 5 F, F (CF 2 ) 3 CH 2 OCH 2 (CF 2 ) 3 F, F (CF 2) 2 CH 2 OCH 2 (CF 2) 2 F, H (CF 2) 2 CH 2 OCH 2 (CF 2) 2 H, CH 3 CF 2 OCH 2 (CF 2) such as 2 H is Can be mentioned.
 なお、前記式(10)で表されるフッ素化エーテル化合物は一種を単独でまたは二種以上を混合して用いることができる。 In addition, the fluorinated ether compound represented by the formula (10) may be used alone or in combination of two or more.
 本実施形態において、前記非水溶媒として下記式(11)で表されるフッ素化リン酸エステルを含んでもよい。 In the present embodiment, the non-aqueous solvent may include a fluorinated phosphate ester represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000012
(式(11)中、R6、R7、R8は、それぞれ独立に、置換または無置換のアルキル基を示し、R6、R7およびR8のうち、少なくとも1つは、フッ素置換アルキル基である。R6の炭素原子とR7の炭素原子が単結合又は二重結合を介して結合し、環状構造を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000012
(In the formula (11), R 6 , R 7 and R 8 each independently represents a substituted or unsubstituted alkyl group, and at least one of R 6 , R 7 and R 8 is a fluorine-substituted alkyl. The carbon atom of R 6 and the carbon atom of R 7 may be bonded via a single bond or a double bond to form a cyclic structure.)
 式(11)において、R6、R7およびR8の炭素数は、それぞれ独立に、1~3であることが好ましい。R6、R7およびR8のうち少なくとも1つは、対応する無置換のアルキル基が有する水素原子の50%以上がフッ素原子に置換されたフッ素置換アルキル基であることが好ましい。また、R6、R7およびR8の全てがフッ素置換アルキル基であり、該R6、R7およびR8が対応する無置換のアルキル基の水素原子の50%以上がフッ素原子に置換されたフッ素置換アルキル基であることがより好ましい。フッ素原子の含有率が多いと、耐電圧性がより向上し、高電位で動作する正極活物質を用いた場合でも、サイクル後における電池容量の劣化をより低減することできるからである。 In the formula (11), it is preferable that R 6 , R 7 and R 8 each independently have 1 to 3 carbon atoms. At least one of R 6 , R 7 and R 8 is preferably a fluorine-substituted alkyl group in which 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms. Moreover, all of R 6 , R 7 and R 8 are fluorine-substituted alkyl groups, and 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl groups represented by R 6 , R 7 and R 8 are substituted with fluorine atoms. More preferred is a fluorine-substituted alkyl group. This is because when the fluorine atom content is high, the voltage resistance is further improved, and even when a positive electrode active material that operates at a high potential is used, deterioration of the battery capacity after cycling can be further reduced.
 フッ素化リン酸エステルとしては、特に限定されないが、例えば、リン酸トリス(トリフルオロメチル)、リン酸トリス(ペンタフルオロエチル)、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(2,2,3,3-テトラフルオロプロピル)、リン酸トリス(3,3,3-トリフルオロプロピル)、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)等のフッ素化アルキルリン酸エステル化合物が挙げられる。中でも、フッ素化リン酸エステル化合物として、リン酸トリス(2,2,2-トリフルオロエチル)が好ましい。フッ素化リン酸エステルは、一種を単独で、または二種以上を組み合わせて使用することができる。 The fluorinated phosphate ester is not particularly limited. For example, phosphoric acid tris (trifluoromethyl), phosphoric acid tris (pentafluoroethyl), phosphoric acid tris (2,2,2-trifluoroethyl), phosphoric acid Tris (2,2,3,3-tetrafluoropropyl), Tris phosphate (3,3,3-trifluoropropyl), Tris phosphate (2,2,3,3,3-pentafluoropropyl), etc. A fluorinated alkyl phosphate compound may be mentioned. Among these, as the fluorinated phosphate compound, tris (2,2,2-trifluoroethyl) phosphate is preferable. Fluorinated phosphates can be used alone or in combination of two or more.
 本実施形態において、前記非水溶媒として下記式(12)で表されるスルホン化合物を含んでもよい。 In this embodiment, a sulfone compound represented by the following formula (12) may be included as the non-aqueous solvent.
Figure JPOXMLDOC01-appb-C000013
(式(12)中、R及びR10は、それぞれ独立に、置換または無置換のアルキル基を示す。R9の炭素原子とR10の炭素原子が単結合又は二重結合を介して結合し、環状構造を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000013
(In Formula (12), R 9 and R 10 each independently represents a substituted or unsubstituted alkyl group. The carbon atom of R 9 and the carbon atom of R 10 are bonded via a single bond or a double bond. And a ring structure may be formed.)
 式(12)で表される環状スルホン化合物としては、例えば、テトラメチレンスルホン(スルホラン)、ペンタメチレンスルホン、ヘキサメチレンスルホン等が好ましく挙げられる。また、置換基を有する環状スルホン化合物として、3-メチルスルホラン、2,4-ジメチルスルホランなどが好ましく挙げられる。これらの材料は、耐酸化性に優れることから、高電圧下での電解液の分解を抑制できると共に、比較的高い誘電率を有するため、リチウム塩の溶解/解離作用に優れるという利点がある。 Preferred examples of the cyclic sulfone compound represented by the formula (12) include tetramethylene sulfone (sulfolane), pentamethylene sulfone, hexamethylene sulfone and the like. Preferred examples of the cyclic sulfone compound having a substituent include 3-methylsulfolane and 2,4-dimethylsulfolane. Since these materials are excellent in oxidation resistance, they can suppress the decomposition of the electrolytic solution under a high voltage, and have a relatively high dielectric constant, so that they have an advantage of excellent dissolution / dissociation action of lithium salt.
 また、スルホン化合物は、鎖状スルホン化合物であってもよい。鎖状スルホン化合物としては、例えば、エチルメチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホン、ジメチルスルホン、ジエチルスルホン等が挙げられる。これらのうちジメチルスルホン、エチルメチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホンが好ましい。これらの材料は、耐酸化性に優れることから、高電圧下での電解液の分解を抑制できると共に、比較的高い誘電率を有するため、リチウム塩の溶解/解離作用に優れるという利点がある。 The sulfone compound may be a chain sulfone compound. Examples of the chain sulfone compound include ethyl methyl sulfone, ethyl isopropyl sulfone, ethyl isobutyl sulfone, dimethyl sulfone, and diethyl sulfone. Of these, dimethyl sulfone, ethyl methyl sulfone, ethyl isopropyl sulfone, and ethyl isobutyl sulfone are preferable. Since these materials are excellent in oxidation resistance, they can suppress the decomposition of the electrolytic solution under a high voltage, and have a relatively high dielectric constant, so that they have an advantage of excellent dissolution / dissociation action of lithium salt.
 スルホン化合物は1種を単独で又は2種以上を混合して用いることができる。 The sulfone compounds can be used alone or in combination of two or more.
 本実施形態において、前記非水溶媒として下記式(13)で表されるカルボン酸エステルを含んでもよい。 In this embodiment, the nonaqueous solvent may include a carboxylic acid ester represented by the following formula (13).
Figure JPOXMLDOC01-appb-C000014
(式(13)において、R11及びR12は、それぞれ独立に、置換または無置換のアルキル基を示す。R11の炭素原子とR12の炭素原子が単結合又は二重結合を介して結合し、環状構造を形成していてもよい。また、R11及びR12の水素の一部がフッ素で置換されていても良い。)
Figure JPOXMLDOC01-appb-C000014
(In Formula (13), R 11 and R 12 each independently represents a substituted or unsubstituted alkyl group. The carbon atom of R 11 and the carbon atom of R 12 are bonded via a single bond or a double bond. And a cyclic structure may be formed, and a part of hydrogen of R 11 and R 12 may be substituted with fluorine.)
 カルボン酸エステルとしては、特に制限されるものではないが、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、ギ酸メチル等が挙げられる。耐電圧性を高めるためには、水素原子をフッ素原子で置換した化合物が好ましい。例えば、ペンタフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸エチル、2,2,3,3-テトラフルオロプロピオン酸メチル、酢酸2,2-ジフルオロエチル、ヘプタフルオロイソ酪酸メチル、2,3,3,3-テトラフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸メチル、酢酸2,2,2-トリフルオロエチル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸tert-ブチル、4,4,4-トリフルオロ酪酸エチル、4,4,4-トリフルオロ酪酸メチル、2,2-ジフルオロ酢酸ブチル、ジフルオロ酢酸エチル、トリフルオロ酢酸n-ブチル、酢酸2,2,3,3-テトラフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、3,3,3-トリフルオロプロピオン酸3,3,3トリフルオロプロピル、ジフルオロ酢酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピル、酢酸1H,1H-ヘプタフルオロブチル、ヘプタフルオロ酪酸メチル、トリフルオロ酢酸エチルなどである。これらの中で、耐電圧と沸点などの観点から、2,2,3,3-テトラフルオロプロピオン酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピルなどが好ましい。 The carboxylate ester is not particularly limited, and examples thereof include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, and methyl formate. In order to improve the voltage resistance, a compound in which a hydrogen atom is substituted with a fluorine atom is preferable. For example, ethyl pentafluoropropionate, ethyl 3,3,3-trifluoropropionate, methyl 2,2,3,3-tetrafluoropropionate, 2,2-difluoroethyl acetate, methyl heptafluoroisobutyrate, 2, Methyl 3,3,3-tetrafluoropropionate, methyl pentafluoropropionate, methyl 2- (trifluoromethyl) -3,3,3-trifluoropropionate, ethyl heptafluorobutyrate, 3,3,3-tri Methyl fluoropropionate, 2,2,2-trifluoroethyl acetate, isopropyl trifluoroacetate, tert-butyl trifluoroacetate, ethyl 4,4,4-trifluorobutyrate, methyl 4,4,4-trifluorobutyrate, 2,2-difluoroacetic acid butyl, ethyl difluoroacetate, trifluoroacetic acid n- Chill, acetic acid 2,2,3,3-tetrafluoropropyl, ethyl 3- (trifluoromethyl) butyrate, methyl tetrafluoro-2- (methoxy) propionate, 3,3,3- trifluoropropionic acid 3,3 , 3 trifluoropropyl, methyl difluoroacetate, 2,2,3,3-tetrafluoropropyl trifluoroacetate, 1H, 1H-heptafluorobutyl acetate, methyl heptafluorobutyrate, ethyl trifluoroacetate and the like. Of these, methyl 2,2,3,3-tetrafluoropropionate, 2,2,3,3-tetrafluoropropyl trifluoroacetate and the like are preferable from the viewpoint of withstand voltage and boiling point.
 鎖状カルボン酸エステルは、炭素数が短いと粘度が低いという特長があるが、沸点も低くなる傾向がある。沸点が低いと電池の高温動作時に気化してしまう場合がある。炭素数が大きすぎると、粘度が高くなって導電性が下がる場合がある。このような理由から、カルボン酸エステルの炭素数は3以上12以下であることが好ましい。またフッ素で置換することによって耐酸化性を向上することができる。フッ素置換量が少ないと、高電位の正極と反応して容量維持率が低下したり、ガスが発生したりする場合がある。一方、フッ素置換量が多すぎると、電解液に溶けにくくなったり、沸点が下がったりする場合がある。このような理由から、水素原子のうちのフッ素の置換量は、1%以上90%以下であることが好ましく、10%以上85%以下であることがより好ましく、20%以上80%以下であることがさらに好ましい。 The chain carboxylic acid ester has a feature that the viscosity is low when the carbon number is short, but the boiling point tends to be low. If the boiling point is low, the battery may vaporize during high temperature operation. If the number of carbon atoms is too large, the viscosity may increase and the conductivity may decrease. For these reasons, the carboxylic acid ester preferably has 3 to 12 carbon atoms. Moreover, oxidation resistance can be improved by substituting with fluorine. If the amount of fluorine substitution is small, it may react with the positive electrode at a high potential, resulting in a decrease in capacity retention rate or generation of gas. On the other hand, if the fluorine substitution amount is too large, it may be difficult to dissolve in the electrolytic solution or the boiling point may be lowered. For these reasons, the substitution amount of fluorine in the hydrogen atoms is preferably 1% or more and 90% or less, more preferably 10% or more and 85% or less, and 20% or more and 80% or less. More preferably.
 溶媒としては、上記以外にも、例えば、γ-ブチロラクトン等のγ-ラクトン類、1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドンなどの非プロトン性有機溶媒を挙げることができる。これらは、一種または二種以上を混合して用いることができる。 As the solvent, in addition to the above, for example, γ-lactones such as γ-butyrolactone, chain ethers such as 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME), tetrahydrofuran, 2-methyltetrahydrofuran Cyclic ethers such as dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, 1,3 -Dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolide And aprotic organic solvents such as These can be used alone or in combination of two or more.
 複数の種類の溶媒を混合して用いることで、より多くの環状リン酸エステル構造を有するリン化合物を負極表面に被覆させることができ、良好なサイクル特性を達成できる場合がある。好ましい溶媒の種類の組合せとしては、炭酸エステル/フッ素化エーテル/フッ素化リン酸エステル、炭酸エステル/フッ素化エーテル/スルホン化合物、フッ素化エーテル/スルホン化合物および炭酸エステル/フッ素化エーテル/カルボン酸エステルが挙げられ、これらの混合溶媒にさらに他の種類の溶媒を追加することもできる。 By using a mixture of a plurality of types of solvents, the surface of the negative electrode can be coated with more phosphorus compounds having a cyclic phosphate structure, and good cycle characteristics may be achieved. Preferred solvent type combinations include carbonic acid ester / fluorinated ether / fluorinated phosphate ester, carbonic acid ester / fluorinated ether / sulfone compound, fluorinated ether / sulfone compound and carbonic acid ester / fluorinated ether / carboxylic acid ester. It is also possible to add other kinds of solvents to these mixed solvents.
[セパレータ]
 セパレータとしては、特に制限されるものではなく、公知のものを用いることができる。セパレータとしては、具体的には、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系微多孔膜、セルロースやガラス繊維を含むもの等を用いることができる。
[Separator]
The separator is not particularly limited, and a known separator can be used. Specifically, as the separator, for example, a polyolefin microporous film such as polyethylene or polypropylene, or one containing cellulose or glass fiber can be used.
[外装体]
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択して使用することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。
[Exterior body]
As an exterior body, as long as it is stable to an electrolytic solution and has a sufficient water vapor barrier property, it can be appropriately selected and used. For example, in the case of a laminated laminate type secondary battery, a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
[二次電池]
 二次電池は、例えば、正極活物質を有する正極と、負極活物質を有する負極と、正極と負極の間に狭持された絶縁体としてのセパレータと、リチウムイオン伝導性を有する電解液とが外装体内に密閉された形態をとることができる。正極と負極に電圧を印加することにより、正極活物質がリチウムイオンを放出し、負極活物質がリチウムイオンを吸蔵し、電池は充電状態となる。放電状態では充電状態と逆の状態となる。
[Secondary battery]
A secondary battery includes, for example, a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a separator as an insulator sandwiched between the positive electrode and the negative electrode, and an electrolyte having lithium ion conductivity. It can take the form sealed in the exterior body. By applying a voltage to the positive electrode and the negative electrode, the positive electrode active material releases lithium ions, the negative electrode active material occludes lithium ions, and the battery is charged. In the discharged state, the state is opposite to the charged state.
 電池の形状としては、例えば、円筒形、角形、コイン型、ボタン型、ラミネート型等が挙げられる。電池の外装体としては、例えば、ステンレス、鉄、アルミニウム、チタン、またはこれらのうちの二種以上の合金、あるいはこれらのメッキ加工品等が挙げられる。メッキとしては、例えば、ニッケルメッキを用いることができる。 Examples of the shape of the battery include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape. Examples of the battery outer package include stainless steel, iron, aluminum, titanium, two or more alloys thereof, or a plated product thereof. As the plating, for example, nickel plating can be used.
 二次電池は、例えば、乾燥空気または不活性ガス雰囲気下において、負極および正極を、セパレータを介して積層したものを、あるいは該積層体を捲回したものを、缶ケース等の外装容器に収容し、電解液を注入し、合成樹脂と金属箔との積層体等からなる可とう性フィルム等によって封口することによって製造することができる。 A secondary battery is, for example, a battery in which a negative electrode and a positive electrode are laminated via a separator in a dry air or inert gas atmosphere, or a laminate of the laminate is accommodated in an outer container such as a can case. And it can manufacture by inject | pouring electrolyte solution and sealing with the flexible film etc. which consist of a laminated body etc. of a synthetic resin and metal foil.
 二次電池の形態は特に制限されるものではなく、例えば、セパレータを挟んで対向した正極、負極を巻回する巻回型、これらを積層する積層型等の形態を取ることが可能である。 The form of the secondary battery is not particularly limited, and for example, it is possible to take a form such as a positive electrode opposed to a separator, a winding type in which a negative electrode is wound, and a laminated type in which these are stacked.
 図1に、二次電池の一例として、ラミネートタイプの二次電池を示す。正極活物質を含む正極活物質層1と正極集電体3とからなる正極と、負極活物質層2と負極集電体4とからなる負極との間に、セパレータ5が挟まれている。正極集電体3は正極リード端子8と接続され、負極集電体4は負極リード端子7と接続されている。外装体には外装ラミネート6が用いられ、二次電池内部は電解液で満たされている。 FIG. 1 shows a laminate type secondary battery as an example of the secondary battery. A separator 5 is sandwiched between a positive electrode composed of a positive electrode active material layer 1 containing a positive electrode active material and a positive electrode current collector 3, and a negative electrode composed of a negative electrode active material layer 2 and a negative electrode current collector 4. The positive electrode current collector 3 is connected to the positive electrode lead terminal 8, and the negative electrode current collector 4 is connected to the negative electrode lead terminal 7. An exterior laminate 6 is used for the exterior body, and the inside of the secondary battery is filled with an electrolytic solution.
 さらに別の態様としては、図2および図3のような構造の二次電池としてもよい。この二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。 As another aspect, a secondary battery having a structure as shown in FIGS. 2 and 3 may be used. The secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
 電池要素20は、図3に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。 As shown in FIG. 3, the battery element 20 is formed by alternately laminating a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween. In the positive electrode 30, the electrode material 32 is applied to both surfaces of the metal foil 31. Similarly, in the negative electrode 40, the electrode material 42 is applied to both surfaces of the metal foil 41.
 図1の二次電池は電極タブが外装体の両側に引き出されたものであったが、本発明を適用しうる二次電池は図2のように電極タブが外装体の片側に引き出された構成であってもよい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図3参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」などとも呼ばれる。 The secondary battery in FIG. 1 has electrode tabs drawn out on both sides of the outer package. However, in the secondary battery to which the present invention can be applied, the electrode tab is drawn out on one side of the outer package as shown in FIG. It may be a configuration. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 3). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図3では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。 The film outer package 10 is composed of two films 10-1 and 10-2 in this example. The films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed. In FIG. 3, the positive electrode tab 51 and the negative electrode tab 52 are drawn out in the same direction from one short side of the film outer package 10 sealed in this way.
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図2、図3では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)なども採用しうる。 Of course, electrode tabs may be drawn from two different sides. As for the film configuration, FIGS. 2 and 3 show examples in which a cup portion is formed on one film 10-1 and a cup portion is not formed on the other film 10-2. In addition, a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
 ラミネート型に用いるラミネート樹脂フィルムとしては、例えば、アルミニウム、アルミニウム合金、チタン箔等が挙げられる。金属ラミネート樹脂フィルムの熱溶着部の材質としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の熱可塑性高分子材料が挙げられる。また、金属ラミネート樹脂層や金属箔層はそれぞれ1層に限定されるものではなく、2層以上であってもよい。 Examples of the laminate resin film used for the laminate mold include aluminum, an aluminum alloy, and a titanium foil. Examples of the material of the heat-welded portion of the metal laminate resin film include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate. Further, the metal laminate resin layer and the metal foil layer are not limited to one layer, and may be two or more layers.
[車両]
 本実施形態に係る二次電池は、車両に用いることができる。本実施形態に係る車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。これらの車両は本実施形態に係る二次電池を備えるため、安全性が高い。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車などの移動体の各種電源であってもよい。
[vehicle]
The secondary battery according to the present embodiment can be used for a vehicle. Vehicles according to the present embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheeled vehicles (passenger cars, commercial vehicles such as trucks and buses, light vehicles, etc.), two-wheeled vehicles (motorcycles), and three-wheeled vehicles. ). Since these vehicles include the secondary battery according to the present embodiment, safety is high. The vehicle according to the present embodiment is not limited to an automobile, and may be various power sources for other vehicles, for example, a moving body such as a train.
[蓄電装置]
また、本実施形態に係る二次電池は、蓄電装置に用いることができる。本実施形態に係る蓄電装置としては、例えば、一般家庭に供給される商用電源と家電製品等の負荷との間に接続され、停電時等のバックアップ電源や補助電力として使用されるものや、太陽光発電などの、再生可能エネルギーによる時間変動の大きい電力出力を安定化するための、大規模電力貯蔵用としても使用されるものが挙げられる。
[Power storage device]
Further, the secondary battery according to the present embodiment can be used for a power storage device. As the power storage device according to the present embodiment, for example, a power source connected to a commercial power source supplied to a general household and a load such as a home appliance, and used as a backup power source or auxiliary power at the time of a power failure, Examples include photovoltaic power generation, which is also used for large-scale power storage for stabilizing power output with large time fluctuation due to renewable energy.
 以下に本実施形態の実施例について詳細に説明するが、本実施形態は以下の実施例に限定されるものではない。 Hereinafter, examples of the present embodiment will be described in detail. However, the present embodiment is not limited to the following examples.
[実施例1]
(正極の作製)
 まず、MnO、NiO、LiCO、TiOの粉末を用い、目的の組成比になるように秤量し、粉砕混合した。その後、混合粉末を750℃で8時間焼成して、LiNi0.5Mn1.37Ti0.13を作製した。この正極活物質はほぼ単相のスピネル構造であることを確認した。作製した正極活物質と導電付与剤であるカーボンブラックを混合し、この混合物をN-メチルピロリドンに、結着剤としてのポリフッ化ビニリデン(PVDF)を溶解した溶液に分散させ、正極スラリーを調製した。正極活物質、導電付与剤、正極結着剤の質量比は93/3/4とした。Alからなる集電体の両面に前記正極スラリーを均一に塗布した。その後、真空中で12時間乾燥させて、ロールプレスで圧縮成型することにより正極を作製した。なお、乾燥後の単位面積当たりの正極活物質層の重量を0.040g/cmとした。
[Example 1]
(Preparation of positive electrode)
First, powders of MnO 2 , NiO, Li 2 CO 3 , and TiO 2 were weighed so as to have a target composition ratio, and pulverized and mixed. Thereafter, the mixed powder was fired at 750 ° C. for 8 hours to produce LiNi 0.5 Mn 1.37 Ti 0.13 O 4 . This positive electrode active material was confirmed to have a substantially single-phase spinel structure. The produced positive electrode active material and carbon black as a conductivity imparting agent were mixed, and this mixture was dispersed in a solution in which polyvinylidene fluoride (PVDF) as a binder was dissolved in N-methylpyrrolidone to prepare a positive electrode slurry. . The mass ratio of the positive electrode active material, the conductivity-imparting agent, and the positive electrode binder was 93/3/4. The positive electrode slurry was uniformly applied to both surfaces of a current collector made of Al. Then, it was made to dry in vacuum for 12 hours, and the positive electrode was produced by compression molding with a roll press. In addition, the weight of the positive electrode active material layer per unit area after drying was set to 0.040 g / cm 2 .
(負極の作製)
 負極活物質としては、SiOの表面に炭素がコートされたものを使用した。SiOと炭素の質量比は95/5とした。以下で示すSiOは炭素が5質量%表面処理された複合材料である。SiOを、N-メチルピロリドンにポリイミドバインダを溶かした溶液に分散させ、負極用スラリーを作製した。負極活物質とバインダ材料の質量比は85/15とした。この負極用スラリーを厚さ10μmのCu集電体上に均一に塗布した。その後、真空中で12時間乾燥させて、負極を作製した。なお、乾燥後の単位面積当たりの負極活物質層の重量を0.0025g/cmとした。
(Preparation of negative electrode)
As the negative electrode active material, a material obtained by coating the surface of SiO with carbon was used. The mass ratio of SiO to carbon was 95/5. SiO shown below is a composite material in which 5% by mass of carbon is surface-treated. SiO was dispersed in a solution in which a polyimide binder was dissolved in N-methylpyrrolidone to prepare a negative electrode slurry. The mass ratio of the negative electrode active material to the binder material was 85/15. This negative electrode slurry was uniformly coated on a 10 μm thick Cu current collector. Then, it was dried in vacuum for 12 hours to produce a negative electrode. The weight of the negative electrode active material layer per unit area after drying was 0.0025 g / cm 2 .
(非水電解液)
 エチレンカーボネート(EC)、スルホラン(SL)およびH(CFCHO(CFHで表されるフッ素化エーテル(FE1)を、EC:SL:FE1=30:20:50(体積比)の比率で混合した非水溶媒を調製した。電解質として1.2mol/Lの濃度でLiPFを溶解させた非水電解液を調製した。
(Nonaqueous electrolyte)
A fluorinated ether (FE1) represented by ethylene carbonate (EC), sulfolane (SL) and H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H was converted into EC: SL: FE1 = 30: 20: 50 ( A non-aqueous solvent mixed at a volume ratio) was prepared. A non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.2 mol / L as an electrolyte was prepared.
(ラミネート型電池の作製)
 上記の正極と負極を1.5cm×3cmに切り出した。得られた正極の5層と負極の6層を、セパレータとしてのポリプロピレン多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接し、更にその溶接箇所にアルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極素子を得た。上記電極素子を外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した後、減圧しつつ封止することで二次電池を作製した。
(Production of laminated battery)
The positive electrode and the negative electrode were cut into 1.5 cm × 3 cm. Five layers of the obtained positive electrode and six layers of the negative electrode were alternately stacked while sandwiching a polypropylene porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material are welded respectively, and further, the positive electrode terminal made of aluminum and the negative electrode terminal made of nickel are connected to the welded portion. Each was welded to obtain an electrode element having a planar laminated structure. The electrode element was wrapped with an aluminum laminate film as an outer package, and an electrolyte solution was injected therein, and then sealed while reducing the pressure to produce a secondary battery.
(コンディショニング)
 作製した二次電池に初期充放電(コンディショニング)を行った。45℃で、0.2Cの定電流定電圧(CCCV)充電で4.75Vまで、トータルの充電時間が10時間となるように初回充電を行い、0.2Cで定電流(CC)放電を3Vまで行った。2回目充電も同様に行い、放電深度80%まで放電した状態で2日間保管した後、3Vまで放電を行った。
(conditioning)
Initial charge / discharge (conditioning) was performed on the fabricated secondary battery. At 45 ° C, the initial charge is performed so that the total charge time is 10 hours up to 4.75V with constant current constant voltage (CCCV) charge of 0.2C, and constant current (CC) discharge is 3V at 0.2C. Went up. The second charge was performed in the same manner, and the battery was stored for 2 days while being discharged to a discharge depth of 80%, and then discharged to 3V.
(負極表面のTOF-SIMS分析)
 上記コンディショニングを行ったセルをアルゴン雰囲気下で開封し、負極を取り出した。TOF-SIMS法による質量分析では、ION-TOF社製TOF.SIM5(商品名)を用いた。分析条件は、一次イオン種:Bi3++、一次イオンエネルギー:30keV、パルス幅:3.1ns、二次イオン極性:負、測定した質量範囲(m/z):0~1500、測定面積:200μm×200μm、後段加速10kV、測定真空度(試料導入前):4×10-7Pa以下とした。質量分析結果より、122.98m/z付近(CPO 由来のピークと推定できるピーク)のピーク強度をすべてのピーク強度の合計値との比で表したものを表1に示す。
(TOF-SIMS analysis of negative electrode surface)
The above-conditioned cell was opened under an argon atmosphere, and the negative electrode was taken out. In mass spectrometry by the TOF-SIMS method, TOF. SIM5 (trade name) was used. The analysis conditions are: primary ion species: Bi 3 ++ , primary ion energy: 30 keV, pulse width: 3.1 ns, secondary ion polarity: negative, measured mass range (m / z): 0 to 1500, measurement area: 200 μm × 200 μm, latter stage acceleration 10 kV, measurement vacuum (before sample introduction): 4 × 10 −7 Pa or less. Than the mass analysis, near 122.98m / z - Table 1 shows the one expressed in the ratio of the sum of all the peak intensities of the peak intensity of the (C 2 H 4 PO 4 peaks can be estimated as the peak of the origin) .
(高温サイクル試験)
 上記TOF-SIMS分析で用いたセルと同じ条件でコンディショニングまでを行ったセルに対して、45℃でサイクル試験を行った。1Cで4.75Vまで充電した後、合計で2.5時間定電圧充電を行ってから、1Cで3.0Vまで定電流放電するというサイクルを、45℃で200回繰り返した。容量維持率として初回放電容量に対する200サイクル後の放電容量の割合を求めた。200サイクル後の容量維持率を表1に示す。
(High temperature cycle test)
A cycle test was performed at 45 ° C. on a cell that had been subjected to conditioning under the same conditions as the cell used in the TOF-SIMS analysis. After charging to 4.75 V at 1 C, a constant voltage charge was performed for 2.5 hours in total, and then a constant current discharge to 3.0 V at 1 C was repeated 200 times at 45 ° C. As a capacity retention rate, the ratio of the discharge capacity after 200 cycles to the initial discharge capacity was determined. The capacity retention rate after 200 cycles is shown in Table 1.
[実施例2]
 非水電解液のリチウム塩濃度を1.0Mとした以外は、実施例1と同様にして二次電池を作製した。
[Example 2]
A secondary battery was made in the same manner as Example 1 except that the lithium salt concentration of the non-aqueous electrolyte was 1.0M.
[実施例3]
 非水電解液の溶媒組成をエチレンカーボネート(EC)、スルホラン(SL)、H(CFCHOCFCHFCFで表されるフッ素化エーテル(FE2)、を、EC:SL:FE2=30:20:50(体積比)の比率にし、リチウム塩濃度を1.0Mとした以外は、実施例1と同様にして二次電池を作製した。
[Example 3]
The solvent composition of the nonaqueous electrolytic solution is fluorinated ether (FE2) represented by ethylene carbonate (EC), sulfolane (SL), H (CF 2 ) 2 CH 2 OCF 2 CHFCF 3 , EC: SL: FE2 = A secondary battery was fabricated in the same manner as in Example 1 except that the ratio was 30:20:50 (volume ratio) and the lithium salt concentration was 1.0 M.
[実施例4]
 非水電解液の溶媒組成をエチレンカーボネート(EC)、スルホラン(SL)、H(CFCHO(CF)Hで表されるフッ素化エーテル(FE3)、を、EC:SL:FE3=30:20:50(体積比)の比率にし、リチウム塩濃度を1.0Mとした以外は、実施例1と同様にして二次電池を作製した。
[Example 4]
The solvent composition of the non-aqueous electrolyte is ethylene carbonate (EC), sulfolane (SL), fluorinated ether (FE3) represented by H (CF 2 ) 4 CH 2 O (CF 2 ) H, EC: SL: A secondary battery was fabricated in the same manner as in Example 1, except that the ratio of FE3 was set to 30:20:50 (volume ratio) and the lithium salt concentration was 1.0 M.
[実施例5]
 非水電解液のリチウム塩濃度を0.8Mとした以外は、実施例1と同様にして二次電池を作製した。
[Example 5]
A secondary battery was fabricated in the same manner as in Example 1 except that the lithium salt concentration of the nonaqueous electrolytic solution was 0.8M.
[実施例6]
 非水電解液の溶媒組成をエチレンカーボネート(EC)、H(CFCHO(CFHで表されるフッ素化エーテル(FE1)、リン酸トリス(2,2,2-トリフルオロエチル)(PTTFE)を、EC:FE1:PTTFE=30:50:20(体積比)の比率にし、リチウム塩濃度を1.0Mとした以外は、実施例1と同様にして二次電池を作製した。
[Example 6]
The solvent composition of the non-aqueous electrolyte is ethylene carbonate (EC), fluorinated ether (FE1) represented by H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H, tris phosphate (2,2,2- (Trifluoroethyl) (PTTFE) was changed to EC: FE1: PTTFE = 30: 50: 20 (volume ratio), and the lithium salt concentration was changed to 1.0 M. Was made.
[実施例7]
 非水電解液の溶媒組成をエチレンカーボネート(EC)、プロピレンカーボネート(PC)、H(CFCHO(CFHで表されるフッ素化エーテル(FE1)、リン酸トリス(2,2,2-トリフルオロエチル)(PTTFE)を、EC:PC:FE1:PTTFE=20:10:40:30(体積比)の比率にし、リチウム塩濃度を0.8Mとした以外は、実施例1と同様にして二次電池を作製した。
[Example 7]
The solvent composition of the nonaqueous electrolytic solution is ethylene carbonate (EC), propylene carbonate (PC), fluorinated ether (FE1) represented by H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H, tris phosphate ( 2,2,2-trifluoroethyl) (PTTFE) except that the ratio of EC: PC: FE1: PTTFE = 20: 10: 40: 30 (volume ratio) and the lithium salt concentration was 0.8M. A secondary battery was fabricated in the same manner as in Example 1.
[実施例8]
 非水電解液の溶媒組成をスルホラン(SL)、H(CFCHO(CFHで表されるフッ素化エーテル(FE1)を、SL:FE1=70:30(体積比)の比率にし、リチウム塩濃度を1.0Mとした以外は、実施例1と同様にして二次電池を作製した。
[Example 8]
The solvent composition of the non-aqueous electrolyte is sulfolane (SL), fluorinated ether (FE1) represented by H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H, SL: FE1 = 70: 30 (volume ratio) ) And the lithium salt concentration was 1.0 M, and a secondary battery was fabricated in the same manner as in Example 1.
[実施例9]
 非水電解液の溶媒組成をプロピレンカーボネート(PC)、H(CFCHO(CFHで表されるフッ素化エーテル(FE1)、2,2,3,3-テトラフルオロプロピオン酸メチル(TFMP)を、PC:FE1:TFMP=30:40:30(体積比)の比率にし、リチウム塩濃度を1.0Mとした以外は、実施例1と同様にして二次電池を作製した。
[Example 9]
The solvent composition of the non-aqueous electrolyte is fluorinated ether (FE1) represented by propylene carbonate (PC), H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H, 2,2,3,3-tetrafluoro A secondary battery was prepared in the same manner as in Example 1 except that methyl propionate (TFMP) was changed to a ratio of PC: FE1: TFMP = 30: 40: 30 (volume ratio) and the lithium salt concentration was 1.0 M. Produced.
[比較例1]
 リチウム塩としてLiBFを用い、リチウム塩濃度を1.0Mとした以外は、実施例1と同様にして二次電池を作製した。
[Comparative Example 1]
A secondary battery was fabricated in the same manner as in Example 1 except that LiBF 4 was used as the lithium salt and the lithium salt concentration was 1.0 M.
[比較例2]
 非水電解液の溶媒組成をエチレンカーボネート(EC)、H(CFCHO(CFHで表されるフッ素化エーテル(FE1)、リン酸トリス(2,2,2-トリフルオロエチル)(PTTFE)を、EC:FE1:PTTFE=30:50:20(体積比)の比率にし、リチウム塩としてLiBFを用い、濃度を1.0Mとした以外は、実施例1と同様にして二次電池を作製した。
[Comparative Example 2]
The solvent composition of the non-aqueous electrolyte is ethylene carbonate (EC), fluorinated ether (FE1) represented by H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H, tris phosphate (2,2,2- Trifluoroethyl) (PTTFE) was set to the ratio of EC: FE1: PTTFE = 30: 50: 20 (volume ratio), LiBF 4 was used as the lithium salt, and the concentration was 1.0 M. Similarly, a secondary battery was produced.
 表1に、実施例1~9及び比較例1、2の溶媒組成、コンディショニング後の負極表面のTOF-SIMS分析でのCPO 由来のピーク強度比、45℃200サイクル後の容量維持率を示す。 Table 1, Examples 1 to 9 and Comparative solvent composition of Examples 1 and 2, in the TOF-SIMS analysis of the negative electrode surface after conditioning C 2 H 4 PO 4 - peak intensity ratio of from, after 45 ° C. 200 cycles Indicates the capacity maintenance rate.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例1~9では、負極表面の被膜成分として、リン酸エチレンイオン成分が検出された。これらの45℃サイクル特性は検出されなかった比較例1、2に比べて、良好であった。リン酸エチレンイオンに由来する環状リン酸エステル化合物が負極被膜成分として存在することで、シリコン負極と電解液の反応性を抑制し、高温でのサイクル特性がより良好になる効果が得られた。更に実施例1~5に示すように、CPO 成分のピーク強度比が0.01以上である場合、よりサイクル特性の改善効果が大きいことが分かった。電解液に、スルホン化合物と、炭酸エステルと、フッ素化エーテルと、を含む場合に、特にリン酸エチレンイオンが多く検出され、サイクル後の容量維持率も高かった。このような電解液とすることで、シリコン負極上に良好な皮膜が形成され、サイクル特性が改善したものと考えられる。 In Examples 1 to 9, an ethylene phosphate ion component was detected as a coating component on the negative electrode surface. These 45 ° C. cycle characteristics were better than those of Comparative Examples 1 and 2, which were not detected. The presence of the cyclic phosphate ester compound derived from ethylene phosphate ions as a negative electrode coating component suppresses the reactivity between the silicon negative electrode and the electrolytic solution, and the effect of improving the cycle characteristics at high temperatures is obtained. As further shown in Examples 1 ~ 5, C 2 H 4 PO 4 - If the peak intensity ratio of the components is 0.01 or more, it was found that improvement of more cycle characteristics is large. When the electrolyte solution contained a sulfone compound, a carbonate ester, and a fluorinated ether, particularly a large amount of ethylene phosphate ions was detected, and the capacity retention rate after cycling was also high. By setting it as such electrolyte solution, it is thought that the favorable film | membrane was formed on the silicon negative electrode, and cycling characteristics improved.
 以上に示すように、本実施形態により、寿命特性が改善された電池を得ることが可能である。 As described above, according to this embodiment, it is possible to obtain a battery with improved life characteristics.
 本実施形態は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両を含む、電車や衛星や潜水艦などの移動・輸送用媒体の電源;UPSなどのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備;などに、利用することができる。 This embodiment can be used in, for example, all industrial fields that require a power source and industrial fields related to the transport, storage, and supply of electrical energy. Specifically, power supplies for mobile devices such as mobile phones and notebook computers; power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles A backup power source such as a UPS; a power storage facility for storing power generated by solar power generation, wind power generation, etc .;
1  正極活物質層
2  負極活物質層
3  正極集電体
4  負極集電体
5  セパレータ
6  外装ラミネート
7  負極リード端子
8  正極リード端子
10 フィルム外装体
20 電池要素
25 セパレータ
30 正極
40 負極
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Exterior laminate 7 Negative electrode lead terminal 8 Positive electrode lead terminal 10 Film exterior body 20 Battery element 25 Separator 30 Positive electrode 40 Negative electrode

Claims (19)

  1.  リチウムを吸蔵・放出することが可能な正極と、負極と、非水電解溶媒を含む電解液と、を有する二次電池であって、負極活物質がシリコン元素を含む化合物を含み、前記負極表面に-O-P-O-を環構成の一部とした環状リン酸エステル構造を有するリン化合物を含有することを特徴とするリチウム二次電池。 A secondary battery having a positive electrode capable of inserting and extracting lithium, a negative electrode, and an electrolyte solution containing a nonaqueous electrolytic solvent, wherein the negative electrode active material contains a compound containing silicon element, and the negative electrode surface A lithium secondary battery comprising a phosphorus compound having a cyclic phosphate structure in which —O—P—O— is part of the ring structure.
  2.  前記リン化合物が下記式(1)で表される環状リン酸エステル構造を有することを特徴とする請求項1に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (Rは炭素数1~6の置換又は無置換のアルキレン基を表す。)
    The lithium secondary battery according to claim 1, wherein the phosphorus compound has a cyclic phosphate structure represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (R 1 represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms.)
  3.  飛行時間型二次イオン質量分析(TOF-SIMS)法により充放電後の負極表面に一次イオンを照射したときに検出される成分に、環状リン酸エステルイオンを有することを特徴とする請求項1又は2に記載のリチウム二次電池。 2. A cyclic phosphate ion is included in a component detected when the negative electrode surface after charge / discharge is irradiated with primary ions by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Or the lithium secondary battery of 2.
  4.  前記環状リン酸エステルイオンが、下記式(2)で表される構造であることを特徴とする請求項3に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000002
    The lithium secondary battery according to claim 3, wherein the cyclic phosphate ion has a structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
  5.  すべての負極表面検出成分に由来するピーク強度の合計値に対する前記環状リン酸エステルイオンに由来するピーク強度のイオンカウント比が0.0001以上0.1以下であることを特徴とする請求項3又は4に記載のリチウム二次電池。 The ion count ratio of the peak intensity derived from the cyclic phosphate ion to the total peak intensity derived from all negative electrode surface detection components is 0.0001 or more and 0.1 or less, or 4. The lithium secondary battery according to 4.
  6.  前記電解液がヘキサフルオロリン酸リチウムを含有することを特徴とする請求項1~5のいずれか1項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 5, wherein the electrolytic solution contains lithium hexafluorophosphate.
  7.  前記電解液が下記式(3)で表される炭酸エステル化合物を含有することを特徴とする請求項1~6のいずれか1項に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)において、R及びRは、それぞれ独立に、置換または無置換のアルキル基を示す。Rの炭素原子とRの炭素原子が単結合又は二重結合を介して結合し、環状構造を形成していてもよい。)
    7. The lithium secondary battery according to claim 1, wherein the electrolytic solution contains a carbonate ester compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (3), R 2 and R 3 each independently represents a substituted or unsubstituted alkyl group. The carbon atom of R 2 and the carbon atom of R 3 are bonded through a single bond or a double bond. And a ring structure may be formed.)
  8.  前記炭酸エステル化合物は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、及びビニレンカーボネート、並びにこれらが有する水素原子の一部又は全部をフッ素原子に置換した環状カーボネート構造を有する化合物からなる群より選ばれる少なくとも1種である請求項7に記載のリチウム二次電池。 The carbonate compound is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and a compound having a cyclic carbonate structure in which some or all of the hydrogen atoms contained therein are substituted with fluorine atoms. The lithium secondary battery according to claim 7, which is a seed.
  9.  前記電解液が、下記式(4)で表されるフッ素化エーテル化合物を含有することを特徴とする請求項1~8のいずれか1項に記載のリチウム二次電池。
    (式(4)中、R及びRは、それぞれ独立に、アルキル基またはフッ化アルキル基を示し、ただし、R及びRのうち少なくとも一方はフッ化アルキル基である。)
    The lithium secondary battery according to any one of claims 1 to 8, wherein the electrolytic solution contains a fluorinated ether compound represented by the following formula (4).
    (In formula (4), R 4 and R 5 each independently represents an alkyl group or a fluorinated alkyl group, provided that at least one of R 4 and R 5 is a fluorinated alkyl group.)
  10.  前記電解液が、下記式(5)で表されるスルホン化合物を含有することを特徴とする請求項1~9のいずれか1項に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、R及びRは、それぞれ独立に、置換または無置換のアルキル基を示す。Rの炭素原子とRの炭素原子が単結合又は二重結合を介して結合し、環状構造を形成していてもよい。)
    The lithium secondary battery according to any one of claims 1 to 9, wherein the electrolytic solution contains a sulfone compound represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000005
    (In Formula (5), R 6 and R 7 each independently represents a substituted or unsubstituted alkyl group. The carbon atom of R 6 and the carbon atom of R 7 are bonded through a single bond or a double bond. And a ring structure may be formed.)
  11.  前記電解液が、請求項7に記載の式(3)で表される炭酸エステル化合物と、請求項9に記載の式(4)で表されるフッ素化エーテル化合物と、請求項10に記載の式(5)で表されるスルホン化合物と、を含有することを特徴とする請求項1~10のいずれか1項に記載のリチウム二次電池。 The electrolytic solution is a carbonic acid ester compound represented by formula (3) according to claim 7, a fluorinated ether compound represented by formula (4) according to claim 9, and The lithium secondary battery according to any one of claims 1 to 10, comprising a sulfone compound represented by the formula (5).
  12.  前記負極活物質に含まれるシリコン元素を含む化合物が、
     SiO(0<x≦2)で表されるSi酸化物、
     M1Si1-y(M1は、金属元素であり、Li、B、Mg、Na、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、ZnおよびSnからなる群より選ばれる少なくとも一種を含み、0<y<1である。)で表されるシリコン合金、
     M2Si1-z(M2は、金属元素であり、Li、B、Mg、Na、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、ZnおよびSnからなる群から選ばれる少なくとも一種を含み、0<z<1、0<w<2である。)で表されるシリコン複合酸化物、
     Si単体、および
     シリコン窒化物
    からなる群より選ばれる少なくとも一種であることを特徴とする請求項1~11のいずれか1項に記載のリチウム二次電池。
    A compound containing silicon element contained in the negative electrode active material,
    Si oxide represented by SiO x (0 <x ≦ 2),
    M1 y Si 1-y (M1 is a metal element and is composed of Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Sn. A silicon alloy represented by 0 <y <1 including at least one selected from the group,
    M2 z Si 1-z O w (M2 is a metal element, Li, B, Mg, Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Sn A silicon composite oxide represented by 0 <z <1, 0 <w <2, including at least one selected from the group consisting of:
    The lithium secondary battery according to any one of claims 1 to 11, wherein the lithium secondary battery is at least one selected from the group consisting of Si alone and silicon nitride.
  13.  前記正極が、リチウムに対して4.4V以上の充放電領域を有することを特徴とする請求項1~12のいずれか1項に記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 12, wherein the positive electrode has a charge / discharge region of 4.4 V or higher with respect to lithium.
  14.  正極活物質が、下記式(6)で表されるリチウムマンガン複合酸化物を含むことを特徴とする請求項1~13のいずれか1項に記載のリチウム二次電池。
      Li(MMn2-x-y)(O4-w)     (6)
    (式(6)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1であり、MはCo、Ni、Fe、Cr及びCuからなる群より選ばれる少なくとも一種である。Yは、Li、B、Na、Mg、Al、Ti、Si、K及びCaからなる群より選ばれる少なくとも一種である。Zは、F又はClの少なくとも一種である。)
    The lithium secondary battery according to any one of claims 1 to 13, wherein the positive electrode active material contains a lithium manganese composite oxide represented by the following formula (6).
    Li a (M x Mn 2-xy Y y ) (O 4-w Z w ) (6)
    (In formula (6), 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, 0 ≦ w ≦ 1, and M is Co, Ni, Fe, Cr And Y is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K, and Ca, and Z is F or Cl. At least one kind.)
  15.  正極活物質が、下記式(7)で表されるリチウム金属複合酸化物、下記式(8)で表されるリチウム金属複合酸化物、または下記式(9)で表されるSi複合酸化物を含むことを特徴とする請求項1~14のいずれか1項に記載のリチウム二次電池。
      LiMPO    (7)
    (式(7)中、MはCo及びNiからなる群より選ばれる少なくとも一種である。)
      Li(Li1-x-zMn)O    (8)
    (式(8)中、0≦x<0.3、0.3≦z≦0.7であり、MはCo、Ni及びFeからなる群より選ばれる少なくとも一種である。)
      LiMSiO    (9)
    (式(9)中、MはMn、Fe及びCoからなる群より選ばれる少なくとも一種である。)
    The positive electrode active material is a lithium metal composite oxide represented by the following formula (7), a lithium metal composite oxide represented by the following formula (8), or an Si composite oxide represented by the following formula (9). The lithium secondary battery according to any one of claims 1 to 14, further comprising:
    LiMPO 4 (7)
    (In Formula (7), M is at least one selected from the group consisting of Co and Ni.)
    Li (Li x M 1-x -z Mn z) O 2 (8)
    (In formula (8), 0 ≦ x <0.3, 0.3 ≦ z ≦ 0.7, and M is at least one selected from the group consisting of Co, Ni, and Fe.)
    Li 2 MSiO 4 (9)
    (In formula (9), M is at least one selected from the group consisting of Mn, Fe and Co.)
  16.  前記リチウム二次電池は、20℃以上70℃以下の温度で初期充放電を行うことにより、負極にO-P-O-を環構成の一部とした環状リン酸エステル構造を有するリン化合物を有する被膜が形成されていることを特徴とする請求項1~15のいずれか1項に記載のリチウム二次電池。 In the lithium secondary battery, by performing initial charge and discharge at a temperature of 20 ° C. or higher and 70 ° C. or lower, a phosphorus compound having a cyclic phosphate structure in which OP—O— is part of the ring structure is formed on the negative electrode. The lithium secondary battery according to any one of claims 1 to 15, wherein a film having the same is formed.
  17.  請求項1~16のいずれか1項に記載のリチウム二次電池を搭載したことを特徴とする車両。 A vehicle comprising the lithium secondary battery according to any one of claims 1 to 16.
  18.  請求項1~16のいずれか1項に記載のリチウム二次電池を用いたことを特徴とする蓄電装置。 A power storage device using the lithium secondary battery according to any one of claims 1 to 16.
  19.  リチウムを吸蔵・放出することが可能な正極及び負極を備えるリチウム二次電池の製造方法であって、正極と、負極活物質がシリコン元素を含む化合物を含む負極を、対向配置して電極素子を作製する工程と、前記電極素子と電解液を外装体に封入する工程とを含み、20℃以上70℃以下の温度で充放電を行うことで負極に-O-P-O-を環構成の一部とした環状リン酸エステル構造を有するリン化合物を有する被膜を形成させることを特徴とするリチウム二次電池の製造方法。 A method for manufacturing a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, the positive electrode and a negative electrode containing a compound containing a silicon element as a negative electrode active material arranged opposite to each other to form an electrode element And a step of enclosing the electrode element and the electrolytic solution in an outer package, and charging and discharging at a temperature of 20 ° C. or higher and 70 ° C. or lower to form —O—P—O— in the ring structure on the negative electrode. A method for producing a lithium secondary battery, comprising forming a film having a phosphorus compound having a cyclic phosphate structure as a part.
PCT/JP2015/084027 2014-12-04 2015-12-03 Lithium secondary battery WO2016088837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562673A JP6705384B2 (en) 2014-12-04 2015-12-03 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246181 2014-12-04
JP2014246181 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016088837A1 true WO2016088837A1 (en) 2016-06-09

Family

ID=56091777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084027 WO2016088837A1 (en) 2014-12-04 2015-12-03 Lithium secondary battery

Country Status (2)

Country Link
JP (1) JP6705384B2 (en)
WO (1) WO2016088837A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014188A (en) * 2016-07-19 2018-01-25 株式会社豊田自動織機 Negative electrode active material, negative electrode, and method of manufacturing negative electrode
WO2018051675A1 (en) * 2016-09-14 2018-03-22 日本電気株式会社 Lithium secondary battery
JP2018056021A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Lithium ion secondary battery
JP2018067501A (en) * 2016-10-21 2018-04-26 株式会社Gsユアサ Nonaqueous electrolyte power storage device
CN108365265A (en) * 2018-05-15 2018-08-03 中山弘毅新材料有限公司 A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery
CN108820049A (en) * 2018-06-29 2018-11-16 吉林大学 A kind of achievable multi-axial cord concentrates the automobile B-column of energy-absorbing
JP2019012646A (en) * 2017-06-30 2019-01-24 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019031598A1 (en) * 2017-08-10 2019-02-14 株式会社Gsユアサ Nonaqueous electrolyte and nonaqueous electrolyte electricity storage element
CN110024198A (en) * 2016-12-28 2019-07-16 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
WO2020021749A1 (en) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Secondary battery and method of manufacturing same
WO2020063887A1 (en) * 2018-09-28 2020-04-02 宁德时代新能源科技股份有限公司 Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and apparatus
WO2020063886A1 (en) * 2018-09-28 2020-04-02 宁德时代新能源科技股份有限公司 Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and device
CN111082138A (en) * 2018-10-19 2020-04-28 Sk新技术株式会社 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN111293361A (en) * 2018-12-10 2020-06-16 Sk新技术株式会社 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN111463423A (en) * 2020-04-07 2020-07-28 山东斯艾诺德新材料科技有限公司 Preparation method of negative electrode material of silicon oxide lithium ion battery and preparation method of negative electrode piece of battery
JP2021508932A (en) * 2017-12-22 2021-03-11 ゼンラブズ・エナジー・インコーポレイテッドZenlabs Energy, Inc. Electrodes with silicon oxide active material for lithium ion cells that achieve high capacity, high energy density and long cycle life performance
CN114094191A (en) * 2021-11-24 2022-02-25 东莞新能源科技有限公司 Electrolyte, electrochemical device containing electrolyte and electronic device
WO2024070707A1 (en) * 2022-09-29 2024-04-04 パナソニックIpマネジメント株式会社 Negative-electrode material for secondary battery, and secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307081A (en) * 1998-04-17 1999-11-05 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery and its manufacture
JP2013062026A (en) * 2011-09-12 2013-04-04 Toyota Industries Corp Lithium ion secondary battery and manufacturing method therefor
WO2013183655A1 (en) * 2012-06-05 2013-12-12 日本電気株式会社 Lithium secondary cell
WO2014080871A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
JP2014137996A (en) * 2013-01-16 2014-07-28 Samsung Sdi Co Ltd Lithium battery
WO2015025877A1 (en) * 2013-08-21 2015-02-26 積水化学工業株式会社 Lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307081A (en) * 1998-04-17 1999-11-05 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery and its manufacture
JP2013062026A (en) * 2011-09-12 2013-04-04 Toyota Industries Corp Lithium ion secondary battery and manufacturing method therefor
WO2013183655A1 (en) * 2012-06-05 2013-12-12 日本電気株式会社 Lithium secondary cell
WO2014080871A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
JP2014137996A (en) * 2013-01-16 2014-07-28 Samsung Sdi Co Ltd Lithium battery
WO2015025877A1 (en) * 2013-08-21 2015-02-26 積水化学工業株式会社 Lithium ion secondary battery

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014188A (en) * 2016-07-19 2018-01-25 株式会社豊田自動織機 Negative electrode active material, negative electrode, and method of manufacturing negative electrode
WO2018051675A1 (en) * 2016-09-14 2018-03-22 日本電気株式会社 Lithium secondary battery
CN109690860A (en) * 2016-09-14 2019-04-26 日本电气株式会社 Lithium secondary battery
JPWO2018051675A1 (en) * 2016-09-14 2019-07-18 日本電気株式会社 Lithium secondary battery
JP7014169B2 (en) 2016-09-14 2022-02-01 日本電気株式会社 Lithium secondary battery
JP2018056021A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Lithium ion secondary battery
JP2018067501A (en) * 2016-10-21 2018-04-26 株式会社Gsユアサ Nonaqueous electrolyte power storage device
CN110024198B (en) * 2016-12-28 2022-05-03 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
CN110024198A (en) * 2016-12-28 2019-07-16 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
JP2021193672A (en) * 2017-06-30 2021-12-23 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7279757B2 (en) 2017-06-30 2023-05-23 株式会社レゾナック Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019012646A (en) * 2017-06-30 2019-01-24 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11450888B2 (en) 2017-08-10 2022-09-20 Gs Yuasa International Ltd. Nonaqueous electrolyte and nonaqueous electrolyte energy storage device
WO2019031598A1 (en) * 2017-08-10 2019-02-14 株式会社Gsユアサ Nonaqueous electrolyte and nonaqueous electrolyte electricity storage element
JP7152721B2 (en) 2017-08-10 2022-10-13 株式会社Gsユアサ Non-aqueous electrolyte and non-aqueous electrolyte storage element
JPWO2019031598A1 (en) * 2017-08-10 2020-09-03 株式会社Gsユアサ Non-aqueous electrolyte and non-aqueous electrolyte power storage elements
JP7454502B2 (en) 2017-12-22 2024-03-22 アイオンブロックス・インコーポレイテッド Electrodes using silicon oxide active materials for lithium-ion cells to achieve high capacity, high energy density and long cycle life performance
US11742474B2 (en) 2017-12-22 2023-08-29 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
JP2021508932A (en) * 2017-12-22 2021-03-11 ゼンラブズ・エナジー・インコーポレイテッドZenlabs Energy, Inc. Electrodes with silicon oxide active material for lithium ion cells that achieve high capacity, high energy density and long cycle life performance
CN108365265A (en) * 2018-05-15 2018-08-03 中山弘毅新材料有限公司 A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery
CN108820049A (en) * 2018-06-29 2018-11-16 吉林大学 A kind of achievable multi-axial cord concentrates the automobile B-column of energy-absorbing
JP7361316B2 (en) 2018-07-27 2023-10-16 パナソニックIpマネジメント株式会社 Secondary battery and its manufacturing method
CN112368871A (en) * 2018-07-27 2021-02-12 松下知识产权经营株式会社 Secondary battery and method for manufacturing same
JPWO2020021749A1 (en) * 2018-07-27 2021-08-02 パナソニックIpマネジメント株式会社 Secondary battery and its manufacturing method
WO2020021749A1 (en) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Secondary battery and method of manufacturing same
WO2020063887A1 (en) * 2018-09-28 2020-04-02 宁德时代新能源科技股份有限公司 Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and apparatus
WO2020063886A1 (en) * 2018-09-28 2020-04-02 宁德时代新能源科技股份有限公司 Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and device
CN110970652A (en) * 2018-09-28 2020-04-07 宁德时代新能源科技股份有限公司 Non-aqueous electrolyte and lithium ion battery
CN110970661A (en) * 2018-09-28 2020-04-07 宁德时代新能源科技股份有限公司 Non-aqueous electrolyte and lithium ion battery
US11949073B2 (en) 2018-09-28 2024-04-02 Contemporaty Amperex Technology Co., Limited Nonaqueous electrolytic solution, lithium-ion battery, battery module, battery pack, and apparatus
CN111082138A (en) * 2018-10-19 2020-04-28 Sk新技术株式会社 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN111293361A (en) * 2018-12-10 2020-06-16 Sk新技术株式会社 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN111463423A (en) * 2020-04-07 2020-07-28 山东斯艾诺德新材料科技有限公司 Preparation method of negative electrode material of silicon oxide lithium ion battery and preparation method of negative electrode piece of battery
CN114094191A (en) * 2021-11-24 2022-02-25 东莞新能源科技有限公司 Electrolyte, electrochemical device containing electrolyte and electronic device
CN114094191B (en) * 2021-11-24 2024-01-30 东莞新能源科技有限公司 Electrolyte, electrochemical device and electronic device comprising same
WO2024070707A1 (en) * 2022-09-29 2024-04-04 パナソニックIpマネジメント株式会社 Negative-electrode material for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JPWO2016088837A1 (en) 2017-09-21
JP6705384B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6705384B2 (en) Lithium secondary battery
CN108292779B (en) Lithium ion secondary battery
JP5319899B2 (en) Non-aqueous electrolyte battery
CN109216758B (en) Nonaqueous electrolyte battery and method for manufacturing nonaqueous electrolyte battery
JP5487297B2 (en) Non-aqueous electrolyte battery
WO2016063902A1 (en) Secondary battery
JP6123682B2 (en) Lithium secondary battery
WO2017047280A1 (en) Lithium secondary battery and method for producing same
EP3306733B1 (en) Lithium ion secondary battery
JP6607188B2 (en) Positive electrode and secondary battery using the same
US10840551B2 (en) Lithium secondary battery and manufacturing method therefor
WO2016140342A1 (en) Secondary battery
CN112514133A (en) Lithium secondary battery
WO2019235469A1 (en) Reduced graphene-based material
WO2012049889A1 (en) Secondary battery and electrolyte solution for secondary battery to be used in same
CN111095617A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery comprising same
WO2014171518A2 (en) Lithium-ion secondary battery
JP2012221681A (en) Lithium secondary battery and manufacturing method thereof
JP6054540B2 (en) Positive electrode active material, non-aqueous electrolyte battery, and battery pack
US10707519B2 (en) Lithium ion secondary battery
WO2018096889A1 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
JP2014116326A (en) Nonaqueous electrolyte battery
JP6179511B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864880

Country of ref document: EP

Kind code of ref document: A1