WO2016088216A1 - Optical filter manufacturing method - Google Patents

Optical filter manufacturing method Download PDF

Info

Publication number
WO2016088216A1
WO2016088216A1 PCT/JP2014/081955 JP2014081955W WO2016088216A1 WO 2016088216 A1 WO2016088216 A1 WO 2016088216A1 JP 2014081955 W JP2014081955 W JP 2014081955W WO 2016088216 A1 WO2016088216 A1 WO 2016088216A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
layer
openings
mask layer
forming
Prior art date
Application number
PCT/JP2014/081955
Other languages
French (fr)
Japanese (ja)
Inventor
甲二 埴原
松本 耕
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2014/081955 priority Critical patent/WO2016088216A1/en
Priority to JP2016562139A priority patent/JPWO2016088216A1/en
Publication of WO2016088216A1 publication Critical patent/WO2016088216A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to a method for manufacturing an optical filter in which a plurality of filter portions having different transmission characteristics are integrally formed.
  • the conventional manufacturing method when the mask member is fixedly arranged on the light receiving element array, the position of each filter part to be formed is masked against the workpiece in order to avoid displacement from each light receiving part of the light receiving element array. It was necessary to align the members with high accuracy. However, in order to perform such mechanical alignment with high accuracy, an expensive special alignment mechanism is required. As a result, the conventional manufacturing method has a problem that the manufacturing cost of the optical filter increases.
  • the present invention provides a method of manufacturing an optical filter capable of easily and accurately aligning a sputter mask with respect to a workpiece and forming an optical filter constituting a plurality of filter portions easily and accurately. It is an issue.
  • the optical filter manufacturing method of the present invention is an optical filter manufacturing method for forming an optical filter constituting a plurality of filter portions on a workpiece, and a spacer layer film forming step for forming a spacer layer on the workpiece, A mask layer film forming step for forming a mask layer on the formed spacer layer, and opening formation for forming a plurality of openings corresponding to a plurality of filter portions and having different aperture ratios in the formed mask layer A step of removing a portion corresponding to the plurality of openings in the spacer layer formed, and a step of removing the filter layer on the workpiece through the mask layer formed with the plurality of openings. And performing a filter layer growth step for vapor phase growth.
  • the partial removal step it is preferable to perform an ashing process or a dry etching process on the spacer layer through a mask layer in which a plurality of openings are formed.
  • the spacer layer is an organic material such as a resist, an ashing process is performed.
  • each opening has the above-described opening ratio by alternately arranging a plurality of shielding portions and openings.
  • the opening width S of the openings in the side-by-side direction is preferably larger than the film thickness D formed unshielded in the filter layer growth step.
  • the “film thickness D deposited without shielding” is “film thickness deposited without a sputtering mask”.
  • the film thickness D is equivalent to the “film thickness formed on the mask layer in the filter layer growth step”.
  • the thickness T of the mask layer formed by the mask layer forming step is not less than one third of the film thickness D formed unshielded in the filter layer growing step, and the openings in the parallel direction are formed.
  • the opening width S or less is preferable.
  • the thickness H of the spacer layer formed by the spacer layer forming step is preferably not less than the formation pitch of openings in the juxtaposed direction and not more than 200 ⁇ m.
  • a hole forming process for forming a hole in the spacer layer, in which the mask layer material enters during the mask layer forming process and the alignment mark is recessed in the mask layer is further executed.
  • the plurality of openings are preferably formed with reference to the recessed alignment mark.
  • the opening forming step it is preferable to form a plurality of openings by a photolithography process.
  • the spectroscope 1 is a non-movable type analyzer that measures an intensity distribution (an electromagnetic wave spectrum of light) in 18 wavelength regions obtained by dividing a visible light region into 18 regions. That is, the light intensity distribution measuring device measures the intensity distribution of the wavelengths of the 18 colors in the incident light (inspection light).
  • the spectroscope 1 deflects incident light 11 having a light shielding structure that forms an incident port 11a, a diffusion plate 12 that diffuses incident light from the incident port 11a, and diffused incident light. Formed on the light guide plate 13, the collimator lens array 14 that converts the deflected incident light into parallel light, the light receiving element array 15 that forms 18 light receiving elements 25 that receive the parallel light, and the 18 light receiving elements 25. And a control unit 17 that measures the intensity distribution of each wavelength based on the output values (photocurrent values) of the 18 light receiving elements 25. .
  • Incident light from the entrance 11 a is diffused by the diffusion plate 12, deflected by the light guide plate 13, and guided to 18 light receiving elements 25 through the collimator lens array 14 and the transmission wavelength variable interference filter 16. .
  • the guided light is converted into a photocurrent value by the light receiving element 25, and the control unit 17 measures the intensity distribution of each wavelength based on each photocurrent value.
  • the light receiving element array 15 includes a photodiode array, and includes a P + substrate 21, a P-EPI layer 22 disposed on the P + substrate 21, and an N-EPI layer formed on the P-EPI layer 22. 23, and a plurality of N + layers 24 formed side by side on the N-EPI layer 23. Accordingly, the light receiving element array 15 constitutes 18 light receiving elements (light receiving portions) 25 for each N + layer 24.
  • Each light receiving element 25 is a photoelectric conversion element that converts received light to obtain a photocurrent value (output value).
  • the transmission wavelength variable interference filter 16 includes a dielectric multilayer film (filter layer) 16a in which a plurality of high refractive materials (for example, TiO 2 ) and low refractive materials (for example, SiO 2 ) are alternately stacked.
  • the dielectric multilayer film 16a is formed so as to increase in thickness in the direction in which the light receiving elements 25 are arranged.
  • the dielectric multilayer film 16a having a different thickness at each position integrally forms 18 filter portions 28 having different transmission peaks. That is, each portion having a different thickness of the dielectric multilayer film 16 a functions as 18 filter portions 28.
  • the 18 filter portions 28 correspond to the 18 light receiving elements 25, respectively, and are formed on the light receiving surfaces of the 18 light receiving elements 25, respectively.
  • the film thickness of the dielectric multilayer film 16 a is formed to be uniform for each filter unit 28, and the surface of each filter unit is parallel to the light receiving surface of each light receiving element 25. Is formed.
  • Each filter unit 28 interferes with light received by each corresponding light receiving element 25 and filters the light with each transmission characteristic. Accordingly, each light receiving element 25 is configured to receive the light filtered by each filter unit 28.
  • the transmission wavelength variable interference filter 16 is formed on the light receiving element array 15 by forming the dielectric multilayer film 16a on the light receiving element array 15 (work).
  • a mask formation step is performed (see FIG. 3B).
  • the sputter mask 30 is formed on the light receiving element array 15 by a fine processing process (semiconductor manufacturing process).
  • the sputter mask 30 includes a mask main body 31 serving as a shielding portion, and a spacer 32 that separates the mask main body 31 from the light receiving element array 15 by a predetermined separation distance.
  • the mask main body 31 includes each filter.
  • a plurality of apertures 33 having different aperture ratios (transmittances) are provided at positions corresponding to the portions 28 (each light receiving element 25). Details of the sputtering mask 30 and the mask forming process will be described later.
  • a multilayer film growth process (filter layer growth process) is performed (see FIG. 3C).
  • the dielectric multilayer film 16a is formed on the light receiving element array 15 by performing a sputtering process through the sputtering mask 30 formed in the mask formation step. That is, in the multilayer film growth step, the dielectric multilayer film 16a is vapor-phase grown on the light receiving element array through the sputtering mask 30 by a sputtering apparatus.
  • the aperture ratios of the openings 33 of the mask body 31 are different, vapor deposition materials are deposited on the light receiving elements 25 with different shielding rates.
  • vapor phase growth materials are formed on the respective light receiving elements 25 with different film thicknesses.
  • a step-like dielectric multilayer film 16a as shown in FIG. 2 is formed on the light receiving element array 15, and 18 filters are formed.
  • the transmission wavelength variable interference filter 16 constituting the unit 28 is formed.
  • a mask removal step is performed (see FIG. 3D).
  • the sputter mask 30 on the light receiving element array 15 is removed (lift-off) with a solution or the like. That is, a later-described mask layer 62 constituting the mask body 31 and a later-described spacer layer 61 constituting the spacer 32 are removed. This completes the manufacturing operation.
  • the sputter mask 30 formed in the mask forming step includes the mask main body 31 serving as a shielding portion and the spacer 32 that separates the mask main body 31 from the light receiving element array 15 by a predetermined distance. .
  • the mask body 31 is made of Si (silicon), and a plurality (18) of aperture ratios are different at positions corresponding to the respective filter portions 28 (each light receiving element 25).
  • the opening 33 is provided.
  • the aperture ratio of each opening becomes the shielding rate of the vapor phase growth material in the multilayer film growth process, thereby adjusting the accumulation amount of the vapor phase growth material at each position of the light receiving element array 15,
  • the film thickness of each filter part 28 is adjusted. With this film thickness control, the transmission characteristics of each filter section on each light receiving element are determined.
  • Each opening portion 33 has the above-described opening ratios by alternately arranging a plurality of shielding portions 41 and openings 42 in parallel.
  • the width L of each shielding part 41 in the juxtaposed direction is fixed at 10 ⁇ m.
  • the opening ratio is configured by adjusting (making different) the opening width S of each opening in the juxtaposed direction.
  • the opening width S of each opening 42 is set to be larger than the film thickness D formed without shielding in the multilayer growth process.
  • the thickness T of the mask body 31 is not less than one-third of the film thickness D formed unshielded in the multilayer film growth step, and not more than the opening width S of the opening 42. That is, the minimum opening width S is set to be equal to or smaller than the plurality of openings 33.
  • the thickness T of the mask body 31 is 1 ⁇ m or more and 10 ⁇ m or less.
  • the spacer 32 is made of a photoresist.
  • the height H of the spacer 32 is not less than the formation pitch (S + L) of the openings 42 in the parallel arrangement direction of the mask body 31 and not more than 200 ⁇ m. That is, the maximum formation pitch (S + L) or more in the plurality of openings 33 is set.
  • the height H of the spacer 32 is not less than 10 ⁇ m and not more than 100 ⁇ m.
  • the height H of the spacer 32 is the above-mentioned separation distance that separates the mask main body 31 from the light receiving element array 15.
  • a hole 51 for forming the alignment mark 34 in the mask body 31 is formed on the surface of the spacer 32.
  • the material of the mask layer 62 penetrates into the hole 51 when a mask layer 62 described later constituting the mask main body 31 is formed.
  • the alignment mark 34 is recessed in the mask layer 62, and the alignment mark 34 is formed in the mask body 31.
  • the spacer layer 61 is formed on the light receiving element array 15 by the exposure apparatus (spacer layer formation step). Specifically, the application of a 15 ⁇ m-thick photoresist (negative type) to the surface of the light receiving element array 15 and the entire exposure to the photoresist are repeated twice (see FIGS. 5B and 5C). ). Thereafter, in order to form the hole 51, a 15 ⁇ m-thick photoresist (negative type) is applied, and then the photoresist is exposed to light using a photomask for forming the hole 51, and then developed. Processing and baking are performed (hole forming step) (see FIG.
  • a spacer layer 61 having a thickness of 40 ⁇ m and a hole 51 is formed.
  • the exposure process using the photomask for forming the hole 51 is performed with reference to an alignment mark (not shown) formed on the light receiving element array 15.
  • the thickness of the spacer layer 61 formed here is the height H of the spacer 32, the thickness of the spacer layer 61 is set to be not less than the formation pitch (S + L) of the openings 42 and not more than 200 ⁇ m. ing.
  • a mask layer 62 is formed on the spacer layer 61 by a sputtering apparatus (mask layer forming step) (see FIG. 5E). That is, by performing a sputtering process on the spacer layer 61, Si is vapor-grown over the entire surface of the spacer layer 61, and a 2 ⁇ m-thick mask layer 62 made of Si is formed. At this time, the vapor phase growth material (Si) enters the hole 51, and the alignment mark 34 is recessed in the mask layer 62. Since the thickness of the mask layer 62 formed here is the thickness T of the mask main body 31, the thickness of the mask layer 62 is the film thickness D formed unshielded in the multilayer growth process. Is set to 1/3 or more and the opening width S or less.
  • the plurality of openings 33 are formed in the mask layer 62 by a photoresist process (opening forming step) (see FIG. 5F). Specifically, after applying a photoresist on the mask layer 62 by an exposure apparatus, an exposure process is performed through a photomask that forms a resist pattern for forming the plurality of openings 33, and then a development process is performed. Do. Thereby, a resist pattern for forming the plurality of openings 33 is formed. Then, after etching is performed through the formed resist pattern by deep reactive ion etching (Deep RIE) using an etching apparatus, the resist pattern is removed with a solution or the like.
  • Deep ion etching Deep reactive ion etching
  • a plurality of openings 33 are formed in the mask layer 62, and the mask body 31 is formed.
  • the exposure process through the photomask for forming the resist pattern is performed with reference to the alignment mark 34 provided in the mask layer 62 as a reference. That is, in this step, a plurality of openings 33 are formed in the mask layer 62 with the alignment mark 34 as a reference.
  • the spacer layer 61 is subjected to an ashing process for a long time (for example, 10 hours or more) through the mask body 31 (see FIG. 5G). .
  • ashing process portions of the spacer layer 61 corresponding to the plurality of openings 33 are removed (partial removal step).
  • a gap is formed between each opening 33 and the light receiving element array 15 (each light receiving element 25).
  • the spacer 32 is formed, and the sputter mask 30 including the mask main body 31 and the spacer 32 is formed.
  • the mask forming process is completed.
  • the dielectric multilayer film 16a is vapor-phase grown on the light receiving element array 15 through the sputter mask 30 thus formed, that is, through the mask layer 62 in which the plurality of openings 33 are formed.
  • a transmission wavelength variable interference filter 16 is formed on the array 15.
  • the manufacturing method according to the second embodiment uses a dry film resist to form the spacer layer 61 in the mask formation step.
  • a dry film resist (negative type) having a thickness of 40 ⁇ m is added on the surface of the light receiving element array 15 ( (Refer FIG.6 (b)). Then, after performing exposure processing using a photomask for forming the hole 51 for an exposure amount that is half the exposure amount for exposing the entire thickness, the entire surface exposure processing is performed for the remaining half exposure amount (FIG. 6). (See (c)). Thereafter, development processing and baking processing are performed (see FIG. 6D). Thereby, the spacer layer 61 in which the hole 51 is formed is formed.
  • the spacer layer film forming process for forming the spacer layer 61, the mask layer film forming process for forming the mask layer 62, and the plurality of openings 33 are formed in the mask layer 62. Since the sputter mask 30 is formed by performing the opening forming step to be performed and the partial removal step of removing the portions corresponding to the plurality of openings 33 of the spacer layer 61, a micro-fabrication process (semiconductor manufacturing) The sputtering mask 30 can be formed by the process. As a result, the sputter mask 30 can be aligned with the light receiving element array 15 in the microfabrication process.
  • the transmission wavelength variable interference filter 16 constituting the plurality of filter portions 28 can be easily and accurately formed.
  • the spacer layer 61 with a photoresist, the partial removal process and the mask removal process can be easily performed.
  • the partial removal process is realized by an ashing process through the mask body 31, thereby making the partial removal process easier. Can be done. That is, gaps between the plurality of openings 33 and the light receiving element array 15 (the plurality of light receiving elements 25) can be easily formed.
  • the dielectric multilayer film 16a can be vapor phase grown without any delay. That is, the film thickness formed unshielded in the multilayer film growth step is “D”, and the film thickness formed on the inner surface of each opening 42 with respect to the film thickness formed unshielded in the multilayer film growth step.
  • the ratio is “c”
  • the thickness of the mask main body 31 (mask layer 62) is set to one third or more of the film thickness D formed unshielded in the multilayer film growth step, and to the opening width S or less of the opening 42.
  • the mask main body 31 is not destroyed by the internal stress of the film formation, and the film thickness of the dielectric multilayer film 16a in each filter portion can be formed uniformly. That is, the height H of the spacer 32 is set to 30 ⁇ m, the opening width S of the opening 42 is set to 10 ⁇ m, the width L of the shielding portion 41 is set to 10 ⁇ m, and the film thickness distribution at the time of non-shielding in the multilayer film growth process is cos 5 ⁇ .
  • a simulation result of the film thickness distribution as shown in FIG. 7A was obtained.
  • the thickness T of the mask body 31 is 10 ⁇ m or less, that is, the opening width S or less of the opening 42, it can be seen that the film thickness of the dielectric multilayer film 16a can be formed uniformly.
  • the mask main body 31 is not destroyed by the internal stress of the film formation, and the film thickness D is not less than one third of the film thickness D formed unshielded in the multilayer film growth process.
  • the mask main body 31 is not destroyed by stress, and the film thickness of the dielectric multilayer film 16a in each filter portion 28 can be formed uniformly.
  • the thickness of the dielectric multilayer film 16a in each filter portion 28 can be made more uniform. Can be formed. That is, the simulation was performed assuming that the height H of the spacer 32 is 30 ⁇ m, the thickness T of the mask body 31 is 0 ⁇ m, and the film thickness distribution at the time of non-shielding in the multilayer film growth process is cos 5 ⁇ . The simulation results of the film thickness distribution as shown in (b) to (d) were obtained.
  • the film thickness of the dielectric multilayer film 16a can be formed uniformly. Therefore, by setting the height H of the spacer 32 to be equal to or greater than the formation pitch (S + L) of the openings 42, the thickness of the dielectric multilayer film 16a in each filter portion 28 can be formed more uniformly. Further, by setting the height H of the spacer 32 to 200 ⁇ m or less, the spacer layer 61 can be formed without any defect using, for example, a dry film resist, and the film thickness of the dielectric multilayer film 16a is formed more uniformly. be able to.
  • the resist pattern is removed when forming the plurality of openings 33, and the spacer layer 61 is partially removed (the part corresponding to the openings 33 is removed).
  • the structure which performs these by integral ashing processing may be sufficient.
  • the mask layer 62 and the spacer layer 61 are removed in the mask removal process. However, in the mask removal process, only the mask layer 62 out of the mask layer 62 and the spacer layer 61 is removed. The structure which removes and leaves the spacer layer 61 may be sufficient.
  • the dielectric multilayer film 16a is vapor-phase grown by sputtering in the multilayer film growth step.
  • the dielectric multilayer film 16a is vapor-grown by vapor deposition. It may be.
  • the spacer layer 61 is partially removed (removal of the portion corresponding to the opening 33) by ashing through the mask body 31.
  • a configuration in which the spacer layer 61 is partially removed by a dry etching process through the mask body 31 may be employed.
  • the dielectric multilayer film 16a is formed so as to increase in thickness in the direction in which the light receiving elements 25 are arranged. That is, the thickness of each filter portion 28 is increased in the arrangement order, but the thickness is not limited to this as long as the thickness of each filter portion 28 is uniform.
  • FIG. 8A a configuration may be adopted in which the order of arrangement is ignored and the film thickness of an arbitrary filter section 28 is set to an arbitrary thickness. That is, the filter part 28 of each desired transmission characteristic may be formed in random order.
  • the dielectric multilayer film 16a may be formed so as to gradually increase in thickness in the direction in which the light receiving elements 25 are arranged by the above manufacturing operation.
  • positions the several light receiving element 25 side by side it is not restricted to this.
  • positions the some light receiving element 25 in matrix form may be sufficient.
  • FIG. 9B a configuration in which a plurality of light receiving elements 25 are arranged in a ring shape may be employed.
  • the dielectric multilayer film 16a is formed in accordance with the arrangement of the plurality of light receiving elements 25. That is, the plurality of filter portions 28 are formed in a matrix or in a ring shape in accordance with the arrangement of the plurality of light receiving elements 25. Therefore, the plurality of openings 33 of the mask main body 31 are configured to be arranged in a matrix or an annular shape.
  • the light receiving element array 15 is used as a work, and the transmission wavelength variable interference filter 16 is formed on the light receiving element array 15.
  • the present invention is not limited to this.
  • work may be sufficient.
  • the present invention is applied to the method for manufacturing the transmission wavelength variable interference filter 16, but any method for manufacturing another optical filter can be used as long as it is a method for manufacturing an optical filter having a plurality of filter portions 28.
  • the present invention may be applied to.

Abstract

The present invention addresses the problem of providing an optical filter manufacturing method whereby a sputter mask can be easily and accurately aligned with a workpiece, and an optical filter constituting a plurality of filter sections can be easily and accurately formed. The present invention is characterized by performing: a spacer layer film-forming step for film-forming a spacer layer 61 on a light receiving element array 15; a mask layer film-forming step for film-forming a mask layer 62 on the spacer layer 61; an opening forming step for forming a plurality of openings 33 in the mask layer 62; a part removing step for removing spacer layer 61 parts corresponding to the openings 33; and a multilayer film-growing step for vapor-growing a dielectric multilayer film 16a on the light receiving element array 15 via the mask layer 62.

Description

光学フィルターの製造方法Manufacturing method of optical filter
 本発明は、透過特性が異なる複数のフィルター部を一体に構成する光学フィルターの製造方法に関するものである。 The present invention relates to a method for manufacturing an optical filter in which a plurality of filter portions having different transmission characteristics are integrally formed.
 従来、この種の光学フィルターの製造方法として、各フィルター部に対応する位置の開口率が異なるマスク部材を用い、当該マスク部材を介してワーク上に誘電体多層膜を気相成長させて、当該誘電体多層膜から成る透過波長可変干渉フィルターを製造するものが知られている(特許文献1参照)。この製造方法の実施例では、受光素子アレイとは別に形成した上記マスク部材を、受光素子アレイ上に固定配置した状態で、スパッタリング処理を行う。これにより、各位置で膜厚が異なる誘電体多層膜を形成する。このような構成により、マスク部材を回転または移動させることなく、複数のフィルター部を構成する透過波長可変干渉フィルターを形成することができる。 Conventionally, as a method of manufacturing this type of optical filter, a mask member having a different aperture ratio at a position corresponding to each filter portion is used, and a dielectric multilayer film is vapor-phase grown on a workpiece via the mask member, One that manufactures a transmission wavelength variable interference filter made of a dielectric multilayer film is known (see Patent Document 1). In this embodiment of the manufacturing method, the sputtering process is performed in a state where the mask member formed separately from the light receiving element array is fixedly arranged on the light receiving element array. Thus, dielectric multilayer films having different film thicknesses at the respective positions are formed. With such a configuration, it is possible to form a transmission wavelength variable interference filter constituting a plurality of filter portions without rotating or moving the mask member.
国際公開第2014/033784号公報International Publication No. 2014/033784
 ところで、上記従来の製造方法では、受光素子アレイにマスク部材を固定配置する際、形成する各フィルター部の位置が受光素子アレイの各受光部に対しズレてしまうのを避けるため、ワークに対しマスク部材を高精度でアライメントする必要があった。しかしながら、このような機械的アライメントを精度良く行うには、高価な特段のアライメント機構が必要である。その結果、上記従来の製造方法では、光学フィルターの製造コストが増大してしまうという問題があった。 By the way, in the above conventional manufacturing method, when the mask member is fixedly arranged on the light receiving element array, the position of each filter part to be formed is masked against the workpiece in order to avoid displacement from each light receiving part of the light receiving element array. It was necessary to align the members with high accuracy. However, in order to perform such mechanical alignment with high accuracy, an expensive special alignment mechanism is required. As a result, the conventional manufacturing method has a problem that the manufacturing cost of the optical filter increases.
 本発明は、ワークに対しスパッタマスクを容易に且つ精度良く位置合わせすることができ、複数のフィルター部を構成する光学フィルターを容易に且つ精度良く形成することができる光学フィルターの製造方法を提供することを課題としている。 The present invention provides a method of manufacturing an optical filter capable of easily and accurately aligning a sputter mask with respect to a workpiece and forming an optical filter constituting a plurality of filter portions easily and accurately. It is an issue.
 本発明の光学フィルターの製造方法は、複数のフィルター部を構成する光学フィルターをワーク上に形成する光学フィルターの製造方法であって、ワーク上にスペーサー層を成膜するスペーサー層成膜工程と、成膜したスペーサー層上にマスク層を成膜するマスク層成膜工程と、成膜したマスク層に、複数のフィルター部に対応し且つ開口率が相違する複数の開口部を形成する開口部形成工程と、成膜したスペーサー層の、複数の開口部に対応する部分を除去する部分除去工程と、部分除去工程の後に、フィルター層を、複数の開口部を形成したマスク層を介してワーク上に気相成長させるフィルター層成長工程と、を実行することを特徴とする。 The optical filter manufacturing method of the present invention is an optical filter manufacturing method for forming an optical filter constituting a plurality of filter portions on a workpiece, and a spacer layer film forming step for forming a spacer layer on the workpiece, A mask layer film forming step for forming a mask layer on the formed spacer layer, and opening formation for forming a plurality of openings corresponding to a plurality of filter portions and having different aperture ratios in the formed mask layer A step of removing a portion corresponding to the plurality of openings in the spacer layer formed, and a step of removing the filter layer on the workpiece through the mask layer formed with the plurality of openings. And performing a filter layer growth step for vapor phase growth.
 この場合、部分除去工程では、複数の開口部を形成したマスク層を介して、スペーサー層にアッシング処理またはドライエッチング処理を行うことが好ましい。なお、スペーサー層がレジストのような有機材料の場合には、アッシング処理を行う。 In this case, in the partial removal step, it is preferable to perform an ashing process or a dry etching process on the spacer layer through a mask layer in which a plurality of openings are formed. When the spacer layer is an organic material such as a resist, an ashing process is performed.
 上記の光学フィルターの製造方法において、フィルター層成長工程の後に、マスク層およびスペーサー層を除去するマスク除去工程を、更に実行することが好ましい。 In the above optical filter manufacturing method, it is preferable to further execute a mask removal step of removing the mask layer and the spacer layer after the filter layer growth step.
 上記の光学フィルターの製造方法において、フィルター層成長工程の後に、マスク層およびスペーサー層のうち、マスク層のみを除去するマスク除去工程を、更に実行することが好ましい。 In the above optical filter manufacturing method, it is preferable to further execute a mask removal step of removing only the mask layer out of the mask layer and the spacer layer after the filter layer growth step.
 一方、各開口部は、遮蔽部と開口とを交互に複数並設して上記開口率を構成していることが好ましい。 On the other hand, it is preferable that each opening has the above-described opening ratio by alternately arranging a plurality of shielding portions and openings.
 この場合、並設方向における開口の開口幅Sは、フィルター層成長工程において非遮蔽で成膜される膜厚Dを超える大きさであることが好ましい。なお、「非遮蔽で成膜される膜厚D」とは、「スパッタマスク無しで成膜される膜厚」である。また、当該膜厚Dは、「フィルター層成長工程においてマスク層上に成膜される膜厚」と同値である。 In this case, the opening width S of the openings in the side-by-side direction is preferably larger than the film thickness D formed unshielded in the filter layer growth step. The “film thickness D deposited without shielding” is “film thickness deposited without a sputtering mask”. The film thickness D is equivalent to the “film thickness formed on the mask layer in the filter layer growth step”.
 また、マスク層成膜工程によって成膜するマスク層の厚さTは、フィルター層成長工程において非遮蔽で成膜される膜厚Dの3分の1以上であり、且つ並設方向における開口の開口幅S以下であることが好ましい。 Further, the thickness T of the mask layer formed by the mask layer forming step is not less than one third of the film thickness D formed unshielded in the filter layer growing step, and the openings in the parallel direction are formed. The opening width S or less is preferable.
 さらに、スペーサー層成膜工程によって成膜するスペーサー層の厚さHは、並設方向における開口の形成ピッチ以上であり、且つ200μm以下であることが好ましい。 Furthermore, the thickness H of the spacer layer formed by the spacer layer forming step is preferably not less than the formation pitch of openings in the juxtaposed direction and not more than 200 μm.
 一方、マスク層成膜工程の時にマスク層の材料が入りこんでマスク層にアライメントマークが凹設される穴部を、スペーサー層に形成する穴部形成工程を、更に実行し、開口部形成工程では、凹設されたアライメントマークを基準として、複数の開口部を形成することが好ましい。 On the other hand, a hole forming process for forming a hole in the spacer layer, in which the mask layer material enters during the mask layer forming process and the alignment mark is recessed in the mask layer, is further executed. The plurality of openings are preferably formed with reference to the recessed alignment mark.
 また、開口部形成工程では、フォトリソグラフィプロセスにより、複数の開口部を形成することが好ましい。 In the opening forming step, it is preferable to form a plurality of openings by a photolithography process.
本発明の一実施形態に係る分光器を模式的に示した構成図である。It is the block diagram which showed typically the spectrometer which concerns on one Embodiment of this invention. 透過波長可変干渉フィルターを示した模式図である。It is the schematic diagram which showed the transmissive wavelength variable interference filter. 透過波長可変干渉フィルターの製造動作を説明するための説明図である。It is explanatory drawing for demonstrating the manufacture operation | movement of a transmission wavelength variable interference filter. マスク形成工程で形成するスパッタマスクを示した模式図である。It is the schematic diagram which showed the sputtering mask formed at a mask formation process. マスク形成工程を説明するための説明図である。It is explanatory drawing for demonstrating a mask formation process. 第2実施形態におけるマスク形成工程を説明するための説明図である。It is explanatory drawing for demonstrating the mask formation process in 2nd Embodiment. (a)は、開口箇所が5つのマスク本体の厚さTを変更したときの膜厚分布のシミュレーション結果を示したグラフであり、(b)ないし(d)は、形成ピッチを変更したときの膜厚分布のシミュレーション結果を示したグラフである。(A) is the graph which showed the simulation result of the film thickness distribution when the opening location changes the thickness T of five mask main bodies, (b) thru | or (d) are when the formation pitch is changed. It is the graph which showed the simulation result of film thickness distribution. 透過波長可変干渉フィルターの変形例を示した模式図である。It is the schematic diagram which showed the modification of the transmission wavelength variable interference filter. 受光素子アレイの変形例を示した平面図である。It is the top view which showed the modification of the light receiving element array.
 以下、添付の図面を参照して、本発明の一実施形態に係る光学フィルターの製造方法について説明する。実施形態では、光学フィルターとして透過波長可変干渉フィルターを製造する透過波長可変干渉フィルターの製造方法を例示する。本製造方法は、分光器に内蔵される透過波長可変干渉フィルターを製造(形成)するものである。そこで、まず、透過波長可変干渉フィルターの製造方法について説明する前に、透過波長可変干渉フィルターおよびこれを内蔵する分光器について説明する。この分光器1は、非可動型で、可視光線領域を18分割した18個の波長域の強度分布(光の電磁波スペクトル)を測定する分析装置である。すなわち、入射光(検査光)における18色各色の波長の強度分布を測定する光強度分布測定装置である。 Hereinafter, a method for manufacturing an optical filter according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the embodiment, a method for manufacturing a transmission wavelength variable interference filter for manufacturing a transmission wavelength variable interference filter as an optical filter will be exemplified. This manufacturing method manufactures (forms) a transmission wavelength variable interference filter built in a spectroscope. Therefore, before describing a method for manufacturing a transmission wavelength variable interference filter, a transmission wavelength variable interference filter and a spectroscope incorporating the same will be described. The spectroscope 1 is a non-movable type analyzer that measures an intensity distribution (an electromagnetic wave spectrum of light) in 18 wavelength regions obtained by dividing a visible light region into 18 regions. That is, the light intensity distribution measuring device measures the intensity distribution of the wavelengths of the 18 colors in the incident light (inspection light).
 図1に示すように、分光器1は、入射口11aを形成する遮光構造を有した入射部11と、入射口11aからの入射光を拡散する拡散板12と、拡散した入射光を偏向する導光板13と、偏向した入射光を平行光にするコリメーターレンズアレイ14と、当該平行光を受光する18個の受光素子25を成す受光素子アレイ15と、18個の受光素子25上に形成された透過波長可変干渉フィルター(光学フィルター)16と、18個の受光素子25の各出力値(光電流値)に基づいて、各波長の強度分布を測定する制御部17と、を備えている。入射口11aからの入射光は、拡散板12により拡散された後、導光板13により偏向され、コリメーターレンズアレイ14および透過波長可変干渉フィルター16を介して、18個の受光素子25に導かれる。この導かれた光が受光素子25により光電流値に変換され、制御部17により、この各光電流値に基づき、各波長の強度分布が測定される。 As shown in FIG. 1, the spectroscope 1 deflects incident light 11 having a light shielding structure that forms an incident port 11a, a diffusion plate 12 that diffuses incident light from the incident port 11a, and diffused incident light. Formed on the light guide plate 13, the collimator lens array 14 that converts the deflected incident light into parallel light, the light receiving element array 15 that forms 18 light receiving elements 25 that receive the parallel light, and the 18 light receiving elements 25. And a control unit 17 that measures the intensity distribution of each wavelength based on the output values (photocurrent values) of the 18 light receiving elements 25. . Incident light from the entrance 11 a is diffused by the diffusion plate 12, deflected by the light guide plate 13, and guided to 18 light receiving elements 25 through the collimator lens array 14 and the transmission wavelength variable interference filter 16. . The guided light is converted into a photocurrent value by the light receiving element 25, and the control unit 17 measures the intensity distribution of each wavelength based on each photocurrent value.
 受光素子アレイ15は、フォトダイオードアレイで構成されており、P+基板21と、P+基板21上に配設されたP-EPI層22と、P-EPI層22上に形成されたN-EPI層23と、N-EPI層23上に横並びに形成された複数のN+層24と、を有している。これらによって、受光素子アレイ15は、N+層24毎の18個の受光素子(受光部)25を構成している。各受光素子25は、受光した光を変換して光電流値(出力値)を得る光電変換素子となっている。 The light receiving element array 15 includes a photodiode array, and includes a P + substrate 21, a P-EPI layer 22 disposed on the P + substrate 21, and an N-EPI layer formed on the P-EPI layer 22. 23, and a plurality of N + layers 24 formed side by side on the N-EPI layer 23. Accordingly, the light receiving element array 15 constitutes 18 light receiving elements (light receiving portions) 25 for each N + layer 24. Each light receiving element 25 is a photoelectric conversion element that converts received light to obtain a photocurrent value (output value).
 図2に示すように、透過波長可変干渉フィルター16は、高屈折材料(例えばTiO)と低屈折材料(例えばSiO)とを交互に複数積層した誘電体多層膜(フィルター層)16aで構成されている。当該誘電体多層膜16aは、受光素子25の並び方向に向かって段階的に厚く形成されている。この各位置で厚さが異なる当該誘電体多層膜16aにより、透過ピークが異なる18個のフィルター部28を一体に構成している。すなわち、誘電体多層膜16aの厚さの異なる各部分が、18個のフィルター部28として機能する。 As shown in FIG. 2, the transmission wavelength variable interference filter 16 includes a dielectric multilayer film (filter layer) 16a in which a plurality of high refractive materials (for example, TiO 2 ) and low refractive materials (for example, SiO 2 ) are alternately stacked. Has been. The dielectric multilayer film 16a is formed so as to increase in thickness in the direction in which the light receiving elements 25 are arranged. The dielectric multilayer film 16a having a different thickness at each position integrally forms 18 filter portions 28 having different transmission peaks. That is, each portion having a different thickness of the dielectric multilayer film 16 a functions as 18 filter portions 28.
 18個のフィルター部28は、18個の受光素子25にそれぞれ対応しており、18個の受光素子25の受光面上にそれぞれ形成された状態となっている。また、誘電体多層膜16aの膜厚は、フィルター部28毎にそれぞれで均一になるように形成されており、各フィルター部の表面が、各受光素子25の受光面に対し平行になるように形成されている。そして、各フィルター部28は、対応する各受光素子25に受光される光に干渉し、当該光を各透過特性でフィルタリングする。これによって、各受光素子25は、各フィルター部28でフィルタリングされた光を受光する構成となっている。 The 18 filter portions 28 correspond to the 18 light receiving elements 25, respectively, and are formed on the light receiving surfaces of the 18 light receiving elements 25, respectively. The film thickness of the dielectric multilayer film 16 a is formed to be uniform for each filter unit 28, and the surface of each filter unit is parallel to the light receiving surface of each light receiving element 25. Is formed. Each filter unit 28 interferes with light received by each corresponding light receiving element 25 and filters the light with each transmission characteristic. Accordingly, each light receiving element 25 is configured to receive the light filtered by each filter unit 28.
 次に図3を参照して、本発明の製造方法を適用した透過波長可変干渉フィルター16の製造動作について説明する。本製造動作は、受光素子アレイ15(ワーク)上に誘電体多層膜16aを形成することで、受光素子アレイ15上に透過波長可変干渉フィルター16を形成するものである。 Next, the manufacturing operation of the transmission wavelength variable interference filter 16 to which the manufacturing method of the present invention is applied will be described with reference to FIG. In this manufacturing operation, the transmission wavelength variable interference filter 16 is formed on the light receiving element array 15 by forming the dielectric multilayer film 16a on the light receiving element array 15 (work).
 図3に示すように、本製造動作では、まず、マスク形成工程を行う(図3(b)参照)。マスク形成工程では、微細加工プロセス(半導体製造プロセス)によって、受光素子アレイ15上に、スパッタマスク30を形成する。このスパッタマスク30は、遮蔽部分となるマスク本体31と、受光素子アレイ15に対しマスク本体31を所定の離間距離だけ離間させるスペーサー32と、を備えたものであり、マスク本体31は、各フィルター部28(各受光素子25)に対応する位置に、開口率(透過率)が異なる複数の開口部33を有したものである。このスパッタマスク30およびマスク形成工程の詳細については、後述する。 As shown in FIG. 3, in this manufacturing operation, first, a mask formation step is performed (see FIG. 3B). In the mask formation step, the sputter mask 30 is formed on the light receiving element array 15 by a fine processing process (semiconductor manufacturing process). The sputter mask 30 includes a mask main body 31 serving as a shielding portion, and a spacer 32 that separates the mask main body 31 from the light receiving element array 15 by a predetermined separation distance. The mask main body 31 includes each filter. A plurality of apertures 33 having different aperture ratios (transmittances) are provided at positions corresponding to the portions 28 (each light receiving element 25). Details of the sputtering mask 30 and the mask forming process will be described later.
 マスク形成工程が終了したら、多層膜成長工程(フィルター層成長工程)を行う(図3(c)参照)。多層膜成長工程では、マスク形成工程により形成したスパッタマスク30を介して、スパッタリング処理を行うことで、受光素子アレイ15上に誘電体多層膜16aを形成する。すなわち、多層膜成長工程では、スパッタ装置によって、スパッタマスク30を介して誘電体多層膜16aを受光素子アレイ上に気相成長させる。スパッタリング処理では、マスク本体31の各開口部33の開口率が相違するため、各受光素子25に対して異なる遮蔽率で気相成長材料が成膜される。その結果、各受光素子25上に、異なる膜厚で気相成長材料が成膜される。このスパッタリング処理を、高屈折材料および低屈折材料で交互に繰り返し行うことで、受光素子アレイ15上に、図2に示すような階段状の誘電体多層膜16aが成膜され、18個のフィルター部28を構成する透過波長可変干渉フィルター16が形成される。 When the mask formation process is completed, a multilayer film growth process (filter layer growth process) is performed (see FIG. 3C). In the multilayer film growth step, the dielectric multilayer film 16a is formed on the light receiving element array 15 by performing a sputtering process through the sputtering mask 30 formed in the mask formation step. That is, in the multilayer film growth step, the dielectric multilayer film 16a is vapor-phase grown on the light receiving element array through the sputtering mask 30 by a sputtering apparatus. In the sputtering process, since the aperture ratios of the openings 33 of the mask body 31 are different, vapor deposition materials are deposited on the light receiving elements 25 with different shielding rates. As a result, vapor phase growth materials are formed on the respective light receiving elements 25 with different film thicknesses. By repeating this sputtering process alternately with a high refractive material and a low refractive material, a step-like dielectric multilayer film 16a as shown in FIG. 2 is formed on the light receiving element array 15, and 18 filters are formed. The transmission wavelength variable interference filter 16 constituting the unit 28 is formed.
 多層膜成長工程が終了したら、マスク除去工程を行う(図3(d)参照)。マスク除去工程では、溶解液等により、受光素子アレイ15上のスパッタマスク30を除去する(リフトオフ)。すなわち、マスク本体31を構成する後述のマスク層62と、スペーサー32を構成する後述のスペーサー層61と、を除去する。これによって、本製造動作を終了する。 When the multilayer film growth step is completed, a mask removal step is performed (see FIG. 3D). In the mask removal step, the sputter mask 30 on the light receiving element array 15 is removed (lift-off) with a solution or the like. That is, a later-described mask layer 62 constituting the mask body 31 and a later-described spacer layer 61 constituting the spacer 32 are removed. This completes the manufacturing operation.
 次に図4(a)および図5を参照して、スパッタマスク30およびマスク形成工程の詳細について説明する。上記したように、マスク形成工程で形成するスパッタマスク30は、遮蔽部分となるマスク本体31と、受光素子アレイ15に対しマスク本体31を所定の離間距離だけ離間させるスペーサー32と、を備えている。 Next, with reference to FIG. 4A and FIG. 5, the details of the sputtering mask 30 and the mask forming process will be described. As described above, the sputter mask 30 formed in the mask forming step includes the mask main body 31 serving as a shielding portion and the spacer 32 that separates the mask main body 31 from the light receiving element array 15 by a predetermined distance. .
 図4(a)に示すように、マスク本体31は、Si(シリコン)で構成されると共に、各フィルター部28(各受光素子25)に対応する位置に、開口率が異なる複数(18個)の開口部33を有している。上記したように、当該各開口部の開口率が、多層膜成長工程における気相成長材料の遮蔽率となり、これによって、受光素子アレイ15の各位置における気相成長材料の蓄積量が調整され、各フィルター部28の膜厚が調整される。この膜厚制御によって、各受光素子上の各フィルター部の透過特性が決定する構成となっている。各開口部33は、遮蔽部41と開口42とを交互に複数並設して上記各開口率を構成している。 As shown in FIG. 4A, the mask body 31 is made of Si (silicon), and a plurality (18) of aperture ratios are different at positions corresponding to the respective filter portions 28 (each light receiving element 25). The opening 33 is provided. As described above, the aperture ratio of each opening becomes the shielding rate of the vapor phase growth material in the multilayer film growth process, thereby adjusting the accumulation amount of the vapor phase growth material at each position of the light receiving element array 15, The film thickness of each filter part 28 is adjusted. With this film thickness control, the transmission characteristics of each filter section on each light receiving element are determined. Each opening portion 33 has the above-described opening ratios by alternately arranging a plurality of shielding portions 41 and openings 42 in parallel.
 本実施形態では、上記並設方向における各遮蔽部41の幅Lは、10μmで固定とする。これに対し、各開口部33において、上記並設方向における各開口の開口幅Sを調整する(相違させる)ことで、上記開口率を構成している。ただし、各開口42の開口幅Sは、多層膜成長工程において、非遮蔽で成膜される膜厚Dを超える大きさとする。 In this embodiment, the width L of each shielding part 41 in the juxtaposed direction is fixed at 10 μm. On the other hand, in each opening 33, the opening ratio is configured by adjusting (making different) the opening width S of each opening in the juxtaposed direction. However, the opening width S of each opening 42 is set to be larger than the film thickness D formed without shielding in the multilayer growth process.
 一方、マスク本体31の厚さTは、多層膜成長工程において非遮蔽で成膜される膜厚Dの3分の1以上とし、且つ開口42の上記開口幅S以下とする。すなわち、複数の開口部33における最小の開口幅S以下とする。例えば、マスク本体31の厚さTは、1μm以上10μm以下とする。 On the other hand, the thickness T of the mask body 31 is not less than one-third of the film thickness D formed unshielded in the multilayer film growth step, and not more than the opening width S of the opening 42. That is, the minimum opening width S is set to be equal to or smaller than the plurality of openings 33. For example, the thickness T of the mask body 31 is 1 μm or more and 10 μm or less.
 スペーサー32は、フォトレジストで構成されている。また、スペーサー32の高さHは、マスク本体31の上記並設方向における開口42の形成ピッチ(S+L)以上とし、且つ200μm以下とする。すなわち、複数の開口部33における最大の形成ピッチ(S+L)以上とする。例えば、スペーサー32の高さHは、10μm以上100μm以下とする。このスペーサー32の高さHは、受光素子アレイ15に対しマスク本体31を離間させる上記離間距離となる。 The spacer 32 is made of a photoresist. The height H of the spacer 32 is not less than the formation pitch (S + L) of the openings 42 in the parallel arrangement direction of the mask body 31 and not more than 200 μm. That is, the maximum formation pitch (S + L) or more in the plurality of openings 33 is set. For example, the height H of the spacer 32 is not less than 10 μm and not more than 100 μm. The height H of the spacer 32 is the above-mentioned separation distance that separates the mask main body 31 from the light receiving element array 15.
 なお、スペーサー32の表面には、マスク本体31にアライメントマーク34を形成するための穴部51が形成されている。詳細は後述するが、マスク本体31を構成する後述のマスク層62を成膜する際、マスク層62の材料が当該穴部51に入りこむ。これによって、マスク層62にアライメントマーク34が凹設され、マスク本体31にアライメントマーク34が形成される。 Note that a hole 51 for forming the alignment mark 34 in the mask body 31 is formed on the surface of the spacer 32. Although details will be described later, the material of the mask layer 62 penetrates into the hole 51 when a mask layer 62 described later constituting the mask main body 31 is formed. As a result, the alignment mark 34 is recessed in the mask layer 62, and the alignment mark 34 is formed in the mask body 31.
 次に図5を参照して、マスク形成工程の詳細について説明する。図5に示すように、マスク形成工程では、まず、露光装置によって、受光素子アレイ15上にスペーサー層61を成膜する(スペーサー層成膜工程)。具体的には、受光素子アレイ15の表面に対し、15μm厚のフォトレジスト(ネガ型)の塗布と、当該フォトレジストへの全面露光とを2回繰り返す(図5(b)および(c)参照)。その後、上記穴部51を形成すべく、15μm厚のフォトレジスト(ネガ型)を塗布した後、当該フォトレジストに対し、穴部51を形成するフォトマスクを用いた露光処理を行い、その後、現像処理およびベーク処理を行う(穴部形成工程)(図5(d)参照)。これによって、穴部51が形成された40μm厚のスペーサー層61が形成される。なお、穴部51を形成するフォトマスクを用いた露光処理は、受光素子アレイ15上に形成された図外のアライメントマークを基準として行う。また、ここで成膜するスペーサー層61の厚さは、スペーサー32の高さHとなるため、当該スペーサー層61の厚さは、開口42の形成ピッチ(S+L)以上、且つ200μm以下に設定されている。 Next, details of the mask forming process will be described with reference to FIG. As shown in FIG. 5, in the mask formation step, first, the spacer layer 61 is formed on the light receiving element array 15 by the exposure apparatus (spacer layer formation step). Specifically, the application of a 15 μm-thick photoresist (negative type) to the surface of the light receiving element array 15 and the entire exposure to the photoresist are repeated twice (see FIGS. 5B and 5C). ). Thereafter, in order to form the hole 51, a 15 μm-thick photoresist (negative type) is applied, and then the photoresist is exposed to light using a photomask for forming the hole 51, and then developed. Processing and baking are performed (hole forming step) (see FIG. 5D). As a result, a spacer layer 61 having a thickness of 40 μm and a hole 51 is formed. Note that the exposure process using the photomask for forming the hole 51 is performed with reference to an alignment mark (not shown) formed on the light receiving element array 15. In addition, since the thickness of the spacer layer 61 formed here is the height H of the spacer 32, the thickness of the spacer layer 61 is set to be not less than the formation pitch (S + L) of the openings 42 and not more than 200 μm. ing.
 スペーサー層61を成膜(形成)したら、スパッタ装置によって、スペーサー層61上にマスク層62を成膜する(マスク層成膜工程)(図5(e)参照)。すなわち、スペーサー層61に対しスパッタリング処理を行うことで、スペーサー層61の表面全域にSiを気相成長させ、Siで構成された2μm厚のマスク層62を成膜する。このとき、上記穴部51に気相成長材料(Si)が入りこみ、マスク層62にアライメントマーク34が凹設される。なお、ここで成膜するマスク層62の厚さは、マスク本体31の厚さTとなるため、当該マスク層62の厚さは、多層膜成長工程において非遮蔽で成膜される膜厚Dの3分の1以上、且つ上記開口幅S以下に設定されている。 When the spacer layer 61 is formed (formed), a mask layer 62 is formed on the spacer layer 61 by a sputtering apparatus (mask layer forming step) (see FIG. 5E). That is, by performing a sputtering process on the spacer layer 61, Si is vapor-grown over the entire surface of the spacer layer 61, and a 2 μm-thick mask layer 62 made of Si is formed. At this time, the vapor phase growth material (Si) enters the hole 51, and the alignment mark 34 is recessed in the mask layer 62. Since the thickness of the mask layer 62 formed here is the thickness T of the mask main body 31, the thickness of the mask layer 62 is the film thickness D formed unshielded in the multilayer growth process. Is set to 1/3 or more and the opening width S or less.
 マスク層62を成膜したら、フォトレジストプロセスによって、マスク層62に上記複数の開口部33を形成する(開口部形成工程)(図5(f)参照)。具体的には、露光装置によって、マスク層62上にフォトレジストを塗布した後、上記複数の開口部33形成用のレジストパターンを形成するフォトマスクを介して露光処理を行い、その後、現像処理を行う。これにより、複数の開口部33を形成するレジストパターンを形成する。そして、エッチング装置によって、深堀り反応性イオンエッチング(Deep RIE)で、形成したレジストパターンを介してエッチング処理を行った後、溶解液等によってレジストパターンを除去する。これによって、マスク層62に複数の開口部33が形成され、マスク本体31が形成される。なお、レジストパターンを形成するフォトマスクを介した露光処理は、マスク層62に凹設されたアライメントマーク34を基準として行う。すなわち、本工程では、アライメントマーク34を基準として、マスク層62に複数の開口部33を形成する。 When the mask layer 62 is formed, the plurality of openings 33 are formed in the mask layer 62 by a photoresist process (opening forming step) (see FIG. 5F). Specifically, after applying a photoresist on the mask layer 62 by an exposure apparatus, an exposure process is performed through a photomask that forms a resist pattern for forming the plurality of openings 33, and then a development process is performed. Do. Thereby, a resist pattern for forming the plurality of openings 33 is formed. Then, after etching is performed through the formed resist pattern by deep reactive ion etching (Deep RIE) using an etching apparatus, the resist pattern is removed with a solution or the like. Thus, a plurality of openings 33 are formed in the mask layer 62, and the mask body 31 is formed. The exposure process through the photomask for forming the resist pattern is performed with reference to the alignment mark 34 provided in the mask layer 62 as a reference. That is, in this step, a plurality of openings 33 are formed in the mask layer 62 with the alignment mark 34 as a reference.
 マスク本体31(開口部33を形成したマスク層62)を形成したら、マスク本体31を介してスペーサー層61に対し長時間(例えば10時間以上)のアッシング処理を行う(図5(g)参照)。このアッシング処理によって、スペーサー層61の、複数の開口部33に対応する部分を除去する(部分除去工程)。これによって、各開口部33と受光素子アレイ15(各受光素子25)との間に空隙が形成される。これにより、スペーサー32が形成され、マスク本体31およびスペーサー32から成るスパッタマスク30が形成される。これによって、マスク形成工程が終了する。このように形成されたスパッタマスク30を介して、すなわち複数の開口部33を形成したマスク層62を介して、誘電体多層膜16aを受光素子アレイ15上に気相成長させることで、受光素子アレイ15上に透過波長可変干渉フィルター16が形成される。 After the mask body 31 (the mask layer 62 having the opening 33 formed) is formed, the spacer layer 61 is subjected to an ashing process for a long time (for example, 10 hours or more) through the mask body 31 (see FIG. 5G). . By this ashing process, portions of the spacer layer 61 corresponding to the plurality of openings 33 are removed (partial removal step). As a result, a gap is formed between each opening 33 and the light receiving element array 15 (each light receiving element 25). Thereby, the spacer 32 is formed, and the sputter mask 30 including the mask main body 31 and the spacer 32 is formed. As a result, the mask forming process is completed. The dielectric multilayer film 16a is vapor-phase grown on the light receiving element array 15 through the sputter mask 30 thus formed, that is, through the mask layer 62 in which the plurality of openings 33 are formed. A transmission wavelength variable interference filter 16 is formed on the array 15.
 次に図6を参照して、本発明の第2実施形態に係る透過波長可変干渉フィルター16の製造方法について、第1実施形態と異なる部分のみ説明する。第2実施形態の本製造方法は、マスク形成工程において、スペーサー層61を成膜するのに、ドライフィルムレジストを用いたものである。 Next, with reference to FIG. 6, only a portion different from the first embodiment will be described for the manufacturing method of the transmission wavelength variable interference filter 16 according to the second embodiment of the present invention. The manufacturing method according to the second embodiment uses a dry film resist to form the spacer layer 61 in the mask formation step.
 図6に示すように、第2実施形態のマスク形成工程では、スペーサー層61の成膜において、まず、受光素子アレイ15の表面上に、40μm厚のドライフィルムレジスト(ネガ型)を付加する(図6(b)参照)。その後、全厚を露光する露光量の半分の露光量だけ、上記穴部51を形成するフォトマスクを用いた露光処理を行った後、残り半分の露光量だけ、全面露光処理を行う(図6(c)参照)。その後、現像処理およびベーク処理を行う(図6(d)参照)。これによって、穴部51が形成されたスペーサー層61が形成される。 As shown in FIG. 6, in the mask formation process of the second embodiment, in forming the spacer layer 61, first, a dry film resist (negative type) having a thickness of 40 μm is added on the surface of the light receiving element array 15 ( (Refer FIG.6 (b)). Then, after performing exposure processing using a photomask for forming the hole 51 for an exposure amount that is half the exposure amount for exposing the entire thickness, the entire surface exposure processing is performed for the remaining half exposure amount (FIG. 6). (See (c)). Thereafter, development processing and baking processing are performed (see FIG. 6D). Thereby, the spacer layer 61 in which the hole 51 is formed is formed.
 以上の各実施形態の構成によれば、スペーサー層61を成膜するスペーサー層成膜工程と、マスク層62を成膜するマスク層成膜工程と、マスク層62に複数の開口部33を形成する開口部形成工程と、スペーサー層61の複数の開口部33に対応する部分を除去する部分除去工程と、を行うことで、スパッタマスク30を形成する構成であるため、微小加工プロセス(半導体製造プロセス)によって、スパッタマスク30を形成することができる。これにより、微小加工プロセスの中で、受光素子アレイ15に対するスパッタマスク30の位置合わせを行うことができる。そのため、スパッタマスク30を機械的にアライメントするのに比して、受光素子アレイ15に対しスパッタマスク30を容易に且つ精度良く位置合わせすることができる。ゆえに、複数のフィルター部28を構成する透過波長可変干渉フィルター16を容易に且つ精度良く形成することができる。 According to the configuration of each of the above embodiments, the spacer layer film forming process for forming the spacer layer 61, the mask layer film forming process for forming the mask layer 62, and the plurality of openings 33 are formed in the mask layer 62. Since the sputter mask 30 is formed by performing the opening forming step to be performed and the partial removal step of removing the portions corresponding to the plurality of openings 33 of the spacer layer 61, a micro-fabrication process (semiconductor manufacturing) The sputtering mask 30 can be formed by the process. As a result, the sputter mask 30 can be aligned with the light receiving element array 15 in the microfabrication process. Therefore, it is possible to easily and accurately align the sputter mask 30 with respect to the light receiving element array 15 as compared to mechanically aligning the sputter mask 30. Therefore, the transmission wavelength variable interference filter 16 constituting the plurality of filter portions 28 can be easily and accurately formed.
 また、スペーサー層61をフォトレジストで構成することにより、部分除去工程およびマスク除去工程を容易に行うことができる。 Further, by forming the spacer layer 61 with a photoresist, the partial removal process and the mask removal process can be easily performed.
 さらに、マスク本体31(複数の開口部33を形成したマスク層62)をアッシングマスクとして利用し、部分除去工程を、マスク本体31を介したアッシング処理により実現することで、部分除去工程をより容易に行うことができる。すなわち、複数の開口部33と受光素子アレイ15(複数の受光素子25)との間の空隙を、容易に形成することができる。 Furthermore, by using the mask body 31 (the mask layer 62 in which the plurality of openings 33 are formed) as an ashing mask, the partial removal process is realized by an ashing process through the mask body 31, thereby making the partial removal process easier. Can be done. That is, gaps between the plurality of openings 33 and the light receiving element array 15 (the plurality of light receiving elements 25) can be easily formed.
 また、各開口42の開口幅Sを、多層膜成長工程において、非遮蔽で成膜される膜厚を超える大きさとすることで、多層膜成長工程において、図4(b)のように、各開口42の内面に気相成長材料が成膜されたとしても、滞りなく誘電体多層膜16aを気相成長させることができる。すなわち、多層膜成長工程において非遮蔽で成膜される膜厚を「D」とし、多層膜成長工程において非遮蔽で成膜される膜厚に対する各開口42の内面に成膜される膜厚の割合を「c」としたとき、
   S-2c×D>0
を満たせば、滞りなく誘電体多層膜16aを気相成長させることができる。これを変形すると、
   D/S<1/2c
となる。そして、「c」を、一般的な数値である0.5とすると、
 D/S<1
となり、これを変形すると、
 S>D
となる。このように、各開口42の開口幅Sを、多層膜成長工程において、非遮蔽で成膜される膜厚Dを超える大きさとすることで、滞りなく誘電体多層膜16aを気相成長させることができる。
In addition, by setting the opening width S of each opening 42 to be larger than the film thickness that is formed unshielded in the multilayer film growth step, in the multilayer film growth step, as shown in FIG. Even if the vapor phase growth material is formed on the inner surface of the opening 42, the dielectric multilayer film 16a can be vapor phase grown without any delay. That is, the film thickness formed unshielded in the multilayer film growth step is “D”, and the film thickness formed on the inner surface of each opening 42 with respect to the film thickness formed unshielded in the multilayer film growth step. When the ratio is “c”,
S-2c × D> 0
If this condition is satisfied, the dielectric multilayer film 16a can be vapor-phase grown without any delay. If this is transformed,
D / S <1 / 2c
It becomes. And if “c” is 0.5, which is a general numerical value,
D / S <1
And when this is transformed,
S> D
It becomes. As described above, by setting the opening width S of each opening 42 to be larger than the film thickness D formed unshielded in the multilayer film growth step, the dielectric multilayer film 16a can be vapor-phase grown without delay. Can do.
 さらに、マスク本体31(マスク層62)の厚さを、多層膜成長工程において非遮蔽で成膜される膜厚Dの3分の1以上とし、且つ開口42の開口幅S以下とすることで、成膜の内部応力でマスク本体31が破壊されることなく、且つ各フィルター部における誘電体多層膜16aの膜厚を均一に形成することができる。すなわち、スペーサー32の高さHを30μmとし、開口42の開口幅Sを10μmとし、遮蔽部41の幅Lを10μmとして、且つ多層膜成長工程における非遮蔽時の膜厚分布をcosθと仮定して開口箇所5つでシミュレーションしたところ、図7(a)に示すような膜厚分布のシミュレーション結果が得られた。同図のように、マスク本体31の厚さTを、10μm以下、すなわち開口42の開口幅S以下にすると、誘電体多層膜16aの膜厚を均一に形成することができることが分かる。そして、これに加えて、成膜の内部応力でマスク本体31が破壊されない、多層膜成長工程において非遮蔽で成膜される膜厚Dの3分の1以上とすることで、成膜の内部応力でマスク本体31が破壊されることなく、且つ各フィルター部28における誘電体多層膜16aの膜厚を均一に形成することができる。 Furthermore, the thickness of the mask main body 31 (mask layer 62) is set to one third or more of the film thickness D formed unshielded in the multilayer film growth step, and to the opening width S or less of the opening 42. The mask main body 31 is not destroyed by the internal stress of the film formation, and the film thickness of the dielectric multilayer film 16a in each filter portion can be formed uniformly. That is, the height H of the spacer 32 is set to 30 μm, the opening width S of the opening 42 is set to 10 μm, the width L of the shielding portion 41 is set to 10 μm, and the film thickness distribution at the time of non-shielding in the multilayer film growth process is cos 5 θ. Assuming that simulation was performed with five openings, a simulation result of the film thickness distribution as shown in FIG. 7A was obtained. As shown in the figure, when the thickness T of the mask body 31 is 10 μm or less, that is, the opening width S or less of the opening 42, it can be seen that the film thickness of the dielectric multilayer film 16a can be formed uniformly. In addition to this, the mask main body 31 is not destroyed by the internal stress of the film formation, and the film thickness D is not less than one third of the film thickness D formed unshielded in the multilayer film growth process. The mask main body 31 is not destroyed by stress, and the film thickness of the dielectric multilayer film 16a in each filter portion 28 can be formed uniformly.
 またさらに、スペーサー32の高さH(スペーサー層61の厚さ)を、開口42の形成ピッチ(S+L)以上とすることで、各フィルター部28における誘電体多層膜16aの膜厚をより均一に形成することができる。すなわち、スペーサー32の高さHを30μmとし、マスク本体31の厚さTを0μmとし、且つ多層膜成長工程における非遮蔽時の膜厚分布をcosθと仮定してシミュレーションしたところ、図7(b)ないし(d)に示すような膜厚分布のシミュレーション結果が得られた。同図のように、開口42の形成ピッチ(S+L)を、30μm以下、すなわちスペーサー32の高さH以下にすると、誘電体多層膜16aの膜厚を均一に形成することができる。よって、スペーサー32の高さHを、開口42の形成ピッチ(S+L)以上とすることで、各フィルター部28における誘電体多層膜16aの膜厚をより均一に形成することができる。
 また、スペーサー32の高さHを、200μm以下とすることで、例えばドライフィルムレジストにより、スペーサー層61を不備無く成膜することができ、誘電体多層膜16aの膜厚をより均一に形成することができる。
Furthermore, by setting the height H of the spacer 32 (the thickness of the spacer layer 61) to be equal to or greater than the formation pitch (S + L) of the openings 42, the thickness of the dielectric multilayer film 16a in each filter portion 28 can be made more uniform. Can be formed. That is, the simulation was performed assuming that the height H of the spacer 32 is 30 μm, the thickness T of the mask body 31 is 0 μm, and the film thickness distribution at the time of non-shielding in the multilayer film growth process is cos 5 θ. The simulation results of the film thickness distribution as shown in (b) to (d) were obtained. As shown in the figure, when the formation pitch (S + L) of the openings 42 is 30 μm or less, that is, the height H of the spacer 32 or less, the film thickness of the dielectric multilayer film 16a can be formed uniformly. Therefore, by setting the height H of the spacer 32 to be equal to or greater than the formation pitch (S + L) of the openings 42, the thickness of the dielectric multilayer film 16a in each filter portion 28 can be formed more uniformly.
Further, by setting the height H of the spacer 32 to 200 μm or less, the spacer layer 61 can be formed without any defect using, for example, a dry film resist, and the film thickness of the dielectric multilayer film 16a is formed more uniformly. be able to.
 なお、上記各実施形態においては、マスク形成工程において、複数の開口部33を形成するときのレジストパターンの除去と、スペーサー層61の部分除去(開口部33に対応する部分の除去)と、を別々に行う構成であったが、これらを一体のアッシング処理で行う構成であっても良い。 In each of the above embodiments, in the mask formation step, the resist pattern is removed when forming the plurality of openings 33, and the spacer layer 61 is partially removed (the part corresponding to the openings 33 is removed). Although it was the structure performed separately, the structure which performs these by integral ashing processing may be sufficient.
 また、上記各実施形態においては、マスク除去工程において、マスク層62およびスペーサー層61を除去する構成であったが、マスク除去工程において、マスク層62およびスペーサー層61のうち、マスク層62のみを除去し、スペーサー層61を残す構成であっても良い。 In each of the above embodiments, the mask layer 62 and the spacer layer 61 are removed in the mask removal process. However, in the mask removal process, only the mask layer 62 out of the mask layer 62 and the spacer layer 61 is removed. The structure which removes and leaves the spacer layer 61 may be sufficient.
 さらに、上記各実施形態においては、多層膜成長工程において、スパッタリング処理により、誘電体多層膜16aを気相成長させる構成であったが、蒸着処理により、誘電体多層膜16aを気相成長させる構成であっても良い。 Further, in each of the embodiments described above, the dielectric multilayer film 16a is vapor-phase grown by sputtering in the multilayer film growth step. However, the dielectric multilayer film 16a is vapor-grown by vapor deposition. It may be.
 またさらに、上記各実施形態においては、マスク形成工程において、マスク本体31を介したアッシング処理により、スペーサー層61の部分除去(開口部33に対応する部分の除去)を行う構成であったが、マスク本体31を介したドライエッチング処理により、スペーサー層61の部分除去を行う構成であっても良い。 Furthermore, in each of the above embodiments, in the mask formation step, the spacer layer 61 is partially removed (removal of the portion corresponding to the opening 33) by ashing through the mask body 31. A configuration in which the spacer layer 61 is partially removed by a dry etching process through the mask body 31 may be employed.
 また、上記各実施形態においては、誘電体多層膜16aを、受光素子25の並び方向に向かって段階的に厚く形成した。すなわち、各フィルター部28の膜厚を、その並び順で厚くしていく構成であったが、各フィルター部28の膜厚が、それぞれで均一であれば、これに限るものではない。例えば、図8(a)に示すように、並び順を無視して、任意のフィルター部28の膜厚を、任意の厚さにする構成であっても良い。すなわち、所望する各透過特性のフィルター部28を、順不同で形成する構成であっても良い。また、図8(b)に示すように、上記製造動作により、誘電体多層膜16aを、受光素子25の並び方向で傾斜状に徐々に厚く形成する構成であっても良い。 Further, in each of the above embodiments, the dielectric multilayer film 16a is formed so as to increase in thickness in the direction in which the light receiving elements 25 are arranged. That is, the thickness of each filter portion 28 is increased in the arrangement order, but the thickness is not limited to this as long as the thickness of each filter portion 28 is uniform. For example, as shown in FIG. 8A, a configuration may be adopted in which the order of arrangement is ignored and the film thickness of an arbitrary filter section 28 is set to an arbitrary thickness. That is, the filter part 28 of each desired transmission characteristic may be formed in random order. Further, as shown in FIG. 8B, the dielectric multilayer film 16a may be formed so as to gradually increase in thickness in the direction in which the light receiving elements 25 are arranged by the above manufacturing operation.
 さらに、上記各実施形態においては、複数の受光素子25を横並びに配設する構成であったが、これに限るものではない。例えば、図9(a)に示すように、複数の受光素子25をマトリクス状に配設する構成であっても良い。また、例えば、図9(b)に示すように、複数の受光素子25を、環状に並べて配設する構成であっても良い。かかる場合、複数の受光素子25の配置に合わせて誘電体多層膜16aを形成する構成とする。すなわち、複数の受光素子25の配置に合わせて、複数のフィルター部28をマトリクス状や環状に並べて形成する構成とする。よって、マスク本体31の複数の開口部33をマトリクス状や環状に並べて形成する構成する。 Furthermore, in each said embodiment, although it was the structure which arrange | positions the several light receiving element 25 side by side, it is not restricted to this. For example, as shown to Fig.9 (a), the structure which arrange | positions the some light receiving element 25 in matrix form may be sufficient. Further, for example, as shown in FIG. 9B, a configuration in which a plurality of light receiving elements 25 are arranged in a ring shape may be employed. In this case, the dielectric multilayer film 16a is formed in accordance with the arrangement of the plurality of light receiving elements 25. That is, the plurality of filter portions 28 are formed in a matrix or in a ring shape in accordance with the arrangement of the plurality of light receiving elements 25. Therefore, the plurality of openings 33 of the mask main body 31 are configured to be arranged in a matrix or an annular shape.
 また、上記各実施形態においては、受光素子アレイ15をワークとし、受光素子アレイ15上に透過波長可変干渉フィルター16を形成する構成であったが、これに限るものではない。例えば、ガラス基板をワークとし、ガラス基板上に透過波長可変干渉フィルター16を形成する構成であっても良い。 In each of the above embodiments, the light receiving element array 15 is used as a work, and the transmission wavelength variable interference filter 16 is formed on the light receiving element array 15. However, the present invention is not limited to this. For example, the structure which forms a transmission wavelength variable interference filter 16 on a glass substrate as a workpiece | work may be sufficient.
 さらに、上記各実施形態においては、透過波長可変干渉フィルター16の製造方法に、本発明を適用したが、複数のフィルター部28を有する光学フィルターの製造方法であれば、他の光学フィルターの製造方法に本発明を適用しても良い。 Furthermore, in each of the above-described embodiments, the present invention is applied to the method for manufacturing the transmission wavelength variable interference filter 16, but any method for manufacturing another optical filter can be used as long as it is a method for manufacturing an optical filter having a plurality of filter portions 28. The present invention may be applied to.
 15:受光素子アレイ、 16:透過波長可変干渉フィルター、 28:フィルター部、 33:開口部、 34:アライメントマーク、 41:遮蔽部、 42:開口、 51:穴部、 61:スペーサー層、 62:マスク層。 15: Light receiving element array, 16: Transmission wavelength variable interference filter, 28: Filter part, 33: Opening part, 34: Alignment mark, 41: Shielding part, 42: Opening, 51: Hole part, 61: Spacer layer, 62: Mask layer.

Claims (10)

  1.  複数のフィルター部を構成する光学フィルターをワーク上に形成する光学フィルターの製造方法であって、
     前記ワーク上にスペーサー層を成膜するスペーサー層成膜工程と、
     成膜した前記スペーサー層上にマスク層を成膜するマスク層成膜工程と、
     成膜した前記マスク層に、前記複数のフィルター部に対応し且つ開口率が相違する複数の開口部を形成する開口部形成工程と、
     成膜した前記スペーサー層の、前記複数の開口部に対応する部分を除去する部分除去工程と、
     前記部分除去工程の後に、フィルター層を、前記複数の開口部を形成した前記マスク層を介して前記ワーク上に気相成長させるフィルター層成長工程と、を実行することを特徴とする光学フィルターの製造方法。
    An optical filter manufacturing method for forming an optical filter constituting a plurality of filter parts on a workpiece,
    A spacer layer forming step of forming a spacer layer on the workpiece;
    A mask layer forming step of forming a mask layer on the spacer layer formed;
    An opening forming step of forming a plurality of openings corresponding to the plurality of filter portions and having different opening ratios in the formed mask layer;
    A partial removal step of removing portions corresponding to the plurality of openings of the spacer layer formed;
    And a filter layer growth step of performing a vapor phase growth of the filter layer on the workpiece through the mask layer having the plurality of openings formed after the partial removal step. Production method.
  2.  前記部分除去工程では、前記複数の開口部を形成した前記マスク層を介して、前記スペーサー層にアッシング処理またはドライエッチング処理を行うことを特徴とする請求項1に記載の光学フィルターの製造方法。 The method for producing an optical filter according to claim 1, wherein, in the partial removal step, an ashing process or a dry etching process is performed on the spacer layer through the mask layer in which the plurality of openings are formed.
  3.  前記フィルター層成長工程の後に、前記マスク層および前記スペーサー層を除去するマスク除去工程を、更に実行することを特徴とする請求項1に記載の光学フィルターの製造方法。 The method for producing an optical filter according to claim 1, further comprising a mask removing step of removing the mask layer and the spacer layer after the filter layer growing step.
  4.  前記フィルター層成長工程の後に、前記マスク層および前記スペーサー層のうち、前記マスク層のみを除去するマスク除去工程を、更に実行することを特徴とする請求項1に記載の光学フィルターの製造方法。 The method for producing an optical filter according to claim 1, further comprising performing a mask removing step of removing only the mask layer out of the mask layer and the spacer layer after the filter layer growing step.
  5.  前記各開口部は、遮蔽部と開口とを交互に複数並設して前記開口率を構成していることを特徴とする請求項1に記載の光学フィルターの製造方法。 2. The method of manufacturing an optical filter according to claim 1, wherein each of the openings comprises a plurality of shielding portions and openings alternately arranged in parallel to constitute the aperture ratio.
  6.  前記並設方向における前記開口の開口幅は、前記フィルター層成長工程において非遮蔽で成膜される膜厚を超える大きさであることを特徴とする請求項5に記載の光学フィルターの製造方法。 6. The method of manufacturing an optical filter according to claim 5, wherein an opening width of the openings in the juxtaposed direction is larger than a film thickness that is formed unshielded in the filter layer growth step.
  7.  前記マスク層成膜工程によって成膜する前記マスク層の厚さは、前記フィルター層成長工程において非遮蔽で成膜される膜厚の3分の1以上であり、且つ前記並設方向における前記開口の開口幅以下であることを特徴とする請求項5に記載の光学フィルターの製造方法。 The thickness of the mask layer formed by the mask layer forming step is not less than one third of the thickness of the non-shielded film formed in the filter layer growing step, and the openings in the parallel direction The manufacturing method of the optical filter according to claim 5, wherein the opening width is equal to or smaller than the opening width.
  8.  前記スペーサー層成膜工程によって成膜する前記スペーサー層の厚さは、前記並設方向における前記開口の形成ピッチ以上であり、且つ200μm以下であることを特徴とする請求項5に記載の光学フィルターの製造方法。 6. The optical filter according to claim 5, wherein a thickness of the spacer layer formed by the spacer layer forming step is not less than a formation pitch of the openings in the juxtaposed direction and not more than 200 μm. Manufacturing method.
  9.  前記マスク層成膜工程の時に前記マスク層の材料が入りこんで前記マスク層にアライメントマークが凹設される穴部を、前記スペーサー層に形成する穴部形成工程を、更に実行し、
     前記開口部形成工程では、凹設された前記アライメントマークを基準として、前記複数の開口部を形成することを特徴とする請求項1に記載の光学フィルターの製造方法。
    A hole forming step of forming in the spacer layer a hole in which an alignment mark is recessed in the mask layer by entering the mask layer material at the time of the mask layer forming step,
    The method of manufacturing an optical filter according to claim 1, wherein, in the opening forming step, the plurality of openings are formed with reference to the recessed alignment mark.
  10.  前記開口部形成工程では、フォトリソグラフィプロセスにより、前記複数の開口部を形成することを特徴とする請求項1に記載の光学フィルターの製造方法。 The method for manufacturing an optical filter according to claim 1, wherein in the opening forming step, the plurality of openings are formed by a photolithography process.
PCT/JP2014/081955 2014-12-03 2014-12-03 Optical filter manufacturing method WO2016088216A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/081955 WO2016088216A1 (en) 2014-12-03 2014-12-03 Optical filter manufacturing method
JP2016562139A JPWO2016088216A1 (en) 2014-12-03 2014-12-03 Manufacturing method of optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081955 WO2016088216A1 (en) 2014-12-03 2014-12-03 Optical filter manufacturing method

Publications (1)

Publication Number Publication Date
WO2016088216A1 true WO2016088216A1 (en) 2016-06-09

Family

ID=56091190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081955 WO2016088216A1 (en) 2014-12-03 2014-12-03 Optical filter manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2016088216A1 (en)
WO (1) WO2016088216A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916467A (en) * 2019-05-10 2020-11-10 采钰科技股份有限公司 Light filtering structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505928A (en) * 2001-10-10 2005-02-24 ハネウェル・インターナショナル・インコーポレイテッド Thick-graded optical element and manufacturing method thereof
JP2007201499A (en) * 2007-04-06 2007-08-09 Denso Corp Semiconductor substrate and its manufacturing method
JP2008053272A (en) * 2006-08-22 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing thin-film element
JP2013110173A (en) * 2011-11-18 2013-06-06 Dainippon Printing Co Ltd Reflective mask blank, reflective mask, manufacturing methods of those and inspection method of reflective mask blank
WO2014033784A1 (en) * 2012-08-30 2014-03-06 パイオニア株式会社 Method for producing optical filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505928A (en) * 2001-10-10 2005-02-24 ハネウェル・インターナショナル・インコーポレイテッド Thick-graded optical element and manufacturing method thereof
JP2008053272A (en) * 2006-08-22 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing thin-film element
JP2007201499A (en) * 2007-04-06 2007-08-09 Denso Corp Semiconductor substrate and its manufacturing method
JP2013110173A (en) * 2011-11-18 2013-06-06 Dainippon Printing Co Ltd Reflective mask blank, reflective mask, manufacturing methods of those and inspection method of reflective mask blank
WO2014033784A1 (en) * 2012-08-30 2014-03-06 パイオニア株式会社 Method for producing optical filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916467A (en) * 2019-05-10 2020-11-10 采钰科技股份有限公司 Light filtering structure
JP2020187339A (en) * 2019-05-10 2020-11-19 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Optical filter structure
US11081600B2 (en) 2019-05-10 2021-08-03 Visera Technologies Company Limited Light filter structure

Also Published As

Publication number Publication date
JPWO2016088216A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
KR102363805B1 (en) Meta lens for sub-wavelength resolution shooting
US10634557B2 (en) Super-dispersive off-axis meta-lenses for high resolution compact spectroscopy
JP5620576B2 (en) Optical bandpass filter system, especially for multichannel frequency selective measurement
US20180372546A1 (en) Optical sensing device and method for manufacturing an optical sensing device
CN104597550B (en) A kind of preparation method of linear variable filter intermediate wedge resonant cavity layer
US11762137B2 (en) Photo resist as opaque aperture mask on multispectral filter arrays
CN111811652A (en) Spectrum chip based on sub-wavelength high-contrast grating, spectrometer and preparation method
WO2016088216A1 (en) Optical filter manufacturing method
KR20150097653A (en) Phase shift mask production method, phase shift mask and phase shift mask production device
US7378346B2 (en) Integrated multi-wavelength Fabry-Perot filter and method of fabrication
CN212458658U (en) Spectrum chip and spectrometer based on sub-wavelength high-contrast grating
CN110383484B (en) Display panel, manufacturing method thereof and display device
Macé et al. Fabrication of Doubly-Corrugated Zero-Contrast-Grating for Broadband Pixelated Filtering in the Mid-IR Range
Macé et al. Structured IR thin film coatings for multi-spectral imaging
JP2024059726A (en) Photoresist as an opaque aperture mask on a multispectral filter array.
Heldt et al. Integration of plasmonic nanostructures for micro-opto-electromechanical-systems
CN116520468A (en) Cut-off filter based on microstructure array and preparation method thereof
KR20200103223A (en) Pellicle membrane for lithography
CN117826293A (en) Method for manufacturing blazed grating, optical waveguide, and AR device
JP2007047695A (en) Diffraction grating
Mehta et al. Simplified fabrication process of 3D photonic crystal optical transmission filter
JP2008186833A (en) Manufacturing method of solid-state image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907454

Country of ref document: EP

Kind code of ref document: A1