WO2016087258A1 - Wasch- und reinigungsmittel mit polymerem wirkstoff - Google Patents

Wasch- und reinigungsmittel mit polymerem wirkstoff Download PDF

Info

Publication number
WO2016087258A1
WO2016087258A1 PCT/EP2015/077418 EP2015077418W WO2016087258A1 WO 2016087258 A1 WO2016087258 A1 WO 2016087258A1 EP 2015077418 W EP2015077418 W EP 2015077418W WO 2016087258 A1 WO2016087258 A1 WO 2016087258A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
units
polymer
mol
Prior art date
Application number
PCT/EP2015/077418
Other languages
English (en)
French (fr)
Inventor
Hendrik Hellmuth
Benoit Luneau
Nicole BODE
Alexander Schulz
Andreas Buhl
Yvonne Willemsen
André LASCHEWSKY
Erik Wischerhoff
Michael PÄCH
Original Assignee
Henkel Ag & Co. Kgaa
Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa, Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V. filed Critical Henkel Ag & Co. Kgaa
Priority to KR1020177018086A priority Critical patent/KR20170091701A/ko
Priority to AU2015357388A priority patent/AU2015357388B2/en
Priority to PL15798139T priority patent/PL3227421T3/pl
Priority to EP15798139.0A priority patent/EP3227421B1/de
Priority to ES15798139T priority patent/ES2704118T3/es
Publication of WO2016087258A1 publication Critical patent/WO2016087258A1/de
Priority to US15/614,353 priority patent/US10316276B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/04Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
    • C11D9/22Organic compounds, e.g. vitamins
    • C11D9/225Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3796Amphoteric polymers or zwitterionic polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/48N-containing polycondensation products
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/04Special methods for preparing compositions containing mixtures of detergents by chemical means, e.g. by sulfonating in the presence of other compounding ingredients followed by neutralising
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • C11D7/14Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/265Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/04Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
    • C11D9/22Organic compounds, e.g. vitamins
    • C11D9/30Organic compounds, e.g. vitamins containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/02Preparation in the form of powder by spray drying
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D13/00Making of soap or soap solutions in general; Apparatus therefor
    • C11D13/10Mixing; Kneading
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38663Stabilised liquid enzyme compositions

Definitions

  • the present invention relates to the use of certain polymers containing betaine units to enhance the primary detergency of laundry detergents or cleaners when washing textiles or cleaning hard surfaces against, in particular, oil and / or greasy soils, and detergents and cleaners containing such polymers.
  • laundry detergents In addition to the ingredients indispensable for the washing process, such as surfactants and builder materials, laundry detergents generally comprise further constituents which can be summarized under the term laundry detergents and which comprise such different active ingredient groups as foam regulators, grayness inhibitors, bleaches, bleach activators and color transfer inhibitors.
  • Such excipients also include substances whose presence enhances the detergency of surfactants, without them usually having to exhibit a pronounced surfactant behavior itself. The same applies mutatis mutandis to cleaners for hard surfaces. Such substances are often referred to as a detergency booster or because of their particularly pronounced effect against oil or fat-based stains as a "fat booster".
  • polymers having betaine units derived from N-vinylimidazole have particularly good primary washing strength-enhancing properties.
  • the invention relates to the use of polymers of the units A and B,
  • R is a Wegbindingen hydrocarbon radical having 1 to 6, in particular 1 to 3 carbon atoms, to enhance the Primärwaschkraft of detergents or cleaning agents when washing textiles or when cleaning hard surfaces against particular oil and / or greasy stains.
  • the polymers essential to the invention are prepared by free-radical copolymerization of 1-vinylimidazole with N-vinyl-2-pyrrolidone, which can be carried out as blockwise or preferably random copolymerization, and subsequent reaction of the resulting copolymer with haloalkanoic acids.
  • haloalkanoic acids such as chloroacetic acid, or ethylenically unsaturated carboxylic acids such as acrylic acid or methacrylic acid accessible.
  • the units A and B they have no other units, with at least a small amount of vinylimidazole groups which can not be quaternized as a result of the preparation being present, and units which can be present at the ends of the polymer from the free radical initiator.
  • the proportion of non-quaternized vinylimidazole groups, based on the sum of quaternized vinylimidazole groups and non-quaternized vinylimidazole groups in the polymer is preferably less than 20
  • the units A and B are preferably present in molar ratios in the range from 1:99 to 99: 1, in particular from 50:50 to 80:20, and particularly preferably from about 75:25.
  • the polymeric active ingredient preferably has an average molecular weight (here and below with average molecular weight data: number average) in the range from 1000 g / mol to 300000 g / mol, in particular from 2000 g / mol to 200000 g / mol.
  • Another object of the invention is therefore the use of a combination of polymers of said units A and B and alkyl benzene sulfonate with linear C7-15 alkyl groups, in particular linear C9-13 alkyl groups, to enhance the Primärwaschkraft of detergents or cleaning agents in the washing of Textiles or when cleaning hard surfaces against particular oily and / or greasy stains.
  • the weight ratio of linear alkylbenzenesulfonate to polymer essential to the invention is preferably in the range from 20: 1 to 1: 1, in particular from 8: 1 to 3: 1.
  • the use of the active ingredient used according to the invention leads to a significantly better detachment of, in particular, grease and cosmetic soiling on hard surfaces and on textiles, including those made of cotton or with a proportion of cotton, than is the case when compounds previously known for this purpose are used is.
  • significant amounts of surfactants can be saved while retaining the ability to remove grease.
  • the use according to the invention can be carried out in the context of a washing or cleaning process by adding the polymer essential to the invention to an aqueous or detergent-containing aqueous liquor or preferably introducing it into the liquor as a constituent of a washing or cleaning agent, the concentration of the active ingredient in the liquor is preferably in the range from 0.01 g / l to 0.5 g / l, in particular from 0.02 g / l to 0.2 g / l.
  • Another object of the invention is a method for removing particular oil and / or greasy soiling of textiles or hard surfaces by contacting the textile or the hard surface with an aqueous liquor, in which a detergent or a specified polymeric active substance for Use come.
  • This method can be carried out manually or mechanically, for example by means of a household washing machine or dishwasher. It is possible to use the particular liquid detergent or cleaning agent and the active ingredient simultaneously or sequentially. The simultaneous application can be carried out particularly advantageously by the use of an agent which contains the active ingredient.
  • Another object of the invention is therefore a washing or cleaning agent containing a polymer from said units A and B.
  • Detergents or cleaning agents which contain or are used together with an active substance to be used according to the invention or are used in the process according to the invention may contain all customary other constituents of such agents which do not interact in an undesired manner with the active ingredient essential to the invention.
  • a polymeric active substance as defined above is incorporated in detergents or cleaners in amounts of from 0.1 to 10% by weight, in particular from 0.5 to 2% by weight.
  • An agent which contains an active ingredient to be used according to the invention or is used together or used in the process according to the invention preferably contains synthetic anionic surfactant of the sulfate and / or sulfonate type, in particular alkylbenzenesulfonate, fatty alkylsulfate, fatty alkyl ether sulfate, alkyl and / or Dialkylsulfosuccinate, sulfo fatty acid esters and / or sulfo fatty acid, especially in an amount in the range of 2 wt .-% to 25 wt .-% and particularly preferably from 5 wt .-% to 15 wt .-%.
  • the anionic surfactant is preferably selected from the alkylbenzenesulfonates, the alkyl or alkenyl sulfates and / or the alkyl or alkenyl ether sulfates in which the alkyl or alkenyl group has 8 to 22, in particular 12 to 18, carbon atoms. These are usually not individual substances, but cuts or mixtures. Of these, preference is given to those whose content of compounds having longer-chain radicals in the range from 16 to 18 carbon atoms is more than 20% by weight. Particularly preferred is the presence of the above-mentioned combination of polymer essential to the invention and alkylbenzenesulfonate with linear C9-13-alkyl groups in the agents.
  • a further embodiment of such agents comprises the presence of nonionic surfactants selected from fatty alkyl polyglycosides, fatty alkyl polyalkoxylates, in particular ethoxylates and / or propoxylates, fatty acid polyhydroxyamides and / or ethoxylation and / or propoxylation products of fatty alkylamines, vicinal diols, fatty acid alkyl esters and / or fatty acid amides and mixtures thereof, in particular in an amount in the range from 2% by weight to 25% by weight.
  • nonionic surfactants selected from fatty alkyl polyglycosides, fatty alkyl polyalkoxylates, in particular ethoxylates and / or propoxylates, fatty acid polyhydroxyamides and / or ethoxylation and / or propoxylation products of fatty alkylamines, vicinal diols, fatty acid alkyl esters and / or fatty acid amides and mixture
  • Suitable nonionic surfactants include the alkoxylates, in particular the ethoxylates and / or propoxylates of saturated or mono- to polyunsaturated linear or branched-chain alcohols having 10 to 22 C atoms, preferably 12 to 18 C atoms.
  • the degree of alkoxylation of the alcohols is generally between 1 and 20, preferably between 3 and 10. They can be prepared in a known manner by reacting the corresponding alcohols with the corresponding alkylene oxides.
  • Particularly suitable are the derivatives of fatty alcohols, although their branched-chain isomers, in particular so-called oxo alcohols, can be used for the preparation of usable alkoxylates.
  • alkoxylates in particular the ethoxylates, primary alcohols with linear, in particular dodecyl, tetradecyl, hexadecyl or octadecyl radicals and mixtures thereof.
  • alkoxylation products of alkylamines, vicinal diols and carboxylic acid amides which correspond to the said alcohols with respect to the alkyl part, usable.
  • the ethylene oxide and / or propylene oxide insertion products of fatty acid alkyl esters and Fettklarepolyhydroxyamide into consideration.
  • alkylpolyglycosides which are suitable for incorporation into the compositions according to the invention are compounds of the general formula (G) n -OR 2 , in which R 2 is an alkyl or alkenyl radical having 8 to 22 C atoms, G is a glycose unit and n is a number between 1 and 10 mean.
  • the glycoside component (G) n are oligomers or polymers of naturally occurring aldose or ketose monomers, in particular glucose, mannose, fructose, galactose, talose, gulose, altrose, allose, idose, bose, arabinose, xylose and lyxose.
  • the oligomers consisting of such glycosidically linked monomers are characterized not only by the nature of the sugars contained in them by their number, the so-called Oligomermaschinesgrad.
  • the degree of oligomerization n assumes as the value to be determined analytically generally broken numerical values; it is between 1 and 10, with the glycosides preferably used below a value of 1, 5, in particular between 1, 2 and 1, 4.
  • Preferred monomer building block is glucose because of its good availability.
  • the alkyl or alkenyl moiety R 2 of the glycosides preferably also originates from readily available derivatives of renewable raw materials, in particular from fatty alcohols, although their branched-chain isomers, in particular so-called oxoalcohols, can be used to prepare useful glycosides.
  • the primary alcohols having linear octyl, decyl, dodecyl, tetradecyl, hexadecyl or octadecyl radicals and mixtures thereof are particularly suitable.
  • Nonionic surfactant is present in compositions which contain an active ingredient used according to the invention or are used in the context of the use according to the invention, preferably in amounts of from 1% by weight to 30% by weight, in particular from 1% by weight to 25% by weight. With amounts in the upper part of this range being more likely to be found in liquid detergents and particulate detergents preferably containing lower amounts of up to 5% by weight.
  • the agents may instead or additionally contain other surfactants, preferably synthetic anionic surfactants of the sulfate or sulfonate type.
  • Suitable synthetic anionic surfactants which are particularly suitable for use in such compositions are, in addition to the already mentioned alkylbenzenesulfonates, the alkyl and / or alkenyl sulfates having 8 to 22 carbon atoms which carry an alkali metal, ammonium or alkyl or hydroxyalkyl-substituted ammonium ion as a counter cation , to call.
  • Preference is given to the derivatives of fatty alcohols containing in particular 12 to 18 carbon atoms and their branched-chain analogs, the so-called oxo alcohols.
  • the alkyl and alkenyl sulfates can be prepared in a known manner by reaction of the corresponding alcohol component with a conventional sulfating reagent, in particular sulfur trioxide or chlorosulfonic acid, and subsequent neutralization with alkali metal, ammonium or alkyl or hydroxyalkyl-substituted ammonium bases.
  • Sulphate-type surfactants which can be used also include the sulfated alkoxylation products of the alcohols mentioned, so-called ether sulfates.
  • ether sulfates preferably contain from 2 to 30, in particular from 4 to 10, ethylene glycol groups per molecule.
  • Suitable anionic surfactants of the sulfonate type include the ⁇ -sulfoesters obtainable by reaction of fatty acid esters with sulfur trioxide and subsequent neutralization, in particular those of fatty acids having 8 to 22 C atoms, preferably 12 to 18 C atoms, and linear alcohols with 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, derivative sulfonation products, as well as the formal saponification resulting from these sulfo fatty acids.
  • Preferred anionic surfactants are also the salts of sulfosuccinic acid esters, which are also referred to as alkylsulfosuccinates or dialkylsulfosuccinates, and the monoesters or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain Cs to Cis fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain an ethoxylated fatty alcohol radical, which in itself is a nonionic surfactant.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • soaps suitable being saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid or stearic acid, and soaps derived from natural fatty acid mixtures, for example coconut, palm kernel or tallow fatty acids.
  • those soap mixtures are preferred which are composed of 50% by weight to 100% by weight of saturated C 12-18 fatty acid soaps and up to 50% by weight of oleic acid soap.
  • soap is included in amounts of 0.1 to 5% by weight.
  • higher amounts of soap can be contained, usually up to 20 wt .-%.
  • compositions may also contain betaine surfactants and / or cationic surfactants which, if present, are preferably used in amounts of from 0.5% to 7% by weight.
  • betaine surfactants and / or cationic surfactants which, if present, are preferably used in amounts of from 0.5% to 7% by weight.
  • esterquats discussed below are particularly preferred.
  • the compositions may contain peroxygen bleaching agents, in particular in amounts ranging from 5% to 70% by weight, and optionally bleach activators, especially in amounts ranging from 2% to 10% by weight.
  • the bleaches in question are preferably the peroxygen compounds generally used in detergents, such as percarboxylic acids, for example dodecanedioic acid or phthaloylaminoperoxicaproic acid, hydrogen peroxide, alkali metal perborate, which may be present as tetra- or monohydrate, percarbonate, perpyrophosphate and persilicate, which are generally used as alkali metal salts, in particular as sodium salts.
  • Such bleaching agents are present in detergents containing an active ingredient used according to the invention, preferably in amounts of up to 25% by weight, in particular up to 15% by weight. % and more preferably from 5 wt .-% to 15 wt .-%, each based on the total agent, present, in particular percarbonate is used.
  • the optionally present component of the bleach activators comprises the conventionally used N- or O-acyl compounds, for example polyacylated alkylenediamines, in particular tetraacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles, urazoles, diketopiperazines, sulphurylamides and Cyanurates, also carboxylic acid anhydrides, in particular phthalic anhydride, carboxylic acid esters, in particular sodium isononanoyl-phenolsulfonat, and acylated sugar derivatives, in particular pentaacetylglucose, and cationic nitrile derivatives such as trimethylammoniumacetonitrile salts.
  • N- or O-acyl compounds for example polyacylated alkylenediamines, in particular tetraacetylethylened
  • the bleach activators may have been coated and / or granulated in a known manner with enveloping substances during storage in order to avoid the interaction with the per compounds, granulated tetraacetylethylenediamine having mean particle sizes of from 0.01 mm to 0.8 mm, granulated by means of carboxymethylcellulose 1, 5-diacetyl-2,4-dioxohexahydro-1, 3,5-triazine, and / or formulated in particulate trialkylammonium acetonitrile is particularly preferred.
  • Such bleach activators are preferably contained in detergents in amounts of up to 8% by weight, in particular from 2% by weight to 6% by weight, based in each case on the total agent.
  • the composition contains water-soluble and / or water-insoluble builder, in particular selected from alkali metal aluminosilicate, crystalline alkali metal silicate with modulus above 1, monomeric polycarboxylate, polymeric polycarboxylate and mixtures thereof, in particular in amounts ranging from 2.5 wt .-% to 60 wt .-%.
  • water-soluble and / or water-insoluble builder in particular selected from alkali metal aluminosilicate, crystalline alkali metal silicate with modulus above 1, monomeric polycarboxylate, polymeric polycarboxylate and mixtures thereof, in particular in amounts ranging from 2.5 wt .-% to 60 wt .-%.
  • the agent preferably contains from 20% to 55% by weight of water-soluble and / or water-insoluble, organic and / or inorganic builders.
  • the water-soluble organic builder substances include, in particular, those from the class of the polycarboxylic acids, in particular citric acid and sugar acids, and also the polymeric (poly) carboxylic acids, in particular the polycarboxylates obtainable by oxidation of polysaccharides, polymeric acrylic acids, methacrylic acids, maleic acids and mixed polymers thereof, which may also contain copolymerized small amounts of polymerizable substances without carboxylic acid functionality.
  • the relative molecular mass of the homopolymers of unsaturated carboxylic acids is generally between 5000 g / mol and 200,000 g / mol, that of the copolymers between 2000 g / mol and 200,000 g / mol, preferably 50,000 g / mol to 120,000 g / mol, based on the free acid ,
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of 50,000 g / mol to
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the acid content is at least 50% by weight.
  • vinyl ethers such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene
  • the acid content is at least 50% by weight.
  • Terpolymers which contain two carboxylic acids and / or salts thereof as monomers and also vinyl alcohol and / or a vinyl alcohol derivative or a carbohydrate as the third monomer may also be used as water-soluble organic builder substances.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C3-Cs carboxylic acid and preferably from a C3-C4 monocarboxylic acid, in particular from (meth) acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C4-Cs dicarboxylic acid, with maleic acid being particularly preferred.
  • the third monomeric unit is formed in this case of vinyl alcohol and / or preferably an esterified vinyl alcohol. Particularly preferred are vinyl alcohol derivatives which are an ester of short chain carboxylic acids, for example, C1-C4 carboxylic acids, with vinyl alcohol.
  • Preferred terpolymers contain from 60% by weight to 95% by weight, in particular from 70% by weight to 90% by weight, of (meth) acrylic acid and / or (meth) acrylate, particularly preferably acrylic acid and / or acrylate, and maleic acid and / or maleate and also 5% by weight to 40% by weight, preferably 10% by weight to 30% by weight, of vinyl alcohol and / or vinyl acetate.
  • the weight ratio of (meth) acrylic acid and / or (meth) acrylate to maleic acid and / or maleate is between 1: 1 and 4: 1, preferably between 2: 1 and 3: 1 and in particular 2: 1 and 2.5: 1. Both the amounts and the weight ratios are based on the acids.
  • the second acidic monomer or its salt may also be a derivative of an allylsulfonic acid substituted in the 2-position with an alkyl radical, preferably with a C 1 -C 4 -alkyl radical, or an aromatic radical which is preferably derived from benzene or benzene derivatives is.
  • Preferred terpolymers contain from 40% by weight to 60% by weight, in particular from 45 to 55% by weight, of (meth) acrylic acid and / or (meth) acrylate, particularly preferably acrylic acid and / or acrylate, 10% by weight to 30% by weight, preferably from 15% by weight to 25% by weight, of methallylsulfonic acid and / or methallylsulfonate and, as the third monomer, from 15% by weight to 40% by weight, preferably from 20% by weight to 40% by weight.
  • % of a carbohydrate may be, for example, a mono-, di-, oligo- or polysaccharide, mono-, di- or oligosaccharides being preferred, sucrose being particularly preferred.
  • the use of the third monomer presumably incorporates predetermined breaking points in the polymer which are responsible for the good biodegradability of the polymer.
  • These terpolymers generally have a molecular weight between 1000 g / mol and 200000 g / mol, preferably between 2000 g / mol and 50,000 g / mol and in particular between 3000 g / mol and 10,000 g / mol. They can be used, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 percent by weight aqueous solutions. All the polycarboxylic acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • Such organic builder substances are preferably present in amounts of up to 40% by weight, in particular up to 25% by weight and particularly preferably from 1% by weight to 5% by weight. Quantities close to the stated upper limit are preferably used in pasty or liquid, in particular hydrous, agents.
  • Crystalline or amorphous alkali metal aluminosilicates in amounts of up to 50% by weight, are preferably not suitable as water-insoluble, water-dispersible inorganic builder materials above 40 wt .-% and in liquid agents, in particular from 1 wt .-% to 5 wt .-%, used.
  • the detergent-grade crystalline aluminosilicates especially zeolite NaA and optionally NaX, are preferred. Amounts near the above upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size greater than 30 ⁇ m, and preferably consist of at least 80% by weight of particles having a size of less than 10 ⁇ m. Their calcium binding capacity is in the range of 100 to 200 mg CaO per gram.
  • Suitable substitutes or partial substitutes for the said aluminosilicate are crystalline alkali metal silicates which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders in the compositions preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1: 1, 1 to 1: 12, and may be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of from 1: 2 to 12.8.
  • Such amorphous alkali silicates are commercially available, for example, under the name Portil®. Those with a molar ratio of Na 2 O: SiO 2 of 1: 1, 9 to 1: 2.8 are preferably added in the course of the production as a solid and not in the form of a solution.
  • Crystalline silicates which may be present alone or in a mixture with amorphous silicates are preferably crystalline phyllosilicates of the general formula Na.sub.2SixO.sub.2 O.sub.x + VH.sub.2O, in which x, the so-called modulus, is a number from 1.9 to 4 and y is a number from 0 is up to 20 and preferred values for x are 2, 3 or 4.
  • Crystalline layered silicates which fall under this general formula are described, for example, in European Patent Application EP 0 164 514.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3. In particular, both .beta.
  • .delta.-sodium disilicates Na.sub.2Si.sub.20.sup.yH.sub.2O.sub.2
  • amorphous alkali metal silicates practically anhydrous crystalline alkali metal silicates of the above general formula in which x is a number from 1, 9 to 2.1, can be used in compositions which contain an active substance to be used according to the invention.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda.
  • Crystalline sodium silicates with a modulus in the range from 1.9 to 3.5 are used in a further preferred embodiment of detergents containing an active ingredient used according to the invention.
  • the content of alkali metal silicates is preferably 1 wt .-% to 50 wt .-% and in particular 5 wt .-% to 35 wt .-%, based on anhydrous active substance. If alkali metal aluminosilicate, in particular zeolite, is present as an additional builder substance, the content of alkali silicate is preferably 1% by weight to 15% by weight and in particular 2% by weight to 8% by weight, based on anhydrous active substance.
  • the weight ratio of aluminosilicate to silicate, based in each case on anhydrous active substances, is then preferably 4: 1 to 10: 1.
  • the weight ratio of amorphous alkali silicate to crystalline alkali silicate is preferably 1: 2 to 2 : 1 and especially 1: 1 to 2: 1.
  • other water-soluble or water-insoluble inorganic substances may be contained in the agents containing an active ingredient to be used in the present invention, used together with the same or used in the method of the present invention. Suitable in this context are the alkali metal carbonates, alkali metal bicarbonates and alkali metal sulfates and mixtures thereof. Such additional inorganic material may be present in amounts up to 70% by weight.
  • the agents may contain other ingredients customary in detergents or cleaners.
  • These optional constituents include, in particular, enzymes, enzyme stabilizers, complexing agents for heavy metals, for example aminopolycarboxylic acids, aminohydroxypolycarboxylic acids, polyphosphonic acids and / or aminopolyphosphonic acids, foam inhibitors, for example organopolysiloxanes or paraffins, solvents and optical brighteners, for example stilbene disulfonic acid derivatives.
  • agents which contain an active substance used according to the invention up to 1% by weight, in particular 0.01% by weight to 0.5% by weight, of optical brighteners, in particular compounds from the class of the substituted 4,4 ' Bis (2,4,6-triamino-s-triazinyl) -stilbene-2,2'-disulfonic acids, up to 5% by weight, in particular 0, 1% by weight to 2% by weight
  • optical brighteners in particular compounds from the class of the substituted 4,4 ' Bis (2,4,6-triamino-s-triazinyl) -stilbene-2,2'-disulfonic acids
  • up to 5% by weight in particular 0, 1% by weight to 2% by weight
  • Complexing agents for heavy metals, in particular aminoalkylenephosphonic acids and their salts and up to 2% by weight, in particular 0.1% to 1% by weight, of foam inhibitors, the weight proportions in each case referring to the total agent.
  • Solvents which can be used in particular for liquid agents are, in addition to water, preferably those which are water-miscible. These include the lower alcohols, for example ethanol, propanol, isopropanol, and the isomeric butanols, glycerol, lower glycols, for example ethylene and propylene glycol, and the ethers derivable from the classes of compounds mentioned.
  • the active compounds used in the invention are usually dissolved or in suspended form.
  • Optionally present enzymes are preferably selected from the group comprising protease, amylase, lipase, cellulase, hemicellulase, oxidase, peroxidase, pectinase and mixtures thereof.
  • proteases derived from microorganisms such as bacteria or fungi, come into question. It can be obtained in a known manner by fermentation processes from suitable microorganisms.
  • Proteases are commercially available, for example, under the names BLAP®, Savinase®, Esperase®, Maxatase®, Optimase®, Alcalase®, Durazym® or Maxapem®.
  • the lipase which can be used can be obtained, for example, from Humicola lanuginosa, from Bacillus species, from Pseudomonas species, from Fusarium species, from Rhizopus species or from Aspergillus species.
  • Suitable lipases are commercially available, for example, under the names Lipolase®, Lipozym®, Lipomax®, Lipex®, Amano®-Lipase, Toyo-Jozo®-Lipase, Meito®-Lipase and Diosynth®-Lipase.
  • Suitable amylases are commercially available, for example, under the names Maxamyl®, Termamyl®, Duramyl® and Purafect® OxAm.
  • the usable cellulase may be an enzyme recoverable from bacteria or fungi which has a pH optimum preferably in the weakly acidic to weakly alkaline range of 6 to 9.5.
  • Such cellulases are commercially available under the names Celluzyme®, Carezyme® and Ecostone®.
  • Suitable pectinases are, for example, under the names Gamanase®, Pektinex AR®, X-Pect® or Pectaway® from Novozymes, under the name Rohapect UF®, Rohapect TPL®, Rohapect PTE100®, Rohapect MPE®, Rohapect MA plus HC, Rohapect DA12L ®, Rohapect 10L®, Rohapect B1 L® from AB Enzymes and available under the name Pyrolase® from Diversa Corp., San Diego, CA, USA.
  • customary enzyme stabilizers present include amino alcohols, for example mono-, di-, triethanol- and -propanolamine and mixtures thereof, lower carboxylic acids, boric acid, alkali borates, boric acid-carboxylic acid combinations, boric acid esters, boronic acid derivatives, calcium salts, for example Ca-formic acid combination, magnesium salts, and / or sulfur-containing reducing agents.
  • Suitable foam inhibitors include long-chain soaps, in particular behenic soap, fatty acid amides, paraffins, waxes, microcrystalline waxes, organopolysiloxanes and mixtures thereof, which moreover can contain microfine, optionally silanated or otherwise hydrophobicized silica.
  • foam inhibitors are preferably bound to granular, water-soluble carrier substances.
  • polyester-active soil release polymers that can be used in addition to the essential ingredients of the invention include copolyesters of dicarboxylic acids, for example adipic acid, phthalic acid or terephthalic acid, diols, for example ethylene glycol or propylene glycol, and polydiols, for example, polyethylene glycol or polypropylene glycol.
  • dicarboxylic acids for example adipic acid, phthalic acid or terephthalic acid
  • diols for example ethylene glycol or propylene glycol
  • polydiols for example, polyethylene glycol or polypropylene glycol.
  • Preferred soil release polymers include those compounds which are formally accessible by esterification of two monomeric moieties, the first monomer being a dicarboxylic acid HOOC-Ph-COOH and the second monomer being a diol HO- (CHR-) a OH, also known as a polymeric diol H- (0- (CHR -) a ) bOH may be present.
  • Ph is an o-, m- or p-phenylene radical which may carry 1 to 4 substituents selected from alkyl radicals having 1 to 22 C atoms, sulfonic acid groups, carboxyl groups and mixtures thereof
  • R is hydrogen
  • a is a number from 2 to 6
  • b is a number from 1 to 300.
  • the molar ratio of monomer diol units to polymer diol units is preferably 100: 1 to 1: 100, in particular 10: 1 to 1:10.
  • the degree of polymerization b is preferably in the range from 4 to 200, in particular from 12 to 140.
  • the molecular weight or the average molecular weight or the maximum of the molecular weight distribution of preferred soil release polymers is in the range of 250 g / mol to 100,000 g / mol, in particular from 500 g / mol to 50,000 g / mol.
  • the acid underlying the radical Ph is preferably selected from terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, mellitic acid, the isomers of sulfophthalic acid, sulfoisophthalic acid and sulfoterephthalic acid and mixtures thereof. If their acid groups are not part of the ester bonds in the polymer, they are preferably in salt form, in particular as alkali or ammonium salt. Among these, the sodium and potassium salts are particularly preferable.
  • acids having at least two carboxyl groups may be included in the soil release-capable polyester.
  • these include, for example, alkylene and alkenylene dicarboxylic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • Preferred diols HO- (CHR-) a OH include those in which R is hydrogen and a is a number from 2 to 6, and those in which a is 2 and R is hydrogen and the alkyl radicals have from 1 to 10 , in particular 1 to 3 C-atoms is selected.
  • R is hydrogen and a is a number from 2 to 6
  • a is 2 and R is hydrogen and the alkyl radicals have from 1 to 10 , in particular 1 to 3 C-atoms is selected.
  • those of the formula HO-CH 2 -CHR -OH in which R has the abovementioned meaning are particularly preferred.
  • diol components are ethylene glycol, 1, 2-propylene glycol, 1, 3-propylene glycol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 1, 8-octanediol, 1, 2-decanediol, 1, 2-dodecanediol and neopentyl glycol.
  • Particularly preferred among the polymeric diols is polyethylene glycol having an average molecular weight in the range from 1000 g / mol to 6000 g / mol.
  • these polyesters composed as described above may also be end-group-capped, alkyl groups having from 1 to 22 carbon atoms and esters of monocarboxylic acids being suitable as end groups.
  • the ester groups bonded via end groups can be based on alkyl, alkenyl and aryl monocarboxylic acids having 5 to 32 carbon atoms, in particular 5 to 18 carbon atoms.
  • valeric acid caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, undecenoic acid, lauric acid, lauroleinic acid, tridecanoic acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, stearic acid, petroselinic acid, petroselaidic acid, oleic acid, linoleic acid, linolaidic acid, linolenic acid, levostearic acid , Arachidic acid, gadoleic acid, arachidonic acid, behenic acid, erucic acid, brasidoside acid, clupanodonic acid, lignoceric acid, cerotic acid, melissic acid, benzoic acid, which may carry 1 to 5 substituents having a total of up to 25 carbon atoms, in particular 1 to 12 carbon atoms, for example tert-buty
  • the end groups may also be based on hydroxymonocarboxylic acids having 5 to 22 carbon atoms, which include, for example, hydroxyvaleric acid, hydroxycaproic acid, ricinoleic acid, the hydrogenation product of which includes hydroxystearic acid and o-, m- and p-hydroxybenzoic acid.
  • the hydroxymonocarboxylic acids may in turn be linked to one another via their hydroxyl group and their carboxyl group and thus be present several times in an end group.
  • the number of hydroxymonocarboxylic acid units per end group is in the range from 1 to 50, in particular from 1 to 10.
  • the soil release polymers are preferably water-soluble, the term "water-soluble” being understood to mean a solubility of at least 0.01 g, preferably at least 0.1 g of the polymer per liter of water at room temperature and pH 8.
  • Preferably used polymers have these conditions However, a solubility of at least 1 g per liter, in particular at least 10 g per liter.
  • compositions according to the invention presents no difficulties and can be carried out in a known manner, for example by spray-drying or granulation, enzymes and possibly other thermally sensitive ingredients such as, for example, bleaching agents optionally being added separately later.
  • a process comprising an extrusion step is preferred.
  • compositions according to the invention in tablet form, which may be monophasic or multiphase, monochromatic or multicolor and in particular consist of one or more layers, in particular two layers
  • the procedure is preferably such that all constituents - if appropriate one per layer - in one Mixer mixed together and the mixture by means of conventional tablet presses, such as eccentric or rotary presses, pressed with compressive forces in the range of about 50 to 100 kN, preferably at 60 to 70 kN.
  • a tablet produced in this way has a weight of 10 g to 50 g, in particular 15 g up to 40 g.
  • the spatial form of the tablets is arbitrary and can be round, oval or angular, with intermediate forms are also possible. Corners and edges are advantageously rounded. Round tablets preferably have a diameter of 30 mm to 40 mm. In particular, the size of rectangular or cuboid-shaped tablets, which are predominantly introduced via the metering device, for example the dishwasher, is dependent on the geometry and the volume of this metering device.
  • Exemplary preferred embodiments have a base area of (20 to 30 mm) x (34 to 40 mm), in particular of 26x36 mm or 24x38 mm.
  • Liquid or pasty compositions according to the invention in the form of customary solvents, in particular water, containing solutions are usually prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • an agent which is incorporated into the active ingredient to be used according to the invention is liquid and contains 1% by weight to 15% by weight, in particular 2% by weight to 10% by weight, of nonionic surfactant, 2% by weight. % to 30% by weight, in particular 5% by weight to 20% by weight of synthetic anionic surfactant, up to 15% by weight, in particular 2% by weight to 12.5% by weight of soap, 0, 5 wt .-% to 5 wt .-%, in particular 1 wt .-% to 4 wt .-% organic builder, in particular polycarboxylate such as citrate, up to 1, 5 wt .-%, in particular 0, 1 wt .-% up to 1% by weight complexing agent for heavy metals, such as phosphonate, and in addition to optionally contained enzyme, enzyme stabilizer, dye and / or fragrance, water and / or water-miscible solvent.
  • an agent in which the active ingredient to be used according to the invention is incorporated is particulate and contains up to 25% by weight, in particular from 5% by weight to 20% by weight, of bleaching agent, in particular alkali percarbonate, up to 15% by weight .-%, in particular 1 wt .-% to 10 wt .-% bleach activator, 20 wt .-% to 55 wt .-% inorganic builder, up to 10 wt .-%, in particular 2 wt .-% to 8 wt.
  • bleaching agent in particular alkali percarbonate
  • alkali percarbonate up to 15% by weight .-%, in particular 1 wt .-% to 10 wt .-% bleach activator, 20 wt .-% to 55 wt .-% inorganic builder, up to 10 wt .-%, in particular 2 wt .-% to 8 wt.
  • % water-soluble organic builder 10% to 25% by weight synthetic anionic surfactant, 1% to 5% by weight nonionic surfactant and up to 25% by weight, in particular 0.1% by weight to 25 wt .-% of inorganic salts, in particular alkali carbonate and / or bicarbonate.
  • N-vinyl-2-pyrrolidone and 1-vinylimidazole were purified by distillation in vacuo before use (N-vinyl-2-pyrrolidone: 3-4 mbar, 100 ° C. oil bath, head temperature of 77-83 ° C., vacuum jacket, 1-vinylimidazole: 12 mbar, 90 ° C oil bath, 70 ° C head temperature, vacuum jacket stillness).
  • the amount of 1-vinylimidazole indicated in Table 1 the amount of N-vinyl-2-pyrrolidone indicated in Table 1 and 250 ml of methanol were weighed into a 500 ml Schlenk flask and purged with nitrogen for 25 minutes.
  • the polymeric intermediates thus obtained were dissolved in 80 ml of dimethylacetamide at 75 ° C, 10 ml of bromoacetic acid tert-butyl ester were added and the reaction mixture was stirred at 75 ° C for 48 h. Thereafter, the precipitate which had been precipitated by addition of 600 ml of diethyl ether was filtered off under nitrogen with a Schlenk frit, washed several times with 100 ml of diethyl ether each time and dried in a stream of nitrogen.
  • the resulting intermediate product was mixed with 30 ml of trifluoroacetic acid and stirred for 24 hours at room temperature. After condensing the trifluoroacetic acid, the polymers were dissolved in water and isolated by freeze-drying.
  • the detergents containing the active ingredients to be used according to the invention showed a significantly better primary washing performance than an otherwise equally composed composition which lacked them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Primärwaschkraft von Wasch- und Reinigungsmitteln sollte insbesondere gegenüber öl- und/oder fetthaltigen Anschmutzungen verbessert werden. Dies gelang im Wesentlichen durch das Einarbeiten von Polymeren mit sich von N-Vinylimidazol ableitenden Betaineinheiten.

Description

Wasch- und Reinigungsmittel mit polymerem Wirkstoff
Die vorliegende Erfindung betrifft die Verwendung bestimmter Betain-Einheiten aufweisender Polymere zur Verstärkung der Primärwaschkraft von Wasch- oder Reinigungsmitteln beim Waschen von Textilien oder Reinigen harter Oberflächen gegenüber insbesondere öl- und/oder fetthaltigen Anschmutzungen, und Wasch- und Reinigungsmittel, welche derartige Polymere enthalten.
Waschmittel enthalten neben den für den Waschprozess unverzichtbaren Inhaltsstoffen wie Tensi- den und Buildermaterialien in der Regel weitere Bestandteile, die man unter dem Begriff Waschhilfsstoffe zusammenfassen kann und die so unterschiedliche Wirkstoffgruppen wie Schaumregulatoren, Vergrauungsinhibitoren, Bleichmittel, Bleichaktivatoren und Farbübertragungsinhibitoren umfassen. Zu derartigen Hilfsstoffen gehören auch Substanzen, deren Anwesenheit die Waschkraft von Tensiden verstärkt, ohne dass sie in der Regel selbst ein ausgeprägtes tensidisches Verhalten aufzuweisen müssen. Gleiches gilt sinngemäß auch für Reinigungsmittel für harte Oberflächen. Derartige Substanzen werden oft als Waschkraftverstärker oder wegen ihrer besonders ausgeprägten Wirkung gegenüber öl- oder fettbasierten Anschmutzungen als„Fat booster" bezeichnet.
Aus der internationalen Patentanmeldung WO 01/57171 A1 sind Wasch- oder Nachspülmittel bekannt, die neben Tensid Copolymere aus anionischen und kationischen Monomeren sowie gegebenenfalls zusätzlich nichtionischen Monomeren enthalten.
Aus der internationalen Patentanmeldung WO 00/56849 A1 ist die färb- und formerhaltende Wirkung kationisch geladener Polymere beim Waschen von Textilien bekannt.
Die soil-release-Wirkung von Block-Copolymeren aus ethylenisch ungesättigten Monomeren und Alkylenoxiden, Alkylenglykolen oder cyclischen Ethern ist aus der internationalen Patentanmeldung WO 03/054044 A2 bekannt.
Die internationale Patentanmeldung WO 03/066791 A1 beschreibt an Substratoberflächen assoziierte Polymere, die zu mindestens 1 Mol-% aus Amidgruppen-haltigen Monomeren bestehen.
Überraschenderweise wurde gefunden, dass Polymere mit sich sich von N-Vinylimidazol ableitenden Betaineinheiten besonders gute die Primärwaschkraft verstärkende Eigenschaften haben.
Gegenstand der Erfindung ist die Verwendung von Polymeren aus den Einheiten A und B,
Figure imgf000003_0001
A B wobei R für einen zweibindingen Kohlenwasserstoffrest mit 1 bis 6, insbesondere 1 bis 3 Kohlenstoffatomen steht, zur Verstärkung der Primärwaschkraft von Wasch- oder Reinigungsmitteln beim Waschen von Textilien oder beim Reinigen harter Oberflächen gegenüber insbesondere öl- und/oder fetthaltigen Anschmutzungen.
Die erfindungswesentlichen Polymere sind durch radikalische Copolymerisation von 1- Vinylimidazol mit N-Vinyl-2-pyrrolidon, die als blockweise oder bevorzugt statistische Copolymerisation durchgeführt werden kann, und anschließende Umsetzung des so erhaltenen Copolymers mit Halogenalkansäuren. wie beispielsweise Chloressigsäure, oder ethylenisch ungesättigten Carbonsäuren, wie beispielsweise Acrylsäure oder Methacrylsäure, zugänglich. Sie weisen außer den Einheiten A und B keine anderen Einheiten auf, wobei herstellungsbedingt allenfalls in untergeordneter Menge nicht quaternisierte Vinylimidazolgruppen enthalten sein und an den Polymerenden aus dem Radikalstarter stammende Einheiten anwesend sein können. Der Anteil an nicht quaterni- sierten Vinylimidazolgruppen, bezogen auf die Summe an quaternisierten Vinylimidazolgruppen und nicht quaternisierten Vinylimidazolgruppen im Polymer, beträgt vorzugsweise weniger als 20
Mol-%.
Im erfindungswesentlichen Polymer liegen die Einheiten A und B vorzugsweise in Molverhältnissen im Bereich von 1 :99 bis 99:1 , insbesondere von 50:50 bis 80:20, und besonders bevorzugt von etwa 75:25 vor. Der polymere Wirkstoff weist vorzugsweise ein mittleres Molekulargewicht (hier und im Folgenden bei mittleren Molekulargewichtsangaben: Zahlenmittel) im Bereich von 1000 g/mol bis 300000 g/mol, insbesondere von 2000 g/mol bis 200000 g/mol auf.
Wenn man ein erfindungswesentliches Polymer zusammen mit linearem Alkylbenzolsulfonat in Wasser einbringt, beobachtet man im Bereich der kritischen Micellbildungskonzentration (von ca. 0,1 g/l) eine Erhöhung der Oberflächenspannung in Anwesenheit des Polymers im Vergleich zur gleichen Konzentration des Tensids in Abwesenheit des Polymers. Ohne an diese Theorie gebunden sein zu wollen lässt dies die Annahme zu, dass bei Anwesenheit des Polymers durch Bildung eines reinigungsaktiven Tensid-Polymer-Aggregats mehr Tensid in der Lösung und somit weniger Tensid an der Wasser-Luft-Grenzfläche vorhanden ist und damit die Oberflächenspannung sich erhöht. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung einer Kombination aus Polymeren aus den genannten Einheiten A und B und Alkylbenzolsulfonat mit linearen C7-15- Alkylgruppen, insbesondere linearen C9-13-Alkylgruppen, zur Verstärkung der Primärwaschkraft von Wasch- oder Reinigungsmitteln beim Waschen von Textilien oder beim Reinigen harter Oberflächen gegenüber insbesondere öl- und/oder fetthaltigen Anschmutzungen. Die Alkylbenzolsulfonate besitzen Gegenkationen aus der Gruppe der Alkalimetallionen und/oder Ammoniumionen, wobei Natrium-, Kalium, NhV- und/oder N(R )4+-lonen mit R = Wasserstoff, Ci-4-Alkyl und/oder C2-4- Hydroxyalkyl bevorzugt sind. In diesen Kombinationen liegt das Gewichtsverhältnis von linearem Alkylbenzolsulfonat zu erfindungswesentlichem Polymer vorzugsweise im Bereich von 20:1 bis 1 : 1 , insbesondere von 8: 1 bis 3: 1.
Der Einsatz des erfindungsgemäß verwendeten Wirkstoffs führt zu einer signifikant besseren Ablösung von insbesondere Fett- und Kosmetik-Anschmutzungen auf harten Oberflächen und auf Textilien, auch solchen aus Baumwolle oder mit einem Anteil von Baumwolle, als dies bei Verwendung bisher für diesen Zweck bekannter Verbindungen der Fall ist. Alternativ können bei gleich bleibendem Fettablösevermögen signifikante Mengen an Tensiden eingespart werden.
Die erfindungsgemäße Verwendung kann im Rahmen eines Wasch- oder Reinigungsprozesses derart erfolgen, dass man das erfindungswesentliche Polymer einer wasch- oder reinigungsmittel- haltigen wässrigen Flotte zusetzt oder es vorzugsweise als Bestandteil eines Wasch- oder Reinigungsmittels in die Flotte einbringt, wobei die Konzentration an dem Wirkstoff in der Flotte vorzugsweise im Bereich von 0,01 g/l bis 0,5 g/l, insbesondere von 0,02 g/l bis 0,2 g/l liegt.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Entfernen von insbesondere öl- und/oder fetthaltigen Anschmutzungen von Textilien oder harten Oberflächen durch Kontaktieren des Textils oder der harten Oberfläche mit einer wässrigen Flotte, in der ein Wasch- oder Reinigungsmittel und ein genannter polymerer Wirkstoff zum Einsatz kommen. Dieses Verfahren kann manuell oder maschinell, zum Beispiel mit Hilfe einer Haushaltswaschmaschine oder Geschirrspülmaschine, ausgeführt werden. Dabei ist es möglich, das insbesondere flüssige Wasch- oder Reinigungsmittel und den Wirkstoff gleichzeitig oder nacheinander anzuwenden. Die gleichzeitige Anwendung lässt sich besonders vorteilhaft durch den Einsatz eines Mittels, welches den Wirkstoff enthält, durchführen.
Ein weiterer Gegenstand der Erfindung ist daher ein Wasch- oder Reinigungsmittel, enthaltend ein Polymer aus den genannten Einheiten A und B. Wasch- oder Reinigungsmittel, die einen erfindungsgemäß zu verwendenden Wirkstoff enthalten oder mit diesem zusammen verwendet oder im erfindungsgemäßen Verfahren eingesetzt werden, können alle üblichen sonstigen Bestandteile derartiger Mittel enthalten, die nicht in unerwünschter Weise mit dem erfindungswesentlichen Wirkstoff wechselwirken. Vorzugsweise wird ein oben definierter polymerer Wirkstoff in Mengen von 0, 1 Gew.-% bis 10 Gew.-%, insbesondere 0,5 Gew.-% bis 2 Gew.-% in Wasch- oder Reinigungsmittel eingearbeitet.
Ein Mittel, welches einen erfindungsgemäß zu verwendenden Wirkstoff enthält oder mit diesem zusammen verwendet wird oder im erfindungsgemäßen Verfahren zum Einsatz kommt, enthält vorzugsweise synthetisches Aniontensid vom Sulfat- und/oder Sulfonattyp, insbesondere Alkylben- zolsulfonat, Fettalkylsulfat, Fettalkylethersulfat, Alkyl- und/oder Dialkylsulfosuccinat, Sulfofettsäure- ester und/oder Sulfofettsäuredisalze, insbesondere in einer Menge im Bereich von 2 Gew.-% bis 25 Gew.-% und besonders bevorzugt von 5 Gew.-% bis 15 Gew.-%. Bevorzugt wird das Aniontensid aus den Alkylbenzolsulfonaten, den Alkyl- oder Alkenylsulfaten und/oder den Alkyl- oder Alke- nylethersulfaten ausgewählt, in denen die Alkyl- oder Alkenylgruppe 8 bis 22, insbesondere 12 bis 18 C-Atome besitzt. Bei diesen handelt es sich üblicherweise nicht um Einzelsubstanzen, sondern um Schnitte oder Mischungen. Darunter sind solche bevorzugt, deren Anteil an Verbindungen mit längerkettigen Resten im Bereich von 16 bis 18 C-Atomen über 20 Gew.-% beträgt. Besonders bevorzugt ist die Anwesenheit der oben genannten Kombination aus erfindungswesentlichem Polymer und Alkylbenzolsulfonat mit linearen C9-13-Alkylgruppen in den Mitteln.
Eine weitere Ausführungsform derartiger Mittel umfasst die Anwesenheit von nichtionischem Ten- sid, ausgewählt aus Fettalkylpolyglykosiden, Fettalkylpolyalkoxylaten, insbesondere -ethoxylaten und/oder -propoxylaten, Fettsäurepolyhydroxyamiden und/oder Ethoxylierungs-und/oder Propoxy- lierungsprodukten von Fettalkylaminen, vicinalen Diolen, Fettsäurealkylestern und/oder Fettsäure- amiden sowie deren Mischungen, insbesondere in einer Menge im Bereich von 2 Gew.-% bis 25 Gew.-%.
Zu den in Frage kommenden nichtionischen Tensiden gehören die Alkoxylate, insbesondere die Ethoxylate und/oder Propoxylate von gesättigten oder ein- bis mehrfach ungesättigten linearen oder verzweigtkettigen Alkoholen mit 10 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen. Der Alkoxylierungsgrad der Alkohole liegt dabei in der Regel zwischen 1 und 20, vorzugsweise zwischen 3 und 10. Sie können in bekannter Weise durch Umsetzung der entsprechenden Alkohole mit den entsprechenden Alkylenoxiden hergestellt werden. Geeignet sind insbesondere die Derivate der Fettalkohole, obwohl auch deren verzweigtkettige Isomere, insbesondere sogenannte Oxoalkohole, zur Herstellung verwendbarer Alkoxylate eingesetzt werden können. Brauchbar sind demgemäß die Alkoxylate, insbesondere die Ethoxylate, primärer Alkohole mit linearen, insbesondere Dodecyl-, Tetradecyl-, Hexadecyl- oder Octadecyl-Resten sowie deren Gemische. Außerdem sind entsprechende Alkoxylierungsprodukte von Alkylaminen, vicinalen Diolen und Carbonsäure- amiden, die hinsichtlich des Alkylteils den genannten Alkoholen entsprechen, verwendbar. Darüber hinaus kommen die Ethylenoxid- und/oder Propylenoxid-Insertionsprodukte von Fettsäurealkyl- estern sowie Fettsäurepolyhydroxyamide in Betracht. Zur Einarbeitung in die erfindungsgemäßen Mittel geeignete sogenannte Alkylpolyglykoside sind Verbindungen der allgemeinen Formel (G)n- OR 2, in der R 2 einen Alkyl- oder Alkenylrest mit 8 bis 22 C-Atomen, G eine Glykoseeinheit und n eine Zahl zwischen 1 und 10 bedeuten. Bei der Glykosidkomponente (G)n handelt es sich um Oli- go- oder Polymere aus natürlich vorkommenden Aldose- oder Ketose-Monomeren, zu denen insbesondere Glucose, Mannose, Fruktose, Galaktose, Talose, Gulose, Altrose, Allose, Idose, Ri- bose, Arabinose, Xylose und Lyxose gehören. Die aus derartigen glykosidisch verknüpften Monomeren bestehenden Oligomere werden außer durch die Art der in ihnen enthaltenen Zucker durch deren Anzahl, den sogenannten Oligomerisierungsgrad, charakterisiert. Der Oligomerisierungsgrad n nimmt als analytisch zu ermittelnde Größe im allgemeinen gebrochene Zahlenwerte an; er liegt bei Werten zwischen 1 und 10, bei den vorzugsweise eingesetzten Glykosiden unter einem Wert von 1 ,5, insbesondere zwischen 1 ,2 und 1 ,4. Bevorzugter Monomer-Baustein ist wegen der guten Verfügbarkeit Glucose. Der Alkyl- oder Alkenylteil R 2 der Glykoside stammt bevorzugt ebenfalls aus leicht zugänglichen Derivaten nachwachsender Rohstoffe, insbesondere aus Fettalkoholen, obwohl auch deren verzweigtkettige Isomere, insbesondere sogenannte Oxoalkohole, zur Herstellung verwendbarer Glykoside eingesetzt werden können. Brauchbar sind demgemäß insbesondere die primären Alkohole mit linearen Octyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl- oder Octa- decylresten sowie deren Gemische. Besonders bevorzugte Alkylglykoside enthalten einen Kokos- fettalkylrest, das heißt Mischungen mit im wesentlichen R 2=Dodecyl und R 2=Tetradecyl.
Nichtionisches Tensid ist in Mitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten oder im Rahmen der erfindungsgemäßen Verwendung eingesetzt werden, vorzugsweise in Mengen von 1 Gew.-% bis 30 Gew.-%, insbesondere von 1 Gew.-% bis 25 Gew.-% enthalten, wobei Mengen im oberen Teil dieses Bereiches eher in flüssigen Waschmitteln anzutreffen sind und teilchenförmige Waschmittel vorzugsweise eher geringere Mengen von bis zu 5 Gew.-% enthalten.
Die Mittel können stattdessen oder zusätzlich weitere Tenside, vorzugsweise synthetische Aniontenside des Sulfat- oder Sulfonat-Typs, enthalten. Als für den Einsatz in derartigen Mitteln besonders geeignete synthetische Aniontenside sind neben den bereits genannten Alkylbenzolsulfonaten die Alkyl- und/oder Alkenylsulfate mit 8 bis 22 C-Atomen, die ein Alkali-, Ammonium- oder Alkyl- oder Hydroxyalkyl-substituiertes Ammoniumion als Gegenkation tragen, zu nennen. Bevorzugt sind die Derivate der Fettalkohole mit insbesondere 12 bis 18 C-Atomen und deren verzweigtkettiger Analoga, der sogenannten Oxoalkohole. Die Alkyl- und Alkenylsulfate können in bekannter Weise durch Reaktion der entsprechenden Alkoholkomponente mit einem üblichen Sulfatierungsreagenz, insbesondere Schwefeltrioxid oder Chlorsulfonsäure, und anschließende Neutralisation mit Alkali-, Ammonium- oder Alkyl- oder Hydroxyalkyl-substituierten Ammoniumbasen hergestellt werden. Zu den einsetzbaren Tensiden vom Sulfat-Typ gehören auch die sulfatierten Alkoxylierungsprodukte der genannten Alkohole, sogenannte Ethersulfate. Vorzugsweise enthalten derartige Ethersulfate 2 bis 30, insbesondere 4 bis 10 Ethylenglykol-Gruppen pro Molekül. Zu den geeigneten Aniontensi- den vom Sulfonat-Typ gehören die durch Umsetzung von Fettsäureestern mit Schwefeltrioxid und anschließender Neutralisation erhältlichen α-Sulfoester, insbesondere die sich von Fettsäuren mit 8 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen, und linearen Alkoholen mit 1 bis 6 C- Atomen, vorzugsweise 1 bis 4 C-Atomen, ableitenden Sulfonierungsprodukte, sowie die durch formale Verseifung aus diesen hervorgehenden Sulfofettsäuren. Bevorzugte Aniontenside sind auch die Salze von Sulfobernsteinsäurestern, die auch als Alkylsulfosuccinate oder Dialkylsulfosuccinate bezeichnet werden, und die Monoester oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten Cs- bis Cis-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen ethoxylierten Fettalkoholrest, der für sich betrachtet ein nichtionisches Tenside darstellt. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt.
Als weitere fakultative tensidische Inhaltsstoffe kommen Seifen in Betracht, wobei gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure oder Stearinsäure, sowie aus natürlichen Fettsäuregemischen, zum Beispiel Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifen geeignet sind. Insbesondere sind solche Seifengemische bevorzugt, die zu 50 Gew.- % bis 100 Gew.-% aus gesättigten Ci2-Cis-Fettsäureseifen und zu bis 50 Gew.-% aus Ölsäureseife zusammengesetzt sind. Vorzugsweise ist Seife in Mengen von 0, 1 Gew.-% bis 5 Gew.-% enthalten. Insbesondere in flüssigen Mitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, können jedoch auch höhere Seifenmengen von in der Regel bis zu 20 Gew.-% enthalten sein.
Gewünschtenfalls können die Mittel auch Betaintenside und/oder kationische Tenside enthalten, die - falls vorhanden - vorzugsweise in Mengen von 0,5 Gew.-% bis 7 Gew.-% eingesetzt werden. Unter diesen sind die unten diskutierten Esterquats besonders bevorzugt.
Die Mittel können gewünschtenfalls Bleichmittel auf Persauerstoffbasis, insbesondere in Mengen im Bereich von 5 Gew.-% bis 70 Gew.-%, sowie gegebenenfalls Bleichaktivator, insbesondere in Mengen im Bereich von 2 Gew.-% bis 10 Gew.-%, enthalten. Die in Betracht kommenden Bleichmittel sind vorzugsweise die in Waschmitteln in der Regel verwendeten Persauerstoffverbindungen wie Percarbonsäuren, beispielsweise Dodecandipersäure oder Phthaloylaminoperoxicapronsäure, Wasserstoffperoxid, Alkaliperborat, das als Tetra- oder Monohydrat vorliegen kann, Percarbonat, Perpyrophosphat und Persilikat, die in der Regel als Alkalisalze, insbesondere als Natriumsalze, vorliegen. Derartige Bleichmittel sind in Waschmitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, vorzugsweise in Mengen bis zu 25 Gew.-%, insbesondere bis zu 15 Gew.- % und besonders bevorzugt von 5 Gew.-% bis 15 Gew.-%, jeweils bezogen auf gesamtes Mittel, vorhanden, wobei insbesondere Percarbonat zum Einsatz kommt. Die fakultativ vorhandene Komponente der Bleichaktivatoren umfasst die üblicherweise verwendeten N- oder O-Acylver- bindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendi- amin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium- isononanoyl-phenolsulfonat, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose, sowie kationische Nitrilderivate wie Trimethylammoniumacetonitril-Salze. Die Bleichaktivatoren können zur Vermeidung der Wechselwirkung mit den Perverbindungen bei der Lagerung in bekannter Weise mit Hüllsubstanzen überzogen und/oder granuliert worden sein, wobei mit Hilfe von Carboxy- methylcellulose granuliertes Tetraacetylethylendiamin mit mittleren Korngrößen von 0,01 mm bis 0,8 mm, granuliertes 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin, und/oder in Teilchenform konfektioniertes Trialkylammoniumacetonitril besonders bevorzugt ist. In Waschmitteln sind derartige Bleichaktivatoren vorzugsweise in Mengen bis zu 8 Gew.-%, insbesondere von 2 Gew.-% bis 6 Gew.-%, jeweils bezogen auf gesamtes Mittel, enthalten.
In einer weiteren Ausführungsform enthält das Mittel wasserlöslichen und/oder wasserunlöslichen Builder, insbesondere ausgewählt aus Alkalialumosilikat, kristallinem Alkalisilikat mit Modul über 1 , monomerem Polycarboxylat, polymerem Polycarboxylat und deren Mischungen, insbesondere in Mengen im Bereich von 2,5 Gew.-% bis 60 Gew.-%.
Das Mittel enthält vorzugsweise 20 Gew.-% bis 55 Gew.-% wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören insbesondere solche aus der Klasse der Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, sowie der polymeren (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden zugänglichen Polycarboxylate, polymere Acrylsäuren, Me- thacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymeri- sierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5000 g/mol und 200000 g/mol, die der Copolymeren zwischen 2000 g/mol und 200000 g/mol, vorzugsweise 50000 g/mol bis 120000 g/mol, bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 50000 g/mol bis
100000 g/mol auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei Carbonsäuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer oder dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-Cs-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth-)acrylsäure ab. Das zweite saure Monomer oder dessen Salz kann ein Derivat einer C4-Cs-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol- Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von C1-C4- Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Terpolymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure und/oder (Meth)acrylat, besonders bevorzugt Acrylsäure und/oder Acrylat, und Maleinsäure und/oder Maleinat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise 10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vi- nylacetat. Ganz besonders bevorzugt sind dabei Terpolymere, in denen das Gewichtsverhältnis (Meth)acrylsäure und/oder (Meth)acrylat zu Maleinsäure und/oder Maleat zwischen 1 : 1 und 4:1 , vorzugsweise zwischen 2:1 und 3: 1 und insbesondere 2:1 und 2,5: 1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer oder dessen Salz kann auch ein Derivat einer Allylsulfonsäure sein, die in 2-Stellung mit einem Alkylrest, vorzugsweise mit einem Ci-C4-Alkylrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure und/oder (Meth)acrylat, besonders bevorzugt Acrylsäure und/oder Acrylat, 10 Gew.-% bis 30 Gew.- %, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methallylsulfonsäure und/oder Methallylsulfonat und als drittes Monomer 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind, besonders bevorzugt ist Saccharose. Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in dem Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind. Diese Terpolymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1000 g/mol und 200000 g/mol, vorzugsweise zwischen 2000 g/mol und 50000 g/mol und insbesondere zwischen 3000 g/mol und 10000 g/mol auf. Sie können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wässriger Lösungen eingesetzt werden. Alle genannten Polycarbonsäuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
Derartige organische Buildersubstanzen sind vorzugsweise in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und besonders bevorzugt von 1 Gew.-% bis 5 Gew.-% enthalten. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, Mitteln eingesetzt.
Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Alumosilikate in Waschmittelqualität, insbesondere Zeolith NaA und gegebenenfalls NaX, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 μιη auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 μιη. Ihr Calciumbindevermögen liegt im Bereich von 100 bis 200 mg CaO pro Gramm. Geeignete Substitute oder Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu S1O2 unter 0,95, insbesondere von 1 :1 ,1 bis 1 :12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na20:Si02 von 1 :2 bis 12,8. Derartige amorphe Alkalisilikate sind beispielsweise unter dem Namen Portil® im Handel erhältlich. Solche mit einem molaren Verhältnis Na20:Si02 von 1 : 1 ,9 bis 1 :2,8 werden im Rahmen der Herstellung bevorzugt als Feststoff und nicht in Form einer Lösung zugegeben. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2Six02x+i VH2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Kristalline Schichtsilikate, die unter diese allgemeine Formel fallen, werden beispielsweise in der europäischen Patentanmeldung EP 0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si20s yH20) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1 ,9 bis 2,1 bedeutet, können in Mitteln, welche einen erfindungsgemäß zu verwendenden Wirkstoff enthalten, eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1 ,9 bis 3,5, werden in einer weiteren bevorzugten Ausführungsform von Waschmitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, eingesetzt. Deren Gehalt an Alkalisilikaten beträgt vorzugsweise 1 Gew.-% bis 50 Gew.- % und insbesondere 5 Gew.-% bis 35 Gew.-%, bezogen auf wasserfreie Aktivsubstanz. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt der Gehalt an Alkalisilikat vorzugsweise 1 Gew.-% bis 15 Gew.-% und insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf wasserfreie Aktivsubstanz. Das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, beträgt dann vorzugsweise 4:1 bis 10: 1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1 :2 bis 2:1 und insbesondere 1 :1 bis 2: 1. Zusätzlich zum genannten anorganischen Builder können weitere wasserlösliche oder wasserunlösliche anorganische Substanzen in den Mitteln, welche einen erfindungsgemäß zu verwendenden Wirkstoff enthalten, mit diesem zusammen verwendet oder in erfindungsgemäßen Verfahren eingesetzt werden, enthalten sein. Geeignet sind in diesem Zusammenhang die Alkali- carbonate, Alkalihydrogencarbonate und Alkalisulfate sowie deren Gemische. Derartiges zusätzliches anorganisches Material kann in Mengen bis zu 70 Gew.-% vorhanden sein.
Zusätzlich können die Mittel weitere in Wasch- oder Reinigungsmitteln übliche Bestandteile enthalten. Zu diesen fakultativen Bestandteilen gehören insbesondere Enzyme, Enzymstabilisatoren, Komplexbildner für Schwermetalle, beispielsweise Aminopolycarbonsäuren, Aminohydroxypolycar- bonsäuren, Polyphosphonsäuren und/oder Aminopolyphosphonsäuren, Schauminhibitoren, beispielsweise Organopolysiloxane oder Paraffine, Lösungsmittel und optische Aufheller, beispielsweise Stilbendisulfonsäurederivate. Vorzugsweise sind in Mitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, bis zu 1 Gew.-%, insbesondere 0,01 Gew.-% bis 0,5 Gew.-% optische Aufheller, insbesondere Verbindungen aus der Klasse der substituierten 4,4'-Bis-(2,4,6-tri- amino-s-triazinyl)-stilben-2,2'-disulfonsäuren, bis zu 5 Gew.-%, insbesondere 0, 1 Gew.-% bis 2 Gew.-% Komplexbildner für Schwermetalle, insbesondere Aminoalkylenphosphonsäuren und deren Salze und bis zu 2 Gew.-%, insbesondere 0, 1 Gew.-% bis 1 Gew.-% Schauminhibitoren enthalten, wobei sich die genannten Gewichtsanteile jeweils auf gesamtes Mittel beziehen.
Lösungsmittel, die insbesondere bei flüssigen Mitteln eingesetzt werden können, sind neben Wasser vorzugsweise solche, die wassermischbar sind. Zu diesen gehören die niederen Alkohole, beispielsweise Ethanol, Propanol, iso-Propanol, und die isomeren Butanole, Glycerin, niedere Gly- kole, beispielsweise Ethylen- und Propylenglykol, und die aus den genannten Verbindungsklassen ableitbaren Ether. In derartigen flüssigen Mitteln liegen die erfindungsgemäß verwendeten Wirkstoffe in der Regel gelöst oder in suspendierter Form vor.
Gegebenenfalls anwesende Enzyme werden vorzugsweise aus der Gruppe umfassend Protease, Amylase, Lipase, Cellulase, Hemicellulase, Oxidase, Peroxidase, Pektinase und Mischungen aus diesen ausgewählt. In erster Linie kommt aus Mikroorganismen, wie Bakterien oder Pilzen, gewonnene Protease in Frage. Sie kann in bekannter Weise durch Fermentationsprozesse aus geeigneten Mikroorganismen gewonnen werden. Proteasen sind im Handel beispielsweise unter den Namen BLAP®, Savinase®, Esperase®, Maxatase®, Optimase®, Alcalase®, Durazym® oder Maxapem® erhältlich. Die einsetzbare Lipase kann beispielsweise aus Humicola lanuginosa, aus Bacillus-Arten, aus Pseudomonas-Arten, aus Fusarium-Arten, aus Rhizopus-Arten oder aus As- pergillus-Arten gewonnen werden. Geeignete Lipasen sind beispielsweise unter den Namen Lipo- lase®, Lipozym®, Lipomax®, Lipex®, Amano®-Lipase, Toyo-Jozo®-Lipase, Meito®-Lipase und Diosynth®-Lipase im Handel erhältlich. Geeignete Amylasen sind beispielsweise unter den Namen Maxamyl®, Termamyl®, Duramyl® und Purafect® OxAm handelsüblich. Die einsetzbare Cellulase kann ein aus Bakterien oder Pilzen gewinnbares Enzym sein, welches ein pH-Optimum vorzugsweise im schwach sauren bis schwach alkalischen Bereich von 6 bis 9,5 aufweist. Derartige Cellu- lasen sind unter den Namen Celluzyme®, Carezyme® und Ecostone® handelsüblich. Geeignete Pektinasen sind beispielsweise unter den Namen Gamanase®, Pektinex AR®, X-Pect® oder Pectaway® von Novozymes, unter dem Namen Rohapect UF®, Rohapect TPL®, Rohapect PTE100®, Rohapect MPE®, Rohapect MA plus HC, Rohapect DA12L®, Rohapect 10L®, Rohapect B1 L® von AB Enzymes und unter dem Namen Pyrolase® von Diversa Corp., San Diego, CA, USA erhältlich.
Zu den gegebenenfalls, insbesondere in flüssigen Mitteln vorhandenen üblichen Enzymstabilisatoren gehören Aminoalkohole, beispielsweise Mono-, Di-, Triethanol- und -propanolamin und deren Mischungen, niedere Carbonsäuren, Borsäure, Alkaliborate, Borsäure-Carbonsäure- Kombinationen, Borsäureester, Boronsäurederivate, Calciumsalze, beispielsweise Ca-Ameisen- säure-Kombination, Magnesiumsalze, und/oder schwefelhaltige Reduktionsmittel.
Zu den geeigneten Schauminhibitoren gehören langkettige Seifen, insbesondere Behenseife, Fett- säureamide, Paraffine, Wachse, Mikrokristallinwachse, Organopolysiloxane und deren Gemische, die darüber hinaus mikrofeine, gegebenenfalls silanierte oder anderweitig hydrophobierte Kieselsäure enthalten können. Zum Einsatz in partikelförmigen Mitteln sind derartige Schauminhibitoren vorzugsweise an granuläre, wasserlösliche Trägersubstanzen gebunden.
Zu den bekanntlich polyesteraktiven schmutzablösevermögenden Polymeren, die zusätzlich zu den erfindungswesentlichen Wirkstoffen eingesetzt werden können, gehören Copolyester aus Di- carbonsäuren, beispielsweise Adipinsäure, Phthalsäure oder Terephthalsäure, Diolen, beispielsweise Ethylenglykol oder Propylenglykol, und Polydiolen, beispielsweise Polyethylenglykol oder Polypropylenglykol. Zu den bevorzugt eingesetzten schmutzablösevermögenden Polyestern gehören solche Verbindungen, die formal durch Veresterung zweier Monomerteile zugänglich sind, wobei das erste Monomer eine Dicarbonsäure HOOC-Ph-COOH und das zweite Monomer ein Diol HO-(CHR -)aOH, das auch als polymeres Diol H-(0-(CHR -)a)bOH vorliegen kann, ist. Darin bedeutet Ph einen o-, m- oder p-Phenylenrest, der 1 bis 4 Substituenten, ausgewählt aus Alkylresten mit 1 bis 22 C-Atomen, Sulfonsäuregruppen, Carboxylgruppen und deren Mischungen, tragen kann, R Wasserstoff, einen Alkylrest mit 1 bis 22 C-Atomen und deren Mischungen, a eine Zahl von 2 bis 6 und b eine Zahl von 1 bis 300. Vorzugsweise liegen in den aus diesen erhältlichen Polyestern sowohl Monomerdioleinheiten -0-(CHR -)aO- als auch Polymerdioleinheiten -(0-(CHR11- )a)bO- vor. Das molare Verhältnis von Monomerdioleinheiten zu Polymerdioleinheiten beträgt vorzugsweise 100:1 bis 1 : 100, insbesondere 10:1 bis 1 : 10. In den Polymerdioleinheiten liegt der Polymerisationsgrad b vorzugsweise im Bereich von 4 bis 200, insbesondere von 12 bis 140. Das Molekulargewicht oder das mittlere Molekulargewicht oder das Maximum der Molekulargewichtsverteilung bevorzugter schmutzablösevermögender Polyester liegt im Bereich von 250 g/mol bis 100000 g/mol, insbesondere von 500 g/mol bis 50000 g/mol. Die dem Rest Ph zugrundeliegende Säure wird vorzugsweise aus Terephthalsäure, Isophthalsäure, Phthalsäure, Trimellithsäure, Mellithsäu- re, den Isomeren der Sulfophthalsäure, Sulfoisophthalsäure und Sulfoterephtalsäure sowie deren Gemischen ausgewählt. Sofern deren Säuregruppen nicht Teil der Esterbindungen im Polymer sind, liegen sie vorzugsweise in Salzform, insbesondere als Alkali- oder Ammoniumsalz vor. Unter diesen sind die Natrium- und Kaliumsalze besonders bevorzugt. Gewünschtenfalls können statt des Monomers HOOC-Ph-COOH geringe Anteile, insbesondere nicht mehr als 10 Mol-% bezogen auf den Anteil an Ph mit der oben gegebenen Bedeutung, anderer Säuren, die mindestens zwei Carboxylgruppen aufweisen, im schmutzablösevermögenden Polyester enthalten sein. Zu diesen gehören beispielsweise Alkylen- und Alkenylendicarbonsäuren wie Malonsäure, Bernsteinsäure, Fumarsäure, Maleinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure. Zu den bevorzugten Diolen HO-(CHR -)aOH gehören solche, in denen R Wasserstoff und a eine Zahl von 2 bis 6 ist, und solche, in denen a den Wert 2 aufweist und R unter Wasserstoff und den Alkylresten mit 1 bis 10, insbesondere 1 bis 3 C-Atomen ausgewählt wird. Unter den letztgenannten Diolen sind solche der Formel HO-CH2-CHR -OH, in der R die obengenannte Bedeutung besitzt, besonders bevorzugt. Beispiele für Diolkomponenten sind Ethylengly- kol, 1 ,2-Propylenglykol, 1 ,3-Propylenglykol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, 1 ,8- Octandiol, 1 ,2-Decandiol, 1 ,2-Dodecandiol und Neopentylglykol. Besonders bevorzugt unter den polymeren Diolen ist Polyethylenglykol mit einer mittleren Molmasse im Bereich von 1000 g/mol bis 6000 g/mol.
Gewünschtenfalls können diese wie oben beschrieben zusammengesetzten Polyester auch end- gruppenverschlossen sein, wobei als Endgruppen Alkylgruppen mit 1 bis 22 C-Atomen und Ester von Monocarbonsäuren in Frage kommen. Den über Esterbindungen gebundenen Endgruppen können Alkyl-, Alkenyl- und Arylmonocarbonsäuren mit 5 bis 32 C-Atomen, insbesondere 5 bis 18 C-Atomen, zugrunde liegen. Zu diesen gehören Valeriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Undecansäure, Undecensäure, Laurinsäure, Laurolein- säure, Tridecansäure, Myristinsäure, Myristoleinsäure, Pentadecansäure, Palmitinsäure, Stearinsäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Linolsäure, Linolaidinsäure, Linolensäure, Eläostearinsäure, Arachinsäure, Gadoleinsäure, Arachidonsäure, Behensäure, Erucasäure, Bras- sidinsäure, Clupanodonsäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, Benzoesäure, die 1 bis 5 Substituenten mit insgesamt bis zu 25 C-Atomen, insbesondere 1 bis 12 C-Atomen tragen kann, beispielsweise tert.-Butylbenzoesäure. Den Endgruppen können auch Hydroxymonocarbon- säuren mit 5 bis 22 C-Atomen zugrunde liegen, zu denen beispielsweise Hydroxyvaleriansäure, Hydroxycapronsäure, Ricinolsäure, deren Hydrierungsprodukt Hydroxystearinsäure sowie o-, m- und p-Hydroxybenzoesäure gehören. Die Hydroxymonocarbonsäuren können ihrerseits über ihre Hydroxylgruppe und ihre Carboxylgruppe miteinander verbunden sein und damit mehrfach in einer Endgruppe vorliegen. Vorzugsweise liegt die Anzahl der Hydroxymonocarbonsäureeinheiten pro Endgruppe, das heißt ihr Oligomerisierungsgrad, im Bereich von 1 bis 50, insbesondere von 1 bis 10. In einer bevorzugten Ausgestaltung der Erfindung werden Polymere aus Ethylenterephthalat und Polyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 g/mol bis 5000 g/mol aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid- terephthalat 50:50 bis 90: 10 beträgt, in Kombination mit einem erfindungswesentlichen Wirkstoff verwendet.
Die schmutzablösevermögenden Polymere sind vorzugsweise wasserlöslich, wobei unter dem Begriff„wasserlöslich" eine Löslichkeit von mindestens 0,01 g, vorzugsweise mindestens 0, 1 g des Polymers pro Liter Wasser bei Raumtemperatur und pH 8 verstanden werden soll. Bevorzugt eingesetzte Polymere weisen unter diesen Bedingungen jedoch eine Löslichkeit von mindestens 1 g pro Liter, insbesondere mindestens 10 g pro Liter auf.
Die Herstellung erfindungsgemäßer fester Mittel bietet keine Schwierigkeiten und kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Enzyme und eventuelle weitere thermisch empfindliche Inhaltsstoffe wie zum Beispiel Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung erfindungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionsschritt aufweisendes Verfahren bevorzugt.
Zur Herstellung von erfindungsgemäßen Mitteln in Tablettenform, die einphasig oder mehrphasig, einfarbig oder mehrfarbig und insbesondere aus einer Schicht oder aus mehreren, insbesondere aus zwei Schichten bestehen können, geht man vorzugsweise derart vor, dass man alle Bestandteile - gegebenenfalls je einer Schicht - in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzenterpressen oder Rundläuferpressen, mit Preßkräften im Bereich von etwa 50 bis 100 kN, vorzugsweise bei 60 bis 70 kN verpresst. Insbesondere bei mehrschichtigen Tabletten kann es von Vorteil sein, wenn mindestens eine Schicht vorverpresst wird. Dies wird vorzugsweise bei Preßkräften zwischen 5 und 20 kN, insbesondere bei 10 bis 15 kN durchgeführt. Man erhält so problemlos bruchfeste und dennoch unter Anwendungsbedingungen ausreichend schnell lösliche Tabletten mit Bruch- und Biegefestigkeiten von normalerweise 100 bis 200 N, bevorzugt jedoch über 150 N. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 10 g bis 50 g, insbesondere von 15 g bis 40 g auf. Die Raumform der Tabletten ist beliebig und kann rund, oval oder eckig sein, wobei auch Zwischenformen möglich sind. Ecken und Kanten sind vorteilhafterweise abgerundet. Runde Tabletten weisen vorzugsweise einen Durchmesser von 30 mm bis 40 mm auf. Insbesondere die Größe von eckig oder quaderförmig gestalteten Tabletten, welche überwiegend über die Dosiervorrichtung beispielsweise der Geschirrspülmaschine eingebracht werden, ist abhängig von der Geometrie und dem Volumen dieser Dosiervorrichtung. Beispielhaft bevorzugte Ausführungsformen weisen eine Grundfläche von (20 bis 30 mm) x (34 bis 40 mm), insbesondere von 26x36 mm oder von 24x38 mm auf. Flüssige oder pastöse erfindungsgemäße Mittel in Form von übliche Lösungsmittel, insbesondere Wasser, enthaltenden Lösungen werden in der Regel durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
In einer bevorzugten Ausführungsform ist ein Mittel, in das erfindungsgemäß zu verwendender Wirkstoff eingearbeitet wird, flüssig und enthält 1 Gew.-% bis 15 Gew.-%, insbesondere 2 Gew.-% bis 10 Gew.-% nichtionisches Tensid, 2 Gew.-% bis 30 Gew.-%, insbesondere 5 Gew.-% bis 20 Gew.-% synthetisches Aniontensid, bis zu 15 Gew.-%, insbesondere 2 Gew.-% bis 12,5 Gew.- % Seife, 0,5 Gew.-% bis 5 Gew.-%, insbesondere 1 Gew.-% bis 4 Gew.-% organischen Builder, insbesondere Polycarboxylat wie Citrat, bis zu 1 ,5 Gew.-%, insbesondere 0, 1 Gew.-% bis 1 Gew.- % Komplexbildner für Schwermetalle, wie Phosphonat, und neben gegebenenfalls enthaltenem Enzym, Enzymstabilisator, Färb- und/oder Duftstoff Wasser und/oder wassermischbares Lösungsmittel.
In einer weiteren bevorzugten Ausführungsform ist ein Mittel, in das erfindungsgemäß zu verwendender Wirkstoff eingearbeitet wird, teilchenförmig und enthält bis zu 25 Gew.-%, insbesondere 5 Gew.-% bis 20 Gew.-% Bleichmittel, insbesondere Alkalipercarbonat, bis zu 15 Gew.-%, insbesondere 1 Gew.-% bis 10 Gew.-% Bleichaktivator, 20 Gew.-% bis 55 Gew.-% anorganischen Builder, bis zu 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-% wasserlöslichen organischen Builder, 10 Gew.-% bis 25 Gew.-% synthetisches Aniontensid, 1 Gew.-% bis 5 Gew.-% nichtionisches Tensid und bis zu 25 Gew.-%, insbesondere 0,1 Gew.-% bis 25 Gew.-% anorganische Salze, insbesondere Alkalicarbonat und/oder -hydrogencarbonat.
Beispiele
Beispiel 1 : Herstellung von Poly(N-vinyl-2-pyrrolidon-co-1-vinyl-3-(1-carboxymethyl)-imidazolium betain)
N-Vinyl-2-pyrrolidon und 1-Vinylimidazol wurden vor Verwendung im Vakuum destillativ aufgereinigt (N-Vinyl-2-pyrrolidon: 3-4 mbar, 100°C Ölbad, 77-83°C Kopftemperatur, Vakuummanteldestille; 1-Vinylimidazol: 12 mbar, 90°C Ölbad, 70°C Kopftemperatur, Vakuummanteldestille). Die in Tabelle 1 angegebene Menge an 1-Vinylimidazol, die in Tabelle 1 angegebene Menge an N-Vinyl-2- pyrrolidon und 250 ml Methanol wurden in einen 500 ml-Schlenkkolben eingewogen und 25 Minuten mit Stickstoff durchspült. Dann wurde den zur Herstellung von niedrigermolekularen Polymeren V1 und V3 vorgesehenen Ansätzen und den zur Herstellung von höhermolekularen Polymeren V2 und V4 vorgesehenen Ansätzen 15 mg Azobisisobutyronitril zugeben und weitere 25 Minuten mit Stickstoff gespült, anschließend wurden die Ansätze für 48 h bei 60 °C gerührt. Den zur Herstellung von höhermolekularen Polymeren V2 und V4 vorgesehenen Ansätzen wurde nach dieser Zeit und ein weiteres Mal nach insgesamt 72 Stunden die gleiche Menge Azobisisobutyronitril erneut zugegeben, sie wurden jeweils erneut mit Stickstoff gespült, und die Polymerisation wurde bei 60°C bis zu einem Gesamtzeitraum von 96 Stunden fortgesetzt.
Nach Entfernen des Lösungsmittels am Rotationsverdampfer wurde der Rückstand in Wasser gelöst und anschließend gefriergetrocknet.
Die so erhaltenen polymeren Zwischenprodukte wurden in 80 ml Dimethylacetamid bei 75°C gelöst, 10 ml Bromessigsäure-tert-Butylester wurden zugegeben und das Reaktionsgemisch bei 75°C für 48 h gerührt. Danach wurde der durch Zugabe von 600 ml Diethylether ausgefällte Niederschlag mit einer Schlenkfritte unter Stickstoff abgesaugt, mehrmals mit jeweils 100 ml Diethylether gewaschen und im Stickstoffstrom getrocknet.
Zur Entfernung der tert-Butyl-Schutzgruppen wurde das so erhaltene Zwischenprodukt mit 30 ml Trifluoressigsäure versetzt und für 24 Stunden bei Raumtemperatur gerührt. Nach Abkondensieren der Trifluoressigsäure wurden die Polymere in Wasser gelöst und durch Gefriertrocknung isoliert.
Folgende Varianten von Poly(N-vinyl-2-pyrrolidon-co-1-vinyl-3-(1-carboxymethyl)-imidazolium betainen) mit den in Tabelle 1 für die entstanden Polymere angegebenen mittleren Molmassen und Molverhältnissen von Imidazoliumbetain zu Vinylpyrrolidon wurden so synthetisiert: Polymer Menge 1-Vinylimidazol Menge N-Vinyl-2-pyrrolidon Molmasse Molverhältnis
V1 36 g 14 g 5000 g/mol 50:50
V2 36 g 14 g 50000 g/mol 50:50
V3 1 1 g 39 g 5000 g/mol 75:25
V4 1 1 g 39 g 50000 g/mol 75:25
Beispiel 2:
Tabelle 2: Waschmittelzusammensetzungen (Angaben in Gew %)
Figure imgf000017_0001
Beispiel 3: Waschversuche
Mit standardisierten Anschmutzungen (A: C-S-46b, gebrauchtes Bratfett; B: C-01 , Ruß/Mineralöl; C: C-03, Schokoladenmilch/Ruß; alle erhältlich vom Center for Testmaterials BV) versehene Test- textilien aus Baumwolle wurden bei 25 °C mit dem in Beispiel 2 aufgeführten Waschmittel C mit jeweils einem in Beispiel 1 hergestelltem Polymer V1 bis V4 bei einer Dosierung des Waschmittels von jeweils 4,2 g/l 1 Stunde lang gewaschen. Nach Auswaschen mit Wasser und hängender Trocknung der Testtextilien wurde deren Weißgrad spektralphotometrisch (Minolta® CR400-1 ) bestimmt. In der nachfolgenden Tabelle 3 sind die Differenzen der Remissionswerte (jeweils in %) zum gleichen Einsatz des ansonsten gleich zusammengesetzten Waschmittels ohne erfindungswesentliches Polymer als Mittelwerte aus 5 Bestimmungen angegeben.
Tabelle 3: Waschergebnisse (Remissionsdifferenz)
Figure imgf000018_0001
n.b.: nicht bestimmt
Die Waschmittel mit den erfindungsgemäß zu verwendenden Wirkstoffen zeigten eine deutlich bessere Primärwaschleistung als ein ansonsten gleich zusammengesetztes Mittel, dem diese fehlten.

Claims

Patentansprüche
1. Verwendung von Polymeren aus den Einheiten A und B,
Figure imgf000019_0001
A B wobei R für einen zweibindingen Kohlenwasserstoffrest mit 1 bis 6, insbesondere 1 bis 3 Kohlenstoffatomen steht, zur Verstärkung der Primärwaschkraft von Wasch- oder Reinigungsmitteln beim Waschen von Textilien oder beim Reinigen harter Oberflächen gegenüber Anschmutzungen.
Verwendung einer Kombination aus Polymeren aus den Einheiten A und B,
Figure imgf000019_0002
A B wobei R für einen zweibindingen Kohlenwasserstoffrest mit 1 bis 6, insbesondere 1 bis 3 Kohlenstoffatomen steht, und Alkylbenzolsulfonat mit linearen Cz -is-Alkylgruppen zur Verstärkung der Primärwaschkraft von Wasch- oder Reinigungsmitteln beim Waschen von Textilien oder beim Reinigen harter Oberflächen gegenüber Anschmutzungen.
3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, dass das Gewichtsverhältnis von linearem Alkylbenzolsulfonat zu Polymer aus den Einheiten A und B im Bereich von 20: 1 bis 1 : 1 , insbesondere von 8:1 bis 3:1 liegt.
Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei den Anschmutzungen um öl- und/oder fetthaltige Anschmutzungen handelt.
Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man das Polymer aus den Einheiten A und B einer wasch- oder reinigungsmittelhaltigen wässrigen Flotte zusetzt oder es als Bestandteil eines Wasch- oder Reinigungsmittels in die Flotte einbringt, wobei die Konzentration an Polymer aus den Einheiten A und B in der Flotte im Bereich von 0,01 g/l bis 0,5 g/l, insbesondere von 0,02 g/l bis 0,2 g/l liegt.
Verfahren zum Entfernen von insbesondere öl- und/oder fetthaltigen Anschmutzungen von Textilien oder harten Oberflächen durch Kontaktieren des Textils oder der harten Oberfläche mit einer wässrigen Flotte, in der ein Wasch- oder Reinigungsmittel und ein Polymer aus den Einheiten A und B,
Figure imgf000020_0001
A B wobei R für einen zweibindingen Kohlenwasserstoffrest mit 1 bis 6, insbesondere 1 bis 3 Kohlenstoffatomen steht, zum Einsatz kommen.
7. Wasch- oder Reinigungsmittel, enthaltend ein Polymer aus den Einheiten A und B,
Figure imgf000021_0001
A B wobei R für einen zweibindingen Kohlenwasserstoffrest mit 1 bis 6, insbesondere 1 bis 3 Kohlenstoffatomen steht.
Mittel nach Anspruch 7, dadurch gekennzeichnet, dass es 0, 1 Gew.-% bis 10 Gew.-%, insbesondere 0,5 Gew.-% bis 2 Gew.-% Polymer aus den Einheiten A und B enthält.
Verwendung, Verfahren oder Mittel nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in dem Polymer die Einheiten A und B in Molverhältnissen im Bereich von 1 :99 bis 99: 1 , insbesondere von 50:50 bis 80:20 vorliegen.
Verwendung, Verfahren oder Mittel nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer aus den Einheiten A und B ein mittleres Molekulargewicht in Bereich von 1000 g/mol bis 300000 g/mol, insbesondere von 2000 g/mol bis 200000 g/mol aufweist.
PCT/EP2015/077418 2014-12-05 2015-11-24 Wasch- und reinigungsmittel mit polymerem wirkstoff WO2016087258A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177018086A KR20170091701A (ko) 2014-12-05 2015-11-24 중합체 활성 성분을 함유하는 세제 및 세정 제품
AU2015357388A AU2015357388B2 (en) 2014-12-05 2015-11-24 Detergents and cleaning products containing a polymer active ingredient
PL15798139T PL3227421T3 (pl) 2014-12-05 2015-11-24 Środek piorący i czyszczący z polimerową substancją czynną
EP15798139.0A EP3227421B1 (de) 2014-12-05 2015-11-24 Wasch- und reinigungsmittel mit polymerem wirkstoff
ES15798139T ES2704118T3 (es) 2014-12-05 2015-11-24 Agente de lavado y de limpieza con principio activo polimérico
US15/614,353 US10316276B2 (en) 2014-12-05 2017-06-05 Detergents and cleaning products including a polymer active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014017964.8A DE102014017964A1 (de) 2014-12-05 2014-12-05 Wasch- und Reinigungsmittel mit polymerem Wirkstoff
DE102014017964.8 2014-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/614,353 Continuation US10316276B2 (en) 2014-12-05 2017-06-05 Detergents and cleaning products including a polymer active ingredient

Publications (1)

Publication Number Publication Date
WO2016087258A1 true WO2016087258A1 (de) 2016-06-09

Family

ID=54695749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/077418 WO2016087258A1 (de) 2014-12-05 2015-11-24 Wasch- und reinigungsmittel mit polymerem wirkstoff

Country Status (8)

Country Link
US (1) US10316276B2 (de)
EP (1) EP3227421B1 (de)
KR (1) KR20170091701A (de)
AU (1) AU2015357388B2 (de)
DE (1) DE102014017964A1 (de)
ES (1) ES2704118T3 (de)
PL (1) PL3227421T3 (de)
WO (1) WO2016087258A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065177A1 (en) * 2016-10-03 2018-04-12 Unilever N.V. Laundry detergent composition containing amphoteric polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108431196A (zh) * 2016-03-31 2018-08-21 亨斯迈石油化学有限责任公司 使用扩链表面活性剂的组合来增强溶解性

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0164514A1 (de) 1984-04-11 1985-12-18 Hoechst Aktiengesellschaft Verwendung von kristallinen schichtförmigen Natriumsilikaten zur Wasserenthärtung und Verfahren zur Wasserenthärtung
US5512644A (en) * 1993-09-08 1996-04-30 Toyo Boseki Kabushiki Kaisha Ampholytic polymer capable of absorbing aqueous electrolyte solution
WO2000056849A1 (en) 1999-03-25 2000-09-28 The Procter & Gamble Company Laundry detergent compositions with certain cationically charged dye maintenance polymers
WO2001057171A1 (en) 2000-02-02 2001-08-09 Unilever Plc Polymers for laundry applications
FR2813312A1 (fr) * 2000-08-25 2002-03-01 Rhodia Chimie Sa Composition a base de nanolatex de polymeres pour le soin du linge
WO2003054044A2 (en) 2001-12-20 2003-07-03 Unilever Plc Polymers for laundry cleaning compositions
WO2003066791A1 (en) 2002-02-08 2003-08-14 National Starch And Chemical Investment Holding Corporation Amide polymers for use in surface protecting formulations
WO2005105968A1 (de) * 2004-04-27 2005-11-10 Basf Aktiengesellschaft Copolymere mit n-heterocyclischen gruppen und deren verwendung als additiv in waschmitteln
US20090029895A1 (en) * 2007-07-26 2009-01-29 Stefano Scialla Hard surface cleaning composition
US20090301519A1 (en) * 2005-07-25 2009-12-10 Rhodia Chimie Removal of dirt/make-up form unclean surfaces

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0164514A1 (de) 1984-04-11 1985-12-18 Hoechst Aktiengesellschaft Verwendung von kristallinen schichtförmigen Natriumsilikaten zur Wasserenthärtung und Verfahren zur Wasserenthärtung
US5512644A (en) * 1993-09-08 1996-04-30 Toyo Boseki Kabushiki Kaisha Ampholytic polymer capable of absorbing aqueous electrolyte solution
WO2000056849A1 (en) 1999-03-25 2000-09-28 The Procter & Gamble Company Laundry detergent compositions with certain cationically charged dye maintenance polymers
WO2001057171A1 (en) 2000-02-02 2001-08-09 Unilever Plc Polymers for laundry applications
FR2813312A1 (fr) * 2000-08-25 2002-03-01 Rhodia Chimie Sa Composition a base de nanolatex de polymeres pour le soin du linge
WO2003054044A2 (en) 2001-12-20 2003-07-03 Unilever Plc Polymers for laundry cleaning compositions
WO2003066791A1 (en) 2002-02-08 2003-08-14 National Starch And Chemical Investment Holding Corporation Amide polymers for use in surface protecting formulations
WO2005105968A1 (de) * 2004-04-27 2005-11-10 Basf Aktiengesellschaft Copolymere mit n-heterocyclischen gruppen und deren verwendung als additiv in waschmitteln
US20090301519A1 (en) * 2005-07-25 2009-12-10 Rhodia Chimie Removal of dirt/make-up form unclean surfaces
US20090029895A1 (en) * 2007-07-26 2009-01-29 Stefano Scialla Hard surface cleaning composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065177A1 (en) * 2016-10-03 2018-04-12 Unilever N.V. Laundry detergent composition containing amphoteric polymer
CN109790494A (zh) * 2016-10-03 2019-05-21 荷兰联合利华有限公司 包含两性聚合物的洗衣洗涤剂组合物

Also Published As

Publication number Publication date
AU2015357388B2 (en) 2019-08-01
EP3227421A1 (de) 2017-10-11
KR20170091701A (ko) 2017-08-09
EP3227421B1 (de) 2018-10-10
PL3227421T3 (pl) 2019-05-31
DE102014017964A1 (de) 2016-06-09
US10316276B2 (en) 2019-06-11
US20170267953A1 (en) 2017-09-21
ES2704118T3 (es) 2019-03-14
AU2015357388A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
EP3710496B1 (de) Wasch- und reinigungsmittel mit polymerem wirkstoff
EP3710504A1 (de) Wasch- und reinigungsmittel mit polymerem wirkstoff
EP3710570A1 (de) Wasch- und reinigungsmittel mit polymerem wirkstoff
DE102011089948A1 (de) Die Primärwaschkraft verbessernde polyalkoxylierte Polyamine
EP3280788B1 (de) Wasch- und reinigungsmittel mit polymerem wirkstoff
EP2753683A1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
EP2753650A1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
WO2016162253A1 (de) Wasch- und reinigungsmittel mit polymerem wirkstoff
EP2931858B1 (de) Wasch- und reinigungsmittel mit polyalkoxyliertem polyamin und angepasstem niotensid
EP3227421B1 (de) Wasch- und reinigungsmittel mit polymerem wirkstoff
EP2931769B1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
EP2922943B1 (de) Die primärwaschkraft verbessernde polyalkoxylierte polyamine
EP3227423B1 (de) Wasch- und reinigungsmittel mit polymerem wirkstoff
WO2017009030A1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
WO2014079786A1 (de) Die primärwaschkraft verbessernde sulfonatgruppenhaltige polymere wirkstoffe
EP2931863B1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
DE102012220103A1 (de) Die Primärwaschkraft verbessernde Tensidkombination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798139

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015798139

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177018086

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015357388

Country of ref document: AU

Date of ref document: 20151124

Kind code of ref document: A