WO2016086909A1 - Circuit de chauffage par induction - Google Patents

Circuit de chauffage par induction Download PDF

Info

Publication number
WO2016086909A1
WO2016086909A1 PCT/CZ2015/050012 CZ2015050012W WO2016086909A1 WO 2016086909 A1 WO2016086909 A1 WO 2016086909A1 CZ 2015050012 W CZ2015050012 W CZ 2015050012W WO 2016086909 A1 WO2016086909 A1 WO 2016086909A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
input terminal
transistor
cathode
heating circuit
Prior art date
Application number
PCT/CZ2015/050012
Other languages
English (en)
Inventor
Radim KOCHWASSER
Lukas KREJCI
Original Assignee
Kochwasser Radim
Krejci Lukas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochwasser Radim, Krejci Lukas filed Critical Kochwasser Radim
Publication of WO2016086909A1 publication Critical patent/WO2016086909A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the t .invention concerns the inductive heating circuit for photovoltaic heating systems.
  • heating of water is carried out for example by boilers which are using gas, solid fuel, oil or petrol.
  • the most popular boilers are electrical boilers combined with photovoltaic panels, which produces direct electrical current. Water is heated by the current flows through a heating electrical coil.
  • a major disadvantage of this solution is transformation effectivity of electrical energy to heat energy intended to heat water or to heat another warm conductive heating medium, for example transformer oil, not freezing fluid and so on.
  • the aim of the present invention is to present a heating circuit, which removes above mentioned disadvantages of the state of the art and ensures high effective heating.
  • induction heating circuit comprising a positive input terminal, a negative input terminal, an induction heating coil, where primary source of direct voltage energy is connected to the positive input terminal and to the negative input terminal, where the positive input terminal is connected to an inputs of two coils, the output of the first inductive coil is connected to the cathode of first zener diode, to the cathode of first transistor, to the output terminal of a capacitor battery and to the output of the inductive coil, the output of the second inductive coil is connected to the cathode of second zener diode, to the cathode of the second transistor, to the output of the capacitor battery and to the output of the induction coil, the emitter of the first transistor and the emitter of the second transistor are earthed and connected to the negative input terminal, the output of the first resistor and the output of the second resistor are connected to the control terminal.
  • control terminal is connected to the positive input terminal.
  • control terminal is connected to a control source.
  • control terminal is connected a thermistor.
  • Fig. 1 presents a self-oscillating performance of the inductive heating circuit according to the invention
  • Fig. 2 presents the inductive heating circuit according to the invention equipped by control voltage source
  • Fig. 3 presents the inductive heating circuit according to the invention equipped by a control voltage source and a control thermistor.
  • a simple scheme of the inductive heating circuit according to the invention is presented on Fig. 1.
  • a primary source of direct current is connected to an input terminals +X, -X.
  • the primary source of direct current is for example at least one photovoltaic panel, at least one battery, combination of a photovoltaic panel and battery, or alternating voltage 230V directed by voltage regulating bridge.
  • the positive input terminal +X is connected to an inputs of two coils L1, L2, which are intended to ensure value of voltage oscillation approximately 100 kHz.
  • the coils L1 and L2 are coils with a ferromagnetic core.
  • the output of the first inductive coil L1 is connected to the cathode of first zener diode D1 , to the cathode of first transistor T1, to the output terminal of a capacitor battery CB and to the output of an inductive coil IS.
  • the first zener diode D1 is intended to protect the first transistor T1 before possible consequence of reverse polarity.
  • the type of the first transistor T1 is Qi BUZ45 or IRF840.
  • the first transistor T1 is intended to start oscillation and to increase current.
  • the capacitor battery CB is intended to avoid oscillation caused by the first inductive coil L1.
  • the type of the capacitor battery CB is rolled capacitor battery. There can be used more capacitor batteries CB, which are parallel interconnected.
  • the inductive coil IS can be a cupper firm or cable conductor.
  • the type of the capacitor battery CB is a tube capacitor battery with value of diameter from 2 mm to 6 mm and with inductivity less than 2 mH.
  • the output of the second inductive coil 12 is connected to the cathode of second zener diode D2, to the cathode of the second transistor T2, to the output of the capacitor battery CB and to the output of the inductive coil IS.
  • the second zener diode D2 is intended to protect the first transistor T2 before possible consequence of reverse polarity.
  • the anode of the first zener diode D1 is connected to the base of the second transistor T2 and to the input of the first resistance R1.
  • the anode of the second zener diode D2 is connected to the base of the first transistor T1 and to the input of the second resistance R2.
  • the first resistance R1 and the second resistance R2 is intended to decrease voltage, because high voltage can damage the transistors. To ensure its opening only small voltage is sufficient.
  • the emitter of the first transistor T1 and the emitter of the second transistor T2 are earthed and connected to the negative input terminal -X.
  • the Fig. 1 presents a self-oscillating preformation of the inductive heating circuit according to the invention, where the control terminal X is connected to the positive input terminal +X.
  • the Fig. 2 presents an embodiment of the inductive heating circuit according to the invention, where the control terminal X is connected to a control source RZ intended to control the transistors T1 and T2.
  • the control voltage source RZ is a battery of capacity 12V.
  • the Fig. 3 presents an embodiment of the inductive heating circuit according to the invention presented in Fig. 2, where a thermostat T is added. The switch of the thermostat T is connected between the control terminal X and the control voltage source RZ. In the presented embodiment activation of the transistors T1 , T2 is controlled by temperature measured by the thermostat T.
  • Efficiency of an inductive heating system is higher than efficiency of a system which use heating resistant coil, even if electricity of common power network is used.
  • High efficiency of the presented system according to the invention is not ensured by use of expensive common alternating energy but by us of ecological clean energy produced by photovoltaic panels or by wind power plants or another renewable source of electrical energy, so by use of direct current.
  • Efficiency of the presented inductive heating circuit according to the invention is from 83% to 94%. Heating speed is faster by 50%.
  • the inductive heating circuit according to the present invention is cheaper, because only half of power output is used in comparison with heating systems of the state of the art.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

La présente invention se rapporte à un circuit de chauffage par induction qui comprend une borne d'entrée positive, une borne d'entrée négative et une bobine de chauffage par induction. Une source principale d'énergie à tension continue est connectée à la borne d'entrée positive et à la borne d'entrée négative. Ladite borne d'entrée positive (+X) est connectée aux entrées de deux bobines (L1, L2), et la sortie de la première bobine d'induction (L1) est connectée à la cathode d'une première diode Zener (D1), à la cathode d'un premier transistor (T1), à la borne de sortie d'une batterie à condensateur (CB), et à la sortie d'une bobine d'induction (IS). La sortie de la seconde bobine d'induction (L2) est connectée à la cathode d'une seconde diode Zener (D2), à la cathode d'un second transistor (T2), à la sortie de la batterie à condensateur (CB), et à la sortie de la bobine d'induction (IS). L'émetteur du premier transistor (T1) et l'émetteur du second transistor (T2) sont mis à la terre et connectés à la borne d'entrée négative (-X). La sortie d'une première résistance (R1) et la sortie d'une seconde résistance (R2) sont connectées à une borne de commande (X).
PCT/CZ2015/050012 2014-12-01 2015-12-01 Circuit de chauffage par induction WO2016086909A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CZ2014-836A CZ2014836A3 (cs) 2014-12-01 2014-12-01 Indukční topný obvod určený k připojení na alespoň jeden fotovoltaický panel nebo větrnou elektrárnu
CZPV2014-836 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016086909A1 true WO2016086909A1 (fr) 2016-06-09

Family

ID=55349608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CZ2015/050012 WO2016086909A1 (fr) 2014-12-01 2015-12-01 Circuit de chauffage par induction

Country Status (2)

Country Link
CZ (1) CZ2014836A3 (fr)
WO (1) WO2016086909A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091267A2 (fr) * 2008-01-18 2009-07-23 Telemetry Research Limited Système de transfert d'énergie transcutané à fréquence de résonance sélectionnable
US20120268219A1 (en) * 2011-04-22 2012-10-25 Continental Automotive Systems Us, Inc. Synchronous full-bridge power oscillator with leg inductors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091267A2 (fr) * 2008-01-18 2009-07-23 Telemetry Research Limited Système de transfert d'énergie transcutané à fréquence de résonance sélectionnable
US20120268219A1 (en) * 2011-04-22 2012-10-25 Continental Automotive Systems Us, Inc. Synchronous full-bridge power oscillator with leg inductors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALIREZA NAMADMALAN ET AL: "Self-Oscillating Switching Technique for Current Source Parallel Resonant Induction Heating Systems", JOURNAL OF POWER ELECTRONICS, vol. 12, no. 6, 20 November 2012 (2012-11-20), pages 851 - 858, XP055267125, ISSN: 1598-2092, DOI: 10.6113/JPE.2012.12.6.851 *

Also Published As

Publication number Publication date
CZ2014836A3 (cs) 2016-06-08

Similar Documents

Publication Publication Date Title
CN102680125A (zh) 无线温度传感器
CN205004947U (zh) 一种pwm脉冲式预充电电路
CN105745992A (zh) 用于给炉灶面双感应线圈加热区供电的同步电路
WO2016086909A1 (fr) Circuit de chauffage par induction
CN204459865U (zh) 一种电源光源一体化led发光模块
WO2017212448A1 (fr) Système d'alimentation électrique pour un élément résistif alimenté électriquement
CN108565931B (zh) 一种基于变压器的电池组电压均衡电路
CN110572903B (zh) 一种定电流输出的led供电电源
CN203848941U (zh) 一种油浸式变压器过热报警电路系统
CN104864584A (zh) 电磁感应加热常压热水锅炉
CN204987082U (zh) 燃气灶点火电源
CN204358942U (zh) 一种具有漏电检测功能的电加热器
CZ30868U1 (cs) Elektrický obvod indukčního topného zařízení
EP3221761A1 (fr) Agencement de commande
CN203882214U (zh) 一种冬季节电控制器
CN103997297A (zh) 一种太阳能供电电路
KR101571052B1 (ko) 광전지 패널로부터의 직류를 이용하여 조절되는 용수 가열에서 사용되는 보일러용 전력 스위칭 장치
Chang et al. Design of high efficiency illumination for LED lighting
CN103906277B (zh) 直发器或卷发器的控制电路及其控制方法
CN210574129U (zh) 一种为定时器配套的声光提醒电路
CN112728582B (zh) 一种检火方法、系统、设备及点火设备
CN205174318U (zh) 锅炉定排扩容器
CN111059600A (zh) 一种用于煤改电下的电采暖设备--蓄热式电锅炉系统
CN208901433U (zh) 一种高效节能点火器
CN102355166A (zh) 太阳能热水器的发电转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832943

Country of ref document: EP

Kind code of ref document: A1