WO2016085294A1 - Superabsorbent polymer having fast absorption rate under load and preparation method therefor - Google Patents

Superabsorbent polymer having fast absorption rate under load and preparation method therefor Download PDF

Info

Publication number
WO2016085294A1
WO2016085294A1 PCT/KR2015/012861 KR2015012861W WO2016085294A1 WO 2016085294 A1 WO2016085294 A1 WO 2016085294A1 KR 2015012861 W KR2015012861 W KR 2015012861W WO 2016085294 A1 WO2016085294 A1 WO 2016085294A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
meth
acrylate
clause
glycol
Prior art date
Application number
PCT/KR2015/012861
Other languages
French (fr)
Korean (ko)
Inventor
이상기
이수진
남혜미
황민호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150010157A external-priority patent/KR101769100B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580007684.0A priority Critical patent/CN105980464B/en
Priority to EP15862317.3A priority patent/EP3098245B2/en
Priority to US15/112,081 priority patent/US9950309B2/en
Publication of WO2016085294A1 publication Critical patent/WO2016085294A1/en
Priority to US15/903,179 priority patent/US10065175B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment

Definitions

  • the present invention relates to a superabsorbent polymer having a high absorption rate under pressure and a method for preparing the same.
  • a super absorbent polymer (SAP) is about its own weight
  • Super absorbent resins As a synthetic polymer material capable of absorbing water of about 500 to 1,000 times, it is also called SAMC Super Absorbency Mater Al, AGM (Absorbent Gel Mater Al). Super absorbent resins have been put into practical use as sanitary devices and are now widely used in various materials such as hygiene products such as paper diapers for children, horticultural soil repair agents, civil engineering materials, seedling sheets, and freshness retainers in food distribution. It is used.
  • As a method for producing such a super absorbent polymer a method by reverse phase suspension polymerization or a solution polymerization is known. Among them, the production of superabsorbent polymers through reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos.
  • the production of superabsorbent polymers through polymerization of aqueous solution is a thermal polymerization method for polymerizing a hydrogel polymer in a kneader equipped with several shafts while breaking and angled, and polymerizing and drying by irradiating UV light to a high concentration of aqueous solution on a belt.
  • the photopolymerization method etc. which perform simultaneously are known.
  • the absorption rate which is one of the important physical properties of the super absorbent polymer, It is associated with the surface dryness of products that come into contact with the skin, such as diapers.
  • this absorption rate can be improved by increasing the surface area of the superabsorbent polymer.
  • a method of forming a porous structure on the particle surface of the super absorbent polymer by using a blowing agent has been applied.
  • the general blowing agent has a disadvantage in that the increase in absorption rate is not large because it can form a sufficient amount of porous structure.
  • Methods for forming porous structures on the surface of particles using blowing agents are described in Kabiri, K :, Omidian, H. and Zohur i aan-Mehr, M. (2003), Novel approach to highly porous superabsorbent hydrogels: synergistic effect of porogens on porosity and swelling rate.Polym.
  • the present invention provides high gel strength and a fast rate of absorption under pressure.
  • Eggplant is to provide a super absorbent polymer.
  • the present invention is to provide a method for producing the super absorbent polymer.
  • the present invention provides the following super absorbent polymers:
  • a superabsorbent polymer comprising a crosslinked polymer obtained by polymerizing and crosslinking a monomer composition including an acrylic acid monomer having an acidic group and at least a part of the acidic group is neutralized, and a surface crosslinked layer formed on the surface of the crosslinked polymer,
  • the ratio of the total pore area ratio (A) of the micropores having a diameter of 5 to 100 and the total pore area ratio ( ⁇ ) of the large pores having a diameter of 100 to 400 ( ⁇ ) Regulates ⁇ ).
  • the area of the pores can be measured by a conventional method in the art, for example, after taking an accurate photograph (magnification 100 times) of the surface of the absorbent resin with a scanning electron microscope (SEM), a certain area (2 cm X 2 cm In the SEM phenomenon existing within), the area ratio of the pore size can be measured by dividing the number of micropores and macropores present on the surface.
  • the ratio of the total pore area ratio (A) of the pores having a diameter of 5 // m to 100 m and the total pore area ratio (B) of the pores having a diameter of 100 m to 400 (A: B) Silver 3: 7-9: 1 are preferable.
  • the pores of the small diameter and the pores of the high diameter are distributed together in the superabsorbent resin in the range as described above, thereby increasing the absorption rate under pressure and preventing the gel strength from being lowered. More preferably, the ratio of A: B is 4: 6 to 8: 2.
  • Such superabsorbent resin may be included in the crosslinked structure of the final resin due to some residual of the low temperature foaming agent and the high temperature foaming agent used to form the pores.
  • the super absorbent polymer may further include a low temperature foaming agent and a high temperature foaming agent dispersed in the crosslinked polymer in the surface crosslinking layer.
  • a low temperature foaming agent and a high temperature foaming agent dispersed in the crosslinked polymer in the surface crosslinking layer.
  • the specific kind of such a low temperature foaming agent and a high temperature foaming agent is explained in full detail below about a manufacturing method.
  • the acrylic acid monomer is a compound represented by the following formula (1):
  • 3 ⁇ 4 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts thereof, divalent metal salts, ammonium salts and organic amine salts.
  • the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized. 'It may preferably be used which is partially neutralized the monomers with alkali materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide.
  • the degree of neutralization of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%.
  • the range of neutralization can be adjusted according to the final physical properties.
  • the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly.
  • the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as elastic rubber that is difficult to handle. have.
  • the concentration of the acrylic acid monomer in the monomer composition may be appropriately adjusted in consideration of the evaporation time ⁇ and reaction conditions, preferably 20 to 90 weight or 40. to 70% by weight.
  • This concentration range may be advantageous to control the grinding efficiency during the grinding of the polymer, which is a subsequent process, while eliminating the need to remove unreacted monomers after polymerization by using the gel phenomenon appearing in the polymerization reaction of the high concentration aqueous solution.
  • concentration of the monomer when the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered.
  • concentration of the monomer when the concentration of the monomer is too high, some of the monomers may precipitate or process problems may occur such as when the pulverization efficiency of the polymerized hydrogel polymer is reduced, and the physical properties of the super absorbent polymer may be reduced.
  • the monomer composition includes a crosslinking agent for improving the physical properties of the hydrogel polymer.
  • the crosslinking agent is a first crosslinking agent (internal crosslinking agent) for crosslinking the hydrogel polymer inside, and is used separately from the second crosslinking agent (surface crosslinking agent) for crosslinking the surface of the hydrogel polymer in a subsequent process.
  • the crosslinked polymer is ⁇ , ⁇ '—methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol die (meth ) Acrylates, polypropylene glycol (meth) acrylates, butanedidiete (meth) acrylates butyleneglycoldi (meth) acrylates, diethylene glycol di (meth) acrylates, nucleic acid dioldi (meth) acrylates , Triethylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate , Tetraethylene glycol di (meth) acrylate , Dipentaerythrene pentaacrylate , Glycerine tri (meth) acrylate , Pentaeryth Tetraacrylate, triarylamine, ethylene glycol diggle Sidil ether, to an internal cross
  • W 0 (g) is the weight of the absorbent resin (g) .
  • Kg does not use absorbent resin, but using a centrifuge Device weight (g) measured after dehydration at 250G for 3 minutes
  • W 2 (g) is the device weight (g) measured after absorbing the absorbent resin in 0.9 mass% of physiological saline for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge.
  • AUL pressure absorption capacity
  • W 0 (g) is the weight of the absorbent resin (g)
  • w 3 ( g ) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin (g),
  • W 4 (g) is the sum of the weight of the water absorbent resin absorbed after absorbing the absorbent resin for 60 minutes under a load (0.9 ps i) and the weight of the device capable of applying a load to the absorbent resin (g )to be.
  • the 5-minute ge l-AUL may be represented by the following Equation 2-1: Equation 2-1
  • W 0 (g) is the weight of the absorbent resin (g) .
  • W 3 (g) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin (g),
  • W 4 (g) is the sum of the weight of the absorbed water absorbed resin after supplying the absorbent resin with water for 5 minutes under load (0.3 ps i) and the weight of the device capable of applying a load to the absorbent resin (g )to be.
  • the superabsorbent polymer according to the present invention may be prepared by a manufacturing method comprising the following steps.
  • step 1 Formation of hydrogel polymer (step 1)
  • step 1 is a step of polymerizing the same to prepare a hydrogel polymer.
  • the monomer composition comprises a low-temperature blowing agent and a high-temperature blowing agent in addition to the polymerization initiator and the first crosslinking agent.
  • the low temperature foaming agent refers to a foaming agent that is foamed at 60 ° C or less, since the polymerization and crosslinking temperature of the step 1 is 25 to 100 ° C, foaming of the low temperature foaming agent occurs during the performance of the step 1.
  • the hydrogel polymer prepared is in a state of low viscosity including water, the pores formed by foaming are relatively larger than the pores formed by the high temperature foaming agent to be described below.
  • the low temperature foaming agent is sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium ⁇ l "potassium carbonate, calcium bicarbonate (cal cium bicarbonate) ), Calcium carbonate, magnesium bicarbonate, or magnesium bicarbonate Magnesium carbonate can be used.
  • the polymerization and crosslinking temperature is 30 to 90 ° C.
  • the high temperature blowing agent an organic blowing agent capable of forming bubbles by being decomposed from silver may be used.
  • azodicarbonamide (ADDA), dinitrosopenttamethylene tetramine (DPT), ⁇ , ⁇ '-oxybisbenzenesulfonylhydrazide ( ⁇ , ⁇ '-oxyb i sbenzenesu 1 f ony 1 hydr az i de), OBSH), p-luenesulfonyl hydrazide (TSH)
  • sugar esters include sucrose stearate, sucrose palmitate, sucrose laurate, and the like. S-970, S-1570, S ⁇ 1670, P 1670 and L-1570.
  • the decomposition temperature of the on-foaming agent is more than about 100 ° C, preferably 120 to 180 ° C, rather than forming fine pores by decomposition during the polymerization and crosslinking reaction of step 1, decomposition in the drying process of step 3 To form large pores.
  • Ratio (A: B) and preferably the weight ratio of the low temperature foaming agent to the high temperature foaming agent is 50: 1 to 2: 1.
  • the polymerization initiator can use the polymerization initiator generally used for manufacture of a super absorbent polymer.
  • a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method.
  • a thermal polymerization initiator is additionally used even in the case of photopolymerization. Can be.
  • benzoin ether dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, benzyl dimethyl ketal
  • Benzyl dimethyl ketal One or more compounds selected from the group consisting of Benzyl Dimethyl Ketal, acyl phosphine, and alpha-aminoketone
  • acyl phosphine commercially available lucirin TP0, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-tr imethyl-benzoyl-tr imethyl phosphine oxide) may be used.
  • 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide 2,4,6-tr imethyl-benzoyl-tr imethyl phosphine oxide
  • photoinitiators are disclosed on page 115 of the Reinhold Schwalm lm "UV Coatings: Basics, Recent Developments and New Appli- cation (Elsevier 2007)".
  • the initiator one or more compounds selected from the group consisting of a persulfate initiator, an azo initiator, hydrogen peroxide, and ascorbic acid may be used.
  • a persulfate initiator sodium persulfate (Na 2 S). 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 () 8), and the like.
  • Examples of (Azo) -based initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2-amidinopropane) dihydrochlor ide), 2, 2-azobis (N, ⁇ — Dimethylene) isobutyramidine dihydrochloride (2, 2-azobi i S- ( ⁇ , Nd i me t hy 1 ene) i sobut yr am idi ne dihydrochlor ide), 2_
  • the polymerization initiator may be added at a concentration of about 0.001 to 1% by weight based on the monomer composition. In other words, when the concentration of the polymerization initiator is too low, the polymerization rate may be slow and a large amount of residual monomer may be extracted in the final product. On the contrary, when the concentration of the polymerization initiator is too high, it is not preferable because the polymer chain constituting the network is shortened, so that the content of the water-soluble component is increased and the pressure absorption capacity is lowered.
  • the first crosslinking agent is as defined above, and is a first crosslinking agent (internal crosslinking agent) for crosslinking the hydrogel polymer, and a second crosslinking agent (surface crosslinking agent) for crosslinking the surface of the hydrogel polymer in a subsequent step. Used separately.
  • the C 1 crosslinking agent may be added at a concentration of about 0.001 to 1% by weight based on the monomer composition. When the concentration of the first crosslinking agent is too low, the absorption rate of the resin may be lowered and the gel strength may be weakened, which is not preferable. On the contrary, when the concentration of the first crosslinking agent is too high, the absorptivity of the resin may be lowered, which may be undesirable as a hop conjugate.
  • the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants and the like as necessary.
  • the monomer composition may be prepared in the form of a solution in which raw materials such as the acrylic acid monomer, a polymerization initiator, a first crosslinking agent, a low temperature blowing agent, and a high temperature blowing agent are dissolved in a solvent.
  • any solvent that can be used may be used without limitation as long as it can dissolve the above-described raw materials.
  • the solvent includes water, ethanol ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butaneol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , Methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carby, Methyl cellosolve acetate, ⁇ , ⁇ -dimethylacetamide, or a combination thereof may be used.
  • the amount of the solvent may be adjusted to be 1 to 5 times the weight ratio of the acrylic acid monomer content in consideration of polymerization heat control and the like.
  • a separate solvent may not be used.
  • the formation of the hydrogel polymer through the polymerization and crosslinking of the monomer composition may be carried out by a conventional polymerization method in the art, the process is not particularly limited.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the type of polymerization energy source, in the case of the thermal polymerization may be carried out in a reactor having a stirring shaft such as kneader, In the case of the addition process can be carried out in a reactor equipped with a movable conveyor belt.
  • a hydrogel polymer may be obtained by adding the monomer composition to a reaction vessel such as a kneader equipped with a stirring shaft, and supplying hot air thereto or by heating and heating the reaction vessel. At this time, the reactor .
  • the hydrogel polymer discharged to the reactor outlet according to the type of stirring shaft provided is from a few millimeters.
  • the hydrogel polymer may be obtained in various forms according to the concentration and injection speed of the monomer composition to be injected, and a hydrogel polymer having a weight average particle diameter of 2 kPa to 50 kPa may be obtained.
  • a sheet-like hydrogel polymer may be obtained. Can be.
  • the thickness of the sheet may vary depending on the concentration and the injection speed of the monomer composition to be injected, in order to ensure the production rate, while the entire sheet is evenly polymerized, it is usually adjusted to a thickness of 0.5 cm to 5 cm It is preferable.
  • the hydrogel polymer formed by the above method may exhibit a water content of about 40 to 80 weight 3 ⁇ 4. It is advantageous in that the water content of the hydrogel polymer falls within the range to optimize the efficiency in the drying step described later.
  • the moisture content is a weight of water in the total weight of the hydrogel polymer, and can be calculated by subtracting the dry polymer weight from the weight of the hydrogel polymer. Specifically, it may be defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer during the process of raising the temperature of the polymer through infrared acid heating. At this time, the drying conditions may be set to 40 minutes, including 5 minutes of the temperature rise step in such a way that the temperature is raised to about 180 ° C and maintained at 180 ° C. Coarse grinding of hydrogel polymer (step 2)
  • the hydrogel polymer obtained through the above steps is subjected to a drying process to impart water absorbency.
  • the step of pulverizing (coarse grinding) the hydrogel polymer before performing the drying process is performed.
  • mills available for the milling include vertical pulverizers, turbo cutters, turbo grinders, rotary cutter mills, and cutting machines. Examples include a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter.
  • the coarse grinding may be performed so that the particle diameter of the hydrogel polymer is 2 kPa to 10 kPa.
  • the hydrous gel polymer is preferably pulverized into particles of 10 mm or less.
  • the hydrous gel phase polymer is preferably pulverized into particles of 2 mm or more.
  • the coarsely pulverizing step because the polymer is carried out in a high water content of the polymer may stick to the surface of the grinder may appear.
  • the coarsely pulverizing step may include steam, water, surfactants, anti-aggregation crabs (for example, cl ay, si li ca, etc.) as necessary; Persulfate initiator, azo initiator, hydrogen peroxide, thermal polymerization initiator, epoxy crosslinking agent, diol crosslinking agent, crosslinking agent including di- or trifunctional or higher polyfunctional acrylate, crosslinking agent of monofunctional group including hydroxyl group And the like can be added. Drying the coarsely hydrated gel polymer (step 3)
  • the step of drying the coarsely pulverized hydrogel polymer is carried out.
  • the hydrogel polymer is provided to the drying step in the coarsely pulverized state of the particles of 2 mm to 10 mm 3 through the above-described steps, so that drying can be performed with higher efficiency.
  • Drying of the coarsely pulverized hydrogel polymer may be performed at a temperature of 120 to 250 ° C., preferably 140 to 200 ° C., more preferably 150 to 190 ° C.
  • the drying temperature may be defined as the temperature of the heat medium supplied for drying or the temperature inside the drying reactor including the heat medium and the polymer in the drying process. If the drying temperature is low and the drying time is long, the process efficiency is lowered.
  • the drying temperature is preferably 120 ° C or higher.
  • the surface of the hydrous gel polymer may be excessively dried to increase the generation of fine powder in the subsequent grinding step, and the physical properties of the final resin may be lowered. It is preferable that it is 25 CTC or less.
  • a hydrogel polymer was prepared including a hot blowing agent, and thus the hot blowing agent is included in the coarsely pulverized hydrogel polymer.
  • the high temperature foaming agent means a foaming agent that is foamed at 1C C or more, and the above.
  • step 3 Since the drying temperature of step 3 is greater than 100 t, foaming of the high silver blowing agent occurs during the performance of step 3 above. At this time, the coarsely pulverized hydrous gel polymer produced is low in water content due to a drying process, and thus has a high viscosity. At this time, the pores formed by the foaming are relatively smaller than the pores formed by the low-temperature blowing agent described above.
  • the drying time in the drying step is not particularly limited, in consideration of the process efficiency and the physical properties of the resin, it can be adjusted to 20 minutes to 90 minutes under the drying temperature. The drying may be performed using a conventional medium.
  • the drying may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation to the coarsely pulverized hydrogel polymer. And such drying is preferably carried out so that the dried polymer has a water content of about 0.1 to 10% by weight. That is, when the moisture content of the dried polymer is less than 0.1% by weight, it is not preferable because an increase in manufacturing cost and degradation of the crosslinked polymer may occur due to excessive drying. In addition, when the moisture content of the dried polymer exceeds 10% by weight, defects may occur in subsequent processes, which is not preferable. Grinding the dried polymer (step 4)
  • a step of pulverizing the dried polymer is performed.
  • the grinding step is to optimize the surface area of the dried polymer, the particle diameter of the pulverized polymer is 150 to 850 May be performed.
  • the grinder may be a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill, a jog mill, or the like. May be used.
  • the polymer obtained through the grinding step The step of selectively classifying particles having a particle size of 150 to 850 in the particles may be further performed. Surface opening of the pulverized polymer (step 5)
  • the surface modi fi cat i on the ground polymer with the second crosslinking agent is carried out through the above-mentioned steps.
  • the surface modification is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a second crosslinking agent (surface crosslinking agent), thereby forming a superabsorbent resin having improved physical properties.
  • a surface modification layer (surface crosslinked layer) is formed on the surface of the pulverized polymer particles.
  • the surface modification may be carried out by a conventional method of increasing the crosslinking density of the polymer particle surface, for example, a method of mixing and crosslinking the pulverized polymer with a solution containing a second crosslinking agent (surface crosslinking agent).
  • the said 2nd crosslinking agent is a compound which can react with the functional group which the said polymer has,
  • the structure is not specifically limited.
  • the second crosslinking agent is ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycid Dyl ether, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane diol, dipropylene glycol, polypropylene glycol, glycerin, polyglycerol, butanediol, heptanedi, nucleic acid ditrimethyl propane, Pentaerythritol, sorbitol, scabbard hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride
  • the content of the crab 2 cross-linking agent may be appropriately adjusted according to the type or reaction conditions of the cross-linking agent, and preferably may be adjusted to 0.001 to 5 parts by weight based on 100 parts by weight of the pulverized polymer. If the content of the crab 2 cross-linking agent is too low, the surface modification is not made properly, the physical properties of the final resin may be lowered. On the contrary, if an excessive amount of the second crosslinking agent is used, absorption of the resin may be lowered due to excessive surface crosslinking reaction, which is not preferable.
  • the surface modification step the method of mixing the second cross-linking agent and the pulverized polymer in the reaction tank, the method of spraying the second cross-linking agent to the pulverized polymer, the pulverized polymer and the second cross-linking agent in a continuously operated mixer
  • water may be additionally added when the second crosslinking agent is added.
  • the second crosslinking agent and water are added together, even distribution of the second crosslinking agent may be induced, the aggregation of the polymer particles is prevented, and the penetration depth of the second crosslinking agent into the polymer particles may be more optimized.
  • the amount of water added with the second crosslinking agent may be adjusted to 0.5 to 10 parts by weight based on 100 parts by weight of the pulverized polymer.
  • the surface modification step may be performed at a temperature of 100 to 25CTC.
  • the surface modification may be performed for 1 minute to 120 minutes, preferably 1 minute to 100 minutes, more preferably 10 minutes to 60 minutes. That is, in order to induce a minimum surface crosslinking reaction and to prevent excessive semi-aeration polymer particles from being damaged and deteriorating physical properties, the surface modification step may be performed under the above-described conditions.
  • the superabsorbent polymer according to the present invention can be used in combination with a low temperature foaming agent and a high temperature foaming agent to adjust the size and distribution of the internal pores of the superabsorbent polymer, thereby increasing the absorption rate under pressure without decreasing the gel strength.
  • FIG. 1 is a schematic diagram showing an example of a device for measuring the pressure absorption rate for the super absorbent polymer according to an embodiment of the present invention.
  • FIG 2 is a schematic diagram showing an example of a gel bed permeability (GBP, Gel Bed Permeabi li ty) measuring apparatus according to an embodiment of the present invention
  • Figure 3 and Figure 4 is an example of a gel bed permeability measurement cylinder and mesh arrangement, respectively It is a schematic diagram showing.
  • Example 1
  • a mixed solution (B solution) was added 14 g of Ethoxyl ated-TMPTA, TMP (E0) 9TA, M-3190 Miwon Specialty Chemical Co., Ltd., and 2.8 g of a S ⁇ 1570 solution diluted 0.5% in acrylic acid.
  • the degree of acrylic acid neutralization was 70 mol% in sodium acrylate.
  • sodium bicarbonate sodium bicarbonate carbonate
  • the solution was placed in a vat shaped tray (15 cm x 15 cm) mounted in a square polymerizer with a light irradiator mounted on top and preheated to 80 ° C. 15 cm), and irradiated with light to start photo. After about 25 seconds after the light irradiation, the gel was generated from the surface and after 50 seconds, the polymerization was confirmed to occur simultaneously with foaming, and then reacted for 3 minutes further, and the polymerized sheet was taken out and cut into a size of 3 cm X 3 cm. Then, the chopper was prepared by using a chopping chopper (meat chopper) to prepare a powder (crump).
  • the crump was dried in an oven capable of transferring air volume up and down.
  • the hot air of 18 CTC was uniformly dried by flowing from downward to upward for 15 minutes and upward from downward for 15 minutes. After drying, the water content of the dried body was 2% or less.
  • the resultant was pulverized with a grinder and classified to prepare a base resin by selecting 150 to 850 sizes.
  • the water solubility of the base resin thus prepared was 36.5 gig, and the water-soluble component content was 12.5 wt%.
  • Example 3 Except that the addition of sodium bicarbonate when the temperature of the mixture is 45 ° C, was prepared in the same manner as in Example 1 to obtain a super absorbent resin.
  • Example 3 Except that the addition of sodium bicarbonate when the temperature of the mixture is 45 ° C, was prepared in the same manner as in Example 1 to obtain a super absorbent resin.
  • Example 1 except that 520g of acrylic acid and 760g of 24.5% caustic soda solution, was prepared in the same manner as in Example 1 to obtain a super absorbent polymer. In this case, unlike Example 1, the sheet was very tough after polymerization, and the pore size of the sheet was smaller when visually observed.
  • Example 4 In Example 1, except that S-1570 instead of 3 g of the TSH solution limped in acrylic acid was prepared in the same manner as in Example 1 to obtain a superabsorbent resin. Comparative Example 1
  • Example 2 Except for not using sodium bicarbonate (carbonate bicarbonate), was prepared in the same manner as in Example 1 to obtain a water absorbent resin. Comparative Example 2
  • Example 1 except that S-1570 was not used, was prepared in the same manner as in Example 1 to obtain a water absorbent resin.
  • the particle size of each resin was measured in accordance with the European Di sposables and Nonwovens Assoc ion (EDANA) standard EDANA WSP 220.2 method.
  • EDANA European Di sposables and Nonwovens Assoc ion
  • the pressure absorption capacity of 0.9 ps i of each resin was measured according to the EDANA method WSP 242.3, and an apparatus for measuring the pressure absorption capacity (AUL) as shown in FIG. 1 was used.
  • a stainless steel 400 mesh wire mesh was mounted on the bottom of a plastic cylinder having an inner diameter of 25 mm 3.
  • Piston which can evenly spread the absorbent resin W 0 (g) (0. 16 g) on the wire mesh under conditions of room temperature and humidity of 50% and impart a more uniform load of 5.
  • 1 kPa (0.9 psi) on it Is slightly smaller than the outer diameter of 25 mm, has no gap with the inner wall of the cylinder, and does not interfere with the vertical movement.
  • the weight W 3 (g) of the apparatus was measured.
  • a 90 mm diameter and 5 mm thick glass filter was placed inside a 150 mm diameter petri dish, and the physiological saline consisting of 0.9 wt% sodium chloride was brought to the same level as the top surface of the glass filter.
  • One sheet of filter paper 90 mm in diameter was loaded thereon.
  • the measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted up and the weight W 4 (g) was measured.
  • AUL (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • Absorption rate under pressure Perform the same method as the pressure absorbing capacity, but use 0.3 ps i load instead of 0.9 ps i load, absorb the physiological saline consisting of 0.9% by weight sodium chloride for 5 minutes, then high on the vacuum pressure plate and gel at a vacuum pressure of 5 ps i The brine between and the gel was drained under vacuum for 30 seconds. Since the method of calculating the AUL by measuring the weight is the same as the pressure absorption capacity previously, this was called "5 minutes gel- AUL".
  • gel bed permeability (GBP, Gel Bed Permeabi 1 i ty) was measured.
  • GBP Gel Bed Permeabi 1 i ty
  • the GBP measurement method is specified in US Pat. Nos. 7, 7,179 and 851.
  • the superabsorbent polymer according to the present invention exhibits specific characteristics or characteristics when measuring free swelling gel bed permeability (GBP) and gel bed permeability (0.3GBP) under load.
  • the free swelling gel bed permeability test is a different measurement of the permeability (eg, separation from an absorbent structure) of a swelling bed of superabsorbent material, under specified pressure, after a condition commonly referred to as a "free swelling" state.
  • Free flow means that the superabsorbent material swells without absorbing the swelling load upon absorption of the test solution.
  • the gel bed transmittance under load (0.3GBP) is defined as about 0.3 ps i. After bringing it to a pressure state, it means the transmittance of the swelling bed of the gel particles (e.g., the superabsorbent resin of the present invention).
  • a free swelling gel bed permeability (GBP) test is performed on the swelling bed of gel particles (e.g., surface treated absorbent material or absorbent material prior to surface treatment) under conditions commonly referred to as a "free swelling" state.
  • the transmittance is measured.
  • free swelling is meant that the gel particles swell without limiting load upon absorption of the test solution.
  • Suitable apparatus for performing the transmittance test are shown in FIGS. 3 and 4, and generally indicated as 28 in FIG. 3.
  • Test apparatus 28 is a sample container (usually 30 And piston (generally indicated as 36).
  • the piston 36 includes a cylindrical LEXANR shaft 38 having a central cylindrical hole 40 drilled below the longitudinal axis of the shaft. Both ends of the shaft 38 are machined to provide the upper and lower ends (indicated by 42 and 46, respectively).
  • the weight (indicated by 48) is above one end 42 and has a cylindrical hole 48a that is drilled through at least a portion of its center.
  • the circular piston head 50 is located above the other end 46 and has a central inner ring of seven holes (60 each of which has a diameter of about 0.95 cm) and 14 holes (54 each of which are about 0.95 cm in diameter). Having a central outer ring).
  • the holes 54 and 60 are drilled from the top to the bottom of the piston head 50.
  • the piston head 50 also has a cylindrical hole 62 drilled in its center to receive the end 46 of the shaft 38.
  • the lower portion of the piston head 50 may also be covered with a biaxially stretched 400 mesh stainless steel screen 64.
  • the sample vessel 30 includes a cylinder 34 and a 400 mesh stainless steel skinned screen 66, which is taut biaxially stretched and attached to the lower end of the cylinder.
  • the superabsorbent polymer sample (designated 68 in FIG. 3) is supported on the screen 66 inside the cylinder 34 during the test.
  • the cylinder 34 may be perforated with a transparent LEXANR rod or equivalent material or cut into a lexan tube or equivalent material, having an internal diameter of about 6 cm (eg, cross-sectional area of about 28.27 oif) and a wall thickness of about 0.5 cm It is about 10 cm high.
  • a drain hole (not shown) is formed in the side wall of the cylinder 34 at a height of about 7.8 cm above the screen 66 to drain the liquid from the cylinder, and at about 8 cm above the screen 66, the fluid of the sample vessel increases. Maintain the level.
  • the piston head 50 is machined from a lexan rod or equivalent material and has a height of approximately 16 mm and a diameter of a predetermined size so that it still slides freely while fitting it to the minimum wall space inside the cylinder 34.
  • the shaft 38 is machined from a lexan rod or equivalent material and has an outer diameter of about 2.22 cm and an inner diameter of about 0.64 cm .
  • the shaft upper end 42 is about 2.54 cm in length and about 1.58 cm in diameter, thereby forming an annular slad 47 to support the weight 48.
  • fantasy The weight 48 is about 1.59 cm in internal diameter, so that it slips over the upper end 42 of the shaft 38 and is present on the annular shoulder 47 formed thereon.
  • the annular weight 48 may be made of stainless steel or of another suitable material that is corrosion resistant in the presence of a test solution that is 0.9 wt% sodium chloride in distilled water.
  • the combined weight of the piston 36 and the annular weight 48 corresponds to approximately 596 g, which means that the pressure applied to the absorbent structure sample 68 is about 0.3 ps i or about 20.7 g / cirf for a sample area of about 28.27 ciif.
  • the pressure applied to the absorbent structure sample 68 is about 0.3 ps i or about 20.7 g / cirf for a sample area of about 28.27 ciif.
  • the sample vessel 30 When the test solution is flowed into the test apparatus during the test described below, the sample vessel 30 generally resides on a 16 mesh rigid stainless steel support screen (not shown). Alternatively, the sample vessel 30 resides on a support ring (not shown) having a diameter size substantially the same as the cylinder 34 so that the support ring does not restrict flow from the bottom of the vessel.
  • a piston 36 with a weight 48 disposed thereon is placed in the hollow sample vessel 30 and a cylinder 34 from the bottom of the weight 48.
  • the height to the top of is measured with a caliper with suitable measurement accuracy up to 0.01 mm 3.
  • the same piston 36 and weight 48 should be used for the measurement when the superabsorbent polymer sample 68 is water swelled after saturation.
  • the sample tested is made from superabsorbent material particles, which are prescreened through a US standard 30 mesh screen and held on a US standard 50 mesh screen.
  • the test sample includes particles in the size range of about 300 to about 600.
  • the particles can be prescreened manually or automatically.
  • About 2.0 g of sample is placed in sample vessel 30, and then in the absence of piston 36 and weight 48, the vessel is immersed in the test solution for a period of about 60 minutes to saturate the sample and swell the sample without limiting load. .
  • the piston 36 and the weight 48 are placed over the saturated sample 68 in the sample vessel 30, and then the sample vessel 30, the piston 36, the weight 48 and the sample 68 ) Is removed from the solution.
  • the thickness of the saturated sample 68 previously used The same clipper or meter, with the zero point unchanged from the initial height measurement, is determined by measuring the height again from the bottom of the weight 48 to the top of the cylinder 34. The height measurement obtained by the measurement of the hollow sample vessel 30, the piston 36 and the height 48 is subtracted from the height measurement obtained after saturation of the sample 48. The value obtained is the thickness or height ("H") of the swelling sample.
  • Permeability measurements are initiated by delivering a flow of test solution to a sample vessel 30 having a saturated sample 68, a piston 36, and a weight 48 therein.
  • the flow rate of the test solution into the vessel is adjusted to maintain a fluid height of about 7.8 cm above the bottom of the sample vessel.
  • the amount versus time of solution passing through sample 68 is determined gravimetrically. Data points are collected every second for at least 20 seconds if the fluid level remains stabilized at about 7.8 cm height.
  • the flow rate (Q) through the swelling sample 68 is measured in g / s by a linear minimum drag approximation of fluid (g) versus time (seconds) passing through the sample 68.
  • the transmittance (darcy) is calculated according to the following formula.
  • K is the transmittance (citf)
  • Q is the flow rate (g / velocity)
  • H is the height of the sample (cm)
  • Mu is the liquid viscosity (poi se) (test solution used in the test Is approximately 1 cps)
  • A is the cross-sectional area for liquid flow (cm 2 )
  • Rho is the liquid density (g / ciif) (for the test solution used in the test)
  • P is the hydrostatic pressure (dynes / cuf). (Typically about 3,923 dynes / cuf).
  • the hydrostatic pressure is calculated by the following equation.
  • Rho is the liquid density (g / crf)
  • g is the increase acceleration, typically 981 cm / sec 2
  • h is the fluid height (e.g. 7.8 cm for the permeability test described herein).
  • Gel bed permeability test Gel bed permeability tests under load (or expressed in GBP at 0.3 psi) are typically used to treat gel particles (eg, surface treated absorbent materials or surface treatments) under conditions that are referred to as “loading” conditions.
  • loading The transmittance of the swelling bed of the absorbent material before) is measured.
  • under load means "is to be limited by the load which generally matches the normal working load that the swelling of the particles, applied to the particles by the wearer (e.g., sitting, walking eu bend, etc.).
  • the gel bed permeability test under load is substantially the same as the free swelling gel bed permeability test described above, with the following exceptions.
  • About 2.0 g of sample is placed in the sample vessel 30, uniformly dispersed in the lower portion of the sample vessel, the piston 36 and the weight 48 are placed on the sample inside the sample vessel, and then the sample vessel (the piston and weight inside ) Is immersed in the test solution (0.9 weight% NaCl saline) for about 60 minutes.
  • the sample vessel the piston and weight inside
  • a 0.3 psi limit load is applied to the sample as the sample saturates and swells.
  • Table 1 The measurement results are shown in Table 1 below.
  • the superabsorbent polymers of the examples according to the present invention were found to exhibit a high absorption rate under pressure while maintaining a similar water holding capacity compared to the resin of the comparative example. Therefore, when using the super absorbent polymer according to the present invention, it is possible to produce a diaper or the like to which ultra-thin technology is applied more easily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a superabsorbent polymer and a preparation method therefor. According to the present invention, the absorption rate under load of the superabsorbent polymer can be increased without the deterioration of gel strength by using a low temperature foaming agent and a high temperature foaming agent together so as to control the size and distribution of pores inside a superabsorbent polymer.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
가압하 흡수 속도가 빠른 고흡수성 수지 및 이의 제조 방법  Superabsorbent polymer with high absorption rate under pressure and its preparation method
【관련 출원 (들)과의 상호 인용】  [Cross Citation with Related Application (s)]
본 출원은 2014년 11월 27일자 한국 특허 출원 제 10-2014- This application is filed with Korean Patent Application No. 10-2014- filed on November 27, 2014.
0167729호 및 2015년 1월 21일자 한국 특허 출원 게 10-2015-0010157호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. Claims the benefit of priority based on 0167729 and Korean Patent Application No. 10-2015-0010157, filed Jan. 21, 2015, and all content disclosed in the literature of such Korean patent applications is incorporated as part of this specification.
【기술분야】  Technical Field
본 발명은 가압하 흡수 속도가 빠른 고흡수성 수지 및 이의 제조방법에 관한 것이다.  The present invention relates to a superabsorbent polymer having a high absorption rate under pressure and a method for preparing the same.
【배경기술】  Background Art
고흡수성 수지 (super absorbent polymer , SAP)란 자체 무게의 약 A super absorbent polymer (SAP) is about its own weight
5백 내지 1천배 정도의 수분을 흡수할 수 있는 합성 고분자 물질로서, SAMCSuper Absorbency Mater i al ) , AGM(Absorbent Gel Mater i al ) 등으로도 불리우고 있다. 고흡수성 수지는 생리 용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등의 위생 용품, 원예용 토양 보수제, 토목용 지수재, 육묘용 시트, 식품 유통 분야에서의 신선도 유지제 등 다양한 재료로 널리 사용되고 있다. 이러한 고흡수성 수지를 제조하는 방법으로는 역상 현탁 중합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 그 중 역상 현탁 중합을 통한 고흡수성 수지의 제조에 대해서는 예를 들면 일본 특개소 56-161408 , 특개소 57-158209, 및 특개소 57-198714 등에 개시되어 있다. 그리고, 수용액 중합을 통한 고흡수성 수지의 제조는 여러 개의 축이 구비된 반죽기 내에서 함수겔상 중합체를 파단 및 넁각하면서 중합하는 열 중합 방법과, 벨트 상에서 고농도의 수용액에 자외선 등을 조사하여 중합과 건조를 동시에 행하는 광 중합 방법 등이 알려져 있다. 한편, 고흡수성 수지의 중요한 물성 중 하나인 흡수 속도는 기저귀와 같이 피부에 닿는 제품의 표면 dryness와 연관되어 있다. 일반적으로 이러한 흡수 속도는 고흡수성 수지의 표면적을 넓히는 방법으로 향상시킬 수 있다. 일 예로, 발포제를 사용하여 고흡수성 수지의 입자 표면에 다공성 구조를 형성시키는 방법이 적용되고 있다. 하지만, 일반적인 발포제로는 층분한 양의 다공성 구조를 형성시킬 수 어 흡수 속도의 증가폭이 크지 않은 단점이 있다. 발포제를 사용하여 입자 표면에 다공성 구조를 형성시키는 방법은 문헌 (Kabiri, K:., Omidian, H. and Zohur i aan-Mehr , M. (2003), Novel approach to highly porous superabsorbent hydrogels: synergistic effect of porogens on porosity and swelling rate. Polym. Int., 52: 1158ᅳ 1164)에 나타난 바와 같다. 상기 문헌에 따르면, pore를 형성하는 여러 가지 요인으로서 적절한 porogen의 선정, porogen을 주입하는 시기와 방법 외에도, 중합에서의 겔화 시간을 제시하고 있다. 통상적으로 알려진 발포제로 탄산염 계열의 물질을 쎄안하고 있으며, 이러한 발포제를 주입하는 시점을 기공 구조를 형성하는 중요한 요인으로 제시하고 있다. 다른 예로, 고흡수성 수지의 제조 과정에서 수득되는 미분을 재조립하여 불규칙한 형태의 다공성 입자를 형성시킴으로써 표면적을 넓히는 방법이 있다. 그러나, 이러한 방법을 통해 고흡수성 수지의 흡수 속도는 향상될 수 있더라도, 수지의 보수능 (CRC)과 가압 흡수능 (AUP)이 상대적으로 저하되는 한계가 있다. 이처럼 고흡수성 수지의 흡수 속도, 보수능, 가압 흡수능 등의 물성은 트레이드 -오프 (trade-off)의 관계에 있어, 이들 물성을 동시에 향상시킬 수 있는 제조 방법이 절실히 요구되고 있는 실정이다. As a synthetic polymer material capable of absorbing water of about 500 to 1,000 times, it is also called SAMC Super Absorbency Mater Al, AGM (Absorbent Gel Mater Al). Super absorbent resins have been put into practical use as sanitary devices and are now widely used in various materials such as hygiene products such as paper diapers for children, horticultural soil repair agents, civil engineering materials, seedling sheets, and freshness retainers in food distribution. It is used. As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a solution polymerization is known. Among them, the production of superabsorbent polymers through reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714. In addition, the production of superabsorbent polymers through polymerization of aqueous solution is a thermal polymerization method for polymerizing a hydrogel polymer in a kneader equipped with several shafts while breaking and angled, and polymerizing and drying by irradiating UV light to a high concentration of aqueous solution on a belt. The photopolymerization method etc. which perform simultaneously are known. Meanwhile, the absorption rate, which is one of the important physical properties of the super absorbent polymer, It is associated with the surface dryness of products that come into contact with the skin, such as diapers. In general, this absorption rate can be improved by increasing the surface area of the superabsorbent polymer. For example, a method of forming a porous structure on the particle surface of the super absorbent polymer by using a blowing agent has been applied. However, the general blowing agent has a disadvantage in that the increase in absorption rate is not large because it can form a sufficient amount of porous structure. Methods for forming porous structures on the surface of particles using blowing agents are described in Kabiri, K :, Omidian, H. and Zohur i aan-Mehr, M. (2003), Novel approach to highly porous superabsorbent hydrogels: synergistic effect of porogens on porosity and swelling rate.Polym. Int., 52: 1158 ᅳ 1164). According to the above documents, the selection of the appropriate porogen as a variety of factors for forming the pore, the time and method of injecting the porogen, as well as the gelation time in the polymerization is suggested. Commonly known blowing agents are used to clean carbonate-based materials, and the injection of these blowing agents is suggested as an important factor for forming the pore structure. As another example, there is a method of increasing the surface area by reassembling the fine powder obtained in the manufacturing process of the super absorbent polymer to form porous particles of irregular shape. However, although the absorption rate of the superabsorbent polymer can be improved through this method, there is a limit that the water retention capacity (CRC) and the pressure absorption capacity (AUP) of the resin are relatively lowered. As such, the physical properties such as absorption rate, water holding capacity, and pressure absorbing capacity of the super absorbent polymer are trade-off. Therefore, there is an urgent need for a manufacturing method capable of improving these properties at the same time.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 겔 강도가 높으며 가압 하에서의 빠른 흡수 속도를 가지는 고흡수성 수지를 제공하기 위한 것이다. The present invention provides high gel strength and a fast rate of absorption under pressure. Eggplant is to provide a super absorbent polymer.
또한, 본 발명은 상기 고흡수성 수지의 제조 방법을 제공하기 위한 것이다.  In addition, the present invention is to provide a method for producing the super absorbent polymer.
【과제의 해결 수단】  [Measures of problem]
상기 과제를 해결하기 위하여, 본 발명은 하기의 고흡수성 수지를 제공한다:  In order to solve the above problems, the present invention provides the following super absorbent polymers:
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 가교 중합체 및, 상기 가교 중합체의 표면에 형성된 표면 가교층으로 이루어진 고흡수성 수지에 있어서,  A superabsorbent polymer comprising a crosslinked polymer obtained by polymerizing and crosslinking a monomer composition including an acrylic acid monomer having an acidic group and at least a part of the acidic group is neutralized, and a surface crosslinked layer formed on the surface of the crosslinked polymer,
원심 분리 보수능 (CRC)이 29.5 g/g 이상이고, 가압 흡수능 (AUU이 18 g/g 이상이고, 겔 베드 투과율 (GBP)이 60 다르시 (darcy)이상이고, 5분 gel-AUL이 18.0 g/g이상인, 고흡수성 수지. 고흡수성 수지는 보수능 (CRC) , 가압 흡수능 (AUL) 및 통액성 (GBP)이 중요한 물성으로 평가되고 있으며, 특히 고흡수성 수지가 사용되는 물품, 예컨대 기저귀 등이 박막화되고 있어, 가압 하에서의 흡수 속도가 보다 중요하게 고려되고 있다. 가압 하에서의 흡수 속도를 높이기 위하여, 고흡수성 수지의 표면적을 증대시키는 방법이 보편적으로 사용되고 있으며, 이를 위하여 종래에는 고흡수성 수지의 내부에 기공을 많이 형성하여 물을 빨리 빨아들이게 하거나 또는 고흡수성 수지의 입자 크기를 작게하는 방법 등이 알려져 있다. 그러나, 고흡수성 수지의 입자 크기를 즐이는데에는 한계가 있으며, 내부 기공을 형성하는 경우 겔 강도가 약해지기 때문에 물품의 박막화가 어렵다는 단점이 있다. 이에 본 발명에서는 저은 발포제와 고은 발포제를 함께 사용하여 고흡수성 수지의 제조 과정에서 내부 기공의 크기 및 분포를 조절하여, 겔 강도의 저하 없이 가압 하에서의 흡수 속도를 높일 수 있다. 구체적으로, 본 발명에서는 저온 발포제에 의하여 고흡수성 수지 내 직경이 100 μνλ 내지 400 卿인 기공들을 형성하고, 고온 발포제에 의하여 고흡수성 수지 내 직경이 5 내지 100 인 기공들을 형성한다. 또한, 저온 발포제와 고온 발포제의 함량을 조절하여, 상기 직경이 5 내지 100 인 미세 기공들의 총 기공 면적비 (A)와, 직경이 100 내지 400 인 거대 기공들의 총 기공 면적비 (Β)의 비율 (Α : Β)을 조절한다. 상기 기공들의 면적은 당업계의 통상적인 방법으로 측정할 수 있으며, 일례로 주사전자현미경 (SEM)으로 흡수성 수지의 표면의 정밀 사진 (배율 100배 )을 찍은 후, 일정 면적 (2 cm X 2 cm) 내에 존재하는 SEM 현상에서 표면에 존재하는 미세 기공과 거대 기공의 개수를 구분하여 기공 크기의 면적비를 측정할 수 있다. More than 29.5 g / g of centrifugal separation capacity (CRC), more than 18 g / g of pressure absorption capacity (AUU), more than 60 darcy gel permeability (GBP), 18.0 g of gel-AUL for 5 minutes / g or more, super absorbent polymer, which is considered to have important properties such as water retention capacity (CRC), pressure absorption capacity (AUL) and liquid permeability (GBP). In order to increase the absorption rate under pressure, a method of increasing the surface area of the superabsorbent polymer is generally used, and to this end, pores in the superabsorbent resin are conventionally used. It is known to form a large amount of water so that water can be sucked up quickly, or to reduce the particle size of the superabsorbent polymer, etc. However, the particle size of the superabsorbent polymer is enjoyed. In the present invention, there is a disadvantage in that thinning of an article is difficult because the gel strength becomes weak when internal pores are formed in the present invention. And by controlling the distribution, it is possible to increase the absorption rate under pressure without decreasing the gel strength. The pores having an inner diameter of 100 µν to 400 mm 3 are formed, and the pores having a diameter of 5 to 100 in the superabsorbent resin are formed by the high temperature blowing agent. In addition, by adjusting the content of the low-temperature blowing agent and the high-temperature blowing agent, the ratio of the total pore area ratio (A) of the micropores having a diameter of 5 to 100 and the total pore area ratio (Β) of the large pores having a diameter of 100 to 400 (Α) : Regulates Β). The area of the pores can be measured by a conventional method in the art, for example, after taking an accurate photograph (magnification 100 times) of the surface of the absorbent resin with a scanning electron microscope (SEM), a certain area (2 cm X 2 cm In the SEM phenomenon existing within), the area ratio of the pore size can be measured by dividing the number of micropores and macropores present on the surface.
-앞서 기재한 바와 같이, 상기 직경이 5 //m 내지 100 m인 기공들의 총 기공 면적비 (A)와, 직경이 100 m 내지 400 인 기공들의 총 기공 면적비 (B)의 비율 (A : B)은 3 : 7~9 : 1가 바람직하다. 상기와 같은 범위로 직경이 작은 기공과 직경이 높은 기공이 함께 고흡수성 수지 내 분포됨으로써, 가압하 흡수 속도를 높임과 동시에 겔 강도가 저하되는 것을 방지할 수 있다. 보다 바람직하게는, 상기 A : B의 비율은 4 : 6~8 : 2가 바람직하다. 이러한 고흡수성 수지는 상기 기공의 형성을 위해 사용된 저온 발포제 및 고온 발포제가 일부 잔류하여 최종 수지의 가교 구조 내에 포함될 수 있다. 구체적으로, 상기 고흡수성 수지는 상기 표면 가교층 내의 가교 중합체 내에 분산된 저온 발포제 및 고온 발포제를 더 포함할 수 있다. 이러한 저온 발포제 및 고온 발포제의 구체적 종류에 대해서는, 이하에서 제조 방법에 관하여 상술하기로 한다. 그리고, 상기 고흡수성 수지에서, 상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다: As described above, the ratio of the total pore area ratio (A) of the pores having a diameter of 5 // m to 100 m and the total pore area ratio (B) of the pores having a diameter of 100 m to 400 (A: B) Silver 3: 7-9: 1 are preferable. The pores of the small diameter and the pores of the high diameter are distributed together in the superabsorbent resin in the range as described above, thereby increasing the absorption rate under pressure and preventing the gel strength from being lowered. More preferably, the ratio of A: B is 4: 6 to 8: 2. Such superabsorbent resin may be included in the crosslinked structure of the final resin due to some residual of the low temperature foaming agent and the high temperature foaming agent used to form the pores. Specifically, the super absorbent polymer may further include a low temperature foaming agent and a high temperature foaming agent dispersed in the crosslinked polymer in the surface crosslinking layer. The specific kind of such a low temperature foaming agent and a high temperature foaming agent is explained in full detail below about a manufacturing method. And, in the super absorbent polymer, the acrylic acid monomer is a compound represented by the following formula (1):
[화학식 1]  [Formula 1]
Ri-COOM1 상기 화학식 1에서, Ri-COOM 1 In Chemical Formula 1,
¾은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고, ¾ is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 이루어진 군으로부터 선택되는 1종 이상을 포함한다. 여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. ' 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알킬리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. 또한, 상기 모노머 조성물 중 아크릴산계 단량체의 농도는 증합 시간및 반응 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 20 내지 90 중량 또는 40.내지 70 중량 %일 수 있다. 이러한 농도 범위는 고농도 수용액의 중합 반웅에서 나타나는 겔 현상을 이용하여 중합 후 미반응 단량체를 제거할 필요가 없도록 하면서도, 후속 공정인 중합체의 분쇄시 분쇄 효율을 조절하는데 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다. 한편, 상기 모노머 조성물에는 함수겔상 중합체의 물성을 향상시키기 위한 가교제가 포함된다. 상기 가교제는 함수겔상 중합체를 내부를 가교시키기 위한 제 1 가교제 (내부 가교제)로서, 후속 공정에서 상기 함수겔상 중합체의 표면을 가교시키기 위한 제 2 가교제 (표면 가교제)와는 별개로 사용된다. 바람직하게는, 상기 가교 중합체는 Ν ,Ν'—메틸렌비스아크릴아미드, 트리메틸롤프로판 트리 (메타)아크릴레이트, 에틸렌글리콜 다이 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, 프로필렌글리콜 다이 (메타)아크릴레이트, 폴리프로필렌글리콜 (메타)아크릴레이트, 부탄다이을다이 (메타)아크릴레이트 부틸렌글리콜다이 (메타)아크릴레이트, 다이에틸렌글리콜 다이 (메타)아크릴레이트, 핵산다이올다이 (메타)아크릴레이트, 트리에틸렌글리콜 다이 (메타)아크릴레이트, 트리프로필렌글리콜 다이 (메타)아크릴레이트, 테트라에틸렌글리콜 다이 (메타)아크릴레이트, 다이펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메타)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상의 제 1 가교제에 의해 내부 가교된 것이다. 또한, 바람직하게는 상기 고흡수성 수지는 150 내지 850 의 입경을 갖는 입자상이다. 또한, 상기 원심분리 보수능 (CRC)은 하기 수학식 1로 표시될 수 있다: M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts thereof, divalent metal salts, ammonium salts and organic amine salts. Here, the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized. 'It may preferably be used which is partially neutralized the monomers with alkali materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide. In this case, the degree of neutralization of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%. The range of neutralization can be adjusted according to the final physical properties. However, when the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly. On the contrary, when the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as elastic rubber that is difficult to handle. have. In addition, the concentration of the acrylic acid monomer in the monomer composition may be appropriately adjusted in consideration of the evaporation time and reaction conditions, preferably 20 to 90 weight or 40. to 70% by weight. This concentration range may be advantageous to control the grinding efficiency during the grinding of the polymer, which is a subsequent process, while eliminating the need to remove unreacted monomers after polymerization by using the gel phenomenon appearing in the polymerization reaction of the high concentration aqueous solution. However, when the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered. On the contrary, when the concentration of the monomer is too high, some of the monomers may precipitate or process problems may occur such as when the pulverization efficiency of the polymerized hydrogel polymer is reduced, and the physical properties of the super absorbent polymer may be reduced. On the other hand, the monomer composition includes a crosslinking agent for improving the physical properties of the hydrogel polymer. The crosslinking agent is a first crosslinking agent (internal crosslinking agent) for crosslinking the hydrogel polymer inside, and is used separately from the second crosslinking agent (surface crosslinking agent) for crosslinking the surface of the hydrogel polymer in a subsequent process. Preferably, the crosslinked polymer is Ν, Ν'—methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol die (meth ) Acrylates, polypropylene glycol (meth) acrylates, butanedidiete (meth) acrylates butyleneglycoldi (meth) acrylates, diethylene glycol di (meth) acrylates, nucleic acid dioldi (meth) acrylates , Triethylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate , Tetraethylene glycol di (meth) acrylate , Dipentaerythrene pentaacrylate , Glycerine tri (meth) acrylate , Pentaeryth Tetraacrylate, triarylamine, ethylene glycol diggle Sidil ether, to an internal cross-linked by one or more selected first cross-linking agent from the group consisting of propylene glycol, glycerin, and ethylene carbonate. In addition, the superabsorbent polymer is preferably a particulate having a particle diameter of 150 to 850. In addition, the centrifugal water retention capacity (CRC) may be represented by Equation 1 below:
[수학식 1]  [Equation 1]
CRC (g/g) = { [W2(g) ᅳ W1(g) ] /W0(g) } ᅳ 1 CRC (g / g) = {[W 2 (g) ᅳ W 1 (g)] / W 0 (g)} ᅳ 1
상기 수학식 1에서,  In Equation 1,
W0(g)는 흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of the absorbent resin (g) ,
Kg)는 흡수성 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게 (g)이고, Kg) does not use absorbent resin, but using a centrifuge Device weight (g) measured after dehydration at 250G for 3 minutes
W2(g)는 상은에 0.9 질량 %의 생리식염수에 흡수성 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 흡수성 수지를 포함하여 측정한 장치 무게 (g)이다. 또한, 상기 가압 흡수능 (AUL)는 하기 수학식 2로 표시될 수 있다: ' [수학식 2] W 2 (g) is the device weight (g) measured after absorbing the absorbent resin in 0.9 mass% of physiological saline for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge. . In addition, the pressure absorption capacity (AUL) may be represented by the following equation (2):
AUUg/g) =: [W4(g) 一 W3(g) ] /W0(g) AUUg / g) = : [W 4 (g) 一 W 3 (g)] / W 0 (g)
상기 수학식 2에서,  In Equation 2,
W0(g)는 흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of the absorbent resin (g),
w3(g)는 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합 (g)이고, w 3 ( g ) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin (g),
W4(g)는 하중 (0.9 ps i ) 하에 60분 동안 상기 흡수성 수지에 수분을 공급한 후의 수분이 흡수된 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합 (g)이다. 또한, 상기 5분 ge l-AUL은, 하기 수학식 2-1로 표시될 수 있다: [수학식 2-1] · W 4 (g) is the sum of the weight of the water absorbent resin absorbed after absorbing the absorbent resin for 60 minutes under a load (0.9 ps i) and the weight of the device capable of applying a load to the absorbent resin (g )to be. In addition, the 5-minute ge l-AUL may be represented by the following Equation 2-1: Equation 2-1
5분 gel-AUL(g/g) = [W4(g) ᅳ W3(g) ] /W0(g) 5 min gel-AUL (g / g) = [W 4 (g) ᅳ W 3 (g)] / W 0 (g)
상기 수학식 2-1에서,  In Equation 2-1,
W0(g)는 흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of the absorbent resin (g) ,
W3(g)는 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합 (g)이고, W 3 (g) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin (g),
W4(g)는 하중 (0.3 ps i ) 하에 5분 동안 상기 흡수성 수지에 수분을 공급한 후의 수분이 흡수된 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합 (g)이다. 또한, 상기 본 발명에 따른 고흡수성 수지는, 하기 단계를 포함하는 제조방법에 의하여 제조될 수 있다. W 4 (g) is the sum of the weight of the absorbed water absorbed resin after supplying the absorbent resin with water for 5 minutes under load (0.3 ps i) and the weight of the device capable of applying a load to the absorbent resin (g )to be. In addition, the superabsorbent polymer according to the present invention may be prepared by a manufacturing method comprising the following steps.
1) 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을, 중합 개시제, 게 1 가교제, 저온 발포제 및 고온 발포제의 존재 하에 25 내지 100°C에서 중합 및 가교시켜 함수겔상 중합체를 형성하는 단계, 1) has an acidic group and at least a portion of the acidic group is neutralized Polymerizing and crosslinking a monomer composition comprising an acrylic acid monomer at 25 to 100 ° C. in the presence of a polymerization initiator, a crab 1 crosslinking agent, a low temperature blowing agent and a high temperature blowing agent to form a hydrous gel polymer,
2) 상기 함수겔상 중합체를 조분쇄하는 단계,  2) coarsely pulverizing the hydrogel polymer;
3) 상기 조분쇄된 함수겔상 중합체를 150 내지 250°C에서 건조하는 단계, 3) drying the coarsely pulverized hydrogel polymer at 150 to 250 ° C.,
4) 상기 건조된 중합체를 분쇄하는 단계, 및  4) grinding the dried polymer; and
5) 분쇄된 중합체를 제 2 가교제에 의해 표면 개질하는 단계. 이하, 각 단계별로 본 발명을 상세히 설명한다. 함수겔상증합체의 형성 단계 (단계 1)  5) surface modifying the ground polymer with a second crosslinking agent. Hereinafter, the present invention will be described in detail for each step. Formation of hydrogel polymer (step 1)
상기 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체는 앞서 정의한 바와 같으며, 상기 단계 1은 이를 중합하여 함수겔상 중합체를 제조하는 단계이다. 특히, 본 발명에서는 상기 모노머 조성물을 중합 개시제 및 제 1 가교제 외에, 저온 발포제 및 고온 발포제를 포함하는 것을 특징으로 한다. 상기 저온 발포제는 60°C 이하에서 발포가 되는 발포제를 의미하는 것으로, 상기 단계 1의 중합 및 가교 온도가 25 내지 100°C이기 때문에, 상기 단계 1의 수행 중에 저온 발포제의 발포가 일어난다. 이때 제조되는 함수겔상 중합체는 수분을 포함하여 점도가 낮은 상태이기 때문에, 이때 발포로 형성되는 기공은 이하 설명할 고온 발포제에 의하여 형성되는 기공 보다 상대적으로 크게 된다. 상기 저온 발포제로는 소디움 비카보네이트 (sodium bi carbonate) , 소디움 카보네이트 (sodium carbonate) , 포타슘 비카보네이트 (potassium bi carbonate) , 포타슘 ^l"보네이트 (potass ium carbonate) , 칼슘 비카보네이트 (cal cium bi carbonate) , 칼슘 카보네이트 (cal cium bi carbonate) , 마그네슘 비카보너 1이트 (magnesium bi carbonate) 또는 마그네슘 카보네이트 (magnesium carbonate)를 사용할 수 있다. 또한, 바람직하게는 상기 중합 및 가교 온도가 30 내지 90 °C이다. 상기 고온 발포제로는, 고은에서 분해되어 기포 형성이 가능한 유기 발포제를 사용할 수 있으며, 일례로 아조디카본아미드 (azodicarbonamide, ADCA) , 디니트로소펜타메틸렌테트라민 (dinitroso pentamethylene tetramine, DPT), ρ,ρ' -옥시비스벤젠술포닐하이드라지드 (ρ,ρ ' - oxyb i sbenzenesu 1 f ony 1 hydr az i de ) , OBSH) , pᅳ를루엔술포닐 하이드라지드 (p- toluenesulfonyl hydrazide, TSH), 슈가 에스터 (sugar ester)를 들 수 있다. 상기 슈가 에스터는, 수크로스 스테아레이트 (sucrose stearate), 수크로스 팔미테이트 (sucrose palmitate) , 수크로스 라우레이트 (sucrose laurate) 등이 있으며, 대표적으로 S-970, S-1570, Sᅳ 1670, Pᅳ 1670 및 L -1570을 들 수 있다. 상기 온 발포제의 분해 온도는 약 100°C 초과, 바람직하게는 120 내지 180 °C이므로, 상기 단계 1의 중합 및 가교 반응시 분해에 의해 미세 기공을 형성하기 보다는, 상기 단계 3의 건조 과정에서 분해되어 거대 기공을 형성할 수 있다. 또한, 상기 저온 발포제와 고온 발포제의 증량비을 조절하여, 고흡수성 수지 내 직경이 5 im 내지 100 인 미세 기공들의 총 기공 면적비 (A)와, 직경이 100 내지 400 인 거대 기공들의 총 기공 면적비 (B)의 비율 (A:B)를 조절할 수 있으며, 바람직하게는 상기 저온 발포제와 고온 발포제의 중량비는 50:1 내지 2:1이다. 상기 중합 개시제는, 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제를 사용할 수 있다. 상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 광 중합의 경우에도 열 중합 개시제가 추가로 사용될 수 있다. 상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone) , 하이드톡실 알킬케톤 (hydroxyl alkylketone) , 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine), 및 알파 -아미노케톤 ( α-aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 증 아실포스핀의 구체 예로서, 상용하는 lucirin TP0, 즉, 2,4,6-트리메틸-벤조일—트리메틸 포스핀 옥사이드 (2,4,6- tr imethyl-benzoyl-tr imethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 증합 개시제에 대해서는 Reinhold Schwa lm 저서인 "UV Coatings: Basics , Recent Developments and New Appl ication(Elsevier 2007년)' '의 115 페이지에 개시되어 있으며, 이를 참조할 수 있다. 또한, 상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다.. 구체적으로, 과황산염계 개시제로는 과황산나트륨 (Sodium persulfate; Na2S208) , 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (A隨 onium persulfate; (NH4)2S2()8) 등을 예로 들 수 있다. 또한, 아조 (Azo)계 개시제로는 2,2-아조비스 -(2- 아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochlor ide) , 2, 2-아조비스ᅳ (N ,Ν—디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2, 2- azob i S- (Ν , N-d i me t hy 1 ene ) i sobut yr am i d i ne dihydrochlor ide) , 2_The acrylic acid monomer having the acidic group and neutralized at least a portion of the acidic group is as defined above, and step 1 is a step of polymerizing the same to prepare a hydrogel polymer. In particular, the present invention is characterized in that the monomer composition comprises a low-temperature blowing agent and a high-temperature blowing agent in addition to the polymerization initiator and the first crosslinking agent. The low temperature foaming agent refers to a foaming agent that is foamed at 60 ° C or less, since the polymerization and crosslinking temperature of the step 1 is 25 to 100 ° C, foaming of the low temperature foaming agent occurs during the performance of the step 1. At this time, since the hydrogel polymer prepared is in a state of low viscosity including water, the pores formed by foaming are relatively larger than the pores formed by the high temperature foaming agent to be described below. The low temperature foaming agent is sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium ^ l "potassium carbonate, calcium bicarbonate (cal cium bicarbonate) ), Calcium carbonate, magnesium bicarbonate, or magnesium bicarbonate Magnesium carbonate can be used. Also, preferably the polymerization and crosslinking temperature is 30 to 90 ° C. As the high temperature blowing agent, an organic blowing agent capable of forming bubbles by being decomposed from silver may be used. For example, azodicarbonamide (ADDA), dinitrosopenttamethylene tetramine (DPT), ρ, ρ'-oxybisbenzenesulfonylhydrazide (ρ, ρ'-oxyb i sbenzenesu 1 f ony 1 hydr az i de), OBSH), p-luenesulfonyl hydrazide (TSH) Sugar esters. The sugar esters include sucrose stearate, sucrose palmitate, sucrose laurate, and the like. S-970, S-1570, S ᅳ 1670, P 1670 and L-1570. Since the decomposition temperature of the on-foaming agent is more than about 100 ° C, preferably 120 to 180 ° C, rather than forming fine pores by decomposition during the polymerization and crosslinking reaction of step 1, decomposition in the drying process of step 3 To form large pores. In addition, by adjusting the increase ratio of the low-temperature foaming agent and the high-temperature foaming agent, the total pore area ratio (A) of the micropores having a diameter of 5 im to 100 in the superabsorbent resin, and the total pore area ratio of the macropores having a diameter of 100 to 400 (B). ) Ratio (A: B), and preferably the weight ratio of the low temperature foaming agent to the high temperature foaming agent is 50: 1 to 2: 1. The polymerization initiator can use the polymerization initiator generally used for manufacture of a super absorbent polymer. As the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method. However, even by the photopolymerization method, since a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated by the progress of the polymerization reaction, which is an exothermic reaction, a thermal polymerization initiator is additionally used even in the case of photopolymerization. Can be. As the photoinitiator, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, benzyl dimethyl ketal ( One or more compounds selected from the group consisting of Benzyl Dimethyl Ketal, acyl phosphine, and alpha-aminoketone can be used. As specific examples of the acyl phosphine, commercially available lucirin TP0, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-tr imethyl-benzoyl-tr imethyl phosphine oxide) may be used. Can be. More various photoinitiators are disclosed on page 115 of the Reinhold Schwalm lm "UV Coatings: Basics, Recent Developments and New Appli- cation (Elsevier 2007)". As the initiator, one or more compounds selected from the group consisting of a persulfate initiator, an azo initiator, hydrogen peroxide, and ascorbic acid may be used. Specifically, as the persulfate initiator, sodium persulfate (Na 2 S). 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 () 8), and the like. Examples of (Azo) -based initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2-amidinopropane) dihydrochlor ide), 2, 2-azobis (N, Ν— Dimethylene) isobutyramidine dihydrochloride (2, 2-azobi i S- (Ν, Nd i me t hy 1 ene) i sobut yr am idi ne dihydrochlor ide), 2_
(카바모일아조)이소부티로니트랄 (2-(carbamoylazo)isobutylonitril), 2,2- 아조비스 [2-(2-이미다졸린—2-일 )프로판] 디하이드로클로라이드 (2, 2- azobis[2-(2-imidazol in-2-yl )propane] dihydrochlor ide) , 4,4一아조비스— (4-시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다. 상기 중합 개시제는 상기 모노머 조성물에 대하여 약 0.001 내지 1 중량 %의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다. 상기 제 1 가교제는 앞서 정의한 바와 같으며, 함수겔상 중합체를 내부를 가교시키기 위한 게 1 가교제 (내부 가교제)로서, 후속 공정에서 상기 함수겔상 중합체의 표면을 가교시키기 위한 제 2 가교제 (표면 가교제)와는 별개로 사용된다. 상기 게 1 가교제는 상기 모노머 조성물에 대하여 약 0.001 내지 1 중량 %의 농도로 첨가될 수 있다. 상기 제 1 가교제의 농도가 지나치게 낮을 경우 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 제 1 가교제의 농도가 지나치게 높을 경우 수지의 흡수력이 낮아져 홉수체로서는 바람직하지 않게 될 수 있다. 그 외, 상기 모노머 조성물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다. 또한, 상기 모노머 조성물은 상기 아크릴산계 단량체, 중합 개시제, 제 1 가교제, 저온 발포제 및 고온 발포제 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다. 이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 , 4-부탄다올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 자일렌, 부티로락톤, 카르비를, 메틸셀로솔브아세테이트, Ν ,Ν-디메틸아세트아미드, 또는 이들의 흔합물 등 사용될 수 있다. 상기 용매의 양은 중합 열 조절 등을 고려하여 상기 아크릴산계 단량체 함량의 1 내지 5 배의 중량비가 되도록 조절될 수 있다. 또한, 상기 저온 발포제 및 고온 발포제가 물과 흔합되거나 아크릴산에 용해되어 사용될 경우에는, 별도의 용매를 사용하지 않을 수 있다. 한편, 상기 모노머 조성물의 중합 및 가교를 통한 함수겔상 중합체의 형성은 본 발명이 속하는 기술분야에서 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더 (kneader )와 같은 교반축을 가진 반응기에서 수행될 수 있으며, 광 증합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반응기에서 수행될 수 있다. 일례로, 교반축이 구비된 니더와 같은 반웅기에 상기 모노머 조성물을 투입하고, 여기에 열풍을 공급하거나 반웅기를 가열하여 열 증합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반응기에. 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지. 수 센티미터의 입자 형태로 얻어질 수 있다. 상기 함수겔상 중합체는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 중량 평균 입경이 2 隱 내지 50 匪인 함수겔상 중합체가 얻어질 수 있다. 또한, 다른 일례로 이동 가능한 컨베이어 벨트가 구비된 반응기에서 상기 모노머 조성물에 대한 광 중합을 진행하는 경우에는 시트상의 함수겔상 중합체가 얻어질. 수 있다. 이때 상기 시트의 두께는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 0.5 cm 내지 5 cm의 두께로 조절되는 것이 바람직하다. 상기와 같은 방법으로 형성되는 함수겔상 중합체는 약 40 내지 80 중량 ¾의 함수율을 나타낼 수 있다. 상기 함수겔상 중합체의 함수율이 상기 범위에 들도록 하는 것이 후술할 건조 단계에서의 효율을 최적화한다는 점에서 유리하다. 여기서 함수율은 함수겔상 중합체의 전체 중량에서 수분이 차지하는 중량으로서, 함수겔상 중합체의 중량에서 건조 상태의 중합체 중량을 뺀 값으로 계산될 수 있다. 구체적으로, 적외산 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분 증발에 따른 무게 감소분을 측정하여 계산된 값으로 정의될 수 있다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180 °C에서 유지하는 방식으로 총 건조 시간은 온도 상승 단계 5분을 포함하여 40분으로 설정될 수 있다. 함수겔상중합체를조분쇄하는 단계 (단계 2) (Babamoylazo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2,2-azobis [2- (2-imidazoline—2-yl) propane] dihydrochloride (2, 2- azobis [ 2- (2-imidazol in-2-yl) propane] dihydrochlor ide), 4,4 一 azobis— (4-cyanovaleric acid) (4,4-azobis- (4-cyanovaleric acid)) For example. A wider variety of thermal polymerization initiators are disclosed on page 203 of the Odian book "Principle of Polymerization (Wiley, 1981)" and can be referred to this. The polymerization initiator may be added at a concentration of about 0.001 to 1% by weight based on the monomer composition. In other words, when the concentration of the polymerization initiator is too low, the polymerization rate may be slow and a large amount of residual monomer may be extracted in the final product. On the contrary, when the concentration of the polymerization initiator is too high, it is not preferable because the polymer chain constituting the network is shortened, so that the content of the water-soluble component is increased and the pressure absorption capacity is lowered. The first crosslinking agent is as defined above, and is a first crosslinking agent (internal crosslinking agent) for crosslinking the hydrogel polymer, and a second crosslinking agent (surface crosslinking agent) for crosslinking the surface of the hydrogel polymer in a subsequent step. Used separately. The C 1 crosslinking agent may be added at a concentration of about 0.001 to 1% by weight based on the monomer composition. When the concentration of the first crosslinking agent is too low, the absorption rate of the resin may be lowered and the gel strength may be weakened, which is not preferable. On the contrary, when the concentration of the first crosslinking agent is too high, the absorptivity of the resin may be lowered, which may be undesirable as a hop conjugate. In addition, the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants and the like as necessary. In addition, the monomer composition may be prepared in the form of a solution in which raw materials such as the acrylic acid monomer, a polymerization initiator, a first crosslinking agent, a low temperature blowing agent, and a high temperature blowing agent are dissolved in a solvent. In this case, any solvent that can be used may be used without limitation as long as it can dissolve the above-described raw materials. For example, the solvent includes water, ethanol ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butaneol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , Methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carby, Methyl cellosolve acetate, Ν, Ν-dimethylacetamide, or a combination thereof may be used. The amount of the solvent may be adjusted to be 1 to 5 times the weight ratio of the acrylic acid monomer content in consideration of polymerization heat control and the like. In addition, when the low temperature foaming agent and the high temperature foaming agent are mixed with water or used by dissolving in acrylic acid, a separate solvent may not be used. On the other hand, the formation of the hydrogel polymer through the polymerization and crosslinking of the monomer composition may be carried out by a conventional polymerization method in the art, the process is not particularly limited. As a non-limiting example, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the type of polymerization energy source, in the case of the thermal polymerization may be carried out in a reactor having a stirring shaft such as kneader, In the case of the addition process can be carried out in a reactor equipped with a movable conveyor belt. For example, a hydrogel polymer may be obtained by adding the monomer composition to a reaction vessel such as a kneader equipped with a stirring shaft, and supplying hot air thereto or by heating and heating the reaction vessel. At this time, the reactor . The hydrogel polymer discharged to the reactor outlet according to the type of stirring shaft provided is from a few millimeters. It can be obtained in the form of particles of several centimeters. The hydrogel polymer may be obtained in various forms according to the concentration and injection speed of the monomer composition to be injected, and a hydrogel polymer having a weight average particle diameter of 2 kPa to 50 kPa may be obtained. In another example, when photopolymerization of the monomer composition is performed in a reactor equipped with a movable conveyor belt, a sheet-like hydrogel polymer may be obtained. Can be. At this time, the thickness of the sheet may vary depending on the concentration and the injection speed of the monomer composition to be injected, in order to ensure the production rate, while the entire sheet is evenly polymerized, it is usually adjusted to a thickness of 0.5 cm to 5 cm It is preferable. The hydrogel polymer formed by the above method may exhibit a water content of about 40 to 80 weight ¾. It is advantageous in that the water content of the hydrogel polymer falls within the range to optimize the efficiency in the drying step described later. Here, the moisture content is a weight of water in the total weight of the hydrogel polymer, and can be calculated by subtracting the dry polymer weight from the weight of the hydrogel polymer. Specifically, it may be defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer during the process of raising the temperature of the polymer through infrared acid heating. At this time, the drying conditions may be set to 40 minutes, including 5 minutes of the temperature rise step in such a way that the temperature is raised to about 180 ° C and maintained at 180 ° C. Coarse grinding of hydrogel polymer (step 2)
전술한 단계를 통해 얻어진 함수겔상 중합체는 흡수성의 부여를 위해 건조 공정을 거치게 된다. 그런데, 이러한 건조의 효율을 높이기 위해, 건조 공정의 수행 전에 상기 함수겔상 중합체를 분쇄 (조분쇄)하는 단계가 수행된다. 비제한적인 예로, 상기 조분쇄에 이용 가능한 분쇄기로는 수직형 절단기 (vertical pulverizer) , 터보 커터 (turbo cutter) , 터보 글라인더 (turbo grinder), 회전 절단식 분쇄기 (rotary cutter mill), 절단식 분쇄기 (cutter mill), 원판 분쇄기 (disc mill), 조각 파쇄기 (shred crusher) , 파쇄기 (crusher) , 초퍼 (chopper), 원판식 절단기 (disc cutter) 둥을 예로 들 수 있다. 이때, 상기 조분쇄는 상기 함수겔상 중합체의 입경이 2 隱 내지 10 隱가 되도록 수행될 수 있다. 즉, 건조 효율의 증대를 위하여 상기 함수겔상 중합체는 10 mm 이하의 입자로 분쇄되는 것이 바람직하다. 하지만, 과도한 분쇄시 입자간 응집 현상이 발생할 수 있으므로, 상기 함수겔상 중합체는 2 mm 이상의 입자로 분쇄되는 것이 바람직하다. 상기 조분쇄 단계는, 중합체의 함수율이 높은 상태에서 수행되기 때문에 분쇄기의 표면에 중합체가 들러붙는 현상이 나타날 수 있다. 이러한 현상을 최소화하기 위하여, 상기 조분쇄 단계에는, 필요에 따라, 스팀, 물, 계면활성제, 응집 방지게 (예를 들어 cl ay, si l i ca 등) ; 과황산염계 개시제, 아조계 개시제, 과산화수소, 열중합 개시제, 에폭시계 가교제, 디올 (diol )류 가교제, 2 관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를 포함하는 가교제, 수산화기를 포함하는 1 관능기의 가교제 등이 첨가될 수 있다. 조분쇄된 함수겔상중합체를 건조하는단계 (단계 3) The hydrogel polymer obtained through the above steps is subjected to a drying process to impart water absorbency. However, in order to increase the drying efficiency, the step of pulverizing (coarse grinding) the hydrogel polymer before performing the drying process is performed. Non-limiting examples of mills available for the milling include vertical pulverizers, turbo cutters, turbo grinders, rotary cutter mills, and cutting machines. Examples include a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter. In this case, the coarse grinding may be performed so that the particle diameter of the hydrogel polymer is 2 kPa to 10 kPa. That is, in order to increase the drying efficiency, the hydrous gel polymer is preferably pulverized into particles of 10 mm or less. However, since excessive aggregation may cause intergranular phenomena, the hydrous gel phase polymer is preferably pulverized into particles of 2 mm or more. The coarsely pulverizing step, because the polymer is carried out in a high water content of the polymer may stick to the surface of the grinder may appear. In order to minimize this phenomenon, the coarsely pulverizing step may include steam, water, surfactants, anti-aggregation crabs (for example, cl ay, si li ca, etc.) as necessary; Persulfate initiator, azo initiator, hydrogen peroxide, thermal polymerization initiator, epoxy crosslinking agent, diol crosslinking agent, crosslinking agent including di- or trifunctional or higher polyfunctional acrylate, crosslinking agent of monofunctional group including hydroxyl group And the like can be added. Drying the coarsely hydrated gel polymer (step 3)
전술한 단계를 통해 조분쇄된 함수겔상 중합체를 건조하는 단계가 수행된다. 상기 함수겔상 중합체는 전술한 단계를 통해 2 mm 내지 10 隱의 입자로 조분쇄된 상태로 건조 단계에 제공됨에 따라, 보다 높은 효율로 건조가 이루어질 수 있다. 상기 조분쇄된 함수겔상 중합체의 건조는 120 내지 250°C , 바람직하게는 140 내지 200°C , 보다 바람직하게는 150 내지 190 °C의 온도 하에서 수행될 수 있다. 이때, 상기 건조 온도는 건조를 위해 공급되는 열 매체의 온도 또는 건조 공정에서 열 매체 및 중합체를 포함하는 건조 반응기 내부의 온도로 정의될 수 있다. 건조 온도가 낮아 건조 시간이 길어질 경우 공정 효율성이 저하되므로, 이를 방지하기 위하여 건조 온도는 120 °C 이상인 것이 바람직하다. 또한, 건조 온도가 필요 이상으로 높을 경우 함수겔상 중합체의 표면이 과하게 건조되어 후속 공정인 분쇄 단계에서 미분 발생이 많아질 수 있고, 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조 온도는 25CTC 이하인 것이 바람직하다. 앞서 단계 1에서 설명한 바와 같이, 본 발명에서는 고온 발포제를 포함하여 함수겔상 중합체를 제조하였으며, 이에 따라 상기 조분쇄된 함수겔상 중합체 내에 상기 고온 발포제가 포함되어 있다. 상기 고온 발포제는 1C C 이상에서 발포가 되는 발포제를 의미하는 것으로, 상기. 단계 3의 건조 온도가 100t 보다 크기 때문에, 상기 단계 3의 수행 중에 고은 발포제의 발포가 일어난다. 이때 제조되는 조분쇄된 함수겔상 중합체는 건조 과정에 의하여 함수량이 낮아져 점도가 높은 상태이기 때문에, 이때 발포로 형성되는 기공은 앞서 설명한 저온 발포제에 의하여 형성되는 기공 보다 상대적으로 작게 된다. 이때, 상기 건조 단계에서의 건조 시간은 특별히 제한되지 않으나, 공정 효율 및 수지의 물성 등을 고려하여, 상기 건조 온도 하에서 20분 내지 90분으로 조절할 수 있다. 상기 건조는 통상의 매체를 이용하여 이루어질 수 있는데, 예를 들어, 상기 조분쇄된 함수겔상 중합체에 대한 열풍 공급, 적외선 조사 ·, 극초단파 조사, 또는 자외선 조사 등의 방법을 통해 수행될 수 있다. 그리고, 이러한 건조는 건조된 중합체가 약 0.1 내지 10 중량 %의 함수율을 갖도록 수행되는 것이 바람직하다. 즉, 건조된 중합체의 함수율이 0.1 증량 % 미만인 경우 과도한 건조로 인한 제조 원가의 상승 및 가교 중합체의 분해 (degradation)가 일어날 수 있어 바람직하지 않다. 그리고, 건조된 중합체의 함수율이 10 중량 %를 초과할 경우 후속 공정에서 불량이 발생할 수 있어 바람직하지 않다. 건조된 중합체를분쇄하는단계 (단계 4) Through the above-described steps, the step of drying the coarsely pulverized hydrogel polymer is carried out. The hydrogel polymer is provided to the drying step in the coarsely pulverized state of the particles of 2 mm to 10 mm 3 through the above-described steps, so that drying can be performed with higher efficiency. Drying of the coarsely pulverized hydrogel polymer may be performed at a temperature of 120 to 250 ° C., preferably 140 to 200 ° C., more preferably 150 to 190 ° C. In this case, the drying temperature may be defined as the temperature of the heat medium supplied for drying or the temperature inside the drying reactor including the heat medium and the polymer in the drying process. If the drying temperature is low and the drying time is long, the process efficiency is lowered. In order to prevent this, the drying temperature is preferably 120 ° C or higher. In addition, when the drying temperature is higher than necessary, the surface of the hydrous gel polymer may be excessively dried to increase the generation of fine powder in the subsequent grinding step, and the physical properties of the final resin may be lowered. It is preferable that it is 25 CTC or less. As described above in step 1, in the present invention, a hydrogel polymer was prepared including a hot blowing agent, and thus the hot blowing agent is included in the coarsely pulverized hydrogel polymer. The high temperature foaming agent means a foaming agent that is foamed at 1C C or more, and the above. Since the drying temperature of step 3 is greater than 100 t, foaming of the high silver blowing agent occurs during the performance of step 3 above. At this time, the coarsely pulverized hydrous gel polymer produced is low in water content due to a drying process, and thus has a high viscosity. At this time, the pores formed by the foaming are relatively smaller than the pores formed by the low-temperature blowing agent described above. At this time, the drying time in the drying step is not particularly limited, in consideration of the process efficiency and the physical properties of the resin, it can be adjusted to 20 minutes to 90 minutes under the drying temperature. The drying may be performed using a conventional medium. For example, the drying may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation to the coarsely pulverized hydrogel polymer. And such drying is preferably carried out so that the dried polymer has a water content of about 0.1 to 10% by weight. That is, when the moisture content of the dried polymer is less than 0.1% by weight, it is not preferable because an increase in manufacturing cost and degradation of the crosslinked polymer may occur due to excessive drying. In addition, when the moisture content of the dried polymer exceeds 10% by weight, defects may occur in subsequent processes, which is not preferable. Grinding the dried polymer (step 4)
전술한 단계를 통해 건조된 중합체를 분쇄하는 단계가 수행된다. 상기 분쇄 단계는 건조된 중합체의 표면적으로 최적화하기 위한 단계로서, 분쇄된 중합체의 입경이 150 내지 850
Figure imgf000016_0001
되도록 수행할 수 있다. 이때 분쇄기로는 핀 밀 (pin mill), 해머 밀 (ha隱 er mill), 스크류 밀 (screw mill), 롤 밀 (roll mill), 디스크 밀 (disc mill), 조그 밀 (jog mill) 등 통상의 것이 사용될 수 있다. 또한, 최종 제품화되는 고흡수성 수지의 물성을 관리하기 위하여, 상기 분쇄 단계를 통해 얻어지는 중합체 입자에서 150 내지 850 의 입경을 갖는 입자를 선택적으로 분급하는 단계가 더 수행될 수 있다. 분쇄된 중합체를표면 개 하는단계 (단계 5)
Through the steps described above, a step of pulverizing the dried polymer is performed. The grinding step is to optimize the surface area of the dried polymer, the particle diameter of the pulverized polymer is 150 to 850
Figure imgf000016_0001
May be performed. At this time, the grinder may be a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill, a jog mill, or the like. May be used. In addition, in order to manage the physical properties of the super absorbent polymer to be finalized, the polymer obtained through the grinding step The step of selectively classifying particles having a particle size of 150 to 850 in the particles may be further performed. Surface opening of the pulverized polymer (step 5)
전술한 단계를 통해 분쇄된 중합체를 제 2 가교제에 의해 표면 개질 (surface modi f i cat i on)하는 단계가 수행된다. 상기 표면 개질은 제 2 가교제 (표면 가교제)의 존재 하에 상기 분쇄된 중합체의 표면에 가교 반응을 유도함으로써, 보다 향상된 물성을 갖는 고흡수성 수지를 형성시키는 단계이다. 이러한 표면 개질을 통해 상기 분쇄된 중합체 입자의 표면에는 표면 개질층 (표면 가교층)이 형성된다. 상기 표면 개질은 중합체 입자 표면의 가교 결합 밀도를 증가시키는 통상의 방법으로 수행될 수 있으며, 예를 들어, 제 2 가교제 (표면 가교제)를 포함하는 용액과 상기 분쇄된 중합체를 흔합하여 가교 반웅시키는 방법으로 수행될 수 있다. 여기서 상기 제 2 가교제는 상기 중합체가 갖는 관능기와 반응 가능한 화합물로서, 그 구성은 특별히 한정되지 않는다. 다만, 비제한적인 예로, 상기 제 2 가교제는 에틸렌글리콜 디글리시딜에테르, 폴리에틸렌글리콜 디글리시딜 에테르, 글리세를 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 폴리프로필렌 글리콜 디글리시딜 에테르, 에틸렌글리콜, 다이에틸렌글리콜, 프로필렌글리콜, 트리에틸렌 글리콜, 테트라 에틸렌 글리콜, 프로판 다이올, 다이프로필렌글리콜, 폴리프로필렌글리콜, 글리세린, 폴리글리세린, 부탄다이올, 헵탄다이을, 핵산다이을 트리메틸를프로판, 펜타에리스리콜, 소르비를, 칼슴 수산화물, 마그네슴 수산화물, 알루미늄 수산화물, 철 수산화물, 칼슘 염화물, 마그네슘 염화물, 알루미늄 염화물, 및 철 염화물로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다. 61 The surface modi fi cat i on the ground polymer with the second crosslinking agent is carried out through the above-mentioned steps. The surface modification is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a second crosslinking agent (surface crosslinking agent), thereby forming a superabsorbent resin having improved physical properties. Through such surface modification, a surface modification layer (surface crosslinked layer) is formed on the surface of the pulverized polymer particles. The surface modification may be carried out by a conventional method of increasing the crosslinking density of the polymer particle surface, for example, a method of mixing and crosslinking the pulverized polymer with a solution containing a second crosslinking agent (surface crosslinking agent). It can be performed as. Here, the said 2nd crosslinking agent is a compound which can react with the functional group which the said polymer has, The structure is not specifically limited. However, by way of non-limiting example, the second crosslinking agent is ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycid Dyl ether, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane diol, dipropylene glycol, polypropylene glycol, glycerin, polyglycerol, butanediol, heptanedi, nucleic acid ditrimethyl propane, Pentaerythritol, sorbitol, scabbard hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride, and iron chloride. 61
이때, 상기 게 2 가교제의 함량은 가교제의 종류나 반응 조건 등에 따라 적절히 조절될 수 있으며, 바람직하게는 상기 분쇄된 중합체 100 중량부에 대하여 0.001 내지 5 중량부로 조절될 수 있다. 상기 게 2 가교제의 함량이 지나치게 낮아지면, 표면 개질이 제대로 이루어지지 못해, 최종 수지의 물성이 저하될 수 있다. 반대로 과량의 제 2 가교제가 사용되면 과도한 표면 가교 반웅으로 인해 수지의 흡수력이 오히려 저하될 수 있어 바람직하지 않다. 한편, 상기 표면 개질 단계는, 상기 제 2 가교제와 분쇄된 중합체를 반응조에 넣고 흔합하는 방법, 분쇄된 중합체에 제 2 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 분쇄된 중합체와 제 2 가교제를 연속적으로 공급하여 흔합하는 방법 등 통상적인 방법으로 수행될 수 있다. 또한, 상기 제 2 가교제를 첨가할 때 추가적으로 물이 첨가될 수 있다. 이처럼 제 2 가교제와 물이 함께 첨가됨으로써 제 2 가교제의 고른 분산이 유도될 수 있 i , 중합체 입자의 뭉침 현상이 방지되고, 중합체 입자에 대한 게 2 가교제의 침투 깊이가 보다 최적화할 수 있다. 이러한 목적 및 효과를 고려하여, 제 2 가교제와 함게 첨가되는 물의 함량은 상기 분쇄된 중합체 100 중량부에 대하여 0.5 내지 10 중량부로 조절될 수 있다. 그리고, 상기 표면 개질 단계는 100 내지 25CTC의 온도 하에서 진행될 수 있다. 또한 상기 표면 개질은 1분 내지 120분, 바람직하게는 1분 내지 100분, 보다 바람직하게는 10분 내지 60분 동안 진행할 수 있다. 즉, 최소 한도의 표면 가교 반응을 유도하면서도 과도한 반웅시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여, 상기 표면 개질 단계는 전술한 조건으로 수행될 수 있다. At this time, the content of the crab 2 cross-linking agent may be appropriately adjusted according to the type or reaction conditions of the cross-linking agent, and preferably may be adjusted to 0.001 to 5 parts by weight based on 100 parts by weight of the pulverized polymer. If the content of the crab 2 cross-linking agent is too low, the surface modification is not made properly, the physical properties of the final resin may be lowered. On the contrary, if an excessive amount of the second crosslinking agent is used, absorption of the resin may be lowered due to excessive surface crosslinking reaction, which is not preferable. On the other hand, the surface modification step, the method of mixing the second cross-linking agent and the pulverized polymer in the reaction tank, the method of spraying the second cross-linking agent to the pulverized polymer, the pulverized polymer and the second cross-linking agent in a continuously operated mixer It can be carried out by conventional methods, such as the method of supplying continuously and mixing. In addition, water may be additionally added when the second crosslinking agent is added. As such, when the second crosslinking agent and water are added together, even distribution of the second crosslinking agent may be induced, the aggregation of the polymer particles is prevented, and the penetration depth of the second crosslinking agent into the polymer particles may be more optimized. In view of these objects and effects, the amount of water added with the second crosslinking agent may be adjusted to 0.5 to 10 parts by weight based on 100 parts by weight of the pulverized polymer. In addition, the surface modification step may be performed at a temperature of 100 to 25CTC. In addition, the surface modification may be performed for 1 minute to 120 minutes, preferably 1 minute to 100 minutes, more preferably 10 minutes to 60 minutes. That is, in order to induce a minimum surface crosslinking reaction and to prevent excessive semi-aeration polymer particles from being damaged and deteriorating physical properties, the surface modification step may be performed under the above-described conditions.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 고흡수성 수지는, 저온 발포제와 고온 발포제를 함께 사용하여 고흡수성 수지 내부 기공의 크기 및 분포를 조절하여, 겔 강도의 저하 없이 가압 하에서의 흡수 속도를 높일 수 있다. 【도면의 간단한 설명】 The superabsorbent polymer according to the present invention can be used in combination with a low temperature foaming agent and a high temperature foaming agent to adjust the size and distribution of the internal pores of the superabsorbent polymer, thereby increasing the absorption rate under pressure without decreasing the gel strength. [Brief Description of Drawings]
도 1은 본 발명의 일 구현예에 따른 고흡수성 수지에 대한 가압 흡수 속도를 측정하는 장치의 일례를 나타낸 모식도이다.  1 is a schematic diagram showing an example of a device for measuring the pressure absorption rate for the super absorbent polymer according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 겔 베드 투과율 (GBP , Gel Bed Permeabi l i ty) 측정 장치의 일례를 나타낸 모식도이며, 도 3과 도 4는 각각 겔 베드 투과율 측정 실리더와 메쉬 배치의 일례를 나탄낸 모식도이다.  Figure 2 is a schematic diagram showing an example of a gel bed permeability (GBP, Gel Bed Permeabi li ty) measuring apparatus according to an embodiment of the present invention, Figure 3 and Figure 4 is an example of a gel bed permeability measurement cylinder and mesh arrangement, respectively It is a schematic diagram showing.
【발명을 실시하기 위한 구체적인 내용】ᅳ  [Specific contents to carry out invention]
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시돤다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. 실시예 1  Hereinafter, preferred embodiments are presented to help understand the invention. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto. Example 1
25°C로 미리 넁각된 열매체가 순환되는 쟈켓으로 둘러 싸여진 2 L 용량의 유리 반응기에, 아크릴산 500 g에 희석된 0.5 % IRGACURE 819 개시제 11 g (단량체 조성물에 대하여 110 ppm)을 흔합하고, 아클릴산에 회석된 5% 폴리에틸렌글리콜 디아크릴레이트 (PEGDA , 분자량 400) 26 g을 흔합한 용액 (A 용액)을 주입하고, 아클릴산에 희석된 5% 에틸렌 옥사이드가 9 몰% 포함된 트리메틸올프로판 트리아크릴레이트 (Ethoxyl ated-TMPTA, TMP(E0)9TA , M-3190 미원스페셜티 케미칼사) 14 g을 흔합한 용액 (B 용액)을 주입하고, 여기에 아크릴산에 0.5%로 희석된 Sᅳ 1570 용액 2.8 g을 흔합하고, 24% 가성소다 용액 800 g(C 용액)을 서서히 적가하여 흔합하였다. 이렇게 얻어진 수용성 에틸렌계 불포화 단량체로서 아크릴산 나트륨에서 아크릴산 중화도는 70 몰%가 되었다. In a 2 L glass reactor surrounded by a jacket in which a heat medium pre-cornered at 25 ° C. was circulated, 11 g of 0.5% IRGACURE 819 initiator (110 ppm for the monomer composition) diluted in 500 g of acrylic acid was mixed and acyl acid 26 g of 5% polyethyleneglycol diacrylate (PEGDA, molecular weight 400) distilled into a mixed solution (A solution) was injected, and trimethylolpropane triacryl containing 9 mol% of 5% ethylene oxide diluted in acrylic acid. A mixed solution (B solution) was added 14 g of Ethoxyl ated-TMPTA, TMP (E0) 9TA, M-3190 Miwon Specialty Chemical Co., Ltd., and 2.8 g of a S ᅳ 1570 solution diluted 0.5% in acrylic acid. Were mixed and 800 g (C solution) of 24% caustic soda solution was slowly added dropwise. As the water-soluble ethylenically unsaturated monomer thus obtained, the degree of acrylic acid neutralization was 70 mol% in sodium acrylate.
두 용액의 흔합시 중화열에 의하여 흔합액의 은도가 72°C 이상으로 상승하는 것을 확인한 후, 온도가 40°C로 넁각되기를 기다렸다가 반응 온도가 40°C에 이르렀을 때, 소디움 비카보네이트 (sodium bi carbonate)를 고체상으로 2 g을 모노머와 흔합하고 동시에 물에 회석된 2% 과황산나트륨 용액 54 g을 주입하였다. After confirming that the silver content of the mixture rises above 72 ° C by the heat of neutralization when mixing the two solutions, wait for the temperature to rise to 40 ° C, and then when the reaction temperature reaches 40 ° C, sodium bicarbonate (sodium bicarbonate) carbonate) was mixed with 2 g of monomer as a solid phase and at the same time 54 g of a 2% sodium persulfate solution diluted in water was injected.
상기 용액을 광조사 장치가 상부에 장착되고 내부가 80°C로 예열된 정방형 중합기 내에 설치된 Vat 형태의 트레이 (tray, 가로 15 cm x 세로 15 cm)에 붓고 광조사를 행하여 광개시하였다. 광조사 후 약 25초 후에 표면부터 겔이 발생하고 50초 정도 후에 발포와 동시에 중합 반응이 일어나는 것을 확인한 후, 3분간 추가로 반응시키고, 중합된 시트를 꺼내어 3 cm X 3 cm의 크기로 자른 다음, 미트 쵸퍼 (meat chopper )를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crump)를 제조하였다. The solution was placed in a vat shaped tray (15 cm x 15 cm) mounted in a square polymerizer with a light irradiator mounted on top and preheated to 80 ° C. 15 cm), and irradiated with light to start photo. After about 25 seconds after the light irradiation, the gel was generated from the surface and after 50 seconds, the polymerization was confirmed to occur simultaneously with foaming, and then reacted for 3 minutes further, and the polymerized sheet was taken out and cut into a size of 3 cm X 3 cm. Then, the chopper was prepared by using a chopping chopper (meat chopper) to prepare a powder (crump).
상기 가루 (crump)를 상하로 풍량 전이가 가능한 오븐에서 건조시켰다. 18CTC의 핫 에어 (hot ai r )를 15분간 하방에서 상방으로, 다시 15분간 상방에서 하방으로 흐르게 하여 균일하게 건조시켰으며, 건조 후 건조체의 함수량은 2% 이하가 되도록 하였다.  The crump was dried in an oven capable of transferring air volume up and down. The hot air of 18 CTC was uniformly dried by flowing from downward to upward for 15 minutes and upward from downward for 15 minutes. After drying, the water content of the dried body was 2% or less.
건조 후, 분쇄기로 분쇄한 다음 분급하여 150 내지 850 크기를 선별하여 베이스 수지를 준비하였다. 이렇게 제조된 베이스 수지의 보수능은 36.5 gig , 수가용 성분 함량은 12.5 중량 %였다.  After drying, the resultant was pulverized with a grinder and classified to prepare a base resin by selecting 150 to 850 sizes. The water solubility of the base resin thus prepared was 36.5 gig, and the water-soluble component content was 12.5 wt%.
이후, 100 g 베이스 수지에 물 3 g, 메탄을 3 g, 에틸렌카보네이트 0.4 g , 에어로실 200(aerosol 200) 0.2 g을 흔합한 가교제 액과 흔합한 뒤, 190°C에서 30분 동안 표면 가교 반응시키고, 분쇄 후 시브 (s i eve)를 이용하여 입경 크기가 150 내지 850 /im의 표면 처리된 고흡수성 수지를 얻었다. 실시예 2 Thereafter, 3 g of water, 3 g of methane, 0.4 g of ethylene carbonate, and 0.2 g of aerosol 200 were mixed in a 100 g base resin, followed by a surface crosslinking reaction at 190 ° C. for 30 minutes. After the grinding, the surface-treated superabsorbent polymer having a particle size of 150 to 850 / im was obtained using sieve. Example 2
상기 실시예 1에서, 소디움 비카보네이트 (sodium bicarbonate)의 첨가시 흔합액의 온도가 45°C일 때 첨가하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 제조하여, 고흡수성 수지를 얻었다. 실시예 3 In Example 1, except that the addition of sodium bicarbonate when the temperature of the mixture is 45 ° C, was prepared in the same manner as in Example 1 to obtain a super absorbent resin. Example 3
상기 실시예 1에서, 아크릴산을 520 g 사용하고 24.5% 가성소다 용액을 760 g을 사용하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 제조하여 고흡수성 수지를 얻었다. 이 경우, 실시예 1과는 달리 중합 후 시트가 매우 질겼으며, 육안으로 관찰시 시트상의 기공 크기가 보다 작았다. 실시예 4 상기 실시예 1에서, S-1570 대신 아크릴산에 로 회석된 TSH 용액을 3 g을 사용하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 제조하여 고흡수성 수지를 얻었다. 비교예 1 In Example 1, except that 520g of acrylic acid and 760g of 24.5% caustic soda solution, was prepared in the same manner as in Example 1 to obtain a super absorbent polymer. In this case, unlike Example 1, the sheet was very tough after polymerization, and the pore size of the sheet was smaller when visually observed. Example 4 In Example 1, except that S-1570 instead of 3 g of the TSH solution limped in acrylic acid was prepared in the same manner as in Example 1 to obtain a superabsorbent resin. Comparative Example 1
상기 실시예 1에서, 소디움 비카보네이트 (sodium bi carbonate)를 사용하지 않는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 제조하여 흡수성 수지를 얻었다. 비교예 2  In Example 1, except for not using sodium bicarbonate (carbonate bicarbonate), was prepared in the same manner as in Example 1 to obtain a water absorbent resin. Comparative Example 2
상기 실시예 1에서, S-1570을 사용하지 않는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 제조하여 흡수성 수지를 얻었다. 시험예  In Example 1, except that S-1570 was not used, was prepared in the same manner as in Example 1 to obtain a water absorbent resin. Test Example
상기 실시예 1 내지 4 및 비교예 1 및 2에서 제조한 수지에 대하여, 다음과 같은 방법으로 물성을 평가하였다.  Physical properties of the resins prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated in the following manner.
(1) 입도 평가 (1) particle size evaluation
각 수지의 입도는 유럽부직포산업협희 (European Di sposables and Nonwovens Assoc i at ion , EDANA) 규격 EDANA WSP 220.2 방법에 따라 측정하였다.  The particle size of each resin was measured in accordance with the European Di sposables and Nonwovens Assoc ion (EDANA) standard EDANA WSP 220.2 method.
(2) 원심분리 보수능 (CRC, Centri fuge Retent ion Capacity) 각 수지의 무하중하 흡수 배율에 의한 보수능을 EDANA WSP 241.2에 따라 측정하였다. 구체적으로, 실시예 및 비교예를 통해 각각 얻은 수지 W0(g) (약 0.2 g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal )한 후, 상온에서 생리식염수 (0.9 중량 %)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 (g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 ^g)을 측정하였다. 얻어진 각 질량을 이용하여 다음과 같은 식에 따라 CRC(g/g)를 산출하였다. (2) Centri fuge Retent ion Capacity (CRC) The water-retaining capacity by the unloaded absorption ratio of each resin was measured according to EDANA WSP 241.2. Specifically, the resin W 0 (g) (about 0.2 g) obtained through Examples and Comparative Examples was evenly placed in a non-woven bag and sealed, and then immersed in physiological saline (0.9 wt%) at room temperature. I was. After 30 minutes have elapsed, the device is drained from the bag for 3 minutes under the conditions of 250G using a centrifugal separator. Mass (g) was measured. Moreover, mass ^ g) at that time was measured after performing the same operation without using resin. Using each mass obtained, CRC (g / g) was computed according to the following formula.
[수학식 1]  [Equation 1]
CRC (g/g) = i [W2(g) - W!(g) ] /W0(g) } ᅳ 1 CRC (g / g) = i [W 2 (g)-W! (G)] / W 0 (g)} ᅳ 1
(3) 가압흡수능 및 가압하흡수 속도 (3) Pressurized absorption capacity and absorption under pressure
-가압흡수능 (AUL, Absorbency under Load)  Absorbency under Load (AUL)
각 수지의 0.9 ps i의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였으며, 도 1과 같은 가압 흡수능 (AUL)을 측정하는 장치를 사용하였다. 구체적으로, 내경 25 隱의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50%의 조건 하에서 철망 상에 흡수성 수지 W0(g) (0. 16 g)을 균일하게 살포하고 그 위에 5. 1 kPa(0.9 psi )의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 25 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다. The pressure absorption capacity of 0.9 ps i of each resin was measured according to the EDANA method WSP 242.3, and an apparatus for measuring the pressure absorption capacity (AUL) as shown in FIG. 1 was used. Specifically, a stainless steel 400 mesh wire mesh was mounted on the bottom of a plastic cylinder having an inner diameter of 25 mm 3. Piston which can evenly spread the absorbent resin W 0 (g) (0. 16 g) on the wire mesh under conditions of room temperature and humidity of 50% and impart a more uniform load of 5. 1 kPa (0.9 psi) on it Is slightly smaller than the outer diameter of 25 mm, has no gap with the inner wall of the cylinder, and does not interfere with the vertical movement. At this time, the weight W 3 (g) of the apparatus was measured.
직경 150 画의 페트로 접시의 내측에 직경 90 隱 및 두께 5 誦의 유리 필터를 두고, 0.9 중량 % 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90 mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다. 1시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다. A 90 mm diameter and 5 mm thick glass filter was placed inside a 150 mm diameter petri dish, and the physiological saline consisting of 0.9 wt% sodium chloride was brought to the same level as the top surface of the glass filter. One sheet of filter paper 90 mm in diameter was loaded thereon. The measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted up and the weight W 4 (g) was measured.
얻어진 각 질량을 이용하여 다음 식에 따라 가압 흡수능 (g/g)을 산출하였다.  Using each mass obtained, the pressure absorption capacity (g / g) was computed according to following Formula.
[수학식 2]  [Equation 2]
AUL(g/g) = [W4(g) - W3(g) ] /W0(g) AUL (g / g) = [W 4 (g)-W 3 (g)] / W 0 (g)
-가압하흡수속도 상기 가압 흡수능과 동일한 방법으로 수행하되, 0.9 ps i 하중 대신 0.3 ps i 하중을 사용하고, 0.9 중량 % 염화나트륨으로 구성된 생리식염수를 5분 동안 흡수시킨 후 진공 압력판 위에 높고 5 ps i의 진공 압력으로 겔과 겔 사이의 소금물을 30초 동안 진공으로 빼내었다. 이후 무게를 측정하여 AUL을 계산하는 방법은 앞서 가압 흡수능과 동일하며, 이를 "5분 gel- AUL"이라 하였다. Absorption rate under pressure Perform the same method as the pressure absorbing capacity, but use 0.3 ps i load instead of 0.9 ps i load, absorb the physiological saline consisting of 0.9% by weight sodium chloride for 5 minutes, then high on the vacuum pressure plate and gel at a vacuum pressure of 5 ps i The brine between and the gel was drained under vacuum for 30 seconds. Since the method of calculating the AUL by measuring the weight is the same as the pressure absorption capacity previously, this was called "5 minutes gel- AUL".
(4) 겔 베드투과율 (GBP, Gel Bed Permeabi l ity) (4) Gel Bed Permeability (GBP)
각 수지에 대하여, 겔 베드 투과율 (GBP , Gel Bed Permeabi 1 i ty)을 측정하였다. GBP 측정방법은 미국등록특허 US 7 , 179 , 851에 명시되어 있다. 특히, 본 발명에 따른 고흡수성 수지는, 자유 팽윤 겔 베드 투과율 (GBP) , 하중하의 겔 베드 투과율 (0.3GBP)을 측정하는 경우에 특정한 특성 또는 특징을 나타낸다. 자유 팽윤 겔 베드 투과율 시험은, 통상 "자유 팽윤" 상태로서 언급되는 상태 이후에, 규정 압력 하에 고흡수성 재료의 팽윤 베드의 투과율 (예: 흡수성 구조물로부터 분리)을 다르시로 측정한 것이다. "자유 유동' '이라 함은 고흡수성 재료가 시험 용액의 흡수 시에 팽윤 억제 하중 없이 팽윤하는 것을 의미하는 것이다. 하중하의 겔 배드 투과율 (0.3GBP)은, 고흡수성 재료를 약 0.3 ps i의 규정 압력 상태로 되게 한 후, 겔 입자 (예: 본 발명의 고흡수성 수지)의 팽윤 베드의 투과율을 의미한다.  For each resin, gel bed permeability (GBP, Gel Bed Permeabi 1 i ty) was measured. The GBP measurement method is specified in US Pat. Nos. 7, 7,179 and 851. In particular, the superabsorbent polymer according to the present invention exhibits specific characteristics or characteristics when measuring free swelling gel bed permeability (GBP) and gel bed permeability (0.3GBP) under load. The free swelling gel bed permeability test is a different measurement of the permeability (eg, separation from an absorbent structure) of a swelling bed of superabsorbent material, under specified pressure, after a condition commonly referred to as a "free swelling" state. "Free flow" means that the superabsorbent material swells without absorbing the swelling load upon absorption of the test solution.The gel bed transmittance under load (0.3GBP) is defined as about 0.3 ps i. After bringing it to a pressure state, it means the transmittance of the swelling bed of the gel particles (e.g., the superabsorbent resin of the present invention).
-자유 팽윤 겔 베드투과율 (GBP) 시험 Free Swelling Gel Bed Permeability (GBP) Test
먼저, 자유 팽윤 겔 베드 투과율 (GBP) 시험은, 통상적으로 "자유 팽윤" 상태로서 언급되는 상태 하에서, 겔 입자 (예를 들면, 표면 처리된 흡수성 재료 또는 표면 처리하기 전의 흡수성 재료)의 팽윤 베드의 투과율을 측정한다. "자유 팽윤"이라 함은 겔 입자가 시험 용액의 흡수 시에 제한 하중 없이 팽윤되는 것을 의미한다. 투과율 시험을 수행하기 위한 적합한 장치는 도 3 및 도 4에 도시되어 있고, 일반적으로 도 3의 28로서 표시되어 있다. 시험 장치 (28)는 샘플 용기 (일반적으로 30으로 표시됨) 및 피스톤 (일반적으로 36으로 표시됨)을 포함한다. 피스톤 (36)은 샤프트의 종축 아래에 천공된 중심 원통형 홀 (40)을 갖는 원통형 렉산 (LEXANR) 샤프트 (38)를 포함한다. 샤프트 (38)의 양 말단은 기계 가공되어 상부 및 하부 말단 (각각 42 및 46으로 지시됨)을 제공한다. 중량 (48로 지시됨)은 한쪽 말단 (42) 위에 존재하고, 이의 중심의 일부분 이상을 통해 천공된 원통형 홀 (48a)을 갖는다. First, a free swelling gel bed permeability (GBP) test is performed on the swelling bed of gel particles (e.g., surface treated absorbent material or absorbent material prior to surface treatment) under conditions commonly referred to as a "free swelling" state. The transmittance is measured. By "free swelling" is meant that the gel particles swell without limiting load upon absorption of the test solution. Suitable apparatus for performing the transmittance test are shown in FIGS. 3 and 4, and generally indicated as 28 in FIG. 3. Test apparatus 28 is a sample container (usually 30 And piston (generally indicated as 36). The piston 36 includes a cylindrical LEXANR shaft 38 having a central cylindrical hole 40 drilled below the longitudinal axis of the shaft. Both ends of the shaft 38 are machined to provide the upper and lower ends (indicated by 42 and 46, respectively). The weight (indicated by 48) is above one end 42 and has a cylindrical hole 48a that is drilled through at least a portion of its center.
원형 피스톤 헤드 (50)는 다른 말단 (46) 위에 위치하고, 7개 홀 (60, 이들 각각은 직경 약 0.95 cm를 갖는 것임)의 중심 내부 환 및 14개 홀 (54, 이들 각각은 직경 약 0.95 cm를 갖는 것임)의 중심 외부 환이 제공되어 있다. 홀 (54, 60)은 피스톤 헤드 (50)의 상부로부터 하부까지 천공되어 있다. 피스톤 헤드 (50)는 또한 샤프트 (38)의 말단 (46)을 수용하기 위해 이의 중심에서 천공된 원통형 홀 (62)을 갖는다. 피스톤 헤드 (50)의 하부는 또한 이축 연신된 400메쉬의 스테인레스 강 스크린 (64)으로 피복될 수 있다.  The circular piston head 50 is located above the other end 46 and has a central inner ring of seven holes (60 each of which has a diameter of about 0.95 cm) and 14 holes (54 each of which are about 0.95 cm in diameter). Having a central outer ring). The holes 54 and 60 are drilled from the top to the bottom of the piston head 50. The piston head 50 also has a cylindrical hole 62 drilled in its center to receive the end 46 of the shaft 38. The lower portion of the piston head 50 may also be covered with a biaxially stretched 400 mesh stainless steel screen 64.
샘플 용기 (30)는 원통 (34) 및 400메쉬 스테인레스 강 피륙 스크린 (66)을 포함하는데, 당해 스크린은 팽팽하게 이축 연신되어 있고 원통의 하부 말단에 부착되어 있다. 고흡수성 중합체 샘플 (도 3에서 68로 표시됨)은 시험 동안 원통 (34) 내부의 스크린 (66) 위에 지지되어 있다.  The sample vessel 30 includes a cylinder 34 and a 400 mesh stainless steel skinned screen 66, which is taut biaxially stretched and attached to the lower end of the cylinder. The superabsorbent polymer sample (designated 68 in FIG. 3) is supported on the screen 66 inside the cylinder 34 during the test.
원통 (34)은 투명한 렉산 (LEXANR) 막대 또는 동등한 재료로 천공되거나 렉산 관재 또는 동등한 재료로 절단될 수 있고, 내부 직경이 약 6 cm (예: 약 28.27 oif의 단면적)이고 벽 두께가 약 0.5 cm이며 높이가 약 10 cm이다. 배수 홀 (도시되지 않음)은 원통으로부터 액체를 배수시키기 위해 스크린 (66) 상부 약 7.8 cm 높이에서 원통 (34)의 측벽에 형성되어, 스크린 (66) 상부 약 그 8 cm에서 샘플 용기 증의 유체 수준을 유지시킨다. 피스톤 헤드 (50)는 렉산 막대 또는 동등한 재료로 기계 가공되고, 대략 16 隱의 높이 및 소정 크기의 직경을 가져, 원통 (34) 내부에 이를 최소 벽 공간으로 맞추면서 여전히 자유롭게 미끄러진다. 샤프트 (38)는 렉산 막대 또는 동등한 재료로 기계 가공되고, 약 2.22 cm의 외부 직경 및 약 0.64 cm의 내부 직경을 갖는다. The cylinder 34 may be perforated with a transparent LEXANR rod or equivalent material or cut into a lexan tube or equivalent material, having an internal diameter of about 6 cm (eg, cross-sectional area of about 28.27 oif) and a wall thickness of about 0.5 cm It is about 10 cm high. A drain hole (not shown) is formed in the side wall of the cylinder 34 at a height of about 7.8 cm above the screen 66 to drain the liquid from the cylinder, and at about 8 cm above the screen 66, the fluid of the sample vessel increases. Maintain the level. The piston head 50 is machined from a lexan rod or equivalent material and has a height of approximately 16 mm and a diameter of a predetermined size so that it still slides freely while fitting it to the minimum wall space inside the cylinder 34. The shaft 38 is machined from a lexan rod or equivalent material and has an outer diameter of about 2.22 cm and an inner diameter of about 0.64 cm .
샤프트 상부 말단 (42)은 길이가 약 2.54 cm이고 직경이 약 1.58 cm이며, 이에 의해 환상 슬더 (47)를 형성하여 중량 (48)을 지지한다. 환상 중량 (48)은 내부 직경이 약 1.59 cm이어서, 샤프트 (38)의 상부 말단 (42)으로 미끄러지고 그 위에 형성된 환상 숄더 (47) 위에 존재한다. 환상 중량 (48)은 스테인레스 강으로 제조되거나, 증류수 중의 0.9 중량 % 염화나트륨인 시험 용액의 존재하에 내부식성인 다른 적합한 재료로 제조될 수 있다. 피스톤 (36) 및 환상 중량 (48)의 합한 중량은 대략 596 g에 상당하고, 이는 흡수성 구조물 샘플 (68)에 적용된 압력이 약 28.27 ciif의 샘플 면적에 대해 약 0.3 ps i 또는 약 20.7 g/cirf인 것에 상응한다. The shaft upper end 42 is about 2.54 cm in length and about 1.58 cm in diameter, thereby forming an annular slad 47 to support the weight 48. fantasy The weight 48 is about 1.59 cm in internal diameter, so that it slips over the upper end 42 of the shaft 38 and is present on the annular shoulder 47 formed thereon. The annular weight 48 may be made of stainless steel or of another suitable material that is corrosion resistant in the presence of a test solution that is 0.9 wt% sodium chloride in distilled water. The combined weight of the piston 36 and the annular weight 48 corresponds to approximately 596 g, which means that the pressure applied to the absorbent structure sample 68 is about 0.3 ps i or about 20.7 g / cirf for a sample area of about 28.27 ciif. Corresponds to
시험 용액을 하기 기재된 시험 동안 시험 장치에 유동시키는 경우, 샘플 용기 (30)는 일반적으로 16메쉬 강성 스테인레스 강 지지체 스크린 (도시되지 않음) 위에 체류한다. 또는, 샘플 용기 (30)는, 지지체 환이 용기 하부로부터의 유동을 제한하지 않도록, 원통 (34)과 실질적으로 동일한 직경 크기를 갖는 지지체 환 (도시되지 않음) 위에 체류한다.  When the test solution is flowed into the test apparatus during the test described below, the sample vessel 30 generally resides on a 16 mesh rigid stainless steel support screen (not shown). Alternatively, the sample vessel 30 resides on a support ring (not shown) having a diameter size substantially the same as the cylinder 34 so that the support ring does not restrict flow from the bottom of the vessel.
"자유 팽윤 " 조건 하에 겔 베드 투과율 시험을 수행하기 위해, 중량 (48)이 상부에 배치된 피스톤 (36)을 중공 샘플 용기 (30)에 배치하고, 중량 (48)의 하부로부터 원통 (34)의 상부까지의 높이를 0.01 隱까지 적합한 계측 정확도를 갖는 캘리퍼로 측정한다. 다중 시험 장치를 사용하는 경우, 각 샘플 용기 (30)의 중공 높이를 측정하고 피스톤 (36) 및 중량 (48)이 사용된 트택을 유지하는 것이 중요하다. 동일한 피스톤 (36) 및 중량 (48)은, 고흡수성 중합체 샘플 (68)이 포화 후에 수 팽윤될 때의 측정에 사용되어야 한다.  To perform the gel bed permeability test under “free swelling” conditions, a piston 36 with a weight 48 disposed thereon is placed in the hollow sample vessel 30 and a cylinder 34 from the bottom of the weight 48. The height to the top of is measured with a caliper with suitable measurement accuracy up to 0.01 mm 3. In the case of using multiple test apparatus, it is important to measure the hollow height of each sample vessel 30 and to maintain the contact where the piston 36 and weight 48 are used. The same piston 36 and weight 48 should be used for the measurement when the superabsorbent polymer sample 68 is water swelled after saturation.
시험되는 샘플은 고흡수성 재료 입자로부터 제조되며, 이는 US 표준 30메쉬 스크린을 통해 예비 스크리닝되고 US 표준 50 메쉬 스크린 위에 유지된다. 따라서, 시험 샘플은 약 300 내지 약 600 크기 범위의 입자를 포함한다. 입자는 수동으로 또는 자동으로 예비 스크리닝할 수 있다. 샘플 약 2.0 g을 샘플 용기 (30)에 넣은 다음, 피스톤 (36) 및 중량 (48)의 부재하에 용기를 약 60분의 기간 동안 시험 용액에 침지하여 샘플을 포화시키고 샘플을 제한 하중 없이 팽윤시킨다.  The sample tested is made from superabsorbent material particles, which are prescreened through a US standard 30 mesh screen and held on a US standard 50 mesh screen. Thus, the test sample includes particles in the size range of about 300 to about 600. The particles can be prescreened manually or automatically. About 2.0 g of sample is placed in sample vessel 30, and then in the absence of piston 36 and weight 48, the vessel is immersed in the test solution for a period of about 60 minutes to saturate the sample and swell the sample without limiting load. .
이 기간 말기에, 피스톤 (36) 및 중량 (48)을 샘플 용기 (30) 중의 포화 샘플 (68) 위에 배치한 다음, 샘플 용기 (30), 피스톤 (36), 중량 (48) 및 샘플 (68)을 용액으로부터 제거한다. 포화 샘플 (68)의 두께는, 앞서 사용한 동일한 클리퍼 또는 계측기 (단, 영점은 초기 높이 측정치로부터 변하지 않음)를 사용하여, 중량 (48)의 하부로부터 원통 (34)의 상부까지 높이를 다시 측정함으로써 결정된다. 중공 샘플 용기 (30), 피스톤 (36) 및 높이 (48)의 측정으로 수득한 높이 측정치를 샘플 (48)의 포화 후에 수득한 높이 측정치로부터 뺀다. 수득되는 값은 두께 또는 팽윤 샘플의 높이 ( "H" )이다. At the end of this period, the piston 36 and the weight 48 are placed over the saturated sample 68 in the sample vessel 30, and then the sample vessel 30, the piston 36, the weight 48 and the sample 68 ) Is removed from the solution. The thickness of the saturated sample 68, previously used The same clipper or meter, with the zero point unchanged from the initial height measurement, is determined by measuring the height again from the bottom of the weight 48 to the top of the cylinder 34. The height measurement obtained by the measurement of the hollow sample vessel 30, the piston 36 and the height 48 is subtracted from the height measurement obtained after saturation of the sample 48. The value obtained is the thickness or height ("H") of the swelling sample.
투과율 측정은 시험 용액의 유동을 포화 샘플 (68) , 피스톤 (36) 및 중량 (48)이 내부에 구비된 샘플 용기 (30)에 전달함으로써 개시한다. 시험 용액의 용기로의 유동 속도를 조절하여 샘플 용기의 하부 위에 약 7.8 cm의 유체 높이를 유지한다. 샘플 (68)을 통과하는 용액의 양 대 시간을 중량 측정으로 측정한다. 데이타 포인트는, 유체 수준이 약 7.8 cm 높이에서 안정화되어 유지되는 경우ᅳ 20초 이상 동안 매초 수집한다. 팽윤 샘플 (68)을 통한 유동 속도 (Q)는, 샘플 (68)을 통과하는 유체 (g) 대 시간 (초)의 선형 최소 제끕 근사값에 의해 g/s 단위로 측정한다.  Permeability measurements are initiated by delivering a flow of test solution to a sample vessel 30 having a saturated sample 68, a piston 36, and a weight 48 therein. The flow rate of the test solution into the vessel is adjusted to maintain a fluid height of about 7.8 cm above the bottom of the sample vessel. The amount versus time of solution passing through sample 68 is determined gravimetrically. Data points are collected every second for at least 20 seconds if the fluid level remains stabilized at about 7.8 cm height. The flow rate (Q) through the swelling sample 68 is measured in g / s by a linear minimum drag approximation of fluid (g) versus time (seconds) passing through the sample 68.
투과율 (다르시)은 다음 식에 따라 계산한다.  The transmittance (darcy) is calculated according to the following formula.
[수학식 3]  [Equation 3]
K = [QxH xMu] / [A x Rho xP]  K = [QxH xMu] / [A x Rho xP]
상기 수학식 3에서, K는 투과율 (citf)이고, Q는 유동 속도 (g/속도)이며, H는 샘플의 높이 (cm)이고, Mu는 액체 점도 (poi se) (시험에 사용된 시험 용액에 있어서 대략 1 cps)이며, A는 액체 유동에 대한 단면적 (cm2)이고, Rho는 액체 밀도 (g/ciif ) (당해 시험에 사용된 시험 용액에 대해)이며, P는 정수압 (dynes/cuf) (통상적으로 약 3,923 dynes/cuf)이다. 정수압은 다음식으로 계산한다. In Equation 3, K is the transmittance (citf), Q is the flow rate (g / velocity), H is the height of the sample (cm), Mu is the liquid viscosity (poi se) (test solution used in the test Is approximately 1 cps), A is the cross-sectional area for liquid flow (cm 2 ), Rho is the liquid density (g / ciif) (for the test solution used in the test), and P is the hydrostatic pressure (dynes / cuf). (Typically about 3,923 dynes / cuf). The hydrostatic pressure is calculated by the following equation.
[수학식 4]  [Equation 4]
P = Rho X g x h  P = Rho X g x h
상기 계산식 3에서, Rho는 액체 밀도 (g/crf)이고, g는 증량 가속도, 통상적으로 981 cm/sec2이며, h는 유체 높이 (예를 들면, 본원에 기재된 투과율 시험의 경우 7.8 cm)이다. In Equation 3 above, Rho is the liquid density (g / crf), g is the increase acceleration, typically 981 cm / sec 2 and h is the fluid height (e.g. 7.8 cm for the permeability test described herein). .
-하증하의 겔 베드투과율 시험 하중하의 겔 베드 투과율 시험 (또는, 0.3 psi에서의 GBP로 표시함)은, 통상적으로 "하중하" 조건인 것으로 언급된느 조건 하에, 겔 입자 (예를 들면, 표면 처리된 흡수성 재료 또는 표면 처리하기 전의 흡수성 재료)의 팽윤 베드의 투과율을 측정하는 것이다. 용어 "하중하' '는 입자의 팽윤이, 착용자에 의해 입자에 적용되는 통상의 사용 하중 (예를 들어, 앉기, 걷기ᅳ 구부리기 등)과 통상 일치하는 하중에 의해 제한되는 것을'의미한다. Gel bed permeability test Gel bed permeability tests under load (or expressed in GBP at 0.3 psi) are typically used to treat gel particles (eg, surface treated absorbent materials or surface treatments) under conditions that are referred to as "loading" conditions. The transmittance of the swelling bed of the absorbent material before) is measured. The term "under load" means "is to be limited by the load which generally matches the normal working load that the swelling of the particles, applied to the particles by the wearer (e.g., sitting, walking eu bend, etc.).
보다 구체적으로, 하중하의 겔 베드 투과율 시험은 다음을 제외하고는 앞서 기재한 자유 팽윤 겔 베드 투과율 시험과 실질적으로 동일하다. 샘플 약 2.0 g을 샘플 용기 (30)에 넣고, 샘플 용기의 하부에 균일하게 분산시키고, 피스톤 (36) 및 중량 (48)을 샘플 용기 내부의 샘플 위에 놓은 다음, 샘플 용기 (내부에 피스톤 및 중량 구비)를 시험 용액 (0.9 중량 % NaCl 염수)에 약 60분 동안 침지시킨다. 그 결과, 샘플이 포화 및 팽윤됨에 따라 0.3 psi 제한 하중이 샘플에 적용된다. 상기 측정 결과를 하기 표 1에 나타내었다.  More specifically, the gel bed permeability test under load is substantially the same as the free swelling gel bed permeability test described above, with the following exceptions. About 2.0 g of sample is placed in the sample vessel 30, uniformly dispersed in the lower portion of the sample vessel, the piston 36 and the weight 48 are placed on the sample inside the sample vessel, and then the sample vessel (the piston and weight inside ) Is immersed in the test solution (0.9 weight% NaCl saline) for about 60 minutes. As a result, a 0.3 psi limit load is applied to the sample as the sample saturates and swells. The measurement results are shown in Table 1 below.
【표 1】  Table 1
Figure imgf000027_0001
상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예들의 고흡수성 수지는 비교예의 수지에 비하여 유사한 보수능을 유지하면서도 빠른 가압하 흡수 속도를 나타냄을 확인할 수 있었다. 따라서, 본 발명에 따른 고흡수성 수지를 이용할 경우, 초박형 기술이 적용된 기저귀 등을 보다 쉽게 생산할 수 있다.
Figure imgf000027_0001
As shown in Table 1, the superabsorbent polymers of the examples according to the present invention were found to exhibit a high absorption rate under pressure while maintaining a similar water holding capacity compared to the resin of the comparative example. Therefore, when using the super absorbent polymer according to the present invention, it is possible to produce a diaper or the like to which ultra-thin technology is applied more easily.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 가교 중합체 및, 상기 가교 중합체의 표면에 형성된 표면 가교층으로 이루어진 고흡수성 수지에 있어서, In a superabsorbent resin consisting of a crosslinked polymer obtained by polymerizing and internally crosslinking a monomer composition containing an acrylic acid-based monomer having an acidic group and at least a portion of the acidic group neutralized, and a surface crosslinking layer formed on the surface of the crosslinked polymer,
보수능 (CRC)이 29.5 g/g 이상이고, 가압 흡수능 (AUL)이 18 g/g 이상이고, 겔 베드 투과을 (GBP)이 60 다르시 (darcy)이상이고, 5분 gel_ AUL이 18.0 g/g이상인, The water retention capacity (CRC) is more than 29.5 g/g, the absorbency under pressure (AUL) is more than 18 g/g, the gel bed permeation (GBP) is more than 60 Darcy, and the 5-minute gel_AUL is 18.0 g/g. Lee Sang-in,
고흡수성 수지 . Super absorbent resin.
【청구항 2] [Claim 2]
겨 U항에 있어서, In paragraph U,
상기 고흡수성 수지 내 직경이 5 내지 100 卿인 기공들의 총 기공 면적비 (A)와, 직경이 100 내지 400 인 기공들의 총 기공 면적비 (B)의 비율 (A:B)이 3:7 내지 9:1인 것을 특징으로 하는, The ratio (A:B) of the total pore area ratio (A) of pores with a diameter of 5 to 100 卿 and the total pore area ratio (B) of pores with a diameter of 100 to 400 in the superabsorbent polymer is 3:7 to 9: Characterized by 1,
고흡수성 수지 . Super absorbent resin.
【청구항 3] [Claim 3]
계 1항에 있어서, In paragraph 1,
상기 고흡수성 수지 내 직경이 5 /tn 내지 100 인 기공들의 총 기공 면적비 (A)와, 직경이 100 im 내지 400 인 기공들의 총 기공 면적비 (B)의 비율 (A:B)이 4:6 내지 8:2인 것을 특징으로 하는, The ratio (A:B) of the total pore area ratio (A) of pores with a diameter of 5 /tn to 100 in the superabsorbent polymer and the total pore area ratio (B) of pores with a diameter of 100 im to 400 is 4:6 to 4:6. Characterized by 8:2,
고흡수성 수지 . Super absorbent resin.
【청구항 4】 【Claim 4】
제 1항에 있어서, In clause 1,
상기 가교 중합체 내에 분산된 저온 발포제 및 고온 발포제를 더 포함하는, Further comprising a low-temperature foaming agent and a high-temperature foaming agent dispersed in the crosslinked polymer,
고흡수성 수지 . Super absorbent resin.
【청구항 5] [Claim 5]
제 4항에 있어서, According to clause 4,
상기 저온 발포제는 소디움 비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate), 포타슴 비카보네이트 (potassium bicarbonate) , 포타슘 ^}·보네이트 (potassium carbonate) , 칼슘 비카보네이트 (calcium bicarbonate), 칼슘 카보네이트 (calcium bicarbonate) , 마그네슘 비카보네이트 (magnesium bicarbonate) 또는 마그네슴 카보네이트 (magnesium carbonate)인 것을 특징으로 하는, The low-temperature foaming agent is sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium ^}·bonate, calcium bicarbonate, calcium carbonate ( characterized in that it is calcium bicarbonate), magnesium bicarbonate, or magnesium carbonate,
고흡수성 수지 . Super absorbent resin.
【청구항 6】 【Claim 6】
거 14항에 있어서, In paragraph 14,
상기 고온 발포제는 아조디카본아미드 (azodicarbonamide, ADCA) , 디니트로소펜타메틸렌테트라민 (dinitroso pentamethylene tetramine, DPT), ^^-옥시비스벤젠술포닐하이드라지드^,^ᅳ The high-temperature foaming agent is azodicarbonamide (ADCA), dinitroso pentamethylene tetramine (DPT), ^^-oxybisbenzenesulfonylhydrazide^,^ᅳ
oxyb i sbenzenesu 1 f ony 1 hydr az i de ) , OBSH) , pᅳ를루엔술포닐 하이드라지드 (p- toluenesulfonyl hydrazide , TSH) 또는 슈가 에스터 (sugar ester)인 것을 특징으로 하는, oxyb i sbenzenesu 1 f ony 1 hydr az i de ), OBSH), p-toluenesulfonyl hydrazide (TSH) or sugar ester,
고흡수성 수지 . Super absorbent resin.
【청구항 7】 【Claim 7】
게 1항에 있어서, In clause 1,
상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 것을 특징으로 하는, The acrylic acid-based monomer is characterized in that it is represented by the following formula (1):
고흡수성 수지 : Super absorbent polymer:
[화학식 1] [Formula 1]
Figure imgf000029_0001
Figure imgf000029_0001
상기 화학식 1에서, In Formula 1,
¾은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고, M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. ¾ is an alkyl group with 2 to 5 carbon atoms containing an unsaturated bond, M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group, or an organic amine salt.
【청구항 8】 【Claim 8】
거 U항에 있어서, In clause U,
상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는, The acrylic acid-based monomer is characterized in that it contains at least one member selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts, and organic amine salts thereof.
고흡수성 수지 . Super absorbent resin.
【청구항 9】 【Claim 9】
제 1항에 있어서, According to clause 1,
상기 가교 중합체는 Ν,Ν' -메틸렌비스아크릴아미드, 트리메틸를프로판 트리 (메타)아크릴레이트, 에틸렌글리콜 다이 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, 프로필렌글리콜 다이 (메타)아크릴레이트, 폴리프로필렌글리콜 (메타)아크릴레이트, 부탄다이올다이 (메타)아크릴레이트, 부틸렌글리콜다이 (메타)아크릴레이트, 다이에틸렌글리콜 다이 (메타)아크릴레이트, 핵산다이을다이 (메타)아크릴레이트, 트리에틸렌글리콜 다이 (메타)아크릴레이트, 트리프로필렌글리콜 다이 (메타)아크릴레이트, 테트라에틸렌글리콜 다이 (메타)아크릴레이트, 다이펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메타)아크릴레이트 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상의 게 1 가교제에 의해 내부 가교된 것인 고흡수성 수지 . The cross-linked polymer is Ν,Ν'-methylenebisacrylamide, trimethylpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, propylene glycol di(meth)acrylate, poly Propylene glycol (meth)acrylate, butane diol di(meth)acrylate, butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, nucleic acid diol di(meth)acrylate, triethylene glycol Di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipentaerythry pentaacrylate, glycerin tri(meth)acrylate pentaerythium tetraacrylate, A superabsorbent resin internally crosslinked with one or more crosslinking agents selected from the group consisting of triarylamine, ethylene glycol diglycidyl ether, propylene glycol, glycerin, and ethylene carbonate.
【청구항 10] [Claim 10]
거 U항에 있어서, In clause U,
상기 고흡수성 수지는, 150 내지 850 의 입경을 갖는 입자상인 것을 특징으로 하는, 고흡수성 수 The superabsorbent polymer is characterized in that it is in the form of particles having a particle size of 150 to 850. highly absorbent water
【청구항 11】 【Claim 11】
하기 단계를 포함하는 제 1항 내지 제 10항 중 어느 한 항의 고흡수성 수지의 제조방법 : - A method for producing the superabsorbent polymer of any one of claims 1 to 10 comprising the following steps: -
1) 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을, 중합 개시제, 제 1 가교제, 저온 .발포제 및 고온 발포제의 존재 하에 25 내지 100 °C에서 중합 및 가교시켜 함수겔상 중합체를 형성하는 단계, 1) A monomer composition containing an acrylic acid-based monomer having an acidic group and at least a portion of the acidic group has been neutralized is polymerized and crosslinked at 25 to 100 ° C in the presence of a polymerization initiator, a first crosslinking agent, a low temperature foaming agent, and a high temperature foaming agent. Step of forming a water-containing gel polymer,
2) 상기 함수겔상 중합체를 조분쇄하는 단계, 2) Crudely pulverizing the water-containing gel polymer,
3) 상기 조분쇄된 함수겔상 중합체를 150 내지 250°C에서 건조하는 단계, 3) Drying the coarsely ground hydrogel polymer at 150 to 250 ° C,
4) 상기 건조된 중합체를 분쇄하는 .단계, 및 4) pulverizing the dried polymer, and
5) 분쇄된 중합체를 제 2 가교제에 의해 표면 개질하는 단계. 5) Surface-modifying the pulverized polymer with a second cross-linking agent.
【청구항 12】 【Claim 12】
제 11항에 있어서, In clause 11,
상기 저온 발포제는 소디움 비카보네이트 (sodium bicarbonate) , 소디움 카보네이트 (sodium carbonate) , 포타슘 비카보네이트 (potass ium bi carbonate) , 포타슘 ^!"보네이트 (potassium carbonate) , 칼슘 비카보네이트 (cal c ium bi carbonate) , 칼슘 카보네이트 (cal cium bi carbonate) , 마그네슘 비카보네이트 (magnes ium bi carbonate) 또는 마그네슘 카보네이트 (magnesium carbonate)인 것을 특징으로 하는, The low-temperature foaming agent is sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium ^! "potassium carbonate, and calcium bicarbonate. , Calcium bi carbonate, magnesium bi carbonate, or magnesium carbonate,
고흡수성 수지의 제조방법 . Manufacturing method of superabsorbent polymer.
【청구항 13】 【Claim 13】
제 11항에 있어서, In clause 11,
상기 단계 1의 중합 및 가교 온도는 30 내지 9C C인 것을 특징으로 하는, Characterized in that the polymerization and crosslinking temperature in step 1 is 30 to 9 C C,
고흡수성 수지의 제조방법. Method for manufacturing superabsorbent polymer.
【청구항 14] [Claim 14]
제 11항에 있어서, In clause 11,
상기 고온 발포제는 아조디카본아미드 (azodicarbonamide, ADC A) , 디니트로소펜타메틸렌테트라민 (dinitroso pentamethylene tetramine, DPT), ^—옥시비스벤젠술포닐하이드라지드^,^ᅳ The high-temperature foaming agent is azodicarbonamide (ADC A), dinitroso pentamethylene tetramine (DPT), ^—oxybisbenzenesulfonylhydrazide^,^ᅳ
oxyb i sbenzenesu 1 f ony 1 hydr az i de ) , OBSH) , p_를루엔술포닐 하이드라지드 (p一 toluenesulfonyl hydrazide, TSH) 또는 슈가 에스터 (sugar ester)인 것을 특징으로 하는, oxyb i sbenzenesu 1 f ony 1 hydr az i de ) , OBSH) , p_toluenesulfonyl hydrazide (TSH) or sugar ester,
고흡수성 수지의 제조방법 . Manufacturing method of superabsorbent polymer.
【청구항 15】 【Claim 15】
제 14항에 있어서, In clause 14,
상기 슈가 에스터는 수크로스 스테아레이트 (sucrose stearate), 수크로스 팔미테이트 (sucrose palmitate) 또는 수크로스 라우레이트 (sucrose laurate)인 것을 특징으로 하는, The sugar ester is sucrose stearate, sucrose palmitate, or sucrose laurate.
고흡수성 수지의 제조방법 . Manufacturing method of superabsorbent polymer.
【청구항 16] [Claim 16]
제 11항에 있어서, In clause 11,
상기 저온 발포제와 고온 발포제의 중량비는 50:1 내지 2:1인 것을 특징으로 하는, Characterized in that the weight ratio of the low-temperature foaming agent and the high-temperature foaming agent is 50:1 to 2:1,
고흡수성 수지의 제조방법 . 【청구항 17】 Manufacturing method of superabsorbent polymer. 【Claim 17】
제 11항에 있어서, In clause 11,
상기 단계 3의 건조 은도는 150 내지 200 °C인 것을 특징으로 하는, 고흡수성 수지의 제조방법 . [청구항 18】 제 11항에 있어서, A method for producing a superabsorbent polymer, characterized in that the drying temperature in step 3 is 150 to 200 ° C. [Claim 18] In clause 11,
상기 제 2 가교제는 에틸렌글리콜 디글리시딜에테르, 폴리에틸렌글리콜 디글리시딜 에테르, 글리세를 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 폴리프로필렌 글리콜 디글리시딜 에테르, 에틸렌글리콜, 다이에틸렌글리콜, 프로필렌글리콜, 트리에틸렌 글리콜, 테트라 에틸렌 글리콜, 프로판 다이올, 다이프로필렌글리콜, 폴리프로필렌글리콜, 글리세린, 폴리글리세린, 부탄다이을, 헵탄다이올, 핵산다이올 트리메틸를프로판, 펜타에리스리콜, 소르비를, 칼슴 수산화물, 마그네슴 수산화물, 알루미늄 수산화물, 철 수산화물, 칼슘 염화물, 마그네슘 염화물, 알루미늄 염화물, 및 철 염화물로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, · The second crosslinking agent is ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, ethylene glycol, die Ethylene glycol, propylene glycol, triethylene glycol, tetra ethylene glycol, propane diol, dipropylene glycol, polypropylene glycol, glycerin, polyglycerin, butanediol, heptanediol, hexane diol trimethylpropane, pentaerythricol, sorbitol Characterized by at least one selected from the group consisting of calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride, and iron chloride,
고흡수성 수지의 제조방법 . Manufacturing method of superabsorbent polymer.
PCT/KR2015/012861 2014-11-27 2015-11-27 Superabsorbent polymer having fast absorption rate under load and preparation method therefor WO2016085294A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580007684.0A CN105980464B (en) 2014-11-27 2015-11-27 Super absorbent polymer and preparation method thereof with absorptivity under high load
EP15862317.3A EP3098245B2 (en) 2014-11-27 2015-11-27 Superabsorbent polymer having fast absorption rate under load and preparation method therefor
US15/112,081 US9950309B2 (en) 2014-11-27 2015-11-27 Superabsorbent polymer having high absorption rate under load and preparation method thereof
US15/903,179 US10065175B2 (en) 2014-11-27 2018-02-23 Superabsorbent polymer having high absorption rate under load and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140167729 2014-11-27
KR10-2014-0167729 2014-11-27
KR10-2015-0010157 2015-01-21
KR1020150010157A KR101769100B1 (en) 2014-11-27 2015-01-21 Super absorbent polymer with fast absorption rate under load and preparation method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/112,081 A-371-Of-International US9950309B2 (en) 2014-11-27 2015-11-27 Superabsorbent polymer having high absorption rate under load and preparation method thereof
US15/903,179 Division US10065175B2 (en) 2014-11-27 2018-02-23 Superabsorbent polymer having high absorption rate under load and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2016085294A1 true WO2016085294A1 (en) 2016-06-02

Family

ID=56074726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012861 WO2016085294A1 (en) 2014-11-27 2015-11-27 Superabsorbent polymer having fast absorption rate under load and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2016085294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491990A (en) * 2018-11-26 2020-08-04 株式会社Lg化学 Superabsorbent polymer and method of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009801A1 (en) * 1987-06-01 1988-12-15 The Dow Chemical Company Foamed polymeric materials and method for preparing the same
KR20060023116A (en) * 2003-04-25 2006-03-13 스톡하우젠, 인코포레이티드 Superabsorbent polymer with high permeability
KR20140063401A (en) * 2012-11-15 2014-05-27 주식회사 엘지화학 Preparation method of super absorbent polymer
WO2014168858A1 (en) * 2013-04-10 2014-10-16 Evonik Corporation Particulate superabsorbent polymer composition having improved stability and fast absorption

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009801A1 (en) * 1987-06-01 1988-12-15 The Dow Chemical Company Foamed polymeric materials and method for preparing the same
KR20060023116A (en) * 2003-04-25 2006-03-13 스톡하우젠, 인코포레이티드 Superabsorbent polymer with high permeability
KR20140063401A (en) * 2012-11-15 2014-05-27 주식회사 엘지화학 Preparation method of super absorbent polymer
WO2014168858A1 (en) * 2013-04-10 2014-10-16 Evonik Corporation Particulate superabsorbent polymer composition having improved stability and fast absorption

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HWANG, JUN SEOK ET AL.: "Research and Development of Superporous Hydrogels with Fast Swelling and Superabsorbent Properties", DEPARTMENT OF TISSUE ENGINEERING AND REGENERATION MEDICINE, vol. 5, no. 2, 2008, pages 147 - 155, XP008182237 *
See also references of EP3098245A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491990A (en) * 2018-11-26 2020-08-04 株式会社Lg化学 Superabsorbent polymer and method of making the same
US11466128B2 (en) 2018-11-26 2022-10-11 Lg Chem, Ltd. Superabsorbent polymer and preparation method thereof
CN111491990B (en) * 2018-11-26 2023-08-08 株式会社Lg化学 Superabsorbent polymer and method for producing the same

Similar Documents

Publication Publication Date Title
KR101769100B1 (en) Super absorbent polymer with fast absorption rate under load and preparation method thereof
US11655318B2 (en) Super absorbent polymer
US10653812B2 (en) Method of preparing superabsorbent polymer
US9700873B2 (en) Method for preparing super absorbent polymer and super absorbent polymer prepared therefrom
WO2017026623A1 (en) Method for preparing superabsorbent polymer
CN109071833B (en) Superabsorbent polymer and method for producing the same
WO2018139768A1 (en) Method for preparing superabsorbent polymer
CN111433261B (en) Superabsorbent polymer composition and method of making the same
WO2016204390A1 (en) Method for manufacturing super absorbent resin
CN109071834B (en) Method for preparing super absorbent polymer
CN108884235B (en) Superabsorbent polymer and method for making the same
KR102162500B1 (en) Super absorbent polymer and preparation method thereof
KR102566440B1 (en) Super absorbent polymer and preparation method thereof
WO2017086528A1 (en) Method for producing superabsorbent resin
CN108779263B (en) Superabsorbent polymer and method for making same
EP3521343B1 (en) Absorbent polymer and preparation method therefor
KR102541831B1 (en) Preparation method for super absorbent polymer
KR102508435B1 (en) Preparation method for super absorbent polymer
KR102316433B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
JP6949111B2 (en) Highly water-absorbent resin and its manufacturing method
WO2018084392A1 (en) Superabsorbent polymer and preparation method therefor
WO2016085294A1 (en) Superabsorbent polymer having fast absorption rate under load and preparation method therefor
WO2018147600A1 (en) Superabsorbent polymer and preparation method therefor
WO2018117441A1 (en) Superabsorbent polymer and method for manufacturing same
CN116438226A (en) Method for producing superabsorbent polymers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15112081

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015862317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015862317

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE