WO2016085141A1 - Power state-based train monitoring device and monitoring method - Google Patents

Power state-based train monitoring device and monitoring method Download PDF

Info

Publication number
WO2016085141A1
WO2016085141A1 PCT/KR2015/011571 KR2015011571W WO2016085141A1 WO 2016085141 A1 WO2016085141 A1 WO 2016085141A1 KR 2015011571 W KR2015011571 W KR 2015011571W WO 2016085141 A1 WO2016085141 A1 WO 2016085141A1
Authority
WO
WIPO (PCT)
Prior art keywords
power state
wireless sensor
power
sensor unit
unit
Prior art date
Application number
PCT/KR2015/011571
Other languages
French (fr)
Korean (ko)
Inventor
김영일
류원
박대근
여건민
이용태
임선화
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150145004A external-priority patent/KR102083272B1/en
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to CN201580072182.6A priority Critical patent/CN107113548B/en
Publication of WO2016085141A1 publication Critical patent/WO2016085141A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a wireless sensor network for measuring the operating state of a device constituting a train for the purpose of safe driving of a train, and more particularly, to the operation control of a train monitoring wireless sensor network utilizing energy harvesting technology.
  • a wireless sensor network for monitoring trains that can detect the real-time operation of the devices that make up a railway vehicle in real time and maintain the vehicle immediately in the event of an abnormal condition.
  • the Wireless Sensor Network which transmits the operating status information of railroad cars in real time for the safe operation of the train, utilizes energy harvester technology to utilize vibration energy of the train without using an external power source. It is being developed in the form of using power generated by utilizing.
  • Republic of Korea Patent No. 10-0877587 discloses a technology for detecting the vibration and the location of the vibration generated during the operation of the high-speed train vehicle to deliver to the command room server, but only discloses the information to deliver the detected information through wireless transmission
  • the problem to be solved by the present invention is to provide a power state based train monitoring apparatus and method that can prevent the degradation of communication quality due to irregular power production in a wireless sensor network for monitoring trains combined with energy harvester technology.
  • Power state-based train monitoring apparatus generates at least one wireless sensor unit for generating sensor data by periodically measuring the operating state of the train, generating power by using the vibration energy of the train and the generated power to the wireless sensor
  • One or more of a dedicated channel and a competitive channel by controlling the configuration of a wireless link of the wireless sensor unit based on one or more autonomous power supply unit and power state information that supplies power to the unit and monitors the generated power and transmits the power state information to the communication control unit.
  • a communication control unit for transmitting the sensor data received from the wireless sensor unit to an external communication network.
  • the communication control unit configures a super frame by allocating a channel and a transmission period of the wireless sensor unit based on the power state information.
  • the communication controller determines whether the power state of the wireless sensor unit reaches a threshold for changing a wireless link setting method based on the power state information.
  • the communication controller allocates a contention channel to one of the one or more wireless sensor units having a power state equal to or greater than a method selection threshold.
  • the communication control unit allocates a dedicated channel to the wireless sensor unit having a power supply state of less than a method selection threshold value among the one or more wireless sensor units.
  • the communication control unit allocates a dedicated channel in an extended transmission period of the wireless sensor unit to give a power charging time to the wireless sensor unit having a power state below the transmission cycle extension threshold value among the wireless sensor units whose power state is less than the method selection threshold. (Sampling Frequency) can be changed.
  • Train monitoring method using the power state-based train monitoring device generates power using the vibration energy of the train and at least one wireless sensor for generating sensor data by periodically measuring the operating state of the train generated power Pass in wealth. Then, the wireless link unit controls the configuration of the wireless link based on the power state information and allocates any one of a dedicated channel and a contention channel. Next, the sensor data received from the wireless sensor unit is transferred to the external communication network.
  • the step of assigning any one of a dedicated channel and a contention channel allocates a contention channel to a wireless sensor unit having a power state equal to or greater than a method selection threshold value among one or more wireless sensor units.
  • the dedicated channel is allocated to the wireless sensor unit having a power state below the method selection threshold value among the one or more wireless sensor units.
  • the step of assigning any one of the dedicated channel and the contention channel may be performed by the wireless sensor unit in order to give a power charging time to the wireless sensor unit having a power state below the transmission period extension threshold value among the wireless sensor units whose power state is less than the method selection threshold.
  • the sensing frequency may be changed by allocating a dedicated channel as an extension transmission period.
  • Power state-based train monitoring apparatus and method is a wireless sensor based on the state of the generated power source of the wireless sensor in the railway wireless sensor network to obtain a driving state in real time through a sensor mounted on the running portion of the railway car
  • the transmission quality and operation period of the wireless sensor can be improved.
  • by managing the power state of the wireless sensor in the wireless sensor network it is possible to prevent unnecessary operation of the wireless sensor to generate energy waste and interference signals.
  • FIGS. 1A and 1B are diagrams illustrating a power state based train monitoring apparatus 100 according to an embodiment of the present invention.
  • FIG. 2 is a detailed view of the communication control unit 200 of the power state-based train monitoring apparatus according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a superframe of the communication control unit 200 according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram of another embodiment of the power state-based train monitoring apparatus 400 according to the present invention.
  • FIG. 5 is a configuration diagram of a format of power state information of the power state-based train monitoring apparatus 100 according to an embodiment of the present invention.
  • FIG. 6 is a configuration diagram of another format of power state information of the power state-based train monitoring apparatus 100 according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method for autonomous configuration of a radio link of a power state-based train monitoring apparatus according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an operation procedure of a sensor node of a method for autonomous configuration of a radio link according to an embodiment of the present invention.
  • FIGS. 1A and 1B are diagrams illustrating a power state based train monitoring apparatus 100 according to an embodiment of the present invention.
  • the power state-based train monitoring apparatus 100 is installed in a running train and monitors a driving state of a train and transmits it to the sensor monitoring center 10.
  • the power state-based train monitoring apparatus 100 according to the present invention generates a power from the vibration energy generated by the operation of the train through the energy harvester technology to operate the sensor for monitoring the state of the train.
  • Power state-based train monitoring device 100 according to the present invention includes one or more wireless sensor unit 110, one or more autonomous power supply unit 120 and the communication control unit 130.
  • the wireless sensor unit 110 is configured as a sensor capable of measuring temperature and vibration, and generates sensor data by measuring heat and vibration generated in a plurality of bearings on a bogie shaft of a train. In addition, the wireless sensor unit 110 transmits the sensor data measured according to the radio link configuration set by the communication control unit 130 to the communication control unit 130.
  • a wireless sensor network connection method of the IEEE 802.15.4 method which is a low-power low-speed short-range wireless communication standard such as Zigbee communication, may be used.
  • the autonomous power supply unit 120 generates (produces) electric power using vibration energy generated from a running train. Trains generate a lot of vibration during operation.
  • the autonomous power supply unit 120 may generate power from such vibration through piezoelectric energy technology.
  • the autonomous power supply unit 120 monitors power generated by power and / or vibration energy supplied to the wireless sensor unit. Since the train does not always run at the same speed and acceleration, the power generated by the autonomous power supply unit 120 varies according to the running acceleration of the train. Therefore, in the present invention, the autonomous power supply 120 continuously monitors the power state to generate power state information so that the wireless link of the wireless sensor unit 110 can be configured in consideration of the generated power state.
  • the power state information includes information on the amount of power and the amount of change generated by the autonomous power supply 120.
  • the autonomous power supply unit 120 transmits the generated power state information to the communication control unit 130.
  • the autonomous power supply unit 120 may supply the generated power to the wireless sensor unit 110 to operate the wireless sensor unit 110.
  • the communication controller 130 configures a wireless sensor network (WSN) through at least one wireless sensor unit 110 and a wireless link.
  • WSN wireless sensor network
  • the communication control unit 130 configures a wireless link of the wireless sensor unit 110 based on the power state information received from the autonomous power supply unit 120, and from the wireless sensor unit 110 through the configured wireless link. Receive sensor data.
  • the power state information includes information on the amount of power generated by the autonomous power supply 120 and the amount of change thereof. Since the autonomous power supply unit 120 uses the energy harvester technology to produce power by using vibration energy according to the operation of the train, the power output is changed according to the acceleration of the train. Therefore, the communication control unit 130 determines the state of the power produced by the autonomous power supply unit 120 based on the power state information, and thus configures and changes the wireless link of the wireless sensor unit 110. In addition, the communication control unit 130 changes the measurement period of the wireless sensor unit 110.
  • the communication controller 130 may be configured with a gateway 131 and one or more coordinators 132 for establishing a wireless sensor network.
  • the one or more coordinators 132 establishes a wireless link of the wireless sensor unit 110 based on the power state information, collects sensor data from the wireless sensor unit 110, and transmits the sensor data to the gateway 131.
  • the coordinator 132 may deliver sensor data directly to the gateway 131, or may transmit sensor data to the gateway 131 via a coordinator 132 located at another level or adjacent to each other.
  • the gateway 131 transfers sensor data received from the one or more coordinators 132 to the sensor monitoring center 10.
  • the one or more wireless sensor units 110 are connected to the coordinator 131 having a good radio wave strength among the one or more coordinators 131.
  • a communication method between one or more coordinators 132 and a communication method between the coordinator 131 and the wireless sensor unit 110 various wireless communication methods may be used, and short-range wireless communication standards such as Zigbee communication (IEEE 802.15) .4) or a wireless LAN standard (IEEE 802.11) such as Wi-Fi may be used.
  • a mobile communication network may be used as the communication method between the gateway 131 and the sensor monitoring center 10.
  • One or more wireless sensor unit 110 may be located on or around the chassis axis of the train to measure heat and vibration, one or more autonomous power supply unit 120 is also located around the chassis axis of the train to provide power Can produce. In addition, the wireless sensor unit 110 operates by the power produced by the autonomous power supply unit 120. In addition, one wireless sensor unit 110 and one autonomous power supply unit 120 operating in the same chassis axis may operate in a pair.
  • the communication controller 130 may control the wireless sensor unit 110 and the power supply unit 120 located around the same chassis axis as one pair. For example, in the case of the first wireless sensor unit 111 and the first power supply unit 121, the communication control unit 130 is based on the power state information of the first power supply unit 121. ) Can set radio link and measurement period.
  • the communication controller 130 may perform the following functions to reduce power consumption of the wireless sensor unit 110, which is a low power wireless sensor, when the amount of power is reduced in consideration of the amount of power produced according to the power state information.
  • the communication controller 130 allocates a dedicated channel to the wireless sensor unit 110 that transmits sensor data at regular intervals. When the power state of the wireless sensor unit 110 having a small amount of sensor data or a long transmission period is good, the contention mode channel is allocated.
  • the communication control unit 130 sets the channel mode conversion to prevent the wireless sensor unit 110 having a poor power state from occupying the dedicated channel for a long time.
  • the communication control unit 130 determines the period of the superframe based on the power level of the wireless sensor unit 110 and estimates the power charging time of the sensor node to determine the time to maintain the dedicated channel allocation. If the wireless sensor unit 110 having a very bad power state is identified, the communication controller 130 releases the dedicated channel assignment mode for the wireless sensor unit 110. When the power state returns to a very good level, the communication control unit 130 sets a contention channel link (CSMA-CA) scheme for the corresponding wireless sensor unit 110.
  • CSMA-CA contention channel link
  • the communication controller 130 may vary the sensing frequency of the wireless sensor unit 110 in consideration of the power state of the wireless sensor unit 110 based on the power state information. If the power state of the wireless sensor unit 110 is not greater than the transmission period extension threshold based on the power state information, the communication control unit 130 determines that the power state-based train monitoring apparatus cannot communicate with the current power state. In order to give the wireless sensor unit 110 a power charging time, a dedicated channel is allocated to an extended transmission period of varying a sensing frequency.
  • the extended transmission period means a transmission period in which the transmission period is longer than the basic transmission period.
  • FIG. 2 is a detailed view of the communication control unit 200 of the power state-based train monitoring apparatus according to an embodiment of the present invention.
  • the communication control unit 200 of the power state-based train monitoring apparatus is a radio link connection method determination application layer 210, MAC layer 220 and physical layer 230 It may be configured as.
  • the radio link access method determination application layer 210 may include a power state management unit 211, a super frame component 212, and a radio access method determination unit 213 for each wireless sensor.
  • the power state management unit 211 for each wireless sensor determines the state of the power produced by each autonomous power supply unit 120 (power state of the wireless sensor unit) based on power state information received from each of the one or more autonomous power supply units 120.
  • the wireless sensor power state manager 211 determines the channel link of the wireless sensor unit 110 according to the power state.
  • the radio link is composed of a contention access period (CAP) and a contention free period (CFP) based on non-competition.
  • the CAP section is a contention channel link section, and is accompanied by an increase in power consumption and transmission delay of the wireless sensor unit 110 using a carrier sense multiple access-collision avoidance (CSMA-CA) scheme.
  • CSMA-CA carrier sense multiple access-collision avoidance
  • the CFP section is a dedicated channel link section and has an advantage in that it can be driven with low power when data is always transmitted at a constant cycle.
  • the power state management unit 211 for each wireless sensor determines one channel link among dedicated channel links (GTs) and contention channel links (CSMA-CA) according to the power state of each wireless sensor unit 110.
  • the power state management unit 211 for each wireless sensor may allocate a contention-based channel (competition channel link) in one of the wireless sensor units when it is determined that the power state is sufficient.
  • the power state management unit 211 for each wireless sensor if it is determined that the power state is not sufficient in any one of the wireless sensor unit may allocate a dedicated channel link, and adjust the transmission period according to the power state.
  • the super frame configuration unit 212 configures the super frame of the wireless sensor unit 110 according to the channel link and the period determined by the power state management unit 211 for each wireless sensor.
  • the superframe component 212 transmits the superframe to the corresponding wireless sensor unit 110.
  • the structure of the superframe is further described in FIG. 3 to be described later.
  • the wireless connection method determination unit 213 determines the wireless connection method based on the determination of the power state management unit 211 and the superframe component 212 for each wireless sensor.
  • FIG. 3 is a block diagram of a superframe of the communication control unit 200 according to an embodiment of the present invention.
  • the communication controller 130 configures a super frame 310 corresponding to each wireless sensor unit 110 according to a channel link and a period determined based on power state information.
  • the radio link is composed of a contention access period (CAP) based on contention and a contention free period (CFP) based on a contention free.
  • CAP contention access period
  • CCP contention free period
  • the competition channel section (CAP) is accompanied by an increase in power consumption and transmission delay of the wireless sensor unit 110 using a carrier sense multiple access-collision avoidance (CSMA-CA) scheme.
  • the dedicated channel section (CFP) has the advantage that can be driven at low power when transmitting data at regular intervals at all times. That is, in the wireless link of the wireless sensor unit 110, the contention channel section is allocated when the power is higher than or equal to a predetermined method selection threshold (if sufficient). When the power is less than the preset threshold (when the power is insufficient), the dedicated channel section (CFP) may be allocated by adjusting the period.
  • the super frame consists of an operation section (CAP + CFP) for performing communication between the wireless sensor unit 110 and the coordinator 132 of the communication control unit 130 and a rest period in which the wireless sensor unit 110 does not operate. It has a configuration suitable for sensor networks.
  • each wireless sensor unit 110 is assigned a dedicated channel (slot) and transmits the sensor data to the coordinator 132.
  • FIG. 2 illustrates an example of a case where the power supply level of the first sensor # 1 is low when waiting for a time for charging power. Accordingly, in the example of FIG. 2, when the first sensor # 1 of the wireless sensor unit 110 transmits sensor data over two super frames in the dedicated link section 312, the basic transmission period between the same dedicated channel slots is used. In addition, data is transmitted after the extended transmission period is added.
  • FIG. 4 is a configuration diagram of another embodiment of the power state-based train monitoring apparatus 400 according to the present invention.
  • the power state-based train monitoring apparatus 400 includes one or more sensor nodes 410 and a communication controller 420.
  • the sensor node 410 includes a pair of wireless sensor units 411, an autonomous power supply unit 412, and a wireless communication unit 413 for connecting a wireless link with the wireless communication unit 413.
  • the number of sensor nodes 410 may be freely set, and for example, may be installed as many as the chassis shafts of a train. In FIG. 4, only one sensor node 410 is shown for convenience of description.
  • One wireless sensor unit 411 and one autonomous power supply unit 412 constitute a pair, and a wireless link is connected to the communication control unit 440 through the wireless communication unit 430.
  • the wireless sensor unit 411 and the autonomous power supply unit 412 may be connected to the wireless communication unit 413 through a wired connection (direct connection).
  • the wireless sensor unit 411 operates through the power supplied from the autonomous power supply unit 412, generates sensor data by measuring temperature and vibration of the chassis axis, and generates the sensor data through the wireless communication unit 413. Forward to 420.
  • the autonomous power supply unit 412 uses the vibration energy generated by the movement of the train to produce power and supply the power to the wireless sensor unit 411.
  • the autonomous power supply unit 412 monitors the generated power to generate power state information, and transmits the power state information to the communication control unit 420 through the wireless communication unit 413.
  • Sensor data received from the wireless sensor unit 411 and power state information received from the autonomous power supply unit 412 are transmitted to the communication control unit 430 through the wireless communication unit 413.
  • the communication controller 430 may determine the power state of the wireless sensor unit 411 based on the received power state information, may allocate a channel corresponding to the wireless sensor unit 411, and set a transmission period in consideration of this. .
  • the wireless communication unit 413 transmits sensor data of the wireless sensor unit 411 to the communication control unit 420 through a wireless link configured by the communication control unit 420.
  • FIG. 5 is a configuration diagram of a format of power state information of the power state-based train monitoring apparatus 100 according to an embodiment of the present invention.
  • FIG. 5 shows power state information based on a MAC management message of the IEEE 802.15.4 standard, which is a short range wireless communication standard.
  • the communication control unit 130 or the coordinator 131 of the communication control unit 130 in order to obtain the power state information (power supply state) of the wireless sensor unit 110 to manage the existing MAC of IEEE 802.15.4
  • the coordinator 131 is connected to the autonomous power supply 120 of FIG. 1A or the sensor node 410 of FIG. 4.
  • Request power status information (power status request) power status request
  • the autonomous power supply unit 120 or the sensor node 410 transmits a power state response to the communication control unit 130 in response to the power state request.
  • the payload 510 includes the number of grades between the minimum power level, the maximum power level, and the maximum and minimum power levels.
  • FIG. 6 is a configuration diagram of another format of power state information of the power state-based train monitoring apparatus 100 according to an embodiment of the present invention.
  • the power state information of FIG. 6 is a data frame in a process in which the sensor node 410 or the autonomous power supply unit 120 transmits the power state information to the communication control unit 130 or the coordinator 131. It shows the case of using.
  • the method using the data frame format allows the sensor node 410 to simultaneously transmit the sensor data and power state information in the form of piggyback.
  • the power supply status information is designated with a data type and includes a field indicating piggyback status information. This approach may be suitable for transmitting sensor data at regular intervals.
  • the coordinator 131 sends a power state request message to the sensor node 410 or the autonomous power supply 120 through the MAC management message to manage the power state of the sensor node 410 or the autonomous power supply 120. I can deliver it.
  • the coordinator 131 may designate the power state of the power state request messaging wireless sensor unit 110 and 411 as a minimum value, a maximum value, and a grade level.
  • the sensor node 410 or the autonomous power supply unit 120 that receives the power state request message from the coordinator 131 transmits the power state information including the power class information classified by the class using a data frame. 420 or the coordinator 131.
  • FIG. 7 is a flowchart illustrating a method for autonomous configuration of a radio link of a power state-based train monitoring apparatus according to an embodiment of the present invention.
  • the present invention uses the vibration energy generated by the operation of the train to produce power to operate the wireless sensor unit.
  • the state of the power produced by the change in the acceleration of the train also changes from time to time, it may affect the operation of the wireless sensor unit and the performance of the wireless link.
  • the wireless link is configured based on the power state of the wireless sensor unit identified through the power state information.
  • the power state-based train monitoring apparatus compares the power state with the method selection threshold, and determines whether the power state is less than the method selection threshold (S703).
  • the method selection threshold is a reference value for distinguishing a competition channel and a dedicated channel.
  • the power state-based train monitoring apparatus compares the power state of the wireless sensor unit with a method selection threshold to determine whether the power state of the corresponding wireless sensor unit reaches a threshold that can change the radio link setting method.
  • the power state-based train monitoring apparatus determines that the power state of the wireless sensor unit reaches a sufficient level (when sufficient power is available) when the power state of the wireless sensor unit is not smaller than a predetermined method selection threshold (large).
  • CAP contention channel
  • the contention channel is suitable for a wireless sensor unit in which the power level is large enough or does not need to transmit sensor data periodically.
  • the power state-based train monitoring device determines that the power state has reached the threshold.
  • the power state-based train monitoring apparatus determines whether to increase the transmission period of the wireless sensor unit by comparing the power state of the wireless sensor unit with the transmission period extension threshold (S705). If the power state of the wireless sensor unit is not greater than the transmission period extension threshold (hereinafter, referred to as the following), the power state-based train monitoring device determines that communication is not possible with the current power state, and gives a power charging time to the wireless sensor unit.
  • the extended transmission period means a transmission period in which the transmission period is longer than the basic transmission period.
  • step S705 if the power state of the wireless sensor unit is larger than the transmission period extension threshold, it is determined that communication is possible in the current power state, and the power state-based train monitoring apparatus allocates a dedicated channel basic transmission period (S707). .
  • the power state-based train monitoring apparatus configures a super frame according to the allocated channel through steps S704, S706, and S707 (S708).
  • the configured super frame is transmitted to the wireless sensor unit or the sensor node to form a radio link between the wireless sensor unit and the communication control unit.
  • FIG. 8 is a flowchart illustrating an operation procedure of a sensor node of a method for autonomous configuration of a radio link according to an embodiment of the present invention.
  • the autonomous wireless link configuration method may solve the power state problem of the wireless sensor unit by using a method of changing a sensing frequency of the wireless sensor unit based on a power state.
  • the power state-based train monitoring apparatus collects power state information (S801) and checks the power state of the wireless sensor unit (S802). In addition, the power state-based train monitoring apparatus compares the power state with the communicable threshold to determine whether the power state of the wireless sensor unit exceeds the communicable threshold (S803).
  • the communicable threshold indicates the minimum amount of power that the wireless sensor can deliver communication to.
  • the power state-based train monitoring apparatus determines that communication is impossible and enters the wireless sensor unit in hibernate mode (S804).
  • the wireless sensor unit which has entered hibernation mode, waits until the power supply state is good.
  • the power state-based train monitoring apparatus compares the power state and the sampling threshold to determine whether the power state exceeds the sampling threshold (S805).
  • the sampling threshold value represents a threshold value of a sensing frequency at which the wireless sensor unit measures a train state.
  • the power state-based train monitoring apparatus may compare the power state and the sampling threshold to determine whether the communication is unstable.
  • step S805 If the power state is less than the sampling threshold in step S805, the power state-based train monitoring device determines that the power state of the wireless sensor unit is in communication but unstable, and reduces the measurement speed of the wireless sensor unit (S806). Then, the power state-based train monitoring device proceeds to the sensor data transmission procedure (S807). If the power state exceeds the sampling threshold in step S805, the power state-based train monitoring apparatus determines that the power state is in communication and is not an unstable state and proceeds with the sensor data transmission procedure without changing the sampling rate.
  • the method of autonomous configuration of a radio link of the power state-based train monitoring apparatus disclosed in FIGS. 7 and 8 is performed separately for each of one or more wireless sensor units or one or more sensor nodes constituting the power state-based train monitoring apparatus.
  • the present invention including the above-described contents can be produced by a computer program. And code and code segments constituting the program can be easily inferred by a computer programmer in the art.
  • the written program may be stored in a computer-readable recording medium or information storage medium, and read and executed by a computer to implement the method of the present invention.
  • the recording medium may include any type of computer readable recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A power state-based train monitoring device according to the present invention comprises: one or more wireless sensor units for periodically measuring an operation state of a train and generating sensor data; one or more autonomous power supply units for generating power by using vibration energy of the train, supplying the generated power to the wireless sensor units, monitoring the generated power, and transmitting power state information to a communication control unit; and the communication control unit for controlling the configuration of wireless links of the wireless sensor units on the basis of the power state information so as to allocate any one of a dedicated channel and a contention channel thereto, and transmitting sensor data, which are received from the wireless sensor units, to an external communication network.

Description

전력상태 기반의 열차 감시 장치 및 감시 방법Power state based train monitoring device and monitoring method
본 발명은 열차의 안전운행을 위한 목적으로 열차를 구성하는 디바이스의 동작상태를 측정하는 무선 센서망에 관한 기술로서, 보다 상세하게는 에너지 하베스트 기술을 활용하는 열차 감시 무선 센서망의 동작 제어에 관한 기술이다.The present invention relates to a wireless sensor network for measuring the operating state of a device constituting a train for the purpose of safe driving of a train, and more particularly, to the operation control of a train monitoring wireless sensor network utilizing energy harvesting technology. Technology.
열차의 안전 운행을 위한 방안의 하나로서 운행중인 철도차량을 구성하는 디바이스의 동작상태를 실시간으로 검측하여 이상상태 발생시 해당 차량을 즉시 유지 보수할 수 있는 열차 감시를 위한 무선센서망(Wireless Sensor Network)이 사용되고 있다. 이와 같이 열차의 안전운행을 위해서 철도차량의 운행상태 정보를 실시간으로 전송하는 무선센서망(Wireless Sensor Network)은 에너지 하베스터(Energy Harvester) 기술을 활용하여 외부의 전원을 사용하지 않고 열차의 진동에너지를 활용하여 생성되는 전원을 사용하는 형태로 개발되고 있다. As a method for safe operation of trains, a wireless sensor network for monitoring trains that can detect the real-time operation of the devices that make up a railway vehicle in real time and maintain the vehicle immediately in the event of an abnormal condition. Is being used. As such, the Wireless Sensor Network, which transmits the operating status information of railroad cars in real time for the safe operation of the train, utilizes energy harvester technology to utilize vibration energy of the train without using an external power source. It is being developed in the form of using power generated by utilizing.
하지만, 열차의 진동에너지를 활용하는 에너지 하베스터 기술의 경우, 열차의 운행상태에 따라 생성되는 전력에 변동이 발생할 수 있기 때문에, 안정적인 전력공급의 확보방안이 필요하다. 안정적인 전력공급의 확보방안으로 전원발생장치에 슈퍼 캐패시터(Super Capacitor)를 사용하는 방법이 사용되고 있다. 하지만, 이와 같은 방법 또한 생성되는 전력과 무선센서의 통신모듈에서 소비하는 전력과의 불균형으로 충전과 방전이 이루어지게 되어 무선센서의 링크 품질이 저하되는 문제가 발생한다. 특히, 무선센서가 동작 중에 전원부족으로 무선링크가 단절되는 경우, 전원이 통신 가능한 수준으로 복귀되는 경우에 무선센서와 코디네이터 사이에 링크 설정절차를 다시 수행해야 하므로 추가적인 전력소모 및 센서 데이터의 전송 지연 등이 발생하여 통신 품질에 열화가 발생한다.However, in the energy harvester technology using the vibration energy of the train, since the power generated by the operating state of the train may change, it is necessary to secure a stable power supply. In order to secure a stable power supply, a method of using a super capacitor in a power generator is being used. However, such a method also causes a charge and discharge due to an imbalance between the generated power and the power consumed by the communication module of the wireless sensor, thereby causing a problem that the link quality of the wireless sensor is degraded. In particular, when the wireless link is disconnected due to lack of power while the wireless sensor is in operation, the link setup procedure must be performed again between the wireless sensor and the coordinator when the power is returned to the communicable level. Etc., resulting in deterioration in communication quality.
대한민국 등록특허 제10-0877587호는 고속열차 차량의 운행시 발생한 진동과 진동의 발생위치를 감지하여 사령실 서버로 전달하는 기술이 개시되어 있으나, 무선 송신을 통해 감지된 정보를 전달하는 내용만을 개시하고 있을 뿐, 안정적인 전력 공급 문제나 이에 따른 통신 품질 열화에 대한 문제를 해결하기 위한 방안이 개시되어 있지 않다.Republic of Korea Patent No. 10-0877587 discloses a technology for detecting the vibration and the location of the vibration generated during the operation of the high-speed train vehicle to deliver to the command room server, but only discloses the information to deliver the detected information through wireless transmission However, there is no disclosure for solving the problem of the stable power supply problem or the communication quality deterioration accordingly.
본 발명이 해결하고자 하는 과제는 에너지 하베스터 기술이 결합된 열차 감시를 위한 무선 센서망에서 불규칙한 전력 생산에 의한 통신품질의 열화를 방지할 수 있는 전력상태 기반의 열차 감시 장치 및 방법을 제공하는 것이다.The problem to be solved by the present invention is to provide a power state based train monitoring apparatus and method that can prevent the degradation of communication quality due to irregular power production in a wireless sensor network for monitoring trains combined with energy harvester technology.
본 발명에 따른 전력상태 기반의 열차 감시 장치는 열차의 동작상태를 주기적으로 측정하여 센서 데이터를 생성하는 하나 이상의 무선 센서부, 열차의 진동에너지를 활용하여 전력을 생성하고 생성된 전력을 상기 무선 센서부에 공급하며, 생성된 전력을 감시하여 전력상태정보를 통신 제어부로 전달하는 하나 이상의 자율 전원공급부 및 전력상태정보에 기초하여 무선 센서부의 무선링크의 구성을 제어하여 전용채널 및 경쟁채널 중에서 어느 하나를 할당하고, 무선 센서부로부터 수신된 센서 데이터를 외부 통신망으로 전달하는 통신 제어부를 포함한다.Power state-based train monitoring apparatus according to the present invention generates at least one wireless sensor unit for generating sensor data by periodically measuring the operating state of the train, generating power by using the vibration energy of the train and the generated power to the wireless sensor One or more of a dedicated channel and a competitive channel by controlling the configuration of a wireless link of the wireless sensor unit based on one or more autonomous power supply unit and power state information that supplies power to the unit and monitors the generated power and transmits the power state information to the communication control unit. And a communication control unit for transmitting the sensor data received from the wireless sensor unit to an external communication network.
통신 제어부는 전력상태정보에 기초하여 무선 센서부의 채널 및 전송주기를 할당하여 슈퍼 프레임을 구성한다. 그리고, 통신 제어부는 전력상태정보에 기초하여 무선 센서부의 전원상태가 무선링크 설정방법을 변경하는 임계값에 도달했는지 여부를 판단한다. 또한, 통신 제어부는 하나 이상의 무선 센서부 중에서 전원상태가 방식선정 임계값 이상인 무선 센서부에 경쟁채널을 할당한다. 또한, 통신 제어부는 하나 이상의 무선 센서부 중에서 전원상태가 방식선정 임계값 미만인 무선 센서부에 전용채널을 할당한다. 또한, 통신 제어부는 전원상태가 방식선정 임계값 미만인 무선 센서부 중에서 전송주기확장 임계값 이하의 전원상태인 무선 센서부에 전원 충전시간을 주기 위해 무선 센서부의 확장전송 주기로 전용채널을 할당하여 센싱 주파수(Sampling Frequency)를 가변 할 수 있다.The communication control unit configures a super frame by allocating a channel and a transmission period of the wireless sensor unit based on the power state information. The communication controller determines whether the power state of the wireless sensor unit reaches a threshold for changing a wireless link setting method based on the power state information. In addition, the communication controller allocates a contention channel to one of the one or more wireless sensor units having a power state equal to or greater than a method selection threshold. In addition, the communication control unit allocates a dedicated channel to the wireless sensor unit having a power supply state of less than a method selection threshold value among the one or more wireless sensor units. In addition, the communication control unit allocates a dedicated channel in an extended transmission period of the wireless sensor unit to give a power charging time to the wireless sensor unit having a power state below the transmission cycle extension threshold value among the wireless sensor units whose power state is less than the method selection threshold. (Sampling Frequency) can be changed.
본 발명에 따른 전력상태 기반의 열차 감시 장치를 이용한 열차 감시 방법은 열차의 진동에너지를 활용하여 전력을 생성하고 생성된 전력을 열차의 동작상태를 주기적으로 측정하여 센서 데이터를 생성하는 하나 이상의 무선 센서부로 전달한다. 그리고, 전력상태정보에 기초하여 무선 센서부의 무선링크의 구성을 제어하여 전용채널 및 경쟁채널 중에서 어느 하나를 할당한다. 다음으로, 무선 센서부로부터 수신된 센서 데이터를 외부 통신망으로 전달한다.Train monitoring method using the power state-based train monitoring device according to the present invention generates power using the vibration energy of the train and at least one wireless sensor for generating sensor data by periodically measuring the operating state of the train generated power Pass in wealth. Then, the wireless link unit controls the configuration of the wireless link based on the power state information and allocates any one of a dedicated channel and a contention channel. Next, the sensor data received from the wireless sensor unit is transferred to the external communication network.
전용채널 및 경쟁채널 중에서 어느 하나를 할당하는 단계는 하나 이상의 무선 센서부 중에서 전원상태가 방식선정 임계값 이상인 무선 센서부에 경쟁채널을 할당한다. 그리고, 전용채널 및 경쟁채널 중에서 어느 하나를 할당하는 단계는 하나 이상의 무선 센서부 중에서 전원상태가 방식선정 임계값 미만인 무선 센서부에 전용채널을 할당한다. 또한, 전용채널 및 경쟁채널 중에서 어느 하나를 할당하는 단계는 전원상태가 방식선정 임계값 미만인 무선 센서부 중에서 전송주기확장 임계값 이하의 전원상태인 무선 센서부에 전원 충전시간을 주기 위해 무선 센서부의 확장전송 주기로 전용채널을 할당하여 센싱 주파수(Sampling Frequency)를 가변 할 수 있다.The step of assigning any one of a dedicated channel and a contention channel allocates a contention channel to a wireless sensor unit having a power state equal to or greater than a method selection threshold value among one or more wireless sensor units. In the step of assigning any one of the dedicated channel and the contention channel, the dedicated channel is allocated to the wireless sensor unit having a power state below the method selection threshold value among the one or more wireless sensor units. In addition, the step of assigning any one of the dedicated channel and the contention channel may be performed by the wireless sensor unit in order to give a power charging time to the wireless sensor unit having a power state below the transmission period extension threshold value among the wireless sensor units whose power state is less than the method selection threshold. The sensing frequency may be changed by allocating a dedicated channel as an extension transmission period.
본 발명에 따른 전력상태 기반의 열차 감시 장치 및 방법은 철도챠랑의 주행부에 장착된 센서를 통해 실시간으로 운행 상태를 획득하는 철도 무선센서 망에서, 무선 센서의 발생전원의 상태를 기반으로 무선센서 망의 무선링크 설정 모드를 변화시킴으로서 무선센서의 전송품질 및 동작기간을 향상시킬 수 있다. 그리고, 무선센서 망에서 무선 센서의 전원상태를 관리하여 무선 센서가 불필요하게 동작하여 에너지 낭비 및 간섭신호를 발생시키는 것을 예방할 수 있다. Power state-based train monitoring apparatus and method according to the present invention is a wireless sensor based on the state of the generated power source of the wireless sensor in the railway wireless sensor network to obtain a driving state in real time through a sensor mounted on the running portion of the railway car By changing the wireless link setting mode of the network, the transmission quality and operation period of the wireless sensor can be improved. In addition, by managing the power state of the wireless sensor in the wireless sensor network, it is possible to prevent unnecessary operation of the wireless sensor to generate energy waste and interference signals.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치(100)의 구성도이다.1A and 1B are diagrams illustrating a power state based train monitoring apparatus 100 according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치의 통신 제어부(200)의 상세도이다.2 is a detailed view of the communication control unit 200 of the power state-based train monitoring apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 통신 제어부(200)의 슈퍼프레임의 구성도이다.3 is a block diagram of a superframe of the communication control unit 200 according to an embodiment of the present invention.
도 4는 본 발명에 따른 전력상태 기반의 열차 감시 장치(400)의 다른 실시예의 구성도이다.4 is a configuration diagram of another embodiment of the power state-based train monitoring apparatus 400 according to the present invention.
도 5는 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치(100)의 전원상태정보의 포맷의 구성도이다.5 is a configuration diagram of a format of power state information of the power state-based train monitoring apparatus 100 according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치(100)의 전원상태정보의 다른 포맷의 구성도이다.6 is a configuration diagram of another format of power state information of the power state-based train monitoring apparatus 100 according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치의 무선링크 자율적 구성방법의 흐름도이다.7 is a flowchart illustrating a method for autonomous configuration of a radio link of a power state-based train monitoring apparatus according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 무선링크 자율적 구성방법의 센서 노드의 동작절차의 흐름도이다.8 is a flowchart illustrating an operation procedure of a sensor node of a method for autonomous configuration of a radio link according to an embodiment of the present invention.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 상세하게 설명한다. 본 명세서에서 사용되는 용어 및 단어들은 실시예에서의 기능을 고려하여 선택된 용어들로서, 그 용어의 의미는 발명의 의도 또는 관례 등에 따라 달라질 수 있다. 따라서 후술하는 실시예에서 사용된 용어는, 본 명세서에 구체적으로 정의된 경우에는 그 정의에 따르며, 구체적인 정의가 없는 경우는 당업자들이 일반적으로 인식하는 의미로 해석되어야 할 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Terms and words used herein are terms selected in consideration of functions in the embodiments, and the meaning of the terms may vary according to the intention or custom of the invention. Therefore, the terminology used in the embodiments to be described later, according to the definition when specifically defined in the present specification, if there is no specific definition should be interpreted as meaning generally recognized by those skilled in the art.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치(100)의 구성도이다.1A and 1B are diagrams illustrating a power state based train monitoring apparatus 100 according to an embodiment of the present invention.
도 1a 및 도 1b를 참조하면, 본 발명에 따른 전력상태 기반의 열차 감시 장치(100)는 운행하는 열차에 설치되어 열차의 운행상태를 감시하여 센서 감시센터(10)로 전달한다. 그리고, 본 발명에 따른 전력상태 기반의 열차 감시 장치(100)는 에너지 하베스터 기술을 통해 열차의 운행에 따라 발생하는 진동에너지로부터 전력을 생성하여 열차의 상태를 감시하는 센서를 동작시킨다. 본 발명에 따른 전력상태 기반의 열차 감시 장치(100)는 하나 이상의 무선 센서부(110), 하나 이상의 자율 전원공급부(120) 및 통신 제어부(130)를 포함한다.1A and 1B, the power state-based train monitoring apparatus 100 according to the present invention is installed in a running train and monitors a driving state of a train and transmits it to the sensor monitoring center 10. In addition, the power state-based train monitoring apparatus 100 according to the present invention generates a power from the vibration energy generated by the operation of the train through the energy harvester technology to operate the sensor for monitoring the state of the train. Power state-based train monitoring device 100 according to the present invention includes one or more wireless sensor unit 110, one or more autonomous power supply unit 120 and the communication control unit 130.
무선 센서부(110)는 온도 및 진동을 측정할 수 있는 센서로 구성되어 있으며, 열차의 대차 축 상에 있는 다수의 베어링에서 발생하는 발열 및 진동을 측정하여 센서 데이터를 생성한다. 그리고, 무선 센서부(110)는 통신 제어부(130)에 의해 설정된 무선링크 구성에 따라 측정된 센서 데이터를 통신 제어부(130)로 전달한다. 무선 센서부(110) 및 통신 제어부(130) 사이의 통신의 일례로서, 지그비(Zigbee) 통신과 같은 저전력 저속의 근거리 무선통신 표준인 IEEE 802.15.4 방식의 무선센서망 접속방식이 사용될 수 있다.The wireless sensor unit 110 is configured as a sensor capable of measuring temperature and vibration, and generates sensor data by measuring heat and vibration generated in a plurality of bearings on a bogie shaft of a train. In addition, the wireless sensor unit 110 transmits the sensor data measured according to the radio link configuration set by the communication control unit 130 to the communication control unit 130. As an example of communication between the wireless sensor unit 110 and the communication control unit 130, a wireless sensor network connection method of the IEEE 802.15.4 method, which is a low-power low-speed short-range wireless communication standard such as Zigbee communication, may be used.
자율 전원공급부(120)는 운행중인 열차에서 발생하는 진동에너지를 활용하여 전력을 생성(생산)한다. 열차는 운행하는 과정에서 많은 진동을 발생시킨다. 자율 전원공급부(120)는 압전 에너지 기술을 통해 이와 같은 진동으로부터 전력을 생산할 수 있다. The autonomous power supply unit 120 generates (produces) electric power using vibration energy generated from a running train. Trains generate a lot of vibration during operation. The autonomous power supply unit 120 may generate power from such vibration through piezoelectric energy technology.
그리고, 자율 전원공급부(120)는 무선 센서부로 공급되는 전력 및/또는 진동에너지에 의해 생성되는 전력을 감시한다. 열차는 항상 동일한 속도 및 가속도로만 운행하는 것이 아니기 때문에, 자율 전원공급부(120)에 의해 생성되는 전력은 열차의 운행가속도에 따라 변동한다. 따라서, 본 발명에서는 생성되는 전력상태를 고려하여 무선 센서부(110)의 무선링크를 구성할 수 있도록, 자율 전원공급부(120)가 전력상태를 지속적으로 감시하여 전력상태정보를 생성한다. 전력상태정보는 자율 전원공급부(120)에서 생성되는 전력량과 변화량에 대한 정보를 포함한다. 그리고, 자율 전원공급부(120)는 생성된 전력상태정보를 통신 제어부(130)로 전달한다. 또한, 자율 전원공급부(120)는 생성된 전력을 무선 센서부(110)로 공급하여, 무선 센서부(110)를 동작시킬 수 있다.In addition, the autonomous power supply unit 120 monitors power generated by power and / or vibration energy supplied to the wireless sensor unit. Since the train does not always run at the same speed and acceleration, the power generated by the autonomous power supply unit 120 varies according to the running acceleration of the train. Therefore, in the present invention, the autonomous power supply 120 continuously monitors the power state to generate power state information so that the wireless link of the wireless sensor unit 110 can be configured in consideration of the generated power state. The power state information includes information on the amount of power and the amount of change generated by the autonomous power supply 120. The autonomous power supply unit 120 transmits the generated power state information to the communication control unit 130. In addition, the autonomous power supply unit 120 may supply the generated power to the wireless sensor unit 110 to operate the wireless sensor unit 110.
통신 제어부(130)는 하나 이상의 무선 센서부(110)와 무선링크를 통해 무선 센서 네트워크(Wireless Sensor Network, WSN)를 구성한다. 이 과정에서, 통신 제어부(130)는 자율 전원공급부(120)로부터 수신된 전력상태정보에 기초하여 무선 센서부(110)의 무선링크를 구성하고, 구성된 무선링크를 통해 무선 센서부(110)로부터 센서 데이터를 수신한다. The communication controller 130 configures a wireless sensor network (WSN) through at least one wireless sensor unit 110 and a wireless link. In this process, the communication control unit 130 configures a wireless link of the wireless sensor unit 110 based on the power state information received from the autonomous power supply unit 120, and from the wireless sensor unit 110 through the configured wireless link. Receive sensor data.
전력상태정보는 자율 전원공급부(120)에서 생성된 전력량과 그 변화량에 대한 정보를 포함한다. 자율 전원공급부(120)는 에너지 하베스터 기술을 활용하여 열차의 운행에 따른 진동에너지를 활용하여 전력을 생산하기 때문에, 열차의 가속도 변화에 따라 전력 생산량이 변화하게 된다. 따라서, 통신 제어부(130)는 전력상태정보에 기초하여 자율 전원공급부(120)에서 생산되는 전력의 상태를 파악하고, 이에 따라 무선 센서부(110)의 무선링크를 구성 및 변경한다. 또한, 통신 제어부(130)는 무선 센서부(110)의 측정 주기를 변경한다.The power state information includes information on the amount of power generated by the autonomous power supply 120 and the amount of change thereof. Since the autonomous power supply unit 120 uses the energy harvester technology to produce power by using vibration energy according to the operation of the train, the power output is changed according to the acceleration of the train. Therefore, the communication control unit 130 determines the state of the power produced by the autonomous power supply unit 120 based on the power state information, and thus configures and changes the wireless link of the wireless sensor unit 110. In addition, the communication control unit 130 changes the measurement period of the wireless sensor unit 110.
통신 제어부(130)는 무선 센서 네트워크를 구축하기 위한 게이트웨이(131) 및 하나 이상의 코디네이터(132)로 구성될 수 있다. 하나 이상의 코디네이터(132)는 전력상태정보에 기초하여 무선 센서부(110)의 무선링크를 설정하고, 무선 센서부(110)로부터 센서 데이터를 수집하여 게이트웨이(131)로 전달한다. 코디네이터(132)는 게이트웨이(131)로 직접 센서 데이터를 전달하거나, 다른 계위에 위치 또는 인접한 코디네이터(132)를 경유하여 게이트웨이(131)로 센서 데이터를 전달할 수 있다. 게이트웨이(131)는 하나 이상의 코디네이터(132)로부터 수신된 센서 데이터를 센서 감시센터(10)로 전달한다. 그리고, 하나 이상의 무선 센서부(110)는 하나 이상의 코디네이터(131) 중에서 전파수신세기가 좋은 코디네이터(131)에 접속된다. The communication controller 130 may be configured with a gateway 131 and one or more coordinators 132 for establishing a wireless sensor network. The one or more coordinators 132 establishes a wireless link of the wireless sensor unit 110 based on the power state information, collects sensor data from the wireless sensor unit 110, and transmits the sensor data to the gateway 131. The coordinator 132 may deliver sensor data directly to the gateway 131, or may transmit sensor data to the gateway 131 via a coordinator 132 located at another level or adjacent to each other. The gateway 131 transfers sensor data received from the one or more coordinators 132 to the sensor monitoring center 10. The one or more wireless sensor units 110 are connected to the coordinator 131 having a good radio wave strength among the one or more coordinators 131.
하나 이상의 코디네이터(132) 사이의 통신 방법 및 코디네이터(131)와 무선 센서부(110) 사이의 통신 방법은 다양한 무선 통신 방법이 사용될 수 있으며, 지그비(Zigbee) 통신과 같은 근거리 무선 통신 규격(IEEE 802.15.4) 또는 Wi-Fi와 같은 무선 LAN 규격(IEEE 802.11)이 사용될 수 있다. 그리고, 게이트웨이(131) 및 센서 감시센터(10) 사이의 통신 방법은 이동통신망이 사용될 수 있다.As a communication method between one or more coordinators 132 and a communication method between the coordinator 131 and the wireless sensor unit 110, various wireless communication methods may be used, and short-range wireless communication standards such as Zigbee communication (IEEE 802.15) .4) or a wireless LAN standard (IEEE 802.11) such as Wi-Fi may be used. In addition, a mobile communication network may be used as the communication method between the gateway 131 and the sensor monitoring center 10.
하나 이상의 무선 센서부(110)는 열차의 차대 축 상에 또는 차대 축 주변에 위치하여 발열 및 진동을 측정할 수 있으며, 하나 이상의 자율 전원공급부(120) 또한 열차의 차대 축 주변에 위치하여 전력을 생산할 수 있다. 그리고, 무선 센서부(110)는 자율 전원공급부(120)에서 생산되는 전력에 의해 동작한다. 또한, 동일한 차대 축에서 동작하는 하나의 무선 센서부(110) 및 하나의 자율 전원공급부(120)는 하나의 쌍으로 동작할 수 있다. One or more wireless sensor unit 110 may be located on or around the chassis axis of the train to measure heat and vibration, one or more autonomous power supply unit 120 is also located around the chassis axis of the train to provide power Can produce. In addition, the wireless sensor unit 110 operates by the power produced by the autonomous power supply unit 120. In addition, one wireless sensor unit 110 and one autonomous power supply unit 120 operating in the same chassis axis may operate in a pair.
즉, 통신 제어부(130)는 동일 차대 축 주변에 위치한 무선 센서부(110) 및 전원공급부(120)를 하나의 쌍으로 간주하여 제어할 수 있다. 예를 들어, 제1 무선 센서부(111) 및 제1 전원 공급부(121)의 경우, 통신 제어부(130)는 제1 전원 공급부(121)의 전력상태정보에 기초하여 제1 무선 센서부(111)의 무선링크 및 측정 주기를 설정할 수 있다.That is, the communication controller 130 may control the wireless sensor unit 110 and the power supply unit 120 located around the same chassis axis as one pair. For example, in the case of the first wireless sensor unit 111 and the first power supply unit 121, the communication control unit 130 is based on the power state information of the first power supply unit 121. ) Can set radio link and measurement period.
통신 제어부(130)는 전력상태정보에 따라 생산되는 전력량을 고려하여 전력량이 줄어드는 경우 저전력 무선센서인 무선 센서부(110)의 소비전력을 절감하기 위해 다음과 같은 기능을 수행할 수 있다. 통신 제어부(130)는 일정주기마다 센서 데이터를 전송하는 무선 센서부(110)에 전용채널을 할당한다. 그리고, 센서 데이터의 양이 적거나 전송주기가 긴 무선 센서부(110)의 전원상태가 양호한 경우 경쟁모드의 채널을 할당한다. 그리고, 통신 제어부(130)는 전원상태가 나쁜 무선 센서부(110)가 장시간 전용채널을 점유하는 것을 방지하도록 채널모드 변환을 설정한다. The communication controller 130 may perform the following functions to reduce power consumption of the wireless sensor unit 110, which is a low power wireless sensor, when the amount of power is reduced in consideration of the amount of power produced according to the power state information. The communication controller 130 allocates a dedicated channel to the wireless sensor unit 110 that transmits sensor data at regular intervals. When the power state of the wireless sensor unit 110 having a small amount of sensor data or a long transmission period is good, the contention mode channel is allocated. The communication control unit 130 sets the channel mode conversion to prevent the wireless sensor unit 110 having a poor power state from occupying the dedicated channel for a long time.
또한, 통신 제어부(130)는 무선 센서부(110)의 전원레벨을 기반으로 슈퍼프레임의 주기를 결정하고, 센서 노드의 전원 충전시간을 추정하여 전용채널할당을 유지하는 시간을 결정한다. 만약, 전원상태가 아주 나쁜 레벨의 무선 센서부(110)가 확인되면, 통신 제어부(130)는 해당 무선 센서부(110)에 대해서 전용채널할당 모드를 해제한다. 그리고, 전원상태가 아주 양호한 레벨로 복귀 시, 통신 제어부(130)는 해당 무선 센서부(110)에 대해 경쟁채널링크(CSMA-CA) 방식을 설정한다. 통신 제어부(130)에서 무선링크를 설정하는 세부적인 방법은 후술하는 내용에서 추가적으로 설명하도록 한다.In addition, the communication control unit 130 determines the period of the superframe based on the power level of the wireless sensor unit 110 and estimates the power charging time of the sensor node to determine the time to maintain the dedicated channel allocation. If the wireless sensor unit 110 having a very bad power state is identified, the communication controller 130 releases the dedicated channel assignment mode for the wireless sensor unit 110. When the power state returns to a very good level, the communication control unit 130 sets a contention channel link (CSMA-CA) scheme for the corresponding wireless sensor unit 110. A detailed method of setting up a wireless link in the communication control unit 130 will be described later in detail.
또한, 통신 제어부(130)는 전력상태정보에 기초하여 무선 센서부(110)의 전원상태를 고려하여 무선 센서부(110)의 센싱 주파수(Sampling Frequency)를 가변 시킬 수 있다. 통신 제어부(130)는 전력상태정보에 기초하여 무선 센서부(110)의 전원상태가 전송주기확장 임계값보다 크지 않다면, 전력상태 기반의 열차 감시 장치는 현재의 전원상태로 통신이 불가능하다고 판단하고, 무선 센서부(110)에 전원 충전시간을 주기 위해 센싱 주파수를 가변하는 확장 전송주기로 전용채널을 할당한다. 확장 전송주기는 기본 전송주기보다 전송 주기가 더 긴 전송주기를 의미한다.In addition, the communication controller 130 may vary the sensing frequency of the wireless sensor unit 110 in consideration of the power state of the wireless sensor unit 110 based on the power state information. If the power state of the wireless sensor unit 110 is not greater than the transmission period extension threshold based on the power state information, the communication control unit 130 determines that the power state-based train monitoring apparatus cannot communicate with the current power state. In order to give the wireless sensor unit 110 a power charging time, a dedicated channel is allocated to an extended transmission period of varying a sensing frequency. The extended transmission period means a transmission period in which the transmission period is longer than the basic transmission period.
도 2는 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치의 통신 제어부(200)의 상세도이다.2 is a detailed view of the communication control unit 200 of the power state-based train monitoring apparatus according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치의 통신 제어부(200)는 무선링크 접속방식 결정 응용 계층(210), MAC 계층(220) 및 물리계층(230)으로 구성될 수 있다. 그리고, 무선링크 접속방식 결정 응용계층(210)은 무선센서 별 전원상태 관리부(211), 슈퍼프레임 구성부(212) 및 무선접속방식 결정부(213)를 포함할 수 있다. 2, the communication control unit 200 of the power state-based train monitoring apparatus according to an embodiment of the present invention is a radio link connection method determination application layer 210, MAC layer 220 and physical layer 230 It may be configured as. In addition, the radio link access method determination application layer 210 may include a power state management unit 211, a super frame component 212, and a radio access method determination unit 213 for each wireless sensor.
무선센서별 전원상태 관리부(211)는 하나 이상의 자율 전원공급부(120) 각각으로부터 수신된 전력상태정보에 기초하여 각각의 자율 전원공급부(120)에서 생산되는 전력의 상태(무선 센서부의 전원상태)를 파악한다. 그리고, 무선센서별 전원상태 관리부(211)는 전원 상태에 따라 무선 센서부(110)의 채널링크를 결정한다. 무선링크는 경쟁기반의 구간(Contention Access Period, CAP)과 비경쟁기반의 전용링크 구간(Contention Free Period, CFP)으로 구성된다. CAP구간은 경쟁채널링크 구간으로, CSMA-CA(Carrier Sense Multiple Access-Collision Avoidance) 방식을 사용하여 무선 센서부(110)의 소비전력 증대와 전송지연이 수반되게 된다. 그리고, CFP 구간은 전용채널링크 구간으로, 항상 일정한 주기로 데이터를 전송하는 경우에 저전력으로 구동시킬 수 있는 장점이 있다. The power state management unit 211 for each wireless sensor determines the state of the power produced by each autonomous power supply unit 120 (power state of the wireless sensor unit) based on power state information received from each of the one or more autonomous power supply units 120. Figure out. The wireless sensor power state manager 211 determines the channel link of the wireless sensor unit 110 according to the power state. The radio link is composed of a contention access period (CAP) and a contention free period (CFP) based on non-competition. The CAP section is a contention channel link section, and is accompanied by an increase in power consumption and transmission delay of the wireless sensor unit 110 using a carrier sense multiple access-collision avoidance (CSMA-CA) scheme. In addition, the CFP section is a dedicated channel link section and has an advantage in that it can be driven with low power when data is always transmitted at a constant cycle.
무선센서별 전원상태 관리부(211)는 각각의 무선 센서부(110)의 전원 상태에 따라 전용채널링크(GTs) 및 경쟁채널링크(CSMA-CA) 중에서 어느 하나의 채널링크를 결정한다. 무선센서별 전원상태 관리부(211)는 어느 하나의 무선 센서부에 있어서, 전원 상태가 충분하다고 판단되면 경쟁기반의 채널(경쟁채널링크)를 할당할 수 있다. 반면에, 무선센서별 전원상태 관리부(211)는 어느 하나의 무선 센서부에 있어서, 전원 상태가 충분하지 않다고 판단되면 전용채널링크를 할당하고, 전송주기를 전원 상태에 따라 조절할 수 있다.The power state management unit 211 for each wireless sensor determines one channel link among dedicated channel links (GTs) and contention channel links (CSMA-CA) according to the power state of each wireless sensor unit 110. The power state management unit 211 for each wireless sensor may allocate a contention-based channel (competition channel link) in one of the wireless sensor units when it is determined that the power state is sufficient. On the other hand, the power state management unit 211 for each wireless sensor, if it is determined that the power state is not sufficient in any one of the wireless sensor unit may allocate a dedicated channel link, and adjust the transmission period according to the power state.
슈퍼프레임 구성부(212)는 무선센서별 전원상태 관리부(211)에서 결정한 채널링크 및 주기에 따라 해당 무선 센서부(110)의 슈퍼 프레임을 구성한다. 그리고, 슈퍼프레임 구성부(212)는 슈퍼 프레임을 해당 무선 센서부(110)로 전달한다. 슈퍼프레임의 구조는 후술하는 도 3에서 추가적으로 설명한다.The super frame configuration unit 212 configures the super frame of the wireless sensor unit 110 according to the channel link and the period determined by the power state management unit 211 for each wireless sensor. The superframe component 212 transmits the superframe to the corresponding wireless sensor unit 110. The structure of the superframe is further described in FIG. 3 to be described later.
무선접속방식 결정부(213)는 무선센서별 전원상태 관리부(211) 및 슈퍼프레임 구성부(212)의 결정에 기초하여 무선접속방식을 결정한다.The wireless connection method determination unit 213 determines the wireless connection method based on the determination of the power state management unit 211 and the superframe component 212 for each wireless sensor.
도 3은 본 발명의 일 실시예에 따른 통신 제어부(200)의 슈퍼프레임의 구성도이다.3 is a block diagram of a superframe of the communication control unit 200 according to an embodiment of the present invention.
도 1b 및 도 3을 참조하면, 통신 제어부(130)는 전원상태정보에 기초하여 결정된 채널링크 및 주기에 따라 각각의 무선 센서부(110)에 대응하는 슈퍼 프레임(310)을 구성한다. 무선링크는 경쟁기반의 경쟁채널 구간(Contention Access Period, CAP)과 비경쟁기반의 전용채널 구간(Contention Free Period, CFP)으로 구성된다. 1B and 3, the communication controller 130 configures a super frame 310 corresponding to each wireless sensor unit 110 according to a channel link and a period determined based on power state information. The radio link is composed of a contention access period (CAP) based on contention and a contention free period (CFP) based on a contention free.
경쟁채널 구간(CAP)은 CSMA-CA(Carrier Sense Multiple Access-Collision Avoidance) 방식을 사용하여 무선 센서부(110)의 소비전력 증대와 전송지연이 수반되게 된다. 그리고, 전용채널 구간(CFP)은 항상 일정한 주기로 데이터를 전송하는 경우에 저전력으로 구동시킬 수 있는 장점이 있다. 즉, 무선 센서부(110)의 무선링크에 있어서, 전력이 기 설정된 방식선정 임계값 이상일 경우(충분한 경우) 경쟁채널 구간을 할당한다. 그리고, 전력이 기 설정된 임계값 미만일 경우(전력이 부족한 경우)에는 주기를 조정하여 전용채널 구간(CFP)를 할당할 수 있다. 슈퍼 프레임은 무선 센서부(110)와 통신 제어부(130)의 코디네이터(132) 간에 통신을 수행하는 동작구간(CAP+CFP)과 무선 센서부(110)가 동작을 하지 않는 휴지구간으로 구성되어 저전력 센서 네트워크에 적합한 구성을 갖는다. 전용채널 구간(CFP)을 사용하는 경우, 각각의 무선 센서부(110)는 전용채널(슬롯)을 할당 받아 센서 데이터를 코디네이터(132)로 전송한다. The competition channel section (CAP) is accompanied by an increase in power consumption and transmission delay of the wireless sensor unit 110 using a carrier sense multiple access-collision avoidance (CSMA-CA) scheme. In addition, the dedicated channel section (CFP) has the advantage that can be driven at low power when transmitting data at regular intervals at all times. That is, in the wireless link of the wireless sensor unit 110, the contention channel section is allocated when the power is higher than or equal to a predetermined method selection threshold (if sufficient). When the power is less than the preset threshold (when the power is insufficient), the dedicated channel section (CFP) may be allocated by adjusting the period. The super frame consists of an operation section (CAP + CFP) for performing communication between the wireless sensor unit 110 and the coordinator 132 of the communication control unit 130 and a rest period in which the wireless sensor unit 110 does not operate. It has a configuration suitable for sensor networks. When using the dedicated channel section (CFP), each wireless sensor unit 110 is assigned a dedicated channel (slot) and transmits the sensor data to the coordinator 132.
도 2는 제1 센서(#1)의 전원 레벨이 낮은 경우 전원이 충전되는 시간을 기다리는 경우의 일례를 나타낸다. 따라서, 도 2의 일례에서는, 전용링크 구간(312)에서 무선 센서부(110)의 제1 센서(#1)가 2개의 슈퍼 프레임에 걸쳐서 센서 데이터를 전송할 때, 동일한 전용채널 슬롯간의 기본전송주기 외에 확장전송주기를 더한 시간 후에 데이터를 전송한다. FIG. 2 illustrates an example of a case where the power supply level of the first sensor # 1 is low when waiting for a time for charging power. Accordingly, in the example of FIG. 2, when the first sensor # 1 of the wireless sensor unit 110 transmits sensor data over two super frames in the dedicated link section 312, the basic transmission period between the same dedicated channel slots is used. In addition, data is transmitted after the extended transmission period is added.
도 4는 본 발명에 따른 전력상태 기반의 열차 감시 장치(400)의 다른 실시예의 구성도이다.4 is a configuration diagram of another embodiment of the power state-based train monitoring apparatus 400 according to the present invention.
도 4를 참조하면, 본 발명에 따른 전력상태 기반의 열차 감시 장치(400)는 하나 이상의 센서 노드(410) 및 통신 제어부(420)를 포함한다. 센서 노드(410)는 한 쌍의 무선 센서부(411) 및 자율 전원공급부(412)와 무선 통신부(413)와 무선링크를 연결하기 위한 무선 통신부(413)로 구성된다. 센서 노드(410)의 개수는 자유롭게 설정될 수 있으며, 예를 들어 열차의 차대 축 개수만큼 설치될 수 있다. 도 4에서는 설명의 편의를 위하여 하나의 센서 노드(410)만을 표시하였다.Referring to FIG. 4, the power state-based train monitoring apparatus 400 according to the present invention includes one or more sensor nodes 410 and a communication controller 420. The sensor node 410 includes a pair of wireless sensor units 411, an autonomous power supply unit 412, and a wireless communication unit 413 for connecting a wireless link with the wireless communication unit 413. The number of sensor nodes 410 may be freely set, and for example, may be installed as many as the chassis shafts of a train. In FIG. 4, only one sensor node 410 is shown for convenience of description.
하나의 무선 센서부(411) 및 하나의 자율 전원공급부(412)는 하나의 쌍을 구성하여 무선 통신부(430)를 통해 통신 제어부(440)와 무선링크가 연결된다. 그리고, 무선 센서부(411) 및 자율 전원공급부(412)는 유선 연결(직접 연결)을 통해 무선 통신부(413)와 연결될 수 있다.One wireless sensor unit 411 and one autonomous power supply unit 412 constitute a pair, and a wireless link is connected to the communication control unit 440 through the wireless communication unit 430. In addition, the wireless sensor unit 411 and the autonomous power supply unit 412 may be connected to the wireless communication unit 413 through a wired connection (direct connection).
무선 센서부(411)는 자율 전원공급부(412)로부터 공급된 전력을 통해 동작하며, 차대 축의 온도 및 진동을 측정하여 센서 데이터를 생성하고, 생성된 센서 데이터를 무선 통신부(413)를 통해 통신 제어부(420)로 전달한다. 그리고, 자율 전원공급부(412)는 열차의 움직임에 의해 발생하는 진동에너지를 이용하여 전력을 생산하여 무선 센서부(411)로 공급한다. 또한, 자율 전원공급부(412)는 생산되는 전력을 모니터링하여 전력상태정보를 생성하고, 전력상태정보를 무선통신부(413)를 통해 통신 제어부(420)로 전달한다. The wireless sensor unit 411 operates through the power supplied from the autonomous power supply unit 412, generates sensor data by measuring temperature and vibration of the chassis axis, and generates the sensor data through the wireless communication unit 413. Forward to 420. In addition, the autonomous power supply unit 412 uses the vibration energy generated by the movement of the train to produce power and supply the power to the wireless sensor unit 411. In addition, the autonomous power supply unit 412 monitors the generated power to generate power state information, and transmits the power state information to the communication control unit 420 through the wireless communication unit 413.
무선 센서부(411)로부터 수신된 센서 데이터 및 자율 전원공급부(412)로부터 수신된 전력상태정보는 무선 통신부(413)를 통해 통신 제어부(430)로 전달된다. 통신 제어부(430)는 수신된 전력상태정보에 기초하여 무선 센서부(411)의 전력 상태를 파악하고, 이를 고려하여 무선 센서부(411)에 대응하는 채널을 할당하고, 전송 주기를 설정할 수 있다. 무선 통신부(413)는 통신 제어부(420)에 의해 구성된 무선링크를 통해 무선 센서부(411)의 센서 데이터를 통신 제어부(420)로 전달한다. Sensor data received from the wireless sensor unit 411 and power state information received from the autonomous power supply unit 412 are transmitted to the communication control unit 430 through the wireless communication unit 413. The communication controller 430 may determine the power state of the wireless sensor unit 411 based on the received power state information, may allocate a channel corresponding to the wireless sensor unit 411, and set a transmission period in consideration of this. . The wireless communication unit 413 transmits sensor data of the wireless sensor unit 411 to the communication control unit 420 through a wireless link configured by the communication control unit 420.
도 5는 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치(100)의 전원상태정보의 포맷의 구성도이다.5 is a configuration diagram of a format of power state information of the power state-based train monitoring apparatus 100 according to an embodiment of the present invention.
도 1a 및 도 5를 참조하면, 도 5는 근거리 무선통신 표준인 IEEE 802.15.4 표준의 MAC 관리메시지를 기반으로 하는 전원상태정보를 나타낸다. 본 발명에서, 통신 제어부(130) 또는 통신 제어부(130)의 코디네이터(131)가 무선 센서부(110)의 전원상태정보(공급되는 전원상태)를 획득하기 위해서는 기존의 IEEE 802.15.4의 MAC 관리메시지에 '전원 상태 요청(Power Status Request)'과 '전원 상태 응답(Power Status Response)' 메시지를 추가하여, 코디네이터(131)가 도 1a의 자율 전원공급부(120) 또는 도 4의 센서 노드(410)에 전원상태정보를 요청(전원 상태 요청)한다. 그리고, 자율 전원공급부(120) 또는 센서 노드(410)는 전원 상태 요청에 대응하여 전원 상태 응답을 통신 제어부(130)로 전달한다. 전원 상태 요청 메시지의 경우, 페이로드(Payload, 510)에 최소전력레벨, 최대전력레벨, 최대 및 최소 전력레벨간의 등급 수를 포함한다. 1A and 5, FIG. 5 shows power state information based on a MAC management message of the IEEE 802.15.4 standard, which is a short range wireless communication standard. In the present invention, the communication control unit 130 or the coordinator 131 of the communication control unit 130 in order to obtain the power state information (power supply state) of the wireless sensor unit 110 to manage the existing MAC of IEEE 802.15.4 By adding a 'Power Status Request' and a 'Power Status Response' message to the message, the coordinator 131 is connected to the autonomous power supply 120 of FIG. 1A or the sensor node 410 of FIG. 4. Request power status information (power status request). In addition, the autonomous power supply unit 120 or the sensor node 410 transmits a power state response to the communication control unit 130 in response to the power state request. In the case of the power status request message, the payload 510 includes the number of grades between the minimum power level, the maximum power level, and the maximum and minimum power levels.
도 6은 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치(100)의 전원상태정보의 다른 포맷의 구성도이다.6 is a configuration diagram of another format of power state information of the power state-based train monitoring apparatus 100 according to an embodiment of the present invention.
도 1 및 도 6을 참조하면, 도 6의 전원상태정보는 센서 노드(410) 또는 자율 전원공급부(120)가 전원상태정보를 통신 제어부(130) 또는 코디네이터(131)로 전송하는 과정에서 데이터 프레임을 이용하는 경우를 나타낸다. 데이터 프레임 포맷을 이용하는 방식은 센서 노드(410)가 센서 데이터 및 전원상태정보를 피기백(Piggyback) 형태로 동시에 전송할 수 있도록 한다. 이를 위해서, 전원상태정보는 데이터 타입이 지정되고, 피기백 상태정보를 나타내는 필드를 포함한다. 이 방식은 일정한 주기로 센서 데이터를 전송하는 경우에 적합할 수 있다.1 and 6, the power state information of FIG. 6 is a data frame in a process in which the sensor node 410 or the autonomous power supply unit 120 transmits the power state information to the communication control unit 130 or the coordinator 131. It shows the case of using. The method using the data frame format allows the sensor node 410 to simultaneously transmit the sensor data and power state information in the form of piggyback. To this end, the power supply status information is designated with a data type and includes a field indicating piggyback status information. This approach may be suitable for transmitting sensor data at regular intervals.
본 발명에서 코디네이터(131)가 센서 노드(410) 또는 자율 전원공급부(120)의 전원상태를 관리하기 위해 MAC 관리메시지를 통해 센서 노드(410) 또는 자율 전원공급부(120)에 전원상태 요구 메시지를 전달할 수 있다. 이 때, 코디네이터(131)는 전원상태 요구 메시징 무선 센서부(110,411)의 전원상태를 최소값 및 최대값, 등급 레벨을 지정할 수 있다.In the present invention, the coordinator 131 sends a power state request message to the sensor node 410 or the autonomous power supply 120 through the MAC management message to manage the power state of the sensor node 410 or the autonomous power supply 120. I can deliver it. At this time, the coordinator 131 may designate the power state of the power state request messaging wireless sensor unit 110 and 411 as a minimum value, a maximum value, and a grade level.
그리고, 코디네이터(131)로부터 전원상태 요구 메시지를 수신한 센서 노드(410) 또는 자율 전원공급부(120)는 데이터 프레임을 이용하여 등급별로 분류된 전원등급 정보를 포함하는 전원상태 정보를 통신 제어부(130, 420) 또는 코디네이터(131)로 전송한다.In addition, the sensor node 410 or the autonomous power supply unit 120 that receives the power state request message from the coordinator 131 transmits the power state information including the power class information classified by the class using a data frame. 420 or the coordinator 131.
도 7은 본 발명의 일 실시예에 따른 전력상태 기반의 열차 감시 장치의 무선링크 자율적 구성방법의 흐름도이다.7 is a flowchart illustrating a method for autonomous configuration of a radio link of a power state-based train monitoring apparatus according to an embodiment of the present invention.
도 7을 참조하면, 전력상태 기반의 열차 감시 장치의 무선링크 자율적 구성방법은 먼저, 전원상태정보를 수집(S701)하여, 무선 센서부의 전원 상태를 확인한다(S702). 본 발명은 열차의 운행에 따라 발생하는 진동에너지를 활용하여 전력을 생산하여 무선 센서부를 동작시킨다. 하지만, 열차의 가속도 변화에 따라 생산되는 전력의 상태 또한 수시로 변화하기 때문에, 무선 센서부의 동작과 무선링크의 성능에 영향을 미칠 수 있다. 본 발명에서는 전원상태정보를 통해 파악된 무선 센서부의 전원 상태에 기초하여 무선 링크를 구성한다.Referring to FIG. 7, in the method for autonomous configuration of a radio link of a power monitoring apparatus based on power state, first, power state information is collected (S701), and the power state of the wireless sensor unit is checked (S702). The present invention uses the vibration energy generated by the operation of the train to produce power to operate the wireless sensor unit. However, since the state of the power produced by the change in the acceleration of the train also changes from time to time, it may affect the operation of the wireless sensor unit and the performance of the wireless link. In the present invention, the wireless link is configured based on the power state of the wireless sensor unit identified through the power state information.
무선 센서부의 전원상태가 확인되면, 전력상태 기반의 열차 감시 장치는 전원상태와 방식선정 임계값을 비교하여, 전원상태가 방식선정 임계값 미만인지 여부를 판단한다(S703). 방식선정 임계값은 경쟁채널과 전용채널을 구분하기 위한 기준값이다. 전력상태 기반의 열차 감시 장치는 무선 센서부의 전원상태와 방식선정 임계값을 비교하여 해당 무선 센서부의 전원상태가 무선링크 설정방법을 변경할 수 있는 임계값에 도달했는지를 판단한다. 전력상태 기반의 열차 감시 장치는 무선 센서부의 전원 상태가 소정의 방식선정 임계값보다 작지 않을 경우(클 경우), 무선 센서부의 전원상태가 충분한 레벨에 도달한 것(가용 전력이 충분한 것)으로 판단하여 해당 무선 센서부의 경쟁채널(CAP)을 할당한다(S704). 경쟁채널은 전원레벨이 충분히 큰 경우나 센서 데이터를 주기적으로 전송할 필요가 없는(지속적으로 전송하는) 무선 센서부에 적합한 방식이다.When the power state of the wireless sensor unit is confirmed, the power state-based train monitoring apparatus compares the power state with the method selection threshold, and determines whether the power state is less than the method selection threshold (S703). The method selection threshold is a reference value for distinguishing a competition channel and a dedicated channel. The power state-based train monitoring apparatus compares the power state of the wireless sensor unit with a method selection threshold to determine whether the power state of the corresponding wireless sensor unit reaches a threshold that can change the radio link setting method. The power state-based train monitoring apparatus determines that the power state of the wireless sensor unit reaches a sufficient level (when sufficient power is available) when the power state of the wireless sensor unit is not smaller than a predetermined method selection threshold (large). By assigning the contention channel (CAP) of the wireless sensor unit (S704). The contention channel is suitable for a wireless sensor unit in which the power level is large enough or does not need to transmit sensor data periodically.
반면에, S703 단계의 비교 결과, 무선 센서부의 전원 상태가 소정의 방식선정 임계값보다 작을 경우, 전력상태 기반의 열차 감시 장치는 전원상태가 임계값에 도달한 것으로 판단한다. 그리고, 전력상태 기반의 열차 감시 장치는 무선 센서부의 전원 상태를 전송주기확장 임계값과 비교하여, 무선 센서부의 전송주기를 늘려야 하는지를 판단한다(S705). 만약, 무선 센서부의 전원상태가 전송주기확장 임계값보다 크지 않다면(이하라면), 전력상태 기반의 열차 감시 장치는 현재의 전원상태로 통신이 불가능하다고 판단하고, 무선 센서부에 전원 충전시간을 주기 위해 확장 전송주기로 전용채널을 할당한다(S706). 확장 전송주기는 기본 전송주기보다 전송 주기가 더 긴 전송주기를 의미한다.On the other hand, when the comparison result of step S703, when the power state of the wireless sensor unit is less than the predetermined method selection threshold, the power state-based train monitoring device determines that the power state has reached the threshold. In addition, the power state-based train monitoring apparatus determines whether to increase the transmission period of the wireless sensor unit by comparing the power state of the wireless sensor unit with the transmission period extension threshold (S705). If the power state of the wireless sensor unit is not greater than the transmission period extension threshold (hereinafter, referred to as the following), the power state-based train monitoring device determines that communication is not possible with the current power state, and gives a power charging time to the wireless sensor unit. In order to allocate the dedicated channel in the extended transmission period (S706). The extended transmission period means a transmission period in which the transmission period is longer than the basic transmission period.
S705 단계에서, 무선 센서부의 전원상태가 전송주기확장 임계값보다 크다면, 현재의 전원상태로 통신이 가능한 것으로 판단하고, 전력상태 기반의 열차 감시 장치는 전용채널 기본 전송주기를 할당한다(S707). 전력상태 기반의 열차 감시 장치는 S704, S706 및 S707 단계를 통해 할당된 채널에 따라 슈퍼 프레임을 구성한다(S708). 구성된 슈퍼 프레임은 무선 센서부 또는 센서 노드에 전송되어, 무선 센서부 및 통신 제어부 사이의 무선링크를 형성한다.In step S705, if the power state of the wireless sensor unit is larger than the transmission period extension threshold, it is determined that communication is possible in the current power state, and the power state-based train monitoring apparatus allocates a dedicated channel basic transmission period (S707). . The power state-based train monitoring apparatus configures a super frame according to the allocated channel through steps S704, S706, and S707 (S708). The configured super frame is transmitted to the wireless sensor unit or the sensor node to form a radio link between the wireless sensor unit and the communication control unit.
도 8은 본 발명의 일 실시예에 따른 무선링크 자율적 구성방법의 센서 노드의 동작절차의 흐름도이다.8 is a flowchart illustrating an operation procedure of a sensor node of a method for autonomous configuration of a radio link according to an embodiment of the present invention.
도 8을 참조하면, 본 발명에 따른 무선링크 자율적 구성방법은 전원 상태를 기반으로 무선 센서부의 센싱 주파수(Sampling Frequency)를 가변 시키는 방식을 활용하여 무선 센서부의 전력 상태 문제를 해소할 수 있다. 전력상태 기반의 열차 감시 장치는 전원상태정보를 수집(S801)하여, 무선 센서부의 전원상태를 확인한다(S802). 그리고, 전력상태 기반의 열차 감시 장치는 전원상태와 통신가능 임계값을 비교하여, 무선 센서부의 전원상태가 통신가능 임계값을 초과하는지를 판단한다(S803). 통신가능 임계값은 무선 센서부가 통신을 전달할 수 있는 최소한의 전력량을 나타낸다. 만약, 전원상태가 통신가능 임계값보다 크지 않다면, 전력상태 기반의 열차 감시 장치는 통신이 불가능한 상태로 판단하여 무선 센서부를 동면 모드로 진입시킨다(S804). 동면 모드로 진입한 무선 센서부는 전원 상태가 양호한 상태가 될 때까지 대기한다.Referring to FIG. 8, the autonomous wireless link configuration method according to the present invention may solve the power state problem of the wireless sensor unit by using a method of changing a sensing frequency of the wireless sensor unit based on a power state. The power state-based train monitoring apparatus collects power state information (S801) and checks the power state of the wireless sensor unit (S802). In addition, the power state-based train monitoring apparatus compares the power state with the communicable threshold to determine whether the power state of the wireless sensor unit exceeds the communicable threshold (S803). The communicable threshold indicates the minimum amount of power that the wireless sensor can deliver communication to. If the power state is not greater than the communicable threshold, the power state-based train monitoring apparatus determines that communication is impossible and enters the wireless sensor unit in hibernate mode (S804). The wireless sensor unit, which has entered hibernation mode, waits until the power supply state is good.
S803 단계에서, 전원상태가 통신가능 임계값을 초과하면, 전력상태 기반의 열차 감시 장치는 전원상태와 샘플링 임계값을 비교하여, 전원상태가 샘플링 임계값을 초과하는지 여부를 판단한다(S805). 샘플링 임계값은 무선 센서부가 열차의 상태를 측정하는 센싱 주파수(Sampling Frequency)의 임계값을 나타낸다. 전력상태 기반의 열차 감시 장치는 전원상태와 샘플링 임계값을 비교하여 통신이 불안한 상태인지 여부를 판단할 수 있다.In operation S803, when the power state exceeds the communicable threshold value, the power state-based train monitoring apparatus compares the power state and the sampling threshold to determine whether the power state exceeds the sampling threshold (S805). The sampling threshold value represents a threshold value of a sensing frequency at which the wireless sensor unit measures a train state. The power state-based train monitoring apparatus may compare the power state and the sampling threshold to determine whether the communication is unstable.
만약 S805 단계에서, 전원상태가 샘플링 임계값 이하라면, 전력상태 기반의 열차 감시 장치는 무선 센서부의 전원상태가 통신이 가능하지만 불안한 상태에 있는 것으로 판단하고, 무선 센서부의 측정속도를 저감시킨다(S806). 그리고, 전력상태 기반의 열차 감시 장치는 센서 데이터 전송 절차를 진행한다(S807). 만약 S805 단계에서, 전원상태가 샘플링 임계값을 초과하면, 전력상태 기반의 열차 감시 장치는 전원상태가 통신이 가능하며 불안한 상태가 아닌 것으로 판단하여 샘플링 속도 변경 없이 센서 데이터 전송 절차를 진행한다.If the power state is less than the sampling threshold in step S805, the power state-based train monitoring device determines that the power state of the wireless sensor unit is in communication but unstable, and reduces the measurement speed of the wireless sensor unit (S806). ). Then, the power state-based train monitoring device proceeds to the sensor data transmission procedure (S807). If the power state exceeds the sampling threshold in step S805, the power state-based train monitoring apparatus determines that the power state is in communication and is not an unstable state and proceeds with the sensor data transmission procedure without changing the sampling rate.
도 7 및 도 8에 개시된 전력상태 기반의 열차 감시 장치의 무선링크 자율적 구성방법은 전력상태 기반의 열차 감시 장치를 구성하는 하나 이상의 무선 센서부 또는 하나 이상의 센서 노드 각각에 대해 개별적으로 수행된다. 이를 통해, 본 발명에서는 개별 무선 센서부의 전력 상태에 따라 개별 무선 센서부와의 무선링크를 구성하여 전력상태 변화에 능동적으로 대응하여 통신품질 열화를 예방할 수 있다.The method of autonomous configuration of a radio link of the power state-based train monitoring apparatus disclosed in FIGS. 7 and 8 is performed separately for each of one or more wireless sensor units or one or more sensor nodes constituting the power state-based train monitoring apparatus. Through this, in the present invention, by configuring a wireless link with the individual wireless sensor unit according to the power state of the individual wireless sensor unit, it is possible to prevent the degradation of communication quality by actively responding to the power state change.
상술한 내용을 포함하는 본 발명은 컴퓨터 프로그램으로 작성이 가능하다. 그리고 상기 프로그램을 구성하는 코드 및 코드 세그먼트는 당분야의 컴퓨터 프로그래머에 의하여 용이하게 추론될 수 있다. 또한, 상기 작성된 프로그램은 컴퓨터가 읽을 수 있는 기록매체 또는 정보저장매체에 저장되고, 컴퓨터에 의하여 판독되고 실행함으로써 본 발명의 방법을 구현할 수 있다. 그리고 상기 기록매체는 컴퓨터가 판독할 수 있는 모든 형태의 기록매체를 포함한다.The present invention including the above-described contents can be produced by a computer program. And code and code segments constituting the program can be easily inferred by a computer programmer in the art. In addition, the written program may be stored in a computer-readable recording medium or information storage medium, and read and executed by a computer to implement the method of the present invention. The recording medium may include any type of computer readable recording medium.
이상 바람직한 실시예를 들어 본 발명을 상세하게 설명하였으나, 본 발명은 전술한 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당분야에서 통상의 지식을 가진자에 의하여 여러 가지 변형이 가능하다.Although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.

Claims (12)

  1. 열차의 동작상태를 소정의 주기로 측정하여 센서 데이터를 생성하는 하나 이상의 무선 센서부;At least one wireless sensor unit measuring sensor operating states at predetermined intervals to generate sensor data;
    열차의 진동에너지를 활용하여 전력을 생성하고, 생성된 전력을 상기 무선 센서부에 공급하며, 공급되는 전력을 감시하여 생성된 전력상태정보를 통신 제어부로 전달하는 하나 이상의 자율 전원공급부; 및At least one autonomous power supply unit generating power by using vibration energy of a train, supplying the generated power to the wireless sensor unit, and monitoring power supplied to deliver power state information generated to a communication controller; And
    상기 전력상태정보에 기초하여 상기 무선 센서부에 전용채널 및 경쟁채널 중에서 어느 하나를 할당하도록 무선링크의 구성을 제어하는 통신 제어부;A communication control unit controlling a configuration of a radio link to allocate one of a dedicated channel and a contention channel to the wireless sensor unit based on the power state information;
    를 포함하는 것을 특징으로 하는 전력상태 기반의 열차 감시 장치.Power state based train monitoring device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 통신 제어부는,The communication control unit,
    상기 전력상태정보에 기초하여 상기 무선 센서부의 채널 및 전송주기를 할당하여 슈퍼 프레임을 구성하는 것을 특징으로 하는 전력상태 기반의 열차 감시 장치.Power state based train monitoring apparatus, characterized in that for configuring the super frame by allocating the channel and transmission period of the wireless sensor unit based on the power state information.
  3. 제1항에 있어서,The method of claim 1,
    상기 통신 제어부는,The communication control unit,
    상기 전력상태정보에 기초하여 상기 무선 센서부의 전원상태가 무선링크 설정방법을 변경하는 임계값에 도달했는지 여부를 판단하는 것을 특징으로 하는 전력상태 기반의 열차 감시 장치.The power state-based train monitoring apparatus, characterized in that for determining whether the power state of the wireless sensor unit has reached a threshold value for changing the radio link setting method based on the power state information.
  4. 제3항에 있어서,The method of claim 3,
    상기 통신 제어부는,The communication control unit,
    상기 하나 이상의 무선 센서부 중에서 전원상태가 방식선정 임계값 이상인 무선 센서부에 경쟁채널을 할당하는 것을 특징으로 하는 전력상태 기반의 열차 감시 장치.The power state-based train monitoring apparatus, characterized in that for allocating a contention channel to the wireless sensor unit of the power state of the at least one of the one or more wireless sensor unit.
  5. 제3항에 있어서,The method of claim 3,
    상기 통신 제어부는,The communication control unit,
    상기 하나 이상의 무선 센서부 중에서 전원상태가 방식선정 임계값 미만인 무선 센서부에 전용채널을 할당하는 것을 특징으로 하는 전력상태 기반의 열차 감시 장치.The power state-based train monitoring apparatus, characterized in that for assigning a dedicated channel in the wireless sensor unit of the power state of the one or more wireless sensor unit less than the method selection threshold value.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 통신 제어부는,The communication control unit,
    전원상태가 방식선정 임계값 미만인 무선 센서부 중에서 전송주기확장 임계값 이하의 전원상태인 무선 센서부에 전원 충전시간을 주기 위해 무선 센서부의 확장전송 주기로 전용채널을 할당하여 센싱 주파수(Sampling Frequency)를 가변 하는 것을 특징으로 하는 전력상태 기반의 열차 감시 장치.In order to give power charging time to the wireless sensor unit whose power state is lower than the transmission cycle extension threshold among the wireless sensor units whose power state is lower than the threshold value, the dedicated channel is allocated to the extended transmission cycle of the wireless sensor unit to set the sensing frequency. Power state based train monitoring device, characterized in that variable.
  7. 제1항에 있어서,The method of claim 1,
    상기 통신 제어부는 MAC 관리메시지를 통해 전원상태를 최소값, 최대값 및 등급 레벨에 대한 전원상태 요구 메시지를 전달하며,The communication control unit transmits a power state request message for a minimum value, a maximum value, and a class level of a power state through a MAC management message.
    상기 자율 전원공급부는 수신된 전원상태 요구 메시지에 기초하여 데이터 프레임을 이용하여 등급별로 분류된 전원등급 정보를 포함하는 전원상태 정보를 통신 제어부로 전달하는 것을 특징으로 하는 전력상태 기반의 열차 감시 장치.And the autonomous power supply unit transmits power state information including power class information classified for each class using a data frame to a communication controller based on the received power state request message.
  8. 제1항에 있어서,The method of claim 1,
    상기 통신 제어부는 상기 무선 센서부로부터 수신된 상기 센서 데이터를 외부 통신망으로 전달하는 것을 특징으로 하는 전력상태 기반의 열차 감시 장치.The communication control unit is a power state based train monitoring device, characterized in that for transmitting the sensor data received from the wireless sensor unit to an external communication network.
  9. 전력상태 기반의 열차 감시 장치를 이용한 열차 감시 방법에 있어서,In a train monitoring method using a power monitoring system based on power state,
    열차의 진동에너지를 활용하여 생성된 전력을 무선 센서부로 공급하고, 무선 센서부로 공급되는 전력을 감시하여 전력상태정보를 생성하는 단계; 및Supplying power generated by using vibration energy of a train to the wireless sensor unit and generating power state information by monitoring power supplied to the wireless sensor unit; And
    상기 전력상태정보에 기초하여 상기 무선 센서부에 전용채널 및 경쟁채널 중에서 어느 하나를 할당하는 단계; Allocating any one of a dedicated channel and a contention channel to the wireless sensor unit based on the power state information;
    를 포함하는 것을 특징으로 하는 전력상태 기반의 열차 감시 방법.Power state based train monitoring method comprising a.
  10. 제9항에 있어서,The method of claim 9,
    상기 전용채널 및 경쟁채널 중에서 어느 하나를 할당하는 단계는,Allocating any one of the dedicated channel and the competition channel,
    상기 하나 이상의 무선 센서부 중에서 전원상태가 방식선정 임계값 이상인 무선 센서부에 경쟁채널을 할당하는 것을 특징으로 하는 전력상태 기반의 열차 감시 방법.A power state-based train monitoring method comprising assigning a contention channel to a wireless sensor unit having a power state equal to or greater than a method selection threshold value among the one or more wireless sensor units.
  11. 제9항에 있어서,The method of claim 9,
    상기 전용채널 및 경쟁채널 중에서 어느 하나를 할당하는 단계는,Allocating any one of the dedicated channel and the competition channel,
    상기 하나 이상의 무선 센서부 중에서 전원상태가 방식선정 임계값 미만인 무선 센서부에 전용채널을 할당하는 것을 특징으로 하는 전력상태 기반의 열차 감시 방법.Power state-based train monitoring method, characterized in that for assigning a dedicated channel in the wireless sensor unit of the power state is less than the threshold value selection threshold of the at least one wireless sensor unit.
  12. 제9항에 있어서,The method of claim 9,
    상기 전용채널 및 경쟁채널 중에서 어느 하나를 할당하는 단계는,Allocating any one of the dedicated channel and the competition channel,
    전원상태가 방식선정 임계값 미만인 무선 센서부 중에서 전송주기확장 임계값 이하의 전원상태인 무선 센서부에 전원 충전시간을 주기 위해 무선 센서부의 확장전송 주기로 전용채널을 할당하여 센싱 주파수(Sampling Frequency)를 가변 하는 것을 특징으로 하는 전력상태 기반의 열차 감시 방법.In order to give power charging time to the wireless sensor unit whose power state is lower than the transmission cycle extension threshold among the wireless sensor units whose power state is lower than the threshold value, the dedicated channel is allocated to the extended transmission cycle of the wireless sensor unit to set the sensing frequency. Power state based train monitoring method characterized in that the variable.
PCT/KR2015/011571 2014-11-24 2015-10-30 Power state-based train monitoring device and monitoring method WO2016085141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580072182.6A CN107113548B (en) 2014-11-24 2015-10-30 Train monitoring device and monitoring method based on power state

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140164733 2014-11-24
KR10-2014-0164733 2014-11-24
KR10-2015-0145004 2015-10-16
KR1020150145004A KR102083272B1 (en) 2014-11-24 2015-10-16 Apparatus and method for train monitoring based power state

Publications (1)

Publication Number Publication Date
WO2016085141A1 true WO2016085141A1 (en) 2016-06-02

Family

ID=56074629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011571 WO2016085141A1 (en) 2014-11-24 2015-10-30 Power state-based train monitoring device and monitoring method

Country Status (1)

Country Link
WO (1) WO2016085141A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129515A1 (en) * 2010-04-14 2011-10-20 전자부품연구원 Low power mac communication method for a sensor network based on energy acquired from the environment
KR20130027939A (en) * 2011-09-08 2013-03-18 한국철도기술연구원 Multi-function inspection device of train and railroad using power generators including a piezoelectric
KR20130074009A (en) * 2011-12-26 2013-07-04 전자부품연구원 Method for controlling contactless energy supply to wireless sensor network and system using the same
KR20140129788A (en) * 2013-04-30 2014-11-07 한국철도기술연구원 System and method for monitoring a railroad car using wireless and self-generation sensor
KR20140133687A (en) * 2013-05-09 2014-11-20 한국전자통신연구원 Dedicated channel establishment method for high speed data transmission in railway wireless sensor network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129515A1 (en) * 2010-04-14 2011-10-20 전자부품연구원 Low power mac communication method for a sensor network based on energy acquired from the environment
KR20130027939A (en) * 2011-09-08 2013-03-18 한국철도기술연구원 Multi-function inspection device of train and railroad using power generators including a piezoelectric
KR20130074009A (en) * 2011-12-26 2013-07-04 전자부품연구원 Method for controlling contactless energy supply to wireless sensor network and system using the same
KR20140129788A (en) * 2013-04-30 2014-11-07 한국철도기술연구원 System and method for monitoring a railroad car using wireless and self-generation sensor
KR20140133687A (en) * 2013-05-09 2014-11-20 한국전자통신연구원 Dedicated channel establishment method for high speed data transmission in railway wireless sensor network

Similar Documents

Publication Publication Date Title
CN111200858B (en) Networking method of dual-mode hybrid network based on broadband carrier and narrowband wireless
JP5260264B2 (en) Beacon wireless communication device, beacon wireless communication program, and beacon wireless communication method
WO2014021619A2 (en) Method for wirelessly charging multi-node wireless power transmitting system
KR100966072B1 (en) Wireless communication method, and a piconet coordinator, wireless local area network, and a mobile apparatus for wireless local area network using the method
WO2011129515A1 (en) Low power mac communication method for a sensor network based on energy acquired from the environment
US9596558B2 (en) Wireless sensor network and association request transmission method
WO2014084463A1 (en) Time division multiple access frame structure for ad-hoc network and method for allocating dynamic time slots using same
US20080298390A1 (en) Transmission resource reservation management in wireless network
CN110913373B (en) In-vehicle wireless communication platform based on joint time-frequency priority strategy and anti-interference method thereof
WO2010042340A1 (en) Method and apparatus for identifying and/or selecting a connection identifier
CN112027836A (en) Obtaining position information of an elevator car
US20190104046A1 (en) Adaptive time slot allocation to reduce latency and power consumption in a time slotted channel hopping wireless communication network
US10219233B2 (en) System and method for improved propagation of dynamic link information in a time synchronized channel hopping network
JP7464889B2 (en) Optical power supply system, receiving-side optical communication device, and data transfer method
KR102083272B1 (en) Apparatus and method for train monitoring based power state
WO2016085141A1 (en) Power state-based train monitoring device and monitoring method
KR20160061872A (en) Apparatus and method for distributed processing of train monitoring traffic based hierarchical wireless sensor network
KR20120062781A (en) Method for transmitting data in a wireless network, and wireless network therefor
KR20110056006A (en) Sensor network and clustering method for sensor network
US20200359114A1 (en) Wireless sensor system
CN114585062B (en) Bluetooth-based energy-saving connection method and system
WO2010005219A2 (en) Method to control sleep mode, and terminal and apparatus thereof
WO2014084481A1 (en) Method for allocating slot in ad-hoc network
KR20080057870A (en) Apparatus and method for power control of wireless network
KR20080061497A (en) System for transmitting data in wireless sensor network based on virtual backbone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863972

Country of ref document: EP

Kind code of ref document: A1