WO2016085014A1 - Multi-layer ultrasonic transducer and method for manufacturing same - Google Patents

Multi-layer ultrasonic transducer and method for manufacturing same Download PDF

Info

Publication number
WO2016085014A1
WO2016085014A1 PCT/KR2014/011570 KR2014011570W WO2016085014A1 WO 2016085014 A1 WO2016085014 A1 WO 2016085014A1 KR 2014011570 W KR2014011570 W KR 2014011570W WO 2016085014 A1 WO2016085014 A1 WO 2016085014A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active element
ultrasonic transducer
circuit board
printed circuit
Prior art date
Application number
PCT/KR2014/011570
Other languages
French (fr)
Korean (ko)
Inventor
신은희
김희원
이상웅
이재원
김성학
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Priority to PCT/KR2014/011570 priority Critical patent/WO2016085014A1/en
Publication of WO2016085014A1 publication Critical patent/WO2016085014A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an ultrasonic transducer for acquiring image information inside an object under examination using ultrasonic waves.
  • the ultrasound diagnosis apparatus is an apparatus for imaging an internal tissue of an object by using an ultrasound signal reflected by an ultrasound signal.
  • the ultrasound diagnosis apparatus may transmit the ultrasound signal to a diagnosis part of the subject, and then acquire the image information of the diagnosis part by receiving an ultrasound signal reflected from the boundary of tissues inside the subject having different acoustic impedances. Can be.
  • the ultrasonic diagnostic apparatus includes an ultrasonic transducer for transmitting an ultrasonic signal to the subject and receiving an ultrasonic signal reflected by the subject.
  • Ultrasonic transducers generally include an active element, a matching layer, and a backer. With the recent development of the manufacturing technology of the ultrasonic transducer, the pitch of the active elements is reduced and the number thereof is increased to increase the lateral resolution.
  • a multilayer ultrasound transducer and a method of manufacturing the same, which improve acoustic performance, impedance mismatch with a cable, and simplify the manufacturing process.
  • An ultrasonic transducer includes an active element composed of a plurality of layers, and a flexible printed circuit board, which is a single metal layer that is directly coupled to one surface of at least one layer constituting the active element to supply an electrical signal. do.
  • the flexible printed circuit board may be a single conductive metal flake having a circuit pattern formed thereon.
  • the flexible printed circuit board may be bonded to one surface of at least one layer of the active device, and an active region of the flexible printed circuit board, which is bonded to one surface of the active device, may be formed of a conductive material corresponding to the formation of the one surface.
  • the ultrasonic transducer further includes a ground layer, which is a single metal layer electrically connected to the active element.
  • an ultrasonic transducer may include an active device including an even layer including a first layer and a second layer, and a rear surface of a first layer of the active device, generated from the active device, A backing material that blocks or attenuates the ultrasonic waves propagated to the first layer, a matching layer positioned on the front surface of the second layer and matching the acoustic impedance of the ultrasonic waves generated by the active element and propagated to the front surface, and the first of the active elements.
  • the flexible printed circuit board includes a single metal layer positioned between the layer and the second layer and electrically connected to the active device.
  • the flexible printed circuit board may be a single conductive metal flake having a circuit pattern formed thereon.
  • the flexible printed circuit board is bonded to one surface of the first layer and the second layer of the active element, respectively, and the activation area of the flexible printed circuit board is bonded to the one surface of the first layer and the second layer of the active element. It may be composed of a conductive material corresponding to the formation of.
  • An ultrasonic transducer may include a first ground layer, which is a single metal layer positioned between a first layer of an active element and the backing material and electrically connected to the active element, and a second layer of the active element. And a second ground layer disposed between the matching layers, the second ground layer being a single metal layer electrically connected to the active element.
  • the active element may be a plurality of piezoelectric elements.
  • the matching layer may be composed of a plurality of layers.
  • the ultrasonic transducer is stacked with an odd layer including a first layer, a second layer and a third layer, and the active element is located on the back of the first layer of the active element
  • a first electrode portion which is a single metal layer positioned between the first layer of the active element and the backing material and electrically connected to the active element, and positioned between the third layer and the matching layer of the active element;
  • a second electrode portion which is a single metal layer electrically connected with the second electrode.
  • the first electrode part may be a flexible printed circuit board, and the second electrode part may be a ground layer.
  • the first electrode part may be a ground layer, and the second electrode part may be a flexible printed circuit board.
  • the first electrode portion and the second electrode portion may be a single conductive metal flake having a circuit pattern formed thereon.
  • the first electrode portion adheres to one surface of at least one layer of the active element, and the activation region of the first electrode portion adheres to one surface of the active element is made of a conductive material corresponding to the formation of the one surface, and the second The electrode unit may adhere to one surface of at least one layer of the active element, and the activation region of the second electrode unit adhered to one surface of the active element may be formed of a conductive material corresponding to the formation of the one surface.
  • the active element may be a plurality of piezoelectric elements.
  • the matching layer may be composed of a plurality of layers.
  • a method of manufacturing an ultrasonic transducer includes forming a flexible printed circuit board, and coupling the formed flexible printed circuit board to an active device composed of a plurality of layers.
  • Forming a circuit board includes cutting a single layer of raw material in the form of a substrate, contacting or thermocompressing a carrier to the cut substrate, and forming a circuit pattern on the front surface of the contacted or thermocompressed substrate. And attaching a protective layer to an upper surface of the substrate except for a pattern in which the active elements are stacked.
  • the flexible printed circuit board may be a single conductive metal flake having a circuit pattern formed thereon.
  • the ultrasonic transducer manufacturing method may further include forming a ground layer, which is a single metal layer, and coupling the formed ground layer to the active device.
  • the active device provides an ultrasonic transducer composed of a plurality of layers, capacitance and electrical impedance are reduced, thereby improving mismatch between cables.
  • a flexible printed circuit board (DOUBLE side FCCL) consisting of a metal layer on the substrate layer and the substrate layer and a lower portion thereof, or on the substrate layer and the substrate layer, A single printed circuit board (Single side FCCL) in which one side of the lower portion is formed of a metal layer may be used.
  • DOE side FCCL flexible printed circuit board
  • Single side FCCL single printed circuit board in which one side of the lower portion is formed of a metal layer
  • an ultrasonic transducer composed of a plurality of active element layers not only an ultrasonic transducer composed of odd-numbered active elements, but also an ultrasonic transducer composed of even-numbered active elements, which is difficult to manufacture, is easy and simple. Can be manufactured.
  • FIG. 1 is a structural diagram showing an ultrasonic transducer composed of a plurality of devices according to an embodiment of the present invention
  • FIG. 2 is a structural diagram schematically showing the configuration of an ultrasonic transducer including an active device in which an odd number of layers are stacked according to an embodiment of the present invention
  • FIG. 3 is a structural diagram schematically showing the configuration of an ultrasonic transducer including an active device in which an even number of layers are stacked according to an embodiment of the present invention
  • FIG. 4 is a structural diagram of a general flexible printed circuit board composed of a metal layer, a substrate layer, and a metal layer;
  • FIG. 5 is a structural diagram of a flexible printed circuit board as a metal layer according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a flexible printed circuit board of an ultrasonic transducer according to an embodiment of the present invention
  • FIG. 7 is a flowchart illustrating a method of manufacturing an ultrasonic transducer according to an embodiment of the present invention.
  • FIG. 8 is a graph comparing voltage changes over time of an ultrasonic transducer and a general ultrasonic transducer according to an embodiment of the present invention
  • FIG. 10 is a graph showing an effect of improving impedance mismatch between a general ultrasonic transducer and a cable of an ultrasonic transducer according to an embodiment of the present invention
  • FIG. 11 is a graph comparing the normal size versus time of a general ultrasonic transducer having a single layer active element and an ultrasonic transducer of the present invention including an active element loaded with a plurality of layers;
  • FIG. 12 is a graph comparing voltage magnitude versus frequency of a general ultrasonic transducer having a single layer active element and an ultrasonic transducer of the present invention including an active element loaded with multiple layers.
  • FIG. 1 is a structural diagram showing an ultrasonic transducer composed of a plurality of devices according to an embodiment of the present invention.
  • the direction in which the array of ultrasonic transducers 1 is arranged is called the azimuth direction, and the direction in which the beam signal travels is called the axial direction.
  • the direction orthogonal is called an elevation direction.
  • the ultrasonic transducer 1 is an array transducer having a plurality of elements 12.
  • the present invention proposes a multi-active layered structure in which devices are stacked in multiple layers.
  • the capacitance C increases to N 2
  • the electrical impedance decreases to N 2 , thereby improving mismatch between cables.
  • Equation 1 ⁇ is the dielectric constant, t is the thickness of the device, and S is the area of the device.
  • FIG. 2 is a structural diagram schematically showing the configuration of an ultrasonic transducer including an active device in which an odd number of layers are stacked according to an embodiment of the present invention.
  • the first material layer when the first material layer is formed on the second material layer, it is a substrate that explicitly excludes it, as well as the case where the first material layer is formed directly on the second material layer. Unless otherwise, it is to be construed that the other third material layer includes all the intervening layers between the first material layer and the second material layer.
  • FIG. 2 shows an ultrasonic transducer 1a in which an active element 130 is stacked in an odd layer, for example, a first layer 131, a second layer 132, and a third layer 133. Doing. However, this is only for better understanding of the present invention, and the number of odd layers is not limited to three. Hereinafter, for convenience of description, the following description will be made with reference to the ultrasound transducer 1a having three layers stacked as shown in FIG. 2. If the active element is made of odd layers, electrical connection is easy.
  • the ultrasonic transducer 1a may include a backer 110, a flexible printed circuit board (FPCB) 120, active elements 130, and a ground layer.
  • ground return signal (GRS) 140 ground return signal
  • GRS ground return signal
  • matching layer 150 matching layer 150
  • acoustic lens 160 an acoustic lens
  • the ultrasonic transducer 1a may be an array transducer of linear or matrix shape.
  • the flexible printed circuit board 120 is coupled to the rear surface of the active element 130
  • the backing material 110 is coupled to the rear surface of the flexible printed circuit board 120.
  • the ground layer 140 is coupled to the front surface of the active element 130
  • the matching layer 150 is coupled to the front surface of the ground layer 140.
  • An acoustic lens 160 is formed on the front surface of the matching layer 150.
  • the flexible printed circuit board 120 is positioned on the front surface of the backing material 110, and the ground layer 140 is positioned on the rear surface of the matching layer 150, but the corresponding position is the polling direction of the layer constituting the active device. It may vary.
  • the flexible printed circuit board 120 may be located at the rear of the matching layer 150, and the ground layer 140 may be located at the front of the backing material 110.
  • the backing material 110 is configured such that the acoustic impedance is well matched with the active element 130.
  • the backing material 110 may be configured to have sound attenuation characteristics, which are excellent sound absorption characteristics.
  • the backing material 110 having excellent sound absorption properties suppresses the free vibration of the active element 130 formed on the front side, and not only reduces the pulse width of the ultrasonic wave, but also occurs in the active element 130 to propagate the ultrasonic wave unnecessarily to the rear side. Blocking the image effectively prevents image distortion.
  • the backing material 110 may be formed of one or a plurality of layers using a material having a good sound absorption property.
  • the backing material 110 may be coupled to the flexible printed circuit board 120 located at the front side, and may exchange electrical signals with the active element 130 positioned at the front surface of the flexible printed circuit board 120.
  • the flexible printed circuit board 120 is coupled to the rear surface of the first layer 131 of the active element 130 to supply an electrical signal to the active element 130.
  • Flexible printed circuit board 120 is a single metal layer.
  • the metal layer may be, for example, a copper (Cu) layer. It may be plated with a material such as gold or silver on a metal layer such as copper.
  • the shape, arrangement pattern, thickness, and width of the electrode formed on the metal layer may vary depending on the type or characteristics of the active element 130 and / or the ultrasonic transducer 1a including the same.
  • Conventional flexible printed circuit boards form a metal layer, for example, a copper (Cu) layer on one substrate layer, for example, a polyimide (PI) layer to form a substrate layer (PI) -metal layer (Cu).
  • the above-described multilayer flexible printed circuit board structure is shown in FIG. 4.
  • the acoustic impedances of copper (Cu) and polyimide (PI) are 44.7 and 3.4 Marayl, respectively, the acoustic impedance difference of the two materials is good for the acoustic performance. It has no effect.
  • the flexible printed circuit board 120 is a single metal layer. It does not consist of a substrate layer and a metal layer, but consists only of a metal layer.
  • the metal layer is directly coupled to one surface of the active element 130 to supply an electrical signal.
  • As the flexible printed circuit board 120 is a single metal layer, it is possible to improve acoustic characteristics due to the difference in acoustic impedance between the conventional substrate layer and the metal layer.
  • the flexible printed circuit board 120 When the flexible printed circuit board is composed of a metal layer and a substrate layer, the substrate layer must be removed by etching in order to directly bond the metal layer to the active device.
  • the flexible printed circuit board 120 does not use a method of removing the substrate layer through etching, but rather, manufactures a metal layer, for example, copper foil itself using the flexible printed circuit board. Therefore, no additional process such as the etching process described above is required, and the transducer can be manufactured simply.
  • the active element 130 is composed of a plurality of layers. For example, as illustrated in FIG. 2, three odd layers of the first layer 131, the second layer 132, and the third layer 133 are stacked. Since the active element 130 has a stacked structure, impedance can be reduced and capacitance can be increased as compared with a structure having a single layer of active elements.
  • the active element 130 generates an ultrasonic signal when energy is applied to the flexible printed circuit board 120 and the ground layer 140 positioned at both ends thereof.
  • the ultrasonic signal generated by the active element 130 may have various frequencies.
  • the generated ultrasonic signals can generate signals of high frequency as well as frequencies below 17 MHz which are currently used.
  • the type of the active element 130 may vary depending on the type of the ultrasonic transducer 1a and may be formed of a piezoelectric element.
  • the piezoelectric element is a part having a property of generating a voltage when mechanical pressure is applied through a piezoelectric effect, and mechanical deformation when a voltage is applied.
  • the piezoelectric elements are arranged in a pattern corresponding to the electrodes of the flexible printed circuit board 120 and separated from each other.
  • the piezoelectric element is made of a piezoelectric ceramic such as lead zirconate titanate (PZT), a single crystal, a composite piezoelectric compound of these materials and a polymer material, or a polymer material represented by polyvinylidene fluoride (PVDF). It may be formed of a piezoelectric body or the like. In addition, when fabricating a stacked structure, the same piezoelectric elements may be stacked, but other piezoelectric elements may be mixed and laminated with PZT, piezoelectric ceramic, single crystal, or the like.
  • PZT lead zirconate titanate
  • PVDF polyvinylidene fluoride
  • the ground layer 140 is a conductive material and serves as a ground electrode.
  • the ground layer 140 is in contact with one surface of the third layer 133 of the active device 130.
  • the ground layer 140 like the flexible printed circuit board 120, is formed of a single metal layer.
  • the single metal layer may be formed of a conductive metal flake, and may have ground electrodes bonded to one surface of the active element 130 in a form separated from each other to correspond to the active element 130.
  • the ground electrode may have a cross-sectional area equal to the cross-sectional area of the third layer 133 of the active element 130 and have a predetermined thickness.
  • the matching layer 150 may be located in front of the third layer 133 of the active device 130 and may be coupled to the ground layer 140.
  • the matching layer 150 suitably matches the acoustic impedance of the active element 130 with the acoustic impedance of the object under test, thereby transmitting ultrasonic waves generated by the active element 130 to the object under test and / or reflected by the object under test.
  • the loss of ultrasonic waves (eco ultrasonic waves) is reduced.
  • the matching layer 150 may serve as a buffer for reducing problems such as image distortion due to a sudden change in acoustic impedance between the active element 130 and the object under test.
  • the matching layer 150 is formed into a sheet shape using a predetermined material to have a predetermined thickness, and then made into a desired thickness and / or shape through a process such as machining, and then ground using an adhesive or the like. It may be formed in a manner that is bonded on the layer 140.
  • the matching layer 150 may correspond to the ground electrodes of the active element and / or the ground layer 140 and may be attached to each front surface of the ground electrodes in a shape separated from each other.
  • the matching layer 150 may have the same cross-sectional area as that of the corresponding ground electrode.
  • the matching layer 150 may be composed of a plurality of layers of one or two layers, for example, two-layer structures 151 and 152 as shown in FIG. 2.
  • the reason why the matching layer 150 is formed of a plurality of layers is that the difference in acoustic impedance between the active element 130 and the human tissue under test is relatively large, so that the matching layer having the required characteristics is formed as a single material layer. Because it is difficult to form.
  • the acoustic lens 160 may be coupled to the matching layer 150, and ultrasonic waves may be connected to the inspected object through the acoustic lens 160.
  • FIG. 3 is a structural diagram schematically illustrating the configuration of an ultrasonic transducer including an active device in which an even number of layers are stacked according to an embodiment of the present invention.
  • the active element 230 shows an ultrasonic transducer 1b including an even layer including a first layer 231 and a second layer 232
  • the number of even layers is limited to two. It doesn't work.
  • the active element 230 will be described below with reference to the ultrasonic transducer 1b including the first layer 231 and the second layer 232, as shown in FIG. 3.
  • Ultrasonic transducers with even-numbered active elements are not easily wired. This occurs when the flexible printed circuit board coupled with the active element is composed of a substrate layer and a metal layer. However, since the flexible printed circuit board 220 according to an embodiment is a single metal layer, an even-numbered ultrasonic transducer may be easily designed.
  • the first ground layer 241 is coupled to the front surface of the backing material 210, and the first layer 231 of the active device 230 is coupled to the front surface of the first ground layer 241.
  • the flexible printed circuit board 220 is coupled to the front surface of the first layer 231.
  • the second layer 232 is coupled to the front surface of the flexible printed circuit board 220.
  • the pair of active elements, the first layer 231 and the second layer 232 are coupled to each surface of the flexible printed circuit board 220 with the flexible printed circuit board 220 therebetween.
  • the second ground layer 242 is coupled to the front surface of the second layer 232 of the active element 230, and the matching layer 250 is coupled to the front surface of the second ground layer 242.
  • the first ground layer 241 and the second ground layer 242 are combined to be referred to as the ground layer 240.
  • the flexible printed circuit board 220 is positioned between the first layer 231 and the second layer 232 of the active element 230, and the first ground layer 241 is formed on the front surface of the first layer 231.
  • the second ground layer 242 is positioned on the front surface of the second layer 232, the position may vary depending on the polling direction of the layer constituting the active device.
  • a ground layer may be formed in place of the flexible printed circuit board 220, and a flexible printed circuit board may be positioned in place of the first ground layer 241 and the second ground layer 242, respectively.
  • the backing material 210 may be configured to have sound attenuation characteristics, which are excellent sound absorption characteristics.
  • the backing material 210 may be coupled to the first ground layer 241 located at the front surface.
  • the first ground layer 241 is disposed on the front surface of the backing material 210, and the front surface of the first ground layer 241 is coupled to the first layer 231 of the active device 230.
  • the first ground layer 241 may be formed of a conductive metal flake, and may have ground electrodes bonded to one surface of the corresponding active element 230 in a form separated from each other to correspond to the active element 230. have.
  • the ground electrode may be made of a flake of conductive metal such as copper, gold, silver, or the like.
  • the ground electrode may have a cross-sectional area equal to the cross-sectional area of the first layer 231 of the corresponding active element and have a predetermined thickness.
  • the first layer 231 of the active device 230 has a rear surface coupled with the first ground layer 241 and a front surface coupled with the flexible printed circuit board 220.
  • the flexible printed circuit board 220 is formed between the first layer 231 and the second layer 232 of the active element 230 to supply an electrical signal to the active element 230.
  • Flexible printed circuit board 220 is a single metal layer.
  • the metal layer may be, for example, a copper (Cu) layer.
  • the shape, arrangement pattern, thickness, and width of the electrode formed on the metal layer may vary depending on the type or characteristics of the active element 230 and / or the ultrasonic transducer 1b including the same, and thus, the present embodiment is not limited thereto. There is no
  • the flexible printed circuit board 220 is not formed of the metal layer and the substrate layer, but only the metal layer. Therefore, the acoustic characteristics due to the difference in acoustic impedance between the metal layer and the substrate layer can be improved.
  • the flexible printed circuit board 220 When the flexible printed circuit board is formed of a metal layer and a substrate layer, the substrate layer must be removed by etching in order to directly bond the metal layer to the active device.
  • the flexible printed circuit board 220 does not use a method of removing a substrate layer through etching, but rather, manufactures a metal layer, for example, copper foil itself using a flexible printed circuit board. Accordingly, no additional process such as the etching process described above is required, and the transducer can be manufactured simply.
  • the active device 230 is composed of an even layer including a first layer 231 and a second layer 232.
  • a first layer 231 is positioned between the first ground layer 241 and the flexible printed circuit board 220
  • the second layer 232 is a flexible printed circuit board. It may be disposed to be stacked with the 220 and the second ground layer 242 interposed therebetween. Since the active element 230 has a stacked structure, the impedance can be reduced and capacitance can be increased as compared with a structure having a single layer of active elements.
  • the second ground layer 242 is coupled to the entire surface of the second layer 232 of the active element 230, and serves as a ground electrode as a conductive material. Like the flexible printed circuit board 220, the second ground layer 242 is formed of a single conductive layer.
  • the second ground layer 242 may be formed of a conductive metal flake, and may have ground electrodes bonded to one surface of the corresponding active element 230 in a form separated from each other to correspond to the active element 230.
  • the flakes of the conductive metal may be made of raw materials such as copper, gold, silver, and the like.
  • the ground electrode may have a cross-sectional area equal to the cross-sectional area of the second layer 232 of the corresponding active element and have a predetermined thickness.
  • the matching layer 250 may be positioned in front of the second layer 232 of the active device 230 and may be coupled to the second ground layer 242.
  • the matching layer 250 serves as a buffer for reducing problems such as image distortion due to a sudden change in acoustic impedance between the active element 230 and the object under test.
  • the matching layer 250 may be composed of one, two or more layers, and two-layer structures 251 and 252 are widely used as shown in FIG. 3.
  • An acoustic lens 260 may be coupled to the matching layer 250, and ultrasonic waves may be connected to the object through the acoustic lens 260.
  • FIG. 4 is a structural diagram of a general flexible printed circuit board composed of a metal layer, a substrate layer, and a metal layer.
  • a typical flexible printed circuit board 420 may be formed of a metal layer 422, 423, for example, copper, above and below one substrate layer 421, for example, a polyimide (PI) layer.
  • Cu) layer is arrange
  • a cover layer 424 may be stacked on upper and lower surfaces.
  • the multilayer flexible printed circuit board made of the above-described metal layer (Cu) 422-substrate layer (PI) 421-metal layer (Cu) 423, the acoustic impedance of copper (Cu) and polyimide (PI) Differences adversely affect acoustic performance.
  • the multilayer flexible printed circuit board 420 must remove the substrate layer 421 through etching in order to directly couple the metal layers 422 and 423 to the active device. At this time, the active area 40 coupled to correspond to the shape of the active element should be removed by etching.
  • FIG. 5 is a structural diagram of a flexible printed circuit board as a metal layer according to an embodiment of the present invention.
  • the flexible printed circuit board 520 is a single metal layer 521. It does not have a metal layer-substrate layer-metal layer structure like the flexible printed circuit board described above with reference to FIG. 4, but only a metal layer 521, for example, a copper layer. A cover layer 524 may be stacked on the upper and lower surfaces of the metal layer 521. As the flexible printed circuit board 520 is a single metal layer, acoustic characteristics may be improved due to a difference in acoustic impedance between the metal layer and the substrate layer.
  • the flexible printed circuit board 520 does not use a method of removing the substrate layer through etching or the like, but instead of the metal layer 521, for example, copper foil, the flexible printed circuit board may be used.
  • the metal layer 521 for example, copper foil
  • the flexible printed circuit board may be used.
  • an additional process such as the etching process described above with reference to FIG. 4 is unnecessary, and the ultrasonic transducer may be simply manufactured.
  • the activation region 50 that is coupled corresponding to the shape of the active element may be directly coupled with the active element without a removal process such as etching.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a flexible printed circuit board of an ultrasonic transducer according to an embodiment of the present invention.
  • a raw material that is a conductor is cut into a substrate (600).
  • the raw material may be a metal such as copper (Cu), which is a conductor having excellent electrical conductivity, but is not limited thereto.
  • the substrate here is a conductor layer, not a polyimide layer made of polyimide.
  • the carrier may be adhered or thermally compressed 610 on one surface of the cut substrate, and a circuit pattern may be formed on the entire surface of the substrate, for example, copper foil, adhered or thermally compressed (620).
  • the circuit pattern forming step 620 may include exposure, development, corrosion, peeling, and drying. For example, a portion of the substrate is exposed and developed to form a circuit of the desired pattern.
  • the substrate which is a metal layer, is composed of an active area where an active element is to be bonded, and a trace for transmitting and receiving signals, which are coupled to the active element to transmit and receive signals between the active element and the system. .
  • the flexible printed circuit board according to the exemplary embodiment is a single metal layer, for example, a single metal layer
  • the flexible printed circuit board is required to directly bond the metal layer and the active element to the multilayer flexible printed circuit board structure including the metal layer and the substrate layer.
  • a cover layer is attached to the front and rear surfaces of the substrate (630).
  • the protective layer may cover the remaining portion of the flexible printed circuit board, which is a metal layer, except for the active region to which the active element is attached. Accordingly, the metal layer can be prevented from being exposed to the outside and the metal layer can be protected.
  • the method may include surface treating the front and rear surfaces of the metal layer exposed to the outside with the surface treatment layer.
  • the completed flexible printed circuit board may be coupled to an active device.
  • the active elements may be stacked on the front surface of the flexible printed circuit board, thereby reducing the impedance between the active elements and increasing the capacitance.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an ultrasonic transducer according to an embodiment of the present invention.
  • the manufacturing method of the flexible printed circuit board is new as described above with reference to FIG. 6, but the manufacturing method of the array is the same as in the related art.
  • the manufacturing method of the array is the same as in the related art. For example, to fabricate an array, after cleaning 700 the elements, stacking 710 the cleaned elements, dividing the elements 720, and filling 730 with a kerf. In operation 740, an acoustic lens is attached.
  • 8 is a graph comparing voltage changes over time of an ultrasonic transducer and a general ultrasonic transducer according to an exemplary embodiment of the present invention. 8 shows the result of analysis using a simulation tool such as PZflex.
  • the upper graph shows the change of voltage with time of a typical ultrasonic transducer in which the active element is a single layer, and the middle graph shows the active element in multiple layers
  • 9 is a graph comparing the change in the normal size according to the frequency of the ultrasonic transducer and the general ultrasonic transducer according to an embodiment of the present invention. 9 shows the results of analysis using a simulation tool such as PZflex.
  • the ultrasonic transducer according to the present embodiment includes a change in a normal size according to a frequency of a general ultrasonic transducer including the flexible printed circuit board formed thereon, and an active element including a flexible printed circuit board having a plurality of layers and a single metal layer. Compare the change in normal magnitude with frequency.
  • FIG. 10 is a graph showing an effect of improving impedance mismatch between a general ultrasonic transducer and a cable of an ultrasonic transducer according to an embodiment of the present invention.
  • FIG. 10 shows the change in intensity at the array transducer level.
  • the impedance of the ultrasonic transducer of the present embodiment has a smaller value than that of the general ultrasonic transducer in a small frequency region, and the impedance mismatch between the transducer and the cable is improved.
  • 11 and 12 are graphs showing the effect of improving the acoustic characteristics of the ultrasonic transducer and the general ultrasonic transducer according to an embodiment of the present invention.
  • FIG. 11 compares the magnitude of the voltage versus time of a conventional ultrasonic transducer having a single layer active element and an ultrasonic transducer of the present invention including an active element loaded with multiple layers. It is a graph. As shown in Figure 11, it can be seen that the ultrasonic transducer of the present embodiment has a larger voltage change in the same time zone.
  • FIG. 12 is a graph comparing normalized magnitudes to frequencies of a general ultrasonic transducer having a single layer active element and an ultrasonic transducer of the present invention including an active element loaded with a plurality of layers. .
  • the normal size is large in a wider range.
  • the bandwidth and the fractional bandwidth are widened, and the sensitivity is improved.

Abstract

Disclosed are a multi-layer ultrasonic transducer and a method for manufacturing the same. The multi-layer ultrasonic transducer according to an embodiment of the present invention comprises: an active element consisting of a plurality of layers; and a flexible printed circuit board which is a single metal layer, directly coupled to one surface of at least one layer consisting of the active element, for supplying electrical signals.

Description

다계층 초음파 트랜스듀서 및 그 제조방법Multilayer Ultrasonic Transducer and Manufacturing Method Thereof
본 발명은 초음파를 이용하여 피검사체 내부의 영상 정보를 획득하는 초음파 트랜스듀서에 관한 것이다.The present invention relates to an ultrasonic transducer for acquiring image information inside an object under examination using ultrasonic waves.
초음파 진단장치는 초음파 신호를 피검사체에 쏘아 반사된 초음파 신호로 피검사체의 내부 조직을 영상화시키는 장치이다. 초음파 진단장치는 피검사체의 진단 부위에 초음파 신호를 송신한 후, 서로 다른 음향 임피던스(acoustic impedance)를 갖는 피검사체 내부의 조직들의 경계로부터 반사된 초음파 신호를 수신함으로써 진단 부위의 영상 정보를 획득할 수 있다.The ultrasound diagnosis apparatus is an apparatus for imaging an internal tissue of an object by using an ultrasound signal reflected by an ultrasound signal. The ultrasound diagnosis apparatus may transmit the ultrasound signal to a diagnosis part of the subject, and then acquire the image information of the diagnosis part by receiving an ultrasound signal reflected from the boundary of tissues inside the subject having different acoustic impedances. Can be.
초음파 진단장치는 초음파 신호를 피검사체로 송신하고 피검사체로 반사된 초음파 신호를 수신하기 위한 초음파 트랜스듀서(ultrasonic transducer)가 포함된다. 초음파 트랜스듀서는 크게 능동소자(active element), 정합층(matching layer) 및 배킹재(backer)를 포함한다. 최근 들어 초음파 트랜스듀서의 제작 기술이 발전하면서 측 방향 해상도(lateral resolution)를 높이기 위해 능동소자의 피치(pitch)는 줄어들고 그 수는 늘어나고 있다.The ultrasonic diagnostic apparatus includes an ultrasonic transducer for transmitting an ultrasonic signal to the subject and receiving an ultrasonic signal reflected by the subject. Ultrasonic transducers generally include an active element, a matching layer, and a backer. With the recent development of the manufacturing technology of the ultrasonic transducer, the pitch of the active elements is reduced and the number thereof is increased to increase the lateral resolution.
일 실시 예에 따라, 음향 특성(acoustic performance)과, 케이블(cable)과의 임피던스 부정합(impedance mismatch)을 향상시키고, 제조 공정이 간소화된 다계층 초음파 트랜스듀서 및 그 제조방법을 제안한다.According to an embodiment, there is proposed a multilayer ultrasound transducer and a method of manufacturing the same, which improve acoustic performance, impedance mismatch with a cable, and simplify the manufacturing process.
일 실시 예에 따른 초음파 트랜스듀서는, 다수의 층으로 구성된 능동소자와, 상기 능동소자를 구성하는 적어도 하나의 층의 일면과 직접 결합하여 전기 신호를 공급하는 단일의 금속층인 연성 인쇄회로기판을 포함한다. 상기 연성 인쇄회로기판은 회로 패턴이 형성된 단일의 도전성 금속 박편일 수 있다.An ultrasonic transducer according to an embodiment includes an active element composed of a plurality of layers, and a flexible printed circuit board, which is a single metal layer that is directly coupled to one surface of at least one layer constituting the active element to supply an electrical signal. do. The flexible printed circuit board may be a single conductive metal flake having a circuit pattern formed thereon.
상기 연성 인쇄회로기판은 상기 능동소자의 적어도 하나의 층의 일면과 접착하고, 상기 능동소자의 일면과 접착하는 연성 인쇄회로기판의 활성화 영역은 상기 일면의 형성과 대응되는 도전성 물질로 구성될 수 있다. 상기 초음파 트랜스듀서는 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 그라운드 층을 더 포함한다.The flexible printed circuit board may be bonded to one surface of at least one layer of the active device, and an active region of the flexible printed circuit board, which is bonded to one surface of the active device, may be formed of a conductive material corresponding to the formation of the one surface. . The ultrasonic transducer further includes a ground layer, which is a single metal layer electrically connected to the active element.
한편, 다른 실시 예에 따른 초음파 트랜스듀서는, 제1층 및 제2층을 포함한 짝수 층이 적층된 능동소자와, 상기 능동소자의 제1층의 후면에 위치하여 상기 능동소자에서 발생하여 상기 후면으로 전파되는 초음파를 차단하거나 감쇄하는 배킹재와, 상기 제2층의 전면에 위치하여 상기 능동소자에서 발생하여 상기 전면으로 전파되는 초음파의 음향 임피던스를 정합하는 정합층과, 상기 능동소자의 제1층과 제2층 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 연성 인쇄회로기판을 포함한다.Meanwhile, an ultrasonic transducer according to another embodiment may include an active device including an even layer including a first layer and a second layer, and a rear surface of a first layer of the active device, generated from the active device, A backing material that blocks or attenuates the ultrasonic waves propagated to the first layer, a matching layer positioned on the front surface of the second layer and matching the acoustic impedance of the ultrasonic waves generated by the active element and propagated to the front surface, and the first of the active elements. The flexible printed circuit board includes a single metal layer positioned between the layer and the second layer and electrically connected to the active device.
상기 연성 인쇄회로기판은 회로 패턴이 형성된 단일의 도전성 금속 박편일 수 있다. 상기 연성 인쇄회로기판은 상기 능동소자의 제1층 및 제2층의 일면과 각각 접착하고, 상기 능동소자의 제1층 및 제2층의 일면과 접착하는 연성 인쇄회로기판의 활성화 영역은 상기 일면의 형성과 대응되는 도전성 물질로 구성될 수 있다.The flexible printed circuit board may be a single conductive metal flake having a circuit pattern formed thereon. The flexible printed circuit board is bonded to one surface of the first layer and the second layer of the active element, respectively, and the activation area of the flexible printed circuit board is bonded to the one surface of the first layer and the second layer of the active element. It may be composed of a conductive material corresponding to the formation of.
일 실시 예에 따른 초음파 트랜스듀서는, 능동소자의 제1층과 상기 배킹재 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 제1 그라운드 층과, 상기 능동소자의 제2층과 상기 정합층 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 제2 그라운드 층을 더 포함한다. 상기 능동소자는 다수의 압전소자일 수 있다. 상기 정합층은 다수의 층으로 구성될 수 있다.An ultrasonic transducer according to an embodiment may include a first ground layer, which is a single metal layer positioned between a first layer of an active element and the backing material and electrically connected to the active element, and a second layer of the active element. And a second ground layer disposed between the matching layers, the second ground layer being a single metal layer electrically connected to the active element. The active element may be a plurality of piezoelectric elements. The matching layer may be composed of a plurality of layers.
한편, 또 다른 실시 예에 따른 초음파 트랜스듀서는, 제1층, 제2층 및 제3층을 포함한 홀수 층이 적층된 능동소자와, 상기 능동소자의 제1층의 후면에 위치하여 상기 능동소자에서 발생하여 상기 후면으로 전파되는 초음파를 차단하거나 감쇄하는 배킹재와, 상기 제3층의 전면에 위치하여 상기 능동소자에서 발생하여 상기 전면으로 전파되는 초음파의 음향 임피던스를 정합하는 정합층과, 상기 능동소자의 제1층과 상기 배킹재 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 제1 전극부와, 상기 능동소자의 제3층과 상기 정합층 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 제2 전극부를 포함한다.On the other hand, the ultrasonic transducer according to another embodiment, the active element is stacked with an odd layer including a first layer, a second layer and a third layer, and the active element is located on the back of the first layer of the active element A backing material for blocking or attenuating ultrasonic waves generated from the back surface, and a matching layer positioned at the front surface of the third layer and matching the acoustic impedance of the ultrasonic waves generated from the active element and propagated to the front surface; A first electrode portion, which is a single metal layer positioned between the first layer of the active element and the backing material and electrically connected to the active element, and positioned between the third layer and the matching layer of the active element; And a second electrode portion, which is a single metal layer electrically connected with the second electrode.
상기 제1 전극부는 연성 인쇄회로기판이고, 상기 제2 전극부는 그라운드 층일 수 있다. 또는 상기 제1 전극부는 그라운드 층이고, 상기 제2 전극부는 연성 인쇄회로기판일 수 있다.The first electrode part may be a flexible printed circuit board, and the second electrode part may be a ground layer. Alternatively, the first electrode part may be a ground layer, and the second electrode part may be a flexible printed circuit board.
상기 제1 전극부와 상기 제2 전극부는 회로 패턴이 형성된 단일의 도전성 금속 박편일 수 있다. 상기 제1 전극부는 상기 능동소자의 적어도 하나의 층의 일면과 접착하고, 상기 능동소자의 일면과 접착하는 제1 전극부의 활성화 영역은 상기 일면의 형성과 대응되는 도전성 물질로 구성되고, 상기 제2 전극부는 상기 능동소자의 적어도 하나의 층의 일면과 접착하고, 상기 능동소자의 일면과 접착하는 제2 전극부의 활성화 영역은 상기 일면의 형성과 대응되는 도전성 물질로 구성될 수 있다. 상기 능동소자는 다수의 압전소자일 수 있다. 상기 정합층은 다수의 층으로 구성될 수 있다.The first electrode portion and the second electrode portion may be a single conductive metal flake having a circuit pattern formed thereon. The first electrode portion adheres to one surface of at least one layer of the active element, and the activation region of the first electrode portion adheres to one surface of the active element is made of a conductive material corresponding to the formation of the one surface, and the second The electrode unit may adhere to one surface of at least one layer of the active element, and the activation region of the second electrode unit adhered to one surface of the active element may be formed of a conductive material corresponding to the formation of the one surface. The active element may be a plurality of piezoelectric elements. The matching layer may be composed of a plurality of layers.
한편, 다른 실시 예에 따른 초음파 트랜스듀서 제조방법은, 연성 인쇄회로기판을 형성하는 단계와, 상기 형성된 연성 인쇄회로기판을, 다수의 층으로 구성된 능동소자에 결합하는 단계를 포함하며, 상기 연성 인쇄회로기판을 형성하는 단계는, 단일 층의 원자재를 기판 형태로 재단하는 단계와, 재단된 기판에 캐리어를 밀착 또는 열 압착하는 단계와, 밀착 또는 열 압착된 기판의 전면에 회로 패턴을 형성하는 단계와, 능동소자가 적층되는 패턴을 제외한 기판의 상면에 보호층을 부착하는 단계를 포함한다. 상기 연성 인쇄회로기판은 회로 패턴이 형성된 단일의 도전성 금속 박편일 수 있다. 상기 초음파 트랜스듀서 제조방법은, 단일의 금속층인 그라운드 층을 형성하는 단계와, 형성된 그라운드 층을 상기 능동소자에 결합하는 단계를 더 포함할 수 있다.Meanwhile, a method of manufacturing an ultrasonic transducer according to another embodiment includes forming a flexible printed circuit board, and coupling the formed flexible printed circuit board to an active device composed of a plurality of layers. Forming a circuit board includes cutting a single layer of raw material in the form of a substrate, contacting or thermocompressing a carrier to the cut substrate, and forming a circuit pattern on the front surface of the contacted or thermocompressed substrate. And attaching a protective layer to an upper surface of the substrate except for a pattern in which the active elements are stacked. The flexible printed circuit board may be a single conductive metal flake having a circuit pattern formed thereon. The ultrasonic transducer manufacturing method may further include forming a ground layer, which is a single metal layer, and coupling the formed ground layer to the active device.
일 실시 예에 따르면, 능동소자가 다수의 층으로 구성된 초음파 트랜스듀서를 제공함에 따라 커패시턴스(capacitance)는 증가하고 전기적인 임피던스(impedance)는 감소하여, 케이블 간의 부정합을 개선할 수 있다.According to one embodiment, as the active device provides an ultrasonic transducer composed of a plurality of layers, capacitance and electrical impedance are reduced, thereby improving mismatch between cables.
다층(multi-layer)의 능동소자를 전기적으로 결선을 하기 위해서는, 기판층과 기판층 상, 하부가 금속층으로 구성되는 연성 인쇄회로기판(Double side FCCL)을 이용하거나, 기판층과 기판층 상, 하부 중 일 면이 금속층으로 구성되는 연성인쇄회로 기판(Single side FCCL)을 이용할 수 있다. 그런데, 전자의 경우는 능동소자 사이의 임피던스 차이가 크므로 초음파의 손실을 가져올 수 있고, 후자의 경우는 능동소자와 금속층을 결합하기 위해 기판층을 에칭하는 공정이 추가되어야 한다.In order to electrically connect a multi-layered active element, a flexible printed circuit board (DOUBLE side FCCL) consisting of a metal layer on the substrate layer and the substrate layer and a lower portion thereof, or on the substrate layer and the substrate layer, A single printed circuit board (Single side FCCL) in which one side of the lower portion is formed of a metal layer may be used. However, in the former case, since the impedance difference between the active elements is large, ultrasonic loss may be caused, and in the latter case, a process of etching the substrate layer to combine the active element and the metal layer should be added.
그러나, 본 발명에 따르면 단일의 금속층으로만 구성된 연성 인쇄회로기판을 제공함에 따라, 임피던스(impedance) 차이를 줄여 음향 특성을 개선할 수 있고, 추가 공정 없이도 능동소자와 결합할 수 있어서 제조 공정을 간소화하고 제조 시간을 단출할 수 있다.However, according to the present invention, by providing a flexible printed circuit board composed of only a single metal layer, it is possible to improve the acoustic characteristics by reducing the impedance difference, and to combine with the active element without further processing, thus simplifying the manufacturing process. And manufacturing time can be shortened.
나아가, 다수의 능동소자 층으로 구성된 초음파 트랜스듀서를 제조하는 데에 있어서, 홀수 층의 능동소자로 구성된 초음파 트랜스듀서뿐만 아니라, 제조에 어려움이 있었던 짝수 층의 능동소자로 구성된 초음파 트랜스듀서도 쉽고 간단하게 제조할 수 있다.Furthermore, in manufacturing an ultrasonic transducer composed of a plurality of active element layers, not only an ultrasonic transducer composed of odd-numbered active elements, but also an ultrasonic transducer composed of even-numbered active elements, which is difficult to manufacture, is easy and simple. Can be manufactured.
도 1은 본 발명의 일 실시 예에 따른 다수의 소자로 구성된 초음파 트랜스듀서를 도시한 구조도,1 is a structural diagram showing an ultrasonic transducer composed of a plurality of devices according to an embodiment of the present invention,
도 2는 본 발명의 일 실시 예에 따른 홀수 개의 층이 적층된 능동소자를 포함한 초음파 트랜스듀서의 구성을 도식적으로 보여주는 구조도,2 is a structural diagram schematically showing the configuration of an ultrasonic transducer including an active device in which an odd number of layers are stacked according to an embodiment of the present invention;
도 3은 본 발명의 일 실시 예에 따른 짝수 개의 층이 적층된 능동소자를 포함한 초음파 트랜스듀서의 구성을 도식적으로 보여주는 구조도,3 is a structural diagram schematically showing the configuration of an ultrasonic transducer including an active device in which an even number of layers are stacked according to an embodiment of the present invention;
도 4는 금속층-기판층-금속층으로 구성된 일반적인 연성 인쇄회로기판의 구조도,4 is a structural diagram of a general flexible printed circuit board composed of a metal layer, a substrate layer, and a metal layer;
도 5는 본 발명의 일 실시 예에 따른 금속층인 연성 인쇄회로기판의 구조도,5 is a structural diagram of a flexible printed circuit board as a metal layer according to an embodiment of the present invention;
도 6은 본 발명의 일 실시 예에 따른 초음파 트랜스듀서의 연성 인쇄회로기판 제조방법을 도시한 흐름도,6 is a flowchart illustrating a method of manufacturing a flexible printed circuit board of an ultrasonic transducer according to an embodiment of the present invention;
도 7은 본 발명의 일 실시 예에 따른 초음파 트랜스듀서 제조방법을 도시한 흐름도,7 is a flowchart illustrating a method of manufacturing an ultrasonic transducer according to an embodiment of the present invention;
도 8은 본 발명의 실시 예에 따른 초음파 트랜스듀서와 일반적인 초음파 트랜스듀서의 시간에 따른 전압 변화를 비교한 그래프,8 is a graph comparing voltage changes over time of an ultrasonic transducer and a general ultrasonic transducer according to an embodiment of the present invention;
도 9는 본 발명의 실시 예에 따른 초음파 트랜스듀서와 일반적인 초음파 트랜스듀서의 주파수에 따른 정규 크기의 변화를 비교한 그래프,9 is a graph comparing the change in the normal size according to the frequency of the ultrasonic transducer and the general ultrasonic transducer according to an embodiment of the present invention;
도 10은 일반적인 초음파 트랜스듀서와 본 발명의 일 실시 예에 따른 초음파 트랜스듀서의 케이블 간의 임피던스 부정합 개선 효과를 보여주는 그래프,10 is a graph showing an effect of improving impedance mismatch between a general ultrasonic transducer and a cable of an ultrasonic transducer according to an embodiment of the present invention;
도 11은 단일 층의 능동소자를 가진 일반적인 초음파 트랜스듀서와 다수의 층이 적재된 능동소자를 포함하는 본 발명의 초음파 트랜스듀서의 시간에 대한 정규 크기를 비교한 그래프,11 is a graph comparing the normal size versus time of a general ultrasonic transducer having a single layer active element and an ultrasonic transducer of the present invention including an active element loaded with a plurality of layers;
도 12는 단일 층의 능동소자를 가진 일반적인 초음파 트랜스듀서와 다수의 층이 적재된 능동소자를 포함하는 본 발명의 초음파 트랜스듀서의 주파수에 대한 전압 크기를 비교한 그래프이다.12 is a graph comparing voltage magnitude versus frequency of a general ultrasonic transducer having a single layer active element and an ultrasonic transducer of the present invention including an active element loaded with multiple layers.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시 예들을 상세히 설명한다. 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In the following description of the present invention, if it is determined that detailed descriptions of related well-known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
도 1은 본 발명의 일 실시 예에 따른 다수의 소자로 구성된 초음파 트랜스듀서를 도시한 구조도이다.1 is a structural diagram showing an ultrasonic transducer composed of a plurality of devices according to an embodiment of the present invention.
도 1에 있어서, 초음파 트랜스듀서(1)의 어레이가 늘어서 있는 방향을 측 방향(azimuth direction)이라 하고, 빔(beam) 신호가 진행하는 방향을 축 방향(axial direction)이라 하며, 이 두 방향에 직교하는 방향을 상 방향(elevation direction)이라 명한다.In Fig. 1, the direction in which the array of ultrasonic transducers 1 is arranged is called the azimuth direction, and the direction in which the beam signal travels is called the axial direction. The direction orthogonal is called an elevation direction.
도 1을 참조하면, 일 실시 예에 따른 초음파 트랜스듀서(1)는 소자(element)(12)가 다수 개인 어레이 트랜스듀서(array transducer)이다. 동일한 구경(aperture) 내에서 소자의 수가 많을수록 높은 측 방향 해상도(higher lateral resolution)와 넓은 수광각(wide acceptance angle)을 가진다. 따라서, 획득되는 초음파 영상의 품질을 향상시킬 수 있다.Referring to FIG. 1, the ultrasonic transducer 1 according to an embodiment is an array transducer having a plurality of elements 12. The larger the number of devices within the same aperture, the higher the lateral resolution and the wider acceptance angle. Therefore, the quality of the obtained ultrasound image may be improved.
그러나, 동일한 구경 크기(aperture size) 내에서 어레이의 소자(12)의 수가 증가할수록 소자(12)의 커패시턴스(capacitance)가 낮아지고, 임피던스(impedance)가 높아져 케이블(cable)과의 임피던스 부정합(impedance mismatch)이 발생한다. 특히, 저 주파수 어레이 트랜스듀서(low frequency array transducer)의 경우 임피던스 부정합이 더 심하다. 따라서, 본 발명은 소자가 다수의 층(multi-layer)으로 적층된 다계층 구조(multi-active layered structure)를 제안한다. 소자가 N개의 층으로 적층되면, 수식 1에서 확인할 수 있듯이, 커패시턴스(C)는 N2으로 증가하고, 전기적인 임피던스는 N2으로 감소하여, 케이블 간의 부정합을 개선할 수 있다.However, as the number of elements 12 in the array increases within the same aperture size, the capacitance of the element 12 is lowered and the impedance is higher, resulting in an impedance mismatch with the cable. mismatch) occurs. In particular, low frequency array transducers have more severe impedance mismatches. Accordingly, the present invention proposes a multi-active layered structure in which devices are stacked in multiple layers. When the device is stacked in N layers, as can be seen in Equation 1, the capacitance C increases to N 2 , and the electrical impedance decreases to N 2 , thereby improving mismatch between cables.
수학식 1
Figure PCTKR2014011570-appb-M000001
Equation 1
Figure PCTKR2014011570-appb-M000001
수학식 1에 있어서, ε은 유전율이고, t는 소자의 두께이며, S는 소자의 면적이다.In Equation 1, ε is the dielectric constant, t is the thickness of the device, and S is the area of the device.
도 2는 본 발명의 일 실시 예에 따른 홀수 개의 층이 적층된 능동소자를 포함한 초음파 트랜스듀서의 구성을 도식적으로 보여주는 구조도이다.2 is a structural diagram schematically showing the configuration of an ultrasonic transducer including an active device in which an odd number of layers are stacked according to an embodiment of the present invention.
이하, '도식적'이라는 것은 도시된 도면이 초음파 트랜스듀서에 포함되는 구성 요소들 사이의 상대적인 위치 관계 또는 적층 관계를 나타낸다는 것을 의미함을 명시한다. 따라서, 초음파 트랜스듀서에 포함되는 구성 요소들 각각의 구체적인 형상이나 두께 등은 반드시 도면에 도시된 것과 일치하지 않을 수도 있다.Hereinafter, 'schematic' indicates that the depicted figure represents a relative positional or stacking relationship between components included in the ultrasonic transducer. Therefore, the specific shape or thickness of each of the components included in the ultrasonic transducer may not necessarily match those shown in the drawings.
본 명세서에서 제1 물질층이 제2 물질층 상에 형성된다고 할 경우에, 그것은 제1 물질층이 제2 물질층 바로 위(directly on)에 형성되는 경우는 물론, 명시적으로 이를 배제하는 기재가 없는 한, 다른 제3 물질층이 제1 물질층과 제2 물질층의 사이에 개재되어 있는 것(upper)도 모두 포함하는 것으로 해석되어야 한다.In the present specification, when the first material layer is formed on the second material layer, it is a substrate that explicitly excludes it, as well as the case where the first material layer is formed directly on the second material layer. Unless otherwise, it is to be construed that the other third material layer includes all the intervening layers between the first material layer and the second material layer.
도 2는 능동소자(active element)(130)가 홀수 층, 예를 들어 제1층(131), 제2층(132) 및 제3층(133)으로 적층된 초음파 트랜스듀서(1a)를 도시하고 있다. 그러나, 이는 본 발명의 이해를 돕기 위한 것일 뿐, 홀수 층의 수는 3개로 한정되지는 않는다. 이하, 설명의 편의를 위해 도 2에 도시된 바와 같이 3개의 층이 적층된 초음파 트랜스듀서(1a)를 중심으로 후술한다. 능동소자가 홀수 층으로 이루어지는 경우 전기적 결선이 용이하다.FIG. 2 shows an ultrasonic transducer 1a in which an active element 130 is stacked in an odd layer, for example, a first layer 131, a second layer 132, and a third layer 133. Doing. However, this is only for better understanding of the present invention, and the number of odd layers is not limited to three. Hereinafter, for convenience of description, the following description will be made with reference to the ultrasound transducer 1a having three layers stacked as shown in FIG. 2. If the active element is made of odd layers, electrical connection is easy.
도 2를 참조하면, 초음파 트랜스듀서(1a)는 배킹재(backer)(110), 연성 인쇄회로기판(flexible printed circuit board: FPCB)(120), 능동소자(active elements)(130), 그라운드 층(ground return signal: GRS)(140), 정합층(matching layer)(150) 및 음향 렌즈(acoustic lens)(160)를 포함한다.Referring to FIG. 2, the ultrasonic transducer 1a may include a backer 110, a flexible printed circuit board (FPCB) 120, active elements 130, and a ground layer. ground return signal (GRS) 140, a matching layer 150, and an acoustic lens 160.
초음파 트랜스듀서(1a)는 선형 또는 매트릭스 형상의 어레이 트랜스듀서(array transducer)일 수 있다. 일 실시 예에 따른 초음파 트랜스듀서(1a)는 능동소자(130)의 후면에 연성 인쇄회로기판(120)이 결합하고, 연성 인쇄회로기판(120)의 후면에 배킹재(110)가 결합한다. 그리고, 능동소자(130)의 전면에 그라운드 층(140)이 결합하고, 그라운드 층(140)의 전면에 정합층(150)이 결합한다. 정합층(150)의 전면에는 음향 렌즈(160)가 형성된다.The ultrasonic transducer 1a may be an array transducer of linear or matrix shape. In the ultrasonic transducer 1a according to the exemplary embodiment, the flexible printed circuit board 120 is coupled to the rear surface of the active element 130, and the backing material 110 is coupled to the rear surface of the flexible printed circuit board 120. In addition, the ground layer 140 is coupled to the front surface of the active element 130, and the matching layer 150 is coupled to the front surface of the ground layer 140. An acoustic lens 160 is formed on the front surface of the matching layer 150.
도 2에서는 연성 인쇄회로기판(120)이 배킹재(110)의 전면에 위치하고, 그라운드 층(140)이 정합층(150)의 후면에 위치하고 있으나, 해당 위치는 능동소자를 구성하는 층의 폴링 방향에 따라 달라질 수 있다. 예를 들어, 연성 인쇄회로기판(120)이 정합층(150)의 후면에 위치하고, 그라운드 층(140)이 배킹재(110)의 전면에 위치할 수 있다.In FIG. 2, the flexible printed circuit board 120 is positioned on the front surface of the backing material 110, and the ground layer 140 is positioned on the rear surface of the matching layer 150, but the corresponding position is the polling direction of the layer constituting the active device. It may vary. For example, the flexible printed circuit board 120 may be located at the rear of the matching layer 150, and the ground layer 140 may be located at the front of the backing material 110.
이하, 초음파 트랜스듀서(1a)의 각 구성요소에 대해 상세히 후술한다.Hereinafter, each component of the ultrasonic transducer 1a will be described in detail.
배킹재(110)는 음향 임피던스(acoustic impedance)가 능동소자(130)와 잘 매칭되도록 구성된다. 배킹재(110)는 우수한 흡음 특성인, 음향 감쇄 특성을 가지도록 구성될 수 있다. 우수한 흡음 특성을 가진 배킹재(110)는 전면에 형성되는 능동소자(130)의 자유 진동을 억제하여 초음파의 펄스 폭을 감소시킬 뿐만 아니라 능동소자(130)에서 발생하여 후면으로 초음파가 불필요하게 전파되는 것을 차단함으로써 영상 왜곡이 생기는 것을 효과적으로 방지한다. 배킹재(110)는 흡음 특성이 우수한 재질의 물질을 사용하여 하나 또는 복수의 층으로 형성될 수 있다. 배킹재(110)는 전면에 위치하는 연성 인쇄회로기판(120)에 결합하며, 연성 인쇄회로기판(120)의 전면에 위치하는 능동소자(130)와 상호 전기적 신호를 주고 받을 수 있다.The backing material 110 is configured such that the acoustic impedance is well matched with the active element 130. The backing material 110 may be configured to have sound attenuation characteristics, which are excellent sound absorption characteristics. The backing material 110 having excellent sound absorption properties suppresses the free vibration of the active element 130 formed on the front side, and not only reduces the pulse width of the ultrasonic wave, but also occurs in the active element 130 to propagate the ultrasonic wave unnecessarily to the rear side. Blocking the image effectively prevents image distortion. The backing material 110 may be formed of one or a plurality of layers using a material having a good sound absorption property. The backing material 110 may be coupled to the flexible printed circuit board 120 located at the front side, and may exchange electrical signals with the active element 130 positioned at the front surface of the flexible printed circuit board 120.
연성 인쇄회로기판(120)은 능동소자(130)의 제1층(131)의 후면과 결합하여, 능동소자(130)에 전기적 신호를 공급한다. 연성 인쇄회로기판(120)은 단일의 금속층이다. 금속층은 예를 들어 구리(copper: Cu)층일 수 있다. 구리와 같은 금속층위에 금, 은과 같은 물질로 도금될 수도 있다. 금속층에 형성되는 전극의 형상이나 배치 패턴, 두께, 폭 등은 능동소자(130) 및/또는 이를 포함하는 초음파 트랜스듀서(1a)의 종류나 특성에 따라서 달라질 수 있다.The flexible printed circuit board 120 is coupled to the rear surface of the first layer 131 of the active element 130 to supply an electrical signal to the active element 130. Flexible printed circuit board 120 is a single metal layer. The metal layer may be, for example, a copper (Cu) layer. It may be plated with a material such as gold or silver on a metal layer such as copper. The shape, arrangement pattern, thickness, and width of the electrode formed on the metal layer may vary depending on the type or characteristics of the active element 130 and / or the ultrasonic transducer 1a including the same.
종래의 연성 인쇄회로기판은 하나의 기판층, 예를 들어 폴리이미드(polyimide: PI) 층 위에 금속층, 예를 들어 구리(copper: Cu)층을 형성하여 기판층(PI)-금속층(Cu)으로 이루어지거나, 기판층의 전면 및 후면에 금속층, 예를 들어 구리층이 각각 형성되어서 마치 두 개의 연성 인쇄회로기판을 겹쳐놓은 것과 같은 금속층(Cu)-기판층(PI)-금속층(Cu)의 다층형 연성 인쇄회로기판 구조를 가진다. 전술한 다층형 연성 인쇄회로기판 구조는 도 4에 도시된 바와 같다. 그러나, 다층형 연성 인쇄회로기판 구조에 있어서, 구리(Cu)와 폴리이미드(PI)의 음향 임피던스가 각각 44.7, 3.4 Marayl이기 때문에, 두 물질의 음향 임피던스 차이로 인해 음향 특성(acoustic performance)에 좋지 않은 영향을 끼치게 된다.Conventional flexible printed circuit boards form a metal layer, for example, a copper (Cu) layer on one substrate layer, for example, a polyimide (PI) layer to form a substrate layer (PI) -metal layer (Cu). Or a multilayer of metal layer (Cu) -substrate layer (PI) -metal layer (Cu), such as a metal layer, for example, a copper layer formed on the front and back surfaces of the substrate layer, respectively, so as to overlap two flexible printed circuit boards. It has a flexible flexible printed circuit board structure. The above-described multilayer flexible printed circuit board structure is shown in FIG. 4. However, in the multilayer flexible printed circuit board structure, since the acoustic impedances of copper (Cu) and polyimide (PI) are 44.7 and 3.4 Marayl, respectively, the acoustic impedance difference of the two materials is good for the acoustic performance. It has no effect.
본 발명의 일 실시 예에 따른 연성 인쇄회로기판(120)은 단일의 금속층이다. 기판층과 금속층으로 이루어지는 것이 아니라, 단지 금속층으로만 이루어진다. 금속층은 능동소자(130)의 일면과 직접 결합하여 전기 신호를 공급한다. 연성 인쇄회로기판(120)이 단일의 금속층임에 따라, 종래의 기판층과 금속층의 음향 임피던스 차이에 의한 음향 특성을 개선할 수 있다.The flexible printed circuit board 120 according to the exemplary embodiment of the present invention is a single metal layer. It does not consist of a substrate layer and a metal layer, but consists only of a metal layer. The metal layer is directly coupled to one surface of the active element 130 to supply an electrical signal. As the flexible printed circuit board 120 is a single metal layer, it is possible to improve acoustic characteristics due to the difference in acoustic impedance between the conventional substrate layer and the metal layer.
연성 인쇄회로기판이 금속층과 기판층으로 구성된 경우, 금속층을 능동소자와 직접 결합하도록 하기 위해서는 에칭(etching)을 통해 기판층을 제거해야만 한다. 그러나, 일 실시 예에 따른 연성 인쇄회로기판(120)은 에칭 등을 통해 기판층을 제거하는 방식을 사용하는 것이 아니라, 금속층, 예를 들어 동박(copper foil) 자체를 연성 인쇄회로기판으로 제조함에 따라, 전술한 에칭 프로세스 등의 추가적인 프로세스가 필요 없으며, 간단하게 트랜스듀서를 제작할 있다.When the flexible printed circuit board is composed of a metal layer and a substrate layer, the substrate layer must be removed by etching in order to directly bond the metal layer to the active device. However, the flexible printed circuit board 120 according to the exemplary embodiment does not use a method of removing the substrate layer through etching, but rather, manufactures a metal layer, for example, copper foil itself using the flexible printed circuit board. Therefore, no additional process such as the etching process described above is required, and the transducer can be manufactured simply.
능동소자(130)는 다수의 층으로 구성된다. 예를 들어, 도 2에 도시된 바와 같이 능동소자(130)는 제1층(131), 제2층(132) 및 제3층(133)의 3개의 홀수 층이 적층된다. 능동소자(130)가 적층 구조를 가짐으로써 단일 층의 능동소자를 갖는 구조에 비해 임피던스를 줄일 수 있고, 또한 커패시턴스를 증대시킬 수 있다.The active element 130 is composed of a plurality of layers. For example, as illustrated in FIG. 2, three odd layers of the first layer 131, the second layer 132, and the third layer 133 are stacked. Since the active element 130 has a stacked structure, impedance can be reduced and capacitance can be increased as compared with a structure having a single layer of active elements.
능동소자(130)는 양단에 위치한 연성 인쇄회로기판(120)과 그라운드 층(140)에 전압이 인가되는 등의 방법으로 에너지가 가해지면 초음파 신호를 발생시킨다. 일 실시 예에 따른 능동소자(130)에 의하여 발생하는 초음파 신호는 다양한 주파수를 가질 수 있다. 예를 들어, 발생하는 초음파 신호는 현재 통상적으로 사용되고 있는 17MHz 이하의 주파수는 물론 그 이상의 고주파수의 신호도 발생시킬 수 있다.The active element 130 generates an ultrasonic signal when energy is applied to the flexible printed circuit board 120 and the ground layer 140 positioned at both ends thereof. The ultrasonic signal generated by the active element 130 according to an embodiment may have various frequencies. For example, the generated ultrasonic signals can generate signals of high frequency as well as frequencies below 17 MHz which are currently used.
능동소자(130)의 종류는 초음파 트랜스듀서(1a)의 종류에 따라서 달라질 수 있는데, 압전소자(piezoelectric element)로 구성될 수 있다. 압전소자는 압전효과를 통해 기계적인 압력이 가해지면 전압이 발생하고, 전압이 인가되면 기계적인 변형이 발생하는 성질을 갖는 부분이다. 압전소자들의 형상이나 배열되는 패턴에 특별한 제한은 없다. 예를 들어, 압전소자들은 연성 인쇄회로기판(120)의 전극들에 각각 대응되고 상호 분리된 패턴으로 배열된다. 압전소자는 티탄산 지르콘산 납(lead zirconate titanate: PZT) 계 등의 압전 세라믹, 단결정, 이들 재료와 고분자 재료를 복합한 복합 압전체, 또는 폴리불화비닐리덴(PolyVinyliDene Fluoride: PVDF)로 대표되는 고분자 재료의 압전체 등으로 형성될 수 있다. 또한, 적층된 구조로 제작할 때, 동일한 압전소자들을 적층할 수도 있지만, PZT, 압전 세라믹, 단결정 등서로 다른 압전소자들을 혼합해서 적층할 수도 있다.The type of the active element 130 may vary depending on the type of the ultrasonic transducer 1a and may be formed of a piezoelectric element. The piezoelectric element is a part having a property of generating a voltage when mechanical pressure is applied through a piezoelectric effect, and mechanical deformation when a voltage is applied. There is no particular limitation on the shape or pattern of the piezoelectric elements. For example, the piezoelectric elements are arranged in a pattern corresponding to the electrodes of the flexible printed circuit board 120 and separated from each other. The piezoelectric element is made of a piezoelectric ceramic such as lead zirconate titanate (PZT), a single crystal, a composite piezoelectric compound of these materials and a polymer material, or a polymer material represented by polyvinylidene fluoride (PVDF). It may be formed of a piezoelectric body or the like. In addition, when fabricating a stacked structure, the same piezoelectric elements may be stacked, but other piezoelectric elements may be mixed and laminated with PZT, piezoelectric ceramic, single crystal, or the like.
그라운드 층(140)은 전도성을 갖는 물질로 그라운드 전극으로 작용한다. 그라운드 층(140)은 능동소자(130)의 제3층(133)의 일면과 접촉된다. 그라운드 층(140) 역시 연성 인쇄회로기판(120)과 마찬가지로 단일의 금속층으로 구성된다. 단일의 금속층은 도전성 금속 박편으로 이루어질 수 있으며, 능동소자(130)에 대응되도록 상호 분리된 형태로 능동소자(130)의 일면에 접합하는 그라운드 전극들을 가질 수 있다. 그라운드 전극은 대응되는 능동소자(130)의 제3층(133)의 횡단면적과 동일한 횡단면적을 갖고 일정 두께를 갖는 형상으로 이루어질 수 있다.The ground layer 140 is a conductive material and serves as a ground electrode. The ground layer 140 is in contact with one surface of the third layer 133 of the active device 130. The ground layer 140, like the flexible printed circuit board 120, is formed of a single metal layer. The single metal layer may be formed of a conductive metal flake, and may have ground electrodes bonded to one surface of the active element 130 in a form separated from each other to correspond to the active element 130. The ground electrode may have a cross-sectional area equal to the cross-sectional area of the third layer 133 of the active element 130 and have a predetermined thickness.
정합층(150)은 능동소자(130)의 제3층(133)의 전면에 위치하며, 그라운드 층(140)과 결합할 수 있다. 정합층(150)은 능동소자(130)의 음향 임피던스와 피검사체의 음향 임피던스를 적절히 매칭함으로써, 능동소자(130)에서 발생한 초음파를 피검사체로 전달하거나 및/또는 피검사체에 의하여 반사되어 되돌아오는 초음파(에코 초음파)의 손실을 저감시킨다. 정합층(150)은 능동소자(130)와 피검사체 사이의 음향 임피던스의 급격한 변화에 따른 영상 왜곡 등의 문제를 감소시키는 완충 역할을 할 수 있다.The matching layer 150 may be located in front of the third layer 133 of the active device 130 and may be coupled to the ground layer 140. The matching layer 150 suitably matches the acoustic impedance of the active element 130 with the acoustic impedance of the object under test, thereby transmitting ultrasonic waves generated by the active element 130 to the object under test and / or reflected by the object under test. The loss of ultrasonic waves (eco ultrasonic waves) is reduced. The matching layer 150 may serve as a buffer for reducing problems such as image distortion due to a sudden change in acoustic impedance between the active element 130 and the object under test.
정합층(150)은 소정의 재료를 이용하여 소정의 두께를 갖도록 시트(sheet) 형상으로 형성한 다음, 기계 가공 등의 공정을 통해 원하는 두께 및/또는 형상으로 만든 다음, 접착제 등을 이용하여 그라운드 층(140) 상에 접합되는 방식으로 형성될 수 있다. 예를 들어, 정합층(150)은 능동소자 및/또는 그라운드 층(140)의 그라운드 전극들에 각각 대응되며 상호 분리된 형상으로 그라운드 전극들의 각 전면에 접합되게 부착될 수 있다. 정합층(150)은 대응되는 그라운드 전극의 횡단면적과 동일한 횡단면적을 가질 수 있다.The matching layer 150 is formed into a sheet shape using a predetermined material to have a predetermined thickness, and then made into a desired thickness and / or shape through a process such as machining, and then ground using an adhesive or the like. It may be formed in a manner that is bonded on the layer 140. For example, the matching layer 150 may correspond to the ground electrodes of the active element and / or the ground layer 140 and may be attached to each front surface of the ground electrodes in a shape separated from each other. The matching layer 150 may have the same cross-sectional area as that of the corresponding ground electrode.
정합층(150)은 하나 또는 2층 이상의 복수의 층들로 구성될 수 있는데, 예를 들어 도 2에 도시된 바와 같이 2층 구조(151,152)일 수 있다. 복수의 층으로 정합층(150)을 구성하는 이유는, 능동소자(130)와 피검사체인 인체 조직 사이의 음향 임피던스 차이가 상대적으로 크기 때문에, 요구되는 특성을 갖는 정합층을 단일 물질의 층으로는 형성하는 것이 어렵기 때문이다. 정합층(150)에는 음향 렌즈(160)가 결합할 수 있으며, 음향 렌즈(160)를 통해 초음파를 피검사체에 접속시킬 수 있다.The matching layer 150 may be composed of a plurality of layers of one or two layers, for example, two- layer structures 151 and 152 as shown in FIG. 2. The reason why the matching layer 150 is formed of a plurality of layers is that the difference in acoustic impedance between the active element 130 and the human tissue under test is relatively large, so that the matching layer having the required characteristics is formed as a single material layer. Because it is difficult to form. The acoustic lens 160 may be coupled to the matching layer 150, and ultrasonic waves may be connected to the inspected object through the acoustic lens 160.
도 3은 본 발명의 일 실시 예에 따른 짝수 개의 층이 적층된 능동소자를 포함한 초음파 트랜스듀서의 구성을 도식적으로 보여주는 구조도이다.3 is a structural diagram schematically illustrating the configuration of an ultrasonic transducer including an active device in which an even number of layers are stacked according to an embodiment of the present invention.
도 3을 참조하면, 능동소자(230)가 제1층(231)과 제2층(232)을 포함한 짝수 층으로 구성된 초음파 트랜스듀서(1b)를 도시하고 있으나, 짝수 층의 수는 2개로 한정되지 않는다. 이하, 설명의 편의를 위해 도 3에 도시된 바와 같이 능동소자(230)가 제1층(231)과 제2층(232)으로 구성된 초음파 트랜스듀서(1b)를 중심으로 후술한다.Referring to FIG. 3, although the active element 230 shows an ultrasonic transducer 1b including an even layer including a first layer 231 and a second layer 232, the number of even layers is limited to two. It doesn't work. Hereinafter, for convenience of description, the active element 230 will be described below with reference to the ultrasonic transducer 1b including the first layer 231 and the second layer 232, as shown in FIG. 3.
짝수 층의 능동소자로 구성된 초음파 트랜스듀서는 전기적 결선이 용이하지 않다. 이는 능동소자와 결합하는 연성 인쇄회로기판이 기판층과 금속층으로 구성되는 경우 발생한다. 그러나, 일 실시 예에 따른 연성 인쇄회로기판(220)은 단일의 금속층임에 따라, 쉽게 짝수 층의 초음파 트랜스듀서를 설계할 수 있다.Ultrasonic transducers with even-numbered active elements are not easily wired. This occurs when the flexible printed circuit board coupled with the active element is composed of a substrate layer and a metal layer. However, since the flexible printed circuit board 220 according to an embodiment is a single metal layer, an even-numbered ultrasonic transducer may be easily designed.
도 3을 참조하면, 배킹재(210) 전면에 제1 그라운드 층(241)을 결합하고, 제1 그라운드 층(241)의 전면에 능동소자(230)의 제1층(231)을 결합하고, 제1층(231)의 전면에 연성 인쇄회로기판(220)을 결합한다. 연성 인쇄회로기판(220)의 전면에 제2층(232)을 결합한다. 한 쌍의 능동소자인 제1층(231)과 제2층(232)은 연성 인쇄회로기판(220)을 사이에 두고 연성 인쇄회로기판(220)의 각 일면에 결합된다. 제2 그라운드 층(242)이 능동소자(230)의 제2층(232)의 전면과 결합하고, 제2 그라운드 층(242)의 전면에 정합층(250)이 결합한다. 제1 그라운드 층(241)과 제2 그라운드 층(242)을 결합하여 그라운드 층(240)이라 한다.Referring to FIG. 3, the first ground layer 241 is coupled to the front surface of the backing material 210, and the first layer 231 of the active device 230 is coupled to the front surface of the first ground layer 241. The flexible printed circuit board 220 is coupled to the front surface of the first layer 231. The second layer 232 is coupled to the front surface of the flexible printed circuit board 220. The pair of active elements, the first layer 231 and the second layer 232, are coupled to each surface of the flexible printed circuit board 220 with the flexible printed circuit board 220 therebetween. The second ground layer 242 is coupled to the front surface of the second layer 232 of the active element 230, and the matching layer 250 is coupled to the front surface of the second ground layer 242. The first ground layer 241 and the second ground layer 242 are combined to be referred to as the ground layer 240.
도 3에서는 연성 인쇄회로기판(220)이 능동소자(230)의 제1층(231)과 제2층(232) 사이에 위치하고, 제1 그라운드 층(241)이 제1층(231)의 전면에 위치하며, 제2 그라운드 층(242)이 제2층(232)의 전면에 위치하고 있으나, 해당 위치는 능동소자를 구성하는 층의 폴링 방향에 따라 달라질 수 있다. 예를 들어, 연성 인쇄회로기판(220) 대신에 그라운드 층이 형성되고, 제1 그라운드 층(241)과 제2 그라운드 층(242) 대신에 각각 연성 인쇄회로기판이 위치할 수도 있다.In FIG. 3, the flexible printed circuit board 220 is positioned between the first layer 231 and the second layer 232 of the active element 230, and the first ground layer 241 is formed on the front surface of the first layer 231. Although the second ground layer 242 is positioned on the front surface of the second layer 232, the position may vary depending on the polling direction of the layer constituting the active device. For example, a ground layer may be formed in place of the flexible printed circuit board 220, and a flexible printed circuit board may be positioned in place of the first ground layer 241 and the second ground layer 242, respectively.
이하, 각 구성요소에 대해 설명하는데, 주요 설명은 도 2를 참조로 하여 전술한 바 있으므로, 차이가 있는 부분을 위주로 설명한다.Hereinafter, each component will be described. Since the main description has been described above with reference to FIG. 2, the description will be mainly given of differences.
배킹재(210)는 우수한 흡음 특성인, 음향 감쇄 특성을 가지도록 구성될 수 있다. 배킹재(210)는 전면에 위치하는 제1 그라운드 층(241)에 결합할 수 있다.The backing material 210 may be configured to have sound attenuation characteristics, which are excellent sound absorption characteristics. The backing material 210 may be coupled to the first ground layer 241 located at the front surface.
제1 그라운드 층(241)은 배킹재(210)의 전면에 배치되고, 제1 그라운드 층(241)의 전면은 능동소자(230)의 제1층(231)과 결합한다. 일 실시 예에 따른 제1 그라운드 층(241)은 도전성 금속 박편으로 이루어지고, 능동소자(230)에 대응되도록 상호 분리된 형태로 해당하는 능동소자(230)의 일면에 접합하는 그라운드 전극들을 가질 수 있다. 그라운드 전극은 구리, 금, 은 등과 같은 도전성 금속의 박편으로 이루어질 수 있다. 또한, 그라운드 전극은 대응되는 능동소자의 제1층(231)의 횡단면적과 동일한 횡단면적을 갖고 일정 두께를 갖는 형상으로 이루어질 수 있다.The first ground layer 241 is disposed on the front surface of the backing material 210, and the front surface of the first ground layer 241 is coupled to the first layer 231 of the active device 230. The first ground layer 241 according to an embodiment may be formed of a conductive metal flake, and may have ground electrodes bonded to one surface of the corresponding active element 230 in a form separated from each other to correspond to the active element 230. have. The ground electrode may be made of a flake of conductive metal such as copper, gold, silver, or the like. In addition, the ground electrode may have a cross-sectional area equal to the cross-sectional area of the first layer 231 of the corresponding active element and have a predetermined thickness.
능동소자(230)의 제1층(231)은 후면은 제1 그라운드 층(241)과 결합하고, 전면은 연성 인쇄회로기판(220)과 결합한다. 연성 인쇄회로기판(220)은 능동소자(230)의 제1층(231)과 제2층(232) 사이에 형성되어, 능동소자(230)에 전기적 신호를 공급한다. 연성 인쇄회로기판(220)은 단일의 금속층이다. 금속층은 예를 들어 구리(copper: Cu)층일 수 있다. 금속층에 형성되는 전극의 형상이나 배치 패턴, 두께, 폭 등은 능동소자(230) 및/또는 이를 포함하는 초음파 트랜스듀서(1b)의 종류나 특성에 따라서 달라질 수 있으므로, 본 실시 예에는 이에 특별한 제한이 없다.The first layer 231 of the active device 230 has a rear surface coupled with the first ground layer 241 and a front surface coupled with the flexible printed circuit board 220. The flexible printed circuit board 220 is formed between the first layer 231 and the second layer 232 of the active element 230 to supply an electrical signal to the active element 230. Flexible printed circuit board 220 is a single metal layer. The metal layer may be, for example, a copper (Cu) layer. The shape, arrangement pattern, thickness, and width of the electrode formed on the metal layer may vary depending on the type or characteristics of the active element 230 and / or the ultrasonic transducer 1b including the same, and thus, the present embodiment is not limited thereto. There is no
일 실시 예에 따른 연성 인쇄회로기판(220)은 금속층과 기판층으로 이루어지는 것이 아니라, 단지 금속층으로만 이루어진다. 따라서, 금속층과 기판층의 음향 임피던스 차이에 의한 음향 특성을 향상시킬 수 있다.The flexible printed circuit board 220 according to an embodiment is not formed of the metal layer and the substrate layer, but only the metal layer. Therefore, the acoustic characteristics due to the difference in acoustic impedance between the metal layer and the substrate layer can be improved.
연성 인쇄회로기판이 금속층과 기판층으로 이루어지는 경우, 금속층을 능동소자와 직접 결합하도록 하기 위해서는 에칭(etching)을 통해 기판층을 제거해야만 한다. 그러나, 일 실시 예에 따른 연성 인쇄회로기판(220)은 에칭 등을 통해 기판층을 제거하는 방식을 사용하는 것이 아니라, 금속층, 예를 들어 동박(copper foil) 자체를 연성 인쇄회로기판으로 제조함에 따라, 전술한 에칭 프로세스 등의 추가적인 프로세스가 필요 없으며, 간단하게 트랜스듀서를 제작할 수 있게 된다.When the flexible printed circuit board is formed of a metal layer and a substrate layer, the substrate layer must be removed by etching in order to directly bond the metal layer to the active device. However, the flexible printed circuit board 220 according to an exemplary embodiment does not use a method of removing a substrate layer through etching, but rather, manufactures a metal layer, for example, copper foil itself using a flexible printed circuit board. Accordingly, no additional process such as the etching process described above is required, and the transducer can be manufactured simply.
일 실시 예에 따른 능동소자(230)는 제1층(231) 및 제2층(232)을 포함한 짝수 층으로 구성된다. 능동소자(230)는 도 3에 도시된 바와 같이 제1층(231)이 제1 그라운드 층(241)과 연성 인쇄회로기판(220) 사이에 위치하고, 제2층(232)이 연성 인쇄회로기판(220)과 제2 그라운드 층(242)을 사이에 두고 적층되게 배치될 수 있다. 능동소자(230)는 적층 구조를 가짐으로써 단일 층의 능동소자를 갖는 구조에 비해 임피던스를 줄일 수 있고, 또한 커패시턴스를 증대시킬 수 있다.The active device 230 according to an embodiment is composed of an even layer including a first layer 231 and a second layer 232. In the active device 230, as illustrated in FIG. 3, a first layer 231 is positioned between the first ground layer 241 and the flexible printed circuit board 220, and the second layer 232 is a flexible printed circuit board. It may be disposed to be stacked with the 220 and the second ground layer 242 interposed therebetween. Since the active element 230 has a stacked structure, the impedance can be reduced and capacitance can be increased as compared with a structure having a single layer of active elements.
제2 그라운드 층(242)은 능동소자(230)의 제2층(232) 전면에 결합하여, 전도성을 갖는 물질로 그라운드 전극으로 작용한다. 제2 그라운드 층(242) 역시 연성 인쇄회로기판(220)과 마찬가지로 단일의 전도층으로 구성된다. 제2 그라운드 층(242)은 도전성 금속 박편으로 이루어지며, 능동소자(230)에 대응되도록 상호 분리된 형태로 해당하는 능동소자(230)의 일면에 접합하는 그라운드 전극들을 가질 수 있다. 도전성 금속의 박편은 구리, 금, 은 등과 같은 원자재로 이루어질 수 있다. 그라운드 전극은 대응되는 능동소자의 제2층(232)의 횡단면적과 동일한 횡단면적을 갖고 일정 두께를 갖는 형상으로 이루어질 수 있다.The second ground layer 242 is coupled to the entire surface of the second layer 232 of the active element 230, and serves as a ground electrode as a conductive material. Like the flexible printed circuit board 220, the second ground layer 242 is formed of a single conductive layer. The second ground layer 242 may be formed of a conductive metal flake, and may have ground electrodes bonded to one surface of the corresponding active element 230 in a form separated from each other to correspond to the active element 230. The flakes of the conductive metal may be made of raw materials such as copper, gold, silver, and the like. The ground electrode may have a cross-sectional area equal to the cross-sectional area of the second layer 232 of the corresponding active element and have a predetermined thickness.
정합층(250)은 능동소자(230)의 제2층(232)의 전면에 위치하며, 제2 그라운드 층(242)과 결합할 수 있다. 정합층(250)은 능동소자(230)와 피검사체 사이의 음향 임피던스의 급격한 변화에 따른 영상 왜곡 등의 문제를 감소시키는 완충 역할을 한다. 정합층(250)은 하나 또는 2층 이상의 복수의 층들로 구성될 수 있는데, 도 3에 도시된 바와 같이 2층 구조(251,252)가 널리 사용된다. 정합층(250)에는 음향 렌즈(260)가 결합할 수 있으며, 음향 렌즈(260)를 통해 초음파를 피검사체에 접속시킬 수 있다.The matching layer 250 may be positioned in front of the second layer 232 of the active device 230 and may be coupled to the second ground layer 242. The matching layer 250 serves as a buffer for reducing problems such as image distortion due to a sudden change in acoustic impedance between the active element 230 and the object under test. The matching layer 250 may be composed of one, two or more layers, and two- layer structures 251 and 252 are widely used as shown in FIG. 3. An acoustic lens 260 may be coupled to the matching layer 250, and ultrasonic waves may be connected to the object through the acoustic lens 260.
도 4는 금속층-기판층-금속층으로 구성된 일반적인 연성 인쇄회로기판의 구조도이다.4 is a structural diagram of a general flexible printed circuit board composed of a metal layer, a substrate layer, and a metal layer.
도 4를 참조하면, 일반적인 연성 인쇄회로기판(420)은 하나의 기판층(421), 예를 들어 폴리이미드(polyimide: PI) 층 위 아래로 각각 금속층(422,423), 예를 들어 구리(copper: Cu)층을 배치한다. 그리고, 상하면에 보호층(cover lay)(424)을 적층할 수 있다. 전술한 금속층(Cu)(422)-기판층(PI)(421)-금속층(Cu)(423)으로 이루어진 다층형 연성 인쇄회로기판의 경우, 구리(Cu)와 폴리이미드(PI)의 음향 임피던스 차이로 음향 특성(acoustic performance)에 좋지 않은 영향을 끼치게 된다.Referring to FIG. 4, a typical flexible printed circuit board 420 may be formed of a metal layer 422, 423, for example, copper, above and below one substrate layer 421, for example, a polyimide (PI) layer. Cu) layer is arrange | positioned. In addition, a cover layer 424 may be stacked on upper and lower surfaces. In the case of the multilayer flexible printed circuit board made of the above-described metal layer (Cu) 422-substrate layer (PI) 421-metal layer (Cu) 423, the acoustic impedance of copper (Cu) and polyimide (PI) Differences adversely affect acoustic performance.
또한, 다층형 연성 인쇄회로기판(420)은 금속층(422,423)을 능동소자와 직접 결합하도록 하기 위해서는 에칭(etching)을 통해 기판층(421)을 제거해야만 한다. 이때, 능동소자의 형상에 대응되어 결합하는 활성화 영역(active area)(40)이 에칭을 통해 제거되어야만 한다.In addition, the multilayer flexible printed circuit board 420 must remove the substrate layer 421 through etching in order to directly couple the metal layers 422 and 423 to the active device. At this time, the active area 40 coupled to correspond to the shape of the active element should be removed by etching.
도 5는 본 발명의 일 실시 예에 따른 금속층인 연성 인쇄회로기판의 구조도이다.5 is a structural diagram of a flexible printed circuit board as a metal layer according to an embodiment of the present invention.
도 5를 참조하면, 일 실시 예에 따른 연성 인쇄회로기판(520)은 단일의 금속층(521)이다. 도 4를 참조로 하여 전술한 연성 인쇄회로기판과 같이 금속층-기판층-금속층 구조를 가지는 것이 아니라, 단지 금속층(521), 예를 들어 구리층으로만 이루어진다. 그리고, 금속층(521)의 상하면에 보호층(cover lay)(524)을 적층할 수 있다. 연성 인쇄회로기판(520)이 단일의 금속층임에 따라, 금속층과 기판층의 음향 임피던스 차이에 의한 음향 특성을 향상시킬 수 있다.Referring to FIG. 5, the flexible printed circuit board 520 according to an embodiment is a single metal layer 521. It does not have a metal layer-substrate layer-metal layer structure like the flexible printed circuit board described above with reference to FIG. 4, but only a metal layer 521, for example, a copper layer. A cover layer 524 may be stacked on the upper and lower surfaces of the metal layer 521. As the flexible printed circuit board 520 is a single metal layer, acoustic characteristics may be improved due to a difference in acoustic impedance between the metal layer and the substrate layer.
나아가, 일 실시 예에 따른 연성 인쇄회로기판(520)은 에칭 등을 통해 기판층을 제거하는 방식을 사용하는 것이 아니라, 금속층(521), 예를 들어 동박(copper foil) 자체를 연성 인쇄회로기판(520)으로 제조함에 따라, 도 4를 참조로 하여 전술한 에칭 프로세스 등의 추가적인 프로세스가 필요 없으며, 간단하게 초음파 트랜스듀서를 제작할 수 있다. 이때, 능동소자의 형상에 대응되어 결합하게 되는 활성화 영역(50)은 에칭 등의 제거 프로세스 없이도 바로 능동소자와 결합할 수 있다.Furthermore, the flexible printed circuit board 520 according to the exemplary embodiment does not use a method of removing the substrate layer through etching or the like, but instead of the metal layer 521, for example, copper foil, the flexible printed circuit board may be used. As manufactured at 520, an additional process such as the etching process described above with reference to FIG. 4 is unnecessary, and the ultrasonic transducer may be simply manufactured. At this time, the activation region 50 that is coupled corresponding to the shape of the active element may be directly coupled with the active element without a removal process such as etching.
도 6은 본 발명의 일 실시 예에 따른 초음파 트랜스듀서의 연성 인쇄회로기판 제조방법을 도시한 흐름도이다.6 is a flowchart illustrating a method of manufacturing a flexible printed circuit board of an ultrasonic transducer according to an embodiment of the present invention.
도 6을 참조하면, 우선, 도전체인 원자재를 기판 형태로 재단한다(600). 원자재는 전기전도성이 우수한 전도체인 동(Cu) 등의 금속일 수 있으나, 이에 한정되지는 않는다. 다만, 여기서 기판은 일반적으로 사용되는 폴리이미드 재질의 폴리이미드층이 아니라 도전체층이다.Referring to FIG. 6, first, a raw material that is a conductor is cut into a substrate (600). The raw material may be a metal such as copper (Cu), which is a conductor having excellent electrical conductivity, but is not limited thereto. However, the substrate here is a conductor layer, not a polyimide layer made of polyimide.
이어서, 재단된 기판의 일면에 캐리어를 밀착하거나 열 압착(610)하고, 밀착 또는 열 압착된 기판, 예를 들어 동박의 전면에 회로 패턴을 형성한다(620). 일 실시 예에 따른 회로 패턴 형성 단계(620)는 노광, 현상, 부식, 박리 및 건조 등의 단계를 포함할 수 있다. 예를 들어, 원하는 패턴의 회로를 형성하기 위해 기판의 일부분을 노광 및 현상한다. 금속층인 기판은 능동소자가 접착될 부분인 활성화 영역(active area)과, 신호를 송수신하는 트레이스(trace)로 구성되는데, 트레이스는 능동소자에 결합하여 능동소자와 시스템 간 신호를 송수신할 수 있도록 한다.Subsequently, the carrier may be adhered or thermally compressed 610 on one surface of the cut substrate, and a circuit pattern may be formed on the entire surface of the substrate, for example, copper foil, adhered or thermally compressed (620). The circuit pattern forming step 620 according to an embodiment may include exposure, development, corrosion, peeling, and drying. For example, a portion of the substrate is exposed and developed to form a circuit of the desired pattern. The substrate, which is a metal layer, is composed of an active area where an active element is to be bonded, and a trace for transmitting and receiving signals, which are coupled to the active element to transmit and receive signals between the active element and the system. .
일 실시 예에 따른 연성 인쇄회로기판은 단일의 금속층, 예를 들어 단일의 금속층이므로, 금속층과 기판층으로 구성되는 다층형 연성 인쇄회로기판 구조를 대상으로 금속층과 능동소자를 직접 접착하기 위해 요구되는 에칭 프로세스가 필요 없게 된다. 예를 들어, 능동소자와 접착될 금속층의 일부분 및 그와 연결되는 부분을 제외한 나머지 부분을 제거하고, 기판층을 능동소자의 형상에 대응되도록 일부분을 제거하는 과정이 필요하지 않다.Since the flexible printed circuit board according to the exemplary embodiment is a single metal layer, for example, a single metal layer, the flexible printed circuit board is required to directly bond the metal layer and the active element to the multilayer flexible printed circuit board structure including the metal layer and the substrate layer. There is no need for an etching process. For example, a process of removing a portion of the metal layer to be bonded to the active element and a portion thereof except for the portion connected to the active element and removing a portion of the substrate layer to correspond to the shape of the active element is not necessary.
이어서, 기판의 전·후면에 보호층(cover lay)을 부착한다(630). 이때, 금속층인 연성 인쇄회로기판에서 능동소자가 부착되는 활성화 영역을 제외한 나머지 부분을 보호층으로 덮을 수 있다. 이에 따라, 금속층이 외부로 노출되는 것을 방지할 수 있고 금속층을 보호할 수 있다. 나아가, 외부로 노출된 금속층의 전면 및 후면을 표면 처리층으로 표면 처리하는 단계를 포함할 수 있다. 이렇게 완성된 연성 인쇄회로기판은 능동소자에 결합될 수 있다. 이때, 능동소자를 연성 인쇄회로기판의 전면에 적층할 수 있으며, 이로 인해 능동소자 사이의 임피던스가 작아짐은 물론 커팬시턴스는 증가시킬 수 있다.Subsequently, a cover layer is attached to the front and rear surfaces of the substrate (630). In this case, the protective layer may cover the remaining portion of the flexible printed circuit board, which is a metal layer, except for the active region to which the active element is attached. Accordingly, the metal layer can be prevented from being exposed to the outside and the metal layer can be protected. Furthermore, the method may include surface treating the front and rear surfaces of the metal layer exposed to the outside with the surface treatment layer. The completed flexible printed circuit board may be coupled to an active device. In this case, the active elements may be stacked on the front surface of the flexible printed circuit board, thereby reducing the impedance between the active elements and increasing the capacitance.
도 7은 본 발명의 일 실시 예에 따른 초음파 트랜스듀서 제조방법을 도시한 흐름도이다.7 is a flowchart illustrating a method of manufacturing an ultrasonic transducer according to an embodiment of the present invention.
도 7을 참조하면, 도 6을 참조로 전술한 바와 같이 연성 인쇄회로기판의 제조방법은 새롭지만, 어레이 제조방법은 종래와 동일하다. 예를 들어, 어레이를 제조하기 위해, 소자들을 세척(700)하고, 세척된 소자들을 적층(710)하고, 소자들을 분리(dicing)(720)하며, 커프(kerf)로 충진(730)한 후, 음향 렌즈를 부착한다(lensing)(740).Referring to FIG. 7, the manufacturing method of the flexible printed circuit board is new as described above with reference to FIG. 6, but the manufacturing method of the array is the same as in the related art. For example, to fabricate an array, after cleaning 700 the elements, stacking 710 the cleaned elements, dividing the elements 720, and filling 730 with a kerf. In operation 740, an acoustic lens is attached.
한편, 이하 도 8 내지 도 15를 참조하여, 본 발명의 일 실시 예에 따른 초음파 트랜스듀서와 일반적인 초음파 트랜스듀서의 성능 차이를 설명하고자 한다.On the other hand, with reference to Figures 8 to 15, will be described the difference between the performance of the ultrasonic transducer and the general ultrasonic transducer according to an embodiment of the present invention.
도 8은 본 발명의 실시 예에 따른 초음파 트랜스듀서와 일반적인 초음파 트랜스듀서의 시간에 따른 전압 변화를 비교한 그래프이다. 도 8은 PZflex와 같은 시뮬레이션 도구(simulation tool)를 이용하여 해석한 결과이다.8 is a graph comparing voltage changes over time of an ultrasonic transducer and a general ultrasonic transducer according to an exemplary embodiment of the present invention. 8 shows the result of analysis using a simulation tool such as PZflex.
상단의 그래프는 능동소자가 단일 층으로 이루어진 일반적인 초음파 트랜스듀서의 시간(times)에 따른 전압(voltage) 변화를 나타낸 그래프이고, 중간의 그래프는 능동소자가 다수의 층으로 이루어지고, 기판층 상에 전도층이 형성되는 일반적인 연성 인쇄회로기판을 포함하는 초음파 트랜스듀서의 시간에 따른 전압 변화를 나타낸 그래프이며, 하단의 그래프는 능동소자가 다수의 층으로 이루어지고, 단일의 금속층인 연성 인쇄회로기판을 포함하는 본 실시 예의 초음파 트랜스듀서의 시간에 따른 전압 변화를 나타낸다. 도 8에 도시된 그래프 비교를 통해, 본 실시 예의 초음파 트랜스듀서가 동일 시간대에서 더 큰 전압 변화를 가짐을 확인할 수 있다.The upper graph shows the change of voltage with time of a typical ultrasonic transducer in which the active element is a single layer, and the middle graph shows the active element in multiple layers, This is a graph showing the voltage change over time of an ultrasonic transducer including a general flexible printed circuit board having a conductive layer formed thereon, and the graph below shows a flexible printed circuit board having a plurality of layers of active elements and a single metal layer. It shows the voltage change with time of the ultrasonic transducer of the present embodiment including. It can be seen from the graph comparison shown in FIG. 8 that the ultrasonic transducer of the present embodiment has a larger voltage change at the same time.
도 9는 본 발명의 실시 예에 따른 초음파 트랜스듀서와 일반적인 초음파 트랜스듀서의 주파수에 따른 정규 크기의 변화를 비교한 그래프이다. 도 9는 PZflex와 같은 시뮬레이션 도구(simulation tool)를 이용하여 해석한 결과이다.9 is a graph comparing the change in the normal size according to the frequency of the ultrasonic transducer and the general ultrasonic transducer according to an embodiment of the present invention. 9 shows the results of analysis using a simulation tool such as PZflex.
도 9를 참조하면, 능동소자가 단일 층으로 이루어진 일반적인 초음파 트랜스듀서의 주파수(frequency)에 따른 정규 크기(normalized magnitude)의 변화와, 능동소자가 다수의 층으로 이루어지고, 기판층 상에 전도층이 형성되는 연성 인쇄회로기판을 포함하는 일반적인 초음파 트랜스듀서의 주파수에 따른 정규 크기의 변화와, 능동소자가 다수의 층으로 이루어지고 단일의 금속층인 연성 인쇄회로기판을 포함하는 본 실시 예의 초음파 트랜스듀서의 주파수에 따른 정규 크기의 변화를 비교한다.Referring to FIG. 9, a change in normalized magnitude according to a frequency of a general ultrasonic transducer in which an active element is made of a single layer, and the active element is made of a plurality of layers, and a conductive layer on the substrate layer The ultrasonic transducer according to the present embodiment includes a change in a normal size according to a frequency of a general ultrasonic transducer including the flexible printed circuit board formed thereon, and an active element including a flexible printed circuit board having a plurality of layers and a single metal layer. Compare the change in normal magnitude with frequency.
도 9에 도시된 그래프 비교를 통해, 본 실시 예의 초음파 트랜스듀서의 경우 더 넓은 범위에서 정규 크기가 크게 나타남을 알 수 있다. 본 실시 예의 초음파 트랜스듀서의 경우, 대역폭(bandwidth)과 비대역폭(fractional bandwidth)이 넓어지고, 감도(sensitivity)가 향상된다.From the graph comparison shown in Figure 9, it can be seen that in the case of the ultrasonic transducer of the present embodiment, the normal size is larger in a wider range. In the case of the ultrasonic transducer of the present embodiment, the bandwidth and the fractional bandwidth are widened, and the sensitivity is improved.
도 10은 일반적인 초음파 트랜스듀서와 본 발명의 일 실시 예에 따른 초음파 트랜스듀서의 케이블 간의 임피던스 부정합 개선 효과를 보여주는 그래프이다. 세부적으로, 도 10은 어레이(array) 트랜스듀서 레벨에서의 강도(magnitude) 변화를 나타낸 것이다.10 is a graph showing an effect of improving impedance mismatch between a general ultrasonic transducer and a cable of an ultrasonic transducer according to an embodiment of the present invention. In detail, FIG. 10 shows the change in intensity at the array transducer level.
도 10에 도시된 바와 같이, 작은 주파수 영역에서 본 실시 예의 초음파 트랜스듀서의 임피던스가 일반적인 초음파 트랜스듀서의 것들에 비해 작은 값을 가지며, 트랜스듀서와 케이블 간의 임피던스 부정합이 개선되었음을 확인할 수 있다.As shown in FIG. 10, it can be seen that the impedance of the ultrasonic transducer of the present embodiment has a smaller value than that of the general ultrasonic transducer in a small frequency region, and the impedance mismatch between the transducer and the cable is improved.
도 11과 도 12는 본 발명의 일 실시 예에 따른 초음파 트랜스듀서와 일반적인 초음파 트랜스듀서의 음향 특성 향상 효과를 보여주는 그래프이다.11 and 12 are graphs showing the effect of improving the acoustic characteristics of the ultrasonic transducer and the general ultrasonic transducer according to an embodiment of the present invention.
세부적으로, 도 11은 단일 층의 능동소자를 가진 일반적인 초음파 트랜스듀서와 다수의 층이 적재된 능동소자를 포함하는 본 발명의 초음파 트랜스듀서의 시간(times)에 대한 전압(vlotage) 크기를 비교한 그래프이다. 도 11에 도시된 바와 같이, 본 실시 예의 초음파 트랜스듀서가 동일 시간대에서 더 큰 전압 변화를 가짐을 확인할 수 있다.In detail, FIG. 11 compares the magnitude of the voltage versus time of a conventional ultrasonic transducer having a single layer active element and an ultrasonic transducer of the present invention including an active element loaded with multiple layers. It is a graph. As shown in Figure 11, it can be seen that the ultrasonic transducer of the present embodiment has a larger voltage change in the same time zone.
도 12는 단일 층의 능동소자를 가진 일반적인 초음파 트랜스듀서와 다수의 층이 적재된 능동소자를 포함하는 본 발명의 초음파 트랜스듀서의 주파수(frequency)에 대한 정규 크기(normalize magnitude)를 비교한 그래프이다. 도 12에 도시된 바와 같이, 본 실시 예의 초음파 트랜스듀서의 경우 더 넓은 범위에서 정규 크기가 크게 나타남을 알 수 있다. 본 실시 예의 초음파 트랜스듀서의 경우, 대역폭(bandwidth)과 비대역폭(fractional bandwidth)이 넓어지고, 감도(sensitivity)가 향상된다.FIG. 12 is a graph comparing normalized magnitudes to frequencies of a general ultrasonic transducer having a single layer active element and an ultrasonic transducer of the present invention including an active element loaded with a plurality of layers. . As shown in FIG. 12, in the case of the ultrasonic transducer of the present embodiment, it can be seen that the normal size is large in a wider range. In the case of the ultrasonic transducer of the present embodiment, the bandwidth and the fractional bandwidth are widened, and the sensitivity is improved.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been described with reference to the embodiments. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (20)

  1. 다수의 층으로 구성된 능동소자; 및An active element composed of a plurality of layers; And
    상기 능동소자를 구성하는 적어도 하나의 층의 일면과 직접 결합하여 전기 신호를 공급하는 단일의 금속층인 연성 인쇄회로기판;A flexible printed circuit board which is a single metal layer which is directly coupled to one surface of at least one layer constituting the active element to supply an electrical signal;
    을 포함하는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer comprising a.
  2. 제 1 항에 있어서, 상기 연성 인쇄회로기판은The flexible printed circuit board of claim 1, wherein the flexible printed circuit board
    회로 패턴이 형성된 단일의 도전성 금속 박편인 것을 특징으로 하는 초음파 트랜스듀서.An ultrasonic transducer, characterized in that it is a single conductive metal flake having a circuit pattern formed thereon.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 연성 인쇄회로기판은 상기 능동소자의 적어도 하나의 층의 일면과 접착하고, 상기 능동소자의 일면과 접착하는 연성 인쇄회로기판의 활성화 영역은 상기 일면의 형성과 대응되는 도전성 물질로 구성되는 것을 특징으로 하는 초음파 트랜스듀서.The flexible printed circuit board is bonded to one surface of at least one layer of the active device, and the active region of the flexible printed circuit board, which is bonded to one surface of the active device, is formed of a conductive material corresponding to the formation of the one surface. Ultrasonic transducer.
  4. 제 1 항에 있어서, 상기 초음파 트랜스듀서는The method of claim 1, wherein the ultrasonic transducer is
    상기 능동소자와 전기적으로 연결되는 단일의 금속층인 그라운드 층;A ground layer, which is a single metal layer electrically connected to the active element;
    를 더 포함하는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that it further comprises.
  5. 제1층 및 제2층을 포함한 짝수 층이 적층된 능동소자;An active device in which an even layer including a first layer and a second layer is stacked;
    상기 능동소자의 제1층의 후면에 위치하여 상기 능동소자에서 발생하여 상기 후면으로 전파되는 초음파를 차단하거나 감쇄하는 배킹재;A backing material positioned on a rear surface of the first layer of the active element to block or attenuate ultrasonic waves generated by the active element and propagated to the rear surface;
    상기 제2층의 전면에 위치하여 상기 능동소자에서 발생하여 상기 전면으로 전파되는 초음파의 음향 임피던스를 정합하는 정합층; 및A matching layer positioned on a front surface of the second layer and matching an acoustic impedance of ultrasonic waves generated by the active element and propagated to the front surface; And
    상기 능동소자의 제1층과 제2층 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 연성 인쇄회로기판;A flexible printed circuit board positioned between a first layer and a second layer of the active element and a single metal layer electrically connected to the active element;
    을 포함하는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer comprising a.
  6. 제 5 항에 있어서, 상기 연성 인쇄회로기판은The flexible printed circuit board of claim 5, wherein the flexible printed circuit board
    회로 패턴이 형성된 단일의 도전성 금속 박편인 것을 특징으로 하는 초음파 트랜스듀서.An ultrasonic transducer, characterized in that it is a single conductive metal flake having a circuit pattern formed thereon.
  7. 제 5 항에 있어서,The method of claim 5, wherein
    상기 연성 인쇄회로기판은 상기 능동소자의 제1층 및 제2층의 일면과 각각 접착하고, 상기 능동소자의 제1층 및 제2층의 일면과 접착하는 연성 인쇄회로기판의 활성화 영역은 상기 일면의 형성과 대응되는 도전성 물질로 구성되는 것을 특징으로 하는 초음파 트랜스듀서.The flexible printed circuit board is bonded to one surface of the first layer and the second layer of the active element, respectively, and the activation area of the flexible printed circuit board is bonded to the one surface of the first layer and the second layer of the active element. Ultrasonic transducer, characterized in that consisting of a conductive material corresponding to the formation of.
  8. 제 5 항에 있어서, 상기 초음파 트랜스듀서는The method of claim 5, wherein the ultrasonic transducer is
    상기 능동소자의 제1층과 상기 배킹재 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 제1 그라운드 층; 및A first ground layer disposed between the first layer of the active element and the backing material, the first ground layer being a single metal layer electrically connected to the active element; And
    상기 능동소자의 제2층과 상기 정합층 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 제2 그라운드 층;A second ground layer disposed between the second layer of the active element and the matching layer, the second ground layer being a single metal layer electrically connected to the active element;
    을 더 포함하는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that it further comprises.
  9. 제 5 항에 있어서, 상기 능동소자는The method of claim 5, wherein the active element
    다수의 압전소자인 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that a plurality of piezoelectric elements.
  10. 제 5 항에 있어서, 상기 정합층은The method of claim 5, wherein the matching layer
    다수의 층으로 구성되는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that consisting of a plurality of layers.
  11. 제1층, 제2층 및 제3층을 포함한 홀수 층이 적층된 능동소자;An active element having an odd layer including a first layer, a second layer, and a third layer stacked thereon;
    상기 능동소자의 제1층의 후면에 위치하여 상기 능동소자에서 발생하여 상기 후면으로 전파되는 초음파를 차단하거나 감쇄하는 배킹재;A backing material positioned on a rear surface of the first layer of the active element to block or attenuate ultrasonic waves generated by the active element and propagated to the rear surface;
    상기 제3층의 전면에 위치하여 상기 능동소자에서 발생하여 상기 전면으로 전파되는 초음파의 음향 임피던스를 정합하는 정합층;A matching layer positioned on a front surface of the third layer to match acoustic impedance of ultrasonic waves generated by the active element and propagated to the front surface;
    상기 능동소자의 제1층과 상기 배킹재 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 제1 전극부; 및A first electrode part disposed between the first layer of the active element and the backing material and being a single metal layer electrically connected to the active element; And
    상기 능동소자의 제3층과 상기 정합층 사이에 위치하여 상기 능동소자와 전기적으로 연결되는 단일의 금속층인 제2 전극부;A second electrode part disposed between the third layer and the matching layer of the active element and being a single metal layer electrically connected to the active element;
    를 포함하는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer comprising a.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 제1 전극부는 연성 인쇄회로기판이고, 상기 제2 전극부는 그라운드 층인 것을 특징으로 하는 초음파 트랜스듀서.And the first electrode part is a flexible printed circuit board and the second electrode part is a ground layer.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 제1 전극부는 그라운드 층이고, 상기 제2 전극부는 연성 인쇄회로기판인 것을 특징으로 하는 초음파 트랜스듀서.And the first electrode part is a ground layer, and the second electrode part is a flexible printed circuit board.
  14. 제 11 항에 있어서, 상기 제1 전극부와 상기 제2 전극부는The method of claim 11, wherein the first electrode portion and the second electrode portion
    회로 패턴이 형성된 단일의 도전성 금속 박편인 것을 특징으로 하는 초음파 트랜스듀서.An ultrasonic transducer, characterized in that it is a single conductive metal flake having a circuit pattern formed thereon.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 제1 전극부는 상기 능동소자의 적어도 하나의 층의 일면과 접착하고, 상기 능동소자의 일면과 접착하는 제1 전극부의 활성화 영역은 상기 일면의 형성과 대응되는 도전성 물질로 구성되고,The first electrode portion is adhered to one surface of at least one layer of the active element, the activation region of the first electrode portion adhered to one surface of the active element is made of a conductive material corresponding to the formation of the one surface,
    상기 제2 전극부는 상기 능동소자의 적어도 하나의 층의 일면과 접착하고, 상기 능동소자의 일면과 접착하는 제2 전극부의 활성화 영역은 상기 일면의 형성과 대응되는 도전성 물질로 구성되는 것을 특징으로 하는 초음파 트랜스듀서.Wherein the second electrode portion adheres to one surface of at least one layer of the active element, and the activation region of the second electrode portion adheres to one surface of the active element is made of a conductive material corresponding to the formation of the one surface. Ultrasonic transducer.
  16. 제 11 항에 있어서, 상기 능동소자는The method of claim 11, wherein the active element
    다수의 압전소자인 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that a plurality of piezoelectric elements.
  17. 제 11 항에 있어서, 상기 정합층은The method of claim 11, wherein the matching layer
    다수의 층으로 구성되는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that consisting of a plurality of layers.
  18. 연성 인쇄회로기판을 형성하는 단계; 및Forming a flexible printed circuit board; And
    상기 형성된 연성 인쇄회로기판을, 다수의 층으로 구성된 능동소자에 결합하는 단계; 를 포함하며,Coupling the formed flexible printed circuit board to an active device composed of a plurality of layers; Including;
    상기 연성 인쇄회로기판을 형성하는 단계는Forming the flexible printed circuit board
    단일 층의 원자재를 기판 형태로 재단하는 단계;Cutting a single layer of raw material into a substrate form;
    재단된 기판에 캐리어를 밀착 또는 열 압착하는 단계;Pressing or thermocompressing the carrier to the cut substrate;
    밀착 또는 열 압착된 기판의 전면에 회로 패턴을 형성하는 단계; 및Forming a circuit pattern on the front surface of the tightly or thermocompressed substrate; And
    상기 능동소자가 적층되는 패턴을 제외한 기판의 상면에 보호층을 부착하는 단계;Attaching a protective layer to an upper surface of the substrate except for a pattern in which the active elements are stacked;
    를 포함하는 것을 특징으로 하는 초음파 트랜스듀서 제조방법.Ultrasonic transducer manufacturing method comprising a.
  19. 제 18 항에 있어서, 상기 연성 인쇄회로기판은 The flexible printed circuit board of claim 18, wherein the flexible printed circuit board
    회로 패턴이 형성된 단일의 도전성 금속 박편인 것을 특징으로 하는 초음파 트랜스듀서 제조방법.Ultrasonic transducer manufacturing method characterized in that the circuit pattern is formed of a single conductive metal flake.
  20. 제 18 항에 있어서, 상기 초음파 트랜스듀서 제조방법은The method of claim 18, wherein the ultrasonic transducer manufacturing method
    단일의 금속층인 그라운드 층을 형성하는 단계; 및Forming a ground layer that is a single metal layer; And
    형성된 그라운드 층을 상기 능동소자에 결합하는 단계;Coupling the formed ground layer to the active device;
    를 더 포함하는 것을 특징으로 하는 초음파 트랜스듀서 제조방법.Ultrasonic transducer manufacturing method comprising a further.
PCT/KR2014/011570 2014-11-28 2014-11-28 Multi-layer ultrasonic transducer and method for manufacturing same WO2016085014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/011570 WO2016085014A1 (en) 2014-11-28 2014-11-28 Multi-layer ultrasonic transducer and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/011570 WO2016085014A1 (en) 2014-11-28 2014-11-28 Multi-layer ultrasonic transducer and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016085014A1 true WO2016085014A1 (en) 2016-06-02

Family

ID=56074555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011570 WO2016085014A1 (en) 2014-11-28 2014-11-28 Multi-layer ultrasonic transducer and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016085014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112181208A (en) * 2020-10-30 2021-01-05 业泓科技(成都)有限公司 Touch identification device, display device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834880A (en) * 1996-09-04 1998-11-10 General Electric Company Multilayer array ultrasonic transducers
US6121718A (en) * 1998-03-31 2000-09-19 Acuson Corporation Multilayer transducer assembly and the method for the manufacture thereof
JP2012222474A (en) * 2011-04-06 2012-11-12 Konica Minolta Medical & Graphic Inc Multilayer piezoelectric material, ultrasonic probe and ultrasonic diagnostic equipment
WO2013084911A1 (en) * 2011-12-09 2013-06-13 株式会社村田製作所 Ultrasonic transducer and multi-feed detection sensor
KR20130097552A (en) * 2012-02-24 2013-09-03 경북대학교 산학협력단 Ultrasonic transducer and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834880A (en) * 1996-09-04 1998-11-10 General Electric Company Multilayer array ultrasonic transducers
US6121718A (en) * 1998-03-31 2000-09-19 Acuson Corporation Multilayer transducer assembly and the method for the manufacture thereof
JP2012222474A (en) * 2011-04-06 2012-11-12 Konica Minolta Medical & Graphic Inc Multilayer piezoelectric material, ultrasonic probe and ultrasonic diagnostic equipment
WO2013084911A1 (en) * 2011-12-09 2013-06-13 株式会社村田製作所 Ultrasonic transducer and multi-feed detection sensor
KR20130097552A (en) * 2012-02-24 2013-09-03 경북대학교 산학협력단 Ultrasonic transducer and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112181208A (en) * 2020-10-30 2021-01-05 业泓科技(成都)有限公司 Touch identification device, display device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2010093083A1 (en) Ultrasound probe, ultrasound imaging device and fabrication methods of the same
US7573181B2 (en) Multilayer ultrasonic transducer and method for manufacturing same
WO2013162153A1 (en) Ultrasonic transducer, ultrasonic probe, and ultrasound image diagnosis apparatus
US7892176B2 (en) Monitoring or imaging system with interconnect structure for large area sensor array
WO2016104820A1 (en) Ultrasonic transducer having flexible printed circuit board with thick metal layer and manufacturing method thereof
KR20110088384A (en) Ultrasound transducer, ultrasound probe, and a method for manufacturing ultrasound transducers
US20110198968A1 (en) Array-type ultrasonic vibrator
WO2016137023A1 (en) Ultrasonic transducer having matching layer having composite structure and method for manufacturing same
US7679270B2 (en) Ultrasonic probe
CN102497938A (en) Ultrasound imaging transducer acoustic stack with integral electrical connections
JP2010220216A (en) Probe for ultrasonic diagnostic apparatus and method of manufacturing the same
WO2015115779A1 (en) Method for producing intravascular ultrasonic transducer and structure thereof
JP2008289599A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
WO2016085014A1 (en) Multi-layer ultrasonic transducer and method for manufacturing same
KR101350520B1 (en) Multi-layer active material type ultrasonic transducer and manufacturing method thereof
KR20030082303A (en) Ultrasonic transducer array
JP2007142555A (en) Ultrasonic probe and ultrasonic diagnostic equipment
WO2016117721A1 (en) Ultrasonic transducer having sound absorbing layer for improving heat dissipation
WO2014181966A1 (en) Unit ultrasonic wave probe, ultrasonic wave probe module having same, and ultrasonic wave probe device having same
WO2014185557A1 (en) Ultrasonic transducer and manufacturing method therefor
KR20150073056A (en) Ultrasonic diagnostic instrument and manufacturing method thereof
US20020089834A1 (en) Reduced crosstalk ultrasonic piezo film array on a printed circuit board
WO2016126041A1 (en) Ultrasonic transducer improving acoustic properties and thermal properties
JP5349141B2 (en) Ultrasonic probe
KR20160064514A (en) Multi-layered ultrasonic transducer and method for manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906744

Country of ref document: EP

Kind code of ref document: A1