WO2016084838A1 - Braking device for vehicle - Google Patents

Braking device for vehicle Download PDF

Info

Publication number
WO2016084838A1
WO2016084838A1 PCT/JP2015/083047 JP2015083047W WO2016084838A1 WO 2016084838 A1 WO2016084838 A1 WO 2016084838A1 JP 2015083047 W JP2015083047 W JP 2015083047W WO 2016084838 A1 WO2016084838 A1 WO 2016084838A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
braking force
hydraulic pressure
unit
hydraulic
Prior art date
Application number
PCT/JP2015/083047
Other languages
French (fr)
Japanese (ja)
Inventor
賢 葛谷
山本 貴之
康人 石田
達史 小林
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2016084838A1 publication Critical patent/WO2016084838A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps

Definitions

  • the present invention relates to a vehicle braking device.
  • a servo pressure for driving a master piston is increased by a booster in accordance with a brake operation, and the hydraulic pressure in the master cylinder is increased by the servo pressure, and the master cylinder pressure is passed through an ABS device or the like.
  • the accumulator (accumulation unit) of the booster is used for increasing the servo pressure and thus for increasing the master cylinder pressure.
  • Such a vehicle braking device is described in, for example, Japanese Patent Application Laid-Open No. 2006-123889.
  • a new braking device for a vehicle has been devised that includes a braking force applying unit (for example, an actuator) that applies a braking force to the wheel based on the hydraulic pressure generated by the pressure generating unit.
  • the pressure accumulating unit directly supplies the hydraulic pressure to the braking force applying unit by the mechanical operation of the hydraulic pressure generating unit according to the brake operation.
  • the present invention has been made in view of such circumstances, and suppresses an increase in load pressure to other components of the braking force application unit even when an abnormality occurs in a part of the braking force application unit. It is an object of the present invention to provide a braking device for a vehicle that can be used.
  • the braking device for a vehicle includes a pressure accumulating portion for accumulating hydraulic fluid, and the pressure accumulating portion so that the increase in the fluid pressure in the pressure accumulating portion stops when the fluid pressure in the pressure accumulating portion is equal to or higher than a predetermined off pressure. And a hydraulic pressure that mechanically generates a hydraulic pressure corresponding to a brake operation with the hydraulic pressure accumulated in the pressure accumulating portion as an upper limit based on the hydraulic pressure in the pressure accumulating portion.
  • a pressure generating control unit including: a generating unit; a braking force applying unit that applies a braking force to a vehicle wheel based on the hydraulic pressure generated by the hydraulic pressure generating unit; and an acquisition unit that acquires a required braking force. When the required braking force acquired by the acquiring unit is equal to or greater than a predetermined value, the off-pressure is set lower than when the required braking force acquired by the acquiring unit is less than the predetermined value. To do.
  • the “off pressure” relating to the upper limit of the hydraulic pressure in the pressure accumulating unit is low.
  • the hydraulic pressure in the pressure accumulator increases (or increases later), the increase in the hydraulic pressure in the pressure accumulator is stopped earlier than usual, and the hydraulic pressure in the pressure accumulator becomes lower than normal. Kept low. That is, the load applied to the braking force applying unit by the pressure accumulating unit can be made smaller than usual.
  • the vehicle of this embodiment is not a hybrid vehicle but a vehicle that uses only an engine as a drive source.
  • the vehicle includes a hydraulic braking unit A that directly applies a hydraulic braking force to each wheel Wfl, Wfr, Wrl, Wrr to brake the vehicle.
  • the hydraulic braking unit A includes a brake pedal 11 that is a brake operation member, a stroke simulator unit 12, a reservoir tank 14, a booster mechanism 15, and an actuator (corresponding to a “braking force applying unit”) 16.
  • a brake ECU 17 and a wheel cylinder WC are provided.
  • the wheel cylinder WC regulates the rotation of the wheel W, and is provided in the caliper CL.
  • the wheel cylinder WC is a braking force applying mechanism that applies a braking force to the vehicle wheel W based on a first hydraulic pressure (described later).
  • the braking force applying mechanism is configured to be able to apply a braking force to the wheel W based on the first hydraulic pressure and the second hydraulic pressure.
  • a pair of brake pads (not shown) that are members are pressed to restrict rotation of the disc rotor DR that is a rotating member that rotates integrally with the wheel W from both sides.
  • the disc type brake is adopted, but a drum type brake may be adopted.
  • the wheel W is any one of the left and right front and rear wheels Wfl, Wfr, Wrl, and Wrr.
  • a pedal stroke sensor 11 a that detects a brake pedal stroke (operation amount) that is a brake operation state when the brake pedal 11 is depressed is provided.
  • the pedal stroke sensor 11 a is connected to the brake ECU 17, and a detection signal is output to the brake ECU 17.
  • the brake pedal 11 is connected to the stroke simulator unit 12 via a push rod 19.
  • the stroke simulator section 12 includes a cylinder section 12a, a piston 12b that can slide fluidly in the cylinder section 12a, a hydraulic chamber 12c formed by the cylinder section 12a, the piston 12b, and the piston 13b, and a hydraulic chamber. And a stroke simulator 12d communicated with 12c.
  • a push rod 19 is connected to one end side (right side in the drawing) of the sliding direction (axial direction) of the piston 12b.
  • the piston 12b is disposed in the hydraulic chamber 12c.
  • the hydraulic chamber 12c is provided with a spring 12e that is interposed between the piston 12b and the bottom wall 12a3 of the cylinder portion 12a and biases the piston 12c in the direction of expanding the hydraulic chamber 12c.
  • the hydraulic chamber 12c communicates with the stroke simulator 12d through an oil passage 12f connected to the input / output port 12a2.
  • the hydraulic chamber 12c communicates with the reservoir tank 14 via a connection oil passage (not shown).
  • the stroke simulator 12d causes the brake pedal 11 to generate a stroke (reaction force) having a magnitude corresponding to the operation state of the brake pedal 11. That is, the stroke simulator 12d is an operation corresponding pressure generating mechanism that generates a hydraulic pressure corresponding to the brake operation in the hydraulic pressure chamber 12d3.
  • the stroke simulator 12d includes a cylinder part 12d1, a piston part 12d2, a hydraulic chamber 12d3, and a spring 12d4.
  • the piston portion 12d2 slides liquid-tightly in the cylinder portion 12d1 in accordance with the brake operation for operating the brake pedal 11.
  • the hydraulic chamber (first hydraulic chamber) 12d3 is formed by being partitioned between the cylinder portion 12d1 and the piston portion 12d2.
  • the hydraulic chamber 12d3 communicates with the hydraulic chamber 12c through an oil passage 12f connected to the input / output port 12d5.
  • the spring 12d4 biases the piston portion 12d2 in a direction to reduce the volume of the hydraulic chamber 12d3.
  • the spring 12d4 is an interposed member interposed between the piston portion 12d2 and the input portion 15b.
  • another elastic member such as a rubber member may be employed instead of the spring.
  • the input part 15b When the piston part 12d2 is pressed toward the left side, the input part 15b does not move in spite of the sliding of the piston part 12d2 in the initial period of the brake operation.
  • the input portion 15b starts to move to the left side only when the force pressing the piston portion 12d2 to the left is greater than the sum of the urging force of the spring 12d4, the urging force of the spring 15e, and the sliding resistance of the input portion 15b.
  • the force pressing the piston portion 12d2 to the left is smaller than the total force described above, the input portion 15b does not move. Furthermore, after the end of the first period and when the brake operation increases, the input portion 15b moves as the piston portion 12d2 slides.
  • the booster mechanism 15 generates a first hydraulic pressure corresponding to the movement of the input unit 15b based on the hydraulic pressure of an accumulator (corresponding to a “pressure accumulating unit”) 15c1 that accumulates hydraulic fluid (brake fluid). This is output to the piping system 20 and the second piping system 30 (actuator 16) (first hydraulic pressure generating mechanism).
  • the booster mechanism 15 includes a cylinder 15a, an input unit 15b, a pressure supply device 15c, and a hydraulic pressure generation unit 15d.
  • the cylinder 15a is coaxially and integrally connected to the cylinder portion 12d1 of the stroke simulator 12d.
  • the input unit 15 b is for inputting a brake operation (hydraulic pressure corresponding to the brake operation) to the booster mechanism 15.
  • the input portion 15b is directly pressed by the piston portion 12d2 or pressed by a spring 12d4 that is an interposed member between the piston portion 12d2 and the piston portion 12d2 of the stroke simulator 12d. Is slid and moved in the cylinder 15a.
  • the input portion 15b is formed in a piston shape and slides in a liquid-tight manner in the cylinder 15a. The peripheral edge portion of the input portion 15b comes into contact with the step portion 12d6.
  • a step portion 15b1 is provided on the other end of the input portion 15b.
  • the tip of the step portion 15b1 comes into contact with one end of the spool portion 15d1.
  • the input portion 15b is biased toward one end by a spring 15e having one end abutting against the other end of the input portion 15b and the other end abutting against the convex portion 15a1 of the cylinder 15a.
  • a hydraulic chamber 12d7 is defined between the input portion 15b and the piston portion 12d2.
  • the hydraulic chamber 12d7 communicates with the reservoir tank 14 through an oil passage 41 connected to the input / output port 12d8.
  • the oil passage 41 is provided with an electromagnetic valve 41a that is opened and closed according to an opening / closing instruction of the brake ECU 17.
  • the solenoid valve 41a is a two-position solenoid valve that can control the communication / blocking state.
  • the solenoid valve 41a is cut off when the control current to the solenoid coil provided in the solenoid valve 41a is zero (when not energized), and when the control current is passed through the solenoid coil (when energized). It is a normally closed type controlled to a communication state.
  • the pressure supply device 15c includes a reservoir tank 14 that is a low pressure source, an accumulator 15c1 that is a high pressure source and accumulates hydraulic fluid, a pump 15c2 that sucks brake fluid in the reservoir tank 14 and pumps it to the accumulator 15c1, and a pump 15c2. Is provided with an electric motor 15c3.
  • the reservoir tank 14 is open to the atmosphere, and the hydraulic pressure in the reservoir tank 14 is the same as the atmospheric pressure.
  • the low pressure source is at a lower pressure than the high pressure source.
  • the pressure supply device 15c includes a pressure sensor 15c4 that detects the pressure of the brake fluid supplied from the accumulator 15c1 and outputs the detected pressure to the brake ECU 17.
  • the hydraulic pressure generator 15d generates a first hydraulic pressure corresponding to the movement of the input unit 15b based on the hydraulic pressure of the accumulator 15c1 that accumulates the hydraulic fluid. That is, the hydraulic pressure generating unit 15d mechanically generates a hydraulic pressure corresponding to the brake operation with the hydraulic pressure accumulated in the accumulator 15c1 as an upper limit based on the hydraulic pressure in the accumulator 15c1.
  • the hydraulic pressure generating portion 15d includes a spool portion 15d1 that slides fluidly in the cylinder 15a.
  • a high pressure port 15d2, a low pressure port 15d3, and an output port 15d4 are formed in the hydraulic pressure generating unit 15d.
  • the high pressure port 15d2 is directly connected to the accumulator 15c1 via the oil passage 42.
  • the low pressure port 15 d 3 is directly connected to the reservoir tank 14 through an oil passage 43 connected to the oil passage 41.
  • the output port 15d4 is connected to the actuator 16 (and thus the wheel cylinder WC) via the oil passage 44
  • the oil passage 44 is connected to the oil passages 30 a and 30 d of the second second piping system 30.
  • the oil passage 45 branched from the middle of the oil passage 44 is connected to the oil passages 20 a and 20 d of the first first piping system 20.
  • the oil passage 44 is provided with an opening / closing control valve 44a that is opened and closed according to an opening / closing instruction of the brake ECU 17.
  • the open / close control valve 44a is a two-position electromagnetic valve that can control the communication / blocking state.
  • the open / close control valve 44a is cut off when the control current to the solenoid coil provided in the open / close control valve 44a is zero (when not energized), and when the control current flows through the solenoid coil (when energized). ) Is a normally closed type that is controlled to communicate.
  • a hydraulic chamber 15d5 is defined between the cylinder 15a (bottom wall) and the spool portion 15d1.
  • a spring 15d6 that is interposed between the cylinder 15a (bottom wall) and the spool portion 15d1 and urges the hydraulic pressure chamber 15d5 to expand.
  • the spool portion 15d1 is biased by a spring 15d6 and is in a predetermined position (see FIG. 1).
  • the predetermined position of the spool portion 15d1 is a position where one end side of the spool portion 15d1 abuts on the convex portion 15a1 and is positioned and fixed, and the other end side end of the spool portion 15d1 is a position immediately before closing the low pressure port 15d3. .
  • the spool portion 15d1 has an oil passage 15d8 communicating with the hydraulic chamber 15d7. As shown in FIG. 1, when the spool portion 15d1 is in a predetermined position, the low pressure port 15d3 and the output port 15d4 communicate with each other via an oil passage 15d8, and the high pressure port 15d2 is closed by the spool portion 15d1.
  • the spool unit 15d1 When the input unit 15b moves to the right side, the spool unit 15d1 also moves to the right side (during decompression). At this time, the low pressure port 15d3 and the output port 15d4 communicate with each other via the oil passage 15d8, and the high pressure port 15d2 is closed by the spool portion 15d1.
  • the actuator 16 generates a hydraulic pressure corresponding to the brake operation within the first period, and increases the differential pressure between the target wheel cylinder pressure and the hydraulic pressure generated by the booster mechanism 15 outside the first period. This is a pressurizing mechanism that pressurizes the hydraulic pressure generated by the mechanism 15.
  • the actuator 16 is also a second hydraulic pressure generating mechanism that generates a desired second hydraulic pressure.
  • the second hydraulic pressure generating mechanism generates a second hydraulic pressure corresponding to a brake operation, for example.
  • First and second second piping systems 20 and 30 are formed in the actuator 16.
  • the first first piping system 20 controls the brake fluid pressure applied to the left rear wheel Wrl and the right rear wheel Wrr
  • the second second piping system 30 controls the brake fluid pressure applied to the right front wheel Wfr and the left front wheel Wfl. To control. That is, it is set as the piping structure of front and rear piping.
  • the hydraulic pressure supplied from the booster mechanism 15 is transmitted to each wheel cylinder WCrl, WCrr, WCfr, WCfl through the first first piping system 20 and the second second piping system 30.
  • the first first piping system 20 is provided with an oil passage 20a that connects the oil passage 45 and the wheel cylinders WCrl and WCrr.
  • the second second piping system 30 is provided with an oil passage 30a that connects the oil passage 44 and the wheel cylinders WCfr, WCfl, and the hydraulic pressure supplied from the booster mechanism 15 through each of the oil passages 20a, 30a is a wheel. It is transmitted to the cylinders WCrl, WCrr, WCfr, WCfl.
  • the oil passages 20a and 30a are provided with differential pressure control valves 21 and 31 that can be controlled to a communication state and a differential pressure state.
  • the valve positions of the differential pressure control valves 21 and 31 are adjusted so that they are in a communicating state during braking when the driver operates the brake pedal 11.
  • the valve positions of the differential pressure control valves 21 and 31 are adjusted so that the differential pressure is increased as the current value increases.
  • the oil passages 20a and 30a branch into two oil passages 20a1, 20a2, 30a1, and 30a2 on the wheel cylinders WCrl, WCrr, WCfr, and WCfl side downstream of the differential pressure control valves 21 and 31, respectively.
  • the oil passages 20a1 and 30a1 are provided with first and first pressure increase control valves 22 and 32 for controlling an increase in brake fluid pressure to the wheel cylinders WCrl and WCfr.
  • the oil passages 20a2 and 30a2 are provided with second and second pressure increase control valves 23 and 33 for controlling the increase of the brake fluid pressure to the wheel cylinders WCrr and WCfl.
  • first and second pressure-increasing control valves 22, 23, 32, 33 are constituted by two-position solenoid valves that can control the communication / blocking state.
  • the first and second pressure increase control valves 22, 23, 32, 33 are set to zero when the control current to the solenoid coil provided in the first, second pressure increase control valves 22, 23, 32, 33 is zero ( It is in a communication state when not energized, and is a normally open type that is controlled to be shut off when a control current flows through the solenoid coil (when energized).
  • first and second pressure increase control valves 22, 23, 32, 33 in the oil passages 20 a, 30 a and the wheel cylinders WCrl, WCrr, WCfr, WCfl are adjusted through oil passages 20 b, 30 b as pressure reducing oil passages.
  • the pressure reservoirs 24 and 34 are connected.
  • the oil passages 20b and 30b are respectively provided with first and second pressure reduction control valves 25, 26, 35 and 36 constituted by two-position electromagnetic valves capable of controlling the communication / blocking state.
  • first and second pressure reduction control valves 25, 26, 35, and 36 are used when the control current to the solenoid coils provided in the first and second pressure reduction control valves 25, 26, 35, and 36 is set to zero (non- When the current is energized, it is in a cut-off state, and when the control current is supplied to the solenoid coil (when it is energized), it is a normally closed type that is controlled to be in a communication state.
  • Oil passages 20c and 30c serving as reflux oil passages are disposed between the pressure regulating reservoirs 24 and 34 and the oil passages 20a and 30a serving as main oil passages.
  • the oil passages 20c, 30c are self-priming pumps driven by a motor 28 that sucks and discharges brake fluid from the pressure regulating reservoirs 24, 34 toward the booster mechanism 15 or the wheel cylinders WCrl, WCrr, WCfr, WCfl. 27 and 37 are provided.
  • the motor 28 is driven by controlling energization to a motor relay (not shown).
  • oil passages 20d and 30d serving as auxiliary oil passages are provided.
  • the pumps 27 and 37 suck the brake fluid from the booster mechanism 15 through the oil passages 20d and 30d, and discharge the brake fluid to the oil passages 20a and 30a, thereby supplying the brake fluid to the wheel cylinders WCrl, WCrr, WCfr, and WCfl side. .
  • the brake ECU 17 receives detection signals from wheel speed sensors Sfl, Srr, Sfr, Srl provided for each vehicle wheel Wfl, Wrr, Wfr, Wrl.
  • the brake ECU 17 calculates each wheel speed, estimated vehicle body speed, slip ratio, and the like based on detection signals from the wheel speed sensors Sfl, Srr, Sfr, Srl.
  • the brake ECU 17 executes anti-skid control and the like based on these calculation results.
  • the actuator 16 is provided with a hydraulic pressure sensor (corresponding to “acquisition unit”) 16 a that detects the hydraulic pressure supplied from the booster mechanism 15.
  • the hydraulic pressure sensor 16 a is preferably provided in the oil passage 20 a of the first first piping system 20. A detection signal from the hydraulic pressure sensor 16 a is input to the brake ECU 17, and the brake ECU 17 can monitor the hydraulic pressure supplied from the booster mechanism 15.
  • the brake ECU 17 outputs a control current for controlling the various control valves 21 to 23, 25, 26, 31 to 33, 35, 36 and the pump driving motor 28 provided in the actuator 16,
  • the hydraulic circuit provided in the actuator 16 is controlled, and the wheel cylinder pressure transmitted to the wheel cylinders WCrl, WCrr, WCfr, WCfl is individually controlled.
  • the brake ECU 17 performs anti-skid control for preventing wheel lock by reducing, maintaining, and increasing the wheel cylinder pressure when the wheel slips during braking, and skidding by automatically increasing the wheel cylinder pressure of the wheel to be controlled.
  • Side slip prevention control that suppresses the tendency (understeering tendency or oversteering tendency) and enables turning on an ideal trajectory can be performed.
  • the solenoid valve 41a when the ignition switch is in an OFF state or when there is a power failure, the solenoid valve 41a is closed. When the ignition switch is on and there is no power failure, the solenoid valve 41a is opened.
  • the brake ECU 17 causes the actuator 16 to generate a hydraulic pressure corresponding to the brake operation during the first period in which the input portion 15b does not move despite the sliding of the piston portion 12d2 (hydraulic pressure control). Part). Further, the brake ECU 17 generates a second hydraulic pressure corresponding to the brake operation by the actuator 16 (second hydraulic pressure generating mechanism) during the first period, and the second hydraulic pressure by the wheel cylinder WC (braking force applying mechanism). A braking force is applied to the wheel W based on the pressure (hydraulic pressure control unit).
  • the hydraulic pressure sensor 16a detects a hydraulic pressure greater than a predetermined pressure value (for example, 0 Pa) from the operation start time. Until then, the hydraulic pressure corresponding to the brake operation is generated by the actuator 16.
  • a predetermined pressure value for example, 0 Pa
  • the normal braking is when the brake operation is performed, a wheel cylinder pressure corresponding to the operation is formed, and the wheel cylinder pressure is applied to the wheel to obtain a braking force, such as ESC control. It differs from the one that gives braking force when there is no brake operation.
  • the solenoid valve 41a When the ignition switch is on and there is no power failure, the solenoid valve 41a is open. Accordingly, since the hydraulic chamber 12d7 communicates with the reservoir tank 14 via the oil passage 41, the brake fluid in the hydraulic chamber 12d7 passes through the oil passage 41 when the piston portion 12d2 moves to the left according to the brake operation. Thus, it can flow out to the reservoir tank 14. Therefore, the input portion 15b does not move to the left side until the force that presses the piston portion 12d2 to the left is greater than the sum of the urging force of the spring 12d4, the urging force of the spring 15e, and the sliding resistance of the input portion 15b. start.
  • the brake ECU 17 ends the pressurization by the actuator 16 when the hydraulic pressure sensor 16a detects a hydraulic pressure greater than a predetermined pressure value (for example, 0 Pa). Thereby, only the hydraulic pressure generated according to the brake operation by the booster mechanism 15 is supplied to the wheel cylinder WC.
  • a predetermined pressure value for example, 0 Pa
  • the off-pressure change control of the vehicle braking device of the present embodiment will be described.
  • the vehicle braking device according to the present embodiment has a configuration in which the hydraulic pressure of the accumulator 15c1 is directly supplied to the actuator 16 by the hydraulic pressure generator 15d that mechanically operates in response to the brake operation. is doing.
  • the off pressure change control in this configuration will be described below.
  • the brake ECU 17 includes a first predetermined value and a second predetermined value relating to a hydraulic pressure (hereinafter referred to as “master pressure”) supplied to the actuator 16, and a hydraulic pressure (hereinafter referred to as “Acc pressure”) in the accumulator 15 c 1. ) Are recorded. Reference off pressure, reference on pressure, correction off pressure, and correction on pressure are recorded. The off pressure is a set pressure for stopping (turning off) the pump 15c2. When the Acc pressure becomes equal to or higher than the off pressure, the pump 15c2 is stopped. The on pressure is a set pressure for driving (turning on) the pump, and the pump 15c2 is driven when the Acc pressure becomes lower than the on pressure.
  • the second predetermined value is set to a value smaller than the first predetermined value (first predetermined value> second predetermined value).
  • the corrected off pressure is set to a value smaller than the reference off pressure
  • the corrected on pressure is set to a value smaller than the reference on pressure.
  • the corrected off pressure is set to a value equal to or lower than the reference on pressure.
  • the reference off pressure> the reference on pressure> the corrected off pressure> the corrected on pressure is set.
  • the brake ECU 17 obtains the master pressure information from the hydraulic pressure sensor 16a, and when the master pressure becomes equal to or higher than the first predetermined value, the brake ECU 17 changes the reference off pressure of the pump 15c2 to the corrected off pressure and sets the reference on pressure. Change to corrected ON pressure. That is, the brake ECU 17 decreases the set off pressure and on pressure of the pump 15c2 when the master pressure is equal to or higher than the first predetermined value.
  • the brake ECU 17 has a pressure accumulation control unit 17a for controlling the off pressure and the on pressure of the Acc pressure in addition to the function of controlling the actuator 16 and the like.
  • the pressure accumulation control unit 17a changes the off pressure from the corrected off pressure to the reference off pressure when the master pressure becomes less than the second predetermined value after reducing the off pressure and the on pressure. Is changed from the corrected ON pressure to the reference ON pressure. That is, after reducing the off pressure and the on pressure, the brake ECU 17 increases the off pressure and the on pressure when the master pressure is less than the second predetermined value. At this time, the pressure accumulation control unit 17a of the present embodiment is set so that the off pressure and the on pressure return to the original values.
  • the brake ECU 17 acquires information on the Acc pressure from the pressure sensor 15c4. The initial Acc pressure is maintained between the reference on pressure and the reference off pressure, and in this state, the pump 15c2 is in the off state.
  • This off-pressure change control will be described in the case where the brake pedal 11 is depressed once (the case where there is no additional depression).
  • the accumulator 15c1 and the actuator 16 communicate with each other at t1, and the hydraulic fluid starts to be supplied from the accumulator 15c1 to the actuator 16 via the hydraulic pressure generator 15d.
  • the Acc pressure decreases and the master pressure increases.
  • the Acc pressure becomes less than the reference ON pressure, and the pump 15c2 is driven (ON) by the brake ECU 17.
  • the master pressure becomes equal to or higher than the first predetermined value
  • the brake ECU 17 reduces the off pressure from the reference off pressure to the corrected off pressure, and reduces the on pressure from the reference on pressure to the corrected on pressure.
  • the Acc pressure becomes a value equal to or higher than the off pressure (corrected off pressure)
  • the brake ECU 17 stops the pump 15c2 and stops the increase in the Acc pressure.
  • the pump 15c2 stops at an earlier timing than usual by lowering the off pressure. That is, the increase in the Acc pressure is stopped at time t3 when it does not normally stop.
  • the master pressure reaches the maximum point at t4, the brake operation starts to be released at t5, and the master pressure starts to decrease.
  • the first predetermined value is preferably set at a timing at which it is not necessary to increase the Acc pressure. In the present embodiment, the first predetermined value is set to a value close to the maximum point (t4) of the master pressure.
  • the master pressure becomes less than the second predetermined value, and the brake ECU 17 returns the off pressure and the on pressure to the original values (reference off pressure and reference on pressure). Thereby, in the next brake operation, the off pressure and the on pressure are performed with the initial reference values.
  • the Acc pressure is maintained after t3 or t4.
  • the brake ECU 17 sets the off pressure and the on pressure. Lower (S102). After that, the detection of the master pressure is repeatedly performed, and when the master pressure becomes less than the second predetermined value (S103: Yes), the brake ECU 17 increases the off pressure and the on pressure and restores them (S104).
  • the accumulator 15c1 mechanically and directly supplies the hydraulic pressure to the actuator 16 as in the present embodiment, if a failure (abnormality) occurs in a part of the device in the actuator 16, it may be long in an unexpected part. There is a risk that high fluid pressure will be applied for a long time. For example, if any of the first and second pressure reducing control valves 25, 26, 35, and 36 fails (leakage abnormality) and the control is not effective and the open state (open state) is maintained, the failure The high hydraulic pressure of the accumulator 15c1 is supplied to the reservoirs (here, the pressure regulating reservoirs 24 and 34) connected to the pressure reduction control valve.
  • the reservoirs here, the pressure regulating reservoirs 24 and 34
  • the pressure regulating reservoirs 24 and 34 are not assumed to be subjected to high pressure for a long time, and are not designed to continue to receive high fluid pressure. Therefore, when at least one of the first and second pressure reduction control valves 25, 26, 35, 36 becomes abnormal in leakage, the durability of the pressure regulating reservoirs 24, 34 is lowered.
  • the off pressure and the on pressure related to the Acc pressure are increased. Lower.
  • the increase in the Acc pressure stops earlier than usual, or the upper limit of the increase in Acc pressure when the pump 15c2 is turned on after the change is reduced, and the Acc pressure is maintained at a lower hydraulic pressure than during normal control. be able to.
  • the Acc pressure increases until the reference off pressure is reached.
  • the off pressure change control is not a control for lowering the Acc pressure itself, but a control for lowering at least the off pressure. Therefore, even if there is no failure in the first and second pressure reduction control valves 25, 26, 35, 36, the supply of hydraulic pressure to the actuator 16 is not affected.
  • the first predetermined value is preferably set to a value larger than the master pressure at which the Acc pressure is less than the on pressure (reference on pressure) during the brake operation.
  • the master pressure corresponds to “required braking force”.
  • the required braking force may be the hydraulic pressure supplied to the actuator 16 (that is, the hydraulic pressure that changes according to the brake operation) as in the present embodiment, or the brake operation amount (for example, a value detected by the pedal stroke sensor 11a).
  • the vehicle braking device according to the present embodiment includes at least the accumulator 15c1, the brake ECU 17 (the pressure accumulation control unit 17a), the hydraulic pressure generation unit 15d, the actuator 16, and the hydraulic pressure sensor 16a or the pedal stroke sensor 11a. It is equipped with.
  • the off pressure change control may be a control that changes only the off pressure without changing the on pressure. This also stops the increase of the Acc pressure at an early timing, or lowers the upper limit of the Acc pressure increase when the pump 15c2 is turned on after the change, and the same effect as described above is exhibited.
  • the hysteresis including the on pressure can be given overall hysteresis for the off pressure change control.
  • the method of changing the off pressure and the on pressure is not limited to the above, and may be changed in any manner such as gradually decreasing.
  • the wheel cylinder WC is a “braking force applying portion”.
  • the braking force application unit is the actuator 16 and / or the wheel cylinder WC.
  • the vehicle braking device of the second embodiment is different from the first embodiment in that it determines “whether the brake pad is in a fade state” before the off pressure change control. Therefore, a different part is demonstrated.
  • the same reference numerals as those in the first embodiment indicate the same configurations as those in the first embodiment, and the preceding description is referred to.
  • the brake ECU 17 includes a pressure accumulation control unit 17a and a pad determination unit 17b.
  • the pad determination unit 17b determines whether or not the brake pad provided on the caliper CL is normal. Specifically, the pad determination unit 17b indicates that the brake pad is in a fade state based on the temperature of the brake pad that is calculated and estimated from the pressurization time of the wheel speed, master pressure, and wheel cylinder pressure acquired by the brake ECU 17. It is determined whether or not.
  • the pad determination unit 17b determines that “the brake pad is normal (that is, not in a fade state)” when the estimated temperature of the brake pad is lower than the predetermined temperature, and “the brake pad is normal” when the estimated temperature is equal to or higher than the predetermined temperature. Is not (ie, it is in a fade state) ”.
  • the pressure accumulation control unit 17a executes the off-pressure change control of the first embodiment when the pad determination unit 17b determines “normal”.
  • the brake pad when the brake operation is started, it is determined whether the brake pad is normal (whether it is not in a fade state) (S201). If it is determined that the brake pad is normal (S201: Yes), the off pressure change control similar to the first embodiment is executed (S202 to S205). Whether or not the brake pad is normal and the detection of the master pressure are repeatedly performed, and the off pressure change control similar to the first embodiment is performed.
  • the off-pressure change control is executed only when the brake pad is in a normal state that is not a fade state. Thereby, it is possible to avoid unnecessary off pressure change control in a fade state in which the Acc pressure tends to be low.
  • the brake ECU 17 may determine whether or not the first and second pressure reduction control valves 25, 26, 35, and 36 are out of order (for example, leakage abnormality). In this case, for example, the brake ECU 17 may be set to execute the off-pressure change control when there is a leakage abnormality or when there is a leakage abnormality and is not in a fade state.
  • the number of brake operations may be added to the brake pad temperature estimation factor. Also, other configurations of the first embodiment can be applied to the second embodiment.
  • the required braking force corresponds to the off pressure (the braking force applied to the wheel by the caliper CL when the off pressure is supplied to the wheel cylinder WC). It may be higher than Therefore, when the required braking force is higher than the braking force corresponding to the off pressure, the hydraulic pressure corresponding to the difference between the required braking force and the braking force corresponding to the off pressure is the hydraulic pressure generated by the booster mechanism 15. Is preferably pressed by an actuator 16 (corresponding to an “auxiliary braking force applying portion”) 16. Thereby, the hydraulic pressure corresponding to the required braking force is supplied to the wheel cylinder WC, and the required braking force can be applied to the wheel by the caliper CL.
  • a braking device other than the caliper CL for example, an electric parking brake
  • a braking force that is the difference between the required braking force and the braking force corresponding to the off pressure may be applied to the wheels.
  • These controls are commanded by a brake ECU (corresponding to an “auxiliary braking control unit”) 17.
  • auxiliary braking control unit corresponding to an “auxiliary braking control unit” 17.
  • the vehicle braking apparatus includes a pressure accumulating portion 15c1 that accumulates hydraulic fluid, and the hydraulic pressure in the pressure accumulating portion 15c1 when the fluid pressure in the pressure accumulating portion 15c1 is equal to or higher than a predetermined off pressure (reference off pressure). Based on the hydraulic pressure in the pressure accumulating portion 15c1 and the pressure accumulating control portion 17a for controlling the hydraulic pressure in the pressure accumulating portion 15c1 so as to stop the increase, the hydraulic pressure accumulated in the pressure accumulating portion 15c1 is set as an upper limit for brake operation.
  • the pressure accumulation control unit 17a may increase the off pressure when the required braking force acquired by the acquisition unit 16a is less than a second predetermined value that is smaller than the first predetermined value after reducing the off pressure. preferable.
  • the pressure accumulation control unit 17a is configured so that the liquid pressure in the pressure accumulation unit 15c1 increases so that the liquid pressure in the pressure accumulation unit 15c1 increases when the liquid pressure in the pressure accumulation unit 15c1 becomes less than a predetermined on pressure (reference on pressure).
  • a predetermined on pressure reference on pressure
  • the vehicle braking device of the present embodiment may include a pad determination unit 17b that determines whether or not the brake pad (caliper CL) is normal.
  • the pressure accumulation control unit 17a includes the pad determination unit.
  • the required braking force acquired by the acquisition unit 16a when it is determined by 17b that the brake pad is not normal and the required braking force acquired by the acquisition unit 16a is greater than or equal to the first predetermined value. It is preferable to lower the off pressure than when the value is less than the first predetermined value.
  • the vehicle braking device of the present embodiment applies pressure to the hydraulic pressure generated by the hydraulic pressure generating unit 15d or applies to the wheel in addition to the braking force applied to the wheel by the braking force applying unit 16 (WC).
  • the auxiliary braking force applying unit 16 that applies the braking force, and the required braking force acquired by the acquiring unit 16a when the required braking force acquired by the acquiring unit 16a is higher than the braking force corresponding to the off pressure.
  • a hydraulic pressure corresponding to the difference from the braking force corresponding to the off pressure is increased by the auxiliary braking force applying unit 16 or an auxiliary braking control unit 17 for applying the differential braking force by the auxiliary braking force applying unit 16; It is preferable to provide.
  • the vehicle braking device of the present embodiment includes a cylinder portion and a piston portion that slides in the cylinder portion in accordance with a brake operation for operating a brake operation member, and is partitioned by the piston portion.
  • An operation corresponding pressure generating mechanism for generating a hydraulic pressure corresponding to the brake operation in the first hydraulic pressure chamber, As the piston part slides, the input part is slid and moved in the cylinder part by being pressed directly by the piston part or by an intermediate member interposed between the piston part.
  • a first hydraulic pressure generating mechanism having a hydraulic pressure generating unit that generates a first hydraulic pressure according to the movement of the input unit based on the hydraulic pressure of the pressure accumulating unit that accumulates hydraulic fluid,
  • a braking force applying mechanism for applying a braking force to the wheels of the vehicle based on the first hydraulic pressure; It can be said that it has.
  • the braking device may further include a second hydraulic pressure generation mechanism that generates a desired second hydraulic pressure.
  • 11 Brake pedal, 11a: Pedal stroke sensor, 12: Stroke simulator section, 14: Reservoir tank, 15: Booster mechanism, 15c1: Accumulator (accumulation unit), 15c2: Pump, 15c3: Electric motor, 15c4: Pressure sensor, 15d: Fluid pressure generating unit, 16: Actuator (braking force application unit, auxiliary braking force application unit), 16a: Hydraulic pressure sensor (acquisition part), 17: Brake ECU (auxiliary braking control part), 17a: Pressure accumulation control unit, 17b: Pad determination unit, 24, 34: Pressure regulating reservoir, 25, 26, 35, 36: Pressure reducing control valve, CL: Caliper, WC: Wheel cylinder

Abstract

The present invention is provided with a pressure accumulation unit (15c1), a pressure accumulation control unit (17a) for controlling hydraulic pressure in the pressure accumulation unit (15c1) so that the hydraulic pressure inside the pressure accumulation unit (15c1) stops increasing when the hydraulic pressure inside the pressure accumulation unit (15c1) is equal to or greater than a predetermined off pressure, a hydraulic pressure generating unit (15d) for mechanically generating a hydraulic pressure corresponding a brake operation using the hydraulic pressure accumulated in the pressure accumulation unit (15c1) as an upper limit on the basis of the hydraulic pressure in the pressure accumulation unit (15c1), a braking force applying unit (16) for applying a braking force to the wheels of a vehicle on the basis of the hydraulic pressure generated by the hydraulic pressure generating unit (15d), and an acquiring unit (16a) for acquiring a requested braking force, the pressure accumulation control unit (17a) lowering the off pressure when the requested braking force acquired by the acquiring unit (16a) is equal to or greater than a first predetermined value.

Description

車両の制動装置Vehicle braking device
 本発明は、車両の制動装置に関する。 The present invention relates to a vehicle braking device.
 車両の制動装置には、ブレーキ操作に応じて倍力装置によりマスタピストンを駆動するサーボ圧を大きくし、当該サーボ圧によってマスタシリンダ内の液圧が上昇し、マスタシリンダ圧がABS装置等を介してホイールシリンダに供給されるタイプの装置がある。この場合、倍力装置のアキュムレータ(蓄圧部)は、サーボ圧の上昇のため、ひいてはマスタシリンダ圧の上昇のために用いられる。このような車両の制動装置は、例えば特開2006-123889号公報に記載されている。 In a vehicle braking device, a servo pressure for driving a master piston is increased by a booster in accordance with a brake operation, and the hydraulic pressure in the master cylinder is increased by the servo pressure, and the master cylinder pressure is passed through an ABS device or the like. There is a type of device that is supplied to the wheel cylinder. In this case, the accumulator (accumulation unit) of the booster is used for increasing the servo pressure and thus for increasing the master cylinder pressure. Such a vehicle braking device is described in, for example, Japanese Patent Application Laid-Open No. 2006-123889.
特開2006-123889号公報JP 2006-123889 A
 このような装置では、大型車への適用する場合、油量が大きくなる分、マスタシリンダの全長が大きくなり、搭載性が低下することが考えられる。そこで、発明者は、蓄圧部(例えばアキュムレータ)と、蓄圧部内の液圧に基づき且つ蓄圧部内の液圧を上限としてブレーキ操作に応じた液圧を機械的に発生させる液圧発生部と、液圧発生部が発生させた液圧に基づいて車輪に制動力を付与する制動力付与部(例えばアクチュエータ)と、を備える車両の制動装置を新たに考え出した。この構成では、ブレーキ操作に応じた液圧発生部の機械的な動作により、蓄圧部が直接的に制動力付与部に液圧を供給する。この構成により、車両の制動装置の大型化を抑制することが可能となる。 In such a device, when applied to a large vehicle, the total length of the master cylinder increases as the amount of oil increases, and the mountability may decrease. Therefore, the inventor has an accumulator (for example, an accumulator), a hydraulic pressure generator that mechanically generates a hydraulic pressure according to a brake operation based on the hydraulic pressure in the accumulator and with the hydraulic pressure in the accumulator as an upper limit, A new braking device for a vehicle has been devised that includes a braking force applying unit (for example, an actuator) that applies a braking force to the wheel based on the hydraulic pressure generated by the pressure generating unit. In this configuration, the pressure accumulating unit directly supplies the hydraulic pressure to the braking force applying unit by the mechanical operation of the hydraulic pressure generating unit according to the brake operation. With this configuration, an increase in the size of the vehicle braking device can be suppressed.
 しかし、この構成では、制動力付与部の一部の構成要素(例えば電磁弁)が異常となった場合、正常時に液圧発生部から液圧が付与されない制動力付与部の他の構成要素(例えばリザーバ)に、液圧発生部が発生した液圧が付与される状態となり得る。これにより、制動力付与部の当該他の構成要素の耐久性が低下する。 However, in this configuration, when a part of the components (for example, a solenoid valve) of the braking force application unit becomes abnormal, other components of the braking force application unit in which the hydraulic pressure is not applied from the hydraulic pressure generation unit at the normal time ( For example, the hydraulic pressure generated by the hydraulic pressure generating unit may be applied to the reservoir. Thereby, durability of the said other component of a braking force provision part falls.
 本発明は、このような事情に鑑みて為されたものであり、制動力付与部の一部に異常が発生した場合でも、制動力付与部の他の構成要素への負荷圧の増大を抑制することができる車両の制動装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and suppresses an increase in load pressure to other components of the braking force application unit even when an abnormality occurs in a part of the braking force application unit. It is an object of the present invention to provide a braking device for a vehicle that can be used.
 本発明の車両の制動装置は、作動液を蓄圧する蓄圧部と、前記蓄圧部内の液圧が所定のオフ圧以上である場合に前記蓄圧部内の液圧の上昇が停止するように前記蓄圧部内の液圧を制御する蓄圧制御部と、前記蓄圧部内の液圧に基づいて、前記蓄圧部に蓄圧されている液圧を上限として、ブレーキ操作に応じた液圧を機械的に発生させる液圧発生部と、前記液圧発生部により発生されている液圧に基づいて車両の車輪に制動力を付与する制動力付与部と、要求制動力を取得する取得部と、を備え、前記蓄圧制御部は、前記取得部により取得されている要求制動力が所定値以上である場合に、前記取得部により取得されている要求制動力が前記所定値未満である場合よりも、前記オフ圧を低くする。 The braking device for a vehicle according to the present invention includes a pressure accumulating portion for accumulating hydraulic fluid, and the pressure accumulating portion so that the increase in the fluid pressure in the pressure accumulating portion stops when the fluid pressure in the pressure accumulating portion is equal to or higher than a predetermined off pressure. And a hydraulic pressure that mechanically generates a hydraulic pressure corresponding to a brake operation with the hydraulic pressure accumulated in the pressure accumulating portion as an upper limit based on the hydraulic pressure in the pressure accumulating portion. A pressure generating control unit including: a generating unit; a braking force applying unit that applies a braking force to a vehicle wheel based on the hydraulic pressure generated by the hydraulic pressure generating unit; and an acquisition unit that acquires a required braking force. When the required braking force acquired by the acquiring unit is equal to or greater than a predetermined value, the off-pressure is set lower than when the required braking force acquired by the acquiring unit is less than the predetermined value. To do.
 本発明によれば、要求制動力が第一所定値以上である場合、すなわち制動力付与部に高い液圧が供給されている状態において、蓄圧部内の液圧の上限に関する「オフ圧」が低くなる。このオフ圧が低くなると、蓄圧部内の液圧が上昇している場合(又は後に上昇する場合)に、通常より早く蓄圧部内の液圧の上昇が停止され、通常よりも蓄圧部内の液圧は低く維持される。つまり、蓄圧部により制動力付与部に加わる負荷を通常よりも小さくすることができる。これにより、制動力付与部に必要以上の高い液圧が長時間供給されることが抑制され、たとえ制動力付与部の一部構成要素に故障があったとしても、制動力付与部の他の構成要素への負荷圧の増大を抑制することができる。 According to the present invention, when the required braking force is greater than or equal to the first predetermined value, that is, in a state where a high hydraulic pressure is supplied to the braking force application unit, the “off pressure” relating to the upper limit of the hydraulic pressure in the pressure accumulating unit is low. Become. When this off-pressure decreases, when the hydraulic pressure in the pressure accumulator increases (or increases later), the increase in the hydraulic pressure in the pressure accumulator is stopped earlier than usual, and the hydraulic pressure in the pressure accumulator becomes lower than normal. Kept low. That is, the load applied to the braking force applying unit by the pressure accumulating unit can be made smaller than usual. As a result, it is suppressed that a hydraulic pressure higher than necessary is supplied to the braking force application unit for a long time, and even if some components of the braking force application unit have a failure, An increase in the load pressure on the component can be suppressed.
第一実施形態の車両の制動装置の構成を示す構成図である。It is a block diagram which shows the structure of the braking device of the vehicle of 1st embodiment. 第一実施形態の車両の制動装置のオフ圧変更制御を説明するためのタイムチャートである。It is a time chart for demonstrating the off-pressure change control of the braking device of the vehicle of 1st embodiment. 第一実施形態の車両の制動装置のオフ圧変更制御を説明するためのフローチャートである。It is a flowchart for demonstrating the off pressure change control of the braking device of the vehicle of 1st embodiment. 第二実施形態のブレーキECUの構成を示す構成図である。It is a block diagram which shows the structure of brake ECU of 2nd embodiment. 第二実施形態の車両の制動装置のオフ圧変更制御を説明するためのフローチャートである。It is a flowchart for demonstrating the off-pressure change control of the braking device of the vehicle of 2nd embodiment.
<第一実施形態>
 以下、本発明に係る車両の制動装置を車両に適用した第一実施形態を図面を参照して説明する。本実施形態の車両は、ハイブリッド車ではなく、エンジンのみを駆動源とする車両である。車両は、直接各車輪Wfl,Wfr,Wrl,Wrrに液圧制動力を付与して車両を制動させる液圧制動部Aを備えている。液圧制動部Aは、図1に示すように、ブレーキ操作部材であるブレーキペダル11、ストロークシミュレータ部12、リザーバタンク14、倍力機構15、アクチュエータ(「制動力付与部」に相当する)16、ブレーキECU17、およびホイールシリンダWCを備えている。
<First embodiment>
Hereinafter, a first embodiment in which a vehicle braking device according to the present invention is applied to a vehicle will be described with reference to the drawings. The vehicle of this embodiment is not a hybrid vehicle but a vehicle that uses only an engine as a drive source. The vehicle includes a hydraulic braking unit A that directly applies a hydraulic braking force to each wheel Wfl, Wfr, Wrl, Wrr to brake the vehicle. As shown in FIG. 1, the hydraulic braking unit A includes a brake pedal 11 that is a brake operation member, a stroke simulator unit 12, a reservoir tank 14, a booster mechanism 15, and an actuator (corresponding to a “braking force applying unit”) 16. A brake ECU 17 and a wheel cylinder WC are provided.
 ホイールシリンダWCは、車輪Wの回転をそれぞれ規制するものであり、キャリパCLに設けられている。ホイールシリンダWCは、第一液圧(後述する)に基づいて車両の車輪Wに制動力を付与する制動力付与機構である。制動力付与機構は、第一液圧および第二液圧に基づいて車輪Wに制動力を付与可能に構成されている。ホイールシリンダWCにアクチュエータ16または倍力機構15からのブレーキ液の圧力(ブレーキ液圧:第一液圧、第二液圧)が供給されると、ホイールシリンダWCの各ピストン(図示省略)が摩擦部材である一対のブレーキパッド(図示省略)を押圧して車輪Wと一体回転する回転部材であるディスクロータDRを両側から挟んでその回転を規制するようになっている。なお、本実施形態においては、ディスク式ブレーキを採用するようにしたが、ドラム式ブレーキを採用するようにしてもよい。車輪Wは左右前後輪Wfl,Wfr,Wrl,Wrrのいずれかである。 The wheel cylinder WC regulates the rotation of the wheel W, and is provided in the caliper CL. The wheel cylinder WC is a braking force applying mechanism that applies a braking force to the vehicle wheel W based on a first hydraulic pressure (described later). The braking force applying mechanism is configured to be able to apply a braking force to the wheel W based on the first hydraulic pressure and the second hydraulic pressure. When the brake fluid pressure (brake fluid pressure: first fluid pressure, second fluid pressure) from the actuator 16 or the booster mechanism 15 is supplied to the wheel cylinder WC, each piston (not shown) of the wheel cylinder WC frictions. A pair of brake pads (not shown) that are members are pressed to restrict rotation of the disc rotor DR that is a rotating member that rotates integrally with the wheel W from both sides. In this embodiment, the disc type brake is adopted, but a drum type brake may be adopted. The wheel W is any one of the left and right front and rear wheels Wfl, Wfr, Wrl, and Wrr.
 ブレーキペダル11の近傍には、ブレーキペダル11の踏み込みによるブレーキ操作状態であるブレーキペダルストローク(操作量)を検出するペダルストロークセンサ11aが設けられている。このペダルストロークセンサ11aはブレーキECU17に接続されており、検出信号がブレーキECU17に出力されるようになっている。 In the vicinity of the brake pedal 11, a pedal stroke sensor 11 a that detects a brake pedal stroke (operation amount) that is a brake operation state when the brake pedal 11 is depressed is provided. The pedal stroke sensor 11 a is connected to the brake ECU 17, and a detection signal is output to the brake ECU 17.
 ブレーキペダル11はプッシュロッド19を介してストロークシミュレータ部12に接続されている。ストロークシミュレータ部12は、シリンダ部12aと、シリンダ部12a内を液密に摺動可能なピストン12bと、シリンダ部12aとピストン12bとピストン13bとによって形成された液圧室12cと、液圧室12cと連通されているストロークシミュレータ12dとを備えている。 The brake pedal 11 is connected to the stroke simulator unit 12 via a push rod 19. The stroke simulator section 12 includes a cylinder section 12a, a piston 12b that can slide fluidly in the cylinder section 12a, a hydraulic chamber 12c formed by the cylinder section 12a, the piston 12b, and the piston 13b, and a hydraulic chamber. And a stroke simulator 12d communicated with 12c.
 ピストン12bの摺動方向(軸方向)の一端側(図示右側)には、プッシュロッド19が連結されている。ピストン12bは、液圧室12c内に配設されている。液圧室12cには、ピストン12bとシリンダ部12aの底壁12a3との間に介装されて液圧室12cを拡張する方向にピストン12cを付勢するスプリング12eが配設されている。 A push rod 19 is connected to one end side (right side in the drawing) of the sliding direction (axial direction) of the piston 12b. The piston 12b is disposed in the hydraulic chamber 12c. The hydraulic chamber 12c is provided with a spring 12e that is interposed between the piston 12b and the bottom wall 12a3 of the cylinder portion 12a and biases the piston 12c in the direction of expanding the hydraulic chamber 12c.
 液圧室12cは、入出力ポート12a2に接続された油路12fを介してストロークシミュレータ12dに連通している。なお、液圧室12cは、図示しない接続油路を介してリザーバタンク14に連通している。 The hydraulic chamber 12c communicates with the stroke simulator 12d through an oil passage 12f connected to the input / output port 12a2. The hydraulic chamber 12c communicates with the reservoir tank 14 via a connection oil passage (not shown).
 ストロークシミュレータ12dは、ブレーキペダル11の操作状態に応じた大きさのストローク(反力)をブレーキペダル11に発生させるものである。すなわち、ストロークシミュレータ12dは、液圧室12d3内に、ブレーキ操作に対応する液圧を発生させる操作対応圧発生機構である。ストロークシミュレータ12dは、シリンダ部12d1、ピストン部12d2、液圧室12d3、およびスプリング12d4を備えている。ピストン部12d2は、ブレーキペダル11を操作するブレーキ操作に伴ってシリンダ部12d1内を液密に摺動する。液圧室(第一液圧室)12d3は、シリンダ部12d1とピストン部12d2との間に区画されて形成されている。液圧室12d3は、入出力ポート12d5に接続された油路12fを介して液圧室12cに連通している。スプリング12d4は、ピストン部12d2を液圧室12d3の容積を減少させる方向に付勢する。スプリング12d4は、ピストン部12d2と入力部15bとの間に介在している介在部材である。介在部材としては、スプリングの代わりに他の弾性部材、例えばゴム部材を採用してもよい。 The stroke simulator 12d causes the brake pedal 11 to generate a stroke (reaction force) having a magnitude corresponding to the operation state of the brake pedal 11. That is, the stroke simulator 12d is an operation corresponding pressure generating mechanism that generates a hydraulic pressure corresponding to the brake operation in the hydraulic pressure chamber 12d3. The stroke simulator 12d includes a cylinder part 12d1, a piston part 12d2, a hydraulic chamber 12d3, and a spring 12d4. The piston portion 12d2 slides liquid-tightly in the cylinder portion 12d1 in accordance with the brake operation for operating the brake pedal 11. The hydraulic chamber (first hydraulic chamber) 12d3 is formed by being partitioned between the cylinder portion 12d1 and the piston portion 12d2. The hydraulic chamber 12d3 communicates with the hydraulic chamber 12c through an oil passage 12f connected to the input / output port 12d5. The spring 12d4 biases the piston portion 12d2 in a direction to reduce the volume of the hydraulic chamber 12d3. The spring 12d4 is an interposed member interposed between the piston portion 12d2 and the input portion 15b. As the interposition member, another elastic member such as a rubber member may be employed instead of the spring.
 ピストン部12d2が左側に向けて押圧された場合、入力部15bは、ブレーキ操作の当初の第一期間においてピストン部12d2の摺動に拘わらず移動しない。ピストン部12d2を左側に押圧する力が、スプリング12d4の付勢力、スプリング15eの付勢力、および入力部15bの摺動抵抗による力の総和より大きくなって初めて入力部15bが左側に移動を始める。それまで、ピストン部12d2を左側に押圧する力が、上述した力の総和より小さい場合には、入力部15bは移動しない。さらに、第一期間終了後であってブレーキ操作の増加に際しては、入力部15bは、ピストン部12d2の摺動に伴って移動する。 When the piston part 12d2 is pressed toward the left side, the input part 15b does not move in spite of the sliding of the piston part 12d2 in the initial period of the brake operation. The input portion 15b starts to move to the left side only when the force pressing the piston portion 12d2 to the left is greater than the sum of the urging force of the spring 12d4, the urging force of the spring 15e, and the sliding resistance of the input portion 15b. Until then, when the force pressing the piston portion 12d2 to the left is smaller than the total force described above, the input portion 15b does not move. Furthermore, after the end of the first period and when the brake operation increases, the input portion 15b moves as the piston portion 12d2 slides.
 倍力機構15は、作動液(ブレーキ液)を蓄圧するアキュムレータ(「蓄圧部」に相当する)15c1の液圧に基づいて入力部15bの移動に応じた第一液圧を発生させて第一配管系統20と第二配管系統30(アクチュエータ16)に出力するもの(第一液圧発生機構)である。倍力機構15は、シリンダ15a、入力部15b、圧力供給装置15cおよび液圧発生部15dを備えている。 The booster mechanism 15 generates a first hydraulic pressure corresponding to the movement of the input unit 15b based on the hydraulic pressure of an accumulator (corresponding to a “pressure accumulating unit”) 15c1 that accumulates hydraulic fluid (brake fluid). This is output to the piping system 20 and the second piping system 30 (actuator 16) (first hydraulic pressure generating mechanism). The booster mechanism 15 includes a cylinder 15a, an input unit 15b, a pressure supply device 15c, and a hydraulic pressure generation unit 15d.
 シリンダ15aは、ストロークシミュレータ12dのシリンダ部12d1に同軸的かつ一体的に接続されている。入力部15bは、倍力機構15にブレーキ操作(ブレーキ操作に応じた液圧)を入力するためのものである。入力部15bは、ストロークシミュレータ12dのピストン部12d2の摺動に伴って、ピストン部12d2によって直接的に押圧されまたはピストン部12d2との間に介在された介在部材であるスプリング12d4によって押圧されることによりシリンダ15a内を摺動し移動される。入力部15bは、ピストン状に形成されており、シリンダ15a内を液密に摺動する。入力部15bの一端縁周部は、段部12d6に当接するようになっている。入力部15bの他端には、段部15b1が凸設されている。段部15b1の先端は、スプール部15d1の一端に当接するようになっている。入力部15bは、一端が入力部15bの他端に当接するとともに他端がシリンダ15aの凸部15a1に当接しているスプリング15eによって、一端側に向けて付勢されている。 The cylinder 15a is coaxially and integrally connected to the cylinder portion 12d1 of the stroke simulator 12d. The input unit 15 b is for inputting a brake operation (hydraulic pressure corresponding to the brake operation) to the booster mechanism 15. The input portion 15b is directly pressed by the piston portion 12d2 or pressed by a spring 12d4 that is an interposed member between the piston portion 12d2 and the piston portion 12d2 of the stroke simulator 12d. Is slid and moved in the cylinder 15a. The input portion 15b is formed in a piston shape and slides in a liquid-tight manner in the cylinder 15a. The peripheral edge portion of the input portion 15b comes into contact with the step portion 12d6. A step portion 15b1 is provided on the other end of the input portion 15b. The tip of the step portion 15b1 comes into contact with one end of the spool portion 15d1. The input portion 15b is biased toward one end by a spring 15e having one end abutting against the other end of the input portion 15b and the other end abutting against the convex portion 15a1 of the cylinder 15a.
 入力部15bとピストン部12d2との間には、液圧室12d7が区画形成されている。液圧室12d7は、入出力ポート12d8に接続された油路41を介してリザーバタンク14に連通している。油路41には、ブレーキECU17の開閉指示に従って開閉される電磁弁41aが備えられている。電磁弁41aは、連通・遮断状態を制御できる2位置電磁弁により構成されている。電磁弁41aは、電磁弁41aに備えられているソレノイドコイルへの制御電流がゼロとされる時(非通電時)には遮断状態となり、ソレノイドコイルに制御電流が流される時(通電時)に連通状態に制御されるノーマルクローズ型となっている。 A hydraulic chamber 12d7 is defined between the input portion 15b and the piston portion 12d2. The hydraulic chamber 12d7 communicates with the reservoir tank 14 through an oil passage 41 connected to the input / output port 12d8. The oil passage 41 is provided with an electromagnetic valve 41a that is opened and closed according to an opening / closing instruction of the brake ECU 17. The solenoid valve 41a is a two-position solenoid valve that can control the communication / blocking state. The solenoid valve 41a is cut off when the control current to the solenoid coil provided in the solenoid valve 41a is zero (when not energized), and when the control current is passed through the solenoid coil (when energized). It is a normally closed type controlled to a communication state.
 圧力供給装置15cは、低圧力源であるリザーバタンク14と、高圧力源であり作動液を蓄圧するアキュムレータ15c1と、リザーバタンク14のブレーキ液を吸入しアキュムレータ15c1に圧送するポンプ15c2と、ポンプ15c2を駆動させる電動モータ15c3を備えている。リザーバタンク14は大気に開放されており、リザーバタンク14の液圧は大気圧と同じである。低圧力源は高圧力源よりも低圧である。圧力供給装置15cの低圧力源としてリザーバタンク14を共用しているが、別のリザーバタンクを設けるようにしてもよい。圧力供給装置15cは、アキュムレータ15c1から供給されるブレーキ液の圧力を検出してブレーキECU17に出力する圧力センサ15c4を備えている。 The pressure supply device 15c includes a reservoir tank 14 that is a low pressure source, an accumulator 15c1 that is a high pressure source and accumulates hydraulic fluid, a pump 15c2 that sucks brake fluid in the reservoir tank 14 and pumps it to the accumulator 15c1, and a pump 15c2. Is provided with an electric motor 15c3. The reservoir tank 14 is open to the atmosphere, and the hydraulic pressure in the reservoir tank 14 is the same as the atmospheric pressure. The low pressure source is at a lower pressure than the high pressure source. Although the reservoir tank 14 is shared as a low pressure source of the pressure supply device 15c, another reservoir tank may be provided. The pressure supply device 15c includes a pressure sensor 15c4 that detects the pressure of the brake fluid supplied from the accumulator 15c1 and outputs the detected pressure to the brake ECU 17.
 液圧発生部15dは、作動液を蓄圧するアキュムレータ15c1の液圧に基づいて入力部15bの移動に応じた第一液圧を発生させる。つまり、液圧発生部15dは、アキュムレータ15c1内の液圧に基づいて、アキュムレータ15c1に蓄圧されている液圧を上限として、ブレーキ操作に応じた液圧を機械的に発生させる。液圧発生部15dは、シリンダ15a内を液密に摺動するスプール部15d1を備えている。液圧発生部15dには、高圧ポート15d2、低圧ポート15d3、および出力ポート15d4が形成されている。高圧ポート15d2は、油路42を介してアキュムレータ15c1に直接接続されている。低圧ポート15d3は、油路41に接続されている油路43を介してリザーバタンク14に直接接続されている。出力ポート15d4は、油路44を介してアクチュエータ16(ひいてはホイールシリンダWC)に接続されている。 The hydraulic pressure generator 15d generates a first hydraulic pressure corresponding to the movement of the input unit 15b based on the hydraulic pressure of the accumulator 15c1 that accumulates the hydraulic fluid. That is, the hydraulic pressure generating unit 15d mechanically generates a hydraulic pressure corresponding to the brake operation with the hydraulic pressure accumulated in the accumulator 15c1 as an upper limit based on the hydraulic pressure in the accumulator 15c1. The hydraulic pressure generating portion 15d includes a spool portion 15d1 that slides fluidly in the cylinder 15a. A high pressure port 15d2, a low pressure port 15d3, and an output port 15d4 are formed in the hydraulic pressure generating unit 15d. The high pressure port 15d2 is directly connected to the accumulator 15c1 via the oil passage 42. The low pressure port 15 d 3 is directly connected to the reservoir tank 14 through an oil passage 43 connected to the oil passage 41. The output port 15d4 is connected to the actuator 16 (and thus the wheel cylinder WC) via the oil passage 44.
 油路44は、第二第二配管系統30の油路30a,30dに接続されている。油路44の途中から分岐している油路45は、第一第一配管系統20の油路20a,20dに接続されている。油路44には、ブレーキECU17の開閉指示に従って開閉される開閉制御弁44aが備えられている。開閉制御弁44aは、連通・遮断状態を制御できる2位置電磁弁により構成されている。開閉制御弁44aは、開閉制御弁44aに備えられているソレノイドコイルへの制御電流がゼロとされる時(非通電時)には遮断状態となり、ソレノイドコイルに制御電流が流される時(通電時)に連通状態に制御されるノーマルクローズ型となっている。 The oil passage 44 is connected to the oil passages 30 a and 30 d of the second second piping system 30. The oil passage 45 branched from the middle of the oil passage 44 is connected to the oil passages 20 a and 20 d of the first first piping system 20. The oil passage 44 is provided with an opening / closing control valve 44a that is opened and closed according to an opening / closing instruction of the brake ECU 17. The open / close control valve 44a is a two-position electromagnetic valve that can control the communication / blocking state. The open / close control valve 44a is cut off when the control current to the solenoid coil provided in the open / close control valve 44a is zero (when not energized), and when the control current flows through the solenoid coil (when energized). ) Is a normally closed type that is controlled to communicate.
 シリンダ15a(底壁)とスプール部15d1との間には、液圧室15d5が区画形成されている。液圧室15d5内には、シリンダ15a(底壁)とスプール部15d1との間に介装されて液圧室15d5を拡張する方向に付勢するスプリング15d6が配設されている。スプール部15d1はスプリング15d6によって付勢されて所定位置にある(図1参照)。スプール部15d1の所定位置は、スプール部15d1の一端側が凸部15a1に当接して位置決め固定される位置であり、スプール部15d1の他端側端が低圧ポート15d3を閉塞する直前位置となっている。 A hydraulic chamber 15d5 is defined between the cylinder 15a (bottom wall) and the spool portion 15d1. In the hydraulic pressure chamber 15d5, there is disposed a spring 15d6 that is interposed between the cylinder 15a (bottom wall) and the spool portion 15d1 and urges the hydraulic pressure chamber 15d5 to expand. The spool portion 15d1 is biased by a spring 15d6 and is in a predetermined position (see FIG. 1). The predetermined position of the spool portion 15d1 is a position where one end side of the spool portion 15d1 abuts on the convex portion 15a1 and is positioned and fixed, and the other end side end of the spool portion 15d1 is a position immediately before closing the low pressure port 15d3. .
 スプール部15d1は、液圧室15d7に連通する油路15d8が形成されている。図1に示すように、スプール部15d1が所定位置にある場合、低圧ポート15d3と出力ポート15d4とは油路15d8を介して連通するとともに、高圧ポート15d2はスプール部15d1によって閉塞されている。 The spool portion 15d1 has an oil passage 15d8 communicating with the hydraulic chamber 15d7. As shown in FIG. 1, when the spool portion 15d1 is in a predetermined position, the low pressure port 15d3 and the output port 15d4 communicate with each other via an oil passage 15d8, and the high pressure port 15d2 is closed by the spool portion 15d1.
 入力部15bが左側に移動され、スプール部15d1に当接して、スプール部15d1が左側に移動すると、高圧ポート15d2と出力ポート15d4とは液圧室15d7を介して連通する。このとき、低圧ポート15d3はスプール部15d1によって閉塞される。よって、スプール部15d1の他端がサーボ圧に対応する力を受ける(増圧時)。 When the input portion 15b is moved to the left side, abuts against the spool portion 15d1, and the spool portion 15d1 moves to the left side, the high pressure port 15d2 and the output port 15d4 communicate with each other through the hydraulic pressure chamber 15d7. At this time, the low pressure port 15d3 is closed by the spool portion 15d1. Therefore, the other end of the spool portion 15d1 receives a force corresponding to the servo pressure (when pressure is increased).
 入力部15bによるスプール部15d1の押圧力と上記サーボ圧に対応する力とがつりあうと、高圧ポート15d2と低圧ポート15d3とがスプール部15d1によって閉塞される(保持時)。 When the pressing force of the spool portion 15d1 by the input portion 15b and the force corresponding to the servo pressure are balanced, the high pressure port 15d2 and the low pressure port 15d3 are closed by the spool portion 15d1 (at the time of holding).
 入力部15bが右側に移動すると、スプール部15d1も右側に移動する(減圧時)。このとき、低圧ポート15d3と出力ポート15d4とは油路15d8を介して連通するとともに、高圧ポート15d2はスプール部15d1によって閉塞される。 When the input unit 15b moves to the right side, the spool unit 15d1 also moves to the right side (during decompression). At this time, the low pressure port 15d3 and the output port 15d4 communicate with each other via the oil passage 15d8, and the high pressure port 15d2 is closed by the spool portion 15d1.
 図1を参照してアクチュエータ16の詳細構造について説明する。アクチュエータ16は、第一期間内にはブレーキ操作に相当する液圧を発生させ、第一期間外では目標ホイールシリンダ圧と倍力機構15により発生されている液圧との差圧を、倍力機構15により発生されている液圧に加圧する加圧機構である。アクチュエータ16は、所望の第二液圧を発生させる第二液圧発生機構でもある。第二液圧発生機構は、例えばブレーキ操作に応じた第二液圧を発生させるものである。アクチュエータ16内には、第一、第二第二配管系統20、30が形成されている。第一第一配管系統20は、左後輪Wrlと右後輪Wrrに加えられるブレーキ液圧を制御し、第二第二配管系統30は、右前輪Wfrと左前輪Wflに加えられるブレーキ液圧を制御する。つまり、前後配管の配管構成とされている。 The detailed structure of the actuator 16 will be described with reference to FIG. The actuator 16 generates a hydraulic pressure corresponding to the brake operation within the first period, and increases the differential pressure between the target wheel cylinder pressure and the hydraulic pressure generated by the booster mechanism 15 outside the first period. This is a pressurizing mechanism that pressurizes the hydraulic pressure generated by the mechanism 15. The actuator 16 is also a second hydraulic pressure generating mechanism that generates a desired second hydraulic pressure. The second hydraulic pressure generating mechanism generates a second hydraulic pressure corresponding to a brake operation, for example. First and second second piping systems 20 and 30 are formed in the actuator 16. The first first piping system 20 controls the brake fluid pressure applied to the left rear wheel Wrl and the right rear wheel Wrr, and the second second piping system 30 controls the brake fluid pressure applied to the right front wheel Wfr and the left front wheel Wfl. To control. That is, it is set as the piping structure of front and rear piping.
 倍力機構15から供給される液圧は、第一第一配管系統20と第二第二配管系統30を通じて各ホイールシリンダWCrl、WCrr、WCfr、WCflに伝えられる。第一第一配管系統20には、油路45とホイールシリンダWCrl、WCrrとを接続する油路20aが備えられている。第二第二配管系統30には、油路44とホイールシリンダWCfr、WCflとを接続する油路30aが備えられ、これら各油路20a、30aを通じて倍力機構15から供給される液圧がホイールシリンダWCrl、WCrr、WCfr、WCflに伝えられる。 The hydraulic pressure supplied from the booster mechanism 15 is transmitted to each wheel cylinder WCrl, WCrr, WCfr, WCfl through the first first piping system 20 and the second second piping system 30. The first first piping system 20 is provided with an oil passage 20a that connects the oil passage 45 and the wheel cylinders WCrl and WCrr. The second second piping system 30 is provided with an oil passage 30a that connects the oil passage 44 and the wheel cylinders WCfr, WCfl, and the hydraulic pressure supplied from the booster mechanism 15 through each of the oil passages 20a, 30a is a wheel. It is transmitted to the cylinders WCrl, WCrr, WCfr, WCfl.
 また、油路20a、30aは、連通状態と差圧状態に制御できる差圧制御弁21、31を備えている。差圧制御弁21、31は、ドライバがブレーキペダル11の操作を行うブレーキ時には連通状態となるように弁位置が調整される。差圧制御弁21、31に備えられるソレノイドコイルに電流が流されると、差圧制御弁21、31は、この電流値が大きいほど大きな差圧状態となるように弁位置が調整される。 Also, the oil passages 20a and 30a are provided with differential pressure control valves 21 and 31 that can be controlled to a communication state and a differential pressure state. The valve positions of the differential pressure control valves 21 and 31 are adjusted so that they are in a communicating state during braking when the driver operates the brake pedal 11. When a current is passed through the solenoid coils provided in the differential pressure control valves 21 and 31, the valve positions of the differential pressure control valves 21 and 31 are adjusted so that the differential pressure is increased as the current value increases.
 差圧制御弁21、31が差圧状態のときには、ホイールシリンダWCrl、WCrr、WCfr、WCfl側のブレーキ液圧が倍力機構15から供給される液圧よりも所定圧力以上高くなった際にのみ、ホイールシリンダWCrl、WCrr、WCfr、WCfl側から倍力機構15側へのみブレーキ液の流動が許容される。このため、常時ホイールシリンダWCrl、WCrr、WCfr、WCfl側が倍力機構15側よりも所定圧力高い状態が維持される。 When the differential pressure control valves 21 and 31 are in the differential pressure state, only when the brake fluid pressure on the wheel cylinders WCrl, WCrr, WCfr, WCfl side is higher than the fluid pressure supplied from the booster mechanism 15 by a predetermined pressure or more. The brake fluid is allowed to flow only from the wheel cylinders WCrl, WCrr, WCfr, WCfl side to the booster mechanism 15 side. For this reason, a state in which the wheel cylinders WCrl, WCrr, WCfr, and WCfl are always at a predetermined pressure higher than the booster mechanism 15 is maintained.
 油路20a、30aは、差圧制御弁21、31よりも下流になるホイールシリンダWCrl、WCrr、WCfr、WCfl側において、それぞれ2つの油路20a1、20a2、30a1、30a2に分岐する。油路20a1、30a1にはホイールシリンダWCrl、WCfrへのブレーキ液圧の増圧を制御する第一第一増圧制御弁22、32が備えられている。油路20a2、30a2にはホイールシリンダWCrr、WCflへのブレーキ液圧の増圧を制御する第二第二増圧制御弁23、33が備えられている。 The oil passages 20a and 30a branch into two oil passages 20a1, 20a2, 30a1, and 30a2 on the wheel cylinders WCrl, WCrr, WCfr, and WCfl side downstream of the differential pressure control valves 21 and 31, respectively. The oil passages 20a1 and 30a1 are provided with first and first pressure increase control valves 22 and 32 for controlling an increase in brake fluid pressure to the wheel cylinders WCrl and WCfr. The oil passages 20a2 and 30a2 are provided with second and second pressure increase control valves 23 and 33 for controlling the increase of the brake fluid pressure to the wheel cylinders WCrr and WCfl.
 これら第一、第二増圧制御弁22、23、32、33は、連通・遮断状態を制御できる2位置電磁弁により構成されている。第一、第二増圧制御弁22、23、32、33は、第一、第二増圧制御弁22、23、32、33に備えられるソレノイドコイルへの制御電流がゼロとされる時(非通電時)には連通状態となり、ソレノイドコイルに制御電流が流される時(通電時)に遮断状態に制御されるノーマルオープン型となっている。 These first and second pressure-increasing control valves 22, 23, 32, 33 are constituted by two-position solenoid valves that can control the communication / blocking state. The first and second pressure increase control valves 22, 23, 32, 33 are set to zero when the control current to the solenoid coil provided in the first, second pressure increase control valves 22, 23, 32, 33 is zero ( It is in a communication state when not energized, and is a normally open type that is controlled to be shut off when a control current flows through the solenoid coil (when energized).
 油路20a、30aにおける第一、第二増圧制御弁22、23、32、33と各ホイールシリンダWCrl、WCrr、WCfr、WCflとの間は、減圧油路としての油路20b、30bを通じて調圧リザーバ24、34に接続されている。油路20b、30bには、連通・遮断状態を制御できる2位置電磁弁により構成される第一、第二減圧制御弁25、26、35、36がそれぞれ配設されている。これら第一、第二減圧制御弁25、26、35、36は、第一、第二減圧制御弁25、26、35、36に備えられるソレノイドコイルへの制御電流がゼロとされる時(非通電時)には遮断状態となり、ソレノイドコイルに制御電流が流される時(通電時)に連通状態に制御されるノーマルクローズ型となっている。 Between the first and second pressure increase control valves 22, 23, 32, 33 in the oil passages 20 a, 30 a and the wheel cylinders WCrl, WCrr, WCfr, WCfl are adjusted through oil passages 20 b, 30 b as pressure reducing oil passages. The pressure reservoirs 24 and 34 are connected. The oil passages 20b and 30b are respectively provided with first and second pressure reduction control valves 25, 26, 35 and 36 constituted by two-position electromagnetic valves capable of controlling the communication / blocking state. These first and second pressure reduction control valves 25, 26, 35, and 36 are used when the control current to the solenoid coils provided in the first and second pressure reduction control valves 25, 26, 35, and 36 is set to zero (non- When the current is energized, it is in a cut-off state, and when the control current is supplied to the solenoid coil (when it is energized), it is a normally closed type that is controlled to be in a communication state.
 調圧リザーバ24、34と主油路である油路20a、30aとの間には還流油路となる油路20c、30cが配設されている。油路20c、30cには調圧リザーバ24、34から倍力機構15側あるいはホイールシリンダWCrl、WCrr、WCfr、WCfl側に向けてブレーキ液を吸入吐出するモータ28によって駆動される自吸式のポンプ27、37が設けられている。モータ28は図示しないモータリレーに対する通電が制御されることで駆動される。 Oil passages 20c and 30c serving as reflux oil passages are disposed between the pressure regulating reservoirs 24 and 34 and the oil passages 20a and 30a serving as main oil passages. The oil passages 20c, 30c are self-priming pumps driven by a motor 28 that sucks and discharges brake fluid from the pressure regulating reservoirs 24, 34 toward the booster mechanism 15 or the wheel cylinders WCrl, WCrr, WCfr, WCfl. 27 and 37 are provided. The motor 28 is driven by controlling energization to a motor relay (not shown).
 調圧リザーバ24、34と倍力機構15との間には補助油路となる油路20d、30dが設けられている。ポンプ27、37は、油路20d、30dを通じて倍力機構15からブレーキ液を吸入し、油路20a、30aに吐出することで、ホイールシリンダWCrl、WCrr、WCfr、WCfl側にブレーキ液を供給する。 Between the pressure regulating reservoirs 24 and 34 and the booster mechanism 15, oil passages 20d and 30d serving as auxiliary oil passages are provided. The pumps 27 and 37 suck the brake fluid from the booster mechanism 15 through the oil passages 20d and 30d, and discharge the brake fluid to the oil passages 20a and 30a, thereby supplying the brake fluid to the wheel cylinders WCrl, WCrr, WCfr, and WCfl side. .
 また、ブレーキECU17には、車両の車輪Wfl、Wrr、Wfr、Wrl毎に備えられた車輪速度センサSfl、Srr、Sfr、Srlからの検出信号が入力されるようになっている。ブレーキECU17は、車輪速度センサSfl、Srr、Sfr、Srlの検出信号に基づいて、各車輪速度や推定車体速度およびスリップ率などを演算している。ブレーキECU17は、これらの演算結果に基づいてアンチスキッド制御などを実行している。また、アクチュエータ16には、倍力機構15から供給される液圧を検出する液圧センサ(「取得部」に相当する)16aが備えられている。液圧センサ16aは、第一第一配管系統20の油路20aに設けられるのが好ましい。液圧センサ16aの検出信号がブレーキECU17に入力され、ブレーキECU17が倍力機構15から供給される液圧を監視できるようになっている。 Also, the brake ECU 17 receives detection signals from wheel speed sensors Sfl, Srr, Sfr, Srl provided for each vehicle wheel Wfl, Wrr, Wfr, Wrl. The brake ECU 17 calculates each wheel speed, estimated vehicle body speed, slip ratio, and the like based on detection signals from the wheel speed sensors Sfl, Srr, Sfr, Srl. The brake ECU 17 executes anti-skid control and the like based on these calculation results. In addition, the actuator 16 is provided with a hydraulic pressure sensor (corresponding to “acquisition unit”) 16 a that detects the hydraulic pressure supplied from the booster mechanism 15. The hydraulic pressure sensor 16 a is preferably provided in the oil passage 20 a of the first first piping system 20. A detection signal from the hydraulic pressure sensor 16 a is input to the brake ECU 17, and the brake ECU 17 can monitor the hydraulic pressure supplied from the booster mechanism 15.
 アクチュエータ16を用いた各種制御は、ブレーキECU17にて実行される。例えば、ブレーキECU17は、アクチュエータ16に備えられる各種制御弁21~23、25、26、31~33、35、36、やポンプ駆動用のモータ28を制御するための制御電流を出力することにより、アクチュエータ16に備えられる油圧回路を制御し、ホイールシリンダWCrl、WCrr、WCfr、WCflに伝えられるホイールシリンダ圧を個別に制御する。例えば、ブレーキECU17は、制動時の車輪スリップ時にホイールシリンダ圧の減圧、保持、増圧を行うことで車輪ロックを防止するアンチスキッド制御や、制御対象輪のホイールシリンダ圧を自動加圧することで横滑り傾向(アンダーステア傾向もしくはオーバステア傾向)を抑制して理想的軌跡での旋回が行えるようにする横滑り防止制御を行なうことができる。 Various controls using the actuator 16 are executed by the brake ECU 17. For example, the brake ECU 17 outputs a control current for controlling the various control valves 21 to 23, 25, 26, 31 to 33, 35, 36 and the pump driving motor 28 provided in the actuator 16, The hydraulic circuit provided in the actuator 16 is controlled, and the wheel cylinder pressure transmitted to the wheel cylinders WCrl, WCrr, WCfr, WCfl is individually controlled. For example, the brake ECU 17 performs anti-skid control for preventing wheel lock by reducing, maintaining, and increasing the wheel cylinder pressure when the wheel slips during braking, and skidding by automatically increasing the wheel cylinder pressure of the wheel to be controlled. Side slip prevention control that suppresses the tendency (understeering tendency or oversteering tendency) and enables turning on an ideal trajectory can be performed.
 なお、イグニッションスイッチがオフ状態である場合または電源失陥がある場合、電磁弁41aは閉状態となる。イグニッションスイッチがオン状態であり電源失陥がない場合、電磁弁41aは開状態となる。 In addition, when the ignition switch is in an OFF state or when there is a power failure, the solenoid valve 41a is closed. When the ignition switch is on and there is no power failure, the solenoid valve 41a is opened.
 ブレーキECU17は、通常のブレーキ時において、入力部15bがピストン部12d2の摺動に拘わらず移動していない第一期間には、ブレーキ操作に相当する液圧をアクチュエータ16により発生させる(液圧制御部)。また、ブレーキECU17は、第一期間には、アクチュエータ16(第二液圧発生機構)によりブレーキ操作に応じた第二液圧を発生させるとともに、ホイールシリンダWC(制動力付与機構)により第二液圧に基づいて車輪Wに制動力を付与させる(液圧制御部)。ブレーキECU17は、ペダルストロークセンサ11aから取得した検出信号に基づいてブレーキペダル11の操作の開始を検知すると、操作開始時点から液圧センサ16aが所定圧力値(例えば0Pa)より大きい液圧を検知するまでの間、ブレーキ操作に相当する液圧をアクチュエータ16により発生させる。なお、通常のブレーキ時とは、ブレーキ操作がなされた場合、その操作に応じたホイールシリンダ圧が形成され、そのホイールシリンダ圧を車輪に付与して制動力を得ることであり、ESC制御など、ブレーキ操作がない場合に制動力を与えるものと異なる。 During normal braking, the brake ECU 17 causes the actuator 16 to generate a hydraulic pressure corresponding to the brake operation during the first period in which the input portion 15b does not move despite the sliding of the piston portion 12d2 (hydraulic pressure control). Part). Further, the brake ECU 17 generates a second hydraulic pressure corresponding to the brake operation by the actuator 16 (second hydraulic pressure generating mechanism) during the first period, and the second hydraulic pressure by the wheel cylinder WC (braking force applying mechanism). A braking force is applied to the wheel W based on the pressure (hydraulic pressure control unit). When the brake ECU 17 detects the start of the operation of the brake pedal 11 based on the detection signal acquired from the pedal stroke sensor 11a, the hydraulic pressure sensor 16a detects a hydraulic pressure greater than a predetermined pressure value (for example, 0 Pa) from the operation start time. Until then, the hydraulic pressure corresponding to the brake operation is generated by the actuator 16. The normal braking is when the brake operation is performed, a wheel cylinder pressure corresponding to the operation is formed, and the wheel cylinder pressure is applied to the wheel to obtain a braking force, such as ESC control. It differs from the one that gives braking force when there is no brake operation.
 イグニッションスイッチがオン状態であり電源失陥がない場合、電磁弁41aは開状態となっている。よって、液圧室12d7は油路41を介してリザーバタンク14に連通するため、ピストン部12d2がブレーキ操作に応じて左側に移動した場合、液圧室12d7内のブレーキ液は油路41を通ってリザーバタンク14に流出可能となる。よって、ピストン部12d2を左側に押圧する力が、スプリング12d4の付勢力、スプリング15eの付勢力、および入力部15bの摺動抵抗による力の総和より大きくなって初めて入力部15bが左側に移動を始める。それまで、ピストン部12d2を左側に押圧する力が、上述した力の総和より小さい場合には、入力部15bは移動しない。なお、ブレーキECU17は、液圧センサ16aが所定圧力値(例えば0Pa)より大きい液圧を検知すると、アクチュエータ16による加圧を終了する。これにより、倍力機構15によってブレーキ操作に応じた発生された液圧のみが、ホイールシリンダWCに供給されることとなる。 When the ignition switch is on and there is no power failure, the solenoid valve 41a is open. Accordingly, since the hydraulic chamber 12d7 communicates with the reservoir tank 14 via the oil passage 41, the brake fluid in the hydraulic chamber 12d7 passes through the oil passage 41 when the piston portion 12d2 moves to the left according to the brake operation. Thus, it can flow out to the reservoir tank 14. Therefore, the input portion 15b does not move to the left side until the force that presses the piston portion 12d2 to the left is greater than the sum of the urging force of the spring 12d4, the urging force of the spring 15e, and the sliding resistance of the input portion 15b. start. Until then, when the force pressing the piston portion 12d2 to the left is smaller than the total force described above, the input portion 15b does not move. The brake ECU 17 ends the pressurization by the actuator 16 when the hydraulic pressure sensor 16a detects a hydraulic pressure greater than a predetermined pressure value (for example, 0 Pa). Thereby, only the hydraulic pressure generated according to the brake operation by the booster mechanism 15 is supplied to the wheel cylinder WC.
(オフ圧変更制御)
 ここで、本実施形態の車両の制動装置のオフ圧変更制御について説明する。本実施形態の車両の制動装置は、上述のとおり、アキュムレータ15c1の液圧が、ブレーキ操作に応じて機械的に動作する液圧発生部15dにより、直接的にアクチュエータ16に供給される構成を有している。この構成におけるオフ圧変更制御について以下に説明する。
(Off pressure change control)
Here, the off-pressure change control of the vehicle braking device of the present embodiment will be described. As described above, the vehicle braking device according to the present embodiment has a configuration in which the hydraulic pressure of the accumulator 15c1 is directly supplied to the actuator 16 by the hydraulic pressure generator 15d that mechanically operates in response to the brake operation. is doing. The off pressure change control in this configuration will be described below.
 ブレーキECU17には、アクチュエータ16に供給される液圧(以下、「マスタ圧」と称する)に関する第一所定値及び第二所定値と、アキュムレータ15c1内の液圧(以下、「Acc圧」と称する)に関する基準オフ圧、基準オン圧、補正オフ圧、及び補正オン圧とが記録されている。オフ圧とは、ポンプ15c2を停止(オフ)する設定圧力であり、Acc圧が当該オフ圧以上となるとポンプ15c2が停止される。オン圧とは、ポンプを駆動(オン)させる設定圧力であって、Acc圧が当該オン圧未満になるとポンプ15c2が駆動される。 The brake ECU 17 includes a first predetermined value and a second predetermined value relating to a hydraulic pressure (hereinafter referred to as “master pressure”) supplied to the actuator 16, and a hydraulic pressure (hereinafter referred to as “Acc pressure”) in the accumulator 15 c 1. ) Are recorded. Reference off pressure, reference on pressure, correction off pressure, and correction on pressure are recorded. The off pressure is a set pressure for stopping (turning off) the pump 15c2. When the Acc pressure becomes equal to or higher than the off pressure, the pump 15c2 is stopped. The on pressure is a set pressure for driving (turning on) the pump, and the pump 15c2 is driven when the Acc pressure becomes lower than the on pressure.
 第二所定値は、第一所定値よりも小さい値に設定されている(第一所定値>第二所定値)。補正オフ圧は基準オフ圧よりも小さい値に設定され、補正オン圧は基準オン圧よりも小さい値に設定されている。また、補正オフ圧は、基準オン圧以下の値に設定されている。本実施形態では、基準オフ圧>基準オン圧>補正オフ圧>補正オン圧となるように設定されている。 The second predetermined value is set to a value smaller than the first predetermined value (first predetermined value> second predetermined value). The corrected off pressure is set to a value smaller than the reference off pressure, and the corrected on pressure is set to a value smaller than the reference on pressure. The corrected off pressure is set to a value equal to or lower than the reference on pressure. In the present embodiment, the reference off pressure> the reference on pressure> the corrected off pressure> the corrected on pressure is set.
 ブレーキECU17は、液圧センサ16aからマスタ圧の情報を取得し、マスタ圧が第一所定値以上となった場合に、ポンプ15c2の基準オフ圧を補正オフ圧に変更するとともに、基準オン圧を補正オン圧に変更する。つまり、ブレーキECU17は、マスタ圧が第一所定値以上である場合、設定されたポンプ15c2のオフ圧及びオン圧を低くする。このように、ブレーキECU17は、アクチュエータ16等を制御する機能の他に、Acc圧のオフ圧とオン圧を制御する蓄圧制御部17aを有している。 The brake ECU 17 obtains the master pressure information from the hydraulic pressure sensor 16a, and when the master pressure becomes equal to or higher than the first predetermined value, the brake ECU 17 changes the reference off pressure of the pump 15c2 to the corrected off pressure and sets the reference on pressure. Change to corrected ON pressure. That is, the brake ECU 17 decreases the set off pressure and on pressure of the pump 15c2 when the master pressure is equal to or higher than the first predetermined value. As described above, the brake ECU 17 has a pressure accumulation control unit 17a for controlling the off pressure and the on pressure of the Acc pressure in addition to the function of controlling the actuator 16 and the like.
 さらに、蓄圧制御部17aは、オフ圧及びオン圧を低下させた後、マスタ圧が第二所定値未満となった場合に、オフ圧を補正オフ圧から基準オフ圧に変更するとともに、オン圧を補正オン圧から基準オン圧に変更する。つまり、ブレーキECU17は、オフ圧及びオン圧を低下させた後、マスタ圧が第二所定値未満である場合に、オフ圧及びオン圧を高くする。本実施形態の蓄圧制御部17aは、この際にオフ圧及びオン圧が元の値に戻るように設定されている。なお、ブレーキECU17は、圧力センサ15c4からAcc圧の情報を取得する。また、初期のAcc圧は、基準オン圧と基準オフ圧の間で保持され、この状態でポンプ15c2はオフ状態となっている。 Further, the pressure accumulation control unit 17a changes the off pressure from the corrected off pressure to the reference off pressure when the master pressure becomes less than the second predetermined value after reducing the off pressure and the on pressure. Is changed from the corrected ON pressure to the reference ON pressure. That is, after reducing the off pressure and the on pressure, the brake ECU 17 increases the off pressure and the on pressure when the master pressure is less than the second predetermined value. At this time, the pressure accumulation control unit 17a of the present embodiment is set so that the off pressure and the on pressure return to the original values. The brake ECU 17 acquires information on the Acc pressure from the pressure sensor 15c4. The initial Acc pressure is maintained between the reference on pressure and the reference off pressure, and in this state, the pump 15c2 is in the off state.
 このオフ圧変更制御を1度ブレーキペダル11が踏み込まれたケース(踏み増しなしのケース)で説明する。図2に示すように、ブレーキ操作が開始されると、t1においてアキュムレータ15c1とアクチュエータ16とが連通し、アキュムレータ15c1から液圧発生部15dを介してアクチュエータ16に作動液が供給され始める。これにより、Acc圧が低下しマスタ圧が上昇する。t2において、Acc圧が基準オン圧未満となり、ブレーキECU17によりポンプ15c2が駆動(オン)される。 This off-pressure change control will be described in the case where the brake pedal 11 is depressed once (the case where there is no additional depression). As shown in FIG. 2, when the brake operation is started, the accumulator 15c1 and the actuator 16 communicate with each other at t1, and the hydraulic fluid starts to be supplied from the accumulator 15c1 to the actuator 16 via the hydraulic pressure generator 15d. As a result, the Acc pressure decreases and the master pressure increases. At t2, the Acc pressure becomes less than the reference ON pressure, and the pump 15c2 is driven (ON) by the brake ECU 17.
 t3において、マスタ圧が第一所定値以上となり、ブレーキECU17がオフ圧を基準オフ圧から補正オフ圧まで低下させるとともに、オン圧を基準オン圧から補正オン圧まで低下させる。この変更により、Acc圧がオフ圧(補正オフ圧)以上の値となり、ブレーキECU17がポンプ15c2を停止させ、Acc圧の上昇を停止させる。図2に示すように、ポンプ15c2は、オフ圧を低くすることにより、通常よりも早いタイミングで停止する。つまり、通常では停止しないt3時点において、Acc圧の上昇は停止される。そして、t4においてマスタ圧が最大点に達し、t5においてブレーキ操作が解除され始め、マスタ圧が低下し始める。第一所定値は、Acc圧の上昇が不要であるタイミングに設定されることが好ましく、本実施形態ではマスタ圧の最大点(t4)に近接した値に設定されている。 At t3, the master pressure becomes equal to or higher than the first predetermined value, and the brake ECU 17 reduces the off pressure from the reference off pressure to the corrected off pressure, and reduces the on pressure from the reference on pressure to the corrected on pressure. By this change, the Acc pressure becomes a value equal to or higher than the off pressure (corrected off pressure), and the brake ECU 17 stops the pump 15c2 and stops the increase in the Acc pressure. As shown in FIG. 2, the pump 15c2 stops at an earlier timing than usual by lowering the off pressure. That is, the increase in the Acc pressure is stopped at time t3 when it does not normally stop. Then, the master pressure reaches the maximum point at t4, the brake operation starts to be released at t5, and the master pressure starts to decrease. The first predetermined value is preferably set at a timing at which it is not necessary to increase the Acc pressure. In the present embodiment, the first predetermined value is set to a value close to the maximum point (t4) of the master pressure.
 t6において、マスタ圧が第二所定値未満となり、ブレーキECU17がオフ圧及びオン圧を元の値(基準オフ圧及び基準オン圧)に戻す。これにより、次回のブレーキ操作において、オフ圧及びオン圧は初期の基準値で行われることになる。Acc圧は、t3又はt4以降、維持されている。t6においてオフ圧及びオン圧が高くなることにより、オフ圧及びオン圧を、変更前の基準値又はそれに近い値に戻すことができる。 At t6, the master pressure becomes less than the second predetermined value, and the brake ECU 17 returns the off pressure and the on pressure to the original values (reference off pressure and reference on pressure). Thereby, in the next brake operation, the off pressure and the on pressure are performed with the initial reference values. The Acc pressure is maintained after t3 or t4. By increasing the off pressure and the on pressure at t6, the off pressure and the on pressure can be returned to the reference value before the change or a value close thereto.
 オフ圧変更制御の流れについてまとめると、図3に示すように、ブレーキ操作が開始され、マスタ圧が第一所定値以上となった場合(S101:Yes)、ブレーキECU17がオフ圧及びオン圧を低くする(S102)。また、その後もマスタ圧の検知が繰り返し実施され、マスタ圧が第二所定値未満となった場合(S103:Yes)、ブレーキECU17がオフ圧及びオン圧を高くして元に戻す(S104)。 To summarize the flow of the off pressure change control, as shown in FIG. 3, when the brake operation is started and the master pressure becomes equal to or higher than the first predetermined value (S101: Yes), the brake ECU 17 sets the off pressure and the on pressure. Lower (S102). After that, the detection of the master pressure is repeatedly performed, and when the master pressure becomes less than the second predetermined value (S103: Yes), the brake ECU 17 increases the off pressure and the on pressure and restores them (S104).
 本実施形態のようなアキュムレータ15c1が機械的且つ直接的にアクチュエータ16に液圧を供給する装置では、アクチュエータ16内の一部の装置に故障(異常)が発生した場合、想定外の部位に長時間高い液圧がかかってしまうおそれがある。例えば、第一、第二減圧制御弁25、26、35、36の何れかが故障(漏れ異常)となり、制御が効かずにオープン状態(開状態)が維持される状態となった場合、故障した当該減圧制御弁に接続されたリザーバ(ここでは調圧リザーバ24、34)にアキュムレータ15c1の高い液圧が供給されることとなる。調圧リザーバ24、34は、長時間高圧を受けることは想定されておらず、高い液圧を受け続けるように設計されていない。したがって、第一、第二減圧制御弁25、26、35、36の少なくとも1つが漏れ異常となった場合、調圧リザーバ24、34の耐久性が低下する。 In the device in which the accumulator 15c1 mechanically and directly supplies the hydraulic pressure to the actuator 16 as in the present embodiment, if a failure (abnormality) occurs in a part of the device in the actuator 16, it may be long in an unexpected part. There is a risk that high fluid pressure will be applied for a long time. For example, if any of the first and second pressure reducing control valves 25, 26, 35, and 36 fails (leakage abnormality) and the control is not effective and the open state (open state) is maintained, the failure The high hydraulic pressure of the accumulator 15c1 is supplied to the reservoirs (here, the pressure regulating reservoirs 24 and 34) connected to the pressure reduction control valve. The pressure regulating reservoirs 24 and 34 are not assumed to be subjected to high pressure for a long time, and are not designed to continue to receive high fluid pressure. Therefore, when at least one of the first and second pressure reduction control valves 25, 26, 35, 36 becomes abnormal in leakage, the durability of the pressure regulating reservoirs 24, 34 is lowered.
 また、第一、第二減圧制御弁25、26、35、36が故障した場合でも、液圧発生部15dを介してアキュムレータ15c1から高い液圧がアクチュエータ16に供給されるため、ブレーキの効き及びブレーキフィーリングへの影響はほぼない。したがって、運転手は、第一、第二減圧制御弁25、26、35、36の故障に気づかずに、連続的にブレーキ操作を継続することになり得、さらに調圧リザーバ24、34への負荷が継続されるおそれがある。 Even when the first and second pressure reduction control valves 25, 26, 35, and 36 are out of order, a high hydraulic pressure is supplied from the accumulator 15c1 to the actuator 16 via the hydraulic pressure generator 15d. There is almost no impact on the brake feeling. Therefore, the driver can continue the brake operation continuously without noticing the failure of the first and second pressure reducing control valves 25, 26, 35, and 36, and further to the pressure regulating reservoirs 24 and 34. The load may continue.
 しかしながら、本実施形態によれば、高い液圧がアクチュエータ16に供給され、マスタ圧がある値以上に高くなったタイミング(マスタ圧≧第一所定値)で、Acc圧に関するオフ圧及びオン圧が低くなる。これにより、Acc圧の上昇が通常よりも早く停止し、あるいは変更後にポンプ15c2がオンになった場合のAcc圧上昇の上限が低下し、通常制御時よりも低い液圧でAcc圧を維持することができる。通常の制御の場合、例えば図2のt3以降、Acc圧は基準オフ圧に達するまで上昇する。これにより、第一、第二減圧制御弁25、26、35、36に故障があった場合でも、調圧リザーバ24、34への負荷圧の増大が抑制される。また、オフ圧変更制御は、Acc圧自体を低くする制御ではなく、少なくともオフ圧を低くする制御である。したがって、第一、第二減圧制御弁25、26、35、36に故障がない場合でも、アクチュエータ16への液圧の供給に影響は出ない。 However, according to the present embodiment, when the high hydraulic pressure is supplied to the actuator 16 and the master pressure becomes higher than a certain value (master pressure ≧ first predetermined value), the off pressure and the on pressure related to the Acc pressure are increased. Lower. As a result, the increase in the Acc pressure stops earlier than usual, or the upper limit of the increase in Acc pressure when the pump 15c2 is turned on after the change is reduced, and the Acc pressure is maintained at a lower hydraulic pressure than during normal control. be able to. In the case of normal control, for example, after t3 in FIG. 2, the Acc pressure increases until the reference off pressure is reached. Thereby, even when there is a failure in the first and second pressure reduction control valves 25, 26, 35, 36, an increase in load pressure to the pressure regulating reservoirs 24, 34 is suppressed. Further, the off pressure change control is not a control for lowering the Acc pressure itself, but a control for lowering at least the off pressure. Therefore, even if there is no failure in the first and second pressure reduction control valves 25, 26, 35, 36, the supply of hydraulic pressure to the actuator 16 is not affected.
 また、本実施形態によれば、ブレーキ操作が解除され始め、マスタ圧がある値未満となったタイミング(マスタ圧<第二所定値)で、オフ圧及びオン圧が高くなり、元の基準値に戻る。これにより、次回のブレーキ操作において、初期設定の状態が実現される。なお、第一所定値は、図2に示すように、ブレーキ操作中において、Acc圧がオン圧(基準オン圧)未満となるマスタ圧よりも大きい値に設定されることが好ましい。 Further, according to the present embodiment, at the timing when the brake operation starts to be released and the master pressure becomes less than a certain value (master pressure <second predetermined value), the off pressure and the on pressure increase, and the original reference value Return to. Thus, the initial setting state is realized in the next brake operation. As shown in FIG. 2, the first predetermined value is preferably set to a value larger than the master pressure at which the Acc pressure is less than the on pressure (reference on pressure) during the brake operation.
 また、オフ圧変更制御において、マスタ圧は「要求制動力」に相当する。要求制動力は、本実施形態のようにアクチュエータ16に供給される液圧(すなわち、ブレーキ操作に応じて変化する液圧)でも良く、あるいはブレーキ操作量(例えばペダルストロークセンサ11aで検出される値)であっても良い。このように本実施形態の車両の制動装置は、少なくとも、アキュムレータ15c1と、ブレーキECU17(蓄圧制御部17a)と、液圧発生部15dと、アクチュエータ16と、液圧センサ16a又はペダルストロークセンサ11aと、を備えている。 In the off pressure change control, the master pressure corresponds to “required braking force”. The required braking force may be the hydraulic pressure supplied to the actuator 16 (that is, the hydraulic pressure that changes according to the brake operation) as in the present embodiment, or the brake operation amount (for example, a value detected by the pedal stroke sensor 11a). ). As described above, the vehicle braking device according to the present embodiment includes at least the accumulator 15c1, the brake ECU 17 (the pressure accumulation control unit 17a), the hydraulic pressure generation unit 15d, the actuator 16, and the hydraulic pressure sensor 16a or the pedal stroke sensor 11a. It is equipped with.
(その他)
 本発明は、上記実施形態に限られない。例えば、オフ圧変更制御は、オン圧を変更せず、オフ圧のみを変更する制御であっても良い。これによっても、Acc圧の上昇が早いタイミングで停止され、あるいは変更後にポンプ15c2がオンになった場合のAcc圧上昇の上限が低下し、上記同様の効果が発揮される。ただし、オフ圧とオン圧の両方を変更することで、オフ圧変更制御に対して、オン圧を含めた全体的にヒステリシスを持たせることができる。また、オフ圧及びオン圧の変更の仕方は、上記に限らず、徐々に低くする等、どのように変更しても良い。また、ホイールシリンダWCが「制動力付与部」であるともいえる。制動力付与部は、アクチュエータ16及び/又はホイールシリンダWCである。
(Other)
The present invention is not limited to the above embodiment. For example, the off pressure change control may be a control that changes only the off pressure without changing the on pressure. This also stops the increase of the Acc pressure at an early timing, or lowers the upper limit of the Acc pressure increase when the pump 15c2 is turned on after the change, and the same effect as described above is exhibited. However, by changing both the off pressure and the on pressure, the hysteresis including the on pressure can be given overall hysteresis for the off pressure change control. Further, the method of changing the off pressure and the on pressure is not limited to the above, and may be changed in any manner such as gradually decreasing. Further, it can be said that the wheel cylinder WC is a “braking force applying portion”. The braking force application unit is the actuator 16 and / or the wheel cylinder WC.
<第二実施形態>
 第二実施形態の車両の制動装置は、オフ圧変更制御の前に「ブレーキパッドがフェード状態か否か」を判定している点で第一実施形態と異なっている。したがって、異なっている部分について説明する。第一実施形態と同じ符号は、第一実施形態と同様の構成を示すものであって、先行する説明が参照される。
<Second embodiment>
The vehicle braking device of the second embodiment is different from the first embodiment in that it determines “whether the brake pad is in a fade state” before the off pressure change control. Therefore, a different part is demonstrated. The same reference numerals as those in the first embodiment indicate the same configurations as those in the first embodiment, and the preceding description is referred to.
 図4に示すように、ブレーキECU17は、蓄圧制御部17aと、パッド判定部17bと、を備えている。パッド判定部17bは、キャリパCLに設けられたブレーキパッドが正常であるか否かを判定する。具体的に、パッド判定部17bは、ブレーキECU17が取得する車輪速度、マスタ圧、及びホイールシリンダ圧の加圧時間により演算・推定されたブレーキパッドの温度に基づいて、ブレーキパッドがフェード状態であるか否かを判定する。パッド判定部17bは、ブレーキパッドの推定温度が所定温度未満である場合に「ブレーキパッドが正常である(すなわちフェード状態ではない)」と判定し、所定温度以上である場合に「ブレーキパッドが正常ではない(すなわちフェード状態である)」と判定する。蓄圧制御部17aは、パッド判定部17bが「正常」と判定している場合に、第一実施形態のオフ圧変更制御を実行する。 As shown in FIG. 4, the brake ECU 17 includes a pressure accumulation control unit 17a and a pad determination unit 17b. The pad determination unit 17b determines whether or not the brake pad provided on the caliper CL is normal. Specifically, the pad determination unit 17b indicates that the brake pad is in a fade state based on the temperature of the brake pad that is calculated and estimated from the pressurization time of the wheel speed, master pressure, and wheel cylinder pressure acquired by the brake ECU 17. It is determined whether or not. The pad determination unit 17b determines that “the brake pad is normal (that is, not in a fade state)” when the estimated temperature of the brake pad is lower than the predetermined temperature, and “the brake pad is normal” when the estimated temperature is equal to or higher than the predetermined temperature. Is not (ie, it is in a fade state) ”. The pressure accumulation control unit 17a executes the off-pressure change control of the first embodiment when the pad determination unit 17b determines “normal”.
 図5に示すように、第二実施形態では、ブレーキ操作が開始されると、ブレーキパッドが正常であるか否か(フェード状態でないか否か)が判定される(S201)。ブレーキパッドが正常であると判定されると(S201:Yes)、第一実施形態同様のオフ圧変更制御が実行される(S202~S205)。ブレーキパッドが正常か否かやマスタ圧の検知が繰り返し実施され、第一実施形態同様のオフ圧変更制御が行われる。 As shown in FIG. 5, in the second embodiment, when the brake operation is started, it is determined whether the brake pad is normal (whether it is not in a fade state) (S201). If it is determined that the brake pad is normal (S201: Yes), the off pressure change control similar to the first embodiment is executed (S202 to S205). Whether or not the brake pad is normal and the detection of the master pressure are repeatedly performed, and the off pressure change control similar to the first embodiment is performed.
 第二実施形態によれば、ブレーキパッドがフェード状態でない正常状態の場合にのみ、オフ圧変更制御が実行される。これにより、Acc圧が低くなりやすいフェード状態での不要なオフ圧変更制御を回避することができる。なお、ブレーキECU17は、第一、第二減圧制御弁25、26、35、36が故障(例えば漏れ異常)であるか否かを判定しても良い。この場合、ブレーキECU17は、例えば、漏れ異常がある場合、又は漏れ異常があり且つフェード状態でない場合に、オフ圧変更制御を実行するように設定されても良い。また、ブレーキパッドの温度の推定要素に、ブレーキ操作回数を加えても良い。また、第一実施形態のその他の構成も第二実施形態に適用できる。 According to the second embodiment, the off-pressure change control is executed only when the brake pad is in a normal state that is not a fade state. Thereby, it is possible to avoid unnecessary off pressure change control in a fade state in which the Acc pressure tends to be low. The brake ECU 17 may determine whether or not the first and second pressure reduction control valves 25, 26, 35, and 36 are out of order (for example, leakage abnormality). In this case, for example, the brake ECU 17 may be set to execute the off-pressure change control when there is a leakage abnormality or when there is a leakage abnormality and is not in a fade state. In addition, the number of brake operations may be added to the brake pad temperature estimation factor. Also, other configurations of the first embodiment can be applied to the second embodiment.
 ここで、オフ圧変更制御においてオフ圧を低くすると、要求制動力がオフ圧に相当する制動力(ホイールシリンダWCにオフ圧を供給しているときにキャリパCLにより車輪に付与される制動力)よりも高くなることが考えられる。そのため、要求制動力がオフ圧に相当する制動力よりも高い場合に、倍力機構15により発生されている液圧に要求制動力とオフ圧に相当する制動力との差分に相当する液圧をアクチュエータ(「補助制動力付与部」に相当する)16により加圧することが好ましい。これにより、要求制動力に相当する液圧がホイールシリンダWCに供給され、キャリパCLにより車輪に要求制動力を付与することができる。また、要求制動力がオフ圧に相当する制動力よりも高い場合に、上述のようにアクチュエータ16により加圧することに替えて、キャリパCL以外の制動装置(例えば、電動式の駐車ブレーキ)により、要求制動力とオフ圧に相当する制動力との差分の制動力を車輪に付与するようにしても良い。これらの制御は、ブレーキECU(「補助制動制御部」に相当する)17により指令される。また、これらの構成は、第一実施形態又は第二実施形態に適用することができる。 Here, when the off pressure is lowered in the off pressure change control, the required braking force corresponds to the off pressure (the braking force applied to the wheel by the caliper CL when the off pressure is supplied to the wheel cylinder WC). It may be higher than Therefore, when the required braking force is higher than the braking force corresponding to the off pressure, the hydraulic pressure corresponding to the difference between the required braking force and the braking force corresponding to the off pressure is the hydraulic pressure generated by the booster mechanism 15. Is preferably pressed by an actuator 16 (corresponding to an “auxiliary braking force applying portion”) 16. Thereby, the hydraulic pressure corresponding to the required braking force is supplied to the wheel cylinder WC, and the required braking force can be applied to the wheel by the caliper CL. Further, when the required braking force is higher than the braking force corresponding to the off pressure, instead of pressurizing by the actuator 16 as described above, a braking device other than the caliper CL (for example, an electric parking brake) A braking force that is the difference between the required braking force and the braking force corresponding to the off pressure may be applied to the wheels. These controls are commanded by a brake ECU (corresponding to an “auxiliary braking control unit”) 17. Moreover, these structures are applicable to 1st embodiment or 2nd embodiment.
(まとめ)
 本実施形態の車両の制動装置は、作動液を蓄圧する蓄圧部15c1と、蓄圧部15c1内の液圧が所定のオフ圧(基準オフ圧)以上である場合に蓄圧部15c1内の液圧の上昇が停止するように蓄圧部15c1内の液圧を制御する蓄圧制御部17aと、蓄圧部15c1内の液圧に基づいて、蓄圧部15c1に蓄圧されている液圧を上限として、ブレーキ操作に応じた液圧を機械的に発生させる液圧発生部15dと、液圧発生部15dにより発生されている液圧に基づいて車両の車輪に制動力を付与する制動力付与部16(及び/又はWC)と、要求制動力を取得する取得部16aと、を備え、蓄圧制御部17aは、取得部16aにより取得されている要求制動力が第一所定値以上である場合に、取得部16aにより取得されている要求制動力が第一所定値未満である場合よりも、オフ圧を低くする。
(Summary)
The vehicle braking apparatus according to the present embodiment includes a pressure accumulating portion 15c1 that accumulates hydraulic fluid, and the hydraulic pressure in the pressure accumulating portion 15c1 when the fluid pressure in the pressure accumulating portion 15c1 is equal to or higher than a predetermined off pressure (reference off pressure). Based on the hydraulic pressure in the pressure accumulating portion 15c1 and the pressure accumulating control portion 17a for controlling the hydraulic pressure in the pressure accumulating portion 15c1 so as to stop the increase, the hydraulic pressure accumulated in the pressure accumulating portion 15c1 is set as an upper limit for brake operation. A hydraulic pressure generating unit 15d that mechanically generates a corresponding hydraulic pressure, and a braking force applying unit 16 that applies a braking force to the wheels of the vehicle based on the hydraulic pressure generated by the hydraulic pressure generating unit 15d (and / or WC) and an acquisition unit 16a that acquires the required braking force, and the accumulator control unit 17a is configured by the acquisition unit 16a when the required braking force acquired by the acquisition unit 16a is greater than or equal to a first predetermined value. Obtained demand braking force Than is less than a first predetermined value, to reduce the off pressure.
 この蓄圧制御部17aは、オフ圧を低くした後、取得部16aにより取得されている要求制動力が第一所定値よりも小さい第二所定値未満である場合に、オフ圧を高くすることが好ましい。また、この蓄圧制御部17aは、蓄圧部15c1内の液圧が所定のオン圧(基準オン圧)未満となった場合に蓄圧部15c1内の液圧が上昇するように蓄圧部15c1内の液圧を制御し、取得部16aにより取得されている要求制動力が第一所定値以上である場合に、取得部16aにより取得されている要求制動力が第一所定値未満である場合よりも、オン圧を低くすることが好ましい。 The pressure accumulation control unit 17a may increase the off pressure when the required braking force acquired by the acquisition unit 16a is less than a second predetermined value that is smaller than the first predetermined value after reducing the off pressure. preferable. In addition, the pressure accumulation control unit 17a is configured so that the liquid pressure in the pressure accumulation unit 15c1 increases so that the liquid pressure in the pressure accumulation unit 15c1 increases when the liquid pressure in the pressure accumulation unit 15c1 becomes less than a predetermined on pressure (reference on pressure). When the required braking force acquired by the acquisition unit 16a is greater than or equal to the first predetermined value by controlling the pressure, than when the required braking force acquired by the acquisition unit 16a is less than the first predetermined value, It is preferable to lower the on pressure.
 また、本実施形態の車両の制動装置は、ブレーキパッド(キャリパCL)が正常であるか否かを判定するパッド判定部17bを備えても良く、この場合、蓄圧制御部17aは、パッド判定部17bによりブレーキパッドが正常でないことが判定されている場合で、且つ取得部16aにより取得されている要求制動力が第一所定値以上である場合に、取得部16aにより取得されている要求制動力が第一所定値未満である場合よりも、オフ圧を低くすることが好ましい。
 また、本実施形態の車両の制動装置は、液圧発生部15dにより発生されている液圧に加圧又は制動力付与部16(WC)により車輪に付与されている制動力に加えて車輪に制動力を付与する補助制動力付与部16と、取得部16aにより取得されている要求制動力がオフ圧に相当する制動力よりも高い場合に、取得部16aにより取得されている要求制動力とオフ圧に相当する制動力との差分に相当する液圧を補助制動力付与部16により加圧、又は、差分の制動力を補助制動力付与部16により付与させる補助制動制御部17と、を備えることが好ましい。
 また、本実施形態の車両の制動装置は、シリンダ部と、ブレーキ操作部材を操作するブレーキ操作に伴って前記シリンダ部内を摺動するピストン部とを有し、前記シリンダ部内および前記ピストン部によって区画された第一液圧室内に、前記ブレーキ操作に対応する液圧を発生させる操作対応圧発生機構と、
 前記ピストン部の摺動に伴って、前記ピストン部によって直接的に押圧されまたは前記ピストン部との間に介在された介在部材によって押圧されることにより前記シリンダ部内を摺動し移動される入力部と、作動液を蓄圧する蓄圧部の液圧に基づいて前記入力部の移動に応じた第一液圧を発生させる液圧発生部とを有している第一液圧発生機構と、
 前記第一液圧に基づいて車両の車輪に制動力を付与する制動力付与機構と、
 を備えているともいえる。そして、この制動装置は、所望の第二液圧を発生させる第二液圧発生機構をさらに備えていても良い。
In addition, the vehicle braking device of the present embodiment may include a pad determination unit 17b that determines whether or not the brake pad (caliper CL) is normal. In this case, the pressure accumulation control unit 17a includes the pad determination unit. The required braking force acquired by the acquisition unit 16a when it is determined by 17b that the brake pad is not normal and the required braking force acquired by the acquisition unit 16a is greater than or equal to the first predetermined value. It is preferable to lower the off pressure than when the value is less than the first predetermined value.
In addition, the vehicle braking device of the present embodiment applies pressure to the hydraulic pressure generated by the hydraulic pressure generating unit 15d or applies to the wheel in addition to the braking force applied to the wheel by the braking force applying unit 16 (WC). The auxiliary braking force applying unit 16 that applies the braking force, and the required braking force acquired by the acquiring unit 16a when the required braking force acquired by the acquiring unit 16a is higher than the braking force corresponding to the off pressure. A hydraulic pressure corresponding to the difference from the braking force corresponding to the off pressure is increased by the auxiliary braking force applying unit 16 or an auxiliary braking control unit 17 for applying the differential braking force by the auxiliary braking force applying unit 16; It is preferable to provide.
In addition, the vehicle braking device of the present embodiment includes a cylinder portion and a piston portion that slides in the cylinder portion in accordance with a brake operation for operating a brake operation member, and is partitioned by the piston portion. An operation corresponding pressure generating mechanism for generating a hydraulic pressure corresponding to the brake operation in the first hydraulic pressure chamber,
As the piston part slides, the input part is slid and moved in the cylinder part by being pressed directly by the piston part or by an intermediate member interposed between the piston part. And a first hydraulic pressure generating mechanism having a hydraulic pressure generating unit that generates a first hydraulic pressure according to the movement of the input unit based on the hydraulic pressure of the pressure accumulating unit that accumulates hydraulic fluid,
A braking force applying mechanism for applying a braking force to the wheels of the vehicle based on the first hydraulic pressure;
It can be said that it has. The braking device may further include a second hydraulic pressure generation mechanism that generates a desired second hydraulic pressure.
11:ブレーキペダル、 11a:ペダルストロークセンサ、
12:ストロークシミュレータ部、14:リザーバタンク、
15:倍力機構、 15c1:アキュムレータ(蓄圧部)、 15c2:ポンプ、
15c3:電動モータ、 15c4:圧力センサ、 15d:液圧発生部、
16:アクチュエータ(制動力付与部、補助制動力付与部)、
16a:液圧センサ(取得部)、 17:ブレーキECU(補助制動制御部)、
17a:蓄圧制御部、 17b:パッド判定部、
24、34:調圧リザーバ、 25、26、35、36:減圧制御弁、
CL:キャリパ、 WC:ホイールシリンダ
 
11: Brake pedal, 11a: Pedal stroke sensor,
12: Stroke simulator section, 14: Reservoir tank,
15: Booster mechanism, 15c1: Accumulator (accumulation unit), 15c2: Pump,
15c3: Electric motor, 15c4: Pressure sensor, 15d: Fluid pressure generating unit,
16: Actuator (braking force application unit, auxiliary braking force application unit),
16a: Hydraulic pressure sensor (acquisition part), 17: Brake ECU (auxiliary braking control part),
17a: Pressure accumulation control unit, 17b: Pad determination unit,
24, 34: Pressure regulating reservoir, 25, 26, 35, 36: Pressure reducing control valve,
CL: Caliper, WC: Wheel cylinder

Claims (5)

  1.  作動液を蓄圧する蓄圧部と、
     前記蓄圧部内の液圧が所定のオフ圧以上である場合に前記蓄圧部内の液圧の上昇が停止するように前記蓄圧部内の液圧を制御する蓄圧制御部と、
     前記蓄圧部内の液圧に基づいて、前記蓄圧部に蓄圧されている液圧を上限として、ブレーキ操作に応じた液圧を機械的に発生させる液圧発生部と、
     前記液圧発生部により発生されている液圧に基づいて車両の車輪に制動力を付与する制動力付与部と、
     要求制動力を取得する取得部と、
     を備え、
     前記蓄圧制御部は、前記取得部により取得されている要求制動力が第一所定値以上である場合に、前記取得部により取得されている要求制動力が前記第一所定値未満である場合よりも、前記オフ圧を低くする車両の制動装置。
    A pressure accumulator for accumulating hydraulic fluid;
    An accumulator controller for controlling the hydraulic pressure in the accumulator so that the increase in the hydraulic pressure in the accumulator stops when the hydraulic pressure in the accumulator is equal to or higher than a predetermined off pressure;
    Based on the hydraulic pressure in the pressure accumulating section, the hydraulic pressure generating section that mechanically generates the hydraulic pressure according to the brake operation, with the hydraulic pressure accumulated in the accumulating section as an upper limit,
    A braking force applying unit that applies a braking force to the wheels of the vehicle based on the hydraulic pressure generated by the hydraulic pressure generating unit;
    An acquisition unit for acquiring the required braking force;
    With
    When the required braking force acquired by the acquisition unit is greater than or equal to a first predetermined value, the pressure accumulation control unit is more than when the required braking force acquired by the acquisition unit is less than the first predetermined value. Also, a braking device for a vehicle that lowers the off pressure.
  2.  前記蓄圧制御部は、前記オフ圧を低くした後、前記取得部により取得されている要求制動力が前記第一所定値よりも小さい第二所定値未満である場合に、前記オフ圧を高くする請求項1に記載の車両の制動装置。 The pressure accumulation control unit increases the off pressure when the required braking force acquired by the acquisition unit is less than a second predetermined value smaller than the first predetermined value after reducing the off pressure. The vehicle braking device according to claim 1.
  3.  前記蓄圧制御部は、前記蓄圧部内の液圧が所定のオン圧未満となった場合に前記蓄圧部内の液圧が上昇するように前記蓄圧部内の液圧を制御し、前記取得部により取得されている要求制動力が前記第一所定値以上である場合に、前記取得部により取得されている要求制動力が前記第一所定値未満である場合よりも、前記オン圧を低くする請求項1又は2に記載の車両の制動装置。 The pressure accumulation control unit controls the hydraulic pressure in the pressure accumulating unit so that the hydraulic pressure in the pressure accumulating unit increases when the hydraulic pressure in the pressure accumulating unit becomes lower than a predetermined on-pressure, and is acquired by the acquisition unit. The on-pressure is set to be lower when the required braking force is greater than or equal to the first predetermined value than when the required braking force acquired by the acquisition unit is less than the first predetermined value. Or the braking device of the vehicle of 2.
  4.  ブレーキパッドが正常であるか否かを判定するパッド判定部を備え、
     前記蓄圧制御部は、前記パッド判定部により前記ブレーキパッドが正常でないことが判定されている場合で、且つ前記取得部により取得されている要求制動力が前記第一所定値以上である場合に、前記取得部により取得されている要求制動力が前記第一所定値未満である場合よりも、前記オフ圧を低くする請求項1~3の何れか一項に記載の車両の制動装置。
    A pad determination unit that determines whether or not the brake pad is normal,
    The pressure accumulation control unit, when it is determined that the brake pad is not normal by the pad determination unit, and when the required braking force acquired by the acquisition unit is greater than or equal to the first predetermined value, The vehicle braking device according to any one of claims 1 to 3, wherein the off pressure is made lower than when the required braking force acquired by the acquisition unit is less than the first predetermined value.
  5.  前記液圧発生部により発生されている液圧に加圧又は前記制動力付与部により前記車輪に付与されている制動力に加えて前記車輪に制動力を付与する補助制動力付与部と、
     前記取得部により取得されている前記要求制動力が前記オフ圧に相当する制動力よりも高い場合に、前記取得部により取得されている前記要求制動力と前記オフ圧に相当する制動力との差分に相当する液圧を前記補助制動力付与部により加圧、又は、前記差分の制動力を前記補助制動力付与部により付与させる補助制動制御部と、
     を備える請求項1~4の何れか一項に記載の車両の制動装置。
      
    An auxiliary braking force applying unit that applies a braking force to the wheel in addition to the braking force applied to the wheel by the hydraulic pressure generated by the hydraulic pressure generating unit or the braking force applying unit;
    When the required braking force acquired by the acquisition unit is higher than the braking force corresponding to the off pressure, the required braking force acquired by the acquisition unit and the braking force corresponding to the off pressure An auxiliary braking control unit that applies a hydraulic pressure corresponding to the difference by the auxiliary braking force applying unit, or applies the differential braking force by the auxiliary braking force applying unit;
    The vehicle braking device according to any one of claims 1 to 4, further comprising:
PCT/JP2015/083047 2014-11-25 2015-11-25 Braking device for vehicle WO2016084838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014238111A JP6082949B2 (en) 2014-11-25 2014-11-25 Vehicle braking device
JP2014-238111 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084838A1 true WO2016084838A1 (en) 2016-06-02

Family

ID=56074390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083047 WO2016084838A1 (en) 2014-11-25 2015-11-25 Braking device for vehicle

Country Status (2)

Country Link
JP (1) JP6082949B2 (en)
WO (1) WO2016084838A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187435A1 (en) * 2020-03-19 2021-09-23 株式会社アドヴィックス Vehicle braking device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211953A1 (en) * 2017-07-12 2019-01-17 Continental Teves Ag & Co. Ohg braking system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123889A (en) * 2004-09-30 2006-05-18 Toyota Motor Corp Hydraulic brake device
JP5223301B2 (en) * 2007-11-05 2013-06-26 トヨタ自動車株式会社 Brake control device
JP5293254B2 (en) * 2009-02-19 2013-09-18 トヨタ自動車株式会社 Hydraulic brake unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123889A (en) * 2004-09-30 2006-05-18 Toyota Motor Corp Hydraulic brake device
JP5223301B2 (en) * 2007-11-05 2013-06-26 トヨタ自動車株式会社 Brake control device
JP5293254B2 (en) * 2009-02-19 2013-09-18 トヨタ自動車株式会社 Hydraulic brake unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187435A1 (en) * 2020-03-19 2021-09-23 株式会社アドヴィックス Vehicle braking device

Also Published As

Publication number Publication date
JP2016097893A (en) 2016-05-30
JP6082949B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
US10358119B2 (en) Braking system for a motor vehicle
JP5220827B2 (en) Brake device for vehicle
US20140028083A1 (en) Braking system and method for controlling a braking system
JP6149847B2 (en) Vehicle braking device
US9969379B2 (en) Method for detecting fluid leakage
CN110035935B (en) Method for controlling a hydraulic brake system in a vehicle
JP6371271B2 (en) Braking device for vehicle
JP4474323B2 (en) Brake device
JP6756920B2 (en) Vehicle braking system and method
CN108137016B (en) Hydraulic pressure control device
WO2017146194A1 (en) Braking device for vehicle
WO2017090697A1 (en) Hydraulic pressure control device
JP6082949B2 (en) Vehicle braking device
JP6201179B2 (en) Brake control device
JP6470703B2 (en) Braking device for vehicle
JP6221118B2 (en) Brake system
WO2017057648A1 (en) Vehicular braking device
WO2016175114A1 (en) Braking device for vehicles
CN108082163B (en) Brake system for a motor vehicle and method for operating a brake system
JP6184373B2 (en) Vehicle braking system
KR102231112B1 (en) Active hydraulic booster system in vehice and control method thereof
JP6886011B2 (en) How to operate a hydraulic braking system, hydraulic braking system
US10196049B2 (en) Hydraulic brake system
JP6781580B2 (en) Vehicle braking device
JP6194291B2 (en) Vehicle braking system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862846

Country of ref document: EP

Kind code of ref document: A1