WO2016084815A1 - Opto-electric hybrid substrate and method for producing same - Google Patents

Opto-electric hybrid substrate and method for producing same Download PDF

Info

Publication number
WO2016084815A1
WO2016084815A1 PCT/JP2015/082965 JP2015082965W WO2016084815A1 WO 2016084815 A1 WO2016084815 A1 WO 2016084815A1 JP 2015082965 W JP2015082965 W JP 2015082965W WO 2016084815 A1 WO2016084815 A1 WO 2016084815A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
insulating layer
metal layer
contour
opto
Prior art date
Application number
PCT/JP2015/082965
Other languages
French (fr)
Japanese (ja)
Inventor
直幸 田中
雄一 辻田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015221084A external-priority patent/JP6653857B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020177013012A priority Critical patent/KR102552544B1/en
Priority to US15/527,502 priority patent/US10295769B2/en
Priority to CN201580062016.8A priority patent/CN107209324B/en
Publication of WO2016084815A1 publication Critical patent/WO2016084815A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present invention relates to an opto-electric hybrid board in which an electric circuit board and an optical waveguide are laminated, and a manufacturing method thereof.
  • an opto-electric hybrid board for example, as shown in FIG. 13, an insulating layer 1 made of polyimide or the like is used as a board, and an electric wiring 2 made of a conductive pattern is provided on the surface thereof to form an electric circuit board E.
  • An optical waveguide W is provided on the back side through a reinforcing metal layer 9 is known (see, for example, Patent Document 1).
  • the surface of the electric circuit board E is insulated and protected by a cover lay 3.
  • the metal layer 9 is provided with through holes 5 and 5 ′ for optically coupling an optical element (not shown) mounted on the surface side of the electric circuit board E and the optical waveguide W.
  • the optical waveguide W is composed of three layers: an under cladding layer 6, a core 7 that serves as a light path, and an over cladding layer 8.
  • the metal layer 9 Since the metal layer 9 has a different linear expansion coefficient between the insulating layer 1 and the optical waveguide W on the back side, if the two layers are directly laminated, stress or a minute bend occurs in the optical waveguide W due to the ambient temperature. It is provided to avoid an increase in propagation loss.
  • the above-mentioned opto-electric hybrid board is also flexible so that it can be used in a small space or a movable part such as a hinge part. There is an increasing demand for it.
  • the metal layer 9 itself is partially removed and the optical waveguide is formed in the removed portion. It has been proposed to enhance flexibility by inserting a cladding layer of W (see, for example, Patent Document 2).
  • both sides serving as an optical coupling part and a connector connection part are provided. Therefore, it is often used that the electric circuit board E is widened and reinforced by the metal layers 9 and 9 ', and the middle part is narrowed.
  • both ends of the optical waveguide W are directly arranged on the back surface of the insulating layer 1 such as polyimide.
  • the optical waveguide W tends to be easily peeled off from the corner portion P due to the difference in stress. found.
  • the present invention has been made in view of such circumstances, and the end portion of the optical waveguide provided in an arrangement overlapping the metal layer or the insulating layer on the back side of the electric circuit board may be peeled off from the metal layer or the insulating layer. It is an object of the present invention to provide an opto-electric hybrid board that can be used satisfactorily over a long period of time and a method for producing the same.
  • the present invention provides an electric circuit board in which electric wiring is formed on the surface of an insulating layer, and an optical waveguide provided on the back side of the insulating layer of the electric circuit board via a metal layer. And at least one end of the optical waveguide overlaps with the metal layer on the back surface of the electric circuit board in such a manner that the contour of the end of the optical waveguide is inward from the contour of the metal layer.
  • the metal layer at least a part of the region overlapping with the contour of the optical waveguide end is removed to form an opening, and the optical waveguide is formed with a part of the optical waveguide entering the opening.
  • the opto-electric hybrid board is a first gist, and in particular, the opto-electric hybrid board in which a plurality of openings of the metal layer are intermittently formed along the contour of the end of the optical waveguide.
  • the substrate is a second gist.
  • the present invention also provides an opto-electric hybrid device comprising an electric circuit board having electric wiring formed on the surface of an insulating layer, and an optical waveguide provided on the back side of the insulating layer of the electric circuit board via a metal layer. At least one end of the optical waveguide overlaps with the metal layer on the back surface of the electric circuit board in such a manner that the outline of each other overlaps or the outline of the end of the optical waveguide is outside the outline of the metal layer. In the above metal layer, at least a part of the region where the contour of the metal layer itself overlaps the end of the optical waveguide is removed to form an opening, and a part of the optical waveguide enters the opening.
  • the third aspect is an opto-electric hybrid board on which an optical waveguide is formed, and in particular, a plurality of openings of the metal layer are intermittently formed along the contour of the metal layer itself.
  • the opto-electric hybrid board is a fourth gist.
  • the present invention is an opto-electric hybrid board comprising an electric circuit board having an electrical wiring formed on the surface of an insulating layer, and an optical waveguide provided directly on the back side of the insulating layer of the electric circuit board, At least one end of the optical waveguide overlaps with the insulating layer on the back surface of the electric circuit board in an arrangement in which the contour of the optical waveguide end is inward from the contour of the insulating layer, and the optical waveguide end portion of the insulating layer
  • a fifth aspect is an opto-electric hybrid board in which at least a part of a region overlapping with the contour part of the optical waveguide is formed in the concave part, and the optical waveguide is formed in a part of the optical waveguide in the concave part.
  • the sixth summary is an opto-electric hybrid board in which a plurality of recesses of the insulating layer are intermittently formed along the contour of the end portion of the optical waveguide.
  • the present invention is an opto-electric hybrid board comprising an electric circuit board in which electric wiring is formed on the surface of an insulating layer, and an optical waveguide provided directly on the back side of the insulating layer of the electric circuit board, At least one end portion of the optical waveguide overlaps with the insulating layer on the back surface of the electric circuit board in such a manner that the contours overlap each other or the contour of the optical waveguide end portion is outside the contour of the insulating layer.
  • at least a part of the region where the contour of the insulating layer itself overlaps the end of the optical waveguide is formed in the recess, and the optical waveguide is formed in a state where a part of the optical waveguide enters the recess.
  • a mixed substrate is a seventh summary, and in particular, an eighth embodiment is a photoelectric mixed substrate in which a plurality of recesses of the insulating layer are intermittently formed along the contour of the insulating layer itself. To do.
  • the present invention also provides an opto-electric hybrid board manufacturing method according to the first aspect, wherein an electrical circuit board is prepared in which electrical wiring is formed on the surface of the insulating layer and a metal layer is formed on the back surface of the insulating layer. And a step of forming an optical waveguide with respect to the metal layer on the back surface side of the electric circuit board in a state where at least one end thereof is arranged so that the contour of the end of the optical waveguide is inward from the contour of the metal layer.
  • the manufacturing method of the opto-electric hybrid board that forms the optical waveguide in a state where a part of the optical waveguide is inserted into the opening of the metal layer is a ninth gist, and in particular, the step of preparing the electric circuit board.
  • the present invention provides a method for producing an opto-electric hybrid board according to the third aspect, wherein an electrical circuit board is prepared in which electrical wiring is formed on the surface of the insulating layer and a metal layer is formed on the back surface of the insulating layer. And a state in which the optical waveguide is disposed with respect to the metal layer on the back surface side of the electric circuit board so that at least one end thereof overlaps with each other or the contour of the end of the optical waveguide is outside the contour of the metal layer.
  • an opening is formed by removing at least a part of a region where the contour of the metal layer itself overlaps the end of the optical waveguide.
  • an eleventh aspect is a method for manufacturing an opto-electric hybrid board in which an optical waveguide is formed in a state in which a part of the optical waveguide is inserted into the opening of the metal layer.
  • the above electricity In the step of preparing a road substrate, the openings of the metal layer, along the contour of the metal layer itself, intermittently and twelfth gist of the opto-electric hybrid board manufacturing method which is adapted to form a plurality.
  • this invention is the manufacturing method of the opto-electric hybrid board
  • the manufacturing method of the opto-electric hybrid board for forming the optical waveguide in a state of being in a state is a thirteenth aspect, and in particular, a plurality of recesses of the insulating layer are intermittently formed along the contour of the end of the optical waveguide.
  • Optoelectric mixing The substrate manufacturing method and fourteenth gist of the.
  • the present invention also relates to a method for manufacturing an opto-electric hybrid board according to the seventh aspect, the step of preparing an electric circuit board in which electric wiring is formed on the surface of the insulating layer; Forming the optical waveguide with respect to the insulating layer in a state where at least one end of the optical waveguide overlaps each other or the contour of the optical waveguide end is outside the contour of the insulating layer.
  • a recess is formed in at least a part of a region of the insulating layer where the contour of the insulating layer itself overlaps with the end of the optical waveguide.
  • the recess is formed in the recess of the insulating layer.
  • the opto-electric hybrid board manufacturing method which is adapted to form a sixteenth gist of the.
  • the opto-electric hybrid board according to the present invention has a metal layer or insulating layer overlapping the edge of the optical waveguide on the back side of the electric circuit board, or a contour of the metal layer or insulating layer.
  • the region where the portion overlaps the end of the optical waveguide is partially removed to form a recess (in the case of a metal layer, an opening from which the metal layer has been removed), and a part of the optical waveguide is inserted into the recess It is a thing.
  • a part of the optical waveguide is provided in the metal layer. It enters into the recess or the recess provided in the insulating layer. Therefore, a part of the optical waveguide that has entered the opening or the recess has a so-called anchoring effect, and the optical waveguide is less likely to be peeled than when the flat surfaces are joined to each other.
  • the metal layer provided with an opening and a part of the optical waveguide inserted into the opening has a part of the optical waveguide. And it will be in the state joined directly with the insulating layer of the metal layer back side, and the peel strength between both can be enlarged greatly. For this reason, even if the internal stress caused by external load or heat is different between the metal layer and the optical waveguide or the laminated portion of the insulating layer and the optical waveguide, warping or distortion based on the difference in stress is not caused. The optical waveguide end is not affected.
  • the opening of the metal layer or the recess of the insulating layer is along the contour of the optical waveguide end, or along the contour of the metal layer itself or the contour of the insulating layer itself.
  • the effect of preventing the optical waveguide W from being peeled off is particularly preferable.
  • the opto-electric hybrid board of the present invention can be obtained efficiently.
  • (A) is a partial longitudinal sectional view schematically showing an embodiment of the present invention
  • (b) is a view taken along the line AA ′ of (a)
  • (c) is a line BB of (b). It is a cross-sectional view. It is CC 'sectional drawing of FIG.1 (b).
  • (A) to (d) are explanatory views showing steps of producing an electric circuit board in the method for producing an opto-electric hybrid board.
  • (A) to (d) are explanatory views showing the optical waveguide manufacturing process in the method for manufacturing an opto-electric hybrid board.
  • (A), (b) is explanatory drawing which shows the modification of the opening shape of the metal layer in said example.
  • (A)-(f) is explanatory drawing which shows the modification of the opening shape of the metal layer in said example.
  • (A)-(d) is explanatory drawing which shows the modification of the opening shape of the metal layer in said example. It is a partial longitudinal cross-sectional view which shows other embodiment of this invention typically.
  • (A) to (c) are explanatory views showing steps of producing an optical waveguide in the method for producing an opto-electric hybrid board.
  • (A)-(f) is explanatory drawing which shows the modification of the opening shape of the metal layer in other embodiment of this invention.
  • (A)-(e) is explanatory drawing which shows the modification of the opening shape of the metal layer in further another embodiment of this invention.
  • (A) is explanatory drawing which shows other embodiment of this invention, (b), (c) is both explanatory drawing which shows the preparation process. It is a typical longitudinal section showing an example of the conventional opto-electric hybrid board. (A), (b) is explanatory drawing for demonstrating the subject of the conventional opto-electric hybrid board together.
  • FIG. 1 (a) is a partial longitudinal sectional view schematically showing an embodiment of the opto-electric hybrid board according to the present invention
  • FIG. 1 (b) is an AA ′ line in FIG. 1 (a)
  • FIG. 1C is a cross-sectional view taken along the line BB ′ of FIG. 1B
  • FIG. 2 is a cross-sectional view taken along the line CC ′ of FIG. That is, the opto-electric hybrid board 10 includes an electric circuit board E in which electric wiring 2 is provided on the surface of the insulating layer 1 and an optical waveguide W provided on the back side of the insulating layer 1.
  • the electric circuit board E has an insulating layer 1 made of polyimide or the like on the surface thereof, an optical element mounting pad 2a, a connector mounting pad 2b, other various element mounting pads, a ground electrode or the like (not shown).
  • the electric wiring 2 including the pad 2a is insulated and protected by a cover lay 3 made of polyimide or the like. Note that the surfaces of the pads 2a and the like that are not protected by the coverlay 3 are covered with an electrolytic plating layer 4 made of gold, nickel, or the like.
  • the optical waveguide W provided on the back surface side of the insulating layer 1 has a substantially rectangular shape elongated in the left-right direction in plan view, and the undercladding layer 6 and its surface [lower surface in FIG. 1 (a)].
  • the core 7 is formed in a predetermined pattern, and the over clad layer 8 is integrated with the surface of the under clad layer 6 in a state of covering the core 7.
  • the part of the core 7 corresponding to the optical element mounting pad 2a of the electric circuit board E is formed on an inclined surface of 45 ° with respect to the extending direction of the core 7.
  • This inclined surface is a light reflecting surface 7a, which changes the direction of the light propagated in the core 7 by 90 ° to enter the light receiving portion of the optical element, or conversely, exits from the light emitting portion of the optical element. The direction of the emitted light is changed by 90 ° to enter the core 7.
  • a metal layer 9 for reinforcing the opto-electric hybrid board 10 is provided between the electric circuit board E and the optical waveguide W, and both side parts excluding an intermediate part where flexibility is required [see FIG. 14 (a)], the pattern is formed so as to partially overlap the both ends of the optical waveguide W.
  • a through hole 5 for securing an optical path between the core 7 of the optical waveguide W and the optical element is formed in the metal layer 9.
  • the under cladding layer 6 is also formed in the through hole 5. Has entered.
  • the metal layer 9 has two side portions along the longitudinal direction of the optical waveguide W in the region of the metal layer 9 that overlaps the contour of the optical waveguide W. A part of each part is partially removed to form a total of four openings 20 having a rectangular shape in plan view. Then, as shown in FIGS. 1C and 2, the under cladding layer 6 enters the openings 20, and the inserted under cladding layer 6 and the insulating layer 1 are directly and firmly bonded. is doing. This is the greatest feature of the present invention.
  • illustration of the through hole 5 is omitted, and a portion where the metal layer 9 is formed is indicated by a diagonally downward slanting line with a large interval (the same applies to the following drawings).
  • the right-side portion of the opto-electric hybrid board 10 is symmetrical with the left-side portion shown in the drawing. Since they are the same, their illustration and description are omitted.
  • a flat metal layer 9 is prepared, a photosensitive insulating resin made of polyimide or the like is applied to the surface, and an insulating layer 1 having a predetermined pattern is formed by a photolithography method (see FIG. 3A). ].
  • the thickness of the insulating layer 1 is set within a range of 3 to 50 ⁇ m, for example.
  • the material for forming the metal layer 9 include stainless steel, copper, silver, aluminum, nickel, chromium, titanium, platinum, and gold. Among them, stainless steel is preferable from the viewpoint of rigidity and the like. Further, although the thickness of the metal layer 9 depends on the material, it is set within a range of 10 to 70 ⁇ m, for example, when stainless steel is used.
  • the thickness is less than 10 ⁇ m, the reinforcing effect may not be sufficiently obtained.
  • the thickness exceeds 70 ⁇ m, the distance of light traveling through the through hole 5 of the metal layer 9 becomes long, and the light loss may increase. Because there is.
  • the surface of the insulating layer 1 includes electrical wiring 2 (optical device mounting pads 2a, connector pads 2b, other pads, ground electrodes, etc. The same) is formed by, for example, a semi-additive method.
  • a metal film (not shown) made of copper, chromium, or the like is formed on the surface of the insulating layer 1 by sputtering or electroless plating. This metal film becomes a seed layer (layer serving as a base for forming an electrolytic plating layer) when performing subsequent electrolytic plating.
  • a photo resist is applied to the photosensitive resist on the side where the seed layer is formed.
  • a hole portion of the pattern of the electric wiring 2 is formed by lithography, and the surface portion of the seed layer is exposed at the bottom of the hole portion.
  • an electrolytic plating layer made of copper or the like is laminated on the surface portion of the seed layer exposed to the bottom of the hole by electrolytic plating.
  • the photosensitive resist is removed with an aqueous sodium hydroxide solution or the like. Thereafter, the portion of the seed layer where the electrolytic plating layer is not formed is removed by soft etching.
  • the laminated portion composed of the remaining seed layer and electrolytic plating layer is the electric wiring 2.
  • a photosensitive insulating resin made of polyimide or the like is applied to the portion of the electrical wiring 2 excluding a part of the optical element mounting pad 2 and the connector pad 2b.
  • the cover lay 3 is formed by photolithography.
  • the electrolytic plating layer 4 is formed on the surface of the optical element mounting pad 2a and the part of the connector pad 2b which are not covered with the cover lay 3. In this way, the electric circuit board E is formed.
  • a photosensitive resist is laminated on both sides of the laminate composed of the metal layer 9 and the electric circuit board E, and then the back side of the metal layer 9 (the side opposite to the electric circuit board E) is exposed.
  • the conductive resist a portion where the metal layer 9 is not required, a portion corresponding to the portion where the optical path through hole 5 is to be formed [see FIG. 1A], and further, the portion where the opening 20 is to be formed (see FIG. 2), a hole is formed by photolithography, and the back surface of the metal layer 9 is partially exposed.
  • the exposed portion of the metal layer 9 is etched using an aqueous solution for etching corresponding to the metal material of the metal layer 9 (for example, the aqueous solution for etching when the metal layer 9 is a stainless steel layer is ferric chloride aqueous solution).
  • the insulating layer 1 is exposed from the trace of the removal, and then the photosensitive resist is peeled off with an aqueous sodium hydroxide solution or the like.
  • the metal layer 9 is formed only in the region that needs reinforcement, and the optical path through hole 5 [see FIG. 1A] and a part of the optical waveguide W are formed. Are simultaneously formed.
  • FIG. 4 (b) After applying a photosensitive resin, which is a material for forming the undercladding layer 6, to the back surface (the lower surface in the figure) of the insulating layer 1 and the metal layer 9, the applied layer is irradiated with irradiation rays.
  • the under clad layer 6 is formed by exposing and curing.
  • the under cladding layer 6 is formed in a predetermined pattern by a photolithography method. Then, the under cladding layer 6 fills the optical path through hole 5 of the metal layer 9 [see FIG. 1A].
  • a part of the under cladding layer 6 also enters the opening 20 of the metal layer 9 and is in a state of being directly bonded to the back surface of the insulating layer 1.
  • the thickness of the under cladding layer 6 (thickness from the back surface of the insulating layer 1) is usually set to be thicker than the thickness of the metal layer 9.
  • a series of operations for forming the optical waveguide W is performed with the back surface of the insulating layer 1 on which the metal layer 9 is formed facing upward, but is shown as it is in the drawing.
  • a core 7 having a predetermined pattern is formed on the surface (lower surface in the figure) of the under cladding layer 6 by photolithography.
  • the thickness of the core 7 is set within a range of 3 to 100 ⁇ m, for example, and the width is set within a range of 3 to 100 ⁇ m, for example.
  • the material for forming the core 7 include the same photosensitive resin as that for the under cladding layer 6, and a material having a higher refractive index than the material for forming the under cladding layer 6 and an over cladding layer 8 described later is used. It is done.
  • the adjustment of the refractive index can be performed, for example, by selecting the types of forming materials of the under cladding layer 6, the core 7, and the over cladding layer 8 and adjusting the composition ratio.
  • the over clad layer 8 is formed by photolithography so as to be overlaid on the surface (the lower surface in the figure) of the under clad layer 6 so as to cover the core 7. In this way, the optical waveguide W is formed.
  • the thickness of the over cladding layer 8 (thickness from the surface of the under cladding layer 6) is set to be not less than the thickness of the core 7 and not more than 300 ⁇ m, for example.
  • Examples of the material for forming the over cladding layer 8 include the same photosensitive resin as that for the under cladding layer 6.
  • an inclined surface inclined by 45 ° with respect to the extending direction of the core 7 is formed in a predetermined portion of the optical waveguide W by laser processing, cutting processing, or the like, and is mounted on the surface side of the electric circuit board E.
  • a reflection surface 7a [see FIG. 1A] for optical coupling with the element is used.
  • necessary members are attached, such as mounting an optical element on the pad 2a of the electric wiring 2 provided on the surface side of the electric circuit board E.
  • the opto-electric hybrid board 10 shown in FIG. 1 can be obtained.
  • a region of the metal layer 9 that overlaps the end of the optical waveguide W on the back surface side of the electric circuit board E is partially removed so that the region overlapping the contour of the optical waveguide W is partially removed.
  • a plurality of openings 20 are formed, and the underclad layer 6 of the optical waveguide W enters the openings 20 and is directly bonded to the insulating layer 1.
  • a force for peeling off the optical waveguide W works because the internal stress caused by external load or heat is different between the two.
  • the contour portion of the end portion of the optical waveguide W is partially bonded directly to the insulating layer 1, the peel strength at the bonded portion is high, and the peel strength as a whole is very high. Therefore, the optical waveguide W is not peeled off from the end portion in the manufacturing process such as mounting an optical element or the like, the process of incorporating the opto-electric hybrid board 10 into an electronic device, and the like.
  • the opto-electric hybrid board 10 can be used satisfactorily for a long time.
  • the opto-electric hybrid board 10 only needs to be patterned so that the opening 20 is formed in a predetermined portion overlapping the end contour of the optical waveguide W when patterning the metal layer 9.
  • ⁇ Peel strength test> A stainless steel plate (manufactured by Nippon Steel Co., Ltd., SUS304, thickness 0.02 mm) is prepared as a metal layer of the opto-electric hybrid board, and the thickness of the under cladding layer is formed on the surface using the optical waveguide W forming material described above.
  • polyimide manufactured by Nitto Denko Corporation, thickness 0.01 mm
  • the pseudo optical waveguide is formed on the surface where the metal layer is etched in the same manner as described above. Formed (Sample 2).
  • an outline of the end portion of the optical waveguide W overlapping the metal layer 9 by the opening 20 [zigzag line X in FIG. It is preferable that 5 to 95% of the entire length of the insulating layer 1 is in direct contact with the back surface of the insulating layer 1. That is, if the ratio of the contour line in contact with the back surface of the insulating layer 1 by the opening 20 is smaller than the above range, the effect of preventing the optical waveguide W from being peeled may not be sufficiently obtained. If it is larger, depending on the structure of the opto-electric hybrid board 10, there is a possibility that the reinforcement by the metal layer 9 may be insufficient, which is not preferable.
  • the shape of the opening 20 is not limited to the above example.
  • a plurality of strip-shaped openings 20 are arranged in parallel. By arranging it, the opening can be intermittently overlapped with the portion overlapping the contour portion of the optical waveguide W.
  • openings 20 are provided in the metal layer 9 along the outline of the optical waveguide W.
  • the opening 20 may be provided only in two portions overlapping the two corners of the tip. This is because, if the optical waveguide W and the insulating layer 1 are directly bonded with high peel strength at least at the two corners, this portion can be prevented from peeling off and can be used satisfactorily.
  • FIG. 6 (b) when openings 20 are provided in a total of three locations, two portions that overlap two corners of the tip and a portion that overlaps the edge of the optical waveguide W between them. Further, the effect of preventing peeling of the edge portion of the optical waveguide W can be further increased.
  • the shape of the opening 20 provided in the metal layer 9 (planar view shape, hereinafter the same) is formed in two strips along both edges extending in the longitudinal direction of the optical waveguide W.
  • it can be formed into a single band shape having two corners along the end contour portion of the optical waveguide W.
  • the shape of the two openings 20 is along the corner as shown in FIG. It can be made into a bent shape or a round shape as shown in FIG.
  • the shape of the optical waveguide W is as shown in FIG. 7B.
  • a belt-like shape extending obliquely with respect to the corner may be used. Further, it may be triangular as shown in FIGS.
  • the shape of the opening 20 is effective in preventing peeling of the end portion of the optical waveguide W while considering the balance between the region where the metal layer 9 is desired to be rigid and the region where the flexibility is desired. It can be set in various forms.
  • the opening 20 is provided in the metal layer 9 so that a part of the optical waveguide W enters the opening 20.
  • the opening 20 is removed by removing a part of the metal layer 9. 8, for example, as shown in FIG. 8, the insulating layer 1 exposed by the opening 20 is further processed into a concave shape to form a concave portion 21, and the step is deepened. The peel strength can be further increased. According to this configuration, the end portion of the optical waveguide W becomes more difficult to be peeled off, and more excellent durability is exhibited.
  • the process of making the insulating layer 1 concave can be performed, for example, as follows. That is, first, as shown in FIG. 9A, the electric circuit board E is formed in the same manner as in the above example, and the opening 20 and the optical coupling through hole 5 are formed in the metal layer 9 on the back surface side. (See FIG. 1). And as shown in FIG.9 (b), by performing the alkali etching in the state which protected the other part with respect to the part of the insulating layer 1 exposed from the opening part 20 of the said metal layer 9, the recessed part 21 is carried out. Form. Then, as shown in FIG. 9 (c), after forming the optical waveguide W in the same manner as in the above example, mounting the optical element or the like, forming the reflective surface 7a, etc. A substrate can be obtained.
  • the depth of the recess 21 is preferably set to be 5 to 70% of the entire thickness of the insulating layer 1 (for example, when the entire thickness of the insulating layer 1 is 10 ⁇ m, the recess 21 is formed by etching). It is preferable to form the recess 21 so that the thickness of the insulating layer 1 in the portion is 3 to 9.5 ⁇ m). That is, if the concave portion 21 is too shallow, even if the concave portion 21 is provided, there is no difference in the effect of preventing the optical waveguide W from peeling off. Conversely, if the concave portion 21 is too deep, the insulating layer 1 is torn from that portion. There is a risk of malfunction, which is not preferable.
  • the method of processing the insulating layer 1 into a concave shape is not limited to the above-described method.
  • the insulating layer 1 exposed from the opening 20 of the metal layer 9 in the stage shown in FIG. on the other hand, by irradiating YAG laser or excimer laser, a predetermined region on the back surface (lower surface in FIG. 9) of the insulating layer 1 may be melted and removed by a predetermined thickness to obtain the recess 21.
  • the end portion of the optical waveguide W is provided so as to overlap the metal layer 9 having a wide width on both sides of the opto-electric hybrid board 10.
  • the present invention can also be applied to a strip-like substrate in which the opto-electric hybrid board 10 has the same width throughout.
  • the present invention can be applied to the case where the metal layer 9 and the end portion of the optical waveguide W overlap each other or the contour of the end portion of the optical waveguide W is outside the contour of the metal layer 9. it can.
  • FIG. 10A shows an example of the case where the metal layer 9 and the end of the optical waveguide W are arranged in a state where the outlines of the metal layer 9 and the optical waveguide W substantially overlap each other.
  • the outline of the optical waveguide W is shown to be slightly inside the outline of the metal layer 9 [the same is true for the figures after (b) in FIG. 10].
  • two corners at the tip are notched to form an opening 20 ′.
  • the “opening” formed in the metal layer 9 includes not only an opening surrounded by four sides but also a notch formed by cutting out the edge of the metal layer 9. It is a purpose to include.
  • the edge portion of the metal layer 9 is not completely removed at the edge portion, but as shown in FIG. Even in this case, the effect of preventing the optical waveguide W from peeling off can be sufficiently obtained. That is, since the bonding strength of the optical waveguide W at the opening 20 ′ is increased, the degree of freedom of the optical waveguide W is limited at both ends where the opening 20 ′ is not formed. This is because the optical waveguide W is difficult to peel off even when the metal layer 9 is interposed.
  • both edge portions along the longitudinal direction of the optical waveguide W are removed from the contour portion of the metal layer 9 in such a manner that both end portions are left, and the opening 20 ′, Or as shown in FIG. 10 (f), the opening 20 ′ may be formed by removing the edge portions on both sides along the longitudinal direction of the optical waveguide W leaving the end portions on the tip side. .
  • the contour portion of the optical waveguide W may be outside the contour portion of the electric circuit board E.
  • the end portion of the optical waveguide W can be made difficult to peel off by cutting out a predetermined portion of the metal layer 9 to form the opening 20 ', as in the above series of examples.
  • FIG. 11A when the contour portion of the end portion of the optical waveguide W overlaps with the contour of the electric circuit board E, it is inside the contour of the end portion of the optical waveguide W.
  • the front edge portion and the three side portions along the longitudinal direction of the optical waveguide W are completely removed to form an opening 20 ′, whereby the optical waveguide W The end can be made difficult to peel off.
  • the tip of the optical waveguide W is disposed outside the tip of the electric circuit board E.
  • the tip of the electric circuit board E and the optical waveguide W Even in the case where the tips are substantially overlapped or the tip of the optical waveguide W is inside, as in the case of FIG. 11A, the three-direction portions are completely removed from the contour portion of the metal layer 9.
  • the opening 20 ' can be formed.
  • the tip of the optical waveguide W is arranged outside the tip of the electric circuit board E, and both side edges in the longitudinal direction are substantially overlapped or the optical waveguide W enters the inside.
  • the optical waveguide W is obtained by completely removing the three-direction portions of the contour portion of the metal layer 9 to form the opening 20 ′. It is possible to make it difficult to peel off the end of the.
  • FIG. 11 (d) two corners at the tip of the metal layer 9 are cut out to form an opening 20 ', and the outline of the optical waveguide W is formed in these openings 20'.
  • a part of the optical waveguide W may be directly joined to the insulating layer 1, and the contour part of the optical waveguide W overlapping the contour part of the metal layer 9 may be disposed outside the contour part of the electric circuit board E.
  • FIG. 11 (e) in the same manner as described above, two corners at the tip of the metal layer 9 are cut out to form openings 20 ', and optical waveguides are formed in these openings 20'.
  • a part of the W contour may be directly joined to the insulating layer 1, and the contour of the optical waveguide W overlapping the contour of the insulating layer 1 may be disposed outside the contour of the electric circuit board E.
  • a plurality of strip-shaped openings 20' may be formed in parallel as in the examples shown in FIGS. 5 (a) and 5 (b). Further, a plurality of openings 20 ′ having a small area may be formed along the contour portion of the metal layer 9 at a predetermined interval.
  • the end portion of the optical waveguide W and the metal layer 9 overlap with each other such that the contours of the optical waveguide W overlap each other or the contour of the end portion of the optical waveguide W is outside the contour of the metal layer 9.
  • the planar view shape of the metal layer 9 overlapping the optical waveguide W is a rounded shape without corners. This is because the rounded shape provides a stress relaxation effect at the boundary between the portion with and without the metal layer 9.
  • the present invention is also applied to an opto-electric hybrid board 10 in which the metal layer 9 is not provided and the optical waveguide W directly overlaps the back surface of the insulating layer 1 as shown in FIG. be able to. That is, although the laminated portion of the insulating layer 1 and the optical waveguide W is also a resin-to-resin connection, the optical waveguide W may be warped or distorted and easily peeled off due to the difference in stress. Therefore, in order to further increase the peel strength of the both, as shown in the drawing, a recess 22 is formed on the back surface of the insulating layer 1 overlapping the optical waveguide W, and a part of the optical waveguide W enters the recess 22. can do.
  • the arrangement of the recesses 22 can be formed according to the arrangement of the openings 20 and 20 '.
  • the back surface of the insulating layer 1 is formed.
  • the concave portion 22 can be formed by performing alkali etching in a state where the portion other than the portion where the concave portion 22 is to be formed is protected. Then, as shown in FIG. 12 (c), after forming the optical waveguide W in the same manner as in the above example, mounting the optical element and the like, forming the reflective surface 7a, etc. A substrate can be obtained.
  • the depth of the concave portion 22 is preferably set to 5 to 70% of the thickness of the insulating layer 1 for the same reason as that for forming the concave portion 21 described above.
  • the recess 22 can be formed in a predetermined pattern by irradiating the back surface of the insulating layer 1 with a YAG laser or an excimer laser instead of forming the recess 22 by alkali etching.
  • the photoelectric coupling portions are provided on the left and right sides, and the left and right are symmetrical structures, but the photoelectric coupling portion is provided only on one side, and the other is simply a connector connection. It doesn't matter if it's just down. In that case, it is preferable to apply the shape of the present invention to the end portion of the optical waveguide W which is used for the photoelectric coupling.
  • the outer shape of the optical waveguide W is formed by both the under cladding layer 6 and the over cladding layer 8, but the outer shape of the optical waveguide W is formed only by the over cladding layer 8. It may be a thing formed only with the core 7, even if it is a thing.
  • the present invention can be used for an excellent opto-electric hybrid board that can be used safely for a long period of time because the optical waveguide is hardly peeled off from the back side of the electric circuit board portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An opto-electric hybrid substrate 10 which is provided with: an electrical circuit board E wherein an electrical wiring line 2 is formed on the surface of an insulating layer 1; and an optical waveguide W which is provided on the back surface of the insulating layer 1 of the electrical circuit board E, with a metal layer 9 being interposed therebetween. An opening 20 is formed by removing at least a part of a region of the metal layer 9, said region overlapping the outline part of an edge of the optical waveguide W, and the optical waveguide W is formed in such a manner that a part of the optical waveguide W enters into the opening 20. This opto-electric hybrid substrate is able to be used favorably for a long period of time since an edge of the optical waveguide W that is provided on the back surface of the electrical circuit board E is not separated from the metal layer 9.

Description

光電気混載基板およびその製法Opto-electric hybrid board and manufacturing method thereof
 本発明は、電気回路基板と光導波路とが積層された光電気混載基板およびその製法に関するものである。 The present invention relates to an opto-electric hybrid board in which an electric circuit board and an optical waveguide are laminated, and a manufacturing method thereof.
 最近の電子機器等では、伝送情報量の増加に伴い、電気配線に加えて光配線が採用されており、電気信号と光信号を同時に伝送することのできる光電気混載基板が多く用いられている。このような光電気混載基板としては、例えば、図13に示すように、ポリイミド等からなる絶縁層1を基板とし、その表面に、導電パターンからなる電気配線2を設けて電気回路基板Eとし、その裏面側に、補強用の金属層9を介して光導波路Wを設けた構造のものが知られている(例えば、特許文献1を参照)。なお、上記電気回路基板Eの表面はカバーレイ3によって絶縁保護されている。また、上記金属層9には、電気回路基板Eの表面側に実装される光素子(図示せず)と光導波路Wとを光結合するための貫通孔5、5′が設けられている。そして、上記光導波路Wは、アンダークラッド層6と、光の行路となるコア7と、オーバークラッド層8の三層によって構成されている。 In recent electronic devices and the like, with the increase in the amount of transmission information, optical wiring has been adopted in addition to electrical wiring, and opto-electric hybrid boards that can simultaneously transmit electrical signals and optical signals are often used. . As such an opto-electric hybrid board, for example, as shown in FIG. 13, an insulating layer 1 made of polyimide or the like is used as a board, and an electric wiring 2 made of a conductive pattern is provided on the surface thereof to form an electric circuit board E. A structure in which an optical waveguide W is provided on the back side through a reinforcing metal layer 9 is known (see, for example, Patent Document 1). The surface of the electric circuit board E is insulated and protected by a cover lay 3. The metal layer 9 is provided with through holes 5 and 5 ′ for optically coupling an optical element (not shown) mounted on the surface side of the electric circuit board E and the optical waveguide W. The optical waveguide W is composed of three layers: an under cladding layer 6, a core 7 that serves as a light path, and an over cladding layer 8.
 上記金属層9は、絶縁層1と裏面側の光導波路Wとの線膨張係数が異なるため、両者を直接積層すると、周囲の温度によって、光導波路Wに応力や微小な曲がりが発生して光伝播損失が大きくなることを回避するために設けられるものである。しかし、近年、電子機器等の小形化、高集積化の流れを受けて、上記光電気混載基板も、小スペースでの使用やヒンジ部等の可動部での使用ができるように、フレキシブル性が求められることが多くなっている。そこで、上記のように金属層9を介して光導波路Wを設けた光電気混載基板においても、そのフレキシブル性を高めるために、金属層9自体を部分的に除去してその除去部分に光導波路Wのクラッド層を入り込ませることによって、フレキシブル性を高めることが提案されている(例えば特許文献2を参照)。 Since the metal layer 9 has a different linear expansion coefficient between the insulating layer 1 and the optical waveguide W on the back side, if the two layers are directly laminated, stress or a minute bend occurs in the optical waveguide W due to the ambient temperature. It is provided to avoid an increase in propagation loss. However, in recent years, in response to the trend toward miniaturization and high integration of electronic devices, the above-mentioned opto-electric hybrid board is also flexible so that it can be used in a small space or a movable part such as a hinge part. There is an increasing demand for it. Therefore, also in the opto-electric hybrid board provided with the optical waveguide W through the metal layer 9 as described above, in order to enhance the flexibility, the metal layer 9 itself is partially removed and the optical waveguide is formed in the removed portion. It has been proposed to enhance flexibility by inserting a cladding layer of W (see, for example, Patent Document 2).
特開2009-265342号公報JP 2009-265342 A 特開2013-195532号公報JP 2013-195532 A
 また、最近では、光電気混載基板のフレキシブル性をさらに高めるために、光電気混載基板を光導波路W側から見た図14(a)に示すように、光結合部やコネクタ接続部となる両側だけ電気回路基板Eの幅を広くして金属層9、9′で補強し、その中間部の幅を狭くしたものも多く用いられるようになっている。 Also, recently, in order to further enhance the flexibility of the opto-electric hybrid board, as shown in FIG. 14A when the opto-electric hybrid board is viewed from the optical waveguide W side, both sides serving as an optical coupling part and a connector connection part are provided. Therefore, it is often used that the electric circuit board E is widened and reinforced by the metal layers 9 and 9 ', and the middle part is narrowed.
 しかしながら、このようなフレキシブル性の高い光電気混載基板は、大きく引っ張られたり捩られたりすることが多いため、材質の異なる金属層9、9′と光導波路Wとの間で異なる応力が発生し、その応力の差が、光導波路Wの両端の角部P[図14(a)において小円で囲われた部分]に集中して、歪みや反りという形で現れ、この部分から剥がれやすいという問題があることが判明した。 However, since such a highly flexible opto-electric hybrid board is often pulled or twisted greatly, different stresses are generated between the metal layers 9 and 9 'made of different materials and the optical waveguide W. The stress difference is concentrated at the corners P [the part surrounded by a small circle in FIG. 14A] at both ends of the optical waveguide W, and appears in the form of distortion and warp, and is easily peeled off from this part. It turns out that there is a problem.
 また、図14(b)に示すように、金属層9、9′を有しないタイプの光電気混載基板では、光導波路Wの両端が、ポリイミド等の絶縁層1の裏面に直接配置された構成になっているが、その場合も、樹脂同士の接合とはいえ、互いに材質が異なるため、その応力の差によって、やはり光導波路Wが、その角部Pから剥がれやすくなる傾向が見られることが判明した。 Further, as shown in FIG. 14B, in the opto-electric hybrid board of the type not having the metal layers 9 and 9 ′, both ends of the optical waveguide W are directly arranged on the back surface of the insulating layer 1 such as polyimide. However, even in this case, since the materials are different from each other, the optical waveguide W tends to be easily peeled off from the corner portion P due to the difference in stress. found.
 本発明は、このような事情に鑑みなされたもので、電気回路基板裏面側の、金属層もしくは絶縁層と重なる配置で設けられた光導波路の端部が、金属層や絶縁層から剥がれることがなく、長期にわたって良好に使用することのできる光電気混載基板およびその製法の提供をその目的とする。 The present invention has been made in view of such circumstances, and the end portion of the optical waveguide provided in an arrangement overlapping the metal layer or the insulating layer on the back side of the electric circuit board may be peeled off from the metal layer or the insulating layer. It is an object of the present invention to provide an opto-electric hybrid board that can be used satisfactorily over a long period of time and a method for producing the same.
 上記の目的を達成するため、本発明は、絶縁層の表面に電気配線が形成された電気回路基板と、この電気回路基板の絶縁層裏面側に、金属層を介して設けられた光導波路とを備えた光電気混載基板であって、上記光導波路の少なくとも一端部が、上記電気回路基板裏面の金属層と、金属層の輪郭より光導波路端部の輪郭が内側になる配置で重なっており、上記金属層のうち、光導波路端部の輪郭部と重なる領域の少なくとも一部が除去されて開口部が形成され、その開口部内に、光導波路の一部が入り込んだ状態で光導波路が形成されている光電気混載基板を第1の要旨とし、そのなかでも、特に、上記金属層の開口部が、光導波路端部の輪郭部に沿って、断続的に複数形成されている光電気混載基板を第2の要旨とする。 In order to achieve the above object, the present invention provides an electric circuit board in which electric wiring is formed on the surface of an insulating layer, and an optical waveguide provided on the back side of the insulating layer of the electric circuit board via a metal layer. And at least one end of the optical waveguide overlaps with the metal layer on the back surface of the electric circuit board in such a manner that the contour of the end of the optical waveguide is inward from the contour of the metal layer. In the metal layer, at least a part of the region overlapping with the contour of the optical waveguide end is removed to form an opening, and the optical waveguide is formed with a part of the optical waveguide entering the opening. The opto-electric hybrid board is a first gist, and in particular, the opto-electric hybrid board in which a plurality of openings of the metal layer are intermittently formed along the contour of the end of the optical waveguide. The substrate is a second gist.
 また、本発明は、絶縁層の表面に電気配線が形成された電気回路基板と、この電気回路基板の絶縁層裏面側に、金属層を介して設けられた光導波路とを備えた光電気混載基板であって、上記光導波路の少なくとも一端部が、上記電気回路基板裏面の金属層と、互いの輪郭が重なるか金属層の輪郭より光導波路端部の輪郭が外側になる配置で重なっており、上記金属層のうち、金属層自身の輪郭部が光導波路端部と重なる領域の少なくとも一部が除去されて開口部が形成され、その開口部内に、光導波路の一部が入り込んだ状態で光導波路が形成されている光電気混載基板を第3の要旨とし、そのなかでも、特に、上記金属層の開口部が、金属層自身の輪郭部に沿って、断続的に複数形成されている光電気混載基板を第4の要旨とする。 The present invention also provides an opto-electric hybrid device comprising an electric circuit board having electric wiring formed on the surface of an insulating layer, and an optical waveguide provided on the back side of the insulating layer of the electric circuit board via a metal layer. At least one end of the optical waveguide overlaps with the metal layer on the back surface of the electric circuit board in such a manner that the outline of each other overlaps or the outline of the end of the optical waveguide is outside the outline of the metal layer. In the above metal layer, at least a part of the region where the contour of the metal layer itself overlaps the end of the optical waveguide is removed to form an opening, and a part of the optical waveguide enters the opening. The third aspect is an opto-electric hybrid board on which an optical waveguide is formed, and in particular, a plurality of openings of the metal layer are intermittently formed along the contour of the metal layer itself. The opto-electric hybrid board is a fourth gist.
 さらに、本発明は、絶縁層の表面に電気配線が形成された電気回路基板と、この電気回路基板の絶縁層裏面側に直接設けられた光導波路とを備えた光電気混載基板であって、上記光導波路の少なくとも一端部が、上記電気回路基板裏面の絶縁層と、絶縁層の輪郭より光導波路端部の輪郭が内側になる配置で重なっており、上記絶縁層のうち、光導波路端部の輪郭部と重なる領域の少なくとも一部が凹部に形成され、その凹部内に、光導波路の一部が入り込んだ状態で光導波路が形成されている光電気混載基板を第5の要旨とし、そのなかでも、特に、上記絶縁層の凹部が、光導波路端部の輪郭部に沿って、断続的に複数形成されている光電気混載基板を第6の要旨とする。 Furthermore, the present invention is an opto-electric hybrid board comprising an electric circuit board having an electrical wiring formed on the surface of an insulating layer, and an optical waveguide provided directly on the back side of the insulating layer of the electric circuit board, At least one end of the optical waveguide overlaps with the insulating layer on the back surface of the electric circuit board in an arrangement in which the contour of the optical waveguide end is inward from the contour of the insulating layer, and the optical waveguide end portion of the insulating layer A fifth aspect is an opto-electric hybrid board in which at least a part of a region overlapping with the contour part of the optical waveguide is formed in the concave part, and the optical waveguide is formed in a part of the optical waveguide in the concave part. In particular, the sixth summary is an opto-electric hybrid board in which a plurality of recesses of the insulating layer are intermittently formed along the contour of the end portion of the optical waveguide.
 そして、本発明は、絶縁層の表面に電気配線が形成された電気回路基板と、この電気回路基板の絶縁層裏面側に直接設けられた光導波路とを備えた光電気混載基板であって、上記光導波路の少なくとも一端部が、上記電気回路基板裏面の絶縁層と、互いの輪郭が重なるか絶縁層の輪郭より光導波路端部の輪郭が外側になる配置で重なっており、上記絶縁層のうち、絶縁層自身の輪郭部が光導波路端部と重なる領域の少なくとも一部が凹部に形成され、その凹部内に、光導波路の一部が入り込んだ状態で光導波路が形成されている光電気混載基板を第7の要旨とし、そのなかでも、特に、上記絶縁層の凹部が、絶縁層自身の輪郭部に沿って、断続的に複数形成されている光電気混載基板を第8の要旨とする。 And, the present invention is an opto-electric hybrid board comprising an electric circuit board in which electric wiring is formed on the surface of an insulating layer, and an optical waveguide provided directly on the back side of the insulating layer of the electric circuit board, At least one end portion of the optical waveguide overlaps with the insulating layer on the back surface of the electric circuit board in such a manner that the contours overlap each other or the contour of the optical waveguide end portion is outside the contour of the insulating layer. Among them, at least a part of the region where the contour of the insulating layer itself overlaps the end of the optical waveguide is formed in the recess, and the optical waveguide is formed in a state where a part of the optical waveguide enters the recess. A mixed substrate is a seventh summary, and in particular, an eighth embodiment is a photoelectric mixed substrate in which a plurality of recesses of the insulating layer are intermittently formed along the contour of the insulating layer itself. To do.
 また、本発明は、上記第1の要旨である光電気混載基板の製法であって、絶縁層の表面に電気配線が形成され同じく絶縁層の裏面に金属層が形成された電気回路基板を準備する工程と、上記電気回路基板裏面側の金属層に対し光導波路を、その少なくとも一端部が、金属層の輪郭より光導波路端部の輪郭が内側になるよう配置した状態で形成する工程とを備え、上記電気回路基板を準備する工程において、上記金属層の、光導波路端部の輪郭部と重なる予定領域の少なくとも一部を除去して開口部を形成し、上記光導波路形成工程において、上記金属層の開口部内に、光導波路の一部を入り込ませた状態で光導波路を形成する光電気混載基板の製法を第9の要旨とし、そのなかでも、特に、上記電気回路基板を準備する工程において、上記金属層の開口部を、光導波路端部の輪郭部に沿って、断続的に複数形成するようにした光電気混載基板の製法を第10の要旨とする。 The present invention also provides an opto-electric hybrid board manufacturing method according to the first aspect, wherein an electrical circuit board is prepared in which electrical wiring is formed on the surface of the insulating layer and a metal layer is formed on the back surface of the insulating layer. And a step of forming an optical waveguide with respect to the metal layer on the back surface side of the electric circuit board in a state where at least one end thereof is arranged so that the contour of the end of the optical waveguide is inward from the contour of the metal layer. In the step of preparing the electric circuit board, forming an opening by removing at least a part of the region of the metal layer that overlaps the contour of the optical waveguide end, and in the optical waveguide formation step, The manufacturing method of the opto-electric hybrid board that forms the optical waveguide in a state where a part of the optical waveguide is inserted into the opening of the metal layer is a ninth gist, and in particular, the step of preparing the electric circuit board. In the above The opening of the genus layer, along the contour of the waveguide end portion, intermittently and tenth gist of the opto-electric hybrid board manufacturing method which is adapted to form a plurality.
 さらに、本発明は、上記第3の要旨である光電気混載基板の製法であって、絶縁層の表面に電気配線が形成され同じく絶縁層の裏面に金属層が形成された電気回路基板を準備する工程と、上記電気回路基板裏面側の金属層に対し光導波路を、その少なくとも一端部が、互いの輪郭が重なるか金属層の輪郭より光導波路端部の輪郭が外側になるよう配置した状態で形成する工程とを備え、上記電気回路基板を準備する工程において、上記金属層の、金属層自身の輪郭部が光導波路端部と重なる予定領域の少なくとも一部を除去して開口部を形成し、上記光導波路形成工程において、上記金属層の開口部内に、光導波路の一部を入り込ませた状態で光導波路を形成する光電気混載基板の製法を第11の要旨とし、そのなかでも、特に、上記電気回路基板を準備する工程において、上記金属層の開口部を、金属層自身の輪郭部に沿って、断続的に複数形成するようにした光電気混載基板の製法を第12の要旨とする。 Furthermore, the present invention provides a method for producing an opto-electric hybrid board according to the third aspect, wherein an electrical circuit board is prepared in which electrical wiring is formed on the surface of the insulating layer and a metal layer is formed on the back surface of the insulating layer. And a state in which the optical waveguide is disposed with respect to the metal layer on the back surface side of the electric circuit board so that at least one end thereof overlaps with each other or the contour of the end of the optical waveguide is outside the contour of the metal layer. In the step of preparing the electric circuit board, an opening is formed by removing at least a part of a region where the contour of the metal layer itself overlaps the end of the optical waveguide. In the optical waveguide forming step, an eleventh aspect is a method for manufacturing an opto-electric hybrid board in which an optical waveguide is formed in a state in which a part of the optical waveguide is inserted into the opening of the metal layer. In particular, the above electricity In the step of preparing a road substrate, the openings of the metal layer, along the contour of the metal layer itself, intermittently and twelfth gist of the opto-electric hybrid board manufacturing method which is adapted to form a plurality.
 そして、本発明は、上記第5の要旨である光電気混載基板の製法であって、絶縁層の表面に電気配線が形成された電気回路基板を準備する工程と、上記電気回路基板裏面側の絶縁層に対し光導波路を、その少なくとも一端部が、絶縁層の輪郭より光導波路端部の輪郭が内側になるよう配置した状態で形成する工程とを備え、上記電気回路基板を準備する工程において、上記絶縁層の、光導波路端部の輪郭部と重なる予定領域の少なくとも一部に凹部を形成し、上記光導波路形成工程において、上記絶縁層の凹部内に、光導波路の一部を入り込ませた状態で光導波路を形成する光電気混載基板の製法を第13の要旨とし、そのなかでも、特に、上記絶縁層の凹部を、光導波路端部の輪郭部に沿って、断続的に複数形成するようにした光電気混載基板の製法を第14の要旨とする。 And this invention is the manufacturing method of the opto-electric hybrid board | substrate which is the said 5th summary, Comprising: The process of preparing the electrical circuit board by which the electrical wiring was formed in the surface of an insulating layer, The said electrical circuit board back surface side Forming the optical waveguide with respect to the insulating layer in a state in which at least one end thereof is arranged in such a manner that the contour of the end of the optical waveguide is inside the contour of the insulating layer, and preparing the electric circuit board Forming a recess in at least a part of a region of the insulating layer that overlaps the contour of the end of the optical waveguide, and in the optical waveguide forming step, allowing a part of the optical waveguide to enter the recess of the insulating layer. The manufacturing method of the opto-electric hybrid board for forming the optical waveguide in a state of being in a state is a thirteenth aspect, and in particular, a plurality of recesses of the insulating layer are intermittently formed along the contour of the end of the optical waveguide. Optoelectric mixing The substrate manufacturing method and fourteenth gist of the.
 また、本発明は、上記第7の要旨である光電気混載基板の製法であって、絶縁層の表面に電気配線が形成された電気回路基板を準備する工程と、上記電気回路基板裏面側の絶縁層に対し光導波路を、その少なくとも一端部が、互いの輪郭が重なるか絶縁層の輪郭より光導波路端部の輪郭が外側になるよう配置した状態で形成する工程とを備え、上記電気回路基板を準備する工程において、上記絶縁層の、絶縁層自身の輪郭部が光導波路端部と重なる予定領域の少なくとも一部に凹部を形成し、上記光導波路形成工程において、上記絶縁層の凹部内に、光導波路の一部を入り込ませた状態で光導波路を形成する光電気混載基板の製法を第15の要旨とし、そのなかでも、特に、上記絶縁層の凹部を、絶縁層自身の輪郭部に沿って、断続的に複数形成するようにした光電気混載基板の製法を第16の要旨とする。 The present invention also relates to a method for manufacturing an opto-electric hybrid board according to the seventh aspect, the step of preparing an electric circuit board in which electric wiring is formed on the surface of the insulating layer; Forming the optical waveguide with respect to the insulating layer in a state where at least one end of the optical waveguide overlaps each other or the contour of the optical waveguide end is outside the contour of the insulating layer. In the step of preparing the substrate, a recess is formed in at least a part of a region of the insulating layer where the contour of the insulating layer itself overlaps with the end of the optical waveguide. In the optical waveguide forming step, the recess is formed in the recess of the insulating layer. In the fifteenth aspect, a method for producing an opto-electric hybrid board in which an optical waveguide is formed in a state in which a part of the optical waveguide is inserted, and in particular, the concave portion of the insulating layer is formed as a contour portion of the insulating layer itself. Along the line The opto-electric hybrid board manufacturing method which is adapted to form a sixteenth gist of the.
 すなわち、本発明の光電気混載基板は、電気回路基板裏面側の、光導波路の端部と重なる金属層もしくは絶縁層が光導波路端部の輪郭部と重なる領域、あるいは金属層もしくは絶縁層の輪郭部が光導波路端部と重なる領域を部分的に除去して凹部(金属層にあっては金属層が除去された開口部)を形成し、その凹部内に光導波路の一部を入り込ませるようにしたものである。 That is, the opto-electric hybrid board according to the present invention has a metal layer or insulating layer overlapping the edge of the optical waveguide on the back side of the electric circuit board, or a contour of the metal layer or insulating layer. The region where the portion overlaps the end of the optical waveguide is partially removed to form a recess (in the case of a metal layer, an opening from which the metal layer has been removed), and a part of the optical waveguide is inserted into the recess It is a thing.
 この構成によれば、金属層もしくは絶縁層の裏面に重なる光導波路の端部のうち、応力が集中して剥がれやすい互いの輪郭部において、光導波路の一部が、金属層に設けられた開口部内もしくは絶縁層に設けられた凹部内に入り込んでいる。そのため、上記開口部内もしくは凹部内に入り込んだ光導波路の一部が、いわば投錨効果を果たすことになり、平坦面同士が接合されている場合に比べて光導波路が剥がれにくいものとなる。 According to this configuration, in the end portion of the optical waveguide that overlaps the back surface of the metal layer or the insulating layer, in the mutual contour portion where stress is concentrated and easily peeled off, a part of the optical waveguide is provided in the metal layer. It enters into the recess or the recess provided in the insulating layer. Therefore, a part of the optical waveguide that has entered the opening or the recess has a so-called anchoring effect, and the optical waveguide is less likely to be peeled than when the flat surfaces are joined to each other.
 とりわけ、金属層と光導波路とは、その積層界面におけるピール強度が小さいため、金属層に開口部を設けてこの開口部内に光導波路の一部を入り込ませたものは、光導波路の一部が、金属層裏側の絶縁層と直接接合した状態となり、両者間のピール強度を飛躍的に大きくすることができる。このため、金属層と光導波路、もしくは絶縁層と光導波路の積層部において、外からの荷重や熱によって生じる内部応力が両者の間で異なっていても、その応力の差に基づく反りや歪みが、光導波路端部に影響を及ぼすことがない。 In particular, since the peel strength at the laminated interface between the metal layer and the optical waveguide is small, the metal layer provided with an opening and a part of the optical waveguide inserted into the opening has a part of the optical waveguide. And it will be in the state joined directly with the insulating layer of the metal layer back side, and the peel strength between both can be enlarged greatly. For this reason, even if the internal stress caused by external load or heat is different between the metal layer and the optical waveguide or the laminated portion of the insulating layer and the optical waveguide, warping or distortion based on the difference in stress is not caused. The optical waveguide end is not affected.
 したがって、光素子等を実装する等の製造工程や、光電気混載基板を電子機器等に組み込む工程、そして実際に使用する際において、光導波路Wが端部から剥がれていくようなことがなく、この光電気混載基板を、長期にわたって良好に使用することができる。 Therefore, in the manufacturing process such as mounting an optical element or the like, the process of incorporating the opto-electric hybrid board into an electronic device or the like, and the actual use, the optical waveguide W is not peeled off from the end portion, This opto-electric hybrid board can be used satisfactorily for a long time.
 また、本発明のなかでも、特に、上記金属層の開口部もしくは絶縁層の凹部が、光導波路端部の輪郭部に沿って、あるいは金属層自身の輪郭部もしくは絶縁層自身の輪郭部に沿って、断続的に複数形成されている場合、とりわけ光導波路Wの剥がれ防止効果に優れたものとなり、好適である。 Also, in the present invention, in particular, the opening of the metal layer or the recess of the insulating layer is along the contour of the optical waveguide end, or along the contour of the metal layer itself or the contour of the insulating layer itself. In the case where a plurality of elements are intermittently formed, the effect of preventing the optical waveguide W from being peeled off is particularly preferable.
 そして、本発明の光電気混載基板の製法によれば、本発明の光電気混載基板を効率よく得ることができる。 And according to the method for producing an opto-electric hybrid board of the present invention, the opto-electric hybrid board of the present invention can be obtained efficiently.
(a)は本発明の一実施の形態を模式的に示す部分的な縦断面図、(b)は(a)のA-A′矢視図、(c)は(b)のB-B′断面図である。(A) is a partial longitudinal sectional view schematically showing an embodiment of the present invention, (b) is a view taken along the line AA ′ of (a), and (c) is a line BB of (b). It is a cross-sectional view. 図1(b)のC-C′断面図である。It is CC 'sectional drawing of FIG.1 (b). (a)~(d)は、いずれも上記光電気混載基板の製法における電気回路基板の作製工程を示す説明図である。(A) to (d) are explanatory views showing steps of producing an electric circuit board in the method for producing an opto-electric hybrid board. (a)~(d)は、いずれも上記光電気混載基板の製法における光導波路の作製工程を示す説明図である。(A) to (d) are explanatory views showing the optical waveguide manufacturing process in the method for manufacturing an opto-electric hybrid board. (a)、(b)は、ともに上記の例における金属層の開口形状の変形例を示す説明図である。(A), (b) is explanatory drawing which shows the modification of the opening shape of the metal layer in said example. (a)~(f)は、いずれも上記の例における金属層の開口形状の変形例を示す説明図である。(A)-(f) is explanatory drawing which shows the modification of the opening shape of the metal layer in said example. (a)~(d)は、いずれも上記の例における金属層の開口形状の変形例を示す説明図である。(A)-(d) is explanatory drawing which shows the modification of the opening shape of the metal layer in said example. 本発明の他の実施の形態を模式的に示す部分的な縦断面図である。It is a partial longitudinal cross-sectional view which shows other embodiment of this invention typically. (a)~(c)は、いずれも上記光電気混載基板の製法における光導波路の作製工程を示す説明図である。(A) to (c) are explanatory views showing steps of producing an optical waveguide in the method for producing an opto-electric hybrid board. (a)~(f)は、いずれも本発明の他の実施の形態における金属層の開口形状の変形例を示す説明図である。(A)-(f) is explanatory drawing which shows the modification of the opening shape of the metal layer in other embodiment of this invention. (a)~(e)は、いずれも本発明のさらに他の実施の形態における金属層の開口形状の変形例を示す説明図である。(A)-(e) is explanatory drawing which shows the modification of the opening shape of the metal layer in further another embodiment of this invention. (a)は本発明の他の実施の形態を示す説明図、(b)、(c)はともにその作製工程を示す説明図である。(A) is explanatory drawing which shows other embodiment of this invention, (b), (c) is both explanatory drawing which shows the preparation process. 従来の光電気混載基板の一例を示す模式的な縦断面図である。It is a typical longitudinal section showing an example of the conventional opto-electric hybrid board. (a)、(b)は、ともに従来の光電気混載基板の課題を説明するための、説明図である。(A), (b) is explanatory drawing for demonstrating the subject of the conventional opto-electric hybrid board together.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。ただし、本発明は、この実施の形態に限るものではない。 Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to this embodiment.
 図1(a)は、本発明の光電気混載基板の一実施の形態を模式的に示す部分的な縦断面図であり、図1(b)は、図1(a)のA-A′矢視図、図1(c)は、図1(b)のB-B′断面図である。また、図2は、図1(b)のC-C′断面図である。すなわち、この光電気混載基板10は、絶縁層1の表面に電気配線2が設けられた電気回路基板Eと、上記絶縁層1の裏面側に設けられた光導波路Wとを備えている。 FIG. 1 (a) is a partial longitudinal sectional view schematically showing an embodiment of the opto-electric hybrid board according to the present invention, and FIG. 1 (b) is an AA ′ line in FIG. 1 (a). FIG. 1C is a cross-sectional view taken along the line BB ′ of FIG. 1B. FIG. 2 is a cross-sectional view taken along the line CC ′ of FIG. That is, the opto-electric hybrid board 10 includes an electric circuit board E in which electric wiring 2 is provided on the surface of the insulating layer 1 and an optical waveguide W provided on the back side of the insulating layer 1.
 上記電気回路基板Eは、ポリイミド等からなる絶縁層1の表面に、光素子実装用のパッド2aや、コネクタ実装用のパッド2b、その他各種の素子実装用のパッド、アース用電極等(図示せず)を含む電気配線2が形成され、これらのうち、上記パッド2a等を除く電気配線2が、ポリイミド等からなるカバーレイ3によって絶縁保護された構成になっている。なお、カバーレイ3によって保護されていないパッド2a等の表面は、金やニッケル等からなる電解めっき層4で被覆されている。 The electric circuit board E has an insulating layer 1 made of polyimide or the like on the surface thereof, an optical element mounting pad 2a, a connector mounting pad 2b, other various element mounting pads, a ground electrode or the like (not shown). The electric wiring 2 including the pad 2a is insulated and protected by a cover lay 3 made of polyimide or the like. Note that the surfaces of the pads 2a and the like that are not protected by the coverlay 3 are covered with an electrolytic plating layer 4 made of gold, nickel, or the like.
 一方、上記絶縁層1の裏面側に設けられた光導波路Wは、平面視形状が、左右方向に細長い略矩形状で、アンダークラッド層6と、その表面[図1(a)においては下面]に所定パターンで形成されたコア7と、このコア7を被覆した状態で上記アンダークラッド層6の表面と一体化するオーバークラッド層8とで構成されている。 On the other hand, the optical waveguide W provided on the back surface side of the insulating layer 1 has a substantially rectangular shape elongated in the left-right direction in plan view, and the undercladding layer 6 and its surface [lower surface in FIG. 1 (a)]. The core 7 is formed in a predetermined pattern, and the over clad layer 8 is integrated with the surface of the under clad layer 6 in a state of covering the core 7.
 そして、上記電気回路基板Eの光素子実装用のパッド2aに対応するコア7の部分が、コア7の延びる方向に対して45°の傾斜面に形成されている。この傾斜面は、光の反射面7aになっており、コア7内を伝播されてきた光の向きを90°変えて光素子の受光部に入射させたり、逆に光素子の発光部から出射された光の向きを90°変えてコア7内に入射させたりする役割を果たす。 And the part of the core 7 corresponding to the optical element mounting pad 2a of the electric circuit board E is formed on an inclined surface of 45 ° with respect to the extending direction of the core 7. This inclined surface is a light reflecting surface 7a, which changes the direction of the light propagated in the core 7 by 90 ° to enter the light receiving portion of the optical element, or conversely, exits from the light emitting portion of the optical element. The direction of the emitted light is changed by 90 ° to enter the core 7.
 また、上記電気回路基板Eと光導波路Wの間には、この光電気混載基板10を補強するための金属層9が設けられており、フレキシブル性が要求される中間部を除く両側部[図14(a)を参照]に、光導波路Wの両端部と部分的に重なる形で、パターン形成されている。そして、この金属層9には、光導波路Wのコア7と光素子との間の光路を確保するための貫通孔5が形成されており、この貫通孔5内にも、上記アンダークラッド層6が入り込んでいる。 Further, a metal layer 9 for reinforcing the opto-electric hybrid board 10 is provided between the electric circuit board E and the optical waveguide W, and both side parts excluding an intermediate part where flexibility is required [see FIG. 14 (a)], the pattern is formed so as to partially overlap the both ends of the optical waveguide W. A through hole 5 for securing an optical path between the core 7 of the optical waveguide W and the optical element is formed in the metal layer 9. The under cladding layer 6 is also formed in the through hole 5. Has entered.
 さらに、上記金属層9には、図1(b)に示すように、上記の金属層9の、光導波路Wの輪郭部と重なる領域のうち、光導波路Wの長手方向に沿う両側部が2個所ずつ部分的に除去されて、合計4個の、平面視長方形状の開口部20が形成されている。そして、これらの開口部20内には、図1(c)および図2に示すように、アンダークラッド層6が入り込んで、この入り込んだアンダークラッド層6と絶縁層1とが、直接強固に接合している。これが、本発明の最大の特徴である。なお、図1(b)においては、上記貫通孔5の図示を省略し、金属層9が形成されている部分を、間隔の大きい右下がり斜線で示している(以下の図においても同じ)。 Furthermore, as shown in FIG. 1B, the metal layer 9 has two side portions along the longitudinal direction of the optical waveguide W in the region of the metal layer 9 that overlaps the contour of the optical waveguide W. A part of each part is partially removed to form a total of four openings 20 having a rectangular shape in plan view. Then, as shown in FIGS. 1C and 2, the under cladding layer 6 enters the openings 20, and the inserted under cladding layer 6 and the insulating layer 1 are directly and firmly bonded. is doing. This is the greatest feature of the present invention. In FIG. 1B, illustration of the through hole 5 is omitted, and a portion where the metal layer 9 is formed is indicated by a diagonally downward slanting line with a large interval (the same applies to the following drawings).
 また、図1(a)、(b)、図2において、上記光電気混載基板10の、向かって右側の部分は、図示された左側の部分と左右対称になっており、それ以外の構成は同じであることから、その図示と説明を省略する。 Further, in FIGS. 1A, 1B, and 2, the right-side portion of the opto-electric hybrid board 10 is symmetrical with the left-side portion shown in the drawing. Since they are the same, their illustration and description are omitted.
 つぎに、上記光電気混載基板10の製法について説明する(図3、図4を参照)。 Next, a method for producing the opto-electric hybrid board 10 will be described (see FIGS. 3 and 4).
 まず、平板状の金属層9を準備し、その表面に、ポリイミド等からなる感光性絶縁樹脂を塗布し、フォトリソグラフィ法により、所定パターンの絶縁層1を形成する[図3(a)を参照]。上記絶縁層1の厚みは、例えば3~50μmの範囲内に設定される。また、上記金属層9の形成材料としては、ステンレス、銅、銀、アルミニウム、ニッケル、クロム、チタン、白金、金等があげられ、なかでも、剛性等の観点から、ステンレスが好ましい。また、上記金属層9の厚みは、その材質にもよるが、ステンレスを用いた場合、例えば10~70μmの範囲内に設定される。すなわち、10μm未満では補強効果が充分に得られないおそれがあり、逆に70μmを超えると、金属層9の貫通孔5内を移動する光の距離が長くなって、光損失が大きくなるおそれがあるからである。 First, a flat metal layer 9 is prepared, a photosensitive insulating resin made of polyimide or the like is applied to the surface, and an insulating layer 1 having a predetermined pattern is formed by a photolithography method (see FIG. 3A). ]. The thickness of the insulating layer 1 is set within a range of 3 to 50 μm, for example. Examples of the material for forming the metal layer 9 include stainless steel, copper, silver, aluminum, nickel, chromium, titanium, platinum, and gold. Among them, stainless steel is preferable from the viewpoint of rigidity and the like. Further, although the thickness of the metal layer 9 depends on the material, it is set within a range of 10 to 70 μm, for example, when stainless steel is used. That is, if the thickness is less than 10 μm, the reinforcing effect may not be sufficiently obtained. On the other hand, if the thickness exceeds 70 μm, the distance of light traveling through the through hole 5 of the metal layer 9 becomes long, and the light loss may increase. Because there is.
 つぎに、図3(b)に示すように、上記絶縁層1の表面に、電気配線2(光素子実装用のパッド2aやコネクタ用パッド2b、他のパッド、アース用電極等を含む、以下同じ)を、例えばセミアディティブ法により形成する。この方法は、まず、上記絶縁層1の表面に、スパッタリングまたは無電解めっき等により、銅やクロム等からなる金属膜(図示せず)を形成する。この金属膜は、後の電解めっきを行う際のシード層(電解めっき層形成の素地となる層)となる。そして、上記金属層9、絶縁層1およびシード層からなる積層体の両面に、感光性レジスト(図示せず)をラミネートした後、上記シード層が形成されている側の感光性レジストに、フォトリソグラフィ法により、上記電気配線2のパターンの孔部を形成し、その孔部の底に上記シード層の表面部分を露呈させる。つぎに、電解めっきにより、上記孔部の底に露呈した上記シード層の表面部分に、銅等からなる電解めっき層を積層形成する。そして、上記感光性レジストを水酸化ナトリウム水溶液等により剥離する。その後、上記電解めっき層が形成されていないシード層の部分をソフトエッチングにより除去する。残存したシード層と電解めっき層とからなる積層部分が上記電気配線2となる。 Next, as shown in FIG. 3B, the surface of the insulating layer 1 includes electrical wiring 2 (optical device mounting pads 2a, connector pads 2b, other pads, ground electrodes, etc. The same) is formed by, for example, a semi-additive method. In this method, first, a metal film (not shown) made of copper, chromium, or the like is formed on the surface of the insulating layer 1 by sputtering or electroless plating. This metal film becomes a seed layer (layer serving as a base for forming an electrolytic plating layer) when performing subsequent electrolytic plating. Then, after laminating a photosensitive resist (not shown) on both surfaces of the laminate composed of the metal layer 9, the insulating layer 1 and the seed layer, a photo resist is applied to the photosensitive resist on the side where the seed layer is formed. A hole portion of the pattern of the electric wiring 2 is formed by lithography, and the surface portion of the seed layer is exposed at the bottom of the hole portion. Next, an electrolytic plating layer made of copper or the like is laminated on the surface portion of the seed layer exposed to the bottom of the hole by electrolytic plating. Then, the photosensitive resist is removed with an aqueous sodium hydroxide solution or the like. Thereafter, the portion of the seed layer where the electrolytic plating layer is not formed is removed by soft etching. The laminated portion composed of the remaining seed layer and electrolytic plating layer is the electric wiring 2.
 つぎに、図3(c)に示すように、光素子実装用のパッド2やコネクタ用パッド2bの一部等を除く電気配線2の部分に、ポリイミド等からなる感光性絶縁樹脂を塗布し、フォトリソグラフィ法により、カバーレイ3を形成する。 Next, as shown in FIG. 3 (c), a photosensitive insulating resin made of polyimide or the like is applied to the portion of the electrical wiring 2 excluding a part of the optical element mounting pad 2 and the connector pad 2b. The cover lay 3 is formed by photolithography.
 そして、図3(d)に示すように、カバーレイ3によって被覆されていない光素子実装用のパッド2aやコネクタ用パッド2bの一部等の表面に電解めっき層4を形成する。このようにして、電気回路基板Eが形成される。 Then, as shown in FIG. 3 (d), the electrolytic plating layer 4 is formed on the surface of the optical element mounting pad 2a and the part of the connector pad 2b which are not covered with the cover lay 3. In this way, the electric circuit board E is formed.
 つぎに、上記金属層9と電気回路基板Eとからなる積層体の両面に、感光性レジストをラミネートした後、上記金属層9の裏面側(電気回路基板Eと反対側の面側)の感光性レジストのうち、金属層9が不要な部分と、光路用の貫通孔5形成予定部に対応する部分[図1(a)を参照]、さらには、前述の開口部20形成予定部分(図2を参照)に、フォトリソグラフィ法により、孔部を形成し、上記金属層9の裏面を部分的に露呈させる。 Next, a photosensitive resist is laminated on both sides of the laminate composed of the metal layer 9 and the electric circuit board E, and then the back side of the metal layer 9 (the side opposite to the electric circuit board E) is exposed. Of the conductive resist, a portion where the metal layer 9 is not required, a portion corresponding to the portion where the optical path through hole 5 is to be formed [see FIG. 1A], and further, the portion where the opening 20 is to be formed (see FIG. 2), a hole is formed by photolithography, and the back surface of the metal layer 9 is partially exposed.
 そして、上記金属層9の露呈部分を、その金属層9の金属材料に応じたエッチング用水溶液(例えば、金属層9がステンレス層である場合のエッチング用水溶液は、塩化第2鉄水溶液)を用いてエッチングすることにより除去し、その除去跡から絶縁層1を露呈させた後、上記感光性レジストを水酸化ナトリウム水溶液等により剥離する。これにより、図4(a)に示すように、補強が必要な領域のみに金属層9が形成され、光路用の貫通孔5[図1(a)を参照]と、光導波路Wの一部を入り込ませるための開口部20とが、同時に形成される。 Then, the exposed portion of the metal layer 9 is etched using an aqueous solution for etching corresponding to the metal material of the metal layer 9 (for example, the aqueous solution for etching when the metal layer 9 is a stainless steel layer is ferric chloride aqueous solution). Then, the insulating layer 1 is exposed from the trace of the removal, and then the photosensitive resist is peeled off with an aqueous sodium hydroxide solution or the like. As a result, as shown in FIG. 4A, the metal layer 9 is formed only in the region that needs reinforcement, and the optical path through hole 5 [see FIG. 1A] and a part of the optical waveguide W are formed. Are simultaneously formed.
 つぎに、上記絶縁層1の裏面(金属層9が形成されている部分にあっては金属層9の裏面)に光導波路W[図1(a)参照]を形成するために、まず、図4(b)に示すように、上記絶縁層1および金属層9の裏面(図において下面)に、アンダークラッド層6の形成材料である感光性樹脂を塗布した後、その塗布層を照射線により露光して硬化させて、アンダークラッド層6を形成する。上記アンダークラッド層6は、フォトリソグラフィ法によって、所定パターン状に形成される。そして、このアンダークラッド層6によって、上記金属層9の光路用の貫通孔5が埋められた状態となる[図1(a)を参照]。また、アンダークラッド層6の一部は、金属層9の開口部20内にも入り込んで、絶縁層1の裏面と直接接合した状態となる。上記アンダークラッド層6の厚み(絶縁層1の裏面からの厚み)は、通常、金属層9の厚みよりも厚く設定される。なお、光導波路Wを形成するための一連の作業は、上記金属層9が形成された絶縁層1の裏面を上に向けた状態で行われるが、図面では、そのままの状態で示している。 Next, in order to form the optical waveguide W [see FIG. 1A] on the back surface of the insulating layer 1 (the back surface of the metal layer 9 in the portion where the metal layer 9 is formed), first, FIG. 4 (b), after applying a photosensitive resin, which is a material for forming the undercladding layer 6, to the back surface (the lower surface in the figure) of the insulating layer 1 and the metal layer 9, the applied layer is irradiated with irradiation rays. The under clad layer 6 is formed by exposing and curing. The under cladding layer 6 is formed in a predetermined pattern by a photolithography method. Then, the under cladding layer 6 fills the optical path through hole 5 of the metal layer 9 [see FIG. 1A]. A part of the under cladding layer 6 also enters the opening 20 of the metal layer 9 and is in a state of being directly bonded to the back surface of the insulating layer 1. The thickness of the under cladding layer 6 (thickness from the back surface of the insulating layer 1) is usually set to be thicker than the thickness of the metal layer 9. A series of operations for forming the optical waveguide W is performed with the back surface of the insulating layer 1 on which the metal layer 9 is formed facing upward, but is shown as it is in the drawing.
 つぎに、図4(c)に示すように、上記アンダークラッド層6の表面(図では下面)に、フォトリソグラフィ法により、所定パターンのコア7を形成する。コア7の厚みは、例えば3~100μmの範囲内に設定され、幅は、例えば3~100μmの範囲内に設定される。上記コア7の形成材料としては、例えば、上記アンダークラッド層6と同様の感光性樹脂があげられ、上記アンダークラッド層6および後述するオーバークラッド層8の形成材料よりも屈折率が大きい材料が用いられる。この屈折率の調整は、例えば、アンダークラッド層6、コア7、オーバークラッド層8の各形成材料の種類の選択や組成比率を調整して行うことができる。 Next, as shown in FIG. 4C, a core 7 having a predetermined pattern is formed on the surface (lower surface in the figure) of the under cladding layer 6 by photolithography. The thickness of the core 7 is set within a range of 3 to 100 μm, for example, and the width is set within a range of 3 to 100 μm, for example. Examples of the material for forming the core 7 include the same photosensitive resin as that for the under cladding layer 6, and a material having a higher refractive index than the material for forming the under cladding layer 6 and an over cladding layer 8 described later is used. It is done. The adjustment of the refractive index can be performed, for example, by selecting the types of forming materials of the under cladding layer 6, the core 7, and the over cladding layer 8 and adjusting the composition ratio.
 つぎに、図4(d)に示すように、上記コア7を被覆するように、アンダークラッド層6の表面(図では下面)に重ねて、フォトリソグラフィ法により、オーバークラッド層8を形成する。このようにして、光導波路Wが形成される。なお、上記オーバークラッド層8の厚み(アンダークラッド層6の表面からの厚み)は、例えば、上記コア7の厚み以上で、300μm以下に設定される。上記オーバークラッド層8の形成材料としては、例えば、上記アンダークラッド層6と同様の感光性樹脂があげられる。 Next, as shown in FIG. 4D, the over clad layer 8 is formed by photolithography so as to be overlaid on the surface (the lower surface in the figure) of the under clad layer 6 so as to cover the core 7. In this way, the optical waveguide W is formed. Note that the thickness of the over cladding layer 8 (thickness from the surface of the under cladding layer 6) is set to be not less than the thickness of the core 7 and not more than 300 μm, for example. Examples of the material for forming the over cladding layer 8 include the same photosensitive resin as that for the under cladding layer 6.
 ちなみに、上記光導波路Wの形成材料の具体的な組成例を以下に示す。
<アンダークラッド層6、オーバークラッド層8の形成材料>
脂環骨格を含むエポキシ樹脂(ダイセル化学工業社製、EHPE3150) 20重量部
液状長鎖二官能半脂肪族エポキシ樹脂(DIC社製、EXA-4816) 80重量部
光酸発生剤(ADEKA社製、SP170) 2重量部
乳酸エチル(武蔵野化学研究所社製) 40重量部
<コア7の形成材料>
o-クレゾールノボラックグリシジルエーテル(新日鐵住金化学社製、YDCN-700-10) 50重量部
ビスフェノキシエタノールフルオレンジグリシジルエーテル(大阪ガスケミカル社製、オグゾールEG) 50重量部
光酸発生剤(ADEKA社製、SP170) 1重量部
乳酸エチル(武蔵野化学研究所社製) 50重量部
Incidentally, a specific composition example of the material for forming the optical waveguide W is shown below.
<Formation material of under cladding layer 6 and over cladding layer 8>
Epoxy resin containing alicyclic skeleton (manufactured by Daicel Chemical Industries, EHPE3150) 20 parts by weight liquid long-chain bifunctional semi-aliphatic epoxy resin (DIC, EXA-4816) 80 parts by weight photoacid generator (manufactured by ADEKA) SP170) 2 parts by weight ethyl lactate (manufactured by Musashino Chemical Laboratory) 40 parts by weight <Formation material of core 7>
o-cresol novolac glycidyl ether (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., YDCN-700-10) 50 parts by weight bisphenoxyethanol fluorenediglycidyl ether (manufactured by Osaka Gas Chemical Co., Ltd., OGSOL EG) 50 parts by weight photoacid generator (ADEKA) Made by SP170) 1 part by weight ethyl lactate (Musashino Chemical Laboratory Co., Ltd.) 50 parts by weight
 つぎに、上記光導波路Wの所定部分に、レーザ加工や切削加工等により、コア7の延びる方向に対して45°傾斜した傾斜面を形成し、電気回路基板Eの表面側に実装される光素子との光結合のための反射面7a[図1(a)を参照]とする。そして、電気回路基板Eの表面側に設けられた電気配線2のパッド2aに光素子を実装する等、必要な部材の取り付けを行う。 Next, an inclined surface inclined by 45 ° with respect to the extending direction of the core 7 is formed in a predetermined portion of the optical waveguide W by laser processing, cutting processing, or the like, and is mounted on the surface side of the electric circuit board E. A reflection surface 7a [see FIG. 1A] for optical coupling with the element is used. Then, necessary members are attached, such as mounting an optical element on the pad 2a of the electric wiring 2 provided on the surface side of the electric circuit board E.
 このようにして、図1に示す光電気混載基板10を得ることができる。この光電気混載基板10は、電気回路基板Eの裏面側の、光導波路Wの端部と重なる金属層9のうち、その光導波路Wの輪郭部と重なる領域が、部分的に除去されて4個の開口部20が形成され、その開口部20に、光導波路Wのアンダークラッド層6が入り込んで直接絶縁層1と接合している。 Thus, the opto-electric hybrid board 10 shown in FIG. 1 can be obtained. In this opto-electric hybrid board 10, a region of the metal layer 9 that overlaps the end of the optical waveguide W on the back surface side of the electric circuit board E is partially removed so that the region overlapping the contour of the optical waveguide W is partially removed. A plurality of openings 20 are formed, and the underclad layer 6 of the optical waveguide W enters the openings 20 and is directly bonded to the insulating layer 1.
 したがって、この構成によれば、金属層9と光導波路Wの積層部において、外からの荷重や熱によって生じる内部応力が両者の間で異なることによって光導波路Wを剥がそうとする力が働いても、光導波路W端部の輪郭部が、部分的に絶縁層1と直接接合しているため、その接合部分におけるピール強度が高く、全体として、ピール強度が非常に高くなっている。したがって、光素子等を実装する等の製造工程や、光電気混載基板10を電子機器等に組み込む工程、そして実際に使用する際において、光導波路Wが端部から剥がれていくようなことがなく、この光電気混載基板10を、長期にわたって良好に使用することができる。 Therefore, according to this configuration, in the laminated portion of the metal layer 9 and the optical waveguide W, a force for peeling off the optical waveguide W works because the internal stress caused by external load or heat is different between the two. However, since the contour portion of the end portion of the optical waveguide W is partially bonded directly to the insulating layer 1, the peel strength at the bonded portion is high, and the peel strength as a whole is very high. Therefore, the optical waveguide W is not peeled off from the end portion in the manufacturing process such as mounting an optical element or the like, the process of incorporating the opto-electric hybrid board 10 into an electronic device, and the like. The opto-electric hybrid board 10 can be used satisfactorily for a long time.
 しかも、上記光電気混載基板10は、金属層9をパターン形成する際に、光導波路Wの端部輪郭部と重なる所定部分に、開口部20が形成されるようにパターニングするだけでよいため、特別の工程が不要で簡単に得ることができ、製造効率がよいという利点を有する。 In addition, the opto-electric hybrid board 10 only needs to be patterned so that the opening 20 is formed in a predetermined portion overlapping the end contour of the optical waveguide W when patterning the metal layer 9. There is an advantage that a special process is not required and can be obtained easily, and manufacturing efficiency is good.
 なお、金属層9と光導波路Wとが接合されている場合と、絶縁層1と光導波路Wとが直接接合されている場合のピール強度の違いを比較するために、以下の試験を行った。 In order to compare the difference in peel strength between the case where the metal layer 9 and the optical waveguide W are bonded and the case where the insulating layer 1 and the optical waveguide W are directly bonded, the following test was performed. .
<ピール強度試験>
 光電気混載基板の金属層として汎用されるステンレス板(新日鉄社製、SUS304、厚み0.02mm)を準備し、その表面に、前述の光導波路Wの形成材料を用いて、アンダークラッド層の厚み25μm、コアの厚み50μm、オーバークラッド層の厚み25μmの三層構造の疑似光導波路を形成した(サンプル1)。また、光電気混載基板の絶縁層として、上記金属層上にポリイミド(日東電工社製、厚み0.01mm)を形成し、金属層をエッチングした表面に、上記と同様にして、疑似光導波路を形成した(サンプル2)。
<Peel strength test>
A stainless steel plate (manufactured by Nippon Steel Co., Ltd., SUS304, thickness 0.02 mm) is prepared as a metal layer of the opto-electric hybrid board, and the thickness of the under cladding layer is formed on the surface using the optical waveguide W forming material described above. A pseudo optical waveguide having a three-layer structure of 25 μm, a core thickness of 50 μm, and an over cladding layer thickness of 25 μm was formed (Sample 1). Further, as the insulating layer of the opto-electric hybrid board, polyimide (manufactured by Nitto Denko Corporation, thickness 0.01 mm) is formed on the metal layer, and the pseudo optical waveguide is formed on the surface where the metal layer is etched in the same manner as described above. Formed (Sample 2).
 そして、サンプル1、2において、疑似光導波路を剥がす際の90°ピール強度を、JIS C 5016:1994の試験法に準じて測定した。その結果、サンプル1(ベースがステンレス板)のピール強度は0.209N/cm(21.3g/cm)であり、サンプル2(ベースがポリイミド)のピール強度は1.986N/cm(202.6g/cm)であった。 Then, in Samples 1 and 2, the 90 ° peel strength when peeling the pseudo optical waveguide was measured according to the test method of JIS C 5016: 1994. As a result, the peel strength of sample 1 (base is stainless steel plate) is 0.209 N / cm (21.3 g / cm), and the peel strength of sample 2 (base is polyimide) is 1.986 N / cm (202.6 g). / Cm).
 したがって、上記の例で示すように、絶縁層1に光導波路Wの一部を直接接合すると、光導波路Wに対し、非常に優れた剥がれ防止性能を付与できることがわかる。 Therefore, as shown in the above example, it can be seen that, when a part of the optical waveguide W is directly joined to the insulating layer 1, it is possible to provide the optical waveguide W with very excellent peeling prevention performance.
 なお、上記の例において、金属層9に開口部20を形成する場合、その開口部20によって、金属層9と重なる光導波路Wの端部の輪郭線[図1(b)においてジグザグ線Xで示す]の全長のうち、5~95%の部分が、直接絶縁層1の裏面に接するようになることが好適である。すなわち、開口部20によって絶縁層1の裏面と接する輪郭線の割合が、上記の範囲よりも小さいと、光導波路Wの剥がれ防止効果が充分に得られないおそれがあり、逆に、上記の範囲より大きいと、光電気混載基板10の構造によっては、金属層9による補強が不充分となるおそれがあり、好ましくない場合がある。 In the above example, when the opening 20 is formed in the metal layer 9, an outline of the end portion of the optical waveguide W overlapping the metal layer 9 by the opening 20 [zigzag line X in FIG. It is preferable that 5 to 95% of the entire length of the insulating layer 1 is in direct contact with the back surface of the insulating layer 1. That is, if the ratio of the contour line in contact with the back surface of the insulating layer 1 by the opening 20 is smaller than the above range, the effect of preventing the optical waveguide W from being peeled may not be sufficiently obtained. If it is larger, depending on the structure of the opto-electric hybrid board 10, there is a possibility that the reinforcement by the metal layer 9 may be insufficient, which is not preferable.
 また、上記開口部20の形状は、上記の例に限るものではなく、例えば、図5(a)や図5(b)に示すように、帯状の開口部20を複数個数、平行に並べた配置にすることによって、光導波路Wの輪郭部と重なる部分に、断続的にその開口が重なるようにすることができる。 The shape of the opening 20 is not limited to the above example. For example, as shown in FIGS. 5A and 5B, a plurality of strip-shaped openings 20 are arranged in parallel. By arranging it, the opening can be intermittently overlapped with the portion overlapping the contour portion of the optical waveguide W.
 さらに、図1に示す例では、光導波路Wの輪郭部に沿って、金属層9に4個の開口部20を設けたが、例えば図6(a)に示すように、光導波路Wの輪郭部のうち、先端の2つの角部に重なる2つの部分のみに、開口部20を設けてもよい。少なくともこの角部2個所において、光導波路Wと絶縁層1とが直接、高いピール強度で接合していれば、この部分の剥がれが防止され、良好に使用することができるからである。また、図6(b)に示すように、先端の2つの角部に重なる2つの部分と、その間の、光導波路Wの端縁部と重なる部分の、計3個所に開口部20を設けると、光導波路Wの端縁部の剥がれ防止効果をより大きくすることができる。 Further, in the example shown in FIG. 1, four openings 20 are provided in the metal layer 9 along the outline of the optical waveguide W. For example, as shown in FIG. Of the portions, the opening 20 may be provided only in two portions overlapping the two corners of the tip. This is because, if the optical waveguide W and the insulating layer 1 are directly bonded with high peel strength at least at the two corners, this portion can be prevented from peeling off and can be used satisfactorily. Further, as shown in FIG. 6 (b), when openings 20 are provided in a total of three locations, two portions that overlap two corners of the tip and a portion that overlaps the edge of the optical waveguide W between them. Further, the effect of preventing peeling of the edge portion of the optical waveguide W can be further increased.
 あるいは、図6(c)に示すように、上記金属層9に設ける開口部20の形状(平面視形状、以下同じ)を、光導波路Wの長手方向に延びる両縁部に沿う2本の帯状にしたり、図6(d)に示すように、光導波路Wの端部輪郭部に沿う、2つの角部を有する1本の帯状にしたりすることができる。 Alternatively, as shown in FIG. 6C, the shape of the opening 20 provided in the metal layer 9 (planar view shape, hereinafter the same) is formed in two strips along both edges extending in the longitudinal direction of the optical waveguide W. Alternatively, as shown in FIG. 6 (d), it can be formed into a single band shape having two corners along the end contour portion of the optical waveguide W.
 また、光導波路Wの、端部先端の2つの角部と重なる部分に開口部20を形成する場合、その2つの開口部20の形状は、図6(e)に示すように、角に沿って折れ曲がった形状にしたり、図6(f)に示すように、丸形状にしたりすることができる。 In addition, when the opening 20 is formed in the portion of the optical waveguide W that overlaps with the two corners at the end of the end, the shape of the two openings 20 is along the corner as shown in FIG. It can be made into a bent shape or a round shape as shown in FIG.
 さらに、上記2つの開口部20の形状は、図7(a)に示すように、角部にアールのついた矩形状であっても、図7(b)に示すように、光導波路Wの角部に対して斜めに延びる帯状であってもよい。さらに、図7(c)、(d)に示すような三角形状であってもよい。 Furthermore, even if the shape of the two openings 20 is a rectangular shape with rounded corners as shown in FIG. 7A, the shape of the optical waveguide W is as shown in FIG. 7B. A belt-like shape extending obliquely with respect to the corner may be used. Further, it may be triangular as shown in FIGS.
 このように、開口部20の形状は、金属層9によって剛性を付与したい領域と、フレキシブル性を付与したい領域との兼ね合いを考慮しつつ、光導波路Wの端部の剥がれ防止に効果が得られるような、様々な形に設定することができる。 As described above, the shape of the opening 20 is effective in preventing peeling of the end portion of the optical waveguide W while considering the balance between the region where the metal layer 9 is desired to be rigid and the region where the flexibility is desired. It can be set in various forms.
 そして、上記の例では、金属層9に開口部20を設けてその開口部20内に光導波路Wの一部を入り込ませるようにしたが、金属層9の一部を除去して開口部20を形成するだけでなく、例えば、図8に示すように、上記開口部20によって露出した絶縁層1を、さらに凹状に加工して凹部21を形成し、その段差を深くすることによって、両者間のピール強度をさらに高めることができる。この構成によれば、より一層、光導波路Wの端部が剥がれにくくなり、より優れた耐久性を示すものとなる。 In the above example, the opening 20 is provided in the metal layer 9 so that a part of the optical waveguide W enters the opening 20. However, the opening 20 is removed by removing a part of the metal layer 9. 8, for example, as shown in FIG. 8, the insulating layer 1 exposed by the opening 20 is further processed into a concave shape to form a concave portion 21, and the step is deepened. The peel strength can be further increased. According to this configuration, the end portion of the optical waveguide W becomes more difficult to be peeled off, and more excellent durability is exhibited.
 上記絶縁層1を凹状にする加工は、例えばつぎのようにして行うことができる。すなわち、まず、図9(a)に示すように、前記の例と同様にして電気回路基板Eを形成するとともに、その裏面側の金属層9に、開口部20および光結合用の貫通孔5(図1参照)を形成する。そして、図9(b)に示すように、上記金属層9の開口部20から露出した絶縁層1の部分に対し、それ以外の部分は保護した状態でアルカリエッチングを行うことにより、凹部21を形成する。そして、図9(c)に示すように、前記の例と同様にして光導波路Wを形成した後、光素子等の実装、反射面7aの形成等を行うことにより、目的とする光電気混載基板を得ることができる。 The process of making the insulating layer 1 concave can be performed, for example, as follows. That is, first, as shown in FIG. 9A, the electric circuit board E is formed in the same manner as in the above example, and the opening 20 and the optical coupling through hole 5 are formed in the metal layer 9 on the back surface side. (See FIG. 1). And as shown in FIG.9 (b), by performing the alkali etching in the state which protected the other part with respect to the part of the insulating layer 1 exposed from the opening part 20 of the said metal layer 9, the recessed part 21 is carried out. Form. Then, as shown in FIG. 9 (c), after forming the optical waveguide W in the same manner as in the above example, mounting the optical element or the like, forming the reflective surface 7a, etc. A substrate can be obtained.
 ただし、凹部21の深さは、絶縁層1全体の厚みの5~70%となるよう設定することが好適である(例えば絶縁層1の全体厚みが10μmの場合、エッチングにより凹部21を形成した部分における絶縁層1の厚みが3~9.5μmとなるよう凹部21を形成することが好適)。すなわち、凹部21が浅すぎると、せっかく凹部21を設けても、光導波路Wの剥がれ防止効果に差異が見られず、逆に凹部21が深すぎると、その部分から絶縁層1が破れる等の不具合が生じるおそれがあり、好ましくない。 However, the depth of the recess 21 is preferably set to be 5 to 70% of the entire thickness of the insulating layer 1 (for example, when the entire thickness of the insulating layer 1 is 10 μm, the recess 21 is formed by etching). It is preferable to form the recess 21 so that the thickness of the insulating layer 1 in the portion is 3 to 9.5 μm). That is, if the concave portion 21 is too shallow, even if the concave portion 21 is provided, there is no difference in the effect of preventing the optical waveguide W from peeling off. Conversely, if the concave portion 21 is too deep, the insulating layer 1 is torn from that portion. There is a risk of malfunction, which is not preferable.
 なお、絶縁層1を凹状に加工する方法は、上記の方法に限るものではなく、例えば、図9(a)に示す構成の段階で、金属層9の開口部20から露出する絶縁層1に対し、YAGレーザやエキシマレーザを照射することによって、絶縁層1の裏面(図9における下面)における所定領域を所定厚みだけ溶融除去して凹部21を得るようにしてもよい。 Note that the method of processing the insulating layer 1 into a concave shape is not limited to the above-described method. For example, the insulating layer 1 exposed from the opening 20 of the metal layer 9 in the stage shown in FIG. On the other hand, by irradiating YAG laser or excimer laser, a predetermined region on the back surface (lower surface in FIG. 9) of the insulating layer 1 may be melted and removed by a predetermined thickness to obtain the recess 21.
 さらに、上記一連の例は、光導波路Wの端部が、光電気混載基板10の両側において幅が広く設定された金属層9と重なる配置で設けられ、金属層9の輪郭より光導波路Wの端部の輪郭が内側になっている例であるが、本発明は、光電気混載基板10が、全体にわたって同一幅の、帯状のものに対しても適用することができる。また、金属層9と光導波路Wの端部が、互いの輪郭が重なるか、金属層9の輪郭より光導波路Wの端部の輪郭が外側になっているものに対しても適用することができる。これらの場合も、光導波路Wの端部と、金属層9の端部とが重なる部分において、適宜の配置で金属層9の一部を除去して開口部20を形成することにより、光導波路Wの剥がれ防止効果を得ることができる。 Further, in the above series of examples, the end portion of the optical waveguide W is provided so as to overlap the metal layer 9 having a wide width on both sides of the opto-electric hybrid board 10. Although this is an example in which the contour of the end portion is on the inside, the present invention can also be applied to a strip-like substrate in which the opto-electric hybrid board 10 has the same width throughout. Also, the present invention can be applied to the case where the metal layer 9 and the end portion of the optical waveguide W overlap each other or the contour of the end portion of the optical waveguide W is outside the contour of the metal layer 9. it can. In these cases as well, in the portion where the end portion of the optical waveguide W and the end portion of the metal layer 9 overlap, a part of the metal layer 9 is removed by an appropriate arrangement to form the opening 20, thereby providing the optical waveguide. The effect of preventing the peeling of W can be obtained.
 ちなみに、金属層9と光導波路Wの端部とが、互いの輪郭が略重なる状態で配置されている場合の一例を、図10(a)に示す。この例では、わかりやすいように、光導波路Wの輪郭が、金属層9の輪郭のやや内側になるよう示している[図10の(b)以下の図も同じ]。この例では、光導波路Wの端部の輪郭と、その輪郭が略重なった配置の金属層9において、その先端の2つの角部が切欠かれて開口部20′になっている。この構成によれば、光導波路Wの先端の2つの角部が、直接絶縁層1と接合しているため、光導波路Wの先端部分の剥がれ防止が効果的になされている。したがって、本発明において、金属層9に形成される「開口部」とは、四方が囲われて閉じた開口部のみならず、金属層9の縁部を切欠いて形成される切欠き部をも含む趣旨である。 Incidentally, FIG. 10A shows an example of the case where the metal layer 9 and the end of the optical waveguide W are arranged in a state where the outlines of the metal layer 9 and the optical waveguide W substantially overlap each other. In this example, for easy understanding, the outline of the optical waveguide W is shown to be slightly inside the outline of the metal layer 9 [the same is true for the figures after (b) in FIG. 10]. In this example, in the contour of the end portion of the optical waveguide W and the metal layer 9 in which the contours are substantially overlapped, two corners at the tip are notched to form an opening 20 ′. According to this configuration, since the two corners at the tip of the optical waveguide W are directly joined to the insulating layer 1, peeling of the tip portion of the optical waveguide W is effectively prevented. Therefore, in the present invention, the “opening” formed in the metal layer 9 includes not only an opening surrounded by four sides but also a notch formed by cutting out the edge of the metal layer 9. It is a purpose to include.
 また、金属層9と光導波路Wの端部とが上記と同様の配置である場合において、図10(b)に示すように、金属層9の輪郭部のうち、その先端縁部と、光導波路Wの長手方向に沿う両側縁の、三方向の部分を完全に除去して開口部20′とすることもできる。さらに、図10(c)に示すように、金属層9の輪郭部のうち、その先端縁部のみを除去して開口部20′とすることもできる。 In the case where the metal layer 9 and the end of the optical waveguide W are arranged in the same manner as described above, as shown in FIG. It is also possible to completely remove the three-direction portions on both side edges along the longitudinal direction of the waveguide W to form the opening 20 ′. Furthermore, as shown in FIG. 10 (c), it is possible to remove only the tip edge portion of the contour portion of the metal layer 9 to form the opening portion 20 '.
 あるいは、金属層9の輪郭部のうち、その先端縁部を完全に除去するのではなく、図10(d)に示すように、その両端部を残した形で除去して開口部20′とした場合にも、充分に、光導波路Wの剥がれ防止効果を得ることができる。すなわち、この開口部20′における光導波路Wの接合強度が高くなるため、開口部20′が形成されていない、その両端部においても光導波路Wの自由度が制限され、その結果、両端部においては金属層9が介在していても、光導波路Wは剥がれにくいものとなるからである。 Alternatively, the edge portion of the metal layer 9 is not completely removed at the edge portion, but as shown in FIG. Even in this case, the effect of preventing the optical waveguide W from peeling off can be sufficiently obtained. That is, since the bonding strength of the optical waveguide W at the opening 20 ′ is increased, the degree of freedom of the optical waveguide W is limited at both ends where the opening 20 ′ is not formed. This is because the optical waveguide W is difficult to peel off even when the metal layer 9 is interposed.
 同様に、図10(e)に示すように、金属層9の輪郭部のうち、光導波路Wの長手方向に沿う両側縁部を、それぞれその両端部を残した形で除去して開口部20′としてもよいし、図10(f)に示すように、光導波路Wの長手方向に沿う両側縁部の、それぞれ先端側の端部を残した形で除去して開口部20′としてもよい。 Similarly, as shown in FIG. 10E, both edge portions along the longitudinal direction of the optical waveguide W are removed from the contour portion of the metal layer 9 in such a manner that both end portions are left, and the opening 20 ′, Or as shown in FIG. 10 (f), the opening 20 ′ may be formed by removing the edge portions on both sides along the longitudinal direction of the optical waveguide W leaving the end portions on the tip side. .
 さらに、光電気混載基板10によっては、電気回路基板Eの輪郭部より光導波路Wの輪郭部が外側になる場合がある。その場合も、金属層9の所定部分を切り欠いて開口部20′を形成することにより、上記一連の例と同様、光導波路Wの端部を剥がれにくくすることができる。例えば図11(a)に示すように、電気回路基板Eの輪郭より光導波路Wの端部の輪郭部が外側になる配置で重なっている場合、光導波路Wの端部の輪郭より内側にある金属層9の輪郭部のうち、その先端縁部と、光導波路Wの長手方向に沿う両側縁の、三方向の部分を完全に除去して開口部20′とすることによって、光導波路Wの端部を剥がれにくくすることができる。なお、この例では、電気回路基板Eの先端より光導波路Wの先端が外側に配置されているが、例えは図11(b)に示すように、電気回路基板Eの先端と光導波路Wの先端が略重なっているか光導波路Wの先端の方が内側に入っている場合も、図11(a)の場合と同様、金属層9の輪郭部のうち、三方向の部分を完全に除去して開口部20′とすることができる。 Further, depending on the opto-electric hybrid board 10, the contour portion of the optical waveguide W may be outside the contour portion of the electric circuit board E. Also in that case, the end portion of the optical waveguide W can be made difficult to peel off by cutting out a predetermined portion of the metal layer 9 to form the opening 20 ', as in the above series of examples. For example, as shown in FIG. 11A, when the contour portion of the end portion of the optical waveguide W overlaps with the contour of the electric circuit board E, it is inside the contour of the end portion of the optical waveguide W. Of the contour portion of the metal layer 9, the front edge portion and the three side portions along the longitudinal direction of the optical waveguide W are completely removed to form an opening 20 ′, whereby the optical waveguide W The end can be made difficult to peel off. In this example, the tip of the optical waveguide W is disposed outside the tip of the electric circuit board E. For example, as shown in FIG. 11B, the tip of the electric circuit board E and the optical waveguide W Even in the case where the tips are substantially overlapped or the tip of the optical waveguide W is inside, as in the case of FIG. 11A, the three-direction portions are completely removed from the contour portion of the metal layer 9. Thus, the opening 20 'can be formed.
 また、図11(c)に示すように、電気回路基板Eの先端より光導波路Wの先端が外側に配置され、長手方向の両側縁は略重なっているか光導波路Wの方が内側に入っている場合も、上記図11(a)、(b)の場合と同様、金属層9の輪郭部のうち、三方向の部分を完全に除去して開口部20′とすることにより、光導波路Wの端部を剥がれにくくすることができる。 Further, as shown in FIG. 11C, the tip of the optical waveguide W is arranged outside the tip of the electric circuit board E, and both side edges in the longitudinal direction are substantially overlapped or the optical waveguide W enters the inside. Even in the case where the optical waveguide W is present, as in the case of FIGS. 11A and 11B, the optical waveguide W is obtained by completely removing the three-direction portions of the contour portion of the metal layer 9 to form the opening 20 ′. It is possible to make it difficult to peel off the end of the.
 さらに、図11(d)に示すように、金属層9のうち、その先端の2つの角部を切り欠いて開口部20′を形成し、これらの開口部20′において光導波路Wの輪郭部の一部を絶縁層1と直接接合し、金属層9の輪郭部と重なる光導波路Wの輪郭部を、電気回路基板Eの輪郭部より外側に配置してもよい。 Further, as shown in FIG. 11 (d), two corners at the tip of the metal layer 9 are cut out to form an opening 20 ', and the outline of the optical waveguide W is formed in these openings 20'. A part of the optical waveguide W may be directly joined to the insulating layer 1, and the contour part of the optical waveguide W overlapping the contour part of the metal layer 9 may be disposed outside the contour part of the electric circuit board E.
 また、図11(e)に示すように、上記と同様、金属層9のうち、その先端の2つの角部を切り欠いて開口部20′を形成し、これらの開口部20′において光導波路Wの輪郭部の一部を絶縁層1と直接接合し、絶縁層1の輪郭部と重なる光導波路Wの輪郭部を、電気回路基板Eの輪郭部より外側に配置してもよい。 Further, as shown in FIG. 11 (e), in the same manner as described above, two corners at the tip of the metal layer 9 are cut out to form openings 20 ', and optical waveguides are formed in these openings 20'. A part of the W contour may be directly joined to the insulating layer 1, and the contour of the optical waveguide W overlapping the contour of the insulating layer 1 may be disposed outside the contour of the electric circuit board E.
 なお、上記一連の開口部20′の例においても、図5(a)や図5(b)に示す例のように、複数の帯状の開口部20′を平行に並べて形成してもよい。また、小さな面積の開口部20′を、金属層9の輪郭部に沿って複数個、所定間隔で形成するようにしてもよい。 In the above-described example of the series of openings 20 ', a plurality of strip-shaped openings 20' may be formed in parallel as in the examples shown in FIGS. 5 (a) and 5 (b). Further, a plurality of openings 20 ′ having a small area may be formed along the contour portion of the metal layer 9 at a predetermined interval.
 そして、上記一連の例のように、光導波路Wの端部と金属層9とが、互いの輪郭が重なるか金属層9の輪郭より光導波路Wの端部の輪郭が外側になる配置で重なる場合、光導波路Wと重なる金属層9の平面視形状が、角のない、アールのついた形状になっていることが好ましい。そのアール形状によって、金属層9のある部分とない部分の境界における応力緩和効果が得られるからである。 Then, as in the above series of examples, the end portion of the optical waveguide W and the metal layer 9 overlap with each other such that the contours of the optical waveguide W overlap each other or the contour of the end portion of the optical waveguide W is outside the contour of the metal layer 9. In this case, it is preferable that the planar view shape of the metal layer 9 overlapping the optical waveguide W is a rounded shape without corners. This is because the rounded shape provides a stress relaxation effect at the boundary between the portion with and without the metal layer 9.
 また、本発明は、図12(a)に示すように、金属層9が設けられておらず、絶縁層1の裏面に直接光導波路Wが重なった光電気混載基板10に対しても適用することができる。すなわち、絶縁層1と光導波路Wの積層部も、樹脂同士の接合とはいえ、互いに材質が異なるため、その応力の差によって光導波路Wに反りや歪みが生じて剥がれやすくなる場合がある。そこで、両者のピール強度をより高めるために、図示のように、光導波路Wと重なる絶縁層1の裏面に、凹部22を形成し、この凹部22内に光導波路Wの一部が入り込むようにすることができる。上記凹部22の配置は、前記開口部20、20′の配置に準じて形成することができる。 The present invention is also applied to an opto-electric hybrid board 10 in which the metal layer 9 is not provided and the optical waveguide W directly overlaps the back surface of the insulating layer 1 as shown in FIG. be able to. That is, although the laminated portion of the insulating layer 1 and the optical waveguide W is also a resin-to-resin connection, the optical waveguide W may be warped or distorted and easily peeled off due to the difference in stress. Therefore, in order to further increase the peel strength of the both, as shown in the drawing, a recess 22 is formed on the back surface of the insulating layer 1 overlapping the optical waveguide W, and a part of the optical waveguide W enters the recess 22. can do. The arrangement of the recesses 22 can be formed according to the arrangement of the openings 20 and 20 '.
 この構成によれば、上記光導波路Wの一部が入り込むことによって、絶縁層1に対して投錨効果が得られるため、絶縁層1と光導波路Wの接合面が平坦な場合に比べてピール強度がより一層高くなり、さらなる光導波路Wの剥がれ防止効果を得ることができる。 According to this configuration, since a throwing effect is obtained with respect to the insulating layer 1 when a part of the optical waveguide W enters, the peel strength compared to the case where the bonding surface of the insulating layer 1 and the optical waveguide W is flat. Is further increased, and a further effect of preventing the optical waveguide W from peeling off can be obtained.
 なお、上記絶縁層1に凹部22を形成するには、例えば、図12(b)に示すように、前記の例と同様にして電気回路基板Eを形成した後、絶縁層1の裏面に対し、上記凹部22の形成予定部以外の部分を保護した状態でアルカリエッチングを行うことにより、凹部22を形成することができる。そして、図12(c)に示すように、前記の例と同様にして光導波路Wを形成した後、光素子等の実装、反射面7aの形成等を行うことにより、目的とする光電気混載基板を得ることができる。上記凹部22の深さは、前述の凹部21を形成する場合と同様の理由から、絶縁層1の厚みの5~70%に設定することが好適である。 In order to form the recess 22 in the insulating layer 1, for example, as shown in FIG. 12B, after the electric circuit board E is formed in the same manner as in the above example, the back surface of the insulating layer 1 is formed. The concave portion 22 can be formed by performing alkali etching in a state where the portion other than the portion where the concave portion 22 is to be formed is protected. Then, as shown in FIG. 12 (c), after forming the optical waveguide W in the same manner as in the above example, mounting the optical element and the like, forming the reflective surface 7a, etc. A substrate can be obtained. The depth of the concave portion 22 is preferably set to 5 to 70% of the thickness of the insulating layer 1 for the same reason as that for forming the concave portion 21 described above.
 もちろん、アルカリエッチングによって凹部22を形成するのではなく、絶縁層1の裏面に、YAGレーザやエキシマレーザを照射することによっても、所定のパターンで凹部22を形成することができる。 Of course, the recess 22 can be formed in a predetermined pattern by irradiating the back surface of the insulating layer 1 with a YAG laser or an excimer laser instead of forming the recess 22 by alkali etching.
 さらに、前記の例は、左右両側に光電気結合部が設けられており、左右対称形の構造になっているものであるが、片方のみに光電気結合部が設けられ、他方は単にコネクタ接続下になっているだけのものであっても差し支えない。その場合、光電気結合に用いられる方の光導波路Wの端部に、本発明の形状を適用することが好適である。 Further, in the above example, the photoelectric coupling portions are provided on the left and right sides, and the left and right are symmetrical structures, but the photoelectric coupling portion is provided only on one side, and the other is simply a connector connection. It doesn't matter if it's just down. In that case, it is preferable to apply the shape of the present invention to the end portion of the optical waveguide W which is used for the photoelectric coupling.
 また、上記一連の例では、光導波路Wの外形がアンダークラッド層6とオーバークラッド層8の両方で形成されたものであるが、光導波路Wの外形は、オーバークラッド層8のみで形成されたものであっても、コア7のみで形成されたものであっても差し支えない。 Further, in the above series of examples, the outer shape of the optical waveguide W is formed by both the under cladding layer 6 and the over cladding layer 8, but the outer shape of the optical waveguide W is formed only by the over cladding layer 8. It may be a thing formed only with the core 7, even if it is a thing.
 なお、上記実施の形態においては、本発明における具体的な形態について示したが、上記実施の形態は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、全て本発明の範囲内であることが企図されている。 In addition, although the specific form in this invention was shown in the said embodiment, the said embodiment is only a mere illustration and is not interpreted limitedly. Various modifications apparent to those skilled in the art are all intended to be within the scope of this invention.
 本発明は、電気回路基板部分の裏面側から光導波路が剥がれにくく、長期にわたって安心して使用することのできる優れた光電気混載基板に利用することができる。 The present invention can be used for an excellent opto-electric hybrid board that can be used safely for a long period of time because the optical waveguide is hardly peeled off from the back side of the electric circuit board portion.
 E 電気回路基板
 W 光導波路
 1 絶縁層
 2 電気配線
 9 金属層
 10 光電気混載基板
 20 開口部
E Electrical circuit board W Optical waveguide 1 Insulating layer 2 Electrical wiring 9 Metal layer 10 Opto-electric hybrid board 20 Opening

Claims (16)

  1.  絶縁層の表面に電気配線が形成された電気回路基板と、この電気回路基板の絶縁層裏面側に、金属層を介して設けられた光導波路とを備えた光電気混載基板であって、上記光導波路の少なくとも一端部が、上記電気回路基板裏面の金属層と、金属層の輪郭より光導波路端部の輪郭が内側になる配置で重なっており、上記金属層のうち、光導波路端部の輪郭部と重なる領域の少なくとも一部が除去されて開口部が形成され、その開口部内に、光導波路の一部が入り込んだ状態で光導波路が形成されていることを特徴とする光電気混載基板。 An opto-electric hybrid board comprising: an electric circuit board having electric wiring formed on a surface of an insulating layer; and an optical waveguide provided on the back side of the insulating layer of the electric circuit board via a metal layer, At least one end of the optical waveguide overlaps with the metal layer on the back surface of the electric circuit board in an arrangement in which the contour of the end of the optical waveguide is inward from the contour of the metal layer. An opto-electric hybrid board characterized in that an opening is formed by removing at least a part of a region overlapping with the contour part, and the optical waveguide is formed in a state where a part of the optical waveguide enters the opening. .
  2.  上記金属層の開口部が、光導波路端部の輪郭部に沿って、断続的に複数形成されている請求項1記載の光電気混載基板。 The opto-electric hybrid board according to claim 1, wherein a plurality of openings of the metal layer are formed intermittently along the contour of the end of the optical waveguide.
  3.  絶縁層の表面に電気配線が形成された電気回路基板と、この電気回路基板の絶縁層裏面側に、金属層を介して設けられた光導波路とを備えた光電気混載基板であって、上記光導波路の少なくとも一端部が、上記電気回路基板裏面の金属層と、互いの輪郭が重なるか金属層の輪郭より光導波路端部の輪郭が外側になる配置で重なっており、上記金属層のうち、金属層自身の輪郭部が光導波路端部と重なる領域の少なくとも一部が除去されて開口部が形成され、その開口部内に、光導波路の一部が入り込んだ状態で光導波路が形成されていることを特徴とする光電気混載基板。 An opto-electric hybrid board comprising: an electric circuit board having electric wiring formed on a surface of an insulating layer; and an optical waveguide provided on the back side of the insulating layer of the electric circuit board via a metal layer, At least one end of the optical waveguide overlaps with the metal layer on the back surface of the electric circuit board in such a manner that the outline of each other overlaps or the outline of the end of the optical waveguide is outside the outline of the metal layer. An opening is formed by removing at least a part of the region where the contour of the metal layer itself overlaps the end of the optical waveguide, and the optical waveguide is formed with a part of the optical waveguide entering the opening. An opto-electric hybrid board.
  4.  上記金属層の開口部が、金属層自身の輪郭部に沿って、断続的に複数形成されている請求項3記載の光電気混載基板。 The opto-electric hybrid board according to claim 3, wherein a plurality of openings of the metal layer are intermittently formed along the contour of the metal layer itself.
  5.  絶縁層の表面に電気配線が形成された電気回路基板と、この電気回路基板の絶縁層裏面側に直接設けられた光導波路とを備えた光電気混載基板であって、上記光導波路の少なくとも一端部が、上記電気回路基板裏面の絶縁層と、絶縁層の輪郭より光導波路端部の輪郭が内側になる配置で重なっており、上記絶縁層のうち、光導波路端部の輪郭部と重なる領域の少なくとも一部が凹部に形成され、その凹部内に、光導波路の一部が入り込んだ状態で光導波路が形成されていることを特徴とする光電気混載基板。 An opto-electric hybrid board comprising: an electric circuit board having an electrical wiring formed on a surface of an insulating layer; and an optical waveguide provided directly on the back side of the insulating layer of the electric circuit board, wherein at least one end of the optical waveguide The region overlaps with the insulating layer on the back surface of the electric circuit board in an arrangement in which the contour of the optical waveguide end portion is inward from the contour of the insulating layer, and the region of the insulating layer overlaps with the contour portion of the optical waveguide end portion. An optical / electrical hybrid substrate, wherein an optical waveguide is formed in a state in which at least a part of the optical waveguide is formed in a recess, and a part of the optical waveguide enters the recess.
  6.  上記絶縁層の凹部が、光導波路端部の輪郭部に沿って、断続的に複数形成されている請求項5記載の光電気混載基板。 6. The opto-electric hybrid board according to claim 5, wherein a plurality of recesses of the insulating layer are intermittently formed along a contour portion of an end portion of the optical waveguide.
  7.  絶縁層の表面に電気配線が形成された電気回路基板と、この電気回路基板の絶縁層裏面側に直接設けられた光導波路とを備えた光電気混載基板であって、上記光導波路の少なくとも一端部が、上記電気回路基板裏面の絶縁層と、互いの輪郭が重なるか絶縁層の輪郭より光導波路端部の輪郭が外側になる配置で重なっており、上記絶縁層のうち、絶縁層自身の輪郭部が光導波路端部と重なる領域の少なくとも一部が凹部に形成され、その凹部内に、光導波路の一部が入り込んだ状態で光導波路が形成されていることを特徴とする光電気混載基板。 An opto-electric hybrid board comprising: an electric circuit board having an electrical wiring formed on a surface of an insulating layer; and an optical waveguide provided directly on the back side of the insulating layer of the electric circuit board, wherein at least one end of the optical waveguide Are overlapped with the insulating layer on the back surface of the electric circuit board in such a manner that the outline of each other overlaps or the outline of the end of the optical waveguide is outside the outline of the insulating layer. Of the insulating layers, the insulating layer itself An opto-electric hybrid mounting characterized in that at least a part of the region where the contour part overlaps with the end part of the optical waveguide is formed in the concave part, and the optical waveguide is formed in a state where a part of the optical waveguide enters the concave part substrate.
  8.  上記絶縁層の凹部が、絶縁層自身の輪郭部に沿って、断続的に複数形成されている請求項7記載の光電気混載基板。 The opto-electric hybrid board according to claim 7, wherein a plurality of the recesses of the insulating layer are intermittently formed along the contour of the insulating layer itself.
  9.  請求項1記載の光電気混載基板の製法であって、絶縁層の表面に電気配線が形成され同じく絶縁層の裏面に金属層が形成された電気回路基板を準備する工程と、上記電気回路基板裏面側の金属層に対し光導波路を、その少なくとも一端部が、金属層の輪郭より光導波路端部の輪郭が内側になるよう配置した状態で形成する工程とを備え、上記電気回路基板を準備する工程において、上記金属層の、光導波路端部の輪郭部と重なる予定領域の少なくとも一部を除去して開口部を形成し、上記光導波路形成工程において、上記金属層の開口部内に、光導波路の一部を入り込ませた状態で光導波路を形成することを特徴とする光電気混載基板の製法。 A method for producing an opto-electric hybrid board according to claim 1, comprising the step of preparing an electric circuit board in which electric wiring is formed on the surface of the insulating layer and a metal layer is formed on the back surface of the insulating layer, and the electric circuit board. Preparing the electric circuit board with a step of forming an optical waveguide with respect to the metal layer on the back side in a state where at least one end portion thereof is disposed so that the contour of the optical waveguide end portion is inside the contour of the metal layer. Forming an opening by removing at least a part of a region of the metal layer that overlaps the contour of the end of the optical waveguide. In the optical waveguide forming step, an optical waveguide is formed in the opening of the metal layer. A method for producing an opto-electric hybrid board, wherein an optical waveguide is formed with a part of the waveguide inserted.
  10.  上記電気回路基板を準備する工程において、上記金属層の開口部を、光導波路端部の輪郭部に沿って、断続的に複数形成するようにした請求項9記載の光電気混載基板の製法。 10. The method of manufacturing an opto-electric hybrid board according to claim 9, wherein, in the step of preparing the electric circuit board, a plurality of openings of the metal layer are intermittently formed along a contour part of an end portion of the optical waveguide.
  11.  請求項3記載の光電気混載基板の製法であって、絶縁層の表面に電気配線が形成され同じく絶縁層の裏面に金属層が形成された電気回路基板を準備する工程と、上記電気回路基板裏面側の金属層に対し光導波路を、その少なくとも一端部が、互いの輪郭が重なるか金属層の輪郭より光導波路端部の輪郭が外側になるよう配置した状態で形成する工程とを備え、上記電気回路基板を準備する工程において、上記金属層の、金属層自身の輪郭部が光導波路端部と重なる予定領域の少なくとも一部を除去して開口部を形成し、上記光導波路形成工程において、上記金属層の開口部内に、光導波路の一部を入り込ませた状態で光導波路を形成することを特徴とする光電気混載基板の製法。 A method for producing an opto-electric hybrid board according to claim 3, wherein a step of preparing an electric circuit board in which an electric wiring is formed on the surface of the insulating layer and a metal layer is formed on the back surface of the insulating layer, and the electric circuit board Forming the optical waveguide with respect to the metal layer on the back side in a state where at least one end thereof is arranged such that the outline of each other overlaps or the outline of the end of the optical waveguide is outside the outline of the metal layer, In the step of preparing the electric circuit board, an opening is formed by removing at least a part of a region of the metal layer where the contour portion of the metal layer itself overlaps the end of the optical waveguide. A method for producing an opto-electric hybrid board, wherein an optical waveguide is formed in a state where a part of the optical waveguide is inserted into the opening of the metal layer.
  12.  上記電気回路基板を準備する工程において、上記金属層の開口部を、金属層自身の輪郭部に沿って、断続的に複数形成するようにした請求項11記載の光電気混載基板の製法。 12. The method of manufacturing an opto-electric hybrid board according to claim 11, wherein in the step of preparing the electric circuit board, a plurality of openings of the metal layer are intermittently formed along the contour of the metal layer itself.
  13.  請求項5記載の光電気混載基板の製法であって、絶縁層の表面に電気配線が形成された電気回路基板を準備する工程と、上記電気回路基板裏面側の絶縁層に対し光導波路を、その少なくとも一端部が、絶縁層の輪郭より光導波路端部の輪郭が内側になるよう配置した状態で形成する工程とを備え、上記電気回路基板を準備する工程において、上記絶縁層の、光導波路端部の輪郭部と重なる予定領域の少なくとも一部に凹部を形成し、上記光導波路形成工程において、上記絶縁層の凹部内に、光導波路の一部を入り込ませた状態で光導波路を形成することを特徴とする光電気混載基板の製法。 A method for producing an opto-electric hybrid board according to claim 5, wherein a step of preparing an electric circuit board in which electric wiring is formed on the surface of the insulating layer; and an optical waveguide for the insulating layer on the back side of the electric circuit board, And forming the electric circuit board in a state in which at least one end thereof is disposed in such a manner that the contour of the end portion of the optical waveguide is inward from the contour of the insulating layer. A recess is formed in at least a part of a region that overlaps the contour of the end, and in the optical waveguide forming step, the optical waveguide is formed in a state where a part of the optical waveguide is inserted into the recess of the insulating layer. A method for producing an opto-electric hybrid board.
  14.  上記絶縁層の凹部を、光導波路端部の輪郭部に沿って、断続的に複数形成するようにした請求項13記載の光電気混載基板の製法。 14. The method for producing an opto-electric hybrid board according to claim 13, wherein a plurality of recesses of the insulating layer are intermittently formed along the contour of the end of the optical waveguide.
  15.  請求項7記載の光電気混載基板の製法であって、絶縁層の表面に電気配線が形成された電気回路基板を準備する工程と、上記電気回路基板裏面側の絶縁層に対し光導波路を、その少なくとも一端部が、互いの輪郭が重なるか絶縁層の輪郭より光導波路端部の輪郭が外側になるよう配置した状態で形成する工程とを備え、上記電気回路基板を準備する工程において、上記絶縁層の、絶縁層自身の輪郭部が光導波路端部と重なる予定領域の少なくとも一部に凹部を形成し、上記光導波路形成工程において、上記絶縁層の凹部内に、光導波路の一部を入り込ませた状態で光導波路を形成することを特徴とする光電気混載基板の製法。 The method for producing an opto-electric hybrid board according to claim 7, wherein a step of preparing an electric circuit board in which electric wiring is formed on the surface of the insulating layer, and an optical waveguide with respect to the insulating layer on the back side of the electric circuit board, In the step of preparing the electric circuit board, wherein at least one end portion is formed in a state in which the contours overlap each other or the contour of the optical waveguide end portion is located outside the contour of the insulating layer, A recess is formed in at least a part of a region of the insulating layer where the contour of the insulating layer itself overlaps with the end of the optical waveguide. In the optical waveguide forming step, a part of the optical waveguide is placed in the recess of the insulating layer. A method for producing an opto-electric hybrid board, characterized in that an optical waveguide is formed in a state of being inserted.
  16.  上記絶縁層の凹部を、絶縁層自身の輪郭部に沿って、断続的に複数形成するようにした請求項15記載の光電気混載基板の製法。 The method for producing an opto-electric hybrid board according to claim 15, wherein a plurality of concave portions of the insulating layer are intermittently formed along a contour portion of the insulating layer itself.
PCT/JP2015/082965 2014-11-25 2015-11-25 Opto-electric hybrid substrate and method for producing same WO2016084815A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177013012A KR102552544B1 (en) 2014-11-25 2015-11-25 Opto-electric hybrid substrate and method for producing same
US15/527,502 US10295769B2 (en) 2014-11-25 2015-11-25 Opto-electric hybrid board and method of manufacturing same
CN201580062016.8A CN107209324B (en) 2014-11-25 2015-11-25 Photoelectric hybrid substrate and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014237820 2014-11-25
JP2014-237820 2014-11-25
JP2015-221084 2015-11-11
JP2015221084A JP6653857B2 (en) 2014-11-25 2015-11-11 Opto-electric hybrid board and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2016084815A1 true WO2016084815A1 (en) 2016-06-02

Family

ID=56074367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082965 WO2016084815A1 (en) 2014-11-25 2015-11-25 Opto-electric hybrid substrate and method for producing same

Country Status (1)

Country Link
WO (1) WO2016084815A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190186A1 (en) * 2022-03-31 2023-10-05 京セラ株式会社 Optical circuit board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154044A (en) * 1999-11-30 2001-06-08 Kyocera Corp Optical waveguide substrate
JP2002231872A (en) * 2001-02-02 2002-08-16 Mitsui High Tec Inc Lead frame
JP2010266598A (en) * 2009-05-13 2010-11-25 Hitachi Cable Ltd Optical wiring member
JP2011114133A (en) * 2009-11-26 2011-06-09 Sanyo Electric Co Ltd Semiconductor device, and method of manufacturing the same
JP2011134853A (en) * 2009-12-24 2011-07-07 Renesas Electronics Corp Pattern forming method, and semiconductor device manufacturing method
WO2012108011A1 (en) * 2011-02-09 2012-08-16 三菱電機株式会社 Power semiconductor module
JP2013015736A (en) * 2011-07-05 2013-01-24 Hitachi Chem Co Ltd Flexible optical waveguide and flexible optoelectrical composite substrate
JP2013195532A (en) * 2012-03-16 2013-09-30 Nitto Denko Corp Photoelectric consolidated substrate and method for manufacturing the same
JP2014095782A (en) * 2012-11-08 2014-05-22 Nitto Denko Corp Photoelectric hybrid substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154044A (en) * 1999-11-30 2001-06-08 Kyocera Corp Optical waveguide substrate
JP2002231872A (en) * 2001-02-02 2002-08-16 Mitsui High Tec Inc Lead frame
JP2010266598A (en) * 2009-05-13 2010-11-25 Hitachi Cable Ltd Optical wiring member
JP2011114133A (en) * 2009-11-26 2011-06-09 Sanyo Electric Co Ltd Semiconductor device, and method of manufacturing the same
JP2011134853A (en) * 2009-12-24 2011-07-07 Renesas Electronics Corp Pattern forming method, and semiconductor device manufacturing method
WO2012108011A1 (en) * 2011-02-09 2012-08-16 三菱電機株式会社 Power semiconductor module
JP2013015736A (en) * 2011-07-05 2013-01-24 Hitachi Chem Co Ltd Flexible optical waveguide and flexible optoelectrical composite substrate
JP2013195532A (en) * 2012-03-16 2013-09-30 Nitto Denko Corp Photoelectric consolidated substrate and method for manufacturing the same
JP2014095782A (en) * 2012-11-08 2014-05-22 Nitto Denko Corp Photoelectric hybrid substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190186A1 (en) * 2022-03-31 2023-10-05 京セラ株式会社 Optical circuit board

Similar Documents

Publication Publication Date Title
JP6202662B2 (en) Opto-electric hybrid board and manufacturing method thereof
CN107076925B (en) Opto-electric hybrid board and method for manufacturing the same
JP5840989B2 (en) Opto-electric hybrid board and manufacturing method thereof
JP5877749B2 (en) Manufacturing method of opto-electric hybrid board
JP6712742B2 (en) Opto-electric hybrid board and its manufacturing method
US9632246B2 (en) Opto-electric hybrid board
WO2016063752A1 (en) Optical/electric hybrid substrate, and production method therefor
JP6653857B2 (en) Opto-electric hybrid board and its manufacturing method
WO2016084815A1 (en) Opto-electric hybrid substrate and method for producing same
JP6460516B2 (en) Opto-electric hybrid board
TW201525553A (en) Photoelectric hybrid substrate
WO2016047447A1 (en) Opto-electric hybrid board and manufacturing method for same
JP2010060821A (en) Flexible optical and electrical wiring and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177013012

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15527502

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863608

Country of ref document: EP

Kind code of ref document: A1