WO2016084771A1 - Motor drive device for electric automobile - Google Patents

Motor drive device for electric automobile Download PDF

Info

Publication number
WO2016084771A1
WO2016084771A1 PCT/JP2015/082855 JP2015082855W WO2016084771A1 WO 2016084771 A1 WO2016084771 A1 WO 2016084771A1 JP 2015082855 W JP2015082855 W JP 2015082855W WO 2016084771 A1 WO2016084771 A1 WO 2016084771A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
motor drive
drive device
constant
external connection
Prior art date
Application number
PCT/JP2015/082855
Other languages
French (fr)
Japanese (ja)
Inventor
明良 西川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016084771A1 publication Critical patent/WO2016084771A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a motor drive device for an electric vehicle that controls driving of the motor in an electric vehicle, such as a vehicle that is driven and driven only by an electric motor, a hybrid vehicle that uses an engine and a motor, and a fuel cell vehicle.
  • an electric angle necessary for control is calculated using a rotation angle sensor that acquires a rotation angle of the synchronous motor.
  • the origin in the mechanical phase determined by the magnet position of the motor (electrical angle origin) and the measurement reference point of the rotation angle sensor (sensor origin) ) Must be the same as the offset amount. Until now, the offset amount has been written in the motor drive program.
  • JP-A-9-229168 Japanese Patent No. 2753225 JP-A-5-52892 JP 2008-49731 A
  • a synchronous motor in which a coil is arranged in a stator and a magnet is arranged in a rotor will be described with a rotation angle sensor attached to a motor output shaft.
  • this synchronous motor is employed as a motor for running an electric vehicle and the motor 2 is driven using the rotation angle sensor 4 as shown in FIG. 7, the measurement reference point (sensor origin P1) of the rotation angle sensor 4;
  • the motor 2 cannot be correctly controlled unless the origin (electrical angle origin P0) on the motor control determined from the positional relationship between the magnet position of the rotor and the coil position of the stator matches.
  • the first is a method of adding an angle formed by the sensor origin P1 and the electrical angle origin P0 on the control after assembling the motor in an arbitrary positional relationship.
  • a specific method is shown. If the three positional relationships of the rotation angle sensor, the stator, and the rotor are arbitrarily set, there is an angle ⁇ o between the sensor origin P1 and the electrical angle origin P0.
  • the rotation angle sensor 4 detects ⁇ between the sensor origin P1 and the detection point P2, and since the angle necessary for control is the angle from the electrical angle origin P0 to the detection point P2, ⁇ + ⁇ o is used for control. It will be good.
  • ⁇ o ⁇ ⁇ ⁇ obtained by experiment is stored in the program as an offset amount, and a necessary angle is obtained by adding ⁇ + ⁇ o in addition to ⁇ measured sequentially at the time of control.
  • the second method it is desirable to adopt the second method, but this method is practically difficult if this method cannot be adopted due to the internal structure or if the accuracy required for jigs and assembly is high. There are many cases. In that case, it is necessary to select the first method and reflect the offset amount ⁇ o in the program of the motor drive device. However, the offset amount ⁇ o has a different value depending on the motor individual, and it is necessary to adapt the offset amount ⁇ o suitable for each motor individual in the program.
  • Synchronous motors have been widely used not only for electric vehicles but also for industrial purposes (for large machines). Similarly, there is a deviation between the two origins P1 and P0, and control is performed using the correct offset amount ⁇ o.
  • an interface is generally attached to the motor drive device for industrial use, and the offset amount ⁇ o is input using the interface, and a nonvolatile storage area ( Often stored in EEPROM).
  • the problem with this method is that there is a risk of accidentally changing unnecessary parts in the program, or after the program is stored in the CPU of the motor drive device, the motor and the motor drive device are linked. It is to become.
  • the motor and the motor drive device are linked, it is necessary to change the program stored at the time of manufacturing the electric vehicle at a repair shop when it is necessary to replace the motor during repair in the market.
  • the procedure in this case is complicated.
  • mistakes in program changes may cause the control device to run out of control, possibly causing destruction of peripheral elements and motors, and are difficult to adopt.
  • the motor drive device includes a nonvolatile storage device (for example, EEPROM) that stores parameters necessary for control
  • EEPROM nonvolatile storage device
  • a general-purpose external connection device is connected to the motor drive device, communicates with the CPU of the external connection device and the motor drive device, and the CPU stores predetermined parameters in the EEPROM in response to a command from the external connection device. is there.
  • Patent Document 1 proposes a method for specifying a necessary setting pattern through a communication interface in order to easily use a plurality of setting patterns, for example, settings and adjustments for each vehicle type, for a control device of an in-vehicle device.
  • a possible control device is proposed.
  • Patent Document 2 discloses a mechanism that allows a program in the control device to be changed using a recording medium such as a compact disc, and allows the control program in the control device to be changed from the outside.
  • an interface for rewriting the setting in the control device or the program is also widespread, and as a representative one, it is possible to easily diagnose a failure by connecting to a vehicle communication network as in Patent Document 3.
  • Patent Document 4 the increase or decrease of the fuel injection amount is adjusted by using a failure diagnosis tester corresponding to CAN (Control Area Network) communication and its equivalent, and hydraulic pressure, oil
  • a method for collecting the output of the temperature sensor has been proposed.
  • each of the above-mentioned prior arts all wants to be updated due to a defect in the program, or to change the ride quality later, i.e., to change the response from the vehicle during driving later (the fuel injection amount is reduced).
  • Technology that makes it unnecessary to match the motor and the motor drive device in consideration of individual differences in the motor. Has not yet been proposed.
  • constants necessary for motor control for example, the offset amount and the direction of rotation
  • each of the conventional technologies uses an indefinite value at the time of manufacturing the motor and the motor control device. It is not a technology that is manufactured on the premise that additional writing (rewriting) is performed, but is a technology that updates or customizes the motor drive device that is manufactured so that it can run when there is no particular problem as described above.
  • the object of the present invention is to obstruct the manufacture of an electric vehicle by eliminating the need for matching between the motor and the motor drive program at the time of replacement of the motor drive device or motor replacement at the time of electric vehicle manufacture or repair in the market. It is an object of the present invention to provide a motor drive device for an electric vehicle that can eliminate or simplify the program content change according to the individual difference of the motor, and can avoid unexpected constant changes and ensure safety.
  • An electric vehicle motor drive device is a motor drive device 3 that drives a motor 2 that is a travel drive source of an electric vehicle 1,
  • a predetermined constant that is specific to the individual motor 2 is set to a numerical value transmitted from the external connection device 17 via the external communication interface 18.
  • Constant setting processing unit 19 Note that the above “constant” means a number including one of two values such as a flag.
  • a predetermined constant that is specific to the individual motor 2 is set to a numerical value transmitted from the external connection device 17 via the external communication interface 18.
  • a constant setting processing unit 19 is provided.
  • the electric vehicle 1 itself is not provided with a function unit for inputting the change of the constant
  • the external connection device 17 is connected and the numerical value corresponding to the constant is input. Therefore, no change is required for each motor 2. Unexpected changes to constants are avoided, and safety can be ensured.
  • the motor 2 includes a rotation angle sensor 4, a sensor origin P 1 that is a measurement reference of the rotation angle sensor 4, and an electrical angle origin that is a control reference point of the motor 2 that is necessary for the control of the motor 2.
  • the constant setting processing unit 19 may include at least the offset amount ⁇ o as a numerical value transmitted and set from the external connection device 17.
  • a typical constant causing an individual difference is the offset amount ⁇ o between the sensor origin P1 and the electrical angle origin P0.
  • This offset amount ⁇ o becomes a known value by measuring it at the time of manufacturing the motor 2 and recording it on the motor itself by imprinting or the like.
  • the combination of the motor 2 and the motor drive device 3 When the combination of the motor 2 and the motor drive device 3 is changed due to a failure of the motor 2 or a failure of the motor drive device 3, the known offset amount ⁇ o is input from the external connection device 17 to the motor drive device 3.
  • the combination of the motor 2 and the motor drive device 3 can be changed without causing a problem with the offset amount ⁇ o between the sensor origin P1 and the electrical angle origin P0 that are individual differences of the motor 2.
  • the storage unit 14 for setting a numerical value by the constant setting processing unit 19 may be a nonvolatile storage device 14.
  • a storage constant reading unit 20 for reading may be provided.
  • the reading speed of information from the non-volatile storage device 14 is generally relatively slow, and there are cases where motor control cannot be performed with high accuracy by reading when controlling the motor 2 that rotates at high speed.
  • the motor drive device 3 when the motor drive device 3 is powered on, it can be controlled at high speed by storing it in an appropriate storage area 16 used for motor control, such as a register in the CPU constituting the motor drive device 3. In this way, it is possible to achieve both the avoidance of the unexpected disappearance of the offset amount ⁇ o and the highly accurate control by increasing the reading speed.
  • the motor 2 alone can set the positive direction of the rotation direction to any direction, and the positive direction is determined by the mounting direction to the vehicle.
  • the constant setting processing unit 19 may include a value specifying the positive direction of the rotation direction of the motor 2 as a numerical value transmitted and set from the external connection device 17. Depending on the type of the motor 2, there is one that can set the positive direction of rotation in any direction.
  • the in-wheel motor driving device 7 having the same configuration is connected to the left and right wheels 9. May be used with their directions reversed.
  • the constant setting processing unit 19 includes a value specifying the positive direction of the rotation direction of the motor 2 as a numerical value transmitted and set from the external connection device 17, the configuration is the same. Even if the motor 2 is installed in an arbitrary direction depending on the installation location, the motor 2 can be properly recognized and controlled after the motor is assembled to the vehicle.
  • FIG. 3 is a block diagram in which the same block diagram is re-expressed by paying attention to a portion used during constant rewriting processing. It is the block diagram which re-expressed the block diagram paying attention to the part used at the time of motor drive.
  • (A) is a flowchart showing processing of the external connection device at the time of rewriting to the motor driving device
  • (B) is a flowchart showing processing of the motor driving device at the time of rewriting.
  • It is a flowchart which shows the process at the time of the motor drive in the motor drive device.
  • It is a top view which shows the conceptual structure of an in-wheel motor vehicle. It is explanatory drawing which shows the relationship between a motor, the origin of a rotation angle sensor, etc.
  • an electric vehicle 1 includes a motor 2 for driving driving and a motor driving device 3 that controls the motor 2, and the motor 2 includes a rotation angle sensor 4.
  • the rotation angle sensor 4 is a resolver, an encoder, or a magnetic sensor.
  • the motor 2 is, for example, a synchronous motor that has a permanent magnet and is driven by a three-phase alternating current.
  • FIG. 1 is a figure explaining paying attention to one motor.
  • the motor 2 constitutes an in-wheel motor drive device 7 together with the wheel bearing 5 and the speed reducer 6, and is individually mounted on the wheel 9 that is the drive wheel of the electric vehicle 1.
  • the electric vehicle 1 in the figure is an example of a two-wheel drive rear wheel drive vehicle in which the rear wheel 9 is a driving wheel and the front wheel 8 is a driven wheel.
  • the motor driving device 3 is provided for each motor 2 when the electric vehicle 1 is equipped with a plurality of motors 2 as in the example of FIG.
  • the motor driving device 3 may be called an “inverter device” because it includes an inverter.
  • An ECU (electronic control unit) 10 that performs overall control and cooperative control of the entire electric vehicle is provided as an upper control unit of the motor drive device 3.
  • the electric vehicle 1 may be a four-wheel drive in which the in-wheel motor drive device 7 is mounted on the front and rear wheels 8 and 9, or a front wheel drive in which the in-wheel motor drive device 7 is mounted only on the front wheel 8.
  • the motor drive device 3 may be configured to have the function of the ECU 10 without providing the independent ECU 10.
  • the motor drive device 3 performs a main control calculation with a rotation angle calculation unit 11 that calculates the rotation angle ⁇ from the detection signal S of the rotation angle sensor 4, and in many cases the CPU performs a control calculation corresponding thereto.
  • the motor drive unit 13 is a power circuit unit corresponding to an inverter including an FET, IGBT, or the like that controls the current amount, an EEPROM that stores parameters and error codes necessary for control, and the like.
  • a nonvolatile storage device 14 is provided.
  • the nonvolatile storage device 14 is a “storage device” in the present invention.
  • the control calculation unit 12 includes a motor drive calculation unit 15 configured by a program for performing calculation necessary for current control for motor drive such as vector control in accordance with the command torque T supplied from the torque command unit 21. Is provided.
  • the torque command unit 21 generates the command torque T to each motor 2 from the operation amount of an accelerator operation unit (not shown) such as an accelerator pedal and a brake operation unit (not shown) such as a brake pedal. For example, it is provided in the ECU 10 (FIG. 6) or the like serving as a host control unit.
  • the torque command unit 21 may be the accelerator operation unit itself.
  • the motor drive calculation unit 15 specifically has a predetermined conversion function stored in a LUT (Look Up Table) implemented by software or hardware, or a software library (Library), or an equivalent thereof.
  • a PWM (pulse width modulation) signal is output to the motor drive unit 13 in response to an input of the command torque T given from the torque command unit 21 using hardware or the like (hereinafter referred to as “realization model”). And a software function on a hardware circuit or a processor (not shown).
  • control calculation unit 12 of FIG. 1 includes a general-purpose volatile storage area 16 for storing various calculation results and changing parameters, and is represented by a module that communicates with the external connection device 17.
  • the external communication interface 18 is provided. This communication form corresponds to a simple communication method such as serial communication or parallel communication, CAN (Control Area Network), or in-vehicle LAN (Local Area Network).
  • the external connection device 17 is called a failure diagnosis device or diagnosis system composed of, for example, a personal computer or a tablet-type portable information terminal, and has a minimum data transmission function and a logging function necessary for communication. There are those possessed and those capable of operating to update the internal constant, and in this embodiment, a popular product having such a function is used.
  • the volatile storage area 16 described above corresponds to, for example, a register of a CPU that constitutes the motor driving device 3.
  • the role sharing with the non-volatile storage device 14 provided outside the CPU depends on the content determination timing and the change frequency.
  • the CPU has a non-rewritable non-volatile storage area (not shown) for storing an execution program represented by a program memory. And information that does not need to be changed, such as constants that do not need to be changed.
  • the volatile storage area 16 stores a numerical value that is constantly changed, represented by a calculation result and the number of repetitions, and a numerical value that is not calculated when the motor driving device 3 is activated. Further, since the power supply of the motor driving device 3 is turned off, the motor drive device 3 is refreshed and saved in the volatile storage area 16 even if it is updated to the initial value.
  • the nonvolatile storage device 14 stores numerical values that should be retained even when the power is turned off and that need to be changed. Specifically, this includes an error code, an accumulated travel distance, a control constant optimized for the mounted vehicle, information on the positive direction of the operation direction that varies depending on the mounted vehicle, and the like.
  • the origin position of the motor 2 cannot be calculated by a program, needs to be changed when the vehicle is assembled or repaired, and should be retained even when the power is turned off. Save to device 14. If there is an area in the CPU that has non-volatile characteristics and can be easily rewritten (the contents can be changed by a program operation), there is no need to have a non-volatile storage area outside the CPU. May be a region provided in the CPU and having the above non-volatile characteristics and easy to rewrite.
  • This motor drive device 3 is provided with the following constant setting processing unit 19 and storage constant reading unit 20 in addition to the above basic configuration.
  • the constant setting processing unit 19 and the stored constant reading unit 20 are constituted by a part of the program that constitutes the control arithmetic unit 12.
  • the constant setting processing unit 19 sends, from the external connection device 17 to the external communication, a predetermined constant that is a value specific to the individual motor 2 among the constants stored in the nonvolatile storage device 14. It is a functional unit that sets a numerical value transmitted through the interface 18. Specifically, the constant setting processing unit 19 receives a numerical value transmitted via the external communication interface 18 using a predetermined data transfer function stored in a software library or hardware equivalent thereto. Thus, it is configured by a hardware circuit or a software function on a processor (not shown) that can be stored at a predetermined address of the nonvolatile memory device 14.
  • the storage constant reading unit 20 is necessary for the control of the motor origin 2 and the sensor origin P1 as a measurement reference of the rotation angle sensor 4 as constants transmitted from the external connection device 17 and set in the nonvolatile storage device 14.
  • An offset amount ⁇ o with respect to the electrical angle origin P0 that is the control reference point of the motor 2 and a flag that is a value of 1 or 0 that is a numerical value indicating the positive driving direction of the motor 2 are set. More specifically, the storage constant reading unit 20 performs the processing of the flowchart shown in FIG.
  • the storage constant reading unit 20 uses the offset amount ⁇ o stored in the nonvolatile storage device 14 as a storage area used for motor control in response to power-on of the motor driving device 3.
  • This is a functional unit that reads data into the storage area 16, and is configured as a part of an instruction that reads each constant when the power is turned on.
  • the storage constant reading unit 20 calculates the offset amount ⁇ o between the sensor origin P1 and the electrical angle origin P0 and the flag using the above-described implementation model, and stores them in a software library.
  • a hardware circuit or a processor (non-determined) that can store the offset amount ⁇ o in the spontaneous memory area 16 when the motor driving device 3 is turned on using a predetermined data transfer function or hardware equivalent thereto. It is composed of the above software functions. More specifically, the storage constant reading unit 20 performs the processing of the flowchart shown in FIG.
  • FIG. 2 is a diagram re-expressed focusing on the portion that functions at this time in FIG. Further, the flow of processing of the external connection device 17 at this time is shown in FIG. 4A, and the flow of the motor driving device 3 is shown in FIG. 4B.
  • the offset amount ⁇ o determined by the individual difference of the motor 2 is calculated when the motor is manufactured, and is specified by, for example, engraving or recorded by a data sheet.
  • An operator a vehicle assembly worker or a vehicle repair shop worker who assembles the motor 2 in the vehicle connects the external connection device 17 to the motor drive device 3 to perform communication.
  • the external connection device 17 communicates with the constant setting processing unit 19 and the like of the control calculation unit 12 in the motor driving device 3 via the external communication interface 18.
  • a predetermined communication procedure for example, exchange of a pass code, communication according to a certain format, etc.
  • the unit 12 stops the arithmetic processing, does not drive the motor 2, and makes a transition to a maintenance-dedicated state generally called a maintenance mode.
  • the external connection device 17 requests change permission (step Q2) and waits for change permission (step Q3).
  • the motor drive device 3 receives the change permission request (step R2), it determines whether or not the communication is appropriate (step R3), and transmits the change permission if the communication is appropriate (step R4).
  • the external connection device 17 is used to transmit the offset amount ⁇ o to the control calculation unit 12 (steps Q4 to Q6). More specifically, the offset amount ⁇ o is selected from the changeable items (step Q4), the offset amount ⁇ o is determined (step Q5), and the determined offset amount ⁇ o is transmitted (Q6).
  • the control calculation unit 12 Upon receiving the offset amount ⁇ o (step R5), the control calculation unit 12 stores the offset amount ⁇ o in the volatile storage area 16 or converts it into a numerical format suitable for storage in the nonvolatile storage device 14 or the like. After the processing, it is stored in the designated address of the nonvolatile storage device 14 (step R6). The operator disconnects communication between the external connection device 17 and the motor 2 and ends the work. For simplification of description, the motor drive device 3 will be described as being once turned off.
  • FIG. 3 shows a diagram re-expressed by paying attention to the portion that functions during normal running in FIG. 1, and FIG. 5 shows the flow of the motor drive device 3.
  • the motor drive device 3 When the motor drive device 3 is turned on, the activation is confirmed (step S1), and then the program stored in the program memory is started. While the program is initializing various variables (step S2), the reading of the offset amount ⁇ o is defined, and the offset amount ⁇ o is read from the nonvolatile storage device 14 (step S3). The read offset amount ⁇ o is stored in the volatile storage area 16 and used for subsequent control.
  • step S4 motor driving is started (step S4).
  • the rotation angle sensor 4 outputs a detection signal S in the form of an electrical signal or communication data indicating the absolute angle of the motor 2 and the displacement from the initial position.
  • the rotation angle calculation unit 11 calculates a physically meaningful angle signal ⁇ . This processing includes, for example, reading by comparing a plurality of analog signals, reading an absolute angle converted to an analog voltage, converting serial data obtained by communication into a numerical value, and the like.
  • the detection signal S is an angle signal ⁇ that can be used as it is, the rotation angle calculation unit 11 can be omitted.
  • the rotation angle ⁇ may be temporarily stored in the volatile storage area 16.
  • the control calculation unit 12 adds the offset amount ⁇ o stored in the volatile storage area 16 to the rotation angle ⁇ obtained from the rotation angle calculation unit 11 in step S5 (whether or not to add depends on the reference direction and is set) It is subtracted depending on the direction), and is transmitted as an angle ⁇ + ⁇ o required for control (step S6) to the motor drive calculation unit 15.
  • the motor drive calculation unit 15 determines a specific operation of the motor drive unit 13 based on the angle ⁇ + ⁇ o and the command torque T that determines the amount of current to be driven, and generates a command to the motor drive unit 13 (step S7). . With the above flow, the motor 2 is driven by a current.
  • This embodiment has the following advantages or effects. First, it will be easier to repair in the market. As described above, when a control method that requires an offset amount is adopted, even if either the motor 2 or the motor drive device 3 fails and needs to be replaced, the offset can be obtained by using the external connection device 17. This is because the amount ⁇ o can be changed. Next, it is not necessary to pay attention to the combination and tying of the motor 2 and the motor driving device 3. This is because any combination of several options of the motor 2 and the motor driving device 3 can be adopted as long as the power line, the rotation angle sensor, and the control method are shared. In addition, since the offset amount ⁇ o, which is an individual difference that may cause a problem in controlling the motor 2, can be easily stored in the motor driving device 3, it is necessary to pay attention to the association between the motor 2 and the motor driving device 3. Disappear.
  • the positive direction of the rotation direction of the motor 2 can be specified in this embodiment.
  • the motor 2 and the motor driving device 3 are generalized, and the two are mounted on a general-purpose vehicle body, for example, the direction in which the vehicle should be rotated to move forward changes depending on the mounting direction of the motor 2.
  • the direction in which the vehicle should be rotated to move forward changes depending on the mounting direction of the motor 2.
  • the conventional techniques for updating the constant using the external connection device 17 are all for updating due to a problem in the program, or for changing the ride quality later (increasing or decreasing the fuel injection amount), etc. It is premised on updating and customization that can be applied to all vehicles of that vehicle type.
  • constants necessary for controlling the motor 2 here, the offset amount ⁇ o and the direction of rotation
  • the motor 2 and the motor control device 3 were manufactured. At the time, it is possible to manufacture on the assumption that an indefinite numerical value is additionally written (rewritten) from the outside.

Abstract

A motor drive device (3) for driving a motor (2) as a travel driving source for an electric automobile (1), wherein matching of the motor and a motor drive program during replacement of the motor drive device or replacement of the motor is made unnecessary, and it is thereby possible to avoid unexpected changes in constants, to ensure safety, and to facilitate, or eliminate the need for, changing of program content in accordance with differences between individual motors, which is a hindrance in electric automobile manufacturing. This motor drive device (3) has a storage unit (14) for storing constants used to control the motor (2), an external communication interface (18) connectable to and removable from an external connection device (17), and a constant setting processing unit (19) for setting a prescribed constant as a value specific to the individual motor (2) from the external connection device (17) from among the constants stored in the storage unit (14). The abovementioned constant is an offset amount θo between a sensor reference point P1 and an electrical angle reference point P0 of a rotation angle sensor (4), for example.

Description

電気自動車のモータ駆動装置Electric vehicle motor drive device 関連出願Related applications
 本出願は、2014年11月25日出願の特願2014-237320の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2014-237320 filed on Nov. 25, 2014, and is incorporated herein by reference in its entirety.
 この発明は、電動のモータのみで走行駆動する車両や、エンジンとモータを併用したハイブリッド車、燃料電池車等の、電気自動車におけるモータの駆動を制御する電気自動車のモータ駆動装置に関する。 The present invention relates to a motor drive device for an electric vehicle that controls driving of the motor in an electric vehicle, such as a vehicle that is driven and driven only by an electric motor, a hybrid vehicle that uses an engine and a motor, and a fuel cell vehicle.
 電気自動車において、走行駆動にモータを用いる場合、特に同期モータを用いる場合、同期モータの回転角を取得する回転角センサを用いて、制御に必要な電気角を算出している。ここで、回転角センサの出力する角度を電気角に変換する際には、モータの磁石位置により決まる機械的な位相における原点(電気角原点)と、回転角センサの測定の基準点(センサ原点)を一致させるためのオフセット量が適正である必要がある。これまでは、オフセット量はモータ駆動装置のプログラムに書き込まれている。 In an electric vehicle, when a motor is used for driving, particularly when a synchronous motor is used, an electric angle necessary for control is calculated using a rotation angle sensor that acquires a rotation angle of the synchronous motor. Here, when the angle output from the rotation angle sensor is converted to an electrical angle, the origin in the mechanical phase determined by the magnet position of the motor (electrical angle origin) and the measurement reference point of the rotation angle sensor (sensor origin) ) Must be the same as the offset amount. Until now, the offset amount has been written in the motor drive program.
特開平9-229168号公報JP-A-9-229168 特許第2753225号公報Japanese Patent No. 2753225 特開平5-52892号公報JP-A-5-52892 特開2008-49731号公報JP 2008-49731 A
 上記のように、従来は、回転角センサの測定の基準点を一致させるためのオフセット量がモータ駆動装置のプログラムに書き込まれているため、プログラムとモータ間に紐付すなわち関連付けが存在しており、そのプログラムが書き込まれたモータ駆動装置とモータの組み合わせを、容易に変更する方法がなかった。これにつき、具体的に説明する。 As described above, conventionally, since the offset amount for matching the reference point of the measurement of the rotation angle sensor is written in the program of the motor drive device, there is an association or association between the program and the motor, There was no method for easily changing the combination of the motor driving device and the motor in which the program was written. This will be specifically described.
 (走行用のモータにおける回転角センサの役割)
 電気自動車の走行用のモータには、種々のモータを使用可能であるが、性能面を考慮し永久磁石を用いた同期モータを用いるのが一般的である。また、このモータを駆動する際、回転角センサを用いずに駆動する方法も存在するが、多くの場合はモータの出力軸か、近傍にある増速・減速された後の回転軸に回転角センサを取り付け、モータ内のコイルと磁石の位置関係を取得し、そこから最適な電流量を決定する方法を用いるのが一般的である。
(Role of the rotation angle sensor in the motor for traveling)
Various motors can be used as a motor for driving an electric vehicle, but a synchronous motor using a permanent magnet is generally used in consideration of performance. In addition, when driving this motor, there is a method of driving without using the rotation angle sensor, but in many cases, the rotation angle is applied to the output shaft of the motor or the rotation shaft after acceleration / deceleration in the vicinity. In general, a method is used in which a sensor is attached, the positional relationship between a coil and a magnet in the motor is acquired, and an optimum current amount is determined therefrom.
 説明の簡単化のために、ステータにコイルを配置し、ロータに磁石を配置した同期モータについて、回転角センサをモータ出力軸に取り付けた場合で説明する。この同期モータを電気自動車の走行用のモータとして採用し、図7のように回転角センサ4を用いてモータ2を駆動する場合、回転角センサ4の測定の基準点(センサ原点P1)と、ロータの磁石位置とステータのコイル位置の位置関係から定まる、モータ制御上の原点(電気角原点P0)が一致していなければ、このモータ2を正しく制御することができない。 For simplification of explanation, a synchronous motor in which a coil is arranged in a stator and a magnet is arranged in a rotor will be described with a rotation angle sensor attached to a motor output shaft. When this synchronous motor is employed as a motor for running an electric vehicle and the motor 2 is driven using the rotation angle sensor 4 as shown in FIG. 7, the measurement reference point (sensor origin P1) of the rotation angle sensor 4; The motor 2 cannot be correctly controlled unless the origin (electrical angle origin P0) on the motor control determined from the positional relationship between the magnet position of the rotor and the coil position of the stator matches.
 回転角センサの原点P1とモータ制御上の原点P0を一致させて、この問題を解決する方法は2つ存在する。1つ目は、任意の位置関係でモータを組み付けた後に、制御上でセンサ原点P1と電気角原点P0の成す角を加える方法である。具体的な方法を示す。回転角センサとステータ、ロータの3つの位置関係を任意に置くと、センサ原点P1と電気角原点P0の間はθo という角度を持つ。回転角センサ4はセンサ原点P1から検出点P2の間のθを検出するものであり、制御上必要な角度は、電気角原点P0から検出点P2までの角度であるため、θ+θo を制御に用いればよいことになる。そこで、実験により求めたθo をオフセット量としてプログラム内に保存し、制御時に逐次測定したθに加えてθ+θo とすることにより、必要な角度を得る方法である。2つ目は、2つの原点P1,P0をずれ無くモータを組み付ける方法である。この方法であれば、上記のオフセット量θoを考慮する必要がない。具体的には、回転角センサとステータ、ロータの3つの位置関係が変化しないように固定する治具を用意し、θo =0となるように回転角センサ4を取り付ける。 There are two methods for solving this problem by matching the origin P1 of the rotation angle sensor and the origin P0 on the motor control. The first is a method of adding an angle formed by the sensor origin P1 and the electrical angle origin P0 on the control after assembling the motor in an arbitrary positional relationship. A specific method is shown. If the three positional relationships of the rotation angle sensor, the stator, and the rotor are arbitrarily set, there is an angle θo between the sensor origin P1 and the electrical angle origin P0. The rotation angle sensor 4 detects θ between the sensor origin P1 and the detection point P2, and since the angle necessary for control is the angle from the electrical angle origin P0 to the detection point P2, θ + θo is used for control. It will be good. Therefore, θo そ こ で obtained by experiment is stored in the program as an offset amount, and a necessary angle is obtained by adding θ + θo in addition to θ measured sequentially at the time of control. The second is a method of assembling the motor without shifting the two origins P1, P0. With this method, it is not necessary to consider the offset amount θo. Specifically, a jig for fixing the rotation angle sensor, the stator, and the rotor so that the positional relationship between them does not change is prepared, and the rotation angle sensor 4 is attached so that θo0 = 0.
 理想的には、2つ目の方法を採用することが望ましいが、内部構造によりこの方法が採れない場合や、治具や組み立てに必要な精度が高くてこの方法の採用が事実上困難となる場合も多い。その場合は、1つ目の方法を選択し、オフセット量θo をモータ駆動装置のプログラム内に反映する必要がある。しかし、オフセット量θo はモータ個体により異なる値であり、そのモータ個体一つ一つに適したオフセット量θo をプログラム内に適応する必要がある。 Ideally, it is desirable to adopt the second method, but this method is practically difficult if this method cannot be adopted due to the internal structure or if the accuracy required for jigs and assembly is high. There are many cases. In that case, it is necessary to select the first method and reflect the offset amount θo in the program of the motor drive device. However, the offset amount θo has a different value depending on the motor individual, and it is necessary to adapt the offset amount θo suitable for each motor individual in the program.
 (モータ駆動装置のプログラムへ反映する際の問題点)
 同期モータは電気自動車だけでなく、産業用(大型機械用)として多く用いられてきた。そこでも同様に、上記の2つの原点P1,P0のずれが生じ、正しいオフセット量θo を用いて制御を行っている。この時のオフセット量θoの適応方法は、産業用においてはモータ駆動装置にインターフェイスが取り付けられているのが一般的であり、そのインターフェイスを用いてオフセット量θoを入力し、不揮発性の記憶領域(EEPROM等)に保存することが多い。
(Problems when reflecting to the motor drive program)
Synchronous motors have been widely used not only for electric vehicles but also for industrial purposes (for large machines). Similarly, there is a deviation between the two origins P1 and P0, and control is performed using the correct offset amount θo. As an adaptation method of the offset amount θo at this time, an interface is generally attached to the motor drive device for industrial use, and the offset amount θo is input using the interface, and a nonvolatile storage area ( Often stored in EEPROM).
 一方電気自動車においては、耐久性の問題や、安易な操作による事故防止の観点から、このようなインターフェイスがモータ駆動装置本体および電気自動車内に設置されることはほとんどない。そのため、プログラム内のオフセット量θoを示す変数を変更の上、機械語に変換(一般的にはビルドと呼ぶ)し、モータ駆動装置の制御プログラムを実行するCPU の命令記憶領域に保存する方法を取る必要があった。 On the other hand, in an electric vehicle, such an interface is rarely installed in the motor drive device main body and the electric vehicle from the viewpoint of durability problems and prevention of accidents due to easy operation. Therefore, a method of changing the variable indicating the offset amount θo in the program, converting it into a machine language (generally called a build), and saving it in the instruction storage area of the CPU す る that executes the control program of the motor drive device I had to take it.
 この方法の問題点は、プログラム内の変更不要な部分を誤って変更してしまう恐れがあることや、プログラムをモータ駆動装置のCPUに保存した後は、モータとモータ駆動装置が紐付された状態となることである。特に、モータとモータ駆動装置が紐付された状態となると、市場での補修時にモータを交換する必要が出た場合、電気自動車製造時に保存したプログラムを、修理工場にて変更する必要がある。この場合の手順は煩雑となる。また、プログラムの変更箇所の間違えは、制御装置の暴走や、場合によっては周辺素子の破壊、モータの破壊を引き起こす可能性があり、採用することは難しい。 The problem with this method is that there is a risk of accidentally changing unnecessary parts in the program, or after the program is stored in the CPU of the motor drive device, the motor and the motor drive device are linked. It is to become. In particular, when the motor and the motor drive device are linked, it is necessary to change the program stored at the time of manufacturing the electric vehicle at a repair shop when it is necessary to replace the motor during repair in the market. The procedure in this case is complicated. In addition, mistakes in program changes may cause the control device to run out of control, possibly causing destruction of peripheral elements and motors, and are difficult to adopt.
 (汎用の外部接続装置を用いたオフセット量の変更)
 上述の理由により、プログラムの一部をモータの個体に適した値に書き換え、ビルドによって機械語に変換されたものをCPUに焼き込むすなわち上記のように命令記憶領域に保存することは難しいが、モータ駆動装置が制御に必要なパラメータを保存する不揮発性記憶装置(例えばEEPROM)を備えている場合、そこにオフセット量を保存することは容易である。具体的には、汎用の外部接続装置をモータ駆動装置と接続し、外部接続装置とモータ駆動装置のCPUと通信させ、外部接続装置からの指令によりCPUがEEPROMに所定のパラメータを保存する方法である。
(Change of the offset amount using a general-purpose external connection device)
For the reasons described above, it is difficult to rewrite a part of the program to a value suitable for the individual motor and to burn into the CPU what was converted into machine language by the build, that is, to save in the instruction storage area as described above, When the motor drive device includes a nonvolatile storage device (for example, EEPROM) that stores parameters necessary for control, it is easy to store the offset amount therein. Specifically, a general-purpose external connection device is connected to the motor drive device, communicates with the CPU of the external connection device and the motor drive device, and the CPU stores predetermined parameters in the EEPROM in response to a command from the external connection device. is there.
 上記のような汎用の外部接続装置は、整備工場にて既に実用化され広く利用されている。特許文献1は、車載機器の制御装置について、複数の設定パターン、例えば車種毎の設定や調整を簡便に使い分けるために、通信用インターフェイスを通じて必要な設定パターンを指定する方法を提案しており、書き換え可能な制御装置を提案するものである。また、特許文献2は、コンパクトディスクのような記録メディアを用いて制御装置内のプログラムの変更を可能としており、制御装置内の制御プログラムを外部から変更できる仕組みについて開示している。また、制御装置内の設定、もしくはプログラムを書き換える際のインターフェイスも普及しており、代表的なものとして、特許文献3のような、車両の通信網に接続し、簡便に故障の診断を可能とする故障診断用テスタが挙げられ、特許文献4では、CAN(Control Area Network)通信に対応した故障診断用テスタ及びそれと同等の物を用いて、燃料噴射量の増減を調整したり、油圧、油温センサの出力を収集する方法が提案されている。 The general-purpose external connection device as described above has already been put into practical use and widely used in maintenance shops. Patent Document 1 proposes a method for specifying a necessary setting pattern through a communication interface in order to easily use a plurality of setting patterns, for example, settings and adjustments for each vehicle type, for a control device of an in-vehicle device. A possible control device is proposed. Further, Patent Document 2 discloses a mechanism that allows a program in the control device to be changed using a recording medium such as a compact disc, and allows the control program in the control device to be changed from the outside. In addition, an interface for rewriting the setting in the control device or the program is also widespread, and as a representative one, it is possible to easily diagnose a failure by connecting to a vehicle communication network as in Patent Document 3. According to Patent Document 4, the increase or decrease of the fuel injection amount is adjusted by using a failure diagnosis tester corresponding to CAN (Control Area Network) communication and its equivalent, and hydraulic pressure, oil A method for collecting the output of the temperature sensor has been proposed.
 これらの外部接続装置は、整備工場等にのみ提供されるものであり、その通信も、通信上の一定の手続き(パスコードのやり取りや、一定のフォーマットに従って通信しなければ受け付けられない等の制約を含んだ手続き)を要求し、不要な変更が行われないように構成されている。 These external connection devices are provided only to maintenance factories, etc., and the communication is also restricted in certain procedures (communication of passcodes and restrictions that cannot be accepted unless they communicate according to a certain format). Request), and no unnecessary changes are made.
 しかし、上記の各従来技術は、いずれも、プログラムに不具合があって更新したい場合や、後で乗り味を変えたい、すなわち、後で運転時の車両からのレスポンスを変更したい(燃料噴射量を増減させる)といった、その車種の全ての車両に適応するような更新とカスタマイズを前提としたものばかりであり、モータの個体差を考慮してモータとモータ駆動装置とのマッチングを不要にする技術については、提案されるに至っていない。また、モータ制御に必要な定数(例えばオフセット量や、回転の向き)は、必ず必要なものであるが、従来の各技術は、モータとモータ制御装置を製造した時点では不定な数値を、外部から追記(書き換え)を行うことを前提として製造する技術ではなく、上記のように特に不具合がない場合は走行できるように製造されたモータ駆動装置につき、更新やカスタマイズを行う技術である。 However, each of the above-mentioned prior arts all wants to be updated due to a defect in the program, or to change the ride quality later, i.e., to change the response from the vehicle during driving later (the fuel injection amount is reduced). Technology that makes it unnecessary to match the motor and the motor drive device in consideration of individual differences in the motor. Has not yet been proposed. In addition, constants necessary for motor control (for example, the offset amount and the direction of rotation) are always necessary, but each of the conventional technologies uses an indefinite value at the time of manufacturing the motor and the motor control device. It is not a technology that is manufactured on the premise that additional writing (rewriting) is performed, but is a technology that updates or customizes the motor drive device that is manufactured so that it can run when there is no particular problem as described above.
 この発明の目的は、電気自動車製造時や、市場での補修時におけるモータ駆動装置の交換もしくはモータの交換時に、モータとモータ駆動プログラムとのマッチングを不要とすることで、電気自動車製造の妨げとなるモータの個体差に応じたプログラムの内容変更を不要化ないし簡易化でき、かつ不測の定数変更が回避できて安全性が確保できる電気自動車のモータ駆動装置を提供することである。 The object of the present invention is to obstruct the manufacture of an electric vehicle by eliminating the need for matching between the motor and the motor drive program at the time of replacement of the motor drive device or motor replacement at the time of electric vehicle manufacture or repair in the market. It is an object of the present invention to provide a motor drive device for an electric vehicle that can eliminate or simplify the program content change according to the individual difference of the motor, and can avoid unexpected constant changes and ensure safety.
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, the present invention will be described with reference to the reference numerals of the embodiments for convenience.
 この発明の電気自動車のモータ駆動装置は、電気自動車1の走行駆動源となるモータ2を駆動するモータ駆動装置3であって、
 上記モータ2の制御に用いる定数を記憶する記憶部14と、情報を送信可能な外部接続装置17に接続解除自在に接続されて上記外部接続装置17と通信が可能な外部通信インターフェイス18と、上記記憶部14に記憶する上記定数のうちの、上記モータ2の個体に特有の値となる定められた定数を、上記外部接続装置17から上記外部通信インターフェイス18を介して送信される数値に設定する定数設定処理部19とを有する。なお上記の「定数」は、フラグのような2値のいずれかを示す数を含む意味である。
An electric vehicle motor drive device according to the present invention is a motor drive device 3 that drives a motor 2 that is a travel drive source of an electric vehicle 1,
A storage unit 14 for storing constants used for controlling the motor 2; an external communication interface 18 connected to the external connection device 17 capable of transmitting information; Of the constants stored in the storage unit 14, a predetermined constant that is specific to the individual motor 2 is set to a numerical value transmitted from the external connection device 17 via the external communication interface 18. Constant setting processing unit 19. Note that the above “constant” means a number including one of two values such as a flag.
 この構成によると、モータ2の制御に用いる定数のうちの、モータ2の個体に特有の値となる定められた定数を、外部接続装置17から外部通信インターフェイス18を介して送信される数値に設定する定数設定処理部19を有する。そのため、モータ駆動装置3のモータ駆動プログラムで用いる定数のうち、モータ2の個体差が生じる定数について上記のように外部接続装置17から送信して設定するようにすることで、モータ2とモータ駆動装置3におけるモータ駆動プログラムとのマッチングを不要とでき、電気自動車製造の妨げとなるモータ2の個体差に応じたプログラムの内容変更を不要化ないしは簡易化できる。また、電気自動車1自体に上記定数の変更の入力を行う機能部を設けずに、外部接続装置17を接続して上記定数となる数値を入力するようにしたため、モータ2毎に変更が不要な定数まで不測に変更してしまうことが回避され、安全性が確保できる。 According to this configuration, among the constants used for controlling the motor 2, a predetermined constant that is specific to the individual motor 2 is set to a numerical value transmitted from the external connection device 17 via the external communication interface 18. A constant setting processing unit 19 is provided. For this reason, among the constants used in the motor drive program of the motor drive device 3, constants that cause individual differences of the motor 2 are transmitted and set from the external connection device 17 as described above, so that the motor 2 and the motor drive are set. Matching with the motor drive program in the apparatus 3 can be made unnecessary, and changing the contents of the program according to individual differences of the motor 2 that hinders the manufacture of the electric vehicle can be made unnecessary or simplified. In addition, since the electric vehicle 1 itself is not provided with a function unit for inputting the change of the constant, the external connection device 17 is connected and the numerical value corresponding to the constant is input. Therefore, no change is required for each motor 2. Unexpected changes to constants are avoided, and safety can be ensured.
 この発明において、上記モータ2が回転角センサ4を備え、この回転角センサ4の測定基準となるセンサ原点P1と、上記モータ2の制御上必要となるモータ2の制御基準点である電気角原点P0とにオフセット量θoがあり、上記定数設定処理部19は、上記外部接続装置17から送信されて設定する数値として、少なくとも上記オフセット量θoを含むようにしても良い。モータ2の制御上必要な定数のうち、個体差が生じる代表的な定数は、上記センサ原点P1と電気角原点P0のオフセット量θoである。このオフセット量θoは、モータ2の製造時に計測してモータ自体に刻印等で記録しておくことで、既知の値となる。モータ2の故障やモータ駆動装置3の故障等でこれらモータ2とモータ駆動装置3との組み合わせを変更したときは、上記既知のオフセット量θoを上記外部接続装置17からモータ駆動装置3に入力することで、モータ2の個体差となるセンサ原点P1と電気角原点P0のオフセット量θoが問題となることなく、モータ2とモータ駆動装置3との組み合わせの変更が行える。 In the present invention, the motor 2 includes a rotation angle sensor 4, a sensor origin P 1 that is a measurement reference of the rotation angle sensor 4, and an electrical angle origin that is a control reference point of the motor 2 that is necessary for the control of the motor 2. There is an offset amount θo in P0, and the constant setting processing unit 19 may include at least the offset amount θo as a numerical value transmitted and set from the external connection device 17. Of the constants necessary for the control of the motor 2, a typical constant causing an individual difference is the offset amount θo between the sensor origin P1 and the electrical angle origin P0. This offset amount θo becomes a known value by measuring it at the time of manufacturing the motor 2 and recording it on the motor itself by imprinting or the like. When the combination of the motor 2 and the motor drive device 3 is changed due to a failure of the motor 2 or a failure of the motor drive device 3, the known offset amount θo is input from the external connection device 17 to the motor drive device 3. Thus, the combination of the motor 2 and the motor drive device 3 can be changed without causing a problem with the offset amount θo between the sensor origin P1 and the electrical angle origin P0 that are individual differences of the motor 2.
 この場合に、上記定数設定処理部19により数値を設定する上記記憶部14が不揮発性記憶装置14であっても良い。不揮発性記憶装置14に上記オフセット量θoを記憶しておくことで、上記オフセット量θoの記憶が不測に消失することを回避できる。 In this case, the storage unit 14 for setting a numerical value by the constant setting processing unit 19 may be a nonvolatile storage device 14. By storing the offset amount θo in the non-volatile storage device 14, it is possible to prevent the storage of the offset amount θo from being accidentally lost.
 このように不揮発性記憶装置14を用いる場合に、上記不揮発性記憶装置14に記憶された上記オフセット量θoを、上記モータ駆動装置3の電源投入に応答して、モータ制御に使用する記憶領域16に読み出す記憶定数読出部20を設けても良い。不揮発性記憶装置14からの情報の読み出し速度は、一般的には比較的に遅く、高速回転するモータ2の制御時に読み出すのではモータ制御が高精度に行えない場合がある。しかし、モータ駆動装置3の電源投入時に、モータ制御に使用する適宜の記憶領域16、例えばモータ駆動装置3を構成するCPU中のレジスタ等に記憶しておくことで、高速制御が可能となる。このように、オフセット量θoの不測の消失の回避と、読み出し速度の高速化による高精度な制御とを両立させることができる。 When the nonvolatile storage device 14 is used in this way, the storage area 16 used for motor control in response to the power-on of the motor driving device 3 using the offset amount θo stored in the nonvolatile storage device 14. A storage constant reading unit 20 for reading may be provided. The reading speed of information from the non-volatile storage device 14 is generally relatively slow, and there are cases where motor control cannot be performed with high accuracy by reading when controlling the motor 2 that rotates at high speed. However, when the motor drive device 3 is powered on, it can be controlled at high speed by storing it in an appropriate storage area 16 used for motor control, such as a register in the CPU constituting the motor drive device 3. In this way, it is possible to achieve both the avoidance of the unexpected disappearance of the offset amount θo and the highly accurate control by increasing the reading speed.
 この発明の電気自動車のモータ駆動装置において、上記モータ2が、単独では回転方向の正方向をいずれの方向にも設定可能であり、車両への取付方向によって上記正方向が定まる形式であり、上記定数設定処理部19は、上記外部接続装置17から送信されて設定する数値として、上記モータ2の回転方向の正方向を指定する値を含むようにしても良い。モータ2の形式によっては、単独では回転方向の正方向をいずれの方向にも設定可能なものがあり、特にインホイールモータ駆動装置7では、同じ構成のインホイールモータ駆動装置7を左右の車輪9に互いに向きを逆として用いることがある。このような場合に、上記定数設定処理部19が、上記外部接続装置17から送信されて設定する数値として、上記モータ2の回転方向の正方向を指定する値を含むようにしてあると、同じ構成のモータ2を設置箇所に応じて任意の向きに設置しても、モータの車両への組み付け後に、正逆の回転方向を適正に認識して制御可能となる。 In the motor drive device for an electric vehicle according to the present invention, the motor 2 alone can set the positive direction of the rotation direction to any direction, and the positive direction is determined by the mounting direction to the vehicle. The constant setting processing unit 19 may include a value specifying the positive direction of the rotation direction of the motor 2 as a numerical value transmitted and set from the external connection device 17. Depending on the type of the motor 2, there is one that can set the positive direction of rotation in any direction. In particular, in the in-wheel motor driving device 7, the in-wheel motor driving device 7 having the same configuration is connected to the left and right wheels 9. May be used with their directions reversed. In such a case, if the constant setting processing unit 19 includes a value specifying the positive direction of the rotation direction of the motor 2 as a numerical value transmitted and set from the external connection device 17, the configuration is the same. Even if the motor 2 is installed in an arbitrary direction depending on the installation location, the motor 2 can be properly recognized and controlled after the motor is assembled to the vehicle.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の一実施形態に係る電気自動車のモータ駆動装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the motor drive device of the electric vehicle which concerns on one Embodiment of this invention. 同ブロック図を定数の書換え処理時に用いる部分に着目して表現し直したブロック図である。FIG. 3 is a block diagram in which the same block diagram is re-expressed by paying attention to a portion used during constant rewriting processing. 同ブロック図をモータ駆動時に用いる部分に着目して表現し直したブロック図である。It is the block diagram which re-expressed the block diagram paying attention to the part used at the time of motor drive. (A)は同モータ駆動装置に対する書換え時の外部接続装置の処理を示すフロー図、(B)は同書換え時のモータ駆動装置の処理を示すフロー図である。(A) is a flowchart showing processing of the external connection device at the time of rewriting to the motor driving device, and (B) is a flowchart showing processing of the motor driving device at the time of rewriting. 同モータ駆動装置におけるモータ駆動時の処理を示すフロー図である。It is a flowchart which shows the process at the time of the motor drive in the motor drive device. インホイールモータ車の概念構成を示す平面図である。It is a top view which shows the conceptual structure of an in-wheel motor vehicle. モータと回転角センサの原点等との関係を示す説明図である。It is explanatory drawing which shows the relationship between a motor, the origin of a rotation angle sensor, etc.
 この発明の一実施形態を図1ないし図6と共に説明する。図1において、電気自動車1は、走行駆動用のモータ2と、このモータ2を制御するモータ駆動装置3と備え、上記モータ2は、回転角センサ4を有する。この回転角センサ4は、レゾルバや、エンコーダ、磁気センサがこれにあたる。モータ2は、例えば永久磁石を有し3相交流で駆動される同期型モータとされる。なお、図1は、1つのモータに注目して説明する図となっている。 An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, an electric vehicle 1 includes a motor 2 for driving driving and a motor driving device 3 that controls the motor 2, and the motor 2 includes a rotation angle sensor 4. The rotation angle sensor 4 is a resolver, an encoder, or a magnetic sensor. The motor 2 is, for example, a synchronous motor that has a permanent magnet and is driven by a three-phase alternating current. In addition, FIG. 1 is a figure explaining paying attention to one motor.
 モータ2は、例えば図6に示すように、車輪用軸受5および減速機6と共にインホイールモータ駆動装置7を構成し、電気自動車1の駆動輪となる車輪9に対して個別に搭載される。同図の電気自動車1は、後輪となる車輪9が駆動輪、前輪となる車輪8が従動輪とされた2輪駆動の後輪駆動車の例である。 For example, as shown in FIG. 6, the motor 2 constitutes an in-wheel motor drive device 7 together with the wheel bearing 5 and the speed reducer 6, and is individually mounted on the wheel 9 that is the drive wheel of the electric vehicle 1. The electric vehicle 1 in the figure is an example of a two-wheel drive rear wheel drive vehicle in which the rear wheel 9 is a driving wheel and the front wheel 8 is a driven wheel.
 モータ駆動装置3は、電気自動車1が同図の例のように複数のモータ2を搭載する場合、各モータ2に対して設けられる。モータ2が同期モータ等の交流で駆動される形式である場合、インバータを備えるため、上記モータ駆動装置3は「インバータ装置」と呼ばれる場合がある。モータ駆動装置3の上位の制御ユニットとして、電気自動車の全体の統括制御や協調制御を行うECU(電子制御ユニット)10が設けられる。なお、電気自動車1は、前後の車輪8,9にインホイールモータ駆動装置7を搭載した4輪駆動であっても良く、前輪の車輪8のみにインホイールモータ駆動装置7を搭載した前輪駆動であっても良く、またモータ2を車台(図示せず)上に搭載した1モータ型または2モータ型の車両であっても良い。1モータ型の場合、独立したECU10を設けずに、モータ駆動装置3にECU10の機能を備えるように構成される場合もある。 The motor driving device 3 is provided for each motor 2 when the electric vehicle 1 is equipped with a plurality of motors 2 as in the example of FIG. When the motor 2 is of a type driven by an alternating current such as a synchronous motor, the motor driving device 3 may be called an “inverter device” because it includes an inverter. An ECU (electronic control unit) 10 that performs overall control and cooperative control of the entire electric vehicle is provided as an upper control unit of the motor drive device 3. The electric vehicle 1 may be a four-wheel drive in which the in-wheel motor drive device 7 is mounted on the front and rear wheels 8 and 9, or a front wheel drive in which the in-wheel motor drive device 7 is mounted only on the front wheel 8. There may also be a one-motor type or two-motor type vehicle in which the motor 2 is mounted on a chassis (not shown). In the case of the single motor type, the motor drive device 3 may be configured to have the function of the ECU 10 without providing the independent ECU 10.
 図1において、モータ駆動装置3は、回転角センサ4の検出信号Sから回転角θを算出する回転角算出部11と、主たる制御の演算を行い、多くの場合CPUがこれに相当する制御演算部12と、電流量を制御するFETやIGBT等を含むインバータがこれに相当するパワー回路部であるモータ駆動部13と、制御上必要なパラメータやエラーコードを保存するEEPROM等がこれに相当する不揮発性記憶装置14を備えている。この不揮発性記憶装置14は、本発明で言う「記憶装置」となる。 In FIG. 1, the motor drive device 3 performs a main control calculation with a rotation angle calculation unit 11 that calculates the rotation angle θ from the detection signal S of the rotation angle sensor 4, and in many cases the CPU performs a control calculation corresponding thereto. The motor drive unit 13 is a power circuit unit corresponding to an inverter including an FET, IGBT, or the like that controls the current amount, an EEPROM that stores parameters and error codes necessary for control, and the like. A nonvolatile storage device 14 is provided. The nonvolatile storage device 14 is a “storage device” in the present invention.
 制御演算部12の中には、トルク指令部21から与えられる指令トルクTに従って、ベクトル制御のようなモータ駆動のための電流制御に必要な演算を行うプログラムなどで構成されるモータ駆動演算部15を備える。上記トルク指令部21は、例えばアクセルペダル等のアクセル操作部(図示せず)、およびブレーキペダル等のブレーキ操作部(図示せず)の操作量から、各モータ2への上記指令トルクTを生成する機能部であり、例えば上位制御ユニットとなる上記ECU10(図6)等に設けられる。トルク指令部21は、上記アクセル操作部自体であっても良い。なお、モータ駆動演算部15は、具体的には、ソフトウエアやハードウエアで実現されたLUT(Look Up Table)、またはソフトウエアのライブラリ(Library)に収められた所定の変換関数やそれに等価のハードウエア等(以下、「具現化モデル」という。)を用いて、トルク指令部21から与えられる指令トルクTの入力を受けて、モータ駆動部13へ例えばPWM(pulse width modulation)信号を出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。 The control calculation unit 12 includes a motor drive calculation unit 15 configured by a program for performing calculation necessary for current control for motor drive such as vector control in accordance with the command torque T supplied from the torque command unit 21. Is provided. The torque command unit 21 generates the command torque T to each motor 2 from the operation amount of an accelerator operation unit (not shown) such as an accelerator pedal and a brake operation unit (not shown) such as a brake pedal. For example, it is provided in the ECU 10 (FIG. 6) or the like serving as a host control unit. The torque command unit 21 may be the accelerator operation unit itself. The motor drive calculation unit 15 specifically has a predetermined conversion function stored in a LUT (Look Up Table) implemented by software or hardware, or a software library (Library), or an equivalent thereof. For example, a PWM (pulse width modulation) signal is output to the motor drive unit 13 in response to an input of the command torque T given from the torque command unit 21 using hardware or the like (hereinafter referred to as “realization model”). And a software function on a hardware circuit or a processor (not shown).
 図1の上記制御演算部12の中には、この他に、各種演算結果や変動するパラメータなどを保存する汎用の揮発性記憶領域16を備え、また外部接続装置17と通信するモジュールに代表される外部通信インターフェイス18を備える。この通信形態は、シリアル通信、パラレル通信などの単純な通信方式や、CAN(Control Area Network)や車載LAN(Local Area Network)が該当する。 In addition to the above, the control calculation unit 12 of FIG. 1 includes a general-purpose volatile storage area 16 for storing various calculation results and changing parameters, and is represented by a module that communicates with the external connection device 17. The external communication interface 18 is provided. This communication form corresponds to a simple communication method such as serial communication or parallel communication, CAN (Control Area Network), or in-vehicle LAN (Local Area Network).
 上記外部接続装置17は、例えばパーソナルコンピュータやタブレット型携帯情報端末機で構成される故障診断装置やダイアグノーシステスターと呼ばれるものであり、通信のために必要な最低限のデータ送信機能とロギング機能を持つものや、内部定数を更新するための操作が可能なものが存在し、この実施形態ではそうした機能を有する普及品を使用する。 The external connection device 17 is called a failure diagnosis device or diagnosis system composed of, for example, a personal computer or a tablet-type portable information terminal, and has a minimum data transmission function and a logging function necessary for communication. There are those possessed and those capable of operating to update the internal constant, and in this embodiment, a popular product having such a function is used.
 上述した揮発性記憶領域16は、例えばモータ駆動装置3を構成するCPUのレジスタがこれに相当する。CPU外部に備える不揮発性記憶装置14との役割分担は、内容の決定タイミングや変更頻度の違いに依存する。CPU内部には揮発性記憶領域16のほかに、プログラムメモリに代表される実行プログラムを保存しておく書き換えが不可能な不揮発性記憶領域(図示せず)を持ち、この中には実行するプログラムや変更の必要ない定数等、変更の必要のない情報が保存される。上記揮発性記憶領域16には、演算結果や繰り返し回数に代表される常に変更される数値や、モータ駆動装置3が起動する際には演算されていない数値が保存される。また、モータ駆動装置3の電源がオフになったためリフレッシュされ、初期値に更新されても問題ないものが揮発性記憶領域16に保存される。 The volatile storage area 16 described above corresponds to, for example, a register of a CPU that constitutes the motor driving device 3. The role sharing with the non-volatile storage device 14 provided outside the CPU depends on the content determination timing and the change frequency. In addition to the volatile storage area 16, the CPU has a non-rewritable non-volatile storage area (not shown) for storing an execution program represented by a program memory. And information that does not need to be changed, such as constants that do not need to be changed. The volatile storage area 16 stores a numerical value that is constantly changed, represented by a calculation result and the number of repetitions, and a numerical value that is not calculated when the motor driving device 3 is activated. Further, since the power supply of the motor driving device 3 is turned off, the motor drive device 3 is refreshed and saved in the volatile storage area 16 even if it is updated to the initial value.
 不揮発性記憶装置14には、電源がオフになっても値が保持されるべき数値であり且つ変更が必要である数値が保存される。具体的にはエラーコードや積算走行距離、搭載車両に最適化された制御定数、搭載車両によって異なる動作方向の正方向の情報などがこれに当たる。上記モータ2の原点位置も、プログラムにより算出することは不可能であり、車両組み付け時や修理時には変更が必要であって、電源がオフになっても値を保持すべきであり、不揮発性記憶装置14に保存する。なお、CPU内に不揮発性の特徴を持ちながら書き換えが容易(プログラム動作により内容を変更可能)な領域があれば、CPUの外部に不揮発性記憶領域を持つ必要はなく、上記不揮発性記憶装置14は、CPU内に設けられた上記の不揮発性の特徴を持ちながら書き換えが容易な領域であってもよい。 The nonvolatile storage device 14 stores numerical values that should be retained even when the power is turned off and that need to be changed. Specifically, this includes an error code, an accumulated travel distance, a control constant optimized for the mounted vehicle, information on the positive direction of the operation direction that varies depending on the mounted vehicle, and the like. The origin position of the motor 2 cannot be calculated by a program, needs to be changed when the vehicle is assembled or repaired, and should be retained even when the power is turned off. Save to device 14. If there is an area in the CPU that has non-volatile characteristics and can be easily rewritten (the contents can be changed by a program operation), there is no need to have a non-volatile storage area outside the CPU. May be a region provided in the CPU and having the above non-volatile characteristics and easy to rewrite.
 このモータ駆動装置3は、上記の基本構成に加えて、次の定数設定処理部19と記憶定数読出部20とを設けたものである。これら定数設定処理部19および記憶定数読出部20は、上記制御演算部12を構成するプログラムの一部で構成される。 This motor drive device 3 is provided with the following constant setting processing unit 19 and storage constant reading unit 20 in addition to the above basic configuration. The constant setting processing unit 19 and the stored constant reading unit 20 are constituted by a part of the program that constitutes the control arithmetic unit 12.
 上記定数設定処理部19は、上記不揮発性記憶装置14に記憶する上記各定数のうちの、上記モータ2の個体に特有の値となる定められた定数を、上記外部接続装置17から上記外部通信インターフェイス18を介して送信される数値に設定する機能部である。上記定数設定処理部19は、具体的には、ソフトウエアのライブラリに収められた所定のデータ転送関数やそれに等価のハードウエア等を用いて、外部通信インターフェイス18を介して送信される数値を受けて、不揮発性記憶装置14の所定のアドレスに保存しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。この記憶定数読出部20は、外部接続装置17から送信されて上記不揮発性記憶装置14に設定する定数として、上記回転角センサ4の測定基準となるセンサ原点P1と、モータ2の制御上必要となるモータ2の制御基準点である電気角原点P0とのオフセット量θo、およびモータ2の駆動の正方向を示す数値である1または0の値であるフラグを設定する。上記記憶定数読出部20は、より具体的には図4(B)に示された流れ図の処理を行う。 The constant setting processing unit 19 sends, from the external connection device 17 to the external communication, a predetermined constant that is a value specific to the individual motor 2 among the constants stored in the nonvolatile storage device 14. It is a functional unit that sets a numerical value transmitted through the interface 18. Specifically, the constant setting processing unit 19 receives a numerical value transmitted via the external communication interface 18 using a predetermined data transfer function stored in a software library or hardware equivalent thereto. Thus, it is configured by a hardware circuit or a software function on a processor (not shown) that can be stored at a predetermined address of the nonvolatile memory device 14. The storage constant reading unit 20 is necessary for the control of the motor origin 2 and the sensor origin P1 as a measurement reference of the rotation angle sensor 4 as constants transmitted from the external connection device 17 and set in the nonvolatile storage device 14. An offset amount θo with respect to the electrical angle origin P0 that is the control reference point of the motor 2 and a flag that is a value of 1 or 0 that is a numerical value indicating the positive driving direction of the motor 2 are set. More specifically, the storage constant reading unit 20 performs the processing of the flowchart shown in FIG.
 また、上記記憶定数読出部20は、上記不揮発性記憶装置14に記憶された上記オフセット量θoを、上記モータ駆動装置3の電源投入に応答して、モータ制御に使用する記憶領域である上記揮発性記憶領域16に読み出す機能部であり、上記電源投入により各定数を読み出す命令の一部として構成される。上記記憶定数読出部20は、具体的には、上記の具現化モデルを用いて、センサ原点P1と電気角原点P0とのオフセット量θoおよび上記フラグを算出し、また、ソフトウエアのライブラリに収められた所定のデータ転送関数やそれに等価のハードウエア等を用いて、モータ駆動装置3の電源投入を受けて、上記オフセット量θoを発性記憶領域16に保存しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。上記記憶定数読出部20は、より具体的には図5に示された流れ図の処理を行う。 In addition, the storage constant reading unit 20 uses the offset amount θo stored in the nonvolatile storage device 14 as a storage area used for motor control in response to power-on of the motor driving device 3. This is a functional unit that reads data into the storage area 16, and is configured as a part of an instruction that reads each constant when the power is turned on. Specifically, the storage constant reading unit 20 calculates the offset amount θo between the sensor origin P1 and the electrical angle origin P0 and the flag using the above-described implementation model, and stores them in a software library. A hardware circuit or a processor (non-determined) that can store the offset amount θo in the spontaneous memory area 16 when the motor driving device 3 is turned on using a predetermined data transfer function or hardware equivalent thereto. It is composed of the above software functions. More specifically, the storage constant reading unit 20 performs the processing of the flowchart shown in FIG.
 次に、車両組み立て時や補修によるモータ2の交換後の初期設定の説明を行う。図1に示すうち、この時に機能する部分に着目して表現し直した図を図2に示す。また、このときの外部接続装置17の処理のフローを図4(A)に、モータ駆動装置3のフローを図4(B)に示す。 Next, an explanation will be given of the initial setting at the time of vehicle assembly or after replacement of the motor 2 by repair. FIG. 2 is a diagram re-expressed focusing on the portion that functions at this time in FIG. Further, the flow of processing of the external connection device 17 at this time is shown in FIG. 4A, and the flow of the motor driving device 3 is shown in FIG. 4B.
 モータ2の個体差により決定されるオフセット量θo は、モータ製造時に算出され、例えば刻印により明記されたり、データシートにより記録されたりしているものとする。モータ2を車両に組み付ける作業者(車両組み立て作業者、もしくは車両修理工場の作業者)は、モータ駆動装置3に外部接続装置17を接続し通信を行う。実際には外部接続装置17は、モータ駆動装置3内の制御演算部12の定数設定処理部19等と、外部通信インターフェイス18を介して通信する。 The offset amount θo determined by the individual difference of the motor 2 is calculated when the motor is manufactured, and is specified by, for example, engraving or recorded by a data sheet. An operator (a vehicle assembly worker or a vehicle repair shop worker) who assembles the motor 2 in the vehicle connects the external connection device 17 to the motor drive device 3 to perform communication. Actually, the external connection device 17 communicates with the constant setting processing unit 19 and the like of the control calculation unit 12 in the motor driving device 3 via the external communication interface 18.
 通信を開始し(図4(A)のステップQ1、図4(B)のステップR1)、所定の通信上の手続き、例えばパスコードのやり取りや、一定のフォーマットに従って通信するなどした後、制御演算部12は、演算処理を停止し、モータ2を駆動せず、一般にメンテナンスモードと呼ばれるような整備専用の状態に遷移させる。具体的には、上記通信の開始の後、外部接続装置17は変更許可の依頼を行い(ステップQ2)、変更許可を待つ(ステップQ3)。モータ駆動装置3では、上記変更許可の依頼を受信すると(ステップR2)、適正な通信か否かを判断し(ステップR3)、適正な通信であると変更許可を送信する(ステップR4)。 After communication is started (step Q1 in FIG. 4A, step R1 in FIG. 4B), a predetermined communication procedure, for example, exchange of a pass code, communication according to a certain format, etc. The unit 12 stops the arithmetic processing, does not drive the motor 2, and makes a transition to a maintenance-dedicated state generally called a maintenance mode. Specifically, after the start of the communication, the external connection device 17 requests change permission (step Q2) and waits for change permission (step Q3). When the motor drive device 3 receives the change permission request (step R2), it determines whether or not the communication is appropriate (step R3), and transmits the change permission if the communication is appropriate (step R4).
 この後、あらかじめ設定されたフォーマットに則り、外部接続装置17を用いてオフセット量θo を制御演算部12に送信する(ステップQ4~Q6)。より詳しくは、変更可能項目から上記オフセット量θo を選択し(ステップQ4)、このオフセット量θo を決定し(ステップQ5)、その決定したオフセット量θo を送信する(Q6)。 Thereafter, according to a preset format, the external connection device 17 is used to transmit the offset amount θo to the control calculation unit 12 (steps Q4 to Q6). More specifically, the offset amount θo is selected from the changeable items (step Q4), the offset amount θo is determined (step Q5), and the determined offset amount θo is transmitted (Q6).
 オフセット量θo を受信(ステップR5)した制御演算部12は、オフセット量θo を、揮発性保存領域16に保存したり、不揮発性記憶装置14の保存に適した数値形式に変換したりするなどの処理を行った後、不揮発性記憶装置14の指定されたアドレスに保存する(ステップR6)。作業者は外部接続装置17とモータ2との通信を切断し作業を終了する。説明の簡単化のため、以上では、モータ駆動装置3は一度電源がオフになっているとして説明する。 Upon receiving the offset amount θo (step R5), the control calculation unit 12 stores the offset amount θo in the volatile storage area 16 or converts it into a numerical format suitable for storage in the nonvolatile storage device 14 or the like. After the processing, it is stored in the designated address of the nonvolatile storage device 14 (step R6). The operator disconnects communication between the external connection device 17 and the motor 2 and ends the work. For simplification of description, the motor drive device 3 will be described as being once turned off.
 次に、図1に示すうち、通常走行時に機能する部分に着目して表現し直した図を図3に示し、そのモータ駆動装置3のフローを図5に示す。モータ駆動装置3に電源が投入されると、起動を確認し(ステップS1)、その後にプログラムメモリに保存されたプログラムを実行し始める。プログラムが各種変数の初期設定を行っている中に(ステップS2)、オフセット量θo の読み出しが規定されており、不揮発性記憶装置14からオフセット量θo を読み出す(ステップS3)。読み出したオフセット量θo は、揮発性記憶領域16に保存され、以後の制御に用いられる。 Next, FIG. 3 shows a diagram re-expressed by paying attention to the portion that functions during normal running in FIG. 1, and FIG. 5 shows the flow of the motor drive device 3. When the motor drive device 3 is turned on, the activation is confirmed (step S1), and then the program stored in the program memory is started. While the program is initializing various variables (step S2), the reading of the offset amount θo is defined, and the offset amount θo is read from the nonvolatile storage device 14 (step S3). The read offset amount θo is stored in the volatile storage area 16 and used for subsequent control.
 続いて、モータ駆動を開始する(ステップS4)。回転角センサ4は、モータ2の絶対角や、初期位置からの変位を電気信号、もしくは通信データの形で、検出信号Sを出力している。この検出信号Sを元に、回転角算出部11は物理的に意味のある角度信号θを算出する。この処理は、例えば複数のアナログ信号の比較によるものや、絶対角をアナログ電圧に変換したものを読み取ることや、通信により得られたシリアルデータを数値に変換することなどが挙げられる。検出信号Sがそのまま利用できる角度信号θである場合は、回転角算出部11は省略可能である。なお、回転角θは一旦揮発性記憶領域16に保存されるなどしてもよい。制御演算部12は、ステップS5において回転角算出部11から得られた回転角θに揮発性記憶領域16に保存したオフセット量θo を加えて(加えるかどうかは基準となる方向に依存し、設定方向によっては引く)、制御に必要な角度θ+θo として(ステップS6)、モータ駆動演算部15に送信する。モータ駆動演算部15は角度θ+θo と、駆動する電流量を決定する指令トルクTに基づき、モータ駆動部13の具体的な動作を決定し、モータ駆動部13への指令を生成する(ステップS7)。以上の流れにより、モータ2に電流が流され駆動される。 Subsequently, motor driving is started (step S4). The rotation angle sensor 4 outputs a detection signal S in the form of an electrical signal or communication data indicating the absolute angle of the motor 2 and the displacement from the initial position. Based on the detection signal S, the rotation angle calculation unit 11 calculates a physically meaningful angle signal θ. This processing includes, for example, reading by comparing a plurality of analog signals, reading an absolute angle converted to an analog voltage, converting serial data obtained by communication into a numerical value, and the like. When the detection signal S is an angle signal θ that can be used as it is, the rotation angle calculation unit 11 can be omitted. The rotation angle θ may be temporarily stored in the volatile storage area 16. The control calculation unit 12 adds the offset amount θo stored in the volatile storage area 16 to the rotation angle θ obtained from the rotation angle calculation unit 11 in step S5 (whether or not to add depends on the reference direction and is set) It is subtracted depending on the direction), and is transmitted as an angle θ + θo required for control (step S6) to the motor drive calculation unit 15. The motor drive calculation unit 15 determines a specific operation of the motor drive unit 13 based on the angle θ + θo and the command torque T that determines the amount of current to be driven, and generates a command to the motor drive unit 13 (step S7). . With the above flow, the motor 2 is driven by a current.
 この実施形態により、以下の利点すなわち作用効果がある。まず、市場での修理が容易になることである。先述の通り、オフセット量を必要とする制御方法を採用している場合、モータ2かモータ駆動装置3のどちらかが故障し、交換が必要となった場合でも、外部接続装置17を用いればオフセット量θoを変更することができるからである。次に、モータ2およびモータ駆動装置3の組み合わせと紐付に留意する必要が無くなることである。これは、動力線や回転角センサ、制御方法が共通化されていれば、モータ2とモータ駆動装置3のいくつかの選択肢のうち、どの組み合わせも採ることができるからである。また、モータ2を制御する上で問題となり得る個体差であるオフセット量θoを、簡単にモータ駆動装置3に記憶させることができるから、モータ2とモータ駆動装置3との紐付に留意する必要が無くなる。 This embodiment has the following advantages or effects. First, it will be easier to repair in the market. As described above, when a control method that requires an offset amount is adopted, even if either the motor 2 or the motor drive device 3 fails and needs to be replaced, the offset can be obtained by using the external connection device 17. This is because the amount θo can be changed. Next, it is not necessary to pay attention to the combination and tying of the motor 2 and the motor driving device 3. This is because any combination of several options of the motor 2 and the motor driving device 3 can be adopted as long as the power line, the rotation angle sensor, and the control method are shared. In addition, since the offset amount θo, which is an individual difference that may cause a problem in controlling the motor 2, can be easily stored in the motor driving device 3, it is necessary to pay attention to the association between the motor 2 and the motor driving device 3. Disappear.
 最後に、制御上必要であり、車両にモータを組み付ける時まで不定である要因、例えばモータ2の回転方向の正方向をこの実施形態では指定できることである。これは、モータ2とモータ駆動装置3を汎用化し、例えば汎用の車体にこの2つを搭載する場合、車両を前進するために回転させるべき方向が、モータ2の取り付け方向により変わってしまうため、モータ駆動装置3を出荷する段階では規定することが出来ないが、モータの車両組み付け後に指定できることが利点となるからである。これは同様に、図6のようなインホイールモータ車両のように、モータ2の配線と電気角の位相の観点から見て、走行時に2つのモータ2を互いに逆の方向に回転させる必要がある場合、上述の方法により変更することができ、利点となる。 Finally, a factor that is necessary for control and is undefined until the motor is assembled to the vehicle, for example, the positive direction of the rotation direction of the motor 2 can be specified in this embodiment. This is because when the motor 2 and the motor driving device 3 are generalized, and the two are mounted on a general-purpose vehicle body, for example, the direction in which the vehicle should be rotated to move forward changes depending on the mounting direction of the motor 2. This is because it cannot be defined at the stage of shipping the motor drive device 3, but it is advantageous that it can be specified after the motor is mounted on the vehicle. Similarly, as in the in-wheel motor vehicle as shown in FIG. 6, it is necessary to rotate the two motors 2 in directions opposite to each other when traveling from the viewpoint of the wiring of the motor 2 and the phase of the electrical angle. In this case, it can be changed by the method described above, which is an advantage.
 なお、外部接続装置17を用いて定数を更新する従来の技術は、いずれも、プログラムに不具合があって更新するためや、後で乗り味を変える(燃料噴射量を増減させる)ためなどという、その車種のすべての車両に適応するような更新とカスタマイズを前提としたものである。これに対して、この実施形態では、モータ2の制御に必要な定数(ここではオフセット量θoや、回転の向き)は、必ず必要なものであるが、モータ2とモータ制御装置3を製造した時点では不定な数値を、外部から追記(書き換え)を行うことを前提とした製造が可能となる。この実施形態の構成を用いることで、必要な変更を行うことができるが、変更可能な項目があらかじめ決められているため、プログラムを直接書き換えることにより起こり得る、変更してはならない制御定数の不要な変更によりモータ駆動装置3やモータ2が暴走したり、プログラムの通信機能に関する部分を変更してしまい通信機能を喪失してしまったりすることを予防することができる。 It should be noted that the conventional techniques for updating the constant using the external connection device 17 are all for updating due to a problem in the program, or for changing the ride quality later (increasing or decreasing the fuel injection amount), etc. It is premised on updating and customization that can be applied to all vehicles of that vehicle type. In contrast, in this embodiment, constants necessary for controlling the motor 2 (here, the offset amount θo and the direction of rotation) are necessarily required, but the motor 2 and the motor control device 3 were manufactured. At the time, it is possible to manufacture on the assumption that an indefinite numerical value is additionally written (rewritten) from the outside. By using the configuration of this embodiment, necessary changes can be made, but since the items that can be changed are determined in advance, there is no need for control constants that can be changed by directly rewriting the program and should not be changed. It is possible to prevent the motor driving device 3 and the motor 2 from running out of control or changing the part related to the communication function of the program and losing the communication function.
 このような利点があるため、次のような販売形態に対応できる。例えば、モータ2とモータ駆動装置3を別々に販売し、顧客がその2つを買って、それらを車両に組み付けるような、汎用の駆動装置一式を販売するような販売形態を採るときに、本実施形態では、モータ2とモータ駆動装置3の組み合わせに注意しなくても良く、どの向きに取り付けられても問題ないような構成である利点がある。 Because of these advantages, the following sales formats can be handled. For example, when the motor 2 and the motor drive device 3 are sold separately, and the customer buys the two and installs them in a vehicle, a general-purpose drive device is sold. In the embodiment, it is not necessary to pay attention to the combination of the motor 2 and the motor drive device 3, and there is an advantage that the configuration is such that no problem occurs regardless of the orientation.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内またはこれと均等の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Therefore, such changes and modifications should be construed as being within the scope of the invention defined by the claims or within the scope equivalent thereto.
1…電気自動車
2…モータ
3…モータ駆動装置
4…回転角センサ
7…インホイールモータ駆動装置
8,9…車輪
10…ECU
11…回転角算出部
12…制御演算部
13…モータ駆動部
14…不揮発性記憶装置(記憶部)
15…モータ駆動演算部
16…揮発性記憶領域
17…外部接続装置
18…外部通信インターフェイス
19…定数設定処理部
20…記憶定数読出部
21…トルク指令部
P0…電気角原点
P1…センサ原点
θo…オフセット量
DESCRIPTION OF SYMBOLS 1 ... Electric vehicle 2 ... Motor 3 ... Motor drive device 4 ... Rotation angle sensor 7 ... In-wheel motor drive device 8, 9 ... Wheel 10 ... ECU
DESCRIPTION OF SYMBOLS 11 ... Rotation angle calculation part 12 ... Control calculating part 13 ... Motor drive part 14 ... Nonvolatile memory | storage device (memory | storage part)
DESCRIPTION OF SYMBOLS 15 ... Motor drive calculating part 16 ... Volatile memory area 17 ... External connection apparatus 18 ... External communication interface 19 ... Constant setting process part 20 ... Storage constant reading part 21 ... Torque instruction | command part P0 ... Electrical angle origin P1 ... Sensor origin (theta) o ... Offset amount

Claims (5)

  1.  電気自動車の走行駆動源となるモータを駆動するモータ駆動装置であって、
     上記モータの制御に用いる定数を記憶する記憶部と、情報を送信可能な外部接続装置に接続解除自在に接続されて上記外部接続装置と通信が可能な外部通信インターフェイスと、上記記憶部に記憶する上記定数のうちの、上記モータの個体に特有の値となる定められた定数を、上記外部接続装置から上記外部通信インターフェイスを介して送信される数値に設定する定数設定処理部とを有する電気自動車のモータ駆動装置。
    A motor drive device that drives a motor that is a driving source of an electric vehicle,
    A storage unit that stores constants used for controlling the motor, an external communication interface that is releasably connected to an external connection device that can transmit information and can communicate with the external connection device, and a storage unit that stores the constant An electric vehicle having a constant setting processing unit that sets a predetermined constant among the constants, which is a value specific to the individual motor, to a numerical value transmitted from the external connection device via the external communication interface. Motor drive device.
  2.  請求項1に記載の電気自動車のモータ駆動装置において、上記モータが回転角センサを備え、この回転角センサの測定基準となるセンサ原点と、上記モータの制御上必要となるモータの制御基準点である電気角原点とにオフセット量があり、上記定数設定処理部は、上記外部接続装置から送信されて設定する数値として、少なくとも上記オフセット量を含む電気自動車のモータ駆動装置。 2. The motor driving apparatus for an electric vehicle according to claim 1, wherein the motor includes a rotation angle sensor, and a sensor origin used as a measurement reference of the rotation angle sensor and a control reference point of the motor necessary for controlling the motor. There is an offset amount at a certain electrical angle origin, and the constant setting processing unit includes at least the offset amount as a numerical value transmitted and set from the external connection device.
  3.  請求項2に記載の電気自動車のモータ駆動装置において、上記定数設定処理部により数値を設定する上記記憶部が不揮発性記憶装置である電気自動車のモータ駆動装置。 3. The electric vehicle motor drive device according to claim 2, wherein the storage unit for setting a numerical value by the constant setting processing unit is a non-volatile storage device.
  4.  請求項3に記載の電気自動車のモータ駆動装置において、上記不揮発性記憶装置に記憶された上記オフセット量を、上記モータ駆動装置の電源投入に応答して、モータ制御に使用する記憶領域に読み出す記憶定数読出部を設けた電気自動車のモータ駆動装置。 4. The motor drive device for an electric vehicle according to claim 3, wherein the offset amount stored in the nonvolatile storage device is read into a storage area used for motor control in response to power-on of the motor drive device. An electric vehicle motor driving device provided with a constant reading unit.
  5.  請求項1ないし請求項4のいずれか1項に記載の電気自動車のモータ駆動装置において、上記モータが、単独では回転方向の正方向をいずれの方向にも設定可能であり、車両への取付方向によって上記正方向が定まる形式であり、上記定数設定処理部は、上記外部接続装置から送信されて設定する数値として、上記モータの回転方向の正方向を指定する値を含む電気自動車のモータ駆動装置。 5. The motor drive device for an electric vehicle according to claim 1, wherein the motor can independently set a positive direction of rotation in any direction, and is attached to a vehicle. The constant setting processing unit includes a value specifying the positive direction of the rotation direction of the motor as a numerical value transmitted and set from the external connection device. .
PCT/JP2015/082855 2014-11-25 2015-11-24 Motor drive device for electric automobile WO2016084771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-237320 2014-11-25
JP2014237320A JP6448995B2 (en) 2014-11-25 2014-11-25 Electric vehicle motor drive device

Publications (1)

Publication Number Publication Date
WO2016084771A1 true WO2016084771A1 (en) 2016-06-02

Family

ID=56074331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082855 WO2016084771A1 (en) 2014-11-25 2015-11-24 Motor drive device for electric automobile

Country Status (2)

Country Link
JP (1) JP6448995B2 (en)
WO (1) WO2016084771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025763A1 (en) * 2020-07-31 2022-02-03 E-Traction Europe B.V. Control system for an electric vehicle comprising in-wheel motors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178303A (en) * 1997-12-09 1999-07-02 Sankyo Seiki Mfg Co Ltd Encoder device and parameter setting device thereof
JP2005198409A (en) * 2004-01-07 2005-07-21 Nissan Motor Co Ltd Device for correcting motor input and output coefficient of electric vehicle of right and left steered wheel independent drive system
JP2014230341A (en) * 2013-05-21 2014-12-08 Ntn株式会社 Motor controller

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582856B2 (en) * 1994-07-06 2004-10-27 株式会社安川電機 Motor with encoder, motor control device and control system
US6388419B1 (en) * 2000-09-01 2002-05-14 Ford Global Technologies, Inc. Motor control system
JP5801143B2 (en) * 2011-08-29 2015-10-28 日本電産サンキョー株式会社 Motor system and motor control device
WO2014168055A1 (en) * 2013-04-08 2014-10-16 富士電機株式会社 Tuning-assistance device and tuning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178303A (en) * 1997-12-09 1999-07-02 Sankyo Seiki Mfg Co Ltd Encoder device and parameter setting device thereof
JP2005198409A (en) * 2004-01-07 2005-07-21 Nissan Motor Co Ltd Device for correcting motor input and output coefficient of electric vehicle of right and left steered wheel independent drive system
JP2014230341A (en) * 2013-05-21 2014-12-08 Ntn株式会社 Motor controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025763A1 (en) * 2020-07-31 2022-02-03 E-Traction Europe B.V. Control system for an electric vehicle comprising in-wheel motors

Also Published As

Publication number Publication date
JP6448995B2 (en) 2019-01-09
JP2016101021A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
US6968260B2 (en) Vehicle drive control apparatus, vehicle drive control method and program therefor
US6870470B2 (en) Angle sensor and car using the same
CN111806362B (en) Vehicle control interface and vehicle system
US20200307683A1 (en) Detection unit
JP5028876B2 (en) Motor control device
WO2018194029A1 (en) Steering angle detection device
WO2016084771A1 (en) Motor drive device for electric automobile
CN102673641B (en) Harmonic pinion torque correction
JP7139616B2 (en) steering controller
EP0941910B1 (en) Controller for automobile
CN112046601B (en) Method for calibrating limit position of steering angle, steering controller and automobile
JP2007069849A (en) Steering controlling device for vehicle
JP2008165335A (en) Vehicular electronic control device
US20180319425A1 (en) Method for calibrating the steering angle sensor of a motor vehicle
JPWO2019097692A1 (en) Rotation detection device
US20030174523A1 (en) Drive power supply and fail determination method
JP6135340B2 (en) Motor control system
CN112026726A (en) Vehicle system
CN105048890B (en) Control the magnetic flux in motor vehicle motor
JP2009056819A (en) Control device of electric power steering device
JP2012059099A (en) Information processor
JP2005132126A (en) Electric power steering device
WO2020059579A1 (en) Correction device and correction method
JP2012201243A (en) Electric power steering device and prohibition method
JP2006224722A (en) Electric power steering control device, and electric power steering device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862377

Country of ref document: EP

Kind code of ref document: A1