WO2016082581A1 - 一种波长路由规划方法、装置及存储介质 - Google Patents

一种波长路由规划方法、装置及存储介质 Download PDF

Info

Publication number
WO2016082581A1
WO2016082581A1 PCT/CN2015/086325 CN2015086325W WO2016082581A1 WO 2016082581 A1 WO2016082581 A1 WO 2016082581A1 CN 2015086325 W CN2015086325 W CN 2015086325W WO 2016082581 A1 WO2016082581 A1 WO 2016082581A1
Authority
WO
WIPO (PCT)
Prior art keywords
planning scheme
current
planning
new
scheme
Prior art date
Application number
PCT/CN2015/086325
Other languages
English (en)
French (fr)
Inventor
张海波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016082581A1 publication Critical patent/WO2016082581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to optical communication technologies, and in particular, to a wavelength routing planning method, apparatus, and storage medium.
  • the path of the service is determined by the routing of the service in the topology and the wavelength allocation in each route.
  • both the route and the wavelength are determined. This service path plan is called wavelength route planning.
  • optical communication networks have gradually evolved from simple two-point transmission to chain networks, ring networks, multi-ring networks, and even grid-shaped networks.
  • the routing and wavelength planning of the service has to rely on software.
  • many existing planning software can perform automatic routing of wavelength routing, since the service wavelength routing assignment is a non-polynomial (NP) problem, there is still no effective method to solve the wavelength routing plan perfectly.
  • NP non-polynomial
  • the service wavelength routing is allocated according to the idle condition of the optical fiber and the wavelength, and the service is used for the service crossover (that is, the service is scheduled to be electrically converted in the network transmission process and then scheduled in the electrical layer).
  • the service wavelength routing is allocated according to the idle condition of the optical fiber and the wavelength, and the service is used for the service crossover (that is, the service is scheduled to be electrically converted in the network transmission process and then scheduled in the electrical layer).
  • the service wavelength routing is allocated according to the idle condition of the optical fiber and the wavelength, and the service is used for the service crossover (that is, the service is scheduled to be electrically converted in the network transmission process and then scheduled in the electrical layer).
  • the service crossover that is, the service is scheduled to be electrically converted in the network transmission process and then scheduled in the electrical layer.
  • the solid line “____” indicates the optical fiber between the nodes, and the broken line " "The service between the nodes is assumed to be 100G.
  • the 001-003 service and the 001-004 service share the board.
  • the two services need to be configured on the line side of each of 003 and 004.
  • the two services use the same wavelength, you need to configure three line-side boards on the 002 (one line-side board in each direction). Then, the entire system needs to be configured with six line-side boards.
  • For the 001-003 service configure a line-side board for each of the 001-003 services.
  • For the 001-004 service you need to configure one for each of the 001 and 004.
  • On the line side board in addition, since the two services do not use the same wavelength, it is not necessary to configure the line side board on the 002. Then, the entire system only needs to configure four line side boards.
  • the embodiment of the present invention is to provide a wavelength routing planning method, device, and storage medium, which can effectively reduce the number of hardware boards and save network construction costs.
  • the embodiment of the invention discloses a wavelength routing planning method, and the method includes:
  • the new planning scheme is superior to the current planning scheme, it is determined that the new planning scheme is used as the current planning scheme;
  • the execution of the new planning scheme is determined and the operation of the current planning scheme is determined until the termination condition is met, and then the current planning scheme is output.
  • the randomly selecting and deleting the part of the wavelength and the routing information in the current planning scheme includes: randomly selecting one or more line side boards in the network topology, and randomly selecting the line side board Select one or more ports to clear the wavelength and routing information of all services in the port.
  • the method further includes: determining whether the new planning scheme is superior to the current planning scheme;
  • the determining that the new planning scheme is superior to the current planning scheme includes: setting an evaluation function, and determining, by the evaluation function, that the number of required side-side boards in the new planning scheme is smaller than the number of required side-side boards in the current planning scheme, The planning scheme is better than the current planning scheme.
  • the method further includes: when the number of required line side boards in the new planning scheme is not less than the number of required line side boards in the current planning scheme, the probability determined by the preset probability function is considered to be superior to the new planning scheme. Current planning plan.
  • the satisfying termination condition includes but is not limited to: the number of cycles reaches a preset threshold.
  • the embodiment of the invention further discloses a wavelength routing planning device, wherein the device comprises: an initialization module, a current planning solution determining module, a determining module, and an output module; wherein
  • the initialization module is configured to perform wavelength routing planning on the service according to the network topology, determine an initial planning scheme, and use the initial planning scheme as a current planning scheme;
  • the current planning scheme determining module is configured to randomly select and delete part of the wavelength and routing information in the current planning scheme, re-wavelength planning the service, and determine a new planning scheme; When the new planning scheme is better than the current planning scheme, the new planning scheme is determined as the current planning scheme; and is configured to: when receiving the triggering of the determining module, repeatedly perform the operation of determining the new planning scheme and determining the current planning scheme.
  • the determining module is configured to determine whether the termination condition is met, and trigger a current planning solution determining module or an output module according to the determining result;
  • the output module is configured to output the current planning scheme when triggered by the determining module.
  • the current planning scheme determining module is configured to: randomly select one or more line side boards in the network topology, and randomly select one or more ports on the line side board to clear The wavelength and routing information of all services in the port.
  • the current planning solution determining module is further configured to: determine whether the new planning solution is better than the current planning solution;
  • the current planning solution determining module determines whether the new planning scheme is better than the current planning scheme, and includes: setting an evaluation function, and determining, by using the evaluation function, that the number of required side-side boards in the new planning scheme is smaller than that in the current planning scheme. When the number of boards on the line side is required, the new planning scheme is considered to be superior to the current planning scheme.
  • the current planning solution determining module is further configured to: when the number of the required line side boards in the new planning scheme is not less than the number of the required line side boards in the current planning scheme, the probability determined according to the preset probability function is considered The new planning scheme is superior to the current planning scheme.
  • the determining module is configured to: determine whether the number of cycles reaches a preset threshold.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is used to execute the wavelength routing planning method of the embodiment of the present invention.
  • the wavelength routing planning method, device, and storage medium provided by the embodiments of the present invention first perform wavelength routing planning on the service according to the network topology structure, determine an initial planning scheme, and adopt an initial rule.
  • the scheme is used as the current planning scheme; some wavelengths and routing information in the current planning scheme are randomly selected and deleted, wavelength routing planning is performed on the service, and a new planning scheme is determined; when the new planning scheme is determined to be superior to the current planning scheme, the new scheme is The planning scheme is used as the current planning scheme; the execution of the new planning scheme is determined repeatedly, and the operation of the current planning scheme is determined until the termination condition is met, and then the current planning scheme is output.
  • a better planning solution can be found as much as possible, and finally the number of boards on the line side can be reduced in the hardware configuration, thereby reducing the cost of the entire network construction.
  • FIG. 1 is a schematic diagram of a topology structure of an optical communication network
  • FIG. 2 is a schematic flowchart of a wavelength routing planning method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a second wavelength routing planning method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a wavelength routing planning apparatus according to an embodiment of the present invention.
  • the wavelength routing planning is performed on the service according to the network topology structure, the initial planning scheme is determined, and the initial planning scheme is used as the current planning scheme; some wavelengths and routing information in the current planning scheme are randomly selected and deleted, and The service performs wavelength routing planning to determine a new planning scheme.
  • the new planning scheme is better than the current planning scheme, the new planning scheme is used as the current planning scheme; the new planning scheme is determined repeatedly, and the operation of the current planning scheme is determined until the termination condition is met. Then output the current planning plan.
  • the randomly selecting and deleting part of the wavelength and routing information in the current planning scheme includes: randomly selecting one or more line side boards, and randomly selecting one or more on the line side board. Port, clears the wavelength and routing information of all services in the port.
  • the embodiment of the present invention further includes: determining whether the new planning scheme is better than the current planning scheme; wherein determining the new planning scheme is better than the current planning scheme, including: setting The evaluation function is used to determine that the number of required line side boards in the new planning scheme is smaller than the number of required line side boards in the current planning scheme, and the new planning scheme is considered to be superior to the current planning scheme; When the number of boards on the line side is not less than the number of boards on the line side in the current planning scheme, the probability determined by the preset probability function is considered to be superior to the current planning scheme.
  • the satisfying termination condition includes, but is not limited to, the number of cycles reaches a preset threshold.
  • the preset threshold of the number of loops may be set according to the complexity of the actual network topology structure and the requirements for the optimization degree of the final planning scheme. For example, in a case where the network topology is relatively complicated, if the degree of optimization of the plan is high, the number of cycles that need to be executed is relatively large, so the preset threshold of the number of cycles is relatively large. For example, you can set the number of loops threshold to be executed 1000 times or 10,000 times or more. For the case where the network topology is relatively simple, such as the network topology shown in FIG.
  • the corresponding feasible planning scheme is less, and if the number of loops is set too much, it is possible to wait for the same result, therefore,
  • a smaller loop number threshold can be set.
  • the loop number threshold can be set to be executed 10 times.
  • the wavelength routing planning method in the embodiment of the present invention includes the following steps:
  • Step 201 Perform wavelength routing planning on the service according to the network topology, determine an initial planning solution, and use the initial planning solution as the current planning solution.
  • wavelength routing planning can be performed on services according to certain constraints. For example, wavelength routing planning can be performed according to the optimal wavelength constraint according to the service creation order.
  • the method further includes: determining the number of line side boards required to implement the current planning solution according to the current wavelength routing planning result.
  • the method further includes: saving wavelength routing information corresponding to the current planning scheme.
  • Step 202 Randomly select and delete part of the wavelength and routing information in the current planning scheme, re-wavelength planning the service, and determine a new planning scheme;
  • the randomly selecting and deleting part of the wavelength and routing information in the current planning scheme includes: randomly selecting one or more line side boards, and randomly selecting one or more ports on the line side board, Clear the wavelength and routing information of all services in the port.
  • wavelength routing planning of the service After the wavelength routing planning of the service is re-established, you can choose to change the original constraints. For example, in the process of re-routing the service, you can delete the current After planning some wavelengths and routing information in the solution, you can remove the optimal wavelength limit and do not add new port re-planning. You can also increase the number of ports, for example, re-planning if there are no more than two new ports. Wait.
  • the number of ports on different line-side boards is not exactly the same.
  • the line-side board has only one port, and the line-side board on some nodes has eight ports. If you add a new port, you may have increased the number of boards on the line side before rescheduling.
  • the number of line side boards corresponding to the planning scheme is less than the original.
  • Step 203 When the new planning scheme is superior to the current planning scheme, determine that the new planning scheme is used as the current planning scheme;
  • the step further includes: determining whether the new planning scheme is superior to the current planning scheme; wherein determining the new planning scheme is better than the current planning scheme includes: setting an evaluation function, and determining, by using the evaluation function, the required line side board in the new planning scheme When the number is smaller than the number of boards on the line side in the current planning scheme, the new planning scheme is considered to be superior to the current planning scheme; the required routing side in the new planning scheme When the number of boards is not less than the number of boards on the line side in the current planning scheme, the probability determined by the preset probability function determines whether the new planning scheme is better than the current planning scheme.
  • the probability function that the new planning scheme is better than the current planning scheme can be determined according to the value of ⁇ t and the number of executions of step 202; the number of executions of step 202 can be determined by a successively decaying T value.
  • T the initial value of setting T is 1
  • may be 0.5; the preset probability function may be exp(- ⁇ t/T), and as the number of executions of step 202 increases, that is, as the number of cycles increases, the value of T gradually decreases, exp(- ⁇ )
  • the scope of it is likely to make it easier to find a better plan. If in the new When the number of required line side boards in the planning scheme is slightly larger than the number of line side boards required in the current planning scheme, accept the new planning scheme and use the new planning scheme as the current planning scheme. Then, in the subsequent cycle, Based on the new planning scheme, some wavelengths and routing information are randomly selected and deleted, and then re-planned. It is possible to obtain a planning scheme that is much different from the current planning scheme.
  • wavelength routing planning is a non-polynomial problem. It is impossible to determine the optimal planning scheme, and it is impossible to determine the direction of obtaining the optimal planning scheme. Therefore, it is only possible to find a relatively ideal one through various attempts. Proposal. On the basis of this, in the implementation process, it is necessary to try in many aspects, which is the case where the number of required line side boards in the new planning scheme is not less than the number of required line side boards in the current planning scheme. The reason why the new planning scheme is superior to the current planning scheme with a certain probability.
  • Step 204 Repeat step 202 to determine a new plan and step 203 to determine the operation of the current plan until the termination condition is met, and then output the current plan.
  • the satisfying termination condition includes, but is not limited to, the number of loops reaches a preset threshold.
  • the preset threshold of the number of loops may be set according to the complexity of the actual network topology structure and the requirements for the optimization degree of the final planning scheme. For example, in a case where the network topology is relatively complicated, if the degree of optimization of the plan is high, the number of cycles that need to be executed is relatively large, so the preset threshold of the number of cycles is relatively large. For example, you can set the number of loops threshold to be executed 1000 times or 10,000 times or more. For the case where the network topology is relatively simple, such as the network topology shown in FIG.
  • the corresponding feasible planning scheme is less, and if the number of loops is set too much, it is possible to wait for the same result, therefore,
  • a smaller loop number threshold can be set.
  • the loop number threshold can be set to be executed 10 times.
  • the number of cycles may be represented by a successively attenuated T value.
  • the initial value of T is 1, the threshold of T is preset, and the attenuation coefficient ⁇ and the preset threshold are set.
  • the T value is attenuated once according to the attenuation coefficient; when T is less than the preset threshold, it is considered that enough cycles have been executed to satisfy the termination condition.
  • It can also be represented by the loop counter K.
  • the initial value of K is 0, the threshold of a counter K is set, and the K value is incremented by 1 every time the loop is executed. When the K value reaches the preset threshold, it is considered that enough has been executed. The number of loops that satisfy the termination condition.
  • T and K it is also possible to determine whether the termination condition is satisfied by T and K at the same time, for example, setting the threshold of T and the threshold of K, performing T loop in K, initial value of K is 0, initial value of T is 1, and step 202 is performed every time.
  • the T value is attenuated once; when T is less than the preset threshold, the K value is increased by 1, and the initial value of T is restored to 1 state.
  • the K value is further increased by 1.
  • the K value can also be cycled within the T value range.
  • FIG. 3 is a schematic flowchart of a wavelength routing planning method according to an embodiment of the present invention.
  • the network topology structure shown in FIG. 1 is taken as an example.
  • the wavelength routing planning method in the embodiment of the present invention includes the following steps:
  • Step 301 Perform wavelength routing planning on the service according to the network topology, determine an initial planning scheme, use the initial planning scheme as a current planning scheme, initialize a T value, and set an attenuation coefficient ⁇ and a threshold of T;
  • Step 302 Initialize K and set a threshold of K
  • the above-mentioned assignment is only illustrative, the value of ⁇ is set smaller, the value of T 0 is set larger, and the value of K 0 is set smaller, in order to fully describe the double cycle of the embodiment of the present invention.
  • the process but does not mean that the same settings are made in the actual application. Therefore, the embodiment of the present invention only takes the above numerical value as an example, and can be set according to actual needs in the process of actual application. For example, when the network topology is complex and a more optimized planning scheme needs to be determined, the number of wavelength routing plans needs to be many. Therefore, ⁇ will be greater than 0.5, and the value of T 0 will be less than 0.6, the value of K 0 . It will be much larger than 1.
  • Step 303 Randomly select and delete part of the wavelength and routing information in the current planning scheme, and then perform wavelength routing planning on the service to determine a new planning scheme.
  • the randomly selecting and deleting part of the wavelength and routing information in the current planning scheme includes: randomly selecting one or more line side boards, and randomly selecting one or more ports on the line side board, If the port of the line-side board used by the T3 of the 100G service is selected, the wavelength information and routing information of all services under the port are cleared, and the planning constraints are changed, the wavelength-optimized limit is removed, and the new port is not used or Re-planning under the condition that no more than two ports are added, and a new planning scheme is obtained.
  • the new planning scheme is: 1 T wave is used for services T1 and T2, and 2 waves are used for service T3.
  • the new planning scheme is the same as the current planning scheme, and 8 line side boards need to be configured.
  • Step 306 Determine whether the new planning scheme is better than the current planning scheme; when the new planning scheme is better than the current planning scheme, perform step 305, otherwise, perform step 306;
  • determining that the new planning scheme is superior to the current planning scheme includes: setting an evaluation function, and determining, by the evaluation function, whether the new planning scheme is superior to the current planning scheme; where the evaluation function may be in the new planning scheme
  • Step 305 The new planning scheme is used as a current planning scheme
  • Step 306 retain the current planning scheme
  • step 304 Since the new planning scheme is considered to be superior to the current planning scheme in step 304, this step is not performed;
  • Step 307 K value is increased by 1;
  • Step 308 Determine whether the K value is greater than a preset threshold; when K is greater than or equal to the preset threshold, step 309; otherwise, return to step 303;
  • Step 309 Determine whether the T value is less than the preset threshold; when the T value is less than or equal to the preset threshold, step 310 is performed, otherwise step 311 is not performed;
  • the value of T is still the initial value of 1, not less than the preset threshold of 0.6; then step 311 is performed;
  • Step 310 Output the current planning scheme, and the process ends.
  • Step 311 The T value is attenuated, and returns to step 302;
  • step 302 K is reset to 0;
  • step 303 after the wavelength routing planning is performed on the service, in the new planning scheme, T1 uses the first wavelength, service T2 uses the third wavelength, and service T3 uses the second wavelength, and T1, T2, and T3 use different ones.
  • the wavelength therefore, the new planning solution needs to be configured with six line side boards.
  • step 307 After the K value is incremented by 1 in step 307, the K loop termination condition is satisfied in step 308, and the K loop is jumped out;
  • step 309 the value of T is 0.5, which is less than the preset threshold of 0.6.
  • Step 310 is executed to output the current planning scheme; the process ends. The final plan was saved by two line side boards than the originally determined plan.
  • the embodiment of the present invention is only an example of the foregoing process.
  • the steps may be adjusted, replaced, deleted, etc. according to the actual application scenario.
  • a person skilled in the art can make various changes and modifications to the invention without departing from the spirit and scope of the invention.
  • the above steps may be appropriately interchanged, and some processes may be adjusted in order to form a new embodiment, and such adjustments are all within the scope of the present invention.
  • FIG. 4 is a schematic structural diagram of a wavelength routing planning device according to an embodiment of the present invention. As shown in FIG. 4, the device includes an initialization module 41, a current planning solution determining module 42, and a determination. Module 43, an output module 44; wherein
  • the initialization module 41 is configured to perform wavelength routing planning on the service according to the network topology, determine an initial planning scheme, and use the initial planning scheme as a current planning scheme;
  • the initialization module 41 performs wavelength routing planning on the service according to the network topology structure.
  • the wavelength routing planning may be performed on the service according to certain constraints. For example, the wavelength may be optimally determined according to the service creation order. Conditional wavelength routing planning.
  • the initialization module 41 is configured to determine the number of the line side boards required to implement the current planning solution according to the current wavelength routing planning result.
  • the device further includes a storage module 45 configured to save the wavelength routing information corresponding to the current planning scheme.
  • the current planning scheme determining module 42 is configured to randomly select and delete part of the wavelength and routing information in the current planning scheme, re-wavelength planning the service, and determine a new planning scheme; when the new planning scheme is superior to the current planning scheme, Determining to use the new planning scheme as the current planning scheme; and determining that the new planning scheme is not superior to the current planning scheme, retaining the current planning scheme;
  • the current planning scheme determining module 42 is configured to: randomly select one or more line side boards in the network topology, and randomly select one or more ports on the line side board, and clear all the ports.
  • the wavelength and routing information of the service is configured to: randomly select one or more line side boards in the network topology, and randomly select one or more ports on the line side board, and clear all the ports. The wavelength and routing information of the service.
  • the current planning scheme determining module 42 may, after deleting the wavelength and routing information in the current planning scheme, re-select the original constraints, for example, re-run the wavelength routing plan for the service.
  • the current planning solution determining module 42 in the embodiment of the present invention is further configured to: determine whether the new planning solution is better than the current planning solution; wherein the current planning solution determining module 42 is Whether the new planning scheme is better than the current planning scheme includes: setting an evaluation function, when determining, by the evaluation function, that the number of required side-side boards in the new planning scheme is smaller than the number of required side-side boards in the current planning scheme, It is considered that the new planning scheme is superior to the current planning scheme; if the number of required side-side boards in the new planning scheme is not less than the number of required side-side boards in the current planning scheme, the probability determined by the preset probability function determines whether the new planning scheme is superior. In the current planning plan.
  • the determining module 43 is configured to determine whether the termination condition is met, and trigger the current planning solution determining module 42 or the output module 44 according to the determination result;
  • the output module 44 is triggered; when the determination result is that the termination condition is not met, the current planning solution determining module 42 is triggered.
  • the satisfying termination condition includes, but is not limited to, the number of loops reaches a preset threshold; the determining module 43 is configured to: determine whether the number of loops reaches a preset threshold.
  • the number of cycles may be represented by a successively attenuated T value.
  • the initial value of T is 1, the threshold of T is preset, and the attenuation coefficient ⁇ and the preset threshold are set, and each cycle is performed.
  • the value of T is attenuated once according to the attenuation coefficient; when T is less than the preset threshold, it is considered that enough cycles have been executed to satisfy the termination condition.
  • the initial value of K is 0, the threshold of a counter K is set, and the K value is incremented by 1 every time the loop is executed. When the K value reaches the preset threshold, it is considered that enough has been executed. The number of loops that satisfy the termination condition.
  • T and K it is also possible to determine whether the termination condition is satisfied by T and K at the same time, for example, Set the threshold of T and the threshold of K, and perform T loop in K.
  • the initial value of K is 0, the initial value of T is 1, and the value of T is attenuated once every time the loop is executed.
  • T is less than the preset threshold, the value of K is added. 1. Re-recover to the state where the initial value of T is all 1.
  • T is less than the preset threshold again, the K value is further increased by 1 until the K value reaches the preset threshold; based on the same idea, it can also be in the range of T value.
  • a cycle of K values is performed inside.
  • the output module 44 is configured to output the current planning scheme when the termination condition is met
  • the current planning solution determining module 42 is further configured to repeatedly perform an operation of determining a new planning scheme and determining a current planning scheme when the determining module triggers.
  • the processor may be a processor on a mobile terminal or a server. In practical applications, the processor It can be a central processing unit (CPU), a microprocessor (MPU), a digital signal processor (DSP), or a field programmable gate array (FPGA).
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the above wavelength routing planning method is implemented in the form of a software function module, and is sold or used as a separate product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is used to execute the wavelength routing planning method of the embodiment of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供了一种波长路由规划方法,包括:根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规划方案作为当前规划方案;随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;所述新规划方案优于当前规划方案时,确定将所述新规划方案作为当前规划方案;重复执行确定新规划方案以及确定当前规划方案的操作直至满足终止条件,之后输出当前规划方案。本发明还提供了一种波长路由规划装置及存储介质。

Description

一种波长路由规划方法、装置及存储介质 技术领域
本发明涉及光通信技术,尤其涉及一种波长路由规划方法、装置及存储介质。
背景技术
光通信网络系统中,业务的路径由业务在拓扑上的路由和每一条路由中的波长分配情况共同确定。在业务路径规划的过程中,既要确定路由又要确定波长,这种业务路径规划称为波长路由规划。
目前,光通信网络已经从简单的两点间传输逐渐发展成链形网络、环形网络、多环网络,甚至网格形网络。随着网络拓扑结构越来越复杂,业务量也随之越来越多,因此,业务的路由及波长规划不得不依赖软件来进行。虽然,现有很多规划软件可以进行波长路由的自动规划,但由于业务波长路由分配是一个非多项式(NP)问题,因此,目前仍然没有一种行之有效的方法可以完美的解决波长路由规划这个问题,各种规划软件也只能是尽可能的给出一个相对好的实现方案。
另外,通常在软件规划业务时,会根据光纤和波长的空闲情况来进行业务波长路由的分配,而对于业务用电交叉的方式(即业务在网络传输过程中进行光电转换后在电层进行调度)进行规划调度的情况,当业务较多时,虽然可以规划成功,但是实际按规划方案进行硬件配置时需要耗费过多的硬件成本。
以图1所示的光通信网络拓扑结构为例,包括节点001、002、003、004;图1中,实线“____”表示节点之间的光纤,虚线“
Figure PCTCN2015086325-appb-000001
”表示节点之间的业务,假设光纤为100G,有两个10G的业务001-003和001-004, 分别沿路径001-002-003和001-002-004进行传输。若两个业务使用同一波长,则配置硬件设备时,需要在001配置一块线路侧单板,001-003的业务和001-004的业务共用这一块单板,两条业务还分别需要在003和004各配置一块线路侧单板;另外由于两个业务使用同一波长,需要在002上配置三块线路侧单板(每个方向有一块线路侧单板),那么,整个系统需配置六块线路侧单板,若两条业务不使用同一波长,则配置硬件设备时,对于001-003的业务,需要在001和003上各配置一块线路侧单板,对于001-004的业务,需要在001和004上各配置一块线路侧单板;另外,由于两条业务不使用同一波长,因此,无需在002上配置线路侧单板,那么,整个系统只需配置四块线路侧单板。
从上述过程可以看出,不同的规划方案会影响最终硬件配置,即使在业务路由已经确定的情况下,由于波长配置不同,最后所需要配置的线路侧单板数量也不同;而当光通信网络中网络拓扑结构更复杂的情况下,结合不同的路径和波长,会有更多的规划方案,不同的规划方案可能会对应配置不同的单板数量,因此,如何得到较优的规划方案是非常有意义的问题。
发明内容
有鉴于此,本发明实施例期望提供一种波长路由规划方法、装置及存储介质,能够有效减少硬件单板数量,节省建网成本。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例公开了一种波长路由规划方法,所述方法包括:
根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规划方案作为当前规划方案;
随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;
所述新规划方案优于当前规划方案时,确定将所述新规划方案作为当前规划方案;
重复执行确定新规划方案以及确定当前规划方案的操作直至满足终止条件,之后输出当前规划方案。
上述方案中,所述随机选择并删除当前规划方案中的部分波长和路由信息包括:随机选择所述网络拓扑结构中的一个或多个线路侧单板,并在所述线路侧单板上随机选择一个或多个端口,清空所述端口中所有业务的波长和路由信息。
上述方案中,所述方法还包括:确定所述新规划方案是否优于当前规划方案;
其中,确定新规划方案优于当前规划方案包括:设置评价函数,通过所述评价函数确定新规划方案中所需线路侧单板数量小于当前规划方案中所需线路侧单板数量时,认为新规划方案优于当前规划方案。
上述方案中,所述方法还包括:新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,按照预设概率函数确定的概率认为新规划方案优于当前规划方案。
上述方案中,所述满足终止条件包括但不限于:循环次数达到预设阈值。
本发明实施例还公开了一种波长路由规划装置,其特征在于,所述装置包括:初始化模块、当前规划方案确定模块、判断模块、输出模块;其中,
所述初始化模块,配置为根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规划方案作为当前规划方案;
当前规划方案确定模块,配置为随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;所 述新规划方案优于当前规划方案时,确定将所述新规划方案作为当前规划方案;还配置为:当接收到判断模块触发时,重复执行确定新规划方案以及确定当前规划方案的操作。
所述判断模块,配置为判断是否满足终止条件,并根据判断结果触发当前规划方案确定模块或输出模块;
所述输出模块,配置为当接收到判断模块触发时,输出所述当前规划方案。
上述方案中,所述当前规划方案确定模块配置为:随机选择所述网络拓扑结构中的一个或多个线路侧单板,并在所述线路侧单板上随机选择一个或多个端口,清空所述端口中所有业务的波长和路由信息。
上述方案中,所述当前规划方案确定模块还配置为:确定所述新规划方案是否优于当前规划方案;
其中,所述当前规划方案确定模块确定所述新规划方案是否优于当前规划方案包括:设置评价函数,通过所述评价函数确定新规划方案中所需线路侧单板数量小于当前规划方案中所需线路侧单板数量时,认为新规划方案优于当前规划方案。
上述方案中,所述当前规划方案确定模块还配置为:新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,按照预设概率函数确定的概率认为新规划方案优于当前规划方案。
上述方案中,所述判断模块配置为:判断循环次数是否达到预设阈值。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序用于执行本发明实施例的波长路由规划方法。
本发明实施例所提供的波长路由规划方法、装置及存储介质,先根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规 划方案作为当前规划方案;随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;确定新规划方案优于当前规划方案时,将所述新规划方案作为当前规划方案;重复执行确定新规划方案以及确定当前规划方案的操作直至满足终止条件,之后输出当前规划方案。如此,能够在波长路由规划过程中,尽可能的找到更优的规划方案,最终在硬件配置上能够减少线路侧单板的数量,从而降低整个网络建设的成本。
附图说明
图1为光通信网络拓扑结构示意图;
图2为本发明实施例一波长路由规划方法流程示意图;
图3为本发明实施例二波长路由规划方法流程示意图;
图4为本发明实施例波长路由规划装置结构示意图。
具体实施方式
本发明实施例中,先根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规划方案作为当前规划方案;随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;确定新规划方案优于当前规划方案时,将所述新规划方案作为当前规划方案;重复执行确定新规划方案以及确定当前规划方案的操作直至满足终止条件,之后输出当前规划方案。
本发明实施例中,所述随机选择并删除当前规划方案中的部分波长和路由信息包括:随机选择一个或多个线路侧单板,并在所述线路侧单板上随机选择一个或多个端口,清空所述端口中所有业务的波长和路由信息。
在确定新规划方案之后,本发明实施例还包括:确定新规划方案是否优于当前规划方案;其中,确定新规划方案优于当前规划方案包括:设置 评价函数,通过所述评价函数确定新规划方案中所需线路侧单板数量小于当前规划方案中所需线路侧单板数量时,认为新规划方案优于当前规划方案;新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,按照预设概率函数确定的概率认为新规划方案优于当前规划方案。
所述满足终止条件包括但不限于:循环次数达到预设阈值。
本发明实施例中,所述循环次数预设阈值可以根据实际网络拓扑结构的复杂度以及对最终规划方案优化程度的要求进行设定。例如,在网络拓扑结构相对复杂的情况下,如果对规划方案优化程度较高,则需要执行的循环次数会相对较多,因此循环次数的预设阈值就会相对很大。例如,可以设置循环次数阈值为执行1000次,也可以设置10000次或者更多。而对于网络拓扑结构较简单的情况,例如图1所示的网络拓扑结构,其对应的可行的规划方案较少,设置过多的循环次数,有可能得等到的是相同的结果,因此,在网络拓扑结构较简单的情况下,可以设置较小的循环次数阈值,例如,可以设置循环次数阈值为执行10次。
下面结合附图及实施例,对本发明实施例技术方案的实施作详细描述。图2为本发明实施例一波长路由规划方法流程示意图,如图2所示,本发明实施例波长路由规划方法包括以下步骤:
步骤201:根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规划方案作为当前规划方案;
本步骤中,可以根据一定的约束条件对业务进行波长路由规划,例如,可以根据业务的创建顺序按照波长最优的约束条件进行波长路由规划。
所述方法还包括:根据当前波长路由规划结果,确定实现当前规划方案所需要的线路侧单板数量。
本步骤中,所述方法还包括:保存当前规划方案对应的波长路由信息。
步骤202:随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;
本步骤中,所述随机选择并删除当前规划方案中的部分波长和路由信息包括:随机选择一个或多个线路侧单板,并在所述线路侧单板上随机选择一个或多个端口,清空所述端口中所有业务的波长和路由信息。
在重新对业务进行波长路由规划的过程中,删除当前规划方案中的部分波长和路由信息后,可以选择改变原有的约束条件,例如,在重新对业务进行波长路由规划的过程中,删除当前规划方案中的部分波长和路由信息后,可以去掉波长最优的限制且不增加新的端口重新规划;也可以适当增加端口数量,例如,在新增端口不超过两个的条件下重新规划等等。
这里,不同的线路侧单板上的端口数量并不完全相同,例如,有的节点上的线路侧单板只有一个端口,而有的节点上的线路侧单板有八个端口,因此,如果新增端口,则有可能会在重新规划之前,就已经增加了线路侧单板的数量。但是,由于光通信网络拓扑结构相对复杂,即使在重新规划之前由于增加端口已经导致增加了线路侧单板的数量,且由于端口信息的改变已使规划方案发生较大变化,仍然有可能使新规划方案对应的线路侧单板的数量比原来更少。
步骤203:新规划方案优于当前规划方案时,确定将所述新规划方案作为当前规划方案;
本步骤中,如果新规划方案不优于当前规划方案,则保留当前规划方案;
本步骤还包括:确定新规划方案是否优于当前规划方案;其中,确定新规划方案优于当前规划方案包括:设置评价函数,当通过所述评价函数确定新规划方案中所需线路侧单板数量小于当前规划方案中所需线路侧单板数量时,认为新规划方案优于当前规划方案;新规划方案中所需线路侧 单板数量不小于当前规划方案中所需线路侧单板数量时,按照预设概率函数确定的概率确定新规划方案是否优于当前规划方案。
这里,所述评价函数,可以为新规划方案中所需线路侧单板数量与当前规划方案中所需线路侧单板数量之差△t,当新规划方案中所需线路侧单板数量小于当前规划方案中所需线路侧单板数量时,即△t<0,认为新规划方案优于当前规划方案;当新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,即△t>=0,以一定的概率认为新规划方案优于当前规划方案。
这里,当△t>=0时,认为新规划方案优于当前规划方案的概率函数可以根据△t的取值和步骤202的执行次数确定;步骤202的执行次数可以由一个逐次衰减的T值来表示:设置T的初始值为1,每执行一次步骤202,T值衰减一次,并设置T(t+1)=αT(t),其中,衰减系数α为0至1之间的数值,例如,α可以为0.5;预设概率函数可以为exp(-△t/T),随着步骤202执行次数的增加,即随着循环次数的增加,T的值逐渐减小,exp(-△t/T)所确定的概率值会越来越小。因此,随着循环次数的增加,当△t>=0时,认为新规划方案优于当前规划方案的概率会越来越小;同时,△t越大,认为新规划方案优于当前规划方案的概率也会越小。
由于本发明实施例的发明目的在于减少硬件单板数量,节省建网成本,理论上不应该接受△t>=0的情况,但是,由于网络拓扑结构极为复杂,如果在确定的新规划方案中所需线路侧单板数量稍稍大于当前规划方案中所需线路侧单板数量时,不接受新规划方案,即不将所述新规划方案作为当前规划方案的话,那么在后续循环过程中,仍会以原来的当前规划方案为基础,在当前规划方案的基础上删除当部分波长和路由信息,重新对业务进行波长路由规划,这样,就会将重新规划的范围限定在与当前规划方案较为相似的范围,有可能更不容易找到更优的规划方案。如果在确定的新 规划方案中所需线路侧单板数量稍稍大于当前规划方案中所需线路侧单板数量时,接受所述新规划方案,将所述新规划方案作为当前规划方案,那么在后续循环过程中,以新规划方案为基础,随机选择并删除部分波长和路由信息后进行重新规划,有可能会得到与当前规划方案相差很多的规划方案。
正如背景技术中所述,波长路由规划是一个非多项式的问题,无法确定最优的规划方案,也无法确定获得最优规划方案的方向,因此,只能通过多方面尝试,找到一个相对理想的规划方案。基于此,在实现过程中,需要在多方面进行尝试,这就是本发明实施例中当新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,可以以一定概率认为新规划方案优于当前规划方案的原因。
步骤204:重复执行步骤202确定新规划方案以及步骤203确定当前规划方案的操作直至满足终止条件,之后输出所述当前规划方案。
这里,所述满足终止条件包括但不限于:循环次数达到预设阈值。
本发明实施例中,所述循环次数预设阈值可以根据实际网络拓扑结构的复杂度以及对最终规划方案优化程度的要求进行设定。例如,在网络拓扑结构相对复杂的情况下,如果对规划方案优化程度较高,则需要执行的循环次数会相对较多,因此循环次数的预设阈值就会相对很大。例如,可以设置循环次数阈值为执行1000次,也可以设置10000次或者更多。而对于网络拓扑结构较简单的情况,例如图1所示的网络拓扑结构,其对应的可行的规划方案较少,设置过多的循环次数,有可能得等到的是相同的结果,因此,在网络拓扑结构较简单的情况下,可以设置较小的循环次数阈值,例如,可以设置循环次数阈值为执行10次。
本发明实施例中,所述循环次数可以由一个逐次衰减的T值来表示,例如,T的初始值为1,预先设置T的阈值,并设置衰减系数α和预设阈值, 每执行一次循环,T值按照衰减系数衰减一次;当T小于预设阈值时,认为已经执行了足够多的循环次数,满足终止条件。也可以通过循环计数器K来表示,例如,K初始值为0,设置一个计数器K的阈值,每执行一次循环,K值加1,当K值达到预设阈值时,认为已经执行了足够多的循环次数,满足终止条件。也可以同时通过T和K确定是否满足终止条件,例如,设置T的阈值和K的阈值,在K内进行T循环,K初始值为0,T的初始值为1,每执行一次步骤202-204的循环,T值衰减一次;当T小于预设阈值时,K值加1,重新恢复到T的初始值均为1的状态,当T再次小于预设阈值时,K值再加1,直至K值达到预设阈值;基于相同的思路,也可以在T值范围内进行K值的循环。
图3为本发明实施例二波长路由规划方法流程示意图,本实施例以图1所述网络拓扑结构为例,如图3所示,本发明实施例波长路由规划方法包括以下步骤:
步骤301:根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,将初始规划方案作为当前规划方案,并初始化T值,设置衰减系数α,以及T的阈值;
以图1为例,一个传输速率为100G的光通讯网络中,规划一条001和003之间的10G的电交叉业务,记为T1;再规划一条001和004之间的10G的电交叉业务,记为T2;再规划一条001和004之间的100G的电交叉业务,记为T3;其中,业务T1和T2使用第一波长,业务T3使用第二波长;由于T1和T2使用同一波长,因此,业务T1和T2共需要配置六块线路侧单板,T3与T2使用的是不同的波长,因此,业务T3需要配置两块线路侧单板;因此当前规划方案需要配置八块线路侧单板。
初始化T值,并设置衰减系数α,以及T的阈值:
例如,初始化T=1,衰减系数α=0.5,T的阈值T0=0.6;
步骤302:初始化K,并设置K的阈值;
例如,可以初始化K=0,K的阈值K0=1;
本发明实施例中,上述赋值仅仅是示意性的,将α的数值设置的较小、T0设置的较大,K0的数值设置的较小,是为了完整描述本发明实施例的双循环过程,但并不代表实际应用中也进行同样的设置。因此,本发明实施例仅仅是以上述数值为例,在实际应用的过程中,可以根据实际需求进行设定。例如,当网络拓扑结构复杂,并且需要确定更为优化的规划方案时,需要进行波长路由规划的次数就会很多,因此,α将大于0.5,并且T0的值会小于0.6,K0的值也会远远大于1。
步骤303:随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案。
本步骤中,所述随机选择并删除当前规划方案中的部分波长和路由信息包括:随机选择一个或多个线路侧单板,并在所述线路侧单板上随机选择一个或多个端口,假如选择了100G业务T3使用的线路侧单板的端口,清空该端口下的所有的业务的波长信息和路由信息,并改变规划约束条件,去掉波长最优的限制且在不使用新的端口或者新增端口不超过两个的条件下重新规划,得到新规划方案。例如,新规划方案为:业务T1和T2使用1波,业务T3使用2波,新规划方案与当前规划方案相同,仍需要需配置8块线路侧单板。
步骤304:判断新规划方案是否优于当前规划方案;当新规划方案优于当前规划方案时,执行步骤305,否则,执行步骤306;
本步骤中,确定新规划方案优于当前规划方案包括:设置评价函数,通过所述评价函数,确定新规划方案是否优于当前规划方案;这里,所述评价函数,可以为新规划方案中所需线路侧单板数量与当前规划方案中所需线路侧单板数量之差△t,即评价函数△t=新规划方案中所需线路侧单板 数量-当前规划方案中所需线路侧单板数量;△t<0时,直接认为定新规划方案优于当前规划方案;当△t>=0时,以按照预设概率函数确定的概率认为新规划方案优于当前规划方案;其中概率函数为exp(-△t/T);
以步骤303中的规划结果为例,本步骤中,△t=0,T=1,则exp(-△t/T)=1,因此,以概率1认为新规划方案优于当前规划方案,即认为新规划方案优于当前规划方案。
步骤305:将所述新规划方案作为当前规划方案;
步骤306:保留当前规划方案;
由于步骤304中认为新规划方案优于当前规划方案,因此,本步骤不执行;
步骤307:K值加1;
即K=K+1=0+1=1;
步骤308:判断K值是否大于预设阈值;当K大于等于预设阈值时,执行步骤309;否则,返回步骤303;
本发明实施例中,K的预设阈值K0=1,因此,K的值为1,等于预设阈值K0,K循环结束,进行步骤309;这里,K0=1仅仅是示意性的,在实际应用过程中,K0的值会远远大于1。
步骤309:判断T值是否小于预设阈值;当T值小于等于预设阈值时,执行步骤310,否则没执行步骤311;
以上述举例为例,本步骤中,T的值仍为初始值1,不小于预设阈值0.6;则执行步骤311;
步骤310:输出所述当前规划方案,本流程结束。
步骤311:T值衰减,并返回步骤302;
本步骤中,通过T(t+1)=αT(t)计算衰减后的T值。衰减后的T=0.5*1=0.5;所述衰减系数设为0.5。而实际应用中,衰减系数一般会大于 0.5;
本步骤T值衰减后,T=0.5,并返回步骤302,初始化和K值后,重新执行步骤302-311;
在步骤302中,K重新归0;
在步骤303中,重新对业务进行波长路由规划后;在新规划方案中T1使用第一波长,业务T2使用第三波长,业务T3使用第二波长,由于T1、T2、T3使用的是不同的波长,因此,新的规划方案需配置6块线路侧单板。
在步骤304中,再次根据评价函数确定新规划方案是否优于当前规划方案;当前规划方案中所需要的线路侧单板数量为8,新规划方案中所需要的线路侧单板数量为6,因此,△t=-2,小于0,新规划方案优于当前规划方案,执行步骤305,将所述新规划方案作为当前规划方案,并保存新规划方案中波长信息和路由信息。
在步骤307中K值加1后,在步骤308中满足K循环终止条件,跳出K循环;
在步骤309中T值为0.5,小于预设阈值0.6,执行步骤310,输出所述当前规划方案;本流程结束。最终确定的规划方案比最初确定的规划方案节省了2块线路侧单板。
本发明实施例仅仅是以上述过程为例,实现过程中,可根据实际应用场景对步骤进行调整、替换、删除等。本领域的技术人员对本发明进行简单变动和变型仍然不脱离本发明的精神和范围。比如,在能够实现本发明所述发明目的的情况下,上述步骤可以适当互换,部分过程可以调整顺序,以形成新的实施例,这些调整均属于本发明所述范围。
本发明实施例还提供了一种波长路由规划装置,图4为本发明实施例波长路由规划装置结构示意图,如图4所示,所述装置包括初始化模块41、当前规划方案确定模块42、判断模块43、输出模块44;其中,
所述初始化模块41,配置为根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规划方案作为当前规划方案;
所述初始化模块41根据网络拓扑结构,对业务进行波长路由规划,确定当前规划方案时,可以根据一定的约束条件对业务进行波长路由规划,例如,可以根据业务的创建顺序按照波长最优的约束条件进行波长路由规划。
所述初始化模块41配置为根据当前波长路由规划结果,确定实现当前规划方案所需要的线路侧单板数量。
本发明实施例中,所述装置还包括存储模块45,配置为保存当前规划方案对应的波长路由信息。
当前规划方案确定模块42,配置为随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;当所述新规划方案优于当前规划方案时,确定将所述新规划方案作为当前规划方案;确定新规划方案不优于当前规划方案,则保留当前规划方案;
当前规划方案确定模块42配置为:随机选择所述网络拓扑结构中的一个或多个线路侧单板,并在所述线路侧单板上随机选择一个或多个端口,清空所述端口中所有业务的波长和路由信息。
当前规划方案确定模块42在重新对业务进行波长路由规划的过程中,删除当前规划方案中的部分波长和路由信息后,可以选择改变原有的约束条件,例如,重新对业务进行波长路由规划的过程中,在删除当前规划方案中的部分波长和路由信息后,可以去掉波长最优的限制且不增加新的端口重新规划;也可以适当增加端口数量,例如,在新增端口不超过两个的条件下重新规划等等。
本发明实施例中所述当前规划方案确定模块42还配置为:确定所述新规划方案是否优于当前规划方案;其中,所述当前规划方案确定模块42确 定所述新规划方案是否优于当前规划方案包括:设置评价函数,当通过所述评价函数确定新规划方案中所需线路侧单板数量小于当前规划方案中所需线路侧单板数量时,认为新规划方案优于当前规划方案;新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,按照预设概率函数确定的概率确定新规划方案是否优于当前规划方案。
这里,所述评价函数,可以为新规划方案中所需线路侧单板数量与当前规划方案中所需线路侧单板数量之差△t,当新规划方案中所需线路侧单板数量小于当前规划方案中所需线路侧单板数量时,即△t<0,认为新规划方案优于当前规划方案;当新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,即△t>=0,以一定的概率认为新规划方案优于当前规划方案。
所述判断模块43,配置为判断是否满足终止条件,并根据判断结果触发当前规划方案确定模块42或输出模块44;
本发明实施例中,当所述判断模块43判断结果为满足终止条件时,触发输出模块44;当判断结果为不满足终止条件时,触发当前规划方案确定模块42。
这里,所述满足终止条件包括但不限于:循环次数达到预设阈值;所述判断模块43配置为:判断循环次数是否达到预设阈值。
本发明实施例中,所述循环次数可以由一个逐次衰减的T值来表示,例如,T的初始值为1,预先设置T的阈值,并设置衰减系数α和预设阈值,每执行一次循环,T值按照衰减系数衰减一次;当T小于预设阈值时,认为已经执行了足够多的循环次数,满足终止条件。也可以通过循环计数器K来表示,例如,K初始值为0,设置一个计数器K的阈值,每执行一次循环,K值加1,当K值达到预设阈值时,认为已经执行了足够多的循环次数,满足终止条件。也可以同时通过T和K确定是否满足终止条件,例如, 设置T的阈值和K的阈值,在K内进行T循环,K初始值为0,T的初始值为1,每执行一次循环,T值衰减一次;当T小于预设阈值时,K值加1,重新恢复到T的初始值均为1的状态,当T再次小于预设阈值时,K值再加1,直至K值达到预设阈值;基于相同的思路,也可以在在T值范围内进行K值的循环。
所述输出模块44,配置为当满足终止条件时,输出所述当前规划方案;
所述当前规划方案确定模块42还配置为:当接收到判断模块触发时,重复执行确定新规划方案以及确定当前规划方案的操作。
本发明实施例中提出的各个模块都可以通过处理器来实现,当然也可通过具体的逻辑电路实现;其中所述处理器可以是移动终端或服务器上的处理器,在实际应用中,处理器可以为中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等。
本发明实施例中,如果以软件功能模块的形式实现上述波长路由规划方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序,该计算机程序用于执行本发明实施例的上述波长路由规划方法。。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护 范围。

Claims (11)

  1. 一种波长路由规划方法,所述方法包括:
    根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规划方案作为当前规划方案;
    随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;
    当所述新规划方案优于当前规划方案时,将所述新规划方案作为当前规划方案;
    重复执行确定新规划方案以及确定当前规划方案的操作直至满足终止条件,之后输出当前规划方案。
  2. 根据权利要求1所述方法,其中,所述随机选择并删除当前规划方案中的部分波长和路由信息包括:随机选择当前规划方案中的网络拓扑结构中的一个或多个线路侧单板,并在所述线路侧单板上随机选择一个或多个端口,清空所述端口中所有业务的波长和路由信息。
  3. 根据权利要求1所述方法,其中,所述方法还包括:确定所述新规划方案是否优于当前规划方案;
    包括:设置评价函数,当通过所述评价函数确定新规划方案中所需线路侧单板的数量小于当前规划方案中所需线路侧单板的数量时,则认为新规划方案优于当前规划方案。
  4. 根据权利要求3所述方法,其中,所述方法还包括:当新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,按照预设概率函数确定的概率确定新规划方案是否优于当前规划方案。
  5. 根据权利要求1所述方法,其中,所述满足终止条件包括但不限于:循环次数达到预设阈值。
  6. 一种波长路由规划装置,所述装置包括:初始化模块、当前规划方 案确定模块、判断模块、输出模块;其中,
    所述初始化模块,配置为根据网络拓扑结构对业务进行波长路由规划,确定初始规划方案,并将初始规划方案作为当前规划方案;
    当前规划方案确定模块,配置为随机选择并删除当前规划方案中的部分波长和路由信息,重新对业务进行波长路由规划,确定新规划方案;当所述新规划方案优于当前规划方案时,确定将所述新规划方案作为当前规划方案;还配置为:当接收到判断模块触发时,重复执行确定新规划方案以及确定当前规划方案的操作;
    所述判断模块,配置为判断是否满足终止条件,并根据判断结果触发当前规划方案确定模块或输出模块;
    所述输出模块,配置为当接收到判断模块触发时,输出所述当前规划方案。
  7. 根据权利要求6所述装置,其中,所述当前规划方案确定模块配置为:随机选择当前规划方案中的所述网络拓扑结构中的一个或多个线路侧单板,并在所述线路侧单板上随机选择一个或多个端口,清空所述端口中所有业务的波长和路由信息。
  8. 根据权利要求6所述装置,其中,所述当前规划方案确定模块还配置为:确定所述新规划方案是否优于当前规划方案;
    包括:设置评价函数,当通过所述评价函数确定新规划方案中所需线路侧单板的数量小于当前规划方案中所需线路侧单板的数量时,则认为新规划方案优于当前规划方案。
  9. 根据权利要求8所述装置,其中,所述当前规划方案确定模块还配置为:当新规划方案中所需线路侧单板数量不小于当前规划方案中所需线路侧单板数量时,按照预设概率函数确定的概率确定新规划方案是否优于当前规划方案。
  10. 根据权利要求6所述装置,其中,所述判断模块配置为:判断循环次数是否达到预设阈值。
  11. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至5任一项所述的波长路由规划方法。
PCT/CN2015/086325 2014-11-26 2015-08-07 一种波长路由规划方法、装置及存储介质 WO2016082581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410698760.4A CN105635858A (zh) 2014-11-26 2014-11-26 一种波长路由规划方法和装置
CN201410698760.4 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016082581A1 true WO2016082581A1 (zh) 2016-06-02

Family

ID=56050275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086325 WO2016082581A1 (zh) 2014-11-26 2015-08-07 一种波长路由规划方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN105635858A (zh)
WO (1) WO2016082581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922916A (zh) * 2021-10-11 2022-01-11 广东省电信规划设计院有限公司 一种基于wson功能的roadm全光网络规划方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107257256B (zh) * 2017-05-03 2019-11-15 中通服咨询设计研究院有限公司 一种wson网络规划方案验证方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050243738A1 (en) * 2004-05-03 2005-11-03 Sbc Knowledge Ventures, L.P. System and method for SONET transport optimization (S-TOP)
CN101409596A (zh) * 2008-11-28 2009-04-15 清华大学 一种动态业务的波长路由光网络规划方法
CN101459589A (zh) * 2007-12-14 2009-06-17 华为技术有限公司 分配网络资源的方法和装置
CN102148708A (zh) * 2011-01-31 2011-08-10 华为技术有限公司 网络规划方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391732B1 (en) * 2002-08-05 2008-06-24 At&T Corp. Scheme for randomized selection of equal cost links during restoration
CN101754058A (zh) * 2009-12-14 2010-06-23 中兴通讯股份有限公司 一种用于光网络的波长路由方法及系统
CN102546440B (zh) * 2012-02-23 2015-05-20 中兴通讯股份有限公司 一种路由波长分配方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050243738A1 (en) * 2004-05-03 2005-11-03 Sbc Knowledge Ventures, L.P. System and method for SONET transport optimization (S-TOP)
CN101459589A (zh) * 2007-12-14 2009-06-17 华为技术有限公司 分配网络资源的方法和装置
CN101409596A (zh) * 2008-11-28 2009-04-15 清华大学 一种动态业务的波长路由光网络规划方法
CN102148708A (zh) * 2011-01-31 2011-08-10 华为技术有限公司 网络规划方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922916A (zh) * 2021-10-11 2022-01-11 广东省电信规划设计院有限公司 一种基于wson功能的roadm全光网络规划方法及装置
CN113922916B (zh) * 2021-10-11 2023-07-14 广东省电信规划设计院有限公司 一种基于wson功能的roadm全光网络规划方法及装置

Also Published As

Publication number Publication date
CN105635858A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
US9130856B2 (en) Creating multiple NoC layers for isolation or avoiding NoC traffic congestion
JP7238980B2 (ja) 分析装置、分析システム、分析方法及びプログラム
CN112003787B (zh) 一种路由路径确定方法、装置、控制设备和存储介质
US9007962B2 (en) Deadlock-free routing using edge-disjoint sub-networks
US10044621B2 (en) Methods and systems for transport SDN traffic engineering using dual variables
WO2010127527A1 (zh) 在邻接节点间多边条件下实现k优路径算法的方法及装置
WO2018080559A1 (en) Reducing flooding of link state changes in networks
Abdallah et al. Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores
Chen et al. NFV middlebox placement with balanced set-up cost and bandwidth consumption
CN115208815A (zh) 路由方法和路由装置
WO2016082581A1 (zh) 一种波长路由规划方法、装置及存储介质
US9391875B2 (en) Resource oriented dependency graph for network configuration
Borowski et al. Learning efficient correlated equilibria
JP6256167B2 (ja) データセンターネットワークにおけるリスク軽減
Ahmed et al. Contention-free routing for hybrid photonic mesh-based network-on-chip systems
Efrosinin Queueing model of a hybrid channel with faster link subject to partial and complete failures
JP6402576B2 (ja) 通信装置、情報処理装置、情報処理システム及び通信装置の制御方法
Argibay-Losada et al. On whether OCS maximizes application throughput in all-optical datacenter networks
Liu et al. Multi-stage aggregation and lightpath provisioning of geo-distributed data over EON assisted by MEC
CN114416329A (zh) 计算任务部署方法、装置、电子设备及存储介质
CN114996199A (zh) 众核的路由映射方法、装置、设备及介质
JP4829911B2 (ja) ネットワーク設計装置、ネットワーク設計方法およびネットワーク設計システム
US8774195B2 (en) Using probabilistic values for routing data packets on a data center network
CN114124242B (zh) 一种水下光地址码的处理方法、装置以及设备
CN104796217B (zh) 一种光传送网络的波长分配方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863315

Country of ref document: EP

Kind code of ref document: A1