WO2016082514A1 - 一种控制方法、装置及电子设备 - Google Patents

一种控制方法、装置及电子设备 Download PDF

Info

Publication number
WO2016082514A1
WO2016082514A1 PCT/CN2015/080690 CN2015080690W WO2016082514A1 WO 2016082514 A1 WO2016082514 A1 WO 2016082514A1 CN 2015080690 W CN2015080690 W CN 2015080690W WO 2016082514 A1 WO2016082514 A1 WO 2016082514A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
energy
energy source
type
power supply
Prior art date
Application number
PCT/CN2015/080690
Other languages
English (en)
French (fr)
Inventor
杜静
滕凌巧
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016082514A1 publication Critical patent/WO2016082514A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This paper relates to the field of power supply, and in particular to a control method, device and electronic device.
  • the battery With the construction and development of mobile communication networks, the demand for communication power supplies is also increasing day by day. In order to ensure the stability and reliability of the power supply, the battery will be configured as a common storage component in the power system. Because the cost of the battery occupies a large proportion in the entire power system, and the performance is easily affected by the external environment, how to properly manage the battery and extend the battery life has always been an important issue in the design of the power system.
  • the so-called battery management is mainly battery charge and discharge management.
  • the charge and discharge management of the battery is mainly managed according to whether the system input has power. If the input has electricity, the battery is charged; if the input is not, the battery is discharged.
  • this management mode is too extensive in many scenarios. On the one hand, it does not make full use of existing resources, resulting in waste of resources. On the other hand, it is not conducive to improving battery performance.
  • a battery charging and discharging control method includes:
  • a determining step determining, according to the first indicator, whether the battery discharge reaches a set condition, and obtaining a first determination result
  • a controlling step when the first determination result indicates that the battery discharge reaches the set condition, controlling the energy source to be turned on, and controlling the power supply module, so that the power supply module can use the energy source to charge the battery;
  • the monitoring step includes:
  • the power supply module When the battery is discharged, there is energy input, and the type of the energy source is the second type, the power supply module is controlled, so that the power supply module can use the energy source to charge the battery when the energy source is turned on, wherein the first type of energy is The cost is higher than the cost of having the second type of energy.
  • the first indicator includes a DC voltage, a remaining battery capacity, or a sustained discharge duration of the battery, where the setting condition includes the DC voltage being less than or equal to a set voltage threshold, and the remaining battery capacity is less than or equal to the set capacity.
  • the threshold, or the duration of the sustained discharge is greater than or equal to the set maximum duration threshold.
  • a battery charging and discharging control method includes:
  • a determining step determining, according to the second indicator, whether the battery charging reaches the set condition, and obtaining a second determination result
  • a controlling step when the second determination result indicates that the battery charging reaches the set condition, controlling the energy to be turned off, and controlling the power supply module, so that the power supply module can stop using the energy source to charge the battery;
  • the monitoring step includes:
  • the energy source When the energy source is used to power the battery and the type of energy source is the second type, the energy source continues to be charged with the energy source, wherein the cost of having the first type of energy source is higher than the cost of having the second type of energy source.
  • the second indicator includes a battery current, a DC voltage, a remaining battery capacity, or a duration of charging the battery by the power supply module, where the battery current is less than a set current threshold, and the DC voltage is greater than The predetermined voltage threshold, the remaining battery capacity is greater than or equal to the set capacity threshold, or the duration is greater than or equal to the set maximum duration threshold.
  • controlling step includes:
  • the control energy is turned off, and the power supply module is controlled to enable power supply.
  • the module can stop using energy to charge the battery
  • the monitoring step is returned.
  • a battery charge and discharge control device comprising:
  • the first monitoring device is configured to: when the battery is discharged and the energy input is used to supply the power supply module for the battery, the first indicator is monitored, and the first indicator is used to characterize the depth of the battery discharge;
  • the first determining device is configured to: determine, according to the first indicator, whether the battery discharge reaches a set condition, and obtain a first determination result;
  • the first control device is configured to: when the first determination result indicates that the battery discharge reaches the set condition, control the energy source to be turned on, and control the power supply module, so that the power supply module can use the energy source to charge the battery;
  • the first returning device is configured to return to the first monitoring device when the first determination result indicates that the battery discharge does not reach the set condition.
  • the monitoring device comprises:
  • the first monitoring unit is configured to: monitor the first indicator of the battery when the battery is discharged, there is energy input, and the type of the energy source is the first type;
  • the first control unit is configured to: when the battery is discharged, has an energy input, and the type of the energy source is the second type, the power supply module is controlled, so that the power supply module can use the energy to charge the battery when the energy is turned on, wherein The cost of having the first type of energy source is higher than the cost of having the second type of energy source.
  • a battery charge and discharge control device comprising:
  • the second monitoring device is configured to: monitor a second indicator of the battery when the power supply module uses energy to charge the battery, and the second indicator is used to characterize the depth of the battery charging;
  • the second determining device is configured to: determine, according to the second indicator, whether the battery charging reaches the set condition, and obtain a second determination result;
  • the second control device is configured to: when the second determination result indicates that the battery charging reaches the set condition, control the energy source to be turned off, and control the power supply module, so that the power supply module can stop using the energy source to charge the battery;
  • the second returning device is configured to return to the second monitoring device when the second determination result indicates that the battery charging has not reached the set condition.
  • the monitoring device comprises:
  • a second monitoring unit configured to: monitor a second indicator of the battery when the energy source is used to power the battery and the type of the energy source is the first type;
  • a second power supply unit configured to: continue to use an energy source to charge the battery when the energy source is used to power the battery and the type of the energy source is the second type, wherein the cost of the first type of energy source is higher than The cost of the second type of energy.
  • An electronic device comprising the control device described above.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the battery By charging the battery when the battery reaches the set condition, and returning to the monitoring condition when the set condition is not reached, the battery is prevented from being over-discharged, the possibility of battery loss is reduced, and energy is saved;
  • FIG. 1 is a flow chart showing the steps of a battery charging and discharging control method according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing the steps of another battery charge and discharge control method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a battery management method in an energy 1 or energy 2 scenario according to an embodiment of the present invention
  • FIG. 4 is a general flowchart of a battery management method in an energy 3 scenario according to an embodiment of the present invention
  • FIG. 5 is a flowchart of determining battery charging in a battery management method in an energy 3 scenario according to an embodiment of the present invention
  • FIG. 6 is a flowchart of determining battery discharge in a battery management method in an energy 3 scenario according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a battery management apparatus in an energy 1 or energy 2 scenario according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a battery management apparatus in an energy 3 scenario according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a control apparatus according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of another control apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flow chart showing the steps of a battery charging and discharging control method according to an embodiment of the present invention.
  • an embodiment of the present invention provides a battery charging and discharging control method, including the following steps:
  • Step 101 A monitoring step of monitoring a first indicator of the battery when the battery is discharged and having an energy input for the power supply module for supplying power to the battery, wherein the first indicator is used to characterize the degree of discharge of the battery;
  • Step 102 the determining step, determining, according to the first indicator, whether the battery discharge reaches a set condition, and obtaining a first determination result
  • Step 103 a control step, when the first determination result indicates that the battery discharge reaches the set condition, the control energy is turned on, and the power supply module is controlled, so that the power supply module can use the energy to charge the battery;
  • Step 104 returning to the step of returning to the monitoring step when the first determination result indicates that the battery discharge does not reach the set condition.
  • the battery is charged when the battery discharge reaches the set condition, and when the set condition is not reached, the monitoring is returned, thereby avoiding over-discharging of the battery and saving energy.
  • the first indicator is, for example, a DC voltage, a remaining battery capacity, or a continuous discharge duration of the battery.
  • the energy source is, for example, a diesel generator energy source or the like.
  • the power supply module is, for example, a power conversion module located between the energy generating device and the battery, for example, the energy source for the diesel generator can be a rectifier.
  • the monitoring step may include:
  • the power supply module When the battery is discharged, there is energy input, and the type of the energy source is the second type, the power supply module is controlled, so that the power supply module can use the energy source to charge the battery when the energy source is turned on, wherein the first type of energy is The cost is higher than the cost of having the second type of energy.
  • the manner of classifying the energy may be arbitrary as long as the "cost of having the energy of the first type is higher than the cost of having the energy of the second type" is satisfied.
  • the first type of energy source is a diesel generator energy source and the second type of energy source is a solar energy source.
  • the high-cost energy source can continue to discharge the battery when the discharge continues without causing the battery to be over-discharged, thereby avoiding the battery over-discharge and saving the energy cost;
  • the battery is charged, so that the battery is charged as much as possible. In this way, the battery is charged as much as possible at the time of low-cost energy input, and the energy cost is saved at the time of high-cost energy input.
  • the first indicator includes a DC voltage, a remaining battery capacity, or a sustained discharge duration of the battery, and the setting condition includes the DC voltage being less than or equal to the set voltage threshold, and the remaining battery capacity is less than or It is equal to the set capacity threshold, or the duration of the continuous discharge is greater than or equal to the set maximum duration threshold.
  • FIG. 2 is a flow chart showing the steps of another battery charging and discharging control method according to an embodiment of the present invention. Referring to FIG. 2, an embodiment of the present invention further provides a control method, including the following steps:
  • Step 201 a monitoring step of monitoring a second indicator of the battery when the power supply module uses energy to charge the battery, and the second indicator is used to characterize the depth of the battery charging degree;
  • Step 202 the determining step, determining, according to the second indicator, whether the battery charging reaches the set condition, and obtaining a second determination result
  • Step 203 a control step, when the second determination result indicates that the battery charging reaches the set condition, the control energy is turned off, and the power supply module is controlled, so that the power supply module can stop using the energy to charge the battery;
  • Step 204 returning to the step of returning to the monitoring step when the second determination result indicates that the battery charging does not reach the set condition.
  • the energy is turned off when the battery is charged to the set condition, thereby ensuring the power supply capability of the battery and saving energy.
  • the energy source is, for example, a diesel generator energy source or the like.
  • the second indicator is, for example, a battery current, a DC voltage, or a remaining battery capacity or a duration in which the power supply module uses an energy source to charge the battery.
  • the power supply module is, for example, a power conversion module located between the energy generating device and the battery, for example, the energy source for the diesel generator can be a rectifier.
  • the monitoring step may include:
  • the energy source When the energy source is used to power the battery and the type of energy source is the second type, the energy source continues to be charged with the energy source, wherein the cost of having the first type of energy source is higher than the cost of having the second type of energy source.
  • the manner of classifying the energy may be arbitrary as long as the "cost of having the energy of the first type is higher than the cost of having the energy of the second type" is satisfied.
  • the first type of energy source is a diesel generator energy source and the second type of energy source is a solar energy source.
  • the battery is discharged when the battery has the corresponding power supply capability for the high-cost energy source, thereby avoiding the shortage of the battery power and saving the energy cost; and for the low-cost energy source, The battery is charged as long as it is present, so that the battery is charged as much as possible. In this way, the battery is charged as much as possible at the time of low-cost energy input, and the battery overcharge is avoided and the energy cost is saved when the high-cost energy is input.
  • the second indicator includes a battery current, a DC voltage, a remaining battery capacity, or a duration of charging the battery by the power supply module, wherein the setting condition includes that the battery current is less than a set current threshold, and the DC voltage is greater than a set voltage threshold.
  • the remaining battery capacity is greater than or equal to the set capacity threshold, or the duration is greater than or equal to the set maximum duration threshold.
  • controlling step may include:
  • the control energy is turned off, and the power supply module is controlled to enable power supply.
  • the module can stop using energy to charge the battery
  • the monitoring step is returned.
  • the management mode introduced in the background technology is too extensive in many scenarios.
  • the existing resources are not fully utilized, resulting in waste of resources.
  • it is not conducive to improving battery performance. Therefore, it is necessary to adopt a flexible and rational battery management method according to the input energy.
  • this paper proposes a battery management method for different input energy supply scenarios.
  • the main purpose of this alternative embodiment is to provide a battery management method that can fully utilize energy and perform battery performance according to each energy characteristic under different input energy scenarios.
  • This alternative embodiment also provides a corresponding device.
  • the optional embodiment performs charge and discharge management of the battery according to the type of input energy.
  • the characteristics of the energy it can be classified into the following three types of energy:
  • An energy source is green energy and has no pollution, but it cannot guarantee its sustainability. It is greatly affected by natural conditions, such as light energy; it is defined as energy 1.
  • One type of energy is relatively low in cost and relatively small in pollution, such as utility power; it is defined as energy 2.
  • a kind of energy cost is relatively high, and the pollution is relatively large, such as a diesel generator; it is defined as energy 3.
  • An embodiment of the present invention provides a battery management method in an energy 1 or energy 2 scenario, including:
  • the monitoring When there is energy 1 or energy 2 input, the monitoring sends the set voltage corresponding to the battery charging mode to the power conversion module, so that the battery remains charged and managed.
  • the monitoring sends the set voltage corresponding to the battery discharge mode to the power conversion module, so that the battery remains discharged and managed.
  • An embodiment of the present invention provides a battery management method in an energy 3 scenario, including:
  • the monitoring sends the set voltage corresponding to the battery charging mode to the power conversion module, so that the battery remains charged and managed.
  • the battery current the DC voltage, the remaining capacity of the battery, and the continuous power supply time of the energy source 3, it is determined whether the battery charging reaches a specified threshold.
  • the determined battery charging result it is decided whether to turn off the energy 3 and whether the battery enters the discharge management.
  • the monitoring sends the set voltage corresponding to the battery discharge mode to the power conversion module, so that the battery remains discharged and managed.
  • the DC voltage According to the DC voltage, the remaining capacity of the battery, and the length of time the battery is discharged, it is determined whether the battery discharge reaches a specified threshold.
  • the determined battery discharge result it is decided whether to turn on the energy 3 and whether the battery enters the charging management.
  • the judgment of the discharge result of the battery has the following characteristics, and these characteristics can be satisfied at the same time according to different needs, or can be separately met:
  • the judgment of the battery charging result has the following characteristics, and the characteristics can be satisfied at the same time according to different requirements, or can be separately met:
  • the optional embodiment further provides a battery management device for different types of input energy, including: an energy monitoring module, and a power conversion module.
  • the energy monitoring module further comprises a monitoring module, a judging module and a control module, and the judging module can be further subdivided into a timing module and a switch module.
  • the energy monitoring module is configured to: monitor data and charge and discharge the battery according to the type of input energy.
  • the power conversion module is configured to: receive the voltage sent by the monitoring module, and the control voltage enters charging management or discharge management.
  • the energy monitoring module also has the following characteristics:
  • the monitoring module is configured to: monitor battery current, DC voltage, remaining battery capacity, and continuous power supply time of the energy source 3 during battery charge management; monitor the DC voltage, the remaining battery capacity, and the battery discharge duration during battery discharge management.
  • the determining module is configured to: determine, during the battery charging management, whether the battery charging reaches a specified threshold according to the monitored battery current, the DC voltage, the remaining battery capacity, and the continuous power supply time of the energy source 3; according to the DC current during battery discharge management Voltage, battery remaining capacity, battery discharge time to determine whether the battery discharge reaches the specified threshold.
  • the control module is configured to: according to the result of the determining module, if the battery charging reaches a specified threshold, the energy source 3 is turned off; if the battery discharge reaches a specified threshold, the energy source 3 is turned on.
  • the timing module is configured to: when the battery is in charge management, record the energy supply time of the energy source 3 to determine whether the preset time threshold is reached.
  • the switch module is set to: open or close the battery remaining capacity switch, the battery discharge time switch, the DC voltage switch, and according to the state of the switch, determine whether to determine the battery discharge condition or the battery charging condition according to the remaining battery capacity, the battery discharge time, and the DC voltage.
  • the optional embodiment adopts different battery management methods, which not only fully utilizes the input energy, but also ensures the life and efficiency of the battery.
  • FIG. 3 it is a flow chart of battery management in the energy 1 or energy 2 scenario.
  • the flow chart is described in detail below:
  • Step 301 Determine whether the energy source 1 or the energy source 2 exists. If yes, go to step 302; if no, go to step 304.
  • Steps 302-303 When the monitoring module detects that there is energy 1 or 2 input, the voltage corresponding to the battery charging mode is sent to the power conversion module, and the voltage output by the power conversion module is charged to the battery.
  • Steps 304 to 305 when the monitoring module detects that the energy 1 or the energy source 2 has no input, the power is issued and The voltage corresponding to the pool discharge module is supplied to the power conversion module, and the voltage is outputted by the power conversion module to discharge the battery.
  • the charging voltage mentioned here will be different depending on the charging mode of the battery. If the battery is discharged to a relatively deep level, the charging voltage is high. In order to discharge the battery in the battery discharge management process, the voltage sent to the power module in the discharge mode is slightly lower than the battery voltage.
  • the power conversion module mentioned here may be different for different input energy sources. If the energy source 1 selects solar energy, the power conversion module is a solar power module, and if the energy source 2 selects a commercial power, the power conversion module is a rectifier.
  • the battery management method under the energy 1 or energy 2 scenario fully utilizes the characteristics of low energy cost and low pollution, and when the energy is sufficient, the battery is charged as much as possible, and the battery backup time is increased.
  • FIG. 4 is a general flowchart of a battery management method in an energy 3 scenario according to an alternative embodiment
  • FIG. 5 is a flowchart of a battery charging determination in an energy 3 scenario according to an alternative embodiment, and the battery management is charged by combining the two figures. The process is described in detail:
  • Step 401 Determine whether the energy source 3 is activated. If yes, proceed to step 402, and the battery is in charge management. If no, go to step 407 and the battery is in discharge management.
  • Steps 402-403 When the battery is in the charging management process, the monitoring module sends a charging voltage corresponding to the power conversion module and the battery charging mode to charge the battery.
  • Step 404 The battery monitors the battery current, the DC voltage, the remaining battery capacity, and the energy supply 3 in real time in the charging mode. It is used in step 405 to determine if the battery charge has reached a specified threshold.
  • Step 405 Determine whether the battery charging reaches the specified threshold according to the real-time quantity monitored in step 404. If yes, go to step 406: the monitoring module controls the energy source 3 to be turned off, and the battery discharge voltage is sent to the power conversion module to let the battery exit the charging. Management, enter discharge management. If no, return to step 403 to continue charging the battery.
  • Step 501 in FIG. 5 is the same as step 402 in FIG. 4, and step 502 in FIG. 5 is the same as step 404 in FIG.
  • step 501 in FIG. 5 is the same as step 402 in FIG. 4
  • step 502 in FIG. 5 is the same as step 404 in FIG.
  • the following is the process of judging Description:
  • Step 503 Determine whether the battery charging reaches a specified threshold according to the battery current. If yes, go directly to step 507, otherwise, go to step 504.
  • the criterion here is: under the premise that the determination switch is satisfied, all normal working battery currents are less than the battery charging end current threshold D, and the energy supply 3 continuous power supply duration is greater than or equal to the preset time threshold E.
  • the judgment switch condition is satisfied: the DC voltage judgment switch is turned off, the battery remaining capacity judgment switch is turned off, and the battery current judgment switch is turned on. Prevent other interference judgments and ensure that they are judged only based on battery current.
  • the preset time threshold greater than or equal to the guarantee. For example, greater than or equal to 3h.
  • the switching condition, the battery current, and the energy supply time of the energy source 3 if there is one that does not meet the requirement, then directly jump to step 504.
  • Step 504 Determine whether the battery charging reaches a specified threshold according to the DC voltage. If yes, go to step 507, otherwise, go to step 505.
  • the criterion for judging here is that, when the judgment switch is satisfied, when the DC voltage is greater than or equal to the preset voltage threshold F, and the energy supply 3 continues to be powered, the length is greater than or equal to the preset duration threshold E.
  • the judgment switch condition is satisfied: the DC voltage judgment switch is turned on, and the battery current judgment switch is turned off.
  • Step 505 Determine whether the battery charging reaches a specified threshold according to the remaining capacity of the battery. If yes, go to step 507, otherwise go to step 506.
  • the judgment criterion here is: the switching condition is satisfied: the battery remaining capacity judgment switch is turned on, and the battery current judgment switch is turned off. Then calculating a minimum remaining capacity in a group of normally operating battery packs, if the minimum remaining capacity is greater than or equal to a preset capacity threshold G, and the energy supply 3 is continuously powered longer than or equal to a preset duration threshold E, satisfying battery charging to designation Threshold.
  • the switching condition, the remaining capacity, and the energy supply time of the energy source 3 are directly jumped to step 506 as long as one of the requirements does not satisfy the requirement.
  • Step 506 The last judgment of whether the battery is full, if full, proceeds to step 507, otherwise to step 502.
  • the criterion here is that when the energy 3 continuous charging time is greater than or equal to the preset maximum time threshold H, the battery is charged to a specified threshold.
  • the condition judges only need to use the energy 3 duration for one condition, so no switching condition is needed, and in order to ensure that the battery can be fully charged, the longest time threshold here can be configured according to the scene or user requirements, for example, in order not to be too short or too Long, you can set the maximum time to 8h.
  • FIG. 6 a flow chart for determining battery discharge in an energy 3 scenario according to an alternative embodiment is described.
  • FIG. 4 the battery management discharge process is described in detail below:
  • Step 401 Determine whether the energy source 3 is activated. If yes, proceed to step 402, and the battery is in charge management. If no, go to step 407 and the battery is in discharge management.
  • Steps 407-408 When the battery is in the discharge management process, the monitoring module sends a discharge voltage corresponding to the power conversion module and the battery discharge mode to discharge the battery.
  • Step 409 The battery monitors the DC voltage, the remaining capacity of the battery, and the duration of the battery discharge in real time in the discharge mode. It is used in step 410 to determine if the battery discharge has reached a specified threshold.
  • Step 410 According to the real-time amount monitored in step 409, determine whether the battery discharge reaches a specified threshold. If yes, proceed to step 411: the monitoring module controls the energy source 3 to be turned on, and the battery charging voltage is sent to the power conversion module to let the battery exit the discharge. Management, enter charging management. If no, return to step 408 to continue battery discharge.
  • step 410 For the determination process of step 410, refer to steps 603-605 in FIG. 6, step 601 in FIG. 6 is the same as step 407 in FIG. 4, and step 602 in FIG. 6 is the same as step 409 in FIG. The following is a detailed description of the judgment process:
  • Step 603 Determine whether the battery discharge reaches a specified threshold according to the DC voltage. If yes, go to step 606. If no, go to step 604. The criterion is that when the DC voltage is less than or equal to the preset voltage threshold A, the battery discharge is satisfied to reach the specified threshold.
  • the requirement of the switching condition is not determined according to the DC voltage, which means that the DC voltage is surely judged when the battery is discharged in each round.
  • Step 604 Determine whether the battery discharge reaches a specified threshold according to the remaining capacity of the battery. If yes, go to step 606. If no, go to step 605.
  • the judgment criterion is: capacity judgment switch On, the remaining capacity of each set of valid batteries is detected, and then the minimum remaining capacity is calculated. When the minimum remaining capacity of the battery is less than or equal to the preset capacity threshold B, then the battery discharge is satisfied to reach the specified threshold.
  • Step 605 Determine whether the battery discharge reaches a specified threshold according to the battery discharge duration. If yes, go to step 606, otherwise, go to step 602.
  • the criterion is that the battery discharge time judgment switch is turned on, and when the battery discharge time is greater than or equal to the preset threshold C, the battery discharge is satisfied to reach the specified threshold.
  • the battery charge and discharge management method in the battery energy 3 scenario determines whether the battery is full during the charging process, and determines the battery discharge level in the discharging process, thereby controlling the opening and closing of the energy source 3. That is to ensure the normal charge and discharge of the battery, to ensure the battery life and power backup time, and to make reasonable use of energy 3 .
  • a battery management device for an energy 1 or energy 2 scenario provided by an embodiment of the present invention includes:
  • the monitoring module 701 is configured to: check whether the energy source 1 or the energy source 2 is input, and send a preset voltage to the power conversion module to control the battery to be charged or discharged.
  • the power conversion module 702 is configured to convert the energy source 1 or the energy source 2 into a direct current power supply for the battery and the monitoring. Receive the voltage delivered by the monitoring module for output.
  • a battery management device for an energy 3 scenario provided by an embodiment of the present invention includes: an energy monitoring module 801 and a power conversion module 802.
  • the monitoring module 801 is configured to: check whether the energy source 3 is configured, monitor data, and determine whether the battery charging or discharging reaches a specified threshold according to the monitored data. Then, according to the judgment result, the energy source 3 is controlled to be turned off or on, and the battery discharge or the preset voltage corresponding to the charging mode is issued to the power conversion module.
  • the power conversion module 802 is configured to: receive the voltage sent by the monitoring module, and control the voltage to enter Charge management or discharge management.
  • the monitoring module 801 is also responsible for determining the execution of the module 803, the monitoring module 804, and the control module 805 according to the battery management process.
  • the monitoring module 804 is configured to: monitor the amount of data for the battery charging and discharging determination process.
  • the control module 805 is configured to control the turning on or off of the energy source 3 according to the judgment result of the determining module 803.
  • the determining module 803 can also be divided into a timing module 806 and a switch module 807 according to the determination condition.
  • the timing module 806 is configured to record the energy supply time of the energy source 3 when the battery is in the charging management, thereby determining whether the preset time threshold is reached.
  • the switch module 807 is configured to: determine whether the battery is charged or discharged according to a certain amount.
  • FIG. 9 is a block diagram showing a structure of a battery charge and discharge control device according to an embodiment of the present invention. Referring to FIG. 9 , an embodiment of the present invention further provides a battery charge and discharge control device, including:
  • the first monitoring device 901 is configured to: when the battery is discharged and the energy input is used to supply the power supply module for the battery, the first indicator is monitored, where the first indicator is used to characterize the depth of the battery discharge;
  • the first determining device 902 is configured to: determine, according to the first indicator, whether the battery discharge reaches a set threshold, and obtain a first determination result;
  • the first control device 903 is configured to: when the first determination result indicates that the battery discharge reaches the set condition, control the energy source to be turned on, and control the power supply module, so that the power supply module can use the energy source to charge the battery;
  • the first returning device 904 is configured to return to the first monitoring device 901 when the first determination result indicates that the battery discharge has not reached the set condition.
  • the battery is charged when the battery discharge reaches the set condition, and when the set condition is not reached, the monitoring is returned, thereby avoiding over-discharging of the battery and saving energy.
  • the first monitoring device 901 may include:
  • the first monitoring unit is configured to: discharge the battery, have an energy input, and the type of the energy source is In the first type, the first indicator of the battery is monitored;
  • the first control unit is configured to: when the battery is discharged, has an energy input, and the type of the energy source is the second type, the power supply module is controlled, so that the power supply module can use the energy to charge the battery when the energy is turned on, wherein The cost of having the first type of energy source is higher than the cost of having the second type of energy source.
  • FIG. 10 is a block diagram showing another structure of a battery charge and discharge control device according to an embodiment of the present invention.
  • another embodiment of the battery charge and discharge control device includes:
  • the second monitoring device 1001 is configured to: when the power supply module uses the energy source to charge the battery, monitor the second indicator of the battery, where the second indicator is used to characterize the depth of the battery charging;
  • the second determining device 1002 is configured to: determine, according to the second indicator, whether the battery charging reaches the set condition, and obtain a second determination result;
  • the second control device 1003 is configured to: when the second determination result indicates that the battery charging reaches the set condition, control the energy to be turned off, and control the power supply module, so that the power supply module can stop using the energy source to charge the battery ;
  • the second returning device 1004 is configured to return to the second monitoring device 1001 when the second determination result indicates that the battery charging has not reached the set condition.
  • the second monitoring device 1001 may include:
  • a second monitoring unit configured to: monitor a second indicator of the battery when the energy source is used to power the battery and the type of the energy source is the first type;
  • a second power supply unit configured to: continue to use an energy source to charge the battery when the energy source is used to power the battery and the type of the energy source is the second type, wherein the cost of the first type of energy source is higher than The cost of the second type of energy.
  • Embodiments of the present invention also provide an electronic device including the battery charge and discharge control device described above.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the battery when the battery reaches the set condition, the battery is charged, and when the set condition is not reached, the monitoring is returned to continue, thereby avoiding the battery over-discharging and reducing the possibility of battery loss, and It saves energy; by turning off the energy when the battery is charged to the set condition, it avoids overcharging of the battery, reduces the possibility of battery loss, and saves energy.

Abstract

一种电池充放电控制方法、装置及电子设备。该电池充放电控制方法包括:监测步骤(101),在电池放电且有能源输入用于为电池供电的供电模块时,监测第一指标,第一指标用于表征电池放电程度的深浅;判断步骤(102),根据第一指标,判断电池放电是否达到设定条件,获取第一判断结果;控制步骤(103),当第一判断结果表明电池放电达到设定条件时,控制能源开启,并对供电模块进行控制,使得供电模块能够采用能源给电池充电;返回步骤(104),当第一判断结果表明电池放电没有达到设定条件时,返回监测步骤。

Description

一种控制方法、装置及电子设备 技术领域
本文涉及供电领域,尤其涉及一种控制方法、装置及电子设备。
背景技术
随着移动通信网络的建设和发展,与之相应的通信用电源的需求量也在逐日增大。为了保证供电的稳定和可靠,电池会作为常用的存储元件,在电源系统中配置。因为电池的成本在整个电源系统中占据较大比例,且性能易受到外界环境的影响,所以如何合理管理电池,延长电池寿命,一直是电源系统设计考虑的重要问题。
通常所说的电池管理主要是电池充放电管理。目前对于电池的充放电管理主要根据系统输入是否有电进行统一管理,如果输入有电,则电池充电;如果输入没电,则电池放电。然而这种管理模式在很多场景下过于粗放,一方面没有充分的利用已有资源,造成资源的浪费。另外一方面不利于提高电池性能。
发明内容
本文一种控制方法、装置及电子设备,以便既减少电池损耗的可能性,又节约能源。
一种电池充放电控制方法,包括:
监测步骤,在电池放电且有能源输入用于为电池供电的供电模块时,监测第一指标,所述第一指标用于表征电池放电程度的深浅;
判断步骤,根据所述第一指标,判断电池放电是否达到设定条件,获取第一判断结果;
控制步骤,当所述第一判断结果表明电池放电达到所述设定条件时,控制能源开启,并对所述供电模块进行控制,使得供电模块能够采用能源给电池充电;
返回步骤,当所述第一判断结果表明电池放电没有达到所述设定条件时,返回监测步骤。
可选地,所述监测步骤包括:
在电池放电、有能源输入且所述能源的类型为第一类型时,监测电池的第一指标;
在电池放电、有能源输入且所述能源的类型为第二类型时,对供电模块进行控制,使得供电模块能够在能源开启时,采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
可选地,所述第一指标包括直流电压、电池剩余容量或电池的持续放电时长,所述设定条件包括直流电压小于或等于设定的电压阈值,电池剩余容量小于或等于设定的容量阈值,或者持续放电时长大于或等于设定的最大时长阈值。
一种电池充放电控制方法,包括:
监测步骤,在供电模块采用能源给电池充电时,监测电池的第二指标,所述第二指标用于表征电池充电程度的深浅;
判断步骤,根据所述第二指标,判断电池充电是否达到所述设定条件,获取第二判断结果;
控制步骤,当所述第二判断结果表明电池充电达到所述设定条件时,控制能源关闭,并对所述供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
返回步骤,当所述第二判断结果表明电池充电没有达到设定条件时,返回监测步骤。
可选地,所述监测步骤包括:
在采用能源给电池供电且所述能源的类型为第一类型时,监测电池的第二指标;
在采用能源给电池供电且所述能源的类型为第二类型时,继续采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
可选地,所述第二指标包括电池电流、直流电压、电池剩余容量或供电模块采用能源给电池充电的持续时长,所述设定条件包括电池电流小于设定的电流阈值,直流电压大于设定的电压阈值,电池剩余容量大于或等于设定的容量阈值,或者,持续时长大于或等于设定的最大时长阈值。
可选地,所述控制步骤包括:
当所述第二判断结果表明电池充电达到所述设定条件且供电模块采用能源给电池充电的持续时长大于或等于设定的时长阈值时,控制能源关闭,并对供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
当所述第二判断结果表明电池充电没有达到所述设定条件或供电模块采用能源给电池充电的持续时长小于设定的时长阈值时,返回监测步骤。
一种电池充放电控制装置,包括:
第一监测装置,设置为:在电池放电且有能源输入用于为电池供电的供电模块时,监测第一指标,所述第一指标用于表征电池放电程度的深浅;
第一判断装置,设置为:根据所述第一指标,判断电池放电是否达到设定条件,获取第一判断结果;
第一控制装置,设置为:当所述第一判断结果表明电池放电达到所述设定条件时,控制能源开启,并对所述供电模块进行控制,使得供电模块能够采用能源给电池充电;
第一返回装置,设置为:当所述第一判断结果表明电池放电没有达到所述设定条件时,返回第一监测装置。
可选地,所述监测装置包括:
第一监测单元,设置为:在电池放电、有能源输入且所述能源的类型为第一类型时,监测电池的第一指标;
第一控制单元,设置为:在电池放电、有能源输入且所述能源的类型为第二类型时,对供电模块进行控制,使得供电模块能够在能源开启时,采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
一种电池充放电控制装置,包括:
第二监测装置,设置为:在供电模块采用能源给电池充电时,监测电池的第二指标,所述第二指标用于表征电池充电程度的深浅;
第二判断装置,设置为:根据所述第二指标,判断电池充电是否达到所述设定条件,获取第二判断结果;
第二控制装置,设置为:当所述第二判断结果表明电池充电达到所述设定条件时,控制能源关闭,并对所述供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
第二返回装置,设置为:当所述第二判断结果表明电池充电没有达到设定条件时,返回第二监测装置。
可选地,所述监测装置包括:
第二监测单元,设置为:在采用能源给电池供电且所述能源的类型为第一类型时,监测电池的第二指标;
第二供电单元,设置为:在采用能源给电池供电且所述能源的类型为第二类型时,继续采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
一种包括以上所述的控制装置的电子设备。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
从以上所述可以看出,本发明实施例具有如下有益效果:
通过在电池放电达到设定条件时,给电池充电,而在没有达到设定条件时,返回继续监测,从而既避免了电池过放,减少了电池损耗的可能性,又节约了能源;
通过在电池充电达到设定条件时,关闭能源,并让电池放电,从而既避免了电池过充,减少了电池损耗的可能性,又节约了能源。
附图概述
图1表示本发明实施例提供的一种电池充放电控制方法的步骤流程图;
图2表示本发明实施例提供的另一种电池充放电控制方法的步骤流程图;
图3表示本发明实施例提供的能源1或者能源2场景下电池管理方法流程图;
图4为本发明实施例提供的能源3场景下电池管理方法总体流程图;
图5为本发明实施例提供的能源3场景下电池管理方法中电池充电判断流程图;
图6为本发明实施例提供的能源3场景下电池管理方法中电池放电判断流程图;
图7为本发明实施例提供的能源1或者能源2场景下电池管理装置结构示意图;
图8为本发明实施例提供的能源3场景下电池管理装置结构示意图;
图9表示本发明实施例提供的一种控制装置的结构框图;
图10表示本发明实施例提供的另一种控制装置的结构框图。
本发明的实施方式
下面将结合附图对本发明的实施方式进行详细描述。
图1表示本发明实施例提供的一种电池充放电控制方法的步骤流程图,参照图1,本发明实施例提供一种电池充放电控制方法,包括如下步骤:
步骤101,监测步骤,在电池放电且有能源输入用于为电池供电的供电模块时,监测电池的第一指标,所述第一指标用于表征电池放电程度的深浅;
步骤102,判断步骤,根据所述第一指标,判断电池放电是否达到设定条件,获取第一判断结果;
步骤103,控制步骤,当所述第一判断结果表明电池放电达到所述设定条件时,控制能源开启,并对所述供电模块进行控制,使得供电模块能够采用能源给电池充电;
步骤104,返回步骤,当所述第一判断结果表明电池放电没有达到所述设定条件时,返回监测步骤。
可见,通过在电池放电达到设定条件时,给电池充电,而在没有达到设定条件时,返回继续监测,从而既避免了电池过放,又节约了能源。
其中,所述第一指标例如:直流电压,电池剩余容量或电池的持续放电时长,其中,直流电压越小表明电池放电程度越深,电池剩余容量越小表明电池放电程度越深,同一放电过程中持续放电时长越大表明电池放电程度越深。
所述能源例如:柴油发电机能源等。
供电模块例如位于能源发生设备与电池之间的功率转换模块,比如,对于柴油发电机能源可以为整流器。
本发明实施例中,所述监测步骤可包括:
在电池放电、有能源输入且所述能源的类型为第一类型时,监测电池的第一指标;
在电池放电、有能源输入且所述能源的类型为第二类型时,对供电模块进行控制,使得供电模块能够在能源开启时,采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
这里,能源的分类方式可以任意,只要满足“具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本”即可。例如,具有第一类型的能源为柴油发电机能源,具有第二类型的能源为太阳能源。
由此,使得根据能源成本的高低采用不同的处理方式,对成本高的能源,在继续放电不会引起电池过放时让电池继续放电,从而既避免了电池过放又节约了能源成本;而对成本低的能源,只要能源存在都会给电池充电,从而使电池充电程度尽可能大。这样,既在低成本能源输入时使电池充电程度尽可能大,又在高成本能源输入时节约了能源成本。
本发明实施例中,可以有:
所述第一指标包括直流电压、电池剩余容量或电池的持续放电时长,所述设定条件包括直流电压小于或等于设定的电压阈值,电池剩余容量小于或 等于设定的容量阈值,或者持续放电时长大于或等于设定的最大时长阈值。
图2表示本发明实施例提供的另一种电池充放电控制方法的步骤流程图,参照图2,本发明实施例还提供一种控制方法,包括如下步骤:
步骤201,监测步骤,在供电模块采用能源给电池充电时,监测电池的第二指标,所述第二指标用于表征电池充电程度的深浅;
步骤202,判断步骤,根据所述第二指标,判断电池充电是否达到所述设定条件,获取第二判断结果;
步骤203,控制步骤,当所述第二判断结果表明电池充电达到所述设定条件时,控制能源关闭,并对供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
步骤204,返回步骤,当所述第二判断结果表明电池充电没有达到所述设定条件时,返回监测步骤。
可见,通过在电池充电达到设定条件时,关闭能源,从而既保证了电池的供电能力,又节约了能源。
其中,所述能源例如:柴油发电机能源等。
所述第二指标例如电池电流、直流电压或电池剩余容量或供电模块采用能源给电池充电的持续时长,其中,电池电流越小表明电池充电程度越深,直流电压越大表明电池充电程度越深,电池剩余容量越大表明电池充电程度越深,同一充电过程中持续时长越大表明电池充电程度越深。
供电模块例如位于能源发生设备与电池之间的功率转换模块,比如,对于柴油发电机能源可以为整流器。
本发明实施例中,所述监测步骤可包括:
在采用能源给电池供电且所述能源的类型为第一类型时,监测电池的第二指标;
在采用能源给电池供电且所述能源的类型为第二类型时,继续采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
这里,能源的分类方式可以任意,只要满足“具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本”即可。例如,具有第一类型的能源为柴油发电机能源,具有第二类型的能源为太阳能源。
由此,使得根据能源成本的高低采用不同的处理方式,对成本高的能源,电池具有相应供电能力时让电池放电,从而避免了电池供电不足又节约了能源成本;而对成本低的能源,只要存在就让电池充电,从而使电池充电程度尽可能大。这样,既在低成本能源输入时使电池充电程度尽可能大,又在高成本能源输入时避免了电池过充且节约了能源成本。
本发明实施例中,可以有:
所述第二指标包括电池电流、直流电压、电池剩余容量或供电模块采用能源给电池充电的持续时长,所述设定条件包括电池电流小于设定的电流阈值,直流电压大于设定的电压阈值,电池剩余容量大于或等于设定的容量阈值,或者,持续时长大于或等于设定的最大时长阈值。
本发明实施例中,所述控制步骤可包括:
当所述第二判断结果表明电池充电达到所述设定条件且供电模块采用能源给电池充电的持续时长大于或等于设定的时长阈值时,控制能源关闭,并对供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
当所述第二判断结果表明电池充电没有达到所述设定条件且或供电模块采用能源给电池充电的持续时长小于设定的时长阈值时,返回监测步骤。
这样,避免了发生短期充电后的放电,从而保证了电池的性能。
下面提供本发明实施例的可选实施方式。
背景技术中介绍的管理模式在很多场景下过于粗放,一方面没有充分的利用已有资源,造成资源的浪费。另外一方面不利于提高电池性能。因此需要根据输入能源的不同,采用灵活合理的电池管理方法。为此本文提出了不同输入能源供电场景下电池管理方法。
本可选实施方式的主要目的是提供不同输入能源场景下,根据每种能源特点,即能充分利用能源,又能发挥电池性能的电池管理方法。本可选实施方式还提供了对应的装置。
本可选实施方式根据输入能源的类型进行电池的充放电管理,首先,根据能源的特点,可以分为以下三类能源:
一种能源属绿色能源,无污染,但无法保证其持续性,受自然条件影响较大,如光能;定义为能源1。
一种能源成本相对低廉,污染相对较小,如市电;定义为能源2。
一种能源成本相对较高,且污染较大,如柴油发电机;定义为能源3。
本可选实施方式一个实施例提供能源1或者能源2场景下的电池管理方法,包括:
有能源1或者能源2输入时,监控将电池充电模式对应的设定电压下发给功率转换模块,使电池保持充电管理。
无能源1或者无能源2输入时,监控将电池放电模式对应的设定电压下发给功率转换模块,使电池保持放电管理。
本可选实施方式一个实施例提供能源3场景下的电池管理方法,包括:
能源3启动时,监控将电池充电模式对应的设定电压下发给功率转换模块,使电池保持充电管理。
监测电池电流,直流电压,电池剩余容量,能源3持续供电时间。
根据所述的电池电流,直流电压,电池剩余容量,能源3持续供电时间,判断电池充电是否达到指定阈值。
根据判断的电池充电结果,决定是否关闭能源3,电池是否进入放电管理。
能源3关闭时,监控将电池放电模式对应的设定电压下发给功率转换模块,使电池保持放电管理。
监测直流电压,电池剩余容量,电池放电时长。
根据所述的直流电压,电池剩余容量,电池放电时长,判断电池放电是否达到指定阈值。
根据判断的电池放电结果,决定是否开启能源3,电池是否进入充电管理。
所述的电池放电结果的判断,具有以下特点,这些特点根据不同需求,可同时满足,也可单独满足:
(a)当直流电压小于或等于预设的电压阈值时,满足电池放电达到指定阈值,进入充电管理;
(b)当电池剩余容量小于或者等于预设的容量阈值时,满足电池放电达到指定阈值,进入充电管理;
(c)当电池放电时长大于或者等于预设的时间阈值时,满足电池放电达到指定阈值,进入充电管理;
所述的电池充电结果的判断,具有以下特点,这些特点根据不同需求,可同时满足,也可单独满足:
(a)当电池电流小于预设的电流阈值,且能源3持续供电时间时长大于或者等于预设的时长阈值,满足电池充电到指定阈值,进入放电管理;
(b)当直流电压大于或者等于预设的电压阈值,且能源3持续供电时长大于或者等于预设的时长阈值,满足电池充电到指定阈值,进入放电管理;
(c)当电池剩余容量大于或者等于预设的容量阈值,且能源3持续供电时长大于或者等于预设的时长阈值,满足电池充电到指定阈值,进入放电管理;
(d)当能源3持续充电时间大于或者等于预设的最长时间阈值时,满足电池充电到指定阈值,进入放电管理;
本可选实施方式还提供了一种不同类型输入能源的电池管理装置,包括:能源监控模块,功率转换模块。其中,能源监控模块又包括监测模块,判断模块,控制模块,而判断模块又可以细分为计时模块,开关模块。
能源监控模块,设置为:根据输入能源的类型,进行数据的监测和电池的充放电控制。
功率转换模块,设置为:接收监控模块下发的电压,控制电压进入充电管理或者放电管理。
当输入能源类型为能源3时,能源监控模块还具有以下特点:
监测模块,设置为:在电池充电管理时,监测电池电流,直流电压,电池剩余容量,能源3的持续供电时间;在电池放电管理时,监测直流电压,电池剩余容量,电池放电时长。
判断模块,设置为:在电池充电管理时,根据所述监测电池电流,直流电压,电池剩余容量,能源3的持续供电时间判断电池充电是否达到指定阈值;在电池放电管理时,根据所述直流电压,电池剩余容量,电池放电时间判断电池放电是否达到指定阈值。
控制模块,设置为:根据所述判断模块的结果,如果电池充电达到指定阈值,控制能源3的关闭;如果电池放电达到指定阈值,控制能源3的开启。
上述的判断模块还具有以下特点:
计时模块,设置为:在电池处于充电管理时,记录能源3持续供电时间,从而判断是否达到预设的时间阈值。
开关模块,设置为:打开或者关闭电池剩余容量开关,电池放电时间开关,直流电压开关,根据开关的状态,决定是否根据电池剩余容量,电池放电时间,直流电压判断电池放电情况或者电池充电情况。
本可选实施方式根据输入能源的特点,采用不同的电池管理方法,既充分利用输入能源,又能保证电池的寿命和使用效率。
下面将结合本发明实施例中的附图,对本发明实施例中的方法进行清楚,完整地描述。
参照图3,为能源1或者能源2场景下电池管理的流程图。下面对该流程图做详细说明:
步骤301:判断能源1或者能源2是否存在,若是,转入到步骤302;若否,转入到步骤304。
步骤302~303:监控模块检测到有能源1或者2输入时,下发和电池充电模式对应的电压给功率转换模块,经过功率转换模块输出的电压给电池进行充电。
步骤304~305:监控模块检测到能源1或者能源2无输入时,下发和电 池放电模块对应的电压给功率转换模块,经过功率转换模块输出地电压让电池放电。
需要说明的是:这里所说的充电电压根据电池充电模式的不同,设定的充电电压也会不同。如果电池放电程度比较深,则充电电压较高。电池放电管理流程中为了让电池放电,放电模式下发给功率模块的电压会比较电池电压略低。
需要说明的是:这里所说的功率转换模块,对于不同的输入能源,可能有所不同。若能源1选择太阳能,则功率转换模块为太阳能功率模块,若能源2选择市电,则功率转换模块为整流器。
本实施例能源1或者能源2场景下的电池管理方法,充分利用了能源自身成本低,污染小的特点,在能源充足的时候,尽可能使电池充电,增加电池的备电时间。
参照图4,为本可选实施方式能源3场景下电池管理方法总体流程图,图5为本可选实施方式能源3场景下电池充电判断流程图,综合这两个图,对电池管理的充电流程做详细说明:
步骤401:判断能源3是否启动,若是,则转入步骤402,电池处于充电管理。若否,则转入步骤407,电池处于放电管理。
步骤402~403:电池处于充电管理流程时,监控模块下发给功率转换模块和电池充电模式对应的充电电压,让电池充电。
步骤404:电池在充电的模式下,实时监测电池电流,直流电压,电池剩余容量,能源3持续供电时间。用于步骤405判断电池充电是否达到指定阈值。
步骤405:根据步骤404监测的实时量,判断电池充电是否达到指定阈值,如果是,则转入步骤406:监控模块会控制能源3关闭,下发电池放电电压给功率转换模块,让电池退出充电管理,进入放电管理。若否,则回到步骤403,继续进行电池充电。
充电管理判断流程可以参见图5中的步骤503~506。图5中的步骤501同图4的步骤402,图5中的步骤502同图4的步骤404。下面对判断流程做 说明:
步骤503:根据电池电流判断电池充电是否达到指定阈值,如是,则直接转入到步骤507,否则跳转到步骤504。此处的判断标准为:在判断开关满足的前提下,所有正常工作的电池电流均小于电池充电结束电流阈值D,且能源3持续供电时长大于或者等于预设的时间阈值E。
其中,判断开关条件要满足:直流电压判断开关关闭,电池剩余容量判断开关关闭,电池电流判断开关打开。防止其他量干扰判断,保证只根据电池电流判断。
为了保证电池的性能,增加能源3持续供电时间的约束,必须满足大于或等于预设的时间阈值作为保障。比如,大于或等于3h。
其中,开关条件,电池电流,能源3持续供电时间,只要有一个不满足要求,则直接跳转到步骤504。
步骤504:根据直流电压判断电池充电是否达到指定阈值,如是,则转入步骤507,否则跳转到步骤505。此处的判断标准为:在判断开关满足的前提下,当直流电压大于或者等于预设的电压阈值F,且能源3持续供电时长大于或者等于预设的时长阈值E。
其中,判断开关条件要满足:直流电压判断开关打开,电池电流判断开关关闭。
开关条件,直流电压,能源3持续供电时间,只要有一个不满足要求,则直接跳转到步骤505。
步骤505:根据电池剩余容量判断电池充电是否达到指定阈值。如是,则转入步骤507,否则跳转到步骤506。此处的判断标准为:开关条件要满足:电池剩余容量判断开关打开,电池电流判断开关关闭。然后计算若干组正常工作的电池组中的最小剩余容量,如果最小剩余容量大于或者等于预设的容量阈值G,且能源3持续供电时长大于或者等于预设的时长阈值E,满足电池充电到指定阈值。
其中,开关条件,剩余容量,能源3持续供电时间,只要有一个不满足要求,则直接跳转到步骤506。
步骤506:电池是否充满的最后一个判断,如果充满,则转入步骤507,否则跳转到步骤502。此处的判断标准为:当能源3持续充电时间大于或者等于预设的最长时间阈值H时,满足电池充电到指定阈值。
该条件判断只需要用能源3持续时间一个条件,所以不需要开关条件,另外为了保证电池能充满,此处的最长时间阈值可以根据场景或者用户要求配置,例如,为了不至于太短或者太长,可以设置最长时间为8h。
参照图6,为本可选实施方式能源3场景下电池放电判断流程图,结合图4,下面对电池管理放电流程做详细说明:
步骤401:判断能源3是否启动,若是,则转入步骤402,电池处于充电管理。若否,则转入步骤407,电池处于放电管理。
步骤407~408:电池处于放电管理流程时,监控模块下发给功率转换模块和电池放电模式对应的放电电压,让电池放电。
步骤409:电池在放电的模式下,实时监测直流电压,电池剩余容量,电池放电时长。用于步骤410判断电池放电是否达到指定阈值。
步骤410:根据步骤409监测的实时量,判断电池放电是否达到指定阈值,如果是,则转入步骤411:监控模块会控制能源3开启,下发电池充电电压给功率转换模块,让电池退出放电管理,进入充电管理。若否,则回到步骤408,继续进行电池放电。
其中,步骤410的判断流程可以参见图6中的步骤603~605,图6中的步骤601同图4的步骤407,图6中的步骤602同图4的步骤409。下面对判断流程做详细说明:
步骤603:根据直流电压判断电池放电是否达到指定阈值,若是,则转入步骤606,若否,则跳转到步骤604。判断标准为:当直流电压小于或等于预设的电压阈值A时,满足电池放电达到指定阈值。
需要说明的是:根据直流电压判断不需要开关条件的要求,意味着在每轮判断电池放电情况时,一定会判断直流电压。
步骤604:根据电池剩余容量判断电池放电是否达到指定阈值,若是,则转入步骤606,若否,则跳转到步骤605。判断标准为:容量判断开关打 开,检测每一组有效电池的剩余容量,然后比较计算出最小的剩余容量。当电池最小剩余容量小于或者等于预设的容量阈值B时,则满足电池放电达到指定阈值。
其中,开关条件,电池剩余容量,有一个不满足要求,则直接跳转到步骤605。
步骤605:根据电池放电时长判断电池放电是否达到指定阈值。若是,则转入步骤606,否则,跳转到步骤602。判断标准为:电池放电时间判断开关打开,电池放电时长大于或者等于预设的阈值C时,满足电池放电达到指定阈值。
其中,开关条件,电池放电时长,有一个不满足要求,则直接跳转到步骤602。
本可选实施方式电池能源3场景下的电池充放电管理方法,通过在充电流程中,判断电池是否充满,在放电流程中,判断电池放电程度,从而控制能源3的开启和关闭。即能保证电池正常的充放电,保证电池的寿命和备电时间,又能合理利用能源3。
参照图7,为本可选实施方式实施例提供的能源1或者能源2场景的电池管理装置,包括:
监控模块701,设置为:检查能源1或者能源2是否输入,下发预设的电压给功率转换模块,控制电池处于充电或者放电管理。
功率转换模块702,设置为:将能源1或者能源2转化为直流电为电池和监控供电。接收监控模块下发的电压进行输出。
参照图8,为本可选实施方式实施例提供的能源3场景的电池管理装置,包括:能源监控模块801和功率转换模块802。
监控模块801,设置为:检查能源3是否配置,监测数据,根据监测的数据,判断电池充电或者放电是否达到指定阈值。然后根据判断结果控制能源3的关闭或者开启,下发电池放电或者充电模式对应的预设电压给功率转换模块。
功率转换模块802,设置为:接收监控模块下发的电压,控制电压进入 充电管理或者放电管理。
监控模块801根据电池管理流程,还负责判断模块803,监测模块804和控制模块805的执行。
监测模块804,设置为:监测用于电池充电和放电判断流程的数据量。
控制模块805,设置为:根据判断模块803的判断结果,控制能源3的开启或关闭。
判断模块803根据判断条件,还可以分为计时模块806,开关模块807。
计时模块806,设置为:在电池处于充电管理时,记录能源3持续供电时间,从而判断是否达到预设的时间阈值。
开关模块807,设置为:决定是否根据某个量判断电池充电或者放电的程度。
图9表示本发明实施例提供的一种电池充放电控制装置的结构框图,参照图9,本发明实施例还提供一种电池充放电控制装置,包括:
第一监测装置901,设置为:在电池放电且有能源输入用于为电池供电的供电模块时,监测第一指标,所述第一指标用于表征电池放电程度的深浅;
第一判断装置902,设置为:根据所述第一指标,判断电池放电是否达到设定阈值,获取第一判断结果;
第一控制装置903,设置为:当所述第一判断结果表明电池放电达到所述设定条件时,控制能源开启,并对所述供电模块进行控制,使得供电模块能够采用能源给电池充电;
第一返回装置904,设置为:当所述第一判断结果表明电池放电没有达到所述设定条件时,返回第一监测装置901。
可见,通过在电池放电达到设定条件时,给电池充电,而在没有达到设定条件时,返回继续监测,从而既避免了电池过放,又节约了能源。
本发明实施例中,所述第一监测装置901可包括:
第一监测单元,设置为:在电池放电、有能源输入且所述能源的类型为 第一类型时,监测电池的第一指标;
第一控制单元,设置为:在电池放电、有能源输入且所述能源的类型为第二类型时,对供电模块进行控制,使得供电模块能够在能源开启时,采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
图10表示本发明实施例提供的另一种电池充放电控制装置的结构框图,参照图10,本发明实施例还提供另一种电池充放电控制装置,包括:
第二监测装置1001,设置为:在供电模块采用能源给电池充电时,监测电池的第二指标,所述第二指标用于表征电池充电程度的深浅;
第二判断装置1002,设置为:根据所述第二指标,判断电池充电是否达到所述设定条件,获取第二判断结果;
第二控制装置1003,设置为:当所述第二判断结果表明电池充电达到所述设定条件时,控制能源关闭,并对所述供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
第二返回装置1004,设置为:当所述第二判断结果表明电池充电没有达到设定条件时,返回第二监测装置1001。
可见,通过在电池充电达到设定阈值时,关闭能源,并让电池放电,从而既保证了电池的供电能力,又节约了能源。
本发明实施例中,所述第二监测装置1001可包括:
第二监测单元,设置为:在采用能源给电池供电且所述能源的类型为第一类型时,监测电池的第二指标;
第二供电单元,设置为:在采用能源给电池供电且所述能源的类型为第二类型时,继续采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
本发明实施例还提供一种电子设备,所述电子设备包括以上所述的电池充放电控制装置。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中, 所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例中,通过在电池放电达到设定条件时,给电池充电,而在没有达到设定条件时,返回继续监测,从而既避免了电池过放,减少了电池损耗的可能性,又节约了能源;通过在电池充电达到设定条件时,关闭能源,从而既避免了电池过充,减少了电池损耗的可能性,又节约了能源。

Claims (13)

  1. 一种电池充放电控制方法,包括:
    监测步骤,在电池放电且有能源输入用于为电池供电的供电模块时,监测第一指标,所述第一指标用于表征电池放电程度的深浅;
    判断步骤,根据所述第一指标,判断电池放电是否达到设定条件,获取第一判断结果;
    控制步骤,当所述第一判断结果表明电池放电达到所述设定条件时,控制能源开启,并对所述供电模块进行控制,使得供电模块能够采用能源给电池充电;
    返回步骤,当所述第一判断结果表明电池放电没有达到所述设定条件时,返回监测步骤。
  2. 根据权利要求1所述的控制方法,其中,所述监测步骤包括:
    在电池放电、有能源输入且所述能源的类型为第一类型时,监测电池的第一指标;
    在电池放电、有能源输入且所述能源的类型为第二类型时,对供电模块进行控制,使得供电模块能够在能源开启时,采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
  3. 根据权利要求1所述的控制方法,其中,所述第一指标包括直流电压、电池剩余容量或电池的持续放电时长,所述设定条件包括直流电压小于或等于设定的电压阈值,电池剩余容量小于或等于设定的容量阈值,或者持续放电时长大于或等于设定的最大时长阈值。
  4. 一种电池充放电控制方法,包括:
    监测步骤,在供电模块采用能源给电池充电时,监测电池的第二指标,所述第二指标用于表征电池充电程度的深浅;
    判断步骤,根据所述第二指标,判断电池充电是否达到所述设定条件,获取第二判断结果;
    控制步骤,当所述第二判断结果表明电池充电达到所述设定条件时,控 制能源关闭,并对所述供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
    返回步骤,当所述第二判断结果表明电池充电没有达到设定条件时,返回监测步骤。
  5. 根据权利要求4所述的控制方法,其中,所述监测步骤包括:
    在采用能源给电池供电且所述能源的类型为第一类型时,监测电池的第二指标;
    在采用能源给电池供电且所述能源的类型为第二类型时,继续采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
  6. 根据权利要求4所述的控制方法,其中,所述第二指标包括电池电流、直流电压、电池剩余容量或供电模块采用能源给电池充电的持续时长,所述设定条件包括电池电流小于设定的电流阈值,直流电压大于设定的电压阈值,电池剩余容量大于或等于设定的容量阈值,或者,持续时长大于或等于设定的最大时长阈值。
  7. 根据权利要求4所述的控制方法,其中,所述控制步骤包括:
    当所述第二判断结果表明电池充电达到所述设定条件且供电模块采用能源给电池充电的持续时长大于或等于设定的时长阈值时,控制能源关闭,并对供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
    当所述第二判断结果表明电池充电没有达到所述设定条件或供电模块采用能源给电池充电的持续时长小于设定的时长阈值时,返回监测步骤。
  8. 一种电池充放电控制装置,包括:
    第一监测装置,设置为:在电池放电且有能源输入用于为电池供电的供电模块时,监测第一指标,所述第一指标用于表征电池放电程度的深浅;
    第一判断装置,设置为:根据所述第一指标,判断电池放电是否达到设定条件,获取第一判断结果;
    第一控制装置,设置为:当所述第一判断结果表明电池放电达到所述设定条件时,控制能源开启,并对所述供电模块进行控制,使得供电模块能够 采用能源给电池充电;
    第一返回装置,设置为:当所述第一判断结果表明电池放电没有达到所述设定条件时,返回第一监测装置。
  9. 根据权利要求8所述的控制装置,其中,所述第一监测装置包括:
    第一监测单元,设置为:在电池放电、有能源输入且所述能源的类型为第一类型时,监测电池的第一指标;
    第一控制单元,设置为:在电池放电、有能源输入且所述能源的类型为第二类型时,对供电模块进行控制,使得供电模块能够在能源开启时,采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
  10. 一种电池充放电控制装置,包括:
    第二监测装置,设置为:在供电模块采用能源给电池充电时,监测电池的第二指标,所述第二指标用于表征电池充电程度的深浅;
    第二判断装置,设置为:根据所述第二指标,判断电池充电是否达到所述设定条件,获取第二判断结果;
    第二控制装置,设置为:当所述第二判断结果表明电池充电达到所述设定条件时,控制能源关闭,并对所述供电模块进行控制,使得供电模块能够停止采用能源给电池充电;
    第二返回装置,设置为:当所述第二判断结果表明电池充电没有达到设定条件时,返回第二监测装置。
  11. 根据权利要求10所述的控制装置,其中,所述监测装置包括:
    第二监测单元,设置为:在采用能源给电池供电且所述能源的类型为第一类型时,监测电池的第二指标;
    第二供电单元,设置为:在采用能源给电池供电且所述能源的类型为第二类型时,继续采用能源给电池充电,其中,具有所述第一类型的能源的成本高于具有所述第二类型的能源的成本。
  12. 一种电子设备,包括权利要求8至11中任一项所述的控制装置。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-7任一项的方法。
PCT/CN2015/080690 2014-11-26 2015-06-03 一种控制方法、装置及电子设备 WO2016082514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410696122.9A CN105703411A (zh) 2014-11-26 2014-11-26 一种控制方法、装置及电子设备
CN201410696122.9 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016082514A1 true WO2016082514A1 (zh) 2016-06-02

Family

ID=56073514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080690 WO2016082514A1 (zh) 2014-11-26 2015-06-03 一种控制方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN105703411A (zh)
WO (1) WO2016082514A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667468A (zh) * 2022-02-17 2023-08-29 荣耀终端有限公司 电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729616B2 (ja) * 2018-03-08 2020-07-22 カシオ計算機株式会社 電子機器、給電制御方法、及びプログラム
CN111030211A (zh) * 2019-11-28 2020-04-17 珠海格力电器股份有限公司 一种电池充放电控制方法、装置、存储介质及电动汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1858957A (zh) * 2005-04-29 2006-11-08 乐金电子(昆山)电脑有限公司 便携式终端机电池组的充电控制设备及其方法
CN201430551Y (zh) * 2009-06-17 2010-03-24 非凡(福建)电子科技有限公司 太阳能电源供应器
CN103326432A (zh) * 2013-06-20 2013-09-25 广东欧珀移动通信有限公司 一种电子设备的电池充电控制方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664435B (zh) * 2012-05-04 2014-05-28 无锡中星微电子有限公司 一种充电管理电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1858957A (zh) * 2005-04-29 2006-11-08 乐金电子(昆山)电脑有限公司 便携式终端机电池组的充电控制设备及其方法
CN201430551Y (zh) * 2009-06-17 2010-03-24 非凡(福建)电子科技有限公司 太阳能电源供应器
CN103326432A (zh) * 2013-06-20 2013-09-25 广东欧珀移动通信有限公司 一种电子设备的电池充电控制方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667468A (zh) * 2022-02-17 2023-08-29 荣耀终端有限公司 电子设备
CN116667468B (zh) * 2022-02-17 2023-12-26 荣耀终端有限公司 电子设备

Also Published As

Publication number Publication date
CN105703411A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
CN110194065B (zh) 车辆的整车能量控制方法、装置、车辆和存储介质
US8793518B2 (en) Systems and methods for providing supplemental power to battery powered information handling systems
JP7295953B2 (ja) 電池パック用の強化された電池管理システム
US9372521B2 (en) Systems and methods for providing auxiliary reserve current for powering information handling systems
CN102856612B (zh) 混合动力电源系统
CN103369124A (zh) 电池管理方法及装置
US8022670B2 (en) Method for charging battery module
US8410750B2 (en) Method for solar power energy management with intelligent selection of operating modes
JP6007385B2 (ja) 蓄電装置およびその制御方法ならびに電源装置
WO2017101453A1 (zh) 供电控制方法及装置
CN110661278A (zh) 储能空调系统及其控制方法和控制装置
CN109980732A (zh) 锂电池充放电控制方法及供电系统
WO2016082514A1 (zh) 一种控制方法、装置及电子设备
CN105356561A (zh) 双电池充放电系统及方法
CN104078716A (zh) 一种电池充电方法及处理器
JP2006262612A5 (zh)
CN101312296B (zh) 电池模块的充电方法
US10193358B2 (en) Deep-charging power resources of power resource group having identifier corresponding to range within which modulo falls based on charging time
JP2013537027A (ja) 電池を充電するための方法
JP7295952B2 (ja) 電池パック用の強化されたスイッチドバランシングネットワーク
CN102270877A (zh) 电源供电系统
CN102801197A (zh) 终端和终端的充电控制方法
CN203537013U (zh) 一种可延长阴雨天连续工作日的太阳能控制器
CN203387282U (zh) 一种箱级电池管理系统
JP2002058175A (ja) 独立型電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863181

Country of ref document: EP

Kind code of ref document: A1