WO2017117913A1 - 电池组充放电方法及装置 - Google Patents

电池组充放电方法及装置 Download PDF

Info

Publication number
WO2017117913A1
WO2017117913A1 PCT/CN2016/084589 CN2016084589W WO2017117913A1 WO 2017117913 A1 WO2017117913 A1 WO 2017117913A1 CN 2016084589 W CN2016084589 W CN 2016084589W WO 2017117913 A1 WO2017117913 A1 WO 2017117913A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit
auxiliary
main
voltage
Prior art date
Application number
PCT/CN2016/084589
Other languages
English (en)
French (fr)
Inventor
陈华炜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017117913A1 publication Critical patent/WO2017117913A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a battery pack charging and discharging method and apparatus.
  • the new battery pack In the case of parallel charging of old and new batteries: due to different discharge performance, the new battery pack actually discharges more than the old battery pack, the actual required charging capacity is also more than the old battery pack; when the charging is sufficient, the battery component has bias current, new The charging current of the battery pack is greater than the design current; when the charging is insufficient, due to the large discharge capacity of the new battery pack, the new battery pack is undercharged to a greater extent than the old battery pack, that is, the new battery pack has a greater capacity degradation rate than the old battery pack.
  • paralleling the new battery pack will extend the overall battery pack performance, but will significantly reduce the life of the new battery pack, the old battery pack life is extended, the new battery pack is shortened, which will cause commercial maintenance and warranty disputes .
  • the present invention provides a battery pack charging and discharging method and device to solve at least the problem of increasing cost and reducing battery life caused by direct or parallel use of new and old batteries in the related art.
  • An embodiment of the present invention provides a battery pack charging and discharging method, including: determining that a battery pack needs to be charged or discharged, wherein the battery pack includes a main battery and an auxiliary battery; and the main battery in the battery group The battery cells and/or the auxiliary battery cells are independently charged or discharged.
  • separately charging the main road battery and/or the auxiliary circuit battery in the battery group includes: determining whether the main circuit battery is Satisfying the first charging condition, wherein the first charging condition comprises: the voltage of the main circuit battery is less than a preset voltage, and/or the current of the main circuit battery circuit is greater than a preset current; determining that the main circuit battery is satisfied In the case of the first charging condition, the main battery is charged separately; and when it is determined that the main battery does not satisfy the first charging condition, the auxiliary battery is separately charged.
  • charging the auxiliary battery separately includes: determining whether the auxiliary battery meets a second charging condition, wherein the second charging condition comprises: the voltage of the auxiliary battery is less than the voltage of the main battery And the capacity setting of the auxiliary battery is not zero; and when it is determined that the auxiliary battery meets the second charging condition, the auxiliary battery is separately charged.
  • the second charging condition comprises: the voltage of the auxiliary battery is less than the voltage of the main battery And the capacity setting of the auxiliary battery is not zero; and when it is determined that the auxiliary battery meets the second charging condition, the auxiliary battery is separately charged.
  • the method further includes: controlling the The main battery enters the floating state.
  • the method before separately charging the main circuit battery, the method further includes: adjusting a charging voltage of the power supply according to a voltage of the main circuit battery; and/or charging the auxiliary battery separately Previously, the method further includes: adjusting a charging voltage of the power supply according to a voltage of the auxiliary battery.
  • respectively discharging the main road battery and/or the auxiliary circuit battery in the battery group independently comprises: determining whether the main circuit battery is Satisfying the first discharge condition, wherein the first discharge condition comprises: the main circuit battery circuit is turned on, the voltage of the main circuit battery is greater than the voltage of the auxiliary circuit battery, and the voltage of the main circuit battery is greater than the battery power-off a voltage; when it is determined that the battery of the main path satisfies the first discharge condition, discharging is performed by using the main circuit battery until the voltage of the main circuit battery drops to a preset one-time power-off voltage; When the main battery does not satisfy the first discharge condition, or after the main battery voltage drops to the primary power-off voltage, the auxiliary battery is used for discharging.
  • performing the discharging by using the auxiliary battery includes: determining whether the auxiliary battery meets a second discharging condition, wherein the second discharging condition comprises: the auxiliary battery circuit is turned on, and the capacity setting of the auxiliary battery is not Zero, and the voltage of the auxiliary circuit battery is greater than the secondary power-off voltage; when it is determined that the auxiliary battery meets the second discharge condition, discharging is performed by using the auxiliary battery until the voltage of the auxiliary battery is reduced Discharging the power supply to the primary power-off load after the power-off voltage is once off; after disconnecting the power supply to the one-time power-off load, continuing to use the auxiliary battery to discharge until the voltage of the auxiliary battery drops to The secondary power-off voltage is described.
  • the method further includes: determining whether the main battery meets the first discharging condition; and determining that the main battery meets the first discharging condition, Discharging using the main circuit battery until the voltage of the main circuit battery drops to When the battery is powered down, disconnect the power supply to the battery's power-off load.
  • the method before the charging of the main circuit battery or before discharging by using the main circuit battery, the method further includes: determining whether the main circuit battery circuit is in the first state, wherein the first The state includes the main channel of the main circuit battery circuit being turned on, and the auxiliary channel of the main circuit battery circuit, the main channel of the auxiliary circuit battery circuit, and the auxiliary channel of the auxiliary battery circuit are all disconnected, and the auxiliary channel of the main circuit battery circuit is provided with a first anti-reverse circuit, a second anti-reverse circuit is disposed on the auxiliary channel of the auxiliary circuit battery circuit; and the state of the main circuit battery circuit is adjusted if the main circuit battery circuit is not in the first state Up to the first state; and/or, before charging the auxiliary battery separately, or before discharging by using the auxiliary battery, the method further comprising: determining whether the auxiliary battery circuit is in the second state, The second state includes a main channel of the auxiliary circuit battery circuit being turned on, and a main channel of the main circuit battery circuit, a secondary
  • the main circuit battery and the auxiliary circuit battery share a current detecting unit, wherein the current detecting unit is configured to: detect a total current of the main circuit battery circuit and the auxiliary circuit battery circuit, to determine Whether the main circuit battery circuit or the auxiliary circuit battery circuit is turned on; and/or, the first anti-reverse circuit is composed of a first anti-reverse diode; and/or the second anti-reverse circuit is protected by a second anti-reverse circuit Diode construction.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • An embodiment of the present invention further provides a battery pack charging and discharging device, comprising: a determining module, configured to: determine that a battery pack needs to be charged or discharged, wherein the battery pack includes a main battery and an auxiliary battery; and a charging and discharging module And configured to separately charge or discharge the main circuit battery and/or the auxiliary circuit battery in the battery pack.
  • the determining module includes: a first determining unit, configured to: determine whether the main battery meets a first charging condition, wherein the first charging condition comprises: the voltage of the main battery is less than a pre Setting a voltage, and/or a current of the main circuit battery circuit is greater than a preset current;
  • the charging and discharging module includes: a first charging unit, configured to: determine, in the first determining unit, that the main battery meets the first In the case of charging conditions, the main circuit battery is separately charged; the second charging And the unit is configured to: separately charge the auxiliary battery when the first determining unit determines that the main battery does not satisfy the first charging condition.
  • the second charging unit includes: a second determining unit, configured to: determine whether the auxiliary battery meets a second charging condition, wherein the second charging condition comprises: the voltage of the auxiliary battery is less than The voltage of the main circuit battery and the capacity setting of the auxiliary circuit battery are not zero; the third charging unit is configured to: when the second determining unit determines that the auxiliary battery meets the second charging condition, Charging the auxiliary battery.
  • a second determining unit configured to: determine whether the auxiliary battery meets a second charging condition, wherein the second charging condition comprises: the voltage of the auxiliary battery is less than The voltage of the main circuit battery and the capacity setting of the auxiliary circuit battery are not zero
  • the third charging unit is configured to: when the second determining unit determines that the auxiliary battery meets the second charging condition, Charging the auxiliary battery.
  • control module is configured to: after separately charging the auxiliary battery and determining that the auxiliary battery is charged, or in the second determining unit, determining that the auxiliary battery does not satisfy the second charging condition In the case, the main battery is controlled to enter a floating state.
  • the device further includes: a first adjustment module, configured to: adjust a charging voltage of the power supply according to a voltage of the main battery before separately charging the main battery; and/or, The second adjustment module is configured to: before charging the auxiliary battery separately, adjust the charging voltage of the power supply according to the voltage of the auxiliary battery.
  • a first adjustment module configured to: adjust a charging voltage of the power supply according to a voltage of the main battery before separately charging the main battery
  • the second adjustment module is configured to: before charging the auxiliary battery separately, adjust the charging voltage of the power supply according to the voltage of the auxiliary battery.
  • the determining module includes: a third determining unit, configured to: determine whether the main circuit battery meets a first discharging condition, wherein the first discharging condition comprises: the main circuit battery circuit is turned on, The voltage of the main circuit battery is greater than the voltage of the auxiliary circuit battery, and the voltage of the main circuit battery is greater than the battery power-off voltage;
  • the charging and discharging module includes: a first discharging unit, configured to: determine in the third determining unit When the battery of the main circuit satisfies the first discharge condition, discharging is performed by using the main circuit battery until the voltage of the main circuit battery drops to a preset primary power-off voltage; the second discharge unit is set When the third determining unit determines that the main battery does not satisfy the first discharging condition, or after the main battery voltage drops to the primary power-off voltage, using the auxiliary battery Discharge.
  • the second discharging unit includes: a fourth determining unit, configured to: determine whether the auxiliary battery meets a second discharging condition, wherein the second discharging condition includes: the auxiliary battery circuit is turned on, and the auxiliary battery The capacity setting is not zero, and the voltage of the auxiliary circuit battery is greater than the secondary power-off voltage; the third discharge unit is configured to: when the fourth determining unit determines that the auxiliary battery meets the second discharging condition Discharging, using the auxiliary battery to discharge until the voltage of the auxiliary battery drops to the primary power-off voltage, disconnecting the power supply to the primary power-off load; And configured to: after disconnecting the power supply to the one-time power-off load, continue to discharge by using the auxiliary battery until the voltage of the auxiliary battery drops to the secondary power-off voltage.
  • a fourth determining unit configured to: determine whether the auxiliary battery meets a second discharging condition, wherein the second discharging condition includes: the auxiliary battery circuit is turned on, and the auxiliary battery The capacity setting is not zero
  • the charging and discharging module further includes: a fifth determining unit, configured to: after the discharging is performed by using the auxiliary battery, determining whether the main battery meets the first discharging condition; and the fifth discharging unit, The method is configured to: when the fifth determining unit determines that the main battery meets the first discharging condition, perform discharging by using the main battery until the voltage of the main battery drops to the battery When the voltage is low, the power supply to the battery's power-off load is disconnected.
  • a fifth determining unit configured to: after the discharging is performed by using the auxiliary battery, determining whether the main battery meets the first discharging condition
  • the fifth discharging unit The method is configured to: when the fifth determining unit determines that the main battery meets the first discharging condition, perform discharging by using the main battery until the voltage of the main battery drops to the battery When the voltage is low, the power supply to the battery's power-off load is disconnected.
  • the device further includes: a first determining module, configured to: determine whether the main circuit battery circuit is in the first state before charging the main circuit battery separately, or before discharging by using the main circuit battery a state, wherein the first state includes a main channel of the main circuit battery circuit being turned on, and the auxiliary channel of the main circuit battery circuit, the main channel of the auxiliary battery circuit, and the auxiliary channel of the auxiliary battery circuit are all disconnected, the main path a first anti-reflection circuit is disposed on the auxiliary channel of the battery circuit, and a second anti-reverse circuit is disposed on the auxiliary channel of the auxiliary circuit battery circuit; and the third adjustment module is configured to: the main circuit battery circuit is not in the In the case of the first state, adjusting the state of the main circuit battery circuit to the first state; and/or the second determining module is configured to: before separately charging the auxiliary battery, or using the Before the auxiliary battery is discharged, determining whether the auxiliary battery circuit is in the second state, wherein the second state includes the main
  • the battery pack needs to be charged or discharged, wherein the battery pack includes a main road battery and an auxiliary circuit battery; and the main circuit battery and/or the auxiliary circuit battery in the battery group are independently charged or discharged, Therefore, a flexible main battery and auxiliary battery management method is adopted, and the main battery and the auxiliary battery are time-division charged and discharged, so that only one battery (main battery or auxiliary battery) is charged or discharged at the same time.
  • the invention solves the problems of increasing the cost and reducing the battery life caused by the direct or parallel connection of the old and new batteries in the related art, thereby achieving the effect of reducing the cost and improving the battery life to a certain extent.
  • FIG. 1 is a flow chart of a battery pack charging and discharging method according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of a battery pack charging and discharging device according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing a structure of a determining module 22 and a charging and discharging module 24 in a battery pack charging and discharging device according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing the structure of a second charging unit 36 in a battery pack charging and discharging device according to an embodiment of the present invention
  • FIG. 5 is an optional structural block diagram of a battery pack charging and discharging device according to an embodiment of the present invention.
  • FIG. 6 is another block diagram of an alternative structure of a battery pack charging and discharging device according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing another structure of the determining module 22 and the charging and discharging module 24 in the battery pack charging and discharging device according to an embodiment of the present invention
  • FIG. 8 is a block diagram showing the structure of a second discharge unit 76 in a battery pack charging and discharging device according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a charge and discharge module 24 in a battery pack charging and discharging device according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing still another optional structure of a battery pack charging and discharging device according to an embodiment of the present invention.
  • FIG. 11 is a block diagram showing the structure of a hybrid battery management device according to an embodiment of the present invention.
  • FIG. 12 is a circuit diagram of a main and auxiliary battery switching device according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of management of battery charging of a main auxiliary battery switching device according to an embodiment of the present invention.
  • FIG. 14 is a flow chart showing management of battery discharge of a main auxiliary battery switching device according to an embodiment of the present invention.
  • 15 is a flow chart of switching a main battery of a main auxiliary battery switching device to an auxiliary battery according to an embodiment of the present invention
  • Figure 16 is a flow chart showing the switching of the auxiliary battery of the main and auxiliary battery switching device to the main battery according to the embodiment of the present invention.
  • FIG. 1 is a flowchart of a battery pack charging and discharging method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S102 determining that the battery pack needs to be charged or discharged, wherein the battery pack includes a main battery and an auxiliary battery;
  • step S104 the main circuit battery and/or the auxiliary circuit battery in the battery pack are independently charged or discharged.
  • the main battery and the auxiliary battery are time-division charged and discharged, so that only one battery (main battery or auxiliary battery) is online at the same time.
  • Charging or discharging solves the problem of increasing the cost and reducing the battery life caused by the direct or parallel connection of the old and new batteries in the related art, thereby achieving the effect of reducing the cost and improving the battery life to a certain extent.
  • separately charging the main battery and/or the auxiliary battery in the battery in step S104 may include: determining Whether the main battery meets the first charging condition, wherein the first charging condition comprises: the voltage of the main circuit battery is less than a preset voltage, and/or the current of the main circuit battery circuit is greater than a preset current; determining that the main battery meets the first In the case of the charging condition, the main battery is charged separately; when it is judged that the main battery does not satisfy the first charging condition, the auxiliary battery is separately charged.
  • the main battery may be a new battery, or a battery with a large battery capacity
  • the auxiliary battery may be an old battery or a battery with a small battery capacity
  • separately charging the auxiliary battery may include: determining whether the auxiliary battery meets the second charging condition, wherein the second charging condition includes: the voltage of the auxiliary battery is less than the voltage of the main battery and the auxiliary battery The capacity setting is not zero; in the case where it is judged that the auxiliary battery meets the second charging condition, the auxiliary battery is separately charged.
  • the voltage of the auxiliary battery in the process of charging the auxiliary battery, is less than the voltage of the main battery and the capacity setting of the auxiliary battery is not zero, so that the voltage of the main battery is greater than the auxiliary circuit.
  • the battery indicates that the charge of the main battery has reached a certain value, and the charging efficiency of the battery pack is improved.
  • the method further includes: controlling the main battery to enter the floating charge status.
  • the floating state can mean that when the battery is in a full state, it will not stop charging, but will provide a constant voltage (which can be called a float voltage) and a small battery (which can be called a float current). Supply the battery.
  • a constant voltage which can be called a float voltage
  • a small battery which can be called a float current. Supply the battery.
  • the method before separately charging the main battery, may further include: adjusting a charging voltage of the power supply according to a voltage of the main battery; and/or, before separately charging the auxiliary battery The method may further include: adjusting a charging voltage of the power supply according to a voltage of the auxiliary battery. Before the main circuit and/or the auxiliary circuit battery are separately charged, the power supply voltage is adjusted to prevent the battery from being overcharged instantaneously and the battery life is improved.
  • separately discharging the main battery and/or the auxiliary battery in the battery in step S104 may include: determining Whether the main circuit battery satisfies the first discharge condition, wherein the first discharge condition comprises: the main circuit battery circuit is turned on, the voltage of the main circuit battery is greater than the voltage of the auxiliary circuit battery, and the voltage of the main circuit battery is greater than the battery lowering voltage; When the main battery meets the first discharge condition, the main battery is used for discharging until the voltage of the main battery drops to a preset one-time power-off voltage; in the case that the main battery does not satisfy the first discharge condition, Or after the main battery voltage drops to a single power-off voltage, the auxiliary battery is used for discharging.
  • Powering off a load can be a finger off Power on the load (such as the battery).
  • the main battery is first discharged to a power-off voltage, and then discharged using the auxiliary battery, and the primary power-off voltage is a value that the user can reasonably set. Therefore, the battery capacity actually used is the sum of the battery capacities of the main battery and the auxiliary battery, and does not affect the discharge characteristics of the main battery or the auxiliary battery, thereby saving the cost of additionally increasing the battery capacity.
  • performing the discharging by using the auxiliary battery may include: determining whether the auxiliary battery meets the second discharging condition, wherein the second discharging condition includes: the auxiliary battery circuit is turned on, and the capacity setting of the auxiliary battery is not zero.
  • the voltage of the auxiliary battery is greater than the secondary power-off voltage; when it is judged that the auxiliary battery meets the second discharging condition, the secondary battery is used for discharging until the voltage of the auxiliary battery drops to a primary power-off voltage, and the power-off load is disconnected.
  • Power supply after disconnecting the power supply to the primary power-off load, continue to use the auxiliary battery to discharge until the voltage of the auxiliary battery drops to the secondary power-off voltage.
  • the user can also reasonably set a secondary power-off voltage, after the discharge of the auxiliary battery reaches a power-off voltage, disconnect the power supply of the primary power-off load, and continue to use the auxiliary battery to discharge until The auxiliary battery voltage will be reduced to the secondary power-off voltage, and the discharge of the auxiliary battery will be stopped, thereby prolonging the power supply time of the battery pack.
  • the method further includes: determining whether the main battery meets the first discharge condition; and determining that the main battery meets the first discharge condition, The main battery is used for discharging until the voltage of the main battery drops to the battery lowering voltage, and the power supply to the battery lowering load is disconnected.
  • the user can also reasonably set a battery power-off voltage, and after the auxiliary battery stops power supply, continue to use the main circuit battery to supply power to the battery power-off load until the voltage of the main circuit battery is powered off. Voltage.
  • the main battery only supplies power to the battery power-off load, and does not supply power to the one-time power-off load, extending the power supply time of the battery pack.
  • the battery power-off voltage and the secondary power-off voltage may be the same or different.
  • the method before the main battery is separately charged, or before the main battery is used for discharging, the method further includes: determining whether the main circuit circuit is in the first state, wherein the first state includes the main The main channel of the battery circuit is turned on, and the auxiliary channel of the main battery circuit, the main channel of the auxiliary battery circuit, and the auxiliary channel of the auxiliary battery circuit are all disconnected, and the first anti-reverse circuit is disposed on the auxiliary channel of the main battery circuit.
  • a second anti-reverse circuit is disposed on the auxiliary channel of the auxiliary circuit battery circuit; and when the main circuit battery circuit is not in the first state, the state of the main circuit battery circuit is adjusted to The first state; and/or, before separately charging the auxiliary battery, or before discharging by using the auxiliary battery, may further include: determining whether the auxiliary battery circuit is in the second state, wherein the second state includes the main of the auxiliary battery circuit The channel is turned on, and the main channel of the main battery circuit, the auxiliary channel of the main battery circuit, and the auxiliary channel of the auxiliary battery circuit are all disconnected; when the auxiliary battery circuit is not in the second state, the state of the auxiliary battery circuit is adjusted. To the second state.
  • the main circuit battery circuit may include a main channel and a secondary channel, and the auxiliary channel may be provided with a first anti-reverse circuit, which can prevent the main battery from appearing instantaneously when charging the main battery. Charging phenomenon, when the main battery is discharged, prevent the main battery from charging the auxiliary battery.
  • the auxiliary channel battery may also include a primary channel and a secondary channel, and the secondary channel may be provided with a second anti-reverse circuit.
  • the main circuit battery and the auxiliary circuit battery share a current detecting unit, wherein the current detecting unit is configured to: detect the total current of the main circuit battery circuit and the auxiliary circuit battery circuit to determine the main circuit battery circuit or Whether the auxiliary circuit battery circuit is turned on; and/or, the first anti-reverse circuit may be constituted by the first anti-reverse diode; and/or the second anti-reverse circuit may be composed of the second anti-reverse diode. Since the main circuit battery or the auxiliary circuit battery is charged or discharged only at the same time, the current detecting unit detects the total current of the main circuit battery circuit and the auxiliary circuit battery circuit, and actually detects the current of the battery circuit currently working in the line.
  • the first anti-reverse circuit and the second anti-reverse circuit are composed of anti-reverse diodes, which also simplifies the circuit structure.
  • the main battery can be one, and the auxiliary battery can be one or more.
  • the auxiliary battery when the auxiliary battery is multiple, the auxiliary battery can be sequentially charged after the main battery is completed; when the main battery is discharged to a lower power, the pair is All the auxiliary battery batteries are discharged to the primary power-off voltage in turn. After the power-off load is disconnected, all the auxiliary battery batteries are sequentially discharged to the secondary power-off voltage, and then switched to the main circuit battery for discharging.
  • the method according to the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, disk). , CD), including a number of instructions to enable a terminal device (which can be a mobile phone, computer, server, or network device, etc.)
  • a terminal device which can be a mobile phone, computer, server, or network device, etc.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • a battery pack charging and discharging device is also provided, which is configured to implement the above-described embodiments and optional embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a block diagram showing the structure of a battery pack charging and discharging device according to an embodiment of the present invention. As shown in FIG. 2, the device includes a determining module 22 and a charging and discharging module 24, which will be described below.
  • the determining module 22 is configured to: determine that the battery pack needs to be charged or discharged, wherein the battery pack includes a main battery and an auxiliary battery; the charging and discharging module 24 is connected to the determining module 22, and is configured to: the main road in the battery pack The battery and/or the auxiliary battery are separately charged or discharged.
  • the determining module 22 may include a first determining unit 32 for charging and discharging.
  • the module 24 can include a first charging unit 34 and a second charging unit 36, the description module 22 and the charging and discharging module 24 being described below.
  • the determining module 22 may include: a first determining unit 32, configured to: determine whether the main battery meets the first charging condition, wherein the first charging condition comprises: the voltage of the main battery is less than a preset voltage, and/or the main battery The current of the circuit is greater than the preset current;
  • the charging and discharging module 24 may include: a first charging unit 34 connected to the first determining unit 32, configured to: when the first determining unit 32 determines that the main battery meets the first charging condition The main battery is charged separately; the second charging unit 36 is connected to the first determining unit 32, and is configured to: separately determine the auxiliary battery when the first determining unit 32 determines that the main battery does not satisfy the first charging condition. Charge it.
  • FIG. 4 is a block diagram showing the structure of a second charging unit 36 in a battery pack charging and discharging device according to an embodiment of the present invention.
  • the second charging unit 36 may include a second determining unit 42 and a third charging unit 44.
  • the second charging unit 36 will be described below.
  • the second determining unit 42 is configured to: determine whether the auxiliary battery meets the second charging condition, and
  • the second charging condition includes: the voltage of the auxiliary battery is smaller than the voltage of the main battery and the capacity setting of the auxiliary battery is not zero;
  • the third charging unit 44 is connected to the second determining unit 42 and is configured to: in the second determining unit 42. When it is determined that the auxiliary battery meets the second charging condition, the auxiliary battery is separately charged.
  • FIG. 5 is an optional structural block diagram of a battery pack charging and discharging device according to an embodiment of the present invention. As shown in FIG. 5, the device may include a control module 52, in addition to all the modules shown in FIG. The control module 52 will be described.
  • the control module 52 is connected to the charging and discharging module 24, and is configured to: after separately charging the auxiliary battery and determining that the auxiliary battery is charged, or in the case that the second determining unit determines that the auxiliary battery does not satisfy the second charging condition, the main control unit The battery enters the floating state.
  • FIG. 6 is another optional structural block diagram of a battery pack charging and discharging device according to an embodiment of the present invention.
  • the device may include a first adjusting module in addition to all the modules shown in FIG. 62 and/or second adjustment module 64, the first adjustment module 62 and the second adjustment module 64 are described below.
  • the first adjusting module 62 is connected to the first determining unit 32 and the first charging unit 34, and is configured to: adjust the charging voltage of the power supply according to the voltage of the main battery before separately charging the main battery;
  • the second adjusting module 64 is connected to the first determining unit 32 and the second charging unit 36, and is configured to adjust the charging voltage of the power supply according to the voltage of the auxiliary battery before separately charging the auxiliary battery.
  • FIG. 6 is merely an exemplary illustration.
  • the device may include a first adjustment module 62 and a second adjustment module 64 in addition to all of the modules shown in FIG. 4 or 5.
  • FIG. 7 is another structural block diagram of the determining module 22 and the charging and discharging module 24 in the battery pack charging and discharging device according to an embodiment of the present invention.
  • the determining module 22 may include a third determining unit 72.
  • the discharge module 24 may include a first discharge unit 74 and a second discharge unit 76, and the determination module 22 and the charge and discharge module 24 will be described below.
  • the determining module 22 may include: a third determining unit 72, configured to: determine whether the main circuit battery meets the first discharging condition, wherein the first discharging condition comprises: the main circuit battery circuit is turned on, the main circuit battery The voltage is greater than the voltage of the auxiliary circuit battery, and the voltage of the main circuit battery is greater than the battery power-off voltage.
  • the charging and discharging module 24 may include: a first discharging unit 74 connected to the third determining unit 72, configured to: at the third determining unit 72 When it is determined that the main circuit battery satisfies the first discharge condition, the main circuit battery is used for discharging until the voltage of the main circuit battery drops to a preset one-time power-off voltage; the second discharge unit 76 is connected to the third determining unit 72, It is set to: when the third determining unit 72 determines that the main battery does not satisfy the first discharging condition, or after the main battery voltage drops to the primary discharging voltage, discharges with the auxiliary battery.
  • the second discharge unit 86 may include a fourth determining unit 82, a third discharging unit 84, and The fourth discharge unit 86 will be described below with respect to the second discharge unit 76.
  • the fourth determining unit 82 is configured to: determine whether the auxiliary battery meets the second discharging condition, wherein the second discharging condition comprises: the auxiliary battery circuit is turned on, the capacity setting of the auxiliary battery is not zero, and the voltage of the auxiliary battery is greater than twice
  • the third discharge unit 84 is connected to the fourth determining unit 82, and is configured to: when the fourth determining unit 82 determines that the auxiliary battery meets the second discharging condition, discharges by using the auxiliary battery until the voltage of the auxiliary battery The power is reduced to one power-off voltage, and the power supply to the one-time power-off load is disconnected; the fourth discharge unit 86 is connected to the third discharge unit 84, and is configured to continue to utilize the auxiliary battery after disconnecting the power supply to the one-time power-off load. Discharge is performed until the voltage of the auxiliary battery drops to the secondary power-off voltage.
  • FIG. 9 is a block diagram showing the structure of a charge and discharge module 24 in a battery pack charging and discharging device according to an embodiment of the present invention.
  • the charge and discharge module 24 may include a fifth determining unit 92 and a fifth discharging unit 94. The charge and discharge module 24 will be described.
  • the fifth determining unit 92 is connected to the fourth discharging unit 86, and is configured to: determine whether the main circuit battery satisfies the first discharging condition after discharging by using the auxiliary battery; the fifth discharging unit 94 is connected to the fifth determining unit 92, The method is configured to: when the fifth determining unit 92 determines that the main battery meets the first discharging condition, discharge by using the main battery, until the voltage of the main battery drops to the battery lowering voltage, The battery is powered by the power supply.
  • the device may include a first determining module in addition to all the modules shown in FIG. 102, a third adjustment module 104, and/or a second determination module 106 and a fourth adjustment mode Block 108, the first determining module 102 and the second determining module 104 are described below.
  • the first determining module 102 is connected to the third determining unit 72, and is configured to: determine whether the main circuit battery circuit is in the first state before charging the main circuit battery separately, or before discharging by using the main battery, wherein A state includes the main channel of the main circuit battery circuit being turned on, and the auxiliary channel of the main circuit battery circuit, the main channel of the auxiliary battery circuit, and the auxiliary channel of the auxiliary battery circuit are all disconnected, and the auxiliary channel of the main circuit battery circuit is provided with the first channel An anti-reverse circuit, a second anti-reverse circuit is disposed on the auxiliary channel of the auxiliary battery circuit; the third adjustment module 104 is connected to the first judging module 102 and the first discharge unit 74, and is set as: the main circuit battery circuit is not in In the case of the first state, adjusting the state of the main circuit battery circuit to the first state;
  • the second judging module 106 is connected to the third judging unit 72, and is configured to: determine whether the auxiliary circuit battery circuit is in the second state before charging the auxiliary battery separately or before discharging by using the auxiliary battery, wherein the second state includes The main channel of the auxiliary battery circuit is turned on, and the main channel of the main circuit battery circuit, the auxiliary channel of the main circuit battery circuit, and the auxiliary channel of the auxiliary battery circuit are all disconnected; the fourth adjustment module 108 is connected to the second judging module 106 and The second discharge unit 76 is configured to adjust the state of the auxiliary battery circuit to the second state when the auxiliary battery circuit is not in the second state.
  • FIG. 10 is merely an example.
  • the apparatus may further include a first judging module 102, a third adjusting module 104, and/or a second judging module 106 and a fourth, in addition to all the modules shown in FIG. Adjustment module 108.
  • the main circuit battery and the auxiliary circuit battery share a current detecting unit, wherein the current detecting unit is configured to: detect the main circuit battery circuit and the auxiliary circuit battery circuit Total current to determine whether the main circuit circuit or the auxiliary circuit circuit is conductive; and/or, the first anti-reverse circuit may be composed of a first anti-reverse diode; and/or the second anti-reverse circuit may be a second anti-reverse diode Composition.
  • the main auxiliary circuit battery circuit can be determined (generally, a new battery or a large-capacity battery group can be used as the main battery and the other as the auxiliary battery).
  • each group of batteries can be independently charged and discharged.
  • Different groups of batteries can share a current detection circuit. Each time, only one group of batteries can be charged and discharged, and the battery can be charged according to the current and voltage detection results. protection.
  • FIG. 11 is a structural block diagram of a hybrid battery management device (corresponding to the battery pack charging and discharging device in the above embodiment) according to an embodiment of the present invention. As shown in FIG. 11, the device includes a DC power supply 112 and a centralized monitoring unit (Centre).
  • CSU Supervisory Unit
  • CSU Supervisory Unit
  • the fourth determining unit 82, the fifth determining unit 92, the first determining module 102, the second determining module 106, the third adjusting module 104, the fourth adjusting module 108), and the main auxiliary battery switching unit 116 (corresponding to the above embodiment)
  • the battery pack 118 (n+1 battery, one of which is the main battery, the other n is the auxiliary battery), the DC load (including the battery power-off load 1110 and the primary power-off load 1112), the device will be described below.
  • the DC power supply 112 is configured to: DC power supply to the load (including the battery power-off load 1110 and the primary power-off load 1112), and provide a charging current to the battery pack 118;
  • the CSU 114 is configured to: perform voltage collection, current, temperature, in-position information collection, analysis, and output control of multiple sets of batteries (n+1 groups of batteries) in the battery pack 118;
  • the CSU 114 can charge and discharge the main auxiliary circuit battery according to the parameter setting and in-position condition of the main auxiliary battery (1 group main battery, n group auxiliary battery), so that the main auxiliary battery is time-divisionally connected to the main circuit, only at the same time. All the way battery is in place, by detecting the battery voltage and current, realize the time-sharing management of the main auxiliary circuit battery, and carry out over-charge and over-discharge protection, and there will be no occurrence of instantaneous overcharge of the battery and discharge between the batteries;
  • the main auxiliary battery switching unit 116 is controlled by the CSU 114, and the main auxiliary battery switching unit 116 is configured to be responsible for the main auxiliary battery switching.
  • each battery includes a main control loop and a secondary control loop, a battery in-position detection, and voltage detection. Multiple batteries share a current sensing unit.
  • the difference from the other base station power sources is the main auxiliary battery switching unit 116.
  • the current detecting and voltage detecting unit is located in the main auxiliary circuit battery switching unit 116, and the current detecting The unit is configured to: detect a current of each of the plurality of batteries to perform a charge and discharge current detection judgment on the battery, and the voltage detecting unit is configured to: detect a voltage of each of the plurality of batteries, and the CSU 114 may detect the current current.
  • the current and voltage of the online battery are used as reference basis to manage the battery and limit current, voltage limit and power-off protection.
  • the DC load may be supplied by the DC power supply 112 or the battery pack 118, including a primary power-off load (the battery is disconnected from the load when the battery voltage drops to a voltage). 1112.
  • the battery power-down load (the battery voltage drops to the battery power-off voltage) After disconnecting this load) 1110;
  • the system defaults that the main battery switch is closed and the auxiliary battery switch is open.
  • the CSU 114 can first determine the position of each battery in the multi-channel battery according to the setting parameters (including the battery capacity and the number of battery paths), and determine the actual number of battery paths.
  • the first step in the state of the presence of the mains or the input of the AC power of the oil machine, the main auxiliary circuit battery switching can be time-division charge management, in the state of alternating current, the battery is in the charging state, by judging the battery voltage, adjusting the power supply output voltage, detecting Charging current, CSU 114 can determine whether the main battery needs to be charged.
  • CSU 114 can determine whether the main battery needs to be charged.
  • the main battery is charged, switch to the auxiliary battery.
  • the main auxiliary battery will not be connected directly to the main charging circuit.
  • the charging voltage of the power supply can be adjusted to the vicinity of the secondary battery voltage, so that switching to the auxiliary battery does not cause the secondary battery to overcharge.
  • the second step in the absence of AC power, mains power outage or oil machine stop, the battery enters the discharge state, and the main auxiliary circuit battery switching is time-division discharge management.
  • the main circuit battery connected to the main circuit can be discharged first.
  • the main circuit battery discharge reaches a set one-time power-off voltage to a certain extent, it can be switched to the auxiliary circuit battery, and the auxiliary circuit battery starts to load (including the battery power-off load 1110 and one power-off).
  • the load 1112) is discharged.
  • the power-off load 1112 can be powered off, and the power supply to the one-time power-off load 1112 is stopped, and the discharge current of the auxiliary circuit battery becomes small.
  • the auxiliary battery can continue to discharge to the secondary power-off voltage set by the system. At this time, the system is switched from the auxiliary battery to the main battery to continue discharging. When the main battery is discharged and the voltage of the main battery reaches the battery setting voltage set by the system, the main battery can be cut off, and the main battery is stopped. Putting 1110 Electricity. The battery of the main and auxiliary circuits of the system can be disconnected until the AC power is restored to restore the battery power supply and the power supply of the battery power-off load 1110 and the one-time power-off load 1112.
  • auxiliary circuit batteries When the number of auxiliary circuit batteries is n groups, during the discharge process of the battery unit 118, after the main circuit battery discharges to reach a power-off voltage, it can be switched to one of the auxiliary circuit batteries, and the auxiliary circuit battery is discharged to a power-off voltage, or not The power supply for the one-time power-off load 1112 is cut off, and the other auxiliary circuit battery is switched until all the auxiliary circuit batteries are discharged to reach one power-off voltage, and then the power supply for the one-time power-off load 1112 is cut off.
  • the hybrid battery management device (also called a new and old battery switching device) can charge and discharge the main auxiliary circuit battery in a time-sharing manner, thereby avoiding the risk of accelerated aging of the battery caused by the mixing of old and new batteries, and on the other hand, It realizes the long-term backup power supply for the load in the case of AC power failure or no AC or oil-free machine, so that the actual battery capacity is the sum of the old and new batteries, and does not affect the charge and discharge characteristics of the battery, which ensures the battery capacity. It also saves the cost pressure of additional battery capacity. Moreover, the n+1 group main auxiliary circuit batteries share one AC detection unit, which reduces the detection cost and reduces the energy loss.
  • FIG. 12 is a circuit diagram of a main auxiliary battery switching device (ie, a hybrid battery management device) according to an embodiment of the present invention.
  • a main auxiliary battery switching device ie, a hybrid battery management device
  • charging and discharging management and switching of two sets of new and old lead-acid batteries are taken as an example to describe battery charging and discharging in detail.
  • the device includes an alternating current (AC)/direct current (DC) power supply, positive and negative copper bars L+ and L-, a battery shunt, a load current shunt, and a CSU.
  • AC alternating current
  • DC direct current
  • the AC/DC power supply can realize the conversion of AC to DC power, and supply power for one power-off load and battery power-off load, and provide energy for charging the main auxiliary battery.
  • the battery shunt measures the common current of the main and auxiliary battery (actually only one battery is online).
  • K1 normally closed
  • the DC contactor is the main channel control switch of the main battery circuit, which is closed when the main battery is connected, and disconnected when the auxiliary battery is connected.
  • K2 ⁇ K4 are normally open contactors, and K2 is used as the main battery auxiliary channel control switch when the main auxiliary battery is switched. It only has the opening and closing action during the switching process of the old and new batteries, and is normally open.
  • K3 is the main circuit control switch of the auxiliary battery.
  • K4 is the auxiliary circuit battery auxiliary circuit control switch.
  • K2 ⁇ K4 are all in the off state, only K1 is closed, and the system only has the main battery access.
  • the main circuit and the auxiliary circuit anti-reverse diode prevent the battery from being overcharged or the batteries are mutually charged during the battery switching process (referred to as battery mutual charging).
  • the control signals (K(n)_CTL+ and K(n)_CTL-) of K1 to K4 are provided by the CSU, and the CSU controls the on/off of the switches K1 to K4, thereby realizing the switching of the main and auxiliary battery.
  • the CSU realizes the charge and discharge management of the main auxiliary circuit by detecting the current signals IB1+ and IB1 at both ends of the battery shunt and the main and auxiliary battery voltage signals VB1- and VB2-.
  • COM, NO1, NO2 are used to judge the empty open state of the main auxiliary circuit battery, determine whether the main auxiliary circuit battery is in place, and ensure that the battery switching is performed when the battery is open and closed.
  • the CSU communicates with the AC/DC power supply via a Controller Area Network (CAN) bus to control the power supply voltage and output power.
  • CAN Controller Area Network
  • the embodiment of the invention is suitable for the case where the communication base station power source of the 24V and 48V communication is mixed with the old and new lead-acid batteries.
  • FIG. 13 is a main auxiliary circuit according to an embodiment of the present invention.
  • a management flow chart of battery charging of the battery switching device the process comprising the following steps:
  • Step S1301 first determining whether the main battery needs to be charged, specifically: first determining whether the two ends of COM and NO1 are conductive, if the contact is not conducting, it indicates that the main battery does not exist or the main battery is open and disconnected, Meet the main battery continuity condition, and then check if the main battery voltage meets the charging condition. If the charging condition is satisfied, then go to step S1302, if not, go to step S1307;
  • Step S1302 when the main battery needs to be charged, check whether the main battery is in the connected state (ie, K1 is closed, K2 to K4 are all disconnected), if the main battery is not connected, the process proceeds to step S1303, if the main battery is in place and in In the connection state, the process goes to S1305 to charge the main battery;
  • Step S1303 when the main battery is not in position, the auxiliary battery to the main battery switching, the specific switching step see Figure 16, and then proceeds to step S1304;
  • Step S1304 waiting for the auxiliary battery to switch to the main battery, and determining the main battery Whether the voltage is consistent with the discharge voltage (L+ and L-voltage), which indicates that the battery switching is completed, and proceeds to step S1305, otherwise the switching in step S1303 is performed again;
  • step S1305 the main battery is charged, and the CSU detects the battery charging current (converted by the voltages of the IB1+ and IB1-cell shunts) and the voltage (the voltage between VB1- and L+) according to the capacity set in advance by the main battery.
  • Main circuit battery voltage charging the main circuit battery according to the charging curve of the lead-acid battery; proceeding to step S1306;
  • Step S1306, according to the battery voltage and charging current to determine whether the main circuit battery is full, after full, proceeds to step S1307;
  • step S1307 when the main battery does not exist or the main battery is full, it is determined whether the auxiliary battery needs to be charged, and the charging condition includes that the auxiliary battery contact COM and NO2 are normally connected, the auxiliary battery capacity setting is not 0, and the auxiliary battery voltage is low. In the main battery voltage, the three are indispensable. If yes, proceed to step S1308; otherwise, the battery charging process ends, and the main battery enters the normal floating state;
  • Step S1308 when the auxiliary battery meets the charging condition, determine whether the auxiliary battery is in the connected state (ie, K3 is closed, K1, K2, and K4 are all disconnected), and if the auxiliary battery is not in the connected state, the process proceeds to step S1309, if the auxiliary battery is in place. And in the connected state, the process proceeds to S1311 for charging the auxiliary battery;
  • step S1309 when the auxiliary battery is not connected to the power supply system (that is, the auxiliary battery is not in the connected state), the switching of the main battery to the auxiliary battery is performed, and the specific steps refer to FIG. Go to step S1310;
  • Step S1310 waiting for the main circuit battery to switch to the auxiliary battery completion, at this time, determining whether the auxiliary battery voltage is consistent with the discharge voltage (L+ and L-voltage), indicating that the battery switching is completed, and proceeding to step S1311, otherwise performing the step S1309 again.
  • step S1311 the auxiliary battery is charged, and the CSU detects the battery charging current (converted by the voltage between the IB1+ and the IB1-battery shunt) and the voltage (the voltage between the VB2- and the L+ is the auxiliary circuit) according to the capacity set in advance by the main battery. Battery voltage), charging the auxiliary battery according to the charging curve of the lead-acid battery; performing step S1312;
  • Step S1312 judging whether the auxiliary battery is full according to the battery voltage and the charging current, after being fully charged Go to step S1313;
  • Step S1313 after the auxiliary battery is charged, the system access battery is switched from the auxiliary battery to the main battery, and the specific switching procedure is shown in FIG. 16;
  • Step S1314 waiting for the auxiliary battery to switch to the main battery, and determining whether the main battery voltage is consistent with the discharge voltage (L+ and L-voltage), indicating that the battery switching is completed, entering the main circuit battery floating normal state, the charging process Completed, otherwise the switching in step S1313 is performed again;
  • the battery charging in the embodiment of the present invention is performed on the premise that there is alternating current, and if the alternating current is powered off, the system enters the battery discharging state.
  • FIG. 14 is a flowchart of management of battery discharge of a main auxiliary battery switching device according to an embodiment of the present invention. As shown in FIG. 14, the flow includes:
  • step S1401 it is determined whether the main circuit battery can be discharged.
  • the conditions under which the main battery can be discharged include:
  • the main circuit battery exists, that is, the main circuit battery is opened and the FU1 is closed (by judging that the auxiliary contacts CON and NO1 of the FU1 are closed);
  • the main circuit battery voltage is greater than the set battery power-off protection voltage.
  • step S1402 is performed, otherwise, S1406 is performed;
  • step S1402 it is checked whether the main battery is in the connected state (ie, K1 is closed, and K2 to K4 are all disconnected). If the main battery is not connected, step S1403 is performed. If the main battery is in the connected state, step S1405 is performed. Perform main battery discharge;
  • step S1403 when the auxiliary battery is connected to the system, it is necessary to perform switching of the auxiliary battery to the main battery.
  • the specific switching step process is detailed in Figure 16;
  • Step S1404 waiting for the auxiliary battery to switch to the main battery, and determining whether the main battery voltage is consistent with the discharge voltage (L+ and L-voltage), which indicates that the battery switching is completed, and the main battery is discharged, otherwise the steps are re-executed. S1403;
  • Step S1405 after the main battery is connected to the system, the main battery is loaded to the battery at this time (including the battery) Power off load and one power down load) discharge;
  • Step S1406 During the discharge of the main battery, the CSU detects the main battery voltage (the voltage between VB1 and L+), determines whether the main battery voltage reaches the primary power-off voltage, and performs step S1407 when the primary power-off voltage is reached, but does not reach. When the main battery continues to discharge;
  • the main battery voltage the voltage between VB1 and L+
  • step S1407 when the main circuit battery discharge reaches a power-off voltage, it is determined whether the auxiliary circuit battery can be discharged.
  • the conditions for the auxiliary battery to be discharged include: the auxiliary battery contact COM and NO2 are connected normally (ie, FU2 is closed), the auxiliary battery capacity setting is not 0, and the auxiliary battery voltage is greater than the set battery lowering voltage. If the condition is satisfied, step S1408 is performed, and if the condition is not satisfied, the process proceeds to step S1419, and the main battery continues to discharge;
  • Step S1408 it is determined whether the auxiliary battery is in the connected state in the system, in the connected state, step S1411 is performed, and in the connected state, step S1409 is performed;
  • step S1409 the switching of the main battery to the auxiliary battery is performed according to the flow of FIG. 15, and then the step S1410 is performed to determine whether the switching is completed.
  • the determination condition of the completion includes whether the discharging voltage and the auxiliary battery voltage are consistent, which will not be described in detail later.
  • Step S1411 is performed when the switching is completed, otherwise S1409 is re-executed until the switching to the auxiliary battery is completed;
  • Step S1411 at this time, the auxiliary battery discharges the load, and step S1412 is executed to determine whether the auxiliary battery voltage reaches the set primary power-off voltage. If the power-off voltage is greater than one power-off voltage, the continuous discharge is continued in step S1411. After the auxiliary battery voltage reaches the primary power-off voltage, step S1413 is performed to perform a power-off, disconnect K5, disconnect the power supply of the power-off load, reduce the battery discharge voltage, and increase the battery discharge time.
  • Step S1414 when the step S1413 is performed, the auxiliary battery continues to discharge, and at this time, it is continuously determined whether the auxiliary battery voltage drops to the battery power-off voltage set by the system parameter, and when the auxiliary battery drops to the battery power-off voltage, step S1415 is performed;
  • step S1415 it is determined whether the main battery can be discharged, and the main battery can be discharged: 1) the FU1 battery is turned on; 2) the main battery voltage is greater than the set battery power-off voltage; and 3) the main battery The voltage is greater than the auxiliary battery voltage. If the condition is not met, step S1402 is performed, the battery is powered off, and the system is powered off. If the condition is met, step S1416 is performed;
  • Step S1416 according to the system of FIG. 16, switching to the main battery, performing step S1417 Whether the battery switching is completed, if not completed, step S1416 is re-executed, and if yes, step S1418 is performed;
  • step S1418 the main battery continues to discharge the battery power-off load connected to the system, and step S1419 is performed to determine whether the main battery voltage drops to the battery power-off voltage set by the system CSU parameter, and if the battery is not reached, the battery continues to be discharged. Go to step S1420;
  • Step S1420 after the main circuit and the auxiliary circuit battery reach the battery power-off voltage, the CSU controls K1_CTL+/K1_CTL-, K3_CTL+/K3_CTL- output high level, disconnects the main auxiliary circuit battery power contactors K1 and K3, and the system is powered off, the main The auxiliary battery stops discharging and the system is powered down to protect the battery. A new round of battery charge and discharge management process is performed when the system is powered by AC or when the oil machine is started.
  • FIG. 15 is a flowchart of switching the main battery of the main auxiliary battery switching device to the auxiliary battery according to the embodiment of the present invention
  • FIG. 16 is a flowchart according to an embodiment of the present invention. A flowchart of switching the auxiliary battery of the main auxiliary battery switching device to the main battery, the specific switching process in the embodiment of the present invention will be described below.
  • the process of switching the main battery to the auxiliary battery includes the following steps:
  • step S1501 K1 is first closed, the main circuit of the main battery is turned on, and the system is connected to the main battery (in fact, only the main battery is connected, the switch is switched to the auxiliary battery, and the actual K1 is originally closed).
  • the discharge voltage is the same as the main battery voltage;
  • Step S1502 closing the main battery auxiliary channel contactor K2;
  • step S1503 K1 is disconnected, and the main battery is connected to the system through the auxiliary channel.
  • the voltage is applied (the voltage between the L+ and L-, that is, the voltage across the output of the DC power supply) is greater than the main battery voltage, the diode VD1 is not conducting, and the main battery is neither charged nor discharged.
  • VD1 is turned on, and the main battery can discharge to the load to prevent the power supply from being abnormal during the battery switching process or the AC power failure causing the load to be disconnected;
  • Step S1504 closing the auxiliary circuit battery auxiliary channel DC contactor K4, at this time, the main auxiliary circuit battery is connected through the auxiliary channel. Due to the presence of VD1 and VD2, the battery is only turned on during discharge, and there is no difference in battery voltage of the main auxiliary circuit. The battery is mutually charged, and the power supply is not charged to the battery at the same time. There is no possibility that the battery is overcharged due to excessive voltage difference between the discharge voltage and the auxiliary battery;
  • step S1505 K2 is disconnected.
  • the auxiliary battery is connected to the system through the auxiliary channel.
  • the diode VD2 When the discharge voltage is greater than the auxiliary battery voltage, the diode VD2 is not turned on, and the auxiliary battery is neither charged nor discharged.
  • VD2 When the AC power is cut off or the voltage is lower than the auxiliary battery voltage, VD2 is turned on, and the auxiliary battery can discharge to the load to prevent the power supply from being abnormal during the battery switching process or the AC power failure causing the load to be disconnected;
  • Step S1506 in the current state, before the auxiliary battery main channel K3 is turned on, in order to prevent the battery from being too large and far larger than the auxiliary battery voltage, the battery is overcharged when the K3 is turned on. At this time, the output voltage of the power supply is adjusted to make the voltage on the discharge close. Auxiliary battery voltage.
  • the auxiliary battery directly discharges the load through the auxiliary channel, and the discharge voltage directly approaches the auxiliary battery voltage;
  • Step S1507 at this time, the CSU detects whether the auxiliary battery voltage is close to the discharge voltage, and if yes, step S1508 is performed; otherwise, step S1506 is performed to continue to adjust the power supply output voltage;
  • Step S1508 when the voltage of the discharge is close to the voltage of the auxiliary battery, when the K3 is turned on, the power supply is overcharged to the auxiliary battery. At this time, K3 is turned on, the main circuit of the auxiliary battery is connected, and the main circuit of the auxiliary battery is connected to the system;
  • Step S1509 at this time, the auxiliary battery auxiliary channel is disconnected, K4 is disconnected, and the auxiliary battery is officially connected to the system, and the main battery to auxiliary battery switching process is completed.
  • the main auxiliary circuit battery does not directly enter the system through the main channel for charging and discharging.
  • the process of switching the auxiliary battery to the main battery and the main battery switching to the auxiliary battery is reversed.
  • the process of switching the main battery to the auxiliary battery includes:
  • Step S1601 first close K3, the main circuit of the auxiliary battery is connected, and the system is connected to the auxiliary battery (in fact, only the auxiliary battery is connected, the main battery is switched, and the actual K3 is closed).
  • the voltage is the same as the auxiliary battery voltage;
  • Step S1602 closing the main battery auxiliary channel contactor K4, to ensure that after the step S1603 is disconnected from K3, when the system suddenly loses power, the auxiliary battery can temporarily supply power to the load through the auxiliary channel through the diode;
  • step S1603 K3 is disconnected, and at this time, the auxiliary battery is connected to the system through the auxiliary channel, and is arranged on the line.
  • the diode VD2 When the voltage is greater than the auxiliary battery voltage, the diode VD2 is not turned on, and the auxiliary battery is neither charged nor discharged.
  • VD2 When the AC power is cut off or the voltage is lower than the main battery voltage, VD2 is turned on, and the auxiliary battery can be briefly discharged to the load to ensure that the load does not lose power;
  • Step S1604 closing the main circuit battery auxiliary channel DC contactor K2, at this time, the main auxiliary circuit battery is connected through the auxiliary channel. Due to the existence of VD1 and VD2, the main auxiliary circuit battery is not charged, and the power supply does not appear. The case of charging two batteries;
  • step S1605 K4 is disconnected. At this time, only the main battery is connected to the system through the auxiliary channel.
  • the diode VD2 When the discharge voltage is greater than the main battery voltage, the diode VD2 is not turned on, and the auxiliary battery is neither charged nor discharged.
  • VD1 When the AC power is cut off or the voltage is lower than the auxiliary battery voltage, VD1 is turned on, and the main battery can discharge to the load to prevent the power supply from being abnormal during the battery switching or the power failure caused by the AC power failure;
  • Step S1606 in the current state, before the main battery main channel K1 is turned on, in order to prevent the system from suddenly calling, the voltage on the main circuit is much larger than the main battery voltage, so that the main battery is overcharged when the K1 is turned on, and the output voltage of the power supply is adjusted at this time. So that the discharge voltage is close to the main battery voltage. When there is no output when the AC power fails, the main battery directly discharges the load through the auxiliary channel, and the discharge voltage will directly approach the main battery voltage;
  • Step S1607 at this time, the CSU detects whether the auxiliary battery voltage is close to the discharge voltage, and if yes, step S1608 is performed; otherwise, S1606 is executed to continue to adjust the output voltage of the power supply;
  • Step S1608 when the voltage on the main circuit is close to the voltage of the main battery, when the K1 is not connected, the power supply is overcharged to the main battery. At this time, K1 is turned on, the main circuit of the main circuit is connected, and the main circuit of the main battery is connected. system;
  • step S1609 the K2 main circuit battery auxiliary channel is disconnected, and the main circuit battery is officially connected to the system, and the auxiliary circuit battery to main circuit battery switching process is completed.
  • K1 to K4 are used as control switches for battery switching, and the line is turned on and off, and the control signal is provided by the CSU.
  • the DC contactor is characterized by stability, reliability, heat resistance, environmental adaptability and moderate price.
  • K1 needs to use normally closed contactor
  • K2 ⁇ K4 use normally open contactor
  • current and voltage selection can choose the appropriate model according to the actual situation of the system.
  • Protected during contactor switching Prove that the contactor is about 2 seconds from the action to the stable time.
  • VD1 and VD2 require a large current, and the reverse voltage can withstand the impact of the external electromagnetic environment.
  • a diode array can be used in parallel if necessary. During the entire charge and discharge period, the main and auxiliary battery switches in all cases, the diode conduction time will not exceed 10 seconds, ensuring that the diode will not be energized for a long time.
  • the battery switching device in the embodiment of the present invention may be replaced by other similar devices.
  • the battery switching and management object in the embodiment of the present invention is not limited to a two-way battery or a lead-acid battery, and may be derived from multiple different old or new batteries.
  • the battery type is different, the specific process and strategy of battery charge and discharge management can be different, but the battery switching strategy and process can be fully applicable.
  • modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are respectively located in multiple processes. In the device.
  • the embodiment of the invention further provides a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor may perform the steps in the foregoing method embodiments according to the stored program code in the storage medium.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the battery pack needs to be charged or discharged, wherein the battery pack includes a main road battery and an auxiliary circuit battery; and the main circuit battery and/or the auxiliary circuit battery in the battery group are independently charged or discharged, Therefore, a flexible main battery and auxiliary battery management method is adopted, and the main battery and the auxiliary battery are time-division charged and discharged, so that only one battery (main battery or auxiliary battery) is charged or discharged at the same time.
  • the invention solves the problems of increasing the cost and reducing the battery life caused by the direct or parallel connection of the old and new batteries in the related art, thereby achieving the effect of reducing the cost and improving the battery life to a certain extent.

Abstract

一种电池组充放电方法包括:确定需要对电池组进行充电或放电,其中,电池组包括主路电池和辅路电池;对电池组中的主路电池和/或辅路电池分别独立地进行充电或放电处理。

Description

电池组充放电方法及装置 技术领域
本申请涉及但不限于通信领域,尤其涉及一种电池组充放电方法及装置。
背景技术
在一些已有的设备或者通信站点中,大多已经配备有蓄电池,如铅酸电池。随着直流通信电源特别是基站电源的现网改造及扩容需求,当用户增加需要扩容,增加负载功率,或提高停电时设备在网时间时,需要增加电池容量。一种方法是更换新电池,废弃旧电池,这种方法浪费了旧电池,并增加新电池的容量,增加了扩容成本。一般情况下,这些旧蓄电池还是可以继续使用的,考虑到投入成本的问题,可以在增加相对少的电池容量并合理同时使用新旧电池的前提下,把容量高的电池或新电池作为主路电池,容量低或旧电池作为备用电池,进而可以极大降低成本,并降低环境污染压力及减少资源浪费。
特别是国际基站电源中的多租户共享共站电源越来越多,存在大量旧基站电源的整合及改造扩容,这种新旧铅酸蓄电池充放电管理显得越来越重要。
随之而来的问题就是如何管理新旧电池或不同类型的电池,如果将新旧电池直接并联使用,具体情况如下:
在新旧电池并联放电情况下:由于电池性能差异,新电池组放电能力优于旧电池组。并联放电早期,新电池组内阻小,承担相对大的电流,但旧电池组亦作放电;并联放电末期,旧电池提前放完电,新电池肩负所有负载电流,甚至对旧电池进行充电。上述放电行为导致:
1)新电池组实际使用程度大于设计程度;
2)后期负载电流由新电池组承受,根据铅酸蓄电池“放电电流越大,放电容量越小”的原理,新旧电池组并联时实际备电时间低于设计时间;
3)整体用户体验是,旧电池组寿命延长,新电池组寿命不如预期。
在新旧电池并联充电情况下:由于放电性能不同,新电池组实际放电多于旧电池组,则实际需要的充电容量亦多于旧电池组;当充电充分时,电池组件存在偏置电流,新电池组充电电流大于设计电流;当充电不充分时,由于新电池组放电容量较大,导致新电池组欠充程度大于旧电池组,即新电池组容量性能衰减速度大于旧电池组。频繁循环使用时,并联新电池组会延长整体电池组性能,但会显著降低新电池组的寿命,旧电池组寿命被延长,新电池组被缩短,这会引起商务上维修及保修方面的纠纷。
当前用户为了扩容完全废弃旧电池更换新的大容量的新电池,或直接串接新电池,这样增加成本,而且降低电池寿命。
针对相关技术中新旧电池直接串联或者并联使用导致的增加成本、降低电池寿命的问题,目前尚未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供了一种电池组充放电方法及装置,以至少解决相关技术中新旧电池直接串联或者并联使用导致的增加成本、降低电池寿命的问题。
本发明实施例提供了一种电池组充放电方法,包括:确定需要对电池组进行充电或放电,其中,所述电池组包括主路电池和辅路电池;对所述电池组中的所述主路电池和/或所述辅路电池分别独立地进行充电或放电处理。
可选地,在确定需要对电池组中的电池进行充电时,对所述电池组中的所述主路电池和/或所述辅路电池分别独立地进行充电包括:判断所述主路电池是否满足第一充电条件,其中,所述第一充电条件包括:所述主路电池的电压小于预设电压,且/或主路电池电路的电流大于预设电流;在判断所述主路电池满足所述第一充电条件的情况下,单独对所述主路电池进行充电;在判断所述主路电池不满足所述第一充电条件的情况下,单独对所述辅路电池进行充电。
可选地,单独对所述辅路电池进行充电包括:判断所述辅路电池是否满足第二充电条件,其中,所述第二充电条件包括:所述辅路电池的电压小于所述主路电池的电压且所述辅路电池的容量设置不为零;在判断所述辅路电池满足所述第二充电条件的情况下,单独对所述辅路电池进行充电。
可选地,在单独对所述辅路电池进行充电且确定所述辅路电池充电完成之后,或者在判断所述辅路电池不满足所述第二充电条件的情况下,所述方法还包括:控制所述主路电池进入浮充状态。
可选地,在单独对所述主路电池进行充电之前,所述方法还包括:按照所述主路电池的电压调整供电电源的充电电压;及/或,在单独对所述辅路电池进行充电之前,所述方法还包括:按照所述辅路电池的电压调整供电电源的充电电压。
可选地,在确定需要对电池组中的电池进行放电时,对所述电池组中的所述主路电池和/或所述辅路电池分别独立地进行放电包括:判断所述主路电池是否满足第一放电条件,其中,所述第一放电条件包括:主路电池电路导通,所述主路电池的电压大于所述辅路电池的电压,且所述主路电池的电压大于电池下电电压;在判断所述主路的电池满足所述第一放电条件的情况下,利用所述主路电池进行放电,直至所述主路电池的电压降至预设的一次下电电压;在判断所述主路电池不满足所述第一放电条件的情况下,或者所述主路电池电压降至所述一次下电电压之后,利用所述辅路电池进行放电。
可选地,利用所述辅路电池进行放电包括:判断所述辅路电池是否满足第二放电条件,其中,所述第二放电条件包括:辅路电池电路导通,所述辅路电池的容量设置不为零,且所述辅路电池的电压大于二次下电电压;在判断所述辅路电池满足所述第二放电条件的情况下,利用所述辅路电池进行放电,直至所述辅路电池的电压降至所述一次下电电压,断开对一次下电负载的供电;在断开对所述一次下电负载的供电之后,继续利用所述辅路电池进行放电,直至所述辅路电池的电压降至所述二次下电电压。
可选地,在利用所述辅路电池进行放电之后,还包括:判断所述主路电池是否满足所述第一放电条件;在判断所述主路电池满足所述第一放电条件的情况下,利用所述主路电池进行放电,直至所述主路电池的电压降至所述 电池下电电压时,断开对电池下电负载的供电。
可选地,在单独对所述主路电池进行充电之前,或者利用所述主路电池进行放电之前,所述方法还包括:判断主路电池电路是否处于第一状态,其中,所述第一状态包括主路电池电路的主通道导通,且主路电池电路的辅通道、辅路电池电路的主通道、辅路电池电路的辅通道均断开,所述主路电池电路的辅通道上设置有第一防反电路,所述辅路电池电路的辅通道上设置有第二防反电路;在所述主路电池电路未处于所述第一状态的情况下,调整所述主路电池电路的状态至所述第一状态;和/或,在单独对所述辅路电池进行充电之前,或者利用所述辅路电池进行放电之前,所述方法还包括:判断所述辅路电池电路是否处于第二状态,其中,所述第二状态包括所述辅路电池电路的主通道导通,且所述主路电池电路的主通道、所述主路电池电路的辅通道、所述辅路电池电路的辅通道均断开;在所述辅路电池电路未处于所述第二状态的情况下,调整所述辅路电池电路的状态至所述第二状态。
可选地,所述主路电池与所述辅路电池共用一个电流检测单元,其中,所述电流检测单元设置为:检测所述主路电池电路与所述辅路电池电路的总电流,以判断所述主路电池电路或所述辅路电池电路是否导通;及/或,所述第一防反电路由第一防反二极管构成;及/或,所述第二防反电路由第二防反二极管构成。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述电池组充放电方法。
本发明实施例还提供了一种电池组充放电装置,包括:确定模块,设置为:确定需要对电池组进行充电或放电,其中,所述电池组包括主路电池和辅路电池;充放电模块,设置为:对所述电池组中的所述主路电池和/或所述辅路电池分别独立地进行充电或放电处理。
可选地,所述确定模块包括:第一判断单元,设置为:判断所述主路电池是否满足第一充电条件,其中,所述第一充电条件包括:所述主路电池的电压小于预设电压,且/或主路电池电路的电流大于预设电流;所述充放电模块包括:第一充电单元,设置为:在所述第一判断单元判断所述主路电池满足所述第一充电条件的情况下,单独对所述主路电池进行充电;第二充电 单元,设置为:在所述第一判断单元判断所述主路电池不满足所述第一充电条件的情况下,单独对所述辅路电池进行充电。
可选地,所述第二充电单元包括:第二判断单元,设置为:判断所述辅路电池是否满足第二充电条件,其中,所述第二充电条件包括:所述辅路电池的电压小于所述主路电池的电压且所述辅路电池的容量设置不为零;第三充电单元,设置为:在所述第二判断单元判断所述辅路电池满足所述第二充电条件的情况下,单独对所述辅路电池进行充电。
可选地,控制模块,设置为:在单独对所述辅路电池进行充电且确定所述辅路电池充电完成之后,或者在所述第二判断单元判断所述辅路电池不满足所述第二充电条件的情况下,控制所述主路电池进入浮充状态。
可选地,所述装置还包括:第一调整模块,设置为:在单独对所述主路电池进行充电之前,按照所述主路电池的电压调整供电电源的充电电压;和/或,第二调整模块,设置为:在单独对所述辅路电池进行充电之前,按照所述辅路电池的电压调整供电电源的充电电压。
可选地,所述确定模块包括:第三判断单元,设置为:判断所述主路电池是否满足第一放电条件,其中,所述第一放电条件包括:主路电池电路导通,所述主路电池的电压大于所述辅路电池的电压,且所述主路电池的电压大于电池下电电压;所述充放电模块包括:第一放电单元,设置为:在所述第三判断单元判断所述主路的电池满足所述第一放电条件的情况下,利用所述主路电池进行放电,直至所述主路电池的电压降至预设的一次下电电压;第二放电单元,设置为:在所述第三判断单元判断所述主路电池不满足所述第一放电条件的情况下,或者所述主路电池电压降至所述一次下电电压之后,利用所述辅路电池进行放电。
可选地,第二放电单元包括:第四判断单元,设置为:判断所述辅路电池是否满足第二放电条件,其中,所述第二放电条件包括:辅路电池电路导通,所述辅路电池的容量设置不为零,且所述辅路电池的电压大于二次下电电压;第三放电单元,设置为:在所述第四判断单元判断所述辅路电池满足所述第二放电条件的情况下,利用所述辅路电池进行放电,直至所述辅路电池的电压降至所述一次下电电压,断开对一次下电负载的供电;第四放电单 元,设置为:在断开对所述一次下电负载的供电之后,继续利用所述辅路电池进行放电,直至所述辅路电池的电压降至所述二次下电电压。
可选地,所述充放电模块还包括:第五判断单元,设置为:在利用所述辅路电池进行放电之后,判断所述主路电池是否满足所述第一放电条件;第五放电单元,设置为:在所述第五判断单元判断所述主路电池满足所述第一放电条件的情况下,利用所述主路电池进行放电,直至所述主路电池的电压降至所述电池下电电压时,断开对电池下电负载的供电。
可选地,所述装置还包括:第一判断模块,设置为:在单独对所述主路电池进行充电之前,或者利用所述主路电池进行放电之前,判断主路电池电路是否处于第一状态,其中,所述第一状态包括主路电池电路的主通道导通,且主路电池电路的辅通道、辅路电池电路的主通道、辅路电池电路的辅通道均断开,所述主路电池电路的辅通道上设置有第一防反电路,所述辅路电池电路的辅通道上设置有第二防反电路;第三调整模块,设置为:在所述主路电池电路未处于所述第一状态的情况下,调整所述主路电池电路的状态至所述第一状态;和/或,第二判断模块,设置为:在单独对所述辅路电池进行充电之前,或者利用所述辅路电池进行放电之前,判断所述辅路电池电路是否处于第二状态,其中,所述第二状态包括所述辅路电池电路的主通道导通,且所述主路电池电路的主通道、所述主路电池电路的辅通道、所述辅路电池电路的辅通道均断开;第四调整模块,设置为:在所述辅路电池电路未处于所述第二状态的情况下,调整所述辅路电池电路的状态至所述第二状态。
通过本发明实施例,确定需要对电池组进行充电或放电,其中,电池组包括主路电池和辅路电池;对电池组中的主路电池和/或辅路电池分别独立地进行充电或放电处理,从而采用一种灵活的主路电池和辅路电池的管理方法,对主路电池和辅路电池进行分时充放电管理,使得在同一时间只有一组电池(主路电池或者辅路电池)在线充电或放电,解决了相关技术中新旧电池直接串联或者并联使用导致的增加成本、降低电池寿命的问题,进而在一定程度上达到了降低成本、提高电池寿命的效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是根据本发明实施例的电池组充放电方法的流程图;
图2是根据本发明实施例的电池组充放电装置的结构框图;
图3是根据本发明实施例的电池组充放电装置中确定模块22和充放电模块24的一种结构框图;
图4是根据本发明实施例的电池组充放电装置中第二充电单元36的结构框图;
图5是根据本发明实施例的电池组充放电装置的一种可选的结构框图;
图6是根据本发明实施例的电池组充放电装置的另一种可选的结构框图;
图7是根据本发明实施例的电池组充放电装置中确定模块22和充放电模块24的另一种结构框图;
图8是根据本发明实施例的电池组充放电装置中第二放电单元76的结构框图;
图9是根据本发明实施例的电池组充放电装置中充放电模块24的结构框图;
图10是根据本发明实施例的电池组充放电装置的又一种可选的结构框图;
图11是根据本发明实施例的混合蓄电池管理装置的结构框图;
图12是根据本发明实施例的主辅路电池切换装置的电路示意图;
图13是根据本发明实施例的主辅路电池切换装置的电池充电的管理流程图;
图14是根据本发明实施例的主辅路电池切换装置的电池放电的管理流程图;
图15是根据本发明实施例的主辅路电池切换装置的主路电池切换到辅路电池的流程图;
图16是根据本发明实施例的主辅路电池切换装置的辅路电池切换到主路电池的流程图。
本发明的较佳实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
需要说明的是,本文中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种电池组充放电方法,图1是根据本发明实施例的电池组充放电方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,确定需要对电池组进行充电或放电,其中,电池组包括主路电池和辅路电池;
步骤S104,对电池组中的主路电池和/或辅路电池分别独立地进行充电或放电处理。
通过上述步骤,采用一种灵活的主路电池和辅路电池的管理方法,对主路电池和辅路电池进行分时充放电管理,使得在同一时间只有一组电池(主路电池或者辅路电池)在线充电或放电,解决了相关技术中新旧电池直接串联或者并联使用导致的增加成本、降低电池寿命的问题,进而在一定程度上达到了降低成本、提高电池寿命的效果。
在一个可选的实施例中,在步骤S102中确定需要对电池组中的电池进行充电时,步骤S104中对电池组中的主路电池和/或辅路电池分别独立地进行充电可以包括:判断主路电池是否满足第一充电条件,其中,第一充电条件包括:主路电池的电压小于预设电压,且/或主路电池电路的电流大于预设电流;在判断主路电池满足第一充电条件的情况下,单独对主路电池进行充电;在判断主路电池不满足第一充电条件的情况下,单独对辅路电池进行充电。在该可选实施例中,主路电池可以是新电池,或者是电池容量大的电池,辅路电池可以是旧电池,或者是电池容量小的电池;首先对主路电池进行充电,可以提高电池组的充电效率。
在一个可选的实施例中,单独对辅路电池进行充电可以包括:判断辅路电池是否满足第二充电条件,其中,第二充电条件包括:辅路电池的电压小于主路电池的电压且辅路电池的容量设置不为零;在判断辅路电池满足第二充电条件的情况下,单独对辅路电池进行充电。在该可选实施例中,在对辅路电池进行充电的过程中,要保证辅路电池的电压小于主路电池的电压且辅路电池的容量设置不为零,这样可以使得主路电池的电压大于辅路电池,说明主路电池的充电量已经达到一定值,电池组的充电效率提高了。
在一个可选的实施例中,在单独对辅路电池进行充电且确定辅路电池充电完成之后,或者在判断辅路电池不满足第二充电条件的情况下,还可以包括:控制主路电池进入浮充状态。浮充状态可以是指,当电池处于充满状态时,不会停止对其进行充电,而是会提供恒定的电压(可称为浮充电压)和很小的电池(可称为浮充电流)供给电池。单独对辅路电池进行充电且确定辅路电池充电完成之后,或者在判断辅路电池不满足第二充电条件的情况下,说明辅路电池和主路电池都已经充电完成,或者辅路电池和主路电池都不满足充电条件,控制主路电池进入浮充状态,可以以较小的功耗进行主路电池的充电。
在一个可选的实施例中,在单独对主路电池进行充电之前,该方法还可以包括:按照主路电池的电压调整供电电源的充电电压;及/或,在单独对辅路电池进行充电之前,该方法还可以包括:按照辅路电池的电压调整供电电源的充电电压。在单独对主路和/或辅路电池进行充电之前,进行供电电源电压的调整,可以防止电池出现瞬间过充的现象,提高了电池的使用寿命。
在一个可选的实施例中,在步骤S102中确定需要对电池组中的电池进行放电时,步骤S104中对电池组中的主路电池和/或辅路电池分别独立地进行放电可以包括:判断主路电池是否满足第一放电条件,其中,第一放电条件包括:主路电池电路导通,主路电池的电压大于辅路电池的电压,且主路电池的电压大于电池下电电压;在判断主路电池满足第一放电条件的情况下,利用主路电池进行放电,直至主路电池的电压降至预设的一次下电电压;在判断主路电池不满足第一放电条件的情况下,或者主路电池电压降至一次下电电压之后,利用辅路电池进行放电。负载(如电池)的下电可以是指断 开对负载(如电池)的供电。在该可选实施例中,首先对主路电池进行放电至一次下电电压,再利用辅路电池进行放电,该一次下电电压为用户可以合理设置的一个值。由此,实际利用的电池容量为主路电池和辅路电池的电池容量之和,也不会影响主路电池或者辅路电池的放电特性,节省了额外增加电池容量的成本。
在一个可选的实施例中,利用辅路电池进行放电可以包括:判断辅路电池是否满足第二放电条件,其中,第二放电条件包括:辅路电池电路导通,辅路电池的容量设置不为零,辅路电池的电压大于二次下电电压;在判断辅路电池满足第二放电条件的情况下,利用辅路电池进行放电,直至辅路电池的电压降至一次下电电压,断开对一次下电负载的供电;在断开对一次下电负载的供电之后,继续利用辅路电池进行放电,直至辅路电池的电压降至二次下电电压。在该可选实施例中,用户还可以合理设置一个二次下电电压,使辅路电池的放电达到一次下电电压之后,将一次下电负载的供电断开,继续使用辅路电池进行放电,直至辅路电池电压将至二次下电电压,停止辅路电池的放电,从而能够延长电池组的供电时间。
在一个可选的实施例中,在利用辅路电池进行放电之后,还可以包括:判断主路电池是否满足第一放电条件;在判断所述主路电池满足所述第一放电条件的情况下,利用主路电池进行放电,直至主路电池的电压降至电池下电电压时,断开对电池下电负载的供电。在该可选实施例中,用户还可以合理设置一个电池下电电压,在辅路电池停止供电后,继续利用主路电池对电池下电负载进行供电,直至主路电池的电压将至电池下电电压。主路电池仅对电池下电负载供电,而不对一次下电负载供电,延长电池组的供电时间。电池下电电压和二次下电电压可以相同,也可以不同。
在一个可选的实施例中,在单独对主路电池进行充电之前,或者利用主路电池进行放电之前,还可以包括:判断主路电池电路是否处于第一状态,其中,第一状态包括主路电池电路的主通道导通,且主路电池电路的辅通道、辅路电池电路的主通道、辅路电池电路的辅通道均断开,主路电池电路的辅通道上设置有第一防反电路,辅路电池电路的辅通道上设置有第二防反电路;在主路电池电路未处于第一状态的情况下,调整主路电池电路的状态至 第一状态;及/或,在单独对辅路电池进行充电之前,或者利用辅路电池进行放电之前,还可以包括:判断辅路电池电路是否处于第二状态,其中,第二状态包括辅路电池电路的主通道导通,且主路电池电路的主通道、主路电池电路的辅通道、辅路电池电路的辅通道均断开;在辅路电池电路未处于第二状态的情况下,调整辅路电池电路的状态至第二状态。在该可选实施例中,主路电池电路可包括主通道和辅通道,辅通道上可设置有第一防反电路,可以在对主路电池进行充电的时候,防止主路电池出现瞬间过充现象,在对主路电池进行放电的时候,防止主路电池对辅路电池进行充电。同理,对于辅路电池也可包括主通道和辅通道,辅通道上可设置有第二防反电路。
在一个可选的实施例中,主路电池与辅路电池可共用一个电流检测单元,其中,电流检测单元设置为:检测主路电池电路与辅路电池电路的总电流,以判断主路电池电路或辅路电池电路是否导通;及/或,第一防反电路可由第一防反二极管构成;及/或,第二防反电路可由第二防反二极管构成。由于在同一时间内仅单独对主路电池或辅路电池进行充电或放电,电流检测单元检测主路电池电路与辅路电池电路的总电流,实际是检测当前在线工作的电池电路的电流。使用一个电流检测单元,可以对主路电池电路和辅路电池电路的电流完成检测,简化了电路结构。第一防反电路和第二防反电路由防反二极管构成,也简化了电路结构。
主路电池一般可为一个,辅路电池可以为一个或者多个。在一个可选的实施例中,当辅路电池为多个的时候,可以对在主路电池充电完成之后,依次对辅路电池进行充电;可在对主路电池放电至一次下电电压时,对所有的辅路电池依次放电至一次下电电压,断开一次下电负载后,继续对所有的辅路电池依次放电至二次下电电压,然后切换至主路电池进行放电。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执 行本发明实施例所述的方法。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述电池组充放电方法。
在本实施例中还提供了一种电池组充放电装置,该装置设置为实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的电池组充放电装置的结构框图,如图2所示,该装置包括确定模块22和充放电模块24,下面对该装置进行说明。
确定模块22,设置为:确定需要对电池组进行充电或放电,其中,电池组包括主路电池和辅路电池;充放电模块24,连接至确定模块22,设置为:对电池组中的主路电池和/或辅路电池分别独立地进行充电或放电处理。
图3是根据本发明实施例的电池组充放电装置中确定模块22和充放电模块24的一种结构框图,如图3所示,该确定模块22可包括第一判断单元32,该充放电模块24可包括第一充电单元34和第二充电单元36,下面对该确定模块22和充放电模块24进行说明。
确定模块22可包括:第一判断单元32,设置为:判断主路电池是否满足第一充电条件,其中,第一充电条件包括:主路电池的电压小于预设电压,且/或主路电池电路的电流大于预设电流;充放电模块24可包括:第一充电单元34,连接至第一判断单元32,设置为:在第一判断单元32判断主路电池满足第一充电条件的情况下,单独对主路电池进行充电;第二充电单元36,连接至第一判断单元32,设置为:在第一判断单元32判断主路电池不满足第一充电条件的情况下,单独对辅路电池进行充电。
图4是根据本发明实施例的电池组充放电装置中第二充电单元36的结构框图,如图4所示,该第二充电单元36可包括第二判断单元42和第三充电单元44,下面对该第二充电单元36进行说明。
第二判断单元42,设置为:判断辅路电池是否满足第二充电条件,其 中,第二充电条件包括:辅路电池的电压小于主路电池的电压且辅路电池的容量设置不为零;第三充电单元44,连接至第二判断单元42,设置为:在第二判断单元42判断辅路电池满足第二充电条件的情况下,单独对辅路电池进行充电。
图5是根据本发明实施例的电池组充放电装置的一种可选的结构框图,如图5所示,该装置除了包括图4所示的所有模块外,还可包括控制模块52,下面对该控制模块52进行说明。
控制模块52,连接至充放电模块24,设置为:在单独对辅路电池进行充电且确定辅路电池充电完成之后,或者在第二判断单元判断辅路电池不满足第二充电条件的情况下,控制主路电池进入浮充状态。
图6是根据本发明实施例的电池组充放电装置的另一种可选的结构框图,如图6所示,该装置除了包括图3所示的所有模块外,还可包括第一调整模块62和/或第二调整模块64,下面对该第一调整模块62和第二调整模块64进行说明。
第一调整模块62,连接至第一判断单元32和第一充电单元34,设置为:在单独对主路电池进行充电之前,按照主路电池的电压调整供电电源的充电电压;
第二调整模块64,连接至第一判断单元32和第二充电单元36,设置为:在单独对辅路电池进行充电之前,按照辅路电池的电压调整供电电源的充电电压。
图6仅仅是一种示例性说明,可选地,该装置除了包括图4或5所示的所有模块外,还可包括第一调整模块62和第二调整模块64。
图7是根据本发明实施例的电池组充放电装置中确定模块22和充放电模块24的另一种结构框图,如图7所示,该确定模块22可包括第三判断单元72,该充放电模块24可包括第一放电单元74和第二放电单元76,下面对该确定模块22和充放电模块24进行说明。
确定模块22可包括:第三判断单元72,设置为:判断主路电池是否满足第一放电条件,其中,第一放电条件包括:主路电池电路导通,主路电池 的电压大于辅路电池的电压,且主路电池的电压大于电池下电电压;充放电模块24可包括:第一放电单元74,连接至第三判断单元72,设置为:在第三判断单元72判断主路电池满足第一放电条件的情况下,利用主路电池进行放电,直至主路电池的电压降至预设的一次下电电压;第二放电单元76,连接至第三判断单元72,设置为:在第三判断单元72判断主路电池不满足第一放电条件的情况下,或者主路电池电压降至一次下电电压之后,利用辅路电池进行放电。
图8是根据本发明实施例的电池组充放电装置中第二放电单元76的结构框图,如图8所示,该第二放电单元86可包括第四判断单元82、第三放电单元84和第四放电单元86,下面对该第二放电单元76进行说明。
第四判断单元82,设置为:判断辅路电池是否满足第二放电条件,其中,第二放电条件包括:辅路电池电路导通,辅路电池的容量设置不为零,且辅路电池的电压大于二次下电电压;第三放电单元84,连接至第四判断单元82,设置为:在第四判断单元82判断辅路电池满足第二放电条件的情况下,利用辅路电池进行放电,直至辅路电池的电压降至一次下电电压,断开对一次下电负载的供电;第四放电单元86,连接至第三放电单元84,设置为:在断开对一次下电负载的供电之后,继续利用辅路电池进行放电,直至辅路电池的电压降至二次下电电压。
图9是根据本发明实施例的电池组充放电装置中充放电模块24的结构框图,如图9所示,该充放电模块24可包括第五判断单元92和第五放电单元94,下面对该充放电模块24进行说明。
第五判断单元92,连接至第四放电单元86,设置为:在利用辅路电池进行放电之后,判断主路电池是否满足第一放电条件;第五放电单元94,连接至第五判断单元92,设置为:在第五判断单元92判断所述主路电池满足所述第一放电条件的情况下,利用主路电池进行放电,直至主路电池的电压降至电池下电电压时,断开对电池下电负载的供电。
图10是根据本发明实施例的电池组充放电装置的又一种可选的结构框图,如图10所示,该装置除了包括图3所示的所有模块外,还可包括第一判断模块102、第三调整模块104,和/或,第二判断模块106和第四调整模 块108,下面对该第一判断模块102和第二判断模块104进行说明。
第一判断模块102,连接至第三判断单元72,设置为:在单独对主路电池进行充电之前,或者利用主路电池进行放电之前,判断主路电池电路是否处于第一状态,其中,第一状态包括主路电池电路的主通道导通,且主路电池电路的辅通道、辅路电池电路的主通道、辅路电池电路的辅通道均断开,主路电池电路的辅通道上设置有第一防反电路,辅路电池电路的辅通道上设置有第二防反电路;第三调整模块104,连接至第一判断模块102和第一放电单元74,设置为:在主路电池电路未处于第一状态的情况下,调整主路电池电路的状态至第一状态;
第二判断模块106,连接至第三判断单元72,设置为:在单独对辅路电池进行充电之前,或者利用辅路电池进行放电之前,判断辅路电池电路是否处于第二状态,其中,第二状态包括辅路电池电路的主通道导通,且主路电池电路的主通道、主路电池电路的辅通道、辅路电池电路的辅通道均断开;第四调整模块108,连接至第二判断模块106和第二放电单元76,设置为:在辅路电池电路未处于第二状态的情况下,调整辅路电池电路的状态至第二状态。
图10仅仅是一种示例,该装置还可以除了包括图7所示的所有模块外,还可包括第一判断模块102、第三调整模块104,和/或,第二判断模块106和第四调整模块108。
上述电池组充放电装置的实施例及可选实施例中,可选地,主路电池与辅路电池可以共用一个电流检测单元,其中,电流检测单元设置为:检测主路电池电路与辅路电池电路的总电流,以判断主路电池电路或辅路电池电路是否导通;及/或,第一防反电路可由第一防反二极管构成;及/或,第二防反电路可由第二防反二极管构成。
本发明实施例中,不同型号或者新旧电池混合使用时,可确定主辅路电池回路(一般可采用新电池或容量大的电池组作为主路电池、其它作为辅路电池)。通过主辅路电池切换装置,可对每组电池进行独立的充放电管理,不同组电池可共用一个电流检测电路,每次可只单独对一组电池充放电管理,根据电流、电压检测结果进行电池保护。
下面结合具体实施环境对本发明实施例的电池组充放电方法及装置进行说明。
图11是根据本发明实施例的混合蓄电池管理装置(相当于上述实施例中的电池组充放电装置)的结构框图,如图11所示,该装置包括直流供电电源112、集中监控单元(Centre Supervisory Unit,简称为CSU)114(相当于上述实施例中的第一判断单元32、第二判断单元42、控制模块52、第一调整模块62、第二调整模块64、第三判断单元72、第四判断单元82、第五判断单元92、第一判断模块102、第二判断模块106、第三调整模块104、第四调整模块108)、主辅路电池切换单元116(相当于上述实施例中的第一充电单元34、第二充电单元36、第三充电单元44、第一放电单元74、第二放电单元76、第三放电单元84、第四放电单元86、第五放电单元94)、电池组118(n+1组电池,其中一路为主路电池,其他n路为辅路电池)、直流负载(包括电池下电负载1110和一次下电负载1112),下面对该装置进行说明。
直流供电电源112,设置为:给负载(包括电池下电负载1110和一次下电负载1112)进行直流供电,并向电池组118提供充电电流;
CSU 114,设置为:进行电池组118中多组蓄电池(n+1组电池)的电压、电流、温度、在位信息的采集,分析和输出控制;
CSU 114可根据主辅路电池(1组主路电池,n组辅路电池)参数设定及在位情况,对主辅路电池进行充放电切换,使主辅路电池分时接入主回路,同一时间仅一路电池在位,通过检测电池电压、电流,实现对主辅路电池的分时管理,并进行过充、过放保护,并且不会出现电池出现瞬间过充、电池之间放电的情况发生;
主辅路电池切换单元116,由CSU 114控制,主辅路电池切换单元116设置为:负责主辅路电池切换。在主辅路电池切换单元116中,每种蓄电池都包括一个主控制回路及辅控制回路、一个电池在位检测、电压检测。多路电池共享一个电流检测单元。本发明实施例中,与其它基站电源的不同之处在于主辅路电池切换单元116。
电流检测及电压检测单元位于主辅路电池切换单元116中,电流检测 单元设置为:检测多个电池中每个电池的电流,以对电池进行充放电电流检测判断,电压检测单元设置为:检测多个电池中每个电池的电压,CSU 114可以以检测到的当前在线电池的电流和电压为参考依据,对电池进行管理及限流、限压及下电保护等。
直流负载可以是由直流供电电源112或者电池组118提供电能,包括一次下电负载(电池电压下降到一次电压时断开此负载供电)1112、电池下电负载(电池电压下降到电池下电电压后断开此负载)1110;
根据图11所示的混合蓄电池管理装置的结构框图,对该主辅路电池切换装置的工作流程进行如下说明。
系统可默认主路电池开关闭合,辅路电池开关断开。CSU 114首先可根据设置参数(包括电池容量、电池路数),判断多路电池中每路电池的在位情况,确定实际的电池路数。
第一步:在市电存在或油机输入交流电的状态下,可对主辅路电池切换进行分时充电管理,在有交流电状态,电池处于充电状态,通过判断电池电压、调节供电输出电压、检测充电电流,CSU 114可判断主路电池是否需要充电,当主路电池充电结束时,切换到辅路电池,切换过程中不会出现主辅路电池直接并联同时接入主充电回路的情况。切换过程中可调节供电电源充电电压到辅路电池电压附近,使得切换到辅路电池不会出现辅路电池瞬间过充现象。当切换到辅路电池后,可等待辅路电池充电完毕再切换回主路电池,以使主路电池保持长期浮充状态。
第二步:在无交流电、市电停电或油机停止情况下,电池进入放电状态,对主辅路电池切换进行分时放电管理。接入主回路的主路电池首先可放电,当主路电池放电一定程度达到设定的一次下电电压时,可切换到辅路电池,辅路电池开始对负载(包括电池下电负载1110和一次下电负载1112)放电,等到辅路电池放电达到系统设定的一次下电电压时,可对一次下电负载1112下电,停止对一次下电负载1112的供电,这时辅路电池放电电流会变小。辅路电池可继续放电到系统设定的二次下电电压。这时系统由辅路电池切换到主路电池继续放电,当主路电池放电,主路电池的电压达到系统设定的电池下电电压时,可切断主路电池,停止主路电池对电池下电负载1110的放 电。系统主辅路电池可均断开,直到有交流电才恢复电池上电以及对电池下电负载1110和一次下电负载1112的供电。
当辅路电池的数量为n组时,电池组118放电过程中,由主路电池放电达到一次下电电压后,可切换至其中一路辅路电池,该路辅路电池放电到一次下电电压后,可不切断对于一次下电负载1112的供电,切换到另一路辅路电池,直至所有的辅路电池都放电达到一次下电电压后,再切断对于一次下电负载1112的供电。
本发明实施例中,通过混合蓄电池管理装置(也可以叫做新旧电池切换装置),分时对主辅路电池进行充放电,一方面避免了新旧电池混用带来的电池加速老化风险,另一方面又实现了在交流电停电或无交流电、无油机情况下为负载提供长时间的备电,使得实际利用的电池容量为新旧电池之和,并且不会影响电池的充放电特性,既保证了电池容量,又节约了额外增加电池容量的成本压力。而且n+1组主辅路电池共用一个交流检测单元,既降低了检测成本,又降低了能量损耗。
上述实施例中对混合蓄电池管理装置的结构框图及工作原理、工作流程进行了说明,下面结合具体的实施环境,对上述实施例中的混合蓄电池管理装置的技术方案进行描述。
图12是根据本发明实施例的主辅路电池切换装置(即混合蓄电池管理装置)的电路示意图,本发明实施例中以两组新旧铅酸电池充放电管理及切换为例,详细描述电池充放电管理策略及流程,以及切换原理框图及切换流程,其中,一组新电池为主路电池,另一组旧电池为辅路电池。
如图12所示,该装置包括交流电(Alternating Current,简称为AC)/直流电(Direct Current,简称为DC)供电电源、正负铜排L+和L-、电池分流器、负载电流分流器、CSU、主路电池、辅路电池,一次下电负载、电池下电负载、主路电池切换接触器K1、K2,辅路电池切换接触器K3、K4,主路防反二极管、辅路防反二极管、一次下电接触器K5等。
在工作过程中,AC/DC供电电源可实现交流电到直流电的转化,为一次下电负载及电池下电负载供电、并为主辅路电池充电提供能量。电池分流器可测量主辅路电池的公共电流(实际同时只有1路电池在线)。K1常闭 直流接触器为主路电池回路主通道控制开关,当主路电池接入时闭合,辅路电池接入时断开。K2~K4均为常开接触器,K2作为主辅路电池切换时的主路电池辅助通道控制开关,只在新旧电池切换过程中有断开闭合动作,平时为常开状态。K3为辅路电池主回路控制开关,当辅路电池接入系统时才闭合,主路电池接入时断开。K4为辅路电池辅助回路控制开关。在主路电池在位时,K2~K4均处于断开状态,只有K1闭合,系统默认只有主路电池接入。主路及辅路防反二极管为防止电池切换过程中电池过充或电池之间相互充电(简称为电池互充)。K1~K4的控制信号(K(n)_CTL+及K(n)_CTL-)由CSU提供,CSU控制开关K1~K4的通断,从而实现主辅路电池切换。CSU通过检测电池分流器两端电流信号IB1+及IB1-及主辅路电池电压信号VB1-及VB2-来实现对主辅路电池充放电管理。COM、NO1、NO2用来判断主辅路电池的空开状态,判断主辅路电池是否在位,保证电池切换是在电池空开闭合状态下进行。CSU通过控制器局域网(Controller Area Network,CAN)总线与AC/DC电源通信,来控制电源供电电压及输出功率。本发明实施例适合24V、48V的通信基站电源新旧铅酸电池混用的情况。
正常有交流电时,CSU通过控制供电电源输出电压及电流,在给一次下电负载及电池下电负载供电的同时,对主辅路电池分时进行充电,图13是根据本发明实施例的主辅路电池切换装置的电池充电的管理流程图,该流程包括以下步骤:
步骤S1301,首先判断主路电池是否需要充电,具体可以为:首先判断COM与NO1两端是否导通,如果触点不导通则表明主路电池不存在或主路电池空开断开,不满足主路电池导通条件,然后检测主路电池电压是否满足充电条件。如满足充电条件则转到步骤S1302,如不满足则转到步骤S1307;
步骤S1302,当主路电池需要充电时,查看主路电池是否处于连接状态(即K1闭合,K2~K4均断开),如果主路电池未连接则进入步骤S1303,如果主路电池在位且处于连接状态则进入S1305进行主路电池充电;
步骤S1303,当主路电池不在位时进行辅路电池到主路电池切换,具体切换步骤参见图16,之后进入步骤S1304;
步骤S1304,等待辅路电池切换到主路电池完成,此时判断主路电池电 压是否与排上电压(L+与L-电压)一致,一致说明电池切换完成,进入步骤S1305,否则重新进行步骤S1303中的切换;
步骤S1305,对主路电池进行充电,CSU通过根据主路电池预先设置的容量,检测电池充电电流(通过IB1+及IB1-电池分流器两端电压换算)及电压(VB1-与L+之间电压即主路电池电压),根据铅酸电池的充电曲线对主路电池充电;进入步骤S1306;
步骤S1306,根据电池电压及充电电流判断主路电池是否充满,充满后进入步骤S1307;
步骤S1307,当主路电池不存在或主路电池充满时,判断辅路电池是否需要充电,需要充电的条件包括辅路电池触点COM与NO2连接正常,辅路电池容量设置不为0,且辅路电池电压低于主路电池电压,三者缺一不可。是则进入步骤S1308;否则,电池充电流程结束,主路电池进入常态浮充状态;
步骤S1308,当辅路电池满足充电条件时,判断辅路电池是否处于连接状态(即K3闭合,K1、K2、K4均断开),如果辅路电池未处于连接状态则进入步骤S1309,如果辅路电池在位且处于连接状态,则进入S1311进行辅路电池充电;
步骤S1309,当辅路电池未接入供电系统(即辅路电池未处于连接状态)时,进行主路电池到辅路电池的切换,具体步骤参考附图15。进入步骤S1310;
步骤S1310,等待主路电池切换到辅路电池完成,此时判断辅路电池电压是否与排上电压(L+与L-电压)一致,一致说明电池切换完成,进入步骤S1311,否则重新执行步骤S1309中的切换;
步骤S1311,对辅路电池进行充电,CSU通过根据主路电池预先设置的容量,检测电池充电电流(通过IB1+及IB1-电池分流器两端电压换算)及电压(VB2-与L+之间电压即辅路电池电压),根据铅酸电池的充电曲线对辅路电池充电;执行步骤S1312;
步骤S1312,根据电池电压及充电电流判断辅路电池是否充满,充满后 进入步骤S1313;
步骤S1313,辅路电池充电完成后,系统接入电池由辅路电池切换到主路电池,具体切换步骤参见附图16;
步骤S1314,等待辅路电池切换到主路电池完成,此时判断主路电池电压是否与排上电压(L+与L-电压)一致,一致说明电池切换完成,进入主路电池浮充常态,充电流程完成,否则重新进行步骤S1313中的切换;
本发明实施例的电池充电是在有交流电的前提下进行的,如果交流电停电则系统进入电池放电状态。
当交流电停电时,可依靠电池对负载放电。图14是根据本发明实施例的主辅路电池切换装置的电池放电的管理流程图,如图14所示,该流程包括:
步骤S1401,判断主路电池是否可以放电。主路电池可以放电的条件包括:
1)主路电池存在,即主路电池空开FU1闭合(通过判断FU1的辅助触点CON与NO1闭合);
2)主路电池电压大于辅路电池电压;且
3)主路电池电压大于设定的电池下电保护电压。
如果满足上述条件则执行步骤S1402,否则执行S1406;
步骤S1402,查看主路电池是否处于连接状态(即K1闭合,K2~K4均断开),如果主路电池未连接则执行步骤S1403,如果主路电池在位且处于连接状态,则执行步骤S1405进行主路电池放电;
步骤S1403,当辅路电池接入系统时,需要执行辅路电池向主路电池切换。具体切换步骤流程详见附图16;
步骤S1404,等待辅路电池切换到主路电池完成,此时判断主路电池电压是否与排上电压(L+与L-电压)一致,一致说明电池切换完成,进入主路电池放电,否则重新执行步骤S1403;
步骤S1405,当主路电池接入系统后,此时主路电池对负载(包括电池 下电负载和一次下电负载)放电;
步骤S1406,主路电池放电期间,CSU检测主路电池电压(VB1-与L+之间电压),判断主路电池电压是否达到一次下电电压,当达到一次下电电压时执行步骤S1407,未达到时主路电池继续放电;
步骤S1407,当主路电池放电达到一次下电电压时,判断辅路电池是否可以放电。辅路电池可以放电的条件包括:辅路电池触点COM与NO2连接正常(即FU2闭合),辅路电池容量设置不为0,且辅路电池电压大于设定的电池下电电压。满足条件则执行步骤S1408,不满足条件则转到步骤S1419,主路电池继续放电;
步骤S1408,判断辅路电池是否在系统中处于连接状态,处于连接状态则执行步骤S1411,未处于连接状态则执行步骤S1409;
步骤S1409,根据附图15的流程进行主路电池到辅路电池的切换,再执行步骤S1410判断切换是否完成,完成的判断条件包括排上电压和辅路电池电压是否一致,后续不再详细说明。当切换完成时执行步骤S1411,否则重新执行S1409直到切换到辅路电池完成;
步骤S1411,此时辅路电池对负载放电,执行步骤S1412,判断辅路电池电压是否达到设定的一次下电电压,大于一次下电电压则继续执行步骤S1411持续放电。辅路电池电压达到一次下电电压则执行步骤S1413,进行一次下电,断开K5,断开一次下电负载的供电,减小电池放电电压,增加电池放电时间。
步骤S1414,当步骤S1413执行后辅路电池继续放电,此时持续判断辅路电池电压是否下降到系统参数设定的电池下电电压,当辅路电池下降到电池下电电压时,执行步骤S1415;
步骤S1415,判断主路电池是否可以放电,主路电池可以放电的条件包括:1)FU1电池空开接通;2)主路电池电压大于设定的电池下电电压;且3)主路电池电压大于辅路电池电压。如不满足条件则执行步骤S1402,电池下电,系统断电。如满足条件则执行步骤S1416;
步骤S1416,依据附图16系统切换到主路电池,执行步骤S1417判断 电池切换是否完成,未完成则重新执行步骤S1416,完成则执行步骤S1418;
步骤S1418,主路电池继续对系统接入的电池下电负载进行放电,执行步骤S1419,判断主路电池电压是否降到系统CSU参数设定的电池下电电压,未达到则继续放电,达到则执行步骤S1420;
步骤S1420,当主路及辅路电池均达到电池下电电压后,CSU控制K1_CTL+/K1_CTL-、K3_CTL+/K3_CTL-输出高电平,断开主辅路电池下电接触器K1及K3,系统下电,主辅路电池停止放电,系统掉电,以保护电池。当系统来交流电或有油机启动时进行新一轮的电池充放电管理流程。
上述实施例充放电管理流程多次用到了主辅路电池切换,图15是根据本发明实施例的主辅路电池切换装置的主路电池切换到辅路电池的流程图,图16是根据本发明实施例的主辅路电池切换装置的辅路电池切换到主路电池的流程图,下面对本发明实施例中的具体切换过程进行说明。
如图15所示,并结合图12,主路电池切换到辅路电池的流程包括如下步骤:
步骤S1501,首先闭合K1,主路电池主回路接通,系统接入为主路电池(实际上只有主路电池接入,才会切换到辅路电池,实际的K1本来就是闭合的),此时排上电压与主路电池电压相同;
步骤S1502,闭合主路电池辅助通道接触器K2;
步骤S1503,K1断开,此时主路电池通过辅助通道接入系统,当排上电压(L+与L-之间电压,即直流供电电源输出端两端电压)大于主路电池电压时,二极管VD1不导通,主路电池既不充电也不放电。当交流电停电或排上电压低于主路电池电压时VD1导通,主路电池可以向负载放电防止电池切换过程中供电电源异常或交流电停电引起负载断电的情况发生;
步骤S1504,闭合辅路电池辅助通道直流接触器K4,此时主辅路电池都通过辅助通道接入,由于VD1和VD2的存在,电池只在放电时通道导通,不会出现由于主辅路电池压差导致的电池互充,也不会出现供电电源同时向电池充电的情况,不会出现排上电压与辅路电池压差过大引起电池过充的情况发生;
步骤S1505,断开K2,此时辅路电池通过辅助通道接入系统,当排上电压大于辅路电池电压时,二极管VD2不导通,辅路电池既不充电也不放电。当交流电停电或排上电压低于辅路电池电压时VD2导通,辅路电池可以向负载放电,防止电池切换过程中供电电源异常或交流电停电引起负载断电的情况发生;
步骤S1506,当前状态下,辅路电池主通道K3接通之前,为防止排上电压过大远大于辅路电池电压导致K3接通瞬间电池过充,此时调节供电电源输出电压,使排上电压接近辅路电池电压。当交流电停电或供电单元异常无输出时,辅路电池直接通过辅助通道对负载放电,排上电压会直接接近辅路电池电压;
步骤S1507,此时CSU检测辅路电池电压是否与排上电压接近,接近则执行步骤S1508,否则执行步骤S1506继续调节供电电源输出电压;
步骤S1508,当排上电压与辅路电池电压接近,没有K3接通瞬间供电电源对辅路电池过充风险,此时接通K3,辅路电池主回路接通,辅路电池主回路接入系统;
步骤S1509,此时断开辅路电池辅助通道,断开K4,辅路电池正式接入系统,完成主路电池向辅路电池切换流程。
在整个切换过程中不会出现主辅路电池通过主通道直接同时接入系统进行充放电的情况发生。辅路电池切换到主路电池流程与主路电池切换到辅路电池流程正好反过来,如图16所示,结合图12,该主路电池切换到辅路电池的流程包括:
步骤S1601,首先闭合K3,辅路电池主回路接通,系统接入为辅路电池(实际上只有辅路电池接入,才会切换到主路电池,实际的K3本来就是闭合的),此时排上电压与辅路电池电压相同;
步骤S1602,闭合主路电池辅助通道接触器K4,保证步骤S1603断开K3后,当系统突然掉电时,辅路电池通过辅助通道通过二极管可以对负载临时供电;
步骤S1603,K3断开,此时辅路电池通过辅助通道接入系统,当排上 电压大于辅路电池电压时,二极管VD2不导通,辅路电池既不充电也不放电。当交流电停电或排上电压低于主路电池电压时VD2导通,辅路电池可以向负载进行短暂的放电以保证负载不掉电;
步骤S1604,闭合主路电池辅助通道直流接触器K2,此时主辅路电池都通过辅助通道接入,由于VD1和VD2的存在,不会出现主辅路电池互充的情况,也不会出现供电电源向两路电池充电的情况;
步骤S1605,断开K4,此时仅主路电池通过辅助通道接入系统,当排上电压大于主路电池电压时,二极管VD2不导通,辅路电池既不充电也不放电。当交流电停电或排上电压低于辅路电池电压时VD1导通,主路电池可以向负载放电,防止电池切换过程中供电电源异常或交流电停电引起负载断电的情况发生;
步骤S1606,当前状态下,主路电池主通道K1接通之前,为防止系统突然来电,排上电压远大于主路电池电压导致K1接通瞬间主路电池过充,此时调节供电电源输出电压,使排上电压接近主路电池电压。当交流电停电无输出时,此时主路电池直接通过辅助通道对负载放电,排上电压会直接接近主路电池电压;
步骤S1607,此时CSU检测辅路电池电压是否与排上电压接近,接近则执行步骤S1608,否则执行S1606继续调节供电电源输出电压;
步骤S1608,当排上电压与主路电池电压接近,没有K1接通瞬间供电电源对主路电池过充风险,此时接通K1,主路电池主回路接通,主路电池主回路接入系统;
步骤S1609,此时断开K2主路电池辅助通道,主路电池正式接入系统,完成辅路电池向主路电池切换流程。
图15和图16中所示的主辅路电池切换流程,其中的K1~K4作为电池切换的控制开关,起到线路通断作用,控制信号由CSU提供,本实施例中,作为一个示例,采用了直流接触器,其特点包括稳定、可靠,耐热性、环境适应性强,价格适中。K1需要使用常闭接触器、K2~K4使用常开接触器,电流电压选取可以根据系统实际情况选择合适型号。接触器切换过程中可保 证2秒左右的接触器从动作到稳定的时间。VD1、VD2作为防反二极管,要求电流大,反向电压能够耐受外界电磁环境冲击。必要时可采用二极管阵列并联。整个充放电期间,主辅路电池切换在所有情况下二极管导通放电时间不会超过10秒,保证了二极管不会长时间通电发热老化。
本发明实施例中的电池切换器件可以采用其他类似器件替代,本发明实施例中的电池切换及管理对象也不限于两路电池或铅酸电池,可以衍生到多路不同新旧或不同类别的电池,当然电池类型不同,电池充放电管理的具体流程与策略可以不一样,但是电池切换的策略及过程都可以是完全适用的。
需要说明的是,上述模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,确定需要对电池组进行充电或放电,其中,电池组包括主路电池和辅路电池;
S2,对电池组中的主路电池和/或辅路电池分别独立地进行充电或放电处理。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器可根据存储介质中已存储的程序代码执行上述方法实施例中的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件、处 理器等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
本领域的普通技术人员可以理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围。本申请的保护范围以权利要求所定义的范围为准。
工业实用性
通过本发明实施例,确定需要对电池组进行充电或放电,其中,电池组包括主路电池和辅路电池;对电池组中的主路电池和/或辅路电池分别独立地进行充电或放电处理,从而采用一种灵活的主路电池和辅路电池的管理方法,对主路电池和辅路电池进行分时充放电管理,使得在同一时间只有一组电池(主路电池或者辅路电池)在线充电或放电,解决了相关技术中新旧电池直接串联或者并联使用导致的增加成本、降低电池寿命的问题,进而在一定程度上达到了降低成本、提高电池寿命的效果。

Claims (20)

  1. 一种电池组充放电方法,包括:
    确定需要对电池组进行充电或放电,其中,所述电池组包括主路电池和辅路电池;
    对所述电池组中的所述主路电池和/或所述辅路电池分别独立地进行充电或放电处理。
  2. 根据权利要求1所述的方法,其中,在确定需要对电池组中的电池进行充电时,对所述电池组中的所述主路电池和/或所述辅路电池分别独立地进行充电包括:
    判断所述主路电池是否满足第一充电条件,其中,所述第一充电条件包括:所述主路电池的电压小于预设电压,且/或主路电池电路的电流大于预设电流;
    在判断所述主路电池满足所述第一充电条件的情况下,单独对所述主路电池进行充电;
    在判断所述主路电池不满足所述第一充电条件的情况下,单独对所述辅路电池进行充电。
  3. 根据权利要求2所述的方法,其中,单独对所述辅路电池进行充电包括:
    判断所述辅路电池是否满足第二充电条件,其中,所述第二充电条件包括:所述辅路电池的电压小于所述主路电池的电压且所述辅路电池的容量设置不为零;
    在判断所述辅路电池满足所述第二充电条件的情况下,单独对所述辅路电池进行充电。
  4. 根据权利要求3所述的方法,在单独对所述辅路电池进行充电且确定所述辅路电池充电完成之后,或者在判断所述辅路电池不满足所述第二充电条件的情况下,所述方法还包括:
    控制所述主路电池进入浮充状态。
  5. 根据权利要求2至4中任一项所述的方法,
    在单独对所述主路电池进行充电之前,所述方法还包括:按照所述主路电池的电压调整供电电源的充电电压;及/或,
    在单独对所述辅路电池进行充电之前,所述方法还包括:按照所述辅路电池的电压调整供电电源的充电电压。
  6. 根据权利要求1所述的方法,其中,在确定需要对电池组中的电池进行放电时,对所述电池组中的所述主路电池和/或所述辅路电池分别独立地进行放电包括:
    判断所述主路电池是否满足第一放电条件,其中,所述第一放电条件包括:主路电池电路导通,所述主路电池的电压大于所述辅路电池的电压,且所述主路电池的电压大于电池下电电压;
    在判断所述主路电池满足所述第一放电条件的情况下,利用所述主路电池进行放电,直至所述主路电池的电压降至预设的一次下电电压;
    在判断所述主路电池不满足所述第一放电条件的情况下,或者所述主路电池电压降至所述一次下电电压之后,利用所述辅路电池进行放电。
  7. 根据权利要求6所述的方法,其中,利用所述辅路电池进行放电包括:
    判断所述辅路电池是否满足第二放电条件,其中,所述第二放电条件包括:辅路电池电路导通,所述辅路电池的容量设置不为零,且所述辅路电池的电压大于二次下电电压;
    在判断所述辅路电池满足所述第二放电条件的情况下,利用所述辅路电池进行放电,直至所述辅路电池的电压降至所述一次下电电压,断开对一次下电负载的供电;
    在断开对所述一次下电负载的供电之后,继续利用所述辅路电池进行放电,直至所述辅路电池的电压降至所述二次下电电压。
  8. 根据权利要求7所述的方法,在利用所述辅路电池进行放电之后,还包括:
    判断所述主路电池是否满足所述第一放电条件;
    在判断所述主路电池满足所述第一放电条件的情况下,利用所述主路电池进行放电,直至所述主路电池的电压降至所述电池下电电压时,断开对电池下电负载的供电。
  9. 根据权利要求2或6所述的方法,
    在单独对所述主路电池进行充电之前,或者利用所述主路电池进行放电之前,所述方法还包括:判断主路电池电路是否处于第一状态,其中,所述第一状态包括主路电池电路的主通道导通,且主路电池电路的辅通道、辅路电池电路的主通道、辅路电池电路的辅通道均断开,所述主路电池电路的辅通道上设置有第一防反电路,所述辅路电池电路的辅通道上设置有第二防反电路;在所述主路电池电路未处于所述第一状态的情况下,调整所述主路电池电路的状态至所述第一状态;
    和/或,
    在单独对所述辅路电池进行充电之前,或者利用所述辅路电池进行放电之前,所述方法还包括:判断所述辅路电池电路是否处于第二状态,其中,所述第二状态包括所述辅路电池电路的主通道导通,且所述主路电池电路的主通道、所述主路电池电路的辅通道、所述辅路电池电路的辅通道均断开;在所述辅路电池电路未处于所述第二状态的情况下,调整所述辅路电池电路的状态至所述第二状态。
  10. 根据权利要求9所述的方法,其中,
    所述主路电池与所述辅路电池共用一个电流检测单元,其中,所述电流检测单元设置为:检测所述主路电池电路与所述辅路电池电路的总电流,以判断所述主路电池电路或所述辅路电池电路是否导通;及/或,
    所述第一防反电路由第一防反二极管构成;及/或,
    所述第二防反电路由第二防反二极管构成。
  11. 一种电池组充放电装置,包括:
    确定模块,设置为:确定需要对电池组进行充电或放电,其中,所述电池组包括主路电池和辅路电池;
    充放电模块,设置为:对所述电池组中的所述主路电池和/或所述辅路 电池分别独立地进行充电或放电处理。
  12. 根据权利要求11所述的装置,其中,
    所述确定模块包括:
    第一判断单元,设置为:判断所述主路电池是否满足第一充电条件,其中,所述第一充电条件包括:所述主路电池的电压小于预设电压,且/或主路电池电路的电流大于预设电流;
    所述充放电模块包括:
    第一充电单元,设置为:在所述第一判断单元判断所述主路电池满足所述第一充电条件的情况下,单独对所述主路电池进行充电;
    第二充电单元,设置为:在所述第一判断单元判断所述主路电池不满足所述第一充电条件的情况下,单独对所述辅路电池进行充电。
  13. 根据权利要求12所述的装置,其中,所述第二充电单元包括:
    第二判断单元,设置为:判断所述辅路电池是否满足第二充电条件,其中,所述第二充电条件包括:所述辅路电池的电压小于所述主路电池的电压且所述辅路电池的容量设置不为零;
    第三充电单元,设置为:在所述第二判断单元判断所述辅路电池满足所述第二充电条件的情况下,单独对所述辅路电池进行充电。
  14. 根据权利要求13所述的装置,所述装置还包括:
    控制模块,设置为:在单独对所述辅路电池进行充电且确定所述辅路电池充电完成之后,或者在所述第二判断单元判断所述辅路电池不满足所述第二充电条件的情况下,控制所述主路电池进入浮充状态。
  15. 根据权利要求12至14中任一项所述的装置,所述装置还包括:
    第一调整模块,设置为:在单独对所述主路电池进行充电之前,按照所述主路电池的电压调整供电电源的充电电压;和/或,
    第二调整模块,设置为:在单独对所述辅路电池进行充电之前,按照所述辅路电池的电压调整供电电源的充电电压。
  16. 根据权利要求11所述的装置,其中,
    所述确定模块包括:
    第三判断单元,设置为:判断所述主路电池是否满足第一放电条件,其中,所述第一放电条件包括:主路电池电路导通,所述主路电池的电压大于所述辅路电池的电压,且所述主路电池的电压大于电池下电电压;
    所述充放电模块包括:
    第一放电单元,设置为:在所述第三判断单元判断所述主路电池满足所述第一放电条件的情况下,利用所述主路电池进行放电,直至所述主路电池的电压降至预设的一次下电电压;
    第二放电单元,设置为:在所述第三判断单元判断所述主路电池不满足所述第一放电条件的情况下,或者所述主路电池电压降至所述一次下电电压之后,利用所述辅路电池进行放电。
  17. 根据权利要求16所述的装置,其中,第二放电单元包括:
    第四判断单元,设置为:判断所述辅路电池是否满足第二放电条件,其中,所述第二放电条件包括:辅路电池电路导通,所述辅路电池的容量设置不为零,且所述辅路电池的电压大于二次下电电压;
    第三放电单元,设置为:在所述第四判断单元判断所述辅路电池满足所述第二放电条件的情况下,利用所述辅路电池进行放电,直至所述辅路电池的电压降至所述一次下电电压,断开对一次下电负载的供电;
    第四放电单元,设置为:在断开对所述一次下电负载的供电之后,继续利用所述辅路电池进行放电,直至所述辅路电池的电压降至所述二次下电电压。
  18. 根据权利要求17所述的装置,所述充放电模块还包括:
    第五判断单元,设置为:在利用所述辅路电池进行放电之后,判断所述主路电池是否满足所述第一放电条件;
    第五放电单元,设置为:在所述第五判断单元判断所述主路电池满足所述第一放电条件的情况下,利用所述主路电池进行放电,直至所述主路电池的电压降至所述电池下电电压时,断开对电池下电负载的供电。
  19. 根据权利要求12或16所述的装置,所述装置还包括:
    第一判断模块,设置为:在单独对所述主路电池进行充电之前,或者利用所述主路电池进行放电之前,判断主路电池电路是否处于第一状态,其中,所述第一状态包括主路电池电路的主通道导通,且主路电池电路的辅通道、辅路电池电路的主通道、辅路电池电路的辅通道均断开,所述主路电池电路的辅通道上设置有第一防反电路,所述辅路电池电路的辅通道上设置有第二防反电路;第三调整模块,设置为:在所述主路电池电路未处于所述第一状态的情况下,调整所述主路电池电路的状态至所述第一状态;
    和/或,
    第二判断模块,设置为:在单独对所述辅路电池进行充电之前,或者利用所述辅路电池进行放电之前,判断所述辅路电池电路是否处于第二状态,其中,所述第二状态包括所述辅路电池电路的主通道导通,且所述主路电池电路的主通道、所述主路电池电路的辅通道、所述辅路电池电路的辅通道均断开;第四调整模块,设置为:在所述辅路电池电路未处于所述第二状态的情况下,调整所述辅路电池电路的状态至所述第二状态。
  20. 根据权利要求19所述的装置,其中,
    所述主路电池与所述辅路电池共用一个电流检测单元,其中,所述电流检测单元设置为:检测所述主路电池电路与所述辅路电池电路的总电流,以判断所述主路电池电路或所述辅路电池电路是否导通;及/或,
    所述第一防反电路由第一防反二极管构成;及/或,
    所述第二防反电路由第二防反二极管构成。
PCT/CN2016/084589 2016-01-04 2016-06-02 电池组充放电方法及装置 WO2017117913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610006463.8 2016-01-04
CN201610006463.8A CN106941269A (zh) 2016-01-04 2016-01-04 电池组充放电方法及装置

Publications (1)

Publication Number Publication Date
WO2017117913A1 true WO2017117913A1 (zh) 2017-07-13

Family

ID=59273099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084589 WO2017117913A1 (zh) 2016-01-04 2016-06-02 电池组充放电方法及装置

Country Status (2)

Country Link
CN (1) CN106941269A (zh)
WO (1) WO2017117913A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879892A (zh) * 2018-09-20 2018-11-23 山东思科赛德矿业安全工程有限公司 一种双电池组自动切换供电系统
CN117060531A (zh) * 2023-08-14 2023-11-14 东莞航电新能源科技有限公司 防互充控制电路及锂电池组

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910914B (zh) * 2017-11-24 2021-01-29 南京工程学院 电源系统中并联应用锂电池组间的负荷分配方法
CN110504717B (zh) * 2018-05-17 2023-04-25 海信视像科技股份有限公司 一种虚拟现实独立一体机
US11881735B2 (en) * 2018-07-11 2024-01-23 Cummins Inc. Integration of second-use of Li-ion batteries in power generation
CN110854893B (zh) * 2019-11-18 2021-04-06 苏州阿特斯新能源发展股份有限公司 一种储能系统的电池配置方法
CN117639200A (zh) * 2022-08-11 2024-03-01 中兴通讯股份有限公司 备电装置及其控制方法、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201422027Y (zh) * 2009-03-19 2010-03-10 深圳市中兴移动通信有限公司 一种双电池充放电电路
CN101728849A (zh) * 2008-11-03 2010-06-09 华为技术有限公司 混合电池管理系统、电池管理方法和混合备电电源系统
CN101902055A (zh) * 2009-06-01 2010-12-01 和硕联合科技股份有限公司 电源控制电路及包含电源控制电路的电池模块
EP2566006A2 (en) * 2011-09-02 2013-03-06 Askey Technology (Jiangsu) Ltd. Backup battery charger.
CN103633703A (zh) * 2013-12-03 2014-03-12 大连大学 智能充电器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148979A (ja) * 1995-11-20 1997-06-06 Brother Ind Ltd 携帯型データ通信装置
JP2005270430A (ja) * 2004-03-25 2005-10-06 Funai Electric Co Ltd 自走ロボットのためのステーション
CN101232656A (zh) * 2008-01-24 2008-07-30 中兴通讯股份有限公司 通信系统中的供电控制方法及装置
CN105990865A (zh) * 2015-02-06 2016-10-05 中兴通讯股份有限公司 一种蓄电池装置及其充放电监控方法、装置及相应的系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728849A (zh) * 2008-11-03 2010-06-09 华为技术有限公司 混合电池管理系统、电池管理方法和混合备电电源系统
CN201422027Y (zh) * 2009-03-19 2010-03-10 深圳市中兴移动通信有限公司 一种双电池充放电电路
CN101902055A (zh) * 2009-06-01 2010-12-01 和硕联合科技股份有限公司 电源控制电路及包含电源控制电路的电池模块
EP2566006A2 (en) * 2011-09-02 2013-03-06 Askey Technology (Jiangsu) Ltd. Backup battery charger.
CN103633703A (zh) * 2013-12-03 2014-03-12 大连大学 智能充电器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879892A (zh) * 2018-09-20 2018-11-23 山东思科赛德矿业安全工程有限公司 一种双电池组自动切换供电系统
CN108879892B (zh) * 2018-09-20 2024-04-19 山东思科赛德矿业安全工程有限公司 一种双电池组自动切换供电系统
CN117060531A (zh) * 2023-08-14 2023-11-14 东莞航电新能源科技有限公司 防互充控制电路及锂电池组
CN117060531B (zh) * 2023-08-14 2024-03-08 东莞航电新能源科技有限公司 防互充控制电路及锂电池组

Also Published As

Publication number Publication date
CN106941269A (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2017117913A1 (zh) 电池组充放电方法及装置
CN102856612B (zh) 混合动力电源系统
WO2016123969A1 (zh) 一种蓄电池装置及其充放电监控方法、装置及系统
CN202616810U (zh) 一种后备电池
CN104852435A (zh) 一种电动汽车用串联锂电池管理系统及其管理方法
CN112165156B (zh) 充放电装置、电池系统、充放电控制方法及存储介质
CN201430458Y (zh) 具有自动断电功能的多用途充电控制器
CN203840581U (zh) 具有冗余功能的led灯具驱动电源
US20160190864A1 (en) Uninterruptible power supply system for preventing charging of batteries and method for controlling uninterruptible power supply system
TW201832442A (zh) 不斷電系統(ups)之轉換電路裝置
CN102856976A (zh) 一种不间断电源、电池管理系统及不间断供电系统
CN116470603A (zh) 一种电池簇并联防环流的方法
CN204497835U (zh) 一种不间断供电的PoE交换机
US20240128768A1 (en) Expandable energy storage system and expansion method thereof
CN211320956U (zh) 一种在线式电源的充放电电路及充放电系统
CN112803578A (zh) 一种智能配网电源模块及管理方法
CN219576668U (zh) 移动式户用储能系统
KR101540425B1 (ko) 배터리 관리 장치 어셈블리 및 이에 적용되는 배터리 관리 장치
CN106026356A (zh) 一种实现电池扩容的方法
CN202798130U (zh) 一种不间断电源、电池管理系统及不间断供电系统
CN201789310U (zh) 一种电力直流操作开关电源
CN102545274B (zh) 一种铅酸电池充电器及其充电方法
CN205725051U (zh) 一种实现电池扩容的装置
CN211830278U (zh) 一种用于可充电电池的充电管理系统
Huang An innovative hybrid battery management system for telecom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883054

Country of ref document: EP

Kind code of ref document: A1