WO2016082453A1 - 虚拟小区资源分配方法、装置和系统 - Google Patents
虚拟小区资源分配方法、装置和系统 Download PDFInfo
- Publication number
- WO2016082453A1 WO2016082453A1 PCT/CN2015/077541 CN2015077541W WO2016082453A1 WO 2016082453 A1 WO2016082453 A1 WO 2016082453A1 CN 2015077541 W CN2015077541 W CN 2015077541W WO 2016082453 A1 WO2016082453 A1 WO 2016082453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission node
- resource allocation
- master
- node
- request message
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/27—Control channels or signalling for resource management between access points
Definitions
- the present invention relates to the field of mobile communications, and in particular, to a virtual cell resource allocation method, apparatus, and system.
- Ultra-Dense Networks is an important means to achieve the first two indicators of 5G.
- the key technology of the UDN networking is to enable a large number of nodes to coexist effectively in a homogeneous or heterogeneous manner in a dense range.
- the UDN networking scenario poses a severe challenge to mobility while significantly increasing capacity.
- the virtual cell is composed of a master transmission point (Master TP, Master Transmission Point) and multiple service transmission nodes (Slave TP); the Master TP is the control anchor point, responsible for all high-level control signaling, and performs radio resource scheduling and control. And solve the conflict in the process of resource allocation; the role of the Slave TP is to coordinate the transmission of data according to the instructions of the Master TP.
- the data transmission of the virtual cell can be divided into two categories: 1. Multiple members of the virtual cell participate in the transmission of data at the same time, and can transmit the same data or transmit different data; 2. Only one member participates in the virtual cell at the same time. The transmission of data.
- the invention provides a virtual cell resource allocation method, device and system, which solves the problem of lacking a mechanism for resource scheduling in a data transmission process in a virtual cell.
- a virtual cell resource allocation method includes:
- the master transmission node selects a service transmission node as the target transmission node according to the requirements of the UE;
- the master transmission node instructs the UE to perform data transmission with the target transmission node.
- the serving transmission node selected by the master transmission node as the target transmission node according to the requirements of the UE includes:
- the master control transmission node collects measurement information periodically reported by each service transmission node, where the measurement information includes:
- the master control transmission node collects channel state information (CSI) of each virtual cell member reported by the UE;
- the master control node calculates a proportional fairness factor (PF) value of each service transmission node according to the measurement information and the CSI information;
- PF proportional fairness factor
- the master transmission node selects a service transmission node that can allocate resources and data transmission with the UE and has the largest PF value as the target transmission node.
- the master transmission node selects a service transmission node that can allocate resources and data transmission with the UE and has the largest PF value as the target transmission node, including:
- the master transmission node sends a resource allocation request message to the service transmission node with the highest PF value, where the resource allocation request message includes:
- the master transport node When receiving the resource allocation acknowledgement message including the accepting cell sent by the serving transport node with the highest PF value, the master transport node selects the serving transport node as the target transport node, and sends the resource allocation to the target transport node. Confirm the message.
- the method further includes:
- the serving transmission node determines whether the resource requested by the resource allocation request message of the master transmission node of the plurality of different virtual cells is conflict;
- the serving transmission node selects a sender owner of a resource allocation request message with an earlier arrival time granularity
- the control transmission node sends a resource allocation acknowledgement message including the accepting cell
- the sender master transport node that sends the request message to the other resource sends a resource allocation acknowledgement message including the reject cell, or
- the serving transmission node selects, by the sender master transmission node that sends a resource request message with a smaller initial frame size in the resource allocation request message with the same time granularity, to send a resource allocation confirmation message including the received cell, and allocates a request to other resources.
- the sender of the message, the master transport node sends a resource allocation acknowledgement message containing the reject cell.
- the serving transmission node determines, when receiving the resource allocation request message sent by the master transmission node of the multiple different virtual cells, the resource allocation request from the master transmission node of the multiple different virtual cells. After the step of conflicting the resources requested by the message, it also includes:
- the serving transmission node When the resources requested by the resource allocation request message of the master transmission node of the plurality of different virtual cells do not have a conflict, the serving transmission node sends a message including the acceptance letter to the sender master transmission node of each resource allocation request message. Meta resource allocation confirmation message.
- the method further includes:
- the master transmission node sequentially sends a resource allocation request message to the service transmission node according to the PF value from high to low, and receives the response message returned by the service transmission node, and receives the resource allocation including the received cell replied by the service transmission node.
- the service transmission node including the resource allocation confirmation message including the accepting cell is transmitted as the target transmission node.
- the master control transmission node calculates the PF value of each service transmission node according to the measurement information and the CSI information, which is specifically:
- the master transmission node calculates the PF value using the following formula:
- RBNum is the number of RBs that can be allocated by the serving transport node
- RankNum is the number of RIs in the CSI reporting information
- BitNum is calculated based on the symbol efficiency mapped by the CQI value. The number of bits.
- the master control transmission node instructing the UE to perform data transmission with the target transmission node includes:
- the master control transmission node notifies the UE resource scheduling result by using a radio resource control (RRC) connection reconfiguration message, and instructs the UE to perform data transmission with the target transmission node, where the RRC connection reconfiguration message includes:
- a virtual cell resource allocation apparatus includes:
- a target transmission node selection module configured to select a service transmission node as a target transmission node according to a requirement of the UE
- a transmission control module configured to instruct the UE to perform data transmission with the target transmission node.
- the target transmission node selection module includes:
- the measurement information collecting unit is configured to collect measurement information periodically reported by each service transmission node, where the measurement information includes:
- Upstream CQI information Upstream CQI information, PRB occupancy information, historical traffic throughput, and logical channel buffer occupancy;
- the CSI information collecting unit is configured to collect CSI information of each virtual cell member reported by the UE;
- a PF value calculation unit configured to calculate a PF value of each service transmission node according to the measurement information and the CSI information
- the node selection unit is configured to select a service transmission node that can allocate resources and perform data transmission with the UE and has the largest PF value as the target transmission node.
- the node selection unit includes:
- the request sending subunit is configured to send a resource allocation request message to the service transmission node with the highest PF value, where the resource allocation request message includes:
- a resource allocation subunit configured to: when receiving the resource allocation acknowledgement message including the accepting cell sent by the serving transport node with the highest PF value, selecting the serving transport node as the target transport node, and sending the resource to the target transport node Assign a confirmation message.
- the transmission control module includes:
- the reconfiguration indication unit is configured to notify the UE resource scheduling result by using an RRC connection reconfiguration message, and instruct the UE to perform data transmission with the target transmission node, where the RRC connection reconfiguration message includes:
- the present invention also provides a virtual cell resource allocation system, including a UE, a master control transmission node, and a plurality of service transmission nodes in the same virtual cell;
- the master transmission node is configured to select a service transmission node as a target transmission node according to a requirement of the UE, and instruct the UE to perform data transmission with the target transmission node.
- the serving transmission node is configured to determine, when receiving the resource allocation request message sent by the master transmission node of the multiple different virtual cells, the master transmission node from the multiple different virtual cells. Whether the resources requested by the resource allocation request message conflict,
- the sender master transmission node When there is a conflict between the resources requested by the resource allocation request message of the master transmission node of the plurality of different virtual cells, the sender master transmission node that selects the resource allocation request message with the earlier arrival time granularity is selected to send the receiving cell.
- Resource allocation confirmation message the sender master transmission node transmitting the request message to the other resource sends a resource allocation confirmation message including the rejection cell, or
- the sender master transmission node that selects the resource request message with the smaller starting packet in the resource allocation request message with the same arrival time granularity transmits a resource allocation acknowledgement message including the accepting cell, and distributes the request message to the sender of the other resource.
- the controlling transport node sends a resource allocation acknowledgement message containing the rejecting cell.
- the present invention provides a virtual cell resource allocation method, apparatus and system.
- the master control node selects a service transmission node as a target transmission node according to the requirements of the UE, and the master control transmission node instructs the UE to transmit the target.
- the node performs data transmission.
- the resource negotiation with high average user throughput rate is realized, and the problem of lacking the mechanism for resource scheduling of the data transmission process in the virtual cell is solved.
- FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
- FIG. 2 is a flowchart of a virtual cell resource allocation method according to Embodiment 1 of the present invention.
- 3 is a schematic diagram of a measurement process of CSI
- FIG. 5 is a flowchart of a virtual cell resource allocation method according to Embodiment 2 of the present invention.
- FIG. 6 is a schematic structural diagram of a virtual resource allocation apparatus according to Embodiment 3 of the present invention.
- FIG. 7 is a schematic structural diagram of a target transmission node selection module 601 of FIG. 6;
- FIG. 8 is a schematic structural diagram of a node selection unit 704 of FIG. 7;
- FIG. 9 is a schematic structural diagram of the transmission control module 602 of FIG. 6.
- the data transmission of the virtual cell can be divided into two categories: 1. Multiple members of the virtual cell participate in the transmission of data at the same time, and can transmit the same data or transmit different data; 2. Only one member participates in the virtual cell at the same time. The transmission of data.
- an embodiment of the present invention provides a virtual cell resource allocation method, apparatus, and system. Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
- FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
- the application scenario of the embodiment of the present invention is as shown in FIG. 1.
- the transmission nodes TP1, TP2, TP3, and TP4 form a virtual cell, and each transmission node has an independent PDCP layer.
- TP1 is the master station TP of the virtual cell
- the other site is the service station Slave TP of the virtual cell.
- the Master TP is a high-level control anchor. It generates all high-level control signaling, performs all scheduling and radio resource allocation, and resolves conflicts in the resource allocation process.
- the role of the Slave TP is to perform coordinated data transmission according to the instructions of the Master TP. .
- the transport node and the core network are connected through a wired Backhaul interface, and the cooperation between the TP and the TP is implemented by wireless Fronthaul interactive control signaling.
- Information such as a User Identifier, an Authentication/Authorization Key, an L2 Connection Identifier, and a required service context are shared between the base stations in the virtual cell.
- the Master TP is responsible for the user's control plane and user plane data processing.
- the Slave TP is only responsible for the user's data plane processing. Because the members in the virtual cell perform signaling interaction through the wireless Fronthaul, the networking scenario belongs to the ideal Backhaul scenario.
- An embodiment of the present invention provides a virtual cell resource allocation method, where a master control transmission node selects a serving transmission node as a target transmission node according to a requirement of the UE, and instructs the UE to perform data transmission with the target transmission node.
- the process includes reporting the state information of the Slave TPs to the Master TP, the occupancy information of the PRB, the service history throughput, and the logical channel buffer occupancy rate of the virtual cell, the dynamic decision process of the virtual cell transmission node, and the resource negotiation process in the virtual cell. Resource negotiation process between virtual cells.
- FIG. 2 is a flowchart of a virtual cell resource allocation method according to Embodiment 1 of the present invention. The specific process is as shown in FIG. 2, and includes the following steps:
- Step 201 The master control transmission node collects CSI information of each virtual cell member reported by the UE.
- the master transmission node is specifically a Master TP
- the service transmission node is specifically a Slave TP.
- the master TP sends a CSI (Channel State Information) measurement command to the UE, and the UE periodically reports the downlink CSI measurement report to the master TP.
- the CSI measurement report includes the virtual cell member Master TP and the PMI/CQI of each Slave TP. /RI information.
- the Master TP periodically collects CSIs of the virtual cell members reported by the UE.
- FIG. 3 is a schematic diagram of a measurement process of a CSI, and a measurement process of downlink CSI information of each transmission node of a virtual cell is shown in FIG. 3.
- the master TP sends a periodic measurement request to the UE, and the measured cell includes the Master TP and all the Slave TPs in the virtual cell.
- the CSI measurement report is reported to the Master TP.
- the CSI measurement report includes CSI channel state information of each transmission node in the virtual cell member.
- the specific content of the CSI information includes: PMI (Precoding Matrix Indicator) / CQI (Channel Quality Indicator) / RI (Rank Indication).
- Step 202 The slave cell TP of the virtual cell member reports the measured uplink CQI information to the master TP.
- FIG. 4 is a schematic diagram of the measurement process of the uplink CQI, and the measurement of the uplink CQI of each transmission node in the virtual cell is as shown in FIG. 4 .
- Each of the transmitting nodes in the virtual cell measures the uplink SRS (Sounding Reference Symbol) of the UE, and each of the Slave TP reports the uplink CQI result of the periodic measurement to the Master TP.
- SRS Sounding Reference Symbol
- Step 203 The slave cell TP of the virtual cell member reports the MAC logical channel buffer occupancy rate of the service and the historical throughput of the service transmission to the master TP.
- the master transmission node collects measurement information periodically reported by each service transmission node, and the measurement information includes:
- Step 204 The master control node calculates a PF value of each service transmission node according to the measurement information and the CSI information.
- the Master TP calculates the proportional fairness factor PF of each Slave TP of the virtual cell member, and selects the Slave TP with the largest PF factor as the target transit node.
- the specific calculation formula of the PF value is as follows:
- proportional fairness factor i 1,...,n; where RBNum is the number of RBs that can be allocated by the serving transport node, RankNum is the number of RIs in the CSI report information; and BitNum is calculated based on the symbol efficiency mapped by the CQI value to calculate the bearer on a single RB. The number of bits.
- the calculation of the Slave TP i proportional fairness factor can also be used: Among them, HistThrp is the historical throughput of the node transmission service.
- Step 205 The Master TP selects the Slave TP with the largest PF value as the target transmission node.
- the master transmission node selects a service transmission node that can allocate resources and data transmission with the UE and has the largest PF value as the target transmission node; if the service transmission node cannot be the target transmission node, select the next priority.
- the service transmission node of the level (the second largest PF value) serves as the target transmission node.
- Step 206 The Master TP point sends a resource allocation request message to the Slave TP with the highest PF value.
- the master TP sends a resource allocation request message to the target slave TP, including: the number of RBs to be allocated and the corresponding RB index, the starting position of the subframe, and the duration of the scheduling, and the MAC PDU SN to be scheduled (Packet Data Unit Sequence Number) And cooperative transmission mechanism: Coordinated Scheduling (CS).
- CS Coordinated Scheduling
- Step 207 The target slave TP determines whether to accept or reject the resource allocation request according to the received resource allocation request result from other virtual cells.
- the response is received by the resource allocation response message; if there is a conflict with other virtual cell RB resource allocation requests, but other RB resources are assignable, the updated RB is returned. Index; if none of the above conditions are met, the response is rejected by the resource allocation response message.
- Step 208 After receiving the resource allocation acknowledgement message of the target slave TP that includes the accepting cell, the master TP sends a resource allocation acknowledgement message to the slave TP.
- the master transport node When receiving the resource allocation acknowledgement message including the accepting cell sent by the serving transport node with the highest PF value, the master transport node selects the serving transport node as the target transport node, and sends the resource allocation to the target transport node. Confirm the message.
- the resource allocation confirmation message includes the Modulation and Coding Scheme (MCS) format and the final information of the resource allocation (the final determined number of RBs and the specific RB index).
- MCS Modulation and Coding Scheme
- the master transmission node when receiving the reject response message sent by the service transmission node, the master transmission node sends a resource allocation request message to the service transmission node in sequence according to the PF value, and receives the response message returned by the service transmission node, to Receiving, by the service transmission node, a resource allocation acknowledgement message including the accepting cell, to send the service transport node including the resource allocation acknowledgement message of the accepting cell as the target transport node.
- the Master TP receives the reject response message of the Slave TP, it sends a resource allocation request message to the Slave TP with a lower PF priority, that is, steps 205 to 207 are repeated.
- Step 209 The Master TP updates the scheduling information and generates final resource allocation information.
- the resource allocation information mainly includes the number of RBs and a specific RB index, a start time and an end time of the scheduling subframe.
- the generated resource allocation information is saved locally in the Master TP, and can be sent to the UE through an RRC connection reconfiguration message.
- Step 210 The Master TP sends an RRC connection reconfiguration message to the UE.
- the master transmission node notifies the UE resource scheduling result by using the RRC connection reconfiguration message, and indicates that the UE performs data transmission with the target transmission node, where the RRC connection reconfiguration message includes: the base station identifier of the target transmission node. (ID, Identifier of Base Station) and resource allocation confirmation information (final allocated RB information, start time and end time of the subframe, etc.);
- the target transmission node and the UE start the bidirectional transmission process of the data.
- the resource allocation of the virtual cell is uniformly considered by the Master TP, and only one transmission node transmits data at the same time.
- the Master TP calculates the proportional fairness factor PF based on the channel state information of each Slave TP, the occupancy information of the PRB, the service history throughput, and the logical channel buffer occupancy.
- the Master TP selects a specific transport node based on the priority of the proportional fairness factor PF from high to low.
- the calculation of the proportional fairness factor considers the buffer occupancy of the MAC logical channel in addition to the number of bits that the transport node can transmit, and is inversely proportional to the buffer occupancy of the logical channel. This ensures the maximum throughput of the system and effectively achieves the purpose of flow control.
- the resource negotiation process in the virtual cell includes a resource request initiated by the master TP, a resource response message returned by the slave TP, and a resource acknowledgement message fed back by the master TP.
- the content of resource negotiation includes: frequency domain RB resources and time domain subframe resources.
- the virtual inter-cell resource negotiation process includes a resource request and a resource response process.
- the content of resource negotiation includes: frequency domain RB resources and time domain subframe resources.
- the serving transmission node determines whether the resources requested by the resource allocation request message of the master transmission node of the plurality of different virtual cells conflict;
- the serving transmission node selects a sender master transmission node that sends a resource allocation request message with an earlier arrival time granularity Sending a resource allocation acknowledgement message including the accepting cell, and transmitting, by the sender master transmitting node of the other resource allocation request message, a resource allocation acknowledgement message including the rejecting cell, or
- the serving transmission node selects, by the sender master transmission node that sends a resource request message with a smaller initial frame size in the resource allocation request message with the same time granularity, to send a resource allocation confirmation message including the received cell, and allocates a request to other resources.
- the sender of the message, the master transport node sends a resource allocation acknowledgement message containing the reject cell.
- the serving transmission node When the resources requested by the resource allocation request message of the master transmission node of the plurality of different virtual cells do not have a conflict, the serving transmission node sends a message including the acceptance letter to the sender master transmission node of each resource allocation request message. Meta resource allocation confirmation message.
- FIG. 5 is a flowchart of a virtual cell resource allocation method according to Embodiment 2 of the present invention.
- FIG. 5 is a flowchart of a resource allocation method of a virtual cell according to an embodiment of the present invention.
- the UE1, the Master TP1, and the Slave TP form a virtual cell 1
- the UE2, the Master TP2, and the Slave TP form a virtual cell 2.
- the Slave TP belongs to both the virtual cell 1 and the virtual cell 2.
- Step 501 The virtual cell 1Master TP1 sends a resource allocation request message to the slave TP, where the message includes: the number of RBs to be allocated and the RB index, the scheduled start subframe, and the duration of the scheduling;
- Step 502 The virtual cell 2Master TP2 also sends a resource allocation request message to the slave TP, where the message includes: the number of RBs to be allocated and the RB index, the scheduled start subframe, and the duration of the scheduling;
- Step 503 After receiving the resource allocation request message, the slave TP determines whether the resource allocation requests from the two virtual cells conflict.
- Step 504 If the resource allocation does not conflict, return a resource confirmation message to the Master TP1 and the Master TP2, respectively, and the included cell is accepted;
- Step 505 If the resource allocation conflicts, first determine whether the two resource allocation request arrival times are at the same time granularity (such as a subframe); if the granularity arrives at the same time, select a resource request with a small starting subframe as a response accept request. ; otherwise, the resource allocation request with the arrival time granularity is selected as the response accepting request;
- Step 506 The slave TP returns a resource allocation confirmation message to the virtual cell 1 Master TP1, where the message includes an accepting cell.
- Step 507 The slave TP returns a resource allocation confirmation message to the virtual cell 2Master TP2, where the message includes the reject cell, and the entire process ends.
- FIG. 6 is a schematic structural diagram of a virtual resource allocation apparatus according to Embodiment 3 of the present invention. The structure of the apparatus is as shown in FIG.
- the target transmission node selection module 601 is configured to select a service transmission node as the target transmission node according to the requirement of the UE;
- the transmission control module 602 is configured to instruct the UE to perform data transmission with the target transmission node.
- FIG. 7 is a schematic structural diagram of the target transmission node selection module 601 of FIG. 6.
- the structure of the target transmission node selection module 601 is as shown in FIG. 7, and includes:
- the measurement information collecting unit 701 is configured to collect measurement information periodically reported by each service transmission node, where the measurement information includes:
- Upstream CQI information Upstream CQI information, PRB occupancy information, historical traffic throughput, and logical channel buffer occupancy;
- the CSI information collecting unit 702 is configured to collect CSI information of each virtual cell member reported by the UE;
- the PF value calculation unit 703 is configured to calculate a PF value of each service transmission node according to the measurement information and the CSI information;
- the node selection unit 704 is configured to select a service transmission node that can allocate resources and perform data transmission with the UE and has the largest PF value as the target transmission node.
- FIG. 8 is a schematic structural diagram of the node selection unit 704 of FIG. 7.
- the structure of the node selection unit 704 is as shown in FIG.
- the request sending sub-unit 801 is configured to send a resource allocation request message to the service transmission node with the highest PF value, where the resource allocation request message includes:
- the resource allocation sub-unit 802 is configured to: when receiving the resource allocation acknowledgement message including the accepting cell sent by the serving transport node with the highest PF value, select the serving transport node as the target transport node, and send the target transport node to the target transport node. Resource allocation confirmation message.
- FIG. 9 is a schematic structural diagram of the transmission control module 602 of FIG. 6.
- the structure of the transmission control module 602 is as shown in FIG. 9, and includes:
- the reconfiguration indication unit 901 is configured to notify the UE resource scheduling result by using an RRC connection reconfiguration message, and instruct the UE to perform data transmission with the target transmission node, where the RRC connection reconfiguration message includes:
- the virtual cell resource allocation device may be integrated into the master transmission node, and the main control transmission node performs the corresponding function.
- An embodiment of the present invention further provides a virtual cell resource allocation system, including a UE, a master control transmission node, and multiple service transmission nodes in the same virtual cell;
- the master transmission node is configured to select a service transmission node as a target transmission node according to a requirement of the UE, and instruct the UE to perform data transmission with the target transmission node.
- the serving transmission node is configured to determine, when receiving the resource allocation request message sent by the master transmission node of the multiple different virtual cells, the master transmission node from the multiple different virtual cells. Whether the resources requested by the resource allocation request message conflict,
- the sender master transmission node When there is a conflict between the resources requested by the resource allocation request message of the master transmission node of the plurality of different virtual cells, the sender master transmission node that selects the resource allocation request message with the earlier arrival time granularity is selected to send the receiving cell.
- Resource allocation confirmation message the sender master transmission node transmitting the request message to the other resource sends a resource allocation confirmation message including the rejection cell, or
- the sender master transmission node that selects the resource request message with the smaller starting packet in the resource allocation request message with the same arrival time granularity transmits a resource allocation acknowledgement message including the accepting cell, and distributes the request message to the sender of the other resource.
- the controlling transport node sends a resource allocation acknowledgement message containing the rejecting cell.
- the above-mentioned master control node is specifically a Master TP; a service transport node, specifically a Slave TP; and a target transport node, specifically a target Slave TP.
- An embodiment of the present invention provides a virtual cell resource allocation method, apparatus, and system.
- the master transmission node selects a service transmission node as a target transmission node according to a requirement of the UE, and the master control transmission node indicates the UE and the The target transmission node performs data transmission.
- the resource negotiation with high average user throughput rate is realized, and the problem of lacking the mechanism for resource scheduling of the data transmission process in the virtual cell is solved.
- the embodiment of the present invention provides dynamic resource allocation of a virtual cell in an ultra-dense networking scenario.
- the Master TP selects the best Slave TP as the target transit node according to information such as current Slave TP channel state information, RB usage status, and cache occupancy rate. Can effectively improve the average throughput of users.
- a solution for resource negotiation between virtual cells and virtual cells is proposed, which effectively solves the problem of resource conflicts caused by multiple roles of different nodes in different virtual cells.
- all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the invention is not limited to any specific combination of hardware and software.
- the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
- each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
- the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
- the master control transmission node selects a service transmission node as the target transmission node according to the requirement of the UE, and the master control transmission node instructs the UE to perform data transmission with the target transmission node.
- the resource negotiation with high average user throughput rate is realized, and the problem of lacking the mechanism for resource scheduling of the data transmission process in the virtual cell is solved.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明提供了一种虚拟小区资源分配方法、装置和系统。涉及移动通信领域;解决了缺乏对虚拟小区中数据传输过程进行资源调度的机制的问题。该方法包括:主控传输节点根据UE的需求,选择作为目标传输节点的服务传输节点;所述主控传输节点指示所述UE与所述目标传输节点进行数据传输。本发明提供的技术方案适用于UDN,实现了高用户平均吞吐率的资源协商。
Description
本发明涉及移动通信领域,尤其涉及一种虚拟小区资源分配方法、装置和系统。
为了实现5G目标:每区域1000倍的移动数据流量增长,每用户10到100倍的吞吐量增长,连接设备数10到100倍的增长,低功率设备10倍的电池寿命延长和端到端5倍延迟的下降,5G中必须提出一些新的无线技术解决方案。其中,超密组网技术(UDN,Ultra-Dense Networks)是达成5G前两项指标的重要手段。UDN组网的关键技术是使得大量节点在密集的范围内以同构或异构的方式有效地共存。同时,UDN组网场景在容量大幅提升的同时,对移动性提出了严峻的挑战。为了有效解决移动性存在的问题,5G研究中提出了以用户设备(UE,User Equipment)为中心虚拟小区的概念;当UE在移动过程中,考虑以UE为中心形成一个虚拟小区。虚拟小区由一个主控传输节点(Master TP,Master Transmission Point)和多个服务传输节点(Slave TP)组成;其中Master TP是控制锚点,负责所有的高层控制信令,执行无线资源调度和控制,并解决资源分配过程中的冲突;Slave TP的作用是根据Master TP的指示进行数据的协作传输。虚拟小区的数据传输可以分为两类:一、虚拟小区的多个成员同时参与数据的传输,既可以传输相同的数据也可以传不同的数据;二、同一时刻虚拟小区中仅有一个成员参与数据的传输。
目前,对于上述第二类数据传输方式,即同一时刻虚拟小区中仅有一个成员参与数据的传输方式,仍未有相应的调度机制。
发明内容
本发明提供了一种虚拟小区资源分配方法、装置和系统,解决了缺乏对虚拟小区中数据传输过程进行资源调度的机制的问题。
一种虚拟小区资源分配方法,包括:
主控传输节点根据UE的需求,选择作为目标传输节点的服务传输节点;
所述主控传输节点指示所述UE与所述目标传输节点进行数据传输。
在本实施例中,所述主控传输节点根据UE的需求,选择作为目标传输节点的服务传输节点包括:
所述主控传输节点收集各服务传输节点周期性上报的测量信息,所述测量信息包含:
上行CQI、PRB占用信息、业务的历史吞吐量和逻辑信道缓存占用率;
所述主控传输节点收集所述UE上报的各虚拟小区成员的信道状态信息(CSI);
所述主控传输节点根据所述测量信息和所述CSI信息计算各服务传输节点的比例公平因子(PF)值;
所述主控传输节点选择能够分配资源与所述UE进行数据传输且PF值最大的服务传输节点作为目标传输节点。
在本实施例中,所述主控传输节点选择能够分配资源与所述UE进行数据传输且PF值最大的服务传输节点作为目标传输节点包括:
所述主控传输节点向PF值最高的服务传输节点发送资源分配请求消息,该资源分配请求消息中包含:
所需的RB数和RB的位置索引、调度子帧的开始时间和持续时间和具体调度的MAC PDU SN;
所述主控传输节点在接收到所述PF值最高的服务传输节点发送的包含接受信元的资源分配确认消息时,选择该服务传输节点作为目标传输节点,向所述目标传输节点发送资源分配确认消息。
在本实施例中,所述主控传输节点向PF值最高的服务传输节点发送资源分配请求消息的步骤之后,还包括:
所述服务传输节点在接收到多个不同虚拟小区的主控传输节点发送的资源分配请求消息时,判断来自所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源是否冲突;
当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源存在冲突时,所述服务传输节点选择向到达时间粒度较早的资源分配请求消息的发送方主
控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息,或,
所述服务传输节点选择向到达时间粒度相同的资源分配请求消息中起始子帧较小的资源请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息。
在本实施例中,所述服务传输节点在接收到多个不同虚拟小区的主控传输节点发送的资源分配请求消息时,判断来自所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源是否冲突的步骤之后,还包括:
当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源不存在冲突时,所述服务传输节点向各个资源分配请求消息的发送方主控传输节点均发送包含接受信元的资源分配确认消息。
在本实施例中,所述主控传输节点向PF值最高的服务传输节点发送资源分配请求消息的步骤之后,还包括:
所述主控传输节点接收所述服务传输节点发送的拒绝响应消息;
所述主控传输节点依PF值由高到低的顺序依次向服务传输节点发送资源分配请求消息并接收服务传输节点返回的响应消息,至接收到服务传输节点回复的包含接受信元的资源分配确认消息为止,以发送所述包含接受信元的资源分配确认消息的服务传输节点作为目标传输节点。
在本实施例中,所述主控传输节点根据所述测量信息和所述CSI信息计算各服务传输节点的PF值具体为:
所述主控传输节点使用以下公式计算所述PF值:
其中,i=1,...,n,RBNum为服务传输节点可以分配的RB数,RankNum是CSI上报信息中的RI数,BitNum是根据CQI值映射成的符号效率计算单个RB上所能承载的比特数。
在本实施例中,所述主控传输节点指示所述UE与所述目标传输节点进行数据传输包括:
所述主控传输节点通过无线资源控制(RRC)连接重配置消息通知所述UE资源调度结果,指示所述UE与所述目标传输节点进行数据传输,所述RRC连接重配置消息包含:
目标传输节点基站ID和资源分配的确认信息。
在本实施例中,一种虚拟小区资源分配装置,包括:
目标传输节点选择模块,设置为根据UE的需求,选择作为目标传输节点的服务传输节点;
传输控制模块,设置为指示所述UE与所述目标传输节点进行数据传输。
在本实施例中,所述目标传输节点选择模块包括:
测量信息收集单元,设置为收集各服务传输节点周期性上报的测量信息,所述测量信息包含:
上行CQI信息、PRB占用信息、业务的历史吞吐量和逻辑信道缓存占用率;
CSI信息收集单元,设置为收集所述UE上报的各虚拟小区成员的CSI信息;
PF值计算单元,设置为根据所述测量信息和所述CSI信息计算各服务传输节点的PF值;
节点选择单元,设置为选择能够分配资源与所述UE进行数据传输且PF值最大的服务传输节点作为目标传输节点。
在本实施例中,所述节点选择单元包括:
请求发送子单元,设置为向PF值最高的服务传输节点发送资源分配请求消息,该资源分配请求消息中包含:
所需的RB数和RB的位置索引、调度子帧的开始时间和持续时间和具体调度的MAC PDU SN;
资源分配子单元,设置为在接收到所述PF值最高的服务传输节点发送的包含接受信元的资源分配确认消息时,选择该服务传输节点作为目标传输节点,向所述目标传输节点发送资源分配确认消息。
在本实施例中,所述传输控制模块包括:
重配置指示单元,设置为通过RRC连接重配置消息通知所述UE资源调度结果,指示所述UE与所述目标传输节点进行数据传输,所述RRC连接重配置消息包含:
目标传输节点基站ID和资源分配的确认信息。
本发明还提供了一种虚拟小区资源分配系统,包括处于同一虚拟小区内的UE、主控传输节点和多个服务传输节点;
所述主控传输节点,设置为根据所述UE的需求,选择作为目标传输节点的服务传输节点,指示所述UE与所述目标传输节点进行数据传输。
在本实施例中,所述服务传输节点,设置为在接收到多个不同虚拟小区的主控传输节点发送的资源分配请求消息时,判断来自所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源是否冲突,
当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源存在冲突时,选择向到达时间粒度较早的资源分配请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息,或,
选择向到达时间粒度相同的资源分配请求消息中起始子帧较小的资源请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息。
本发明提供了一种虚拟小区资源分配方法、装置和系统,主控传输节点根据UE的需求,选择作为目标传输节点的服务传输节点,所述主控传输节点指示所述UE与所述目标传输节点进行数据传输。实现了高用户平均吞吐率的资源协商,解决了缺乏对虚拟小区中数据传输过程进行资源调度的机制的问题。
图1为本发明的实施例的一种应用场景示意图;
图2为本发明的实施例一提供的一种虚拟小区资源分配方法的流程图;
图3为CSI的测量过程示意图;
图4为上行CQI的测量过程示意图;
图5为本发明的实施例二提供的一种虚拟小区资源分配方法的流程图;
图6为本发明的实施例三提供的一种虚拟资源分配装置的结构示意图;
图7为图6中目标传输节点选择模块601的结构示意图;
图8为图7中节点选择单元704的结构示意图;
图9为图6中传输控制模块602的结构示意图。
虚拟小区的数据传输可以分为两类:一、虚拟小区的多个成员同时参与数据的传输,既可以传输相同的数据也可以传不同的数据;二、同一时刻虚拟小区中仅有一个成员参与数据的传输。
目前,对于上述第二类数据传输方式,即同一时刻虚拟小区中仅有一个成员参与数据的传输方式,仍未有相应的调度机制。
为了解决上述问题,本发明的实施例提供了一种虚拟小区资源分配方法、装置和系统。下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明的实施例的一种应用场景示意图,本发明实施例的应用场景如图1所示,传输节点TP1、TP2、TP3和TP4组成一个虚拟小区,各传输节点具有独立的PDCP层;其中TP1是虚拟小区的主控站点Master TP,其它站点是虚拟小区的服务站点Slave TP。Master TP是高层的控制锚点,它产生所有的高层控制信令,执行所有的调度和无线资源分配,解决资源分配过程中的冲突;Slave TP的作用是根据Master TP的指示进行数据的协作传输。传输节点与核心网之间通过有线Backhaul接口相连,TP与TP之间协作通过无线Fronthaul交互控制信令实现。虚拟小区中各基站之间共享用户标识(User Identifier)、认证/授权密钥、L2连接标识符和必需的服务上下文等信息。Master TP负责用户的控制面和用户面数据的处理,Slave TP仅负责用户的数据面处理。
因虚拟小区中各成员通过无线Fronthaul进行信令的交互,因此该组网场景属于理想Backhaul场景。
下面结合附图,对本发明的实施例一进行说明。
本发明实施例提供了一种虚拟小区资源分配方法,主控传输节点根据UE的需求,选择作为目标传输节点的服务传输节点,指示所述UE与所述目标传输节点进行数据传输。具体包括虚拟小区各Slave TPs向Master TP信道状态信息、PRB的占用信息、业务历史吞吐量和逻辑信道缓存占用率的上报过程,虚拟小区传输节点的动态决策过程,虚拟小区内的资源协商过程和虚拟小区间的资源协商过程。
图2为本发明的实施例一提供的一种虚拟小区资源分配方法的流程图,具体流程如图2所示,包含如下步骤:
步骤201、主控传输节点收集所述UE上报的各虚拟小区成员的CSI信息;
本发明实施例中,所述主控传输节点具体为Master TP,服务传输节点具体为Slave TP。
本步骤中,Master TP向UE下发CSI(Channel State Information)测量命令,UE周期性地向Master TP上报下行CSI测量报告;CSI测量报告中包括虚拟小区成员Master TP和各Slave TP的PMI/CQI/RI信息。
Master TP周期性地收集UE上报的各虚拟小区成员的CSI;
图3为CSI的测量过程示意图,虚拟小区各传输节点下行CSI信息的测量过程如图3所示。Master TP对UE下发周期性测量请求,测量的小区包括虚拟小区中的Master TP和所有的Slave TP。UE测量完成后向Master TP上报CSI测量报告。CSI测量报告中包含虚拟小区成员中各传输节点的CSI信道状态信息。CSI信息的具体内容包括:PMI(Precoding Matrix Indicator)/CQI(Channel Quality Indicator)/RI(Rank Indication)。
步骤202、虚拟小区成员各Slave TP向Master TP上报测量到的上行CQI信息;
图4为上行CQI的测量过程示意图,虚拟小区中各传输节点上行CQI的测量如图4所示。虚拟小区中各传输节点分别测量UE的上行SRS(Sounding Reference Symbol),各Slave TP把周期性测量的上行CQI结果上报给Master TP。
步骤203、虚拟小区成员各Slave TP向Master TP上报业务的MAC逻辑信道缓存占用率和业务已传输的历史吞吐量;
主控传输节点收集各服务传输节点周期性上报的测量信息,所述测量信息包含:
上行CQI、PRB占用信息、业务的历史吞吐量和逻辑信道缓存占用率;
步骤204、主控传输节点根据所述测量信息和所述CSI信息计算各服务传输节点的PF值;
本步骤中,Master TP计算虚拟小区成员各Slave TP的比例公平因子PF,选择PF因子值最大的Slave TP作为目标传输节点,PF值具体的计算公式如下:
对Slave TP i,比例公平因子i=1,...,n;其中,RBNum为服务传输节点可以分配的RB数,RankNum是CSI上报信息中的RI数;BitNum是根据CQI值映射成的符号效率计算单个RB上所能承载的比特数。
目标传输节点:TargTPId=max(PFi),i=1,...,n。
步骤205、Master TP选PF值最大的Slave TP作为目标传输节点;
本发明实施例中,主控传输节点选择能够分配资源与所述UE进行数据传输且PF值最大的服务传输节点作为目标传输节点;如果该服务传输节点不能作为目标传输节点,则选择下一优先级(PF值次大)的服务传输节点作为目标传输节点。
步骤206、Master TP点向PF值最高的Slave TP发送资源分配请求消息;
Master TP向目标Slave TP发送资源分配请求消息,具体包括:请求分配的RB数及相应的RB索引、子帧的起始位置和调度的持续时间、待调度的MAC PDU SN(Packet Data Unit Sequence Number)和协作传输机理:协调调度CS(Coordinated Scheduling)。
步骤207、目标Slave TP根据已收到的来自其它虚拟小区的资源分配请求结果,决定是否接受或拒绝该资源分配请求;
如果与其它虚拟小区的RB资源分配请求没有冲突,则通过资源分配响应消息回接受应答;如果与其它虚拟小区RB资源分配请求有冲突,但又有其它的RB资源可分配,则回更新的RB索引;如果以上条件都不满足,则通过资源分配响应消息回拒绝响应。
步骤208、Master TP收到目标Slave TP的包含接受信元的资源分配确认消息后,向Slave TP发送资源分配确认消息;
所述主控传输节点在接收到所述PF值最高的服务传输节点发送的包含接受信元的资源分配确认消息时,选择该服务传输节点作为目标传输节点,向所述目标传输节点发送资源分配确认消息。
资源分配确认消息中包括调制编码MCS(Modulation and Coding Scheme)格式和资源分配的最终信息(最终确定的RB数和具体的RB索引)。
此外,主控传输节点接收所述服务传输节点发送的拒绝响应消息时,会依PF值由高到低的顺序依次向服务传输节点发送资源分配请求消息并接收服务传输节点返回的响应消息,至接收到服务传输节点回复的包含接受信元的资源分配确认消息为止,以发送所述包含接受信元的资源分配确认消息的服务传输节点作为目标传输节点。具体的,Master TP如果收到Slave TP的拒绝响应消息,则向PF优先级较低的Slave TP发送资源分配请求消息,即重复以上步骤205至207。
步骤209、Master TP更新调度信息并产生最终的资源分配信息;
资源分配信息主要包含RB数和具体的RB索引、调度子帧的开始时间和结束时间。生成的资源分配信息在Master TP本地保存,后续可通过RRC连接重配置消息发送给UE。
步骤210、Master TP向UE发送RRC连接重配置消息;
本步骤中,主控传输节点通过RRC连接重配置消息通知所述UE资源调度结果,指示所述UE与所述目标传输节点进行数据传输,RRC连接重配置消息中包括:目标传输节点的基站标识(ID,Identifier of Base Station)和资源分配的确认信息(最终分配的RB信息、子帧的开始时间和结束时间等);
之后,目标传输节点和UE即开始数据的双向传输过程。
本发明实施例中,虚拟小区的资源分配由Master TP统一考虑,同一时间点只有一个传输节点传输数据。
Master TP基于各Slave TP的信道状态信息、PRB的占用信息、业务历史吞吐量和逻辑信道缓存占用率计算比例公平因子PF。Master TP基于比例公平因子PF的优先级从高到低选择具体的传输节点。
比例公平因子的计算除了考虑传输节点可传输的比特(Bit)数外,还考虑MAC逻辑信道的缓存占用率,且与逻辑信道的缓存占用率成反比。这样可以保证系统的最大吞吐量且有效达到流量控制的目的。
虚拟小区内资源协商过程包括Master TP发起的资源请求、Slave TP回的资源应答消息和最终Master TP反馈的资源确认消息。资源协商的内容包括:频域RB资源和时域子帧资源。
虚拟小区间资源协商过程包括资源请求和资源应答过程。资源协商的内容包括:频域RB资源和时域子帧资源。虚拟小区间资源协商过程发生冲突时,以时频资源请求子帧号小的那个请求为高优先级。
下面结合附图,对本发明的实施例二进行说明。
服务传输节点在接收到多个不同虚拟小区的主控传输节点发送的资源分配请求消息时,判断来自所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源是否冲突;
当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源存在冲突时,所述服务传输节点选择向到达时间粒度较早的资源分配请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息,或,
所述服务传输节点选择向到达时间粒度相同的资源分配请求消息中起始子帧较小的资源请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息。
当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源不存在冲突时,所述服务传输节点向各个资源分配请求消息的发送方主控传输节点均发送包含接受信元的资源分配确认消息。
图5为本发明的实施例二提供的一种虚拟小区资源分配方法的流程图,如图5所示,为本发明实施例提供的一种虚拟小区的资源分配方法流程图。其中,UE1、Master TP1和Slave TP组成虚拟小区1,UE2、Master TP2和Slave TP组成虚拟小区2,Slave TP既属于虚拟小区1的成员同时也属于虚拟小区2的成员。
步骤如下:
步骤501、虚拟小区1Master TP1向Slave TP发送资源分配请求消息,消息中包括:待分配的RB数和RB索引、调度的起始子帧和调度的持续时间;
步骤502、虚拟小区2Master TP2同样向Slave TP发送资源分配请求消息,消息中包括:待分配的RB数和RB索引、调度的起始子帧和调度的持续时间;
步骤503、Slave TP收到资源分配请求消息后,判断来自两个虚拟小区的资源分配请求是否冲突;
步骤504、如果资源分配不冲突,则分别向Master TP1和Master TP2回资源分配确认消息,包含的信元为接受;
步骤505、如果资源分配冲突,则首先判断两个资源分配请求到达时间是否在同一时间粒度(如子帧);如果在同一时间粒度到达,则选择起始子帧小的资源请求作为响应接受请求;否则选择到达时间粒度早的资源分配请求作为响应接受请求;
步骤506、Slave TP向虚拟小区1Master TP1回资源分配确认消息,消息中包含接受信元;
步骤507、Slave TP向虚拟小区2Master TP2回资源分配确认消息,消息中包含拒绝信元,整个流程结束。
下面结合附图,对本发明的实施例三进行说明。
本发明实施例提供了一种虚拟小区资源分配装置,图6为本发明的实施例三提供的一种虚拟资源分配装置的结构示意图,该装置的结构如图6所示,包括:
目标传输节点选择模块601,设置为根据UE的需求,选择作为目标传输节点的服务传输节点;
传输控制模块602,设置为指示所述UE与所述目标传输节点进行数据传输。
在本实施例中,图7为图6中目标传输节点选择模块601的结构示意图,所述目标传输节点选择模块601的结构如图7所示,包括:
测量信息收集单元701,设置为收集各服务传输节点周期性上报的测量信息,所述测量信息包含:
上行CQI信息、PRB占用信息、业务的历史吞吐量和逻辑信道缓存占用率;
CSI信息收集单元702,设置为收集所述UE上报的各虚拟小区成员的CSI信息;
PF值计算单元703,设置为根据所述测量信息和所述CSI信息计算各服务传输节点的PF值;
节点选择单元704,设置为选择能够分配资源与所述UE进行数据传输且PF值最大的服务传输节点作为目标传输节点。
在本实施例中,图8为图7中节点选择单元704的结构示意图,所述节点选择单元704的结构如图8所示,包括:
请求发送子单元801,设置为向PF值最高的服务传输节点发送资源分配请求消息,该资源分配请求消息中包含:
所需的RB数和RB的位置索引、调度子帧的开始时间和持续时间和具体调度的MAC PDU SN;
资源分配子单元802,设置为在接收到所述PF值最高的服务传输节点发送的包含接受信元的资源分配确认消息时,选择该服务传输节点作为目标传输节点,向所述目标传输节点发送资源分配确认消息。
在本实施例中,图9为图6中传输控制模块602的结构示意图,所述传输控制模块602的结构如图9所示,包括:
重配置指示单元901,设置为通过RRC连接重配置消息通知所述UE资源调度结果,指示所述UE与所述目标传输节点进行数据传输,所述RRC连接重配置消息包含:
目标传输节点基站ID和资源分配的确认信息。
上述虚拟小区资源分配装置可集成于主控传输节点中,由主控传输节点完成相应功能。
本发明实施例还提供了一种虚拟小区资源分配系统,包括处于同一虚拟小区内的UE、主控传输节点和多个服务传输节点;
所述主控传输节点,设置为根据所述UE的需求,选择作为目标传输节点的服务传输节点,指示所述UE与所述目标传输节点进行数据传输。
在本实施例中,所述服务传输节点,设置为在接收到多个不同虚拟小区的主控传输节点发送的资源分配请求消息时,判断来自所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源是否冲突,
当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源存在冲突时,选择向到达时间粒度较早的资源分配请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息,或,
选择向到达时间粒度相同的资源分配请求消息中起始子帧较小的资源请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息。
上述主控传输节点,具体为Master TP;服务传输节点,具体为Slave TP;目标传输节点,具体为目标Slave TP。
本发明的实施例提供了一种虚拟小区资源分配方法、装置和系统,主控传输节点根据UE的需求,选择作为目标传输节点的服务传输节点,所述主控传输节点指示所述UE与所述目标传输节点进行数据传输。实现了高用户平均吞吐率的资源协商,解决了缺乏对虚拟小区中数据传输过程进行资源调度的机制的问题。本发明的实施例给出了超密组网场景下虚拟小区的资源动态分配,Master TP根据当前各Slave TP信道状态信息、RB使用状况和缓存占用率等信息选择最佳Slave TP作为目标传输节点,可以有效提高用户的平均吞吐率。提出了虚拟小区内和虚拟小区间资源协商的解决方案,有效解决传输节点在不同虚拟小区中的多重角色可能带来的资源冲突问题。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序
在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。
基于本发明实施例提供的上述技术方案,主控传输节点根据UE的需求,选择作为目标传输节点的服务传输节点,所述主控传输节点指示所述UE与所述目标传输节点进行数据传输。实现了高用户平均吞吐率的资源协商,解决了缺乏对虚拟小区中数据传输过程进行资源调度的机制的问题。
Claims (14)
- 一种虚拟小区资源分配方法,包括:主控传输节点根据用户设备UE的需求,选择作为目标传输节点的服务传输节点;所述主控传输节点指示所述UE与所述目标传输节点进行数据传输。
- 根据权利要求1所述的虚拟小区资源分配方法,其中,所述主控传输节点根据UE的需求,选择作为目标传输节点的服务传输节点包括:所述主控传输节点收集各服务传输节点周期性上报的测量信息,所述测量信息包含:上行CQI、PRB占用信息、业务的历史吞吐量和逻辑信道缓存占用率;所述主控传输节点收集所述UE上报的各虚拟小区成员的信道状态信息CSI;所述主控传输节点根据所述测量信息和所述CSI信息计算各服务传输节点的比例公平因子PF值;所述主控传输节点选择能够分配资源与所述UE进行数据传输且PF值最大的服务传输节点作为目标传输节点。
- 根据权利要求2所述的虚拟小区资源分配方法,其中,所述主控传输节点选择能够分配资源与所述UE进行数据传输且PF值最大的服务传输节点作为目标传输节点包括:所述主控传输节点向PF值最高的服务传输节点发送资源分配请求消息,该资源分配请求消息中包含:所需的RB数和RB的位置索引、调度子帧的开始时间和持续时间和具体调度的MAC PDU SN;所述主控传输节点在接收到所述PF值最高的服务传输节点发送的包含接受信元的资源分配确认消息时,选择该服务传输节点作为目标传输节点,向所述目标传输节点发送资源分配确认消息。
- 根据权利要求3所述的虚拟小区资源分配方法,其中,所述主控传输节点向PF值最高的服务传输节点发送资源分配请求消息的步骤之后,还包括:所述服务传输节点在接收到多个不同虚拟小区的主控传输节点发送的资源分配请求消息时,判断来自所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源是否冲突;当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源存在冲突时,所述服务传输节点选择向到达时间粒度较早的资源分配请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息,或,所述服务传输节点选择向到达时间粒度相同的资源分配请求消息中起始子帧较小的资源请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息。
- 根据权利要求4所述的虚拟小区资源分配方法,其中,所述服务传输节点在接收到多个不同虚拟小区的主控传输节点发送的资源分配请求消息时,判断来自所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源是否冲突的步骤之后,还包括:当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源不存在冲突时,所述服务传输节点向各个资源分配请求消息的发送方主控传输节点均发送包含接受信元的资源分配确认消息。
- 根据权利要求3所述的虚拟小区资源分配方法,其中,所述主控传输节点向PF值最高的服务传输节点发送资源分配请求消息的步骤之后,还包括:所述主控传输节点接收所述服务传输节点发送的拒绝响应消息;所述主控传输节点依PF值由高到低的顺序依次向服务传输节点发送资源分配请求消息并接收服务传输节点返回的响应消息,至接收到服务传输节点回复的包含接受信元的资源分配确认消息为止,以发送所述包含接受信元的资源分配确认消息的服务传输节点作为目标传输节点。
- 根据权利要求1所述的虚拟小区资源分配方法,其中,所述主控传输节点指示所述UE与所述目标传输节点进行数据传输包括:所述主控传输节点通过无线资源控制RRC连接重配置消息通知所述UE资源调度结果,指示所述UE与所述目标传输节点进行数据传输,所述RRC连接重配置消息包含:目标传输节点基站ID和资源分配的确认信息。
- 一种虚拟小区资源分配装置,包括:目标传输节点选择模块,设置为根据UE的需求,选择作为目标传输节点的服务传输节点;传输控制模块,设置为指示所述UE与所述目标传输节点进行数据传输。
- 根据权利要求9所述的虚拟小区资源分配装置,其中,所述目标传输节点选择模块包括:测量信息收集单元,设置为收集各服务传输节点周期性上报的测量信息,所述测量信息包含:上行CQI信息、PRB占用信息、业务的历史吞吐量和逻辑信道缓存占用率;CSI信息收集单元,设置为收集所述UE上报的各虚拟小区成员的CSI信息;PF值计算单元,设置为根据所述测量信息和所述CSI信息计算各服务传输节点的PF值;节点选择单元,设置为选择能够分配资源与所述UE进行数据传输且PF值最大的服务传输节点作为目标传输节点。
- 根据权利要求10所述的虚拟小区资源分配装置,其中,所述节点选择单元包括:请求发送子单元,设置为向PF值最高的服务传输节点发送资源分配请求消息,该资源分配请求消息中包含:所需的RB数和RB的位置索引、调度子帧的开始时间和持续时间和具体调度的MAC PDU SN;资源分配子单元,设置为在接收到所述PF值最高的服务传输节点发送的包含接受信元的资源分配确认消息时,选择该服务传输节点作为目标传输节点,向所述目标传输节点发送资源分配确认消息。
- 根据权利要求9所述的虚拟小区资源分配装置,其中,所述传输控制模块包括:重配置指示单元,设置为通过RRC连接重配置消息通知所述UE资源调度结果,指示所述UE与所述目标传输节点进行数据传输,所述RRC连接重配置消息包含:目标传输节点基站ID和资源分配的确认信息。
- 一种虚拟小区资源分配系统,包括处于同一虚拟小区内的UE、主控传输节点和多个服务传输节点;所述主控传输节点,设置为根据所述UE的需求,选择作为目标传输节点的服务传输节点,指示所述UE与所述目标传输节点进行数据传输。
- 根据权利要求13所述的虚拟小区资源分配系统,其中,所述服务传输节点,设置为在接收到多个不同虚拟小区的主控传输节点发送的资源分配请求消息时,判断来自所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源是否冲突,当所述多个不同虚拟小区的主控传输节点的资源分配请求消息所请求的资源存在冲突时,选择向到达时间粒度较早的资源分配请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息,或,选择向到达时间粒度相同的资源分配请求消息中起始子帧较小的资源请求消息的发送方主控传输节点发送包含接受信元的资源分配确认消息,向其他资源分配请求消息的发送方主控传输节点发送包含拒绝信元的资源分配确认消息。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15862477.5A EP3226632A4 (en) | 2014-11-24 | 2015-04-27 | Virtual cell resource allocation method, device and system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410683091.3 | 2014-11-24 | ||
CN201410683091.3A CN105657837B (zh) | 2014-11-24 | 2014-11-24 | 虚拟小区资源分配方法、装置和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016082453A1 true WO2016082453A1 (zh) | 2016-06-02 |
Family
ID=56073481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077541 WO2016082453A1 (zh) | 2014-11-24 | 2015-04-27 | 虚拟小区资源分配方法、装置和系统 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3226632A4 (zh) |
CN (1) | CN105657837B (zh) |
WO (1) | WO2016082453A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115292024A (zh) * | 2022-10-09 | 2022-11-04 | 苏州市中地行信息技术有限公司 | 一种多目标导向的数据筛选方法与系统 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107567053B (zh) * | 2016-06-30 | 2020-06-26 | 华为技术有限公司 | 一种数据传输的方法、设备及系统 |
CN109996248A (zh) * | 2017-12-29 | 2019-07-09 | 索尼公司 | 用于无线通信的电子设备和方法以及计算机可读存储介质 |
CN110011706B (zh) * | 2018-01-05 | 2022-08-19 | 深圳市中兴微电子技术有限公司 | 一种优化协作传输的方法及装置 |
CN108366426B (zh) * | 2018-02-07 | 2022-04-08 | 南京邮电大学 | 一种超密集环境下基于模拟退火算法的虚拟映射方法 |
CN109379759A (zh) * | 2018-12-19 | 2019-02-22 | 中国联合网络通信集团有限公司 | 小区的数据处理方法、装置、设备和存储介质 |
CN111988860A (zh) * | 2019-05-24 | 2020-11-24 | 中兴通讯股份有限公司 | 超级小区的调度方法、装置、集中调度器和分布式调度器 |
CN113453242B (zh) * | 2020-03-24 | 2023-08-22 | 维沃移动通信有限公司 | 测量方法、终端及网络侧设备 |
CN112203285B (zh) * | 2020-09-07 | 2023-10-17 | 北京遥感设备研究所 | 一种多小区联合协同传输控制方法、装置和系统 |
CN112203284B (zh) * | 2020-09-07 | 2023-10-17 | 北京遥感设备研究所 | 终端位置自适应的多小区联合资源分配方法、装置和系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101583161A (zh) * | 2009-05-26 | 2009-11-18 | 北京邮电大学 | 协作节点单元选择方法及装置 |
CN101883402A (zh) * | 2009-05-07 | 2010-11-10 | 中兴通讯股份有限公司 | 一种协同传输数据的方法及系统 |
WO2014018467A1 (en) * | 2012-07-23 | 2014-01-30 | Apple Inc. | Methods and systems for anchored down-selection in a coordinated multipoint transmission cluster |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101965004A (zh) * | 2009-07-21 | 2011-02-02 | 中兴通讯股份有限公司 | 一种用户终端归属节点的选择方法及系统 |
US9735844B2 (en) * | 2011-05-09 | 2017-08-15 | Texas Instruments Incorporated | Channel feedback for coordinated multi-point transmissions |
CN102905277B (zh) * | 2011-07-29 | 2017-07-11 | 中兴通讯股份有限公司 | 一种选择协作节点的基站、系统及方法 |
CN102291211B (zh) * | 2011-08-09 | 2014-02-05 | 电信科学技术研究院 | 一种基于多点协同传输的信息传输方法和设备 |
-
2014
- 2014-11-24 CN CN201410683091.3A patent/CN105657837B/zh active Active
-
2015
- 2015-04-27 WO PCT/CN2015/077541 patent/WO2016082453A1/zh active Application Filing
- 2015-04-27 EP EP15862477.5A patent/EP3226632A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101883402A (zh) * | 2009-05-07 | 2010-11-10 | 中兴通讯股份有限公司 | 一种协同传输数据的方法及系统 |
CN101583161A (zh) * | 2009-05-26 | 2009-11-18 | 北京邮电大学 | 协作节点单元选择方法及装置 |
WO2014018467A1 (en) * | 2012-07-23 | 2014-01-30 | Apple Inc. | Methods and systems for anchored down-selection in a coordinated multipoint transmission cluster |
Non-Patent Citations (1)
Title |
---|
See also references of EP3226632A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115292024A (zh) * | 2022-10-09 | 2022-11-04 | 苏州市中地行信息技术有限公司 | 一种多目标导向的数据筛选方法与系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3226632A1 (en) | 2017-10-04 |
EP3226632A4 (en) | 2017-12-06 |
CN105657837A (zh) | 2016-06-08 |
CN105657837B (zh) | 2021-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016082453A1 (zh) | 虚拟小区资源分配方法、装置和系统 | |
US12082006B2 (en) | Method and device for O-RAN-based performance optimization and configuration | |
US8918111B2 (en) | Device to-device group communication method and device using the same | |
US9526092B2 (en) | Method of allocating resources for scheduling request and user equipment using the same and a control node using the same | |
EP3130173B1 (en) | Method and system for providing data communication through a cluster head for machine type communication (mtc) based group communication | |
KR101643957B1 (ko) | 버퍼 스테이트의 보고 방법, 시스템 및 장치 | |
KR101480598B1 (ko) | 무선 네트워크에서 통신을 개시하기 위한 기법 | |
US9660918B1 (en) | Reducing wireless communication signaling overhead | |
CN106937396B (zh) | 一种上行资源调度方法、终端和基站 | |
KR101104506B1 (ko) | Comp 운영을 위한 기지국 | |
EP4005312A1 (en) | Quality of service driven spectrum sharing | |
CN103945540B (zh) | 一种逻辑信道优先级处理方法及装置 | |
WO2014063568A1 (zh) | 缓存状态报告发送与接收方法、用户设备和基站 | |
CN106559904A (zh) | 无线网络的接入方法和装置 | |
WO2017148213A1 (zh) | 资源分配控制方法、装置及系统 | |
EP3338499B1 (en) | Decreasing free-riding data traffic in uplink scheduling | |
WO2019240808A1 (en) | Backhaul scheduling | |
US8976743B2 (en) | Method and apparatus for transmitting and receiving resource allocation scheme information in a wireless communication system | |
JP7414840B2 (ja) | リソース割り当てのための方法、端末デバイス、および基地局 | |
US10136361B2 (en) | Method and radio network node for managing a request for a radio access bearer | |
WO2017113173A1 (zh) | 一种链路资源的请求方法、用户设备及基站 | |
KR20100139041A (ko) | 통신을 위한 방법 및 그를 위한 라디오 스테이션 | |
KR101979813B1 (ko) | 무선 통신 시스템에서 복수의 기지국들이 협력하여 하나의 단말에게 통신 서비스를 제공하는 방법 및 장치 | |
WO2016150109A1 (zh) | 一种用户设备调度方法、装置和系统 | |
WO2016183708A1 (zh) | 用于分裂承载的上行数据传输的方法、用户设备和基站 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15862477 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015862477 Country of ref document: EP |