WO2016082226A1 - 相位延迟器及其光学梳状滤波器 - Google Patents

相位延迟器及其光学梳状滤波器 Download PDF

Info

Publication number
WO2016082226A1
WO2016082226A1 PCT/CN2014/092596 CN2014092596W WO2016082226A1 WO 2016082226 A1 WO2016082226 A1 WO 2016082226A1 CN 2014092596 W CN2014092596 W CN 2014092596W WO 2016082226 A1 WO2016082226 A1 WO 2016082226A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
light component
transmitted
polarizer
Prior art date
Application number
PCT/CN2014/092596
Other languages
English (en)
French (fr)
Inventor
蒋臣迪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480081312.8A priority Critical patent/CN106664152B/zh
Priority to PCT/CN2014/092596 priority patent/WO2016082226A1/zh
Priority to EP14906944.5A priority patent/EP3223443B1/en
Publication of WO2016082226A1 publication Critical patent/WO2016082226A1/zh
Priority to US15/607,047 priority patent/US10866350B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0208Interleaved arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29386Interleaving or deinterleaving, i.e. separating or mixing subsets of optical signals, e.g. combining even and odd channels into a single optical signal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable

Definitions

  • the present invention relates to the field of optical communications, and in particular to a phase retarder and an optical comb filter thereof.
  • Interleaver interleaved interleaving technology
  • Interleaver greatly reduces the cost of dense wavelength division multiplexing systems, and alleviates the pressure on the filter components of dense wavelength division multiplexing systems by dividing a column of signal light with a frequency interval of f into two.
  • the signal light with a frequency interval of 2f is output from two channels respectively.
  • One channel is an odd channel and the other is an even channel.
  • devices made by Interleaver technology are also called Interleaver, or optical comb filtering. Device.
  • optical comb filters At present, there are several optical comb filters. However, these optical comb filters often have the disadvantages of low isolation, difficult process manufacturing, inability to dynamically adjust channel spacing, difficulty in upgrading, and difficulty in controlling temperature drift. Meet the needs of use.
  • the object of the present invention is to provide an optical comb filter with dynamically adjustable channel spacing, and to dynamically adjust the channel spacing by designing a phase retarder with adjustable optical path.
  • a phase retarder including a polarization beam splitter, a first air arm, and a second air arm, wherein
  • the polarizing beam splitter is configured to decompose a light beam incident from a first sidewall of the polarizing beam splitter into a first light component transmitted in a first direction and a second light component transmitted in a second direction, wherein The first direction is perpendicular to the second direction, and a polarization state of the first light component is perpendicular to the second light component Polarization state
  • the first air arm is disposed on a second sidewall of the polarization beam splitter for receiving the first light component and reflecting the first light component back to the polarization beam splitter;
  • the second air arm is disposed on a third sidewall of the polarization beam splitter for receiving the second light component and reflecting the second light component back to the polarization beam splitter to Interfering with the first light component to form interference light, and causing the interference light to exit from a fourth sidewall of the polarization beam splitter; wherein a first optical path of the first air arm is not equal to the a second optical path of the second air arm, and the first sidewall is opposite to the third sidewall, and the second sidewall is disposed opposite to the fourth sidewall.
  • the first air arm includes a first polarizer and a first mirror, and the first polarizer is disposed on the second sidewall and the first Between the mirrors, among them,
  • the first polarizing plate is configured to change a polarization state of a first light component emitted from the second sidewall, wherein the first light component is transmitted to the first reflector after being transmitted to the first polarizer mirror;
  • the first mirror is configured to reflect the received first light component to the first polarizer, such that the first polarizer changes the polarization state of the first light component again, and then transmits the Deriving a first light component to the polarization beam splitter to cause the first light component to be transmitted in the first direction.
  • the second air arm includes a second polarizer and a second mirror, and the second polarizer is disposed on the third sidewall and the second Between the mirrors, among them,
  • the second polarizer is configured to change a polarization state of a second light component emitted from the third sidewall, wherein the second light component is transmitted to the second reflector after being transmitted to the second polarizer mirror;
  • the second mirror is configured to reflect the received second light component to the second polarizer, such that the second polarizer changes the polarization state of the second light component again, and then transmits the Deriving a second light component to the polarization beam splitter to cause the second light component to be transmitted in the first direction.
  • the first mirror is an adjustable micromirror and is used to adjust the first optical path.
  • the second mirror is an adjustable micromirror and is used to adjust the second optical path.
  • the adjustable micromirror is passed through a MEMS or Piezo technology controls the displacement or rotation of the micromirror to achieve adjustment of the optical path.
  • the first air arm includes a first etalon and a first polarizer, the first etalon has a first air cavity and a first reflective surface, a first polarizing plate is disposed in the first air cavity, wherein
  • the first polarizing plate is configured to change a polarization state of a first light component emitted from the second sidewall, wherein the first light component is transmitted to the first reflector after being transmitted to the first polarizer surface;
  • the first reflective surface is configured to reflect the received first light component to the first polarizer such that the first polarizer changes the polarization state of the first light component again, and then transmits the Deriving a first light component to the polarization beam splitter to cause the first light component to be transmitted in the first direction.
  • the second air arm includes a second etalon and a second polarizer, the second etalon has a second air cavity and a second reflective surface, the second a polarizing plate is disposed in the second air cavity, wherein
  • the second polarizer is configured to change a polarization state of a second light component emitted from the third sidewall, wherein the second light component is transmitted to the second reflector after being transmitted to the second polarizer surface;
  • the second reflecting surface is configured to reflect the received second light component to the second polarizing plate, so that the second polarizing plate changes the polarization state of the second light component again, and then transmits the Deriving a second light component to the polarization beam splitter to cause the second light component to be transmitted in the first direction.
  • the first air arm further includes a first optical compensation sheet, where the first optical compensation sheet is disposed in a first air cavity of the first etalon, And between the first polarizing plate and the first reflecting surface to adjust the first optical path by rotation;
  • the second air arm further includes a second optical compensation sheet, the second optical compensation sheet And disposed in the second air cavity of the second etalon and located between the second polarizer and the second reflective surface to adjust the second optical path by rotation.
  • an inner surface of the first reflective surface of the first etalon and an inner surface of the front wall disposed on the second sidewall are inclined surfaces having a predetermined angle
  • the inner surface of the second reflecting surface of the second etalon and the inner surface of the front wall disposed on the third side wall are inclined surfaces having a predetermined angle.
  • an optical comb filter including a first beam splitting component, a first phase retarder, and a second beam splitting component, wherein
  • the first beam splitting assembly is configured to emit a set of light beams to the first phase retarder
  • the first phase retarder includes a first polarization beam splitter, a first air arm, and a second air arm, wherein
  • the first polarization beam splitter is configured to decompose a group of light beams incident from a first sidewall of the first polarization beam splitter into a first light component transmitted in a first direction and transmitted in a second direction a second light component, wherein the first direction is perpendicular to the second direction, and a polarization state of the first light component is perpendicular to a polarization state of the second light component;
  • the first air arm is disposed on a second sidewall of the first polarization beam splitter for receiving the first light component and reflecting the first light component back to the first polarization beam splitter Device
  • the second air arm is disposed on a third sidewall of the first polarization beam splitter for receiving the second light component and reflecting the second light component back to the first polarization beam splitter Forming interference light after interfering with the first light component, and causing the interference light to exit from a fourth sidewall of the first polarization beam splitter; wherein, the first of the first air arms
  • the optical path is not equal to the second optical path of the second air arm, and the first side wall is opposite to the third side wall, and the second side wall is opposite to the fourth side wall,
  • the second beam splitting component is configured to reflect the interference light output by the first phase retarder back to the first phase retarder and the first beam splitting component, so that the first beam splitting component emits the first output light and the first light splitting component Two output lights.
  • the optical comb filter further includes an input collimator for collimating the incident signal light and transmitting the first to the first Splitting component.
  • the first beam splitting component comprises a first birefringent crystal, a first half wave plate and a second half wave plate, wherein the first birefringent crystal is used for receiving Deriving the signal light and decomposing the signal light into a first sub-signal light and a second sub-signal light, the first half-wave plate being configured to receive the first sub-signal light and to make the first sub-signal light The polarization direction is rotated by a predetermined angle, and the second half-wave plate is configured to receive the second sub-signal light and rotate the polarization direction of the second sub-signal light by a predetermined angle, wherein the first half The first sub-signal light and the second sub-signal light output from the wave plate and the second half-wave plate constitute the set of light beams and are transmitted to the first polarization beam splitter.
  • the first polarization beam splitter is used for The first sub-signal light incident on one side wall is decomposed into a first sub-light component transmitted in the first direction and a second sub-light component transmitted in the second direction, and the second sub-signal light is decomposed into the first direction a second sub-light component and a fourth sub-light component transmitted in the third direction, wherein the first and third sub-light components constitute the first light component, and the second and fourth sub-light components constitute The second light component is described.
  • the first beam splitting component further includes a third light compensation sheet, wherein the third light compensation sheet is disposed on the first half wave plate and the first polarization Between the beam splitters, for compensating the optical path of the first sub-signal light emitted by the first half-wave plate.
  • the first air arm includes a first polarizer and a first mirror, and the first polarizer is disposed on the second sidewall and the first Between the mirrors, among them,
  • the first polarizing plate is configured to change a polarization state of a first light component emitted from the second sidewall, wherein the first light component is transmitted to the first reflector after being transmitted to the first polarizer mirror;
  • the first mirror is configured to reflect the received first light component to the first polarizer, such that the first polarizer changes the polarization state of the first light component again, and then transmits the Deriving a first light component to the first polarization beam splitter to cause the first light component to be transmitted in the first direction.
  • the second air arm includes a second polarizer and a second mirror, and the second polarizer is disposed on the third sidewall and the second Between the mirrors, among them,
  • the second polarizer is configured to change a polarization state of a second light component emitted from the third sidewall, wherein the second light component is transmitted to the second reflector after being transmitted to the second polarizer mirror;
  • the second mirror is configured to reflect the received second light component to the second polarizer, such that the second polarizer changes the polarization state of the second light component again, and then transmits the Deriving a second light component to the first polarization beam splitter to cause the second light component to be transmitted in the first direction.
  • the first mirror is a tunable micromirror and is used to adjust the first optical path.
  • the second mirror is an adjustable micromirror and is used to adjust the second optical path.
  • the tunable micromirror controls the displacement of the micromirror by a microelectromechanical system or a piezoelectric technique to control the optical path.
  • the first air arm includes a first etalon and a first polarizer, the first etalon has a first air cavity and a first reflective surface, a first polarizing plate is disposed in the first air cavity, wherein
  • the first polarizing plate is configured to change a polarization state of a first light component emitted from the second sidewall, wherein the first light component is transmitted to the first reflector after being transmitted to the first polarizer surface;
  • the first reflective surface is configured to reflect the received first light component to the first polarizer such that the first polarizer changes the polarization state of the first light component again, and then transmits the Deriving a first light component to the polarization beam splitter to cause the first light component to be transmitted in the first direction.
  • the second air arm includes a second etalon and a second polarizer, the second etalon has a second air cavity and a second reflective surface, the Two polarizing plates are disposed in the second air cavity, wherein
  • the second polarizer is configured to change a polarization state of a second light component emitted from the third sidewall, wherein the second light component is transmitted to the first reflector after being transmitted to the first polarizer surface;
  • the second reflecting surface is configured to reflect the received second light component to the second polarizing plate, so that the second polarizing plate changes the polarization state of the second light component again, and then transmits the Deriving a second light component to the polarization beam splitter to cause the second light component to be transmitted in the first direction.
  • the first air arm further includes a first optical compensation sheet, the first optical compensation sheet is disposed in the first air cavity, and is located in the Between the first polarizing plate and the first reflecting surface, the first optical path is adjusted by rotation;
  • the second air arm further includes a second optical compensation sheet, and the second optical compensation sheet is disposed on the The second air chamber is located between the second polarizing plate and the second reflecting surface to adjust the second optical path by rotation.
  • an inner surface of the first reflective surface of the first etalon and an inner surface of the front wall disposed on the second sidewall have a predetermined angle a sloped surface; an inner surface of the second reflecting surface of the second etalon and an inner surface of the front wall disposed on the third side wall are inclined surfaces having a predetermined angle.
  • the optical comb filter further includes a second phase retarder, wherein the second phase retarder is located at the first phase retarder and the second Between the beam splitting components, the map of the interference light outputted by the first phase retarder is corrected, wherein the interference light comprises a first interference light and a second interference light, the first sub-light component and the Second sub-optical division The quantity interference forms the first interference light, and the third sub-light component and the fourth sub-light component interfere to form the second interference light.
  • the second phase retarder includes a second polarization beam splitter, a third air arm, and a fourth air arm, where
  • the second polarization beam splitter is configured to decompose the first interference light incident from the fifth side wall of the second phase retarder into a fifth sub-light component transmitted in the first direction and transmit in the second direction a sixth sub-light component, the second interference light being decomposed into a seventh sub-light component transmitted in a first direction and an eighth sub-light component transmitted in a second direction;
  • the third air arm is disposed on a sixth sidewall of the second polarization beam splitter for receiving the fifth sub-light component and the seventh sub-light component, and the fifth sub-light component and The seventh sub-light component is reflected back to the second polarizing beam splitter;
  • the fourth air arm is disposed on a seventh sidewall of the second polarization beam splitter for receiving the sixth sub-light component and the eighth sub-light component, and the sixth sub-light component and The eighth sub-light component is reflected back to the second polarization beam splitter, wherein the fifth sub-light component interferes with the sixth sub-light component to form a third interferometric light, the seventh sub-light component and the The eighth sub-light component interferes to form a fourth interfering light, the third and fourth interfering lights are emitted from the eighth sidewall of the second polarizing beam splitter to the second beam splitting component, and the fifth side
  • the wall is disposed opposite to the seventh sidewall, and the sixth sidewall is disposed opposite to the eighth sidewall.
  • the third optical path of the third air arm is not equal to the fourth optical path of the fourth air arm, and the third optical path and the fourth optical path are the fourth optical path
  • the difference in optical path is twice the difference between the first optical path and the second optical path.
  • the third air arm includes a third polarizer and a third mirror, and the third polarizer is disposed on the sixth sidewall and the third Between three mirrors, among them,
  • the third polarizing plate is configured to change a polarization state of the fifth and seventh sub-light components emitted from the sixth sidewall, wherein the fifth and seventh sub-light components transmit the third polarizer After transmission to the third mirror;
  • the third mirror is configured to reflect the received fifth and seventh sub-light components to the third polarizer, such that the third polarizer changes the fifth and sixth sub-lights again After the polarization state of the component, Transmitting the fifth and seventh sub-light components to the second polarization beam splitter to cause the fifth and seventh sub-light components to be transmitted in the second direction.
  • the fourth air arm includes a fourth polarizing plate and a fourth reflecting mirror, wherein the fourth polarizing plate is disposed on the seventh sidewall and the first Between four mirrors, among them,
  • the fourth polarizing plate is configured to change a polarization state of the sixth and eighth sub-light components emitted from the seventh sidewall, and transmit the sixth and eighth sub-light components to the second mirror;
  • the fourth mirror is configured to reflect the received sixth and eighth sub-light components to the fourth polarizer, such that the fourth polarizer changes the sixth and eighth sub-lights again After the polarization state of the component, the sixth and eighth sub-light components are transmitted to the second polarization beam splitter such that the sixth and eighth sub-light components are transmitted in the second direction.
  • the third mirror is an adjustable micromirror and is used to adjust the third optical path.
  • the fourth mirror is a tunable micromirror and is used to adjust the fourth optical path.
  • the tunable micromirror controls the displacement of the micromirror by a microelectromechanical system or a piezoelectric technique to control the optical path.
  • the third air arm includes a third etalon and a third polarizer, the third etalon has a third air cavity and a third reflective surface, The third polarizing plate is disposed in the third air cavity, wherein
  • the third polarizing plate is configured to change a polarization state of the fifth and seventh sub-light components emitted from the sixth sidewall, wherein the fifth and seventh sub-light components transmit the third polarizer After being transmitted to the third reflecting surface;
  • the third reflective surface is configured to reflect the received fifth and seventh sub-light components to the third polarizer, such that the third polarizer changes the fifth and seventh sub-lights again After the polarization state of the component, the fifth and seventh sub-light components are transmitted to the second polarization beam splitter such that the fifth and seventh sub-light components are transmitted in the second direction.
  • the fourth air arm includes a fourth etalon and a fourth polarizer, wherein the fourth etalon has a fourth air cavity and a fourth reflective surface.
  • the fourth a polarizing plate is disposed in the fourth air cavity, wherein
  • the fourth polarizing plate is configured to change a polarization state of the sixth and eighth sub-light components emitted from the seventh sidewall, wherein the sixth and eighth sub-light components transmit the fourth polarizer After being transmitted to the fourth reflecting surface;
  • the fourth reflecting surface is configured to reflect the received sixth and eighth sub-light components to the fourth polarizing plate, so that the fourth polarizing plate changes the sixth and eighth sub-lights again After the polarization state of the component, the sixth and eighth sub-light components are transmitted to the second polarization beam splitter such that the sixth and eighth sub-light components are transmitted in the second direction.
  • the third air arm further includes a third optical compensation sheet disposed in the third air cavity and located at the Between the third polarizing plate and the third reflecting surface, the third optical path is adjusted by rotation;
  • the fourth air arm further includes a fourth optical compensation sheet, and the fourth optical compensation sheet is disposed at the The fourth air chamber of the fourth etalon is located between the fourth polarizing plate and the fourth reflecting surface to adjust the fourth optical path by rotation.
  • the inner surface of the third reflecting surface of the third etalon and the inner surface of the front wall disposed on the second sidewall have a predetermined angle
  • the inclined surface of the fourth reflecting surface of the fourth etalon and the inner surface of the front wall disposed on the third side wall are inclined surfaces having a predetermined angle.
  • the optical comb filter further includes a third half wave plate, wherein the third half wave plate is disposed on the first phase retarder and Between the second phase retarders.
  • the optical comb filter further includes a fourth half wave plate, wherein the fourth half wave plate is disposed on the second phase retarder and Between the second beam splitting components.
  • the second beam splitting component comprises a second birefringent crystal and a back reflecting prism, wherein the second birefringent crystal is located in the fourth half wave plate and the Between the retroreflective prisms, among them,
  • the second birefringent crystal is configured to decompose the third interfering light emitted by the second phase retarder into o-light and e-light, and decompose the fourth interfering light emitted from the second phase retarder into o-light and E light
  • the back reflection prism is configured to reflect the o light and the e light back to the second birefringent crystal, wherein The light beam reflected by the back reflection prism is transmitted from the second phase retarder, the first phase retarder, to the first birefringent crystal, and merged into the first output light via the first birefringent crystal And a second output light.
  • the optical comb filter further includes a fifth half wave plate and a sixth half wave plate, wherein the fifth half wave plate and the sixth half A wave plate is disposed between the fourth half wave plate and the second birefringent crystal.
  • the optical comb filter further includes a seventh half wave plate and an eighth half wave plate, wherein the seventh half wave plate and the eighth half wave plate are set. Between the third optical compensation sheet and the first phase retarder.
  • the optical comb filter further includes a first output collimator and a second output collimator, wherein the first output collimator is used for collimating The first birefringent crystal outputs a first output light, and the second output collimator is configured to receive the second output light of the first birefringent crystal output.
  • the optical comb filter further includes a first oblique prism and a second oblique prism, wherein the first oblique prism is used to a first output light output from a birefringent crystal is transmitted to the first output collimator, and the second oblique prism is used to transmit a second output light output from the second birefringent crystal to the second Output collimator.
  • the optical comb filter of the embodiment of the invention realizes the adjustability of the channel spacing by designing a first phase retarder with adjustable optical path difference, and overcomes the disadvantage that the birefringent crystal optical comb filter is difficult to be upgraded.
  • Comb filtering of 100 GHz ⁇ 50 GHz ⁇ 25 GHz or denser channels can be achieved.
  • the phase retarder adopts the structural design of the air arm, the temperature drift effect is very small, the insertion loss is low, and the isolation is high.
  • the dispersion is very low, and the dense wave satisfying the higher rate is satisfied.
  • FIG. 1 is a schematic structural diagram of an optical comb filter according to an embodiment of the present invention.
  • Figure 2 is a schematic illustration of the optical path of the beam at the first birefringent crystal.
  • FIG. 3 is a schematic structural diagram of a first phase retarder according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first phase retarder according to a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first phase retarder according to a third embodiment of the present invention.
  • FIG. 6 is an adjustment diagram of the first light compensation sheet and the second light compensation sheet shown in FIG. 5.
  • FIG. 6 is an adjustment diagram of the first light compensation sheet and the second light compensation sheet shown in FIG. 5.
  • Fig. 7 is a schematic view showing another structure of the first phase retarder shown in Fig. 5.
  • Figure 8 is a schematic illustration of the optical path of the light beam in the second birefringent crystal and the back reflecting prism.
  • Figure 9 is a schematic diagram of the transmission line of the optical comb filter.
  • Figure 10 is a schematic diagram of the temperature drift effect of the optical comb filter.
  • Figure 11 (a) is a dispersion curve of an odd channel.
  • Figure 11 (b) is a dispersion curve of the even channel.
  • an embodiment of the present invention provides an optical comb filter 100 for dividing a column of signal light having a frequency interval of f into two columns of signal light having a 2f frequency interval in a wavelength interleaving multiplexing technique.
  • the optical comb filter 100 includes a first beam splitting assembly, a first phase retarder 10 and a second beam splitting assembly, wherein the first beam splitting assembly receives the signal light 600 transmitted by the input collimator 21 and outputs two beams.
  • the first phase retarder 10 generates and outputs first and second interference lights after receiving the two beams
  • the second beam splitter receives the first Interfering light and second interference light, and decomposing the first interference light and the second interference light, and reflecting the decomposed light beam back to the first phase retarder 10 and transmitting to the first beam splitter
  • the first beam splitting component receives the light beam transmitted by the first phase retarder 10, and generates a first output light 617 that is emitted from the first output collimator 22 and a second output light that is emitted from the second output collimator 23.
  • Output light 627 wherein the first output light 617 and the second output light 627 are spatially separated and have There is a signal light with a 2f frequency interval.
  • FIG. 2 is a schematic diagram of the optical path of the light beam at the first birefringent crystal.
  • the input collimator 21 is configured to transmit the incident signal light 600 to the first beam splitting component after being collimated.
  • the first beam splitting assembly includes a first birefringent crystal 31, wherein the first birefringent crystal 31 may be a YVO4 crystal or other crystal having a birefringence effect, when the signal light 600 is not parallel to the first
  • the optical axis of a birefringent crystal 31 (the birefringence does not occur when light propagates in a certain direction in the crystal, which is called the optical axis of the crystal) is incident on the first birefringent crystal 31 due to the birefringence effect.
  • the first sub-signal light 610 (physically o-light, ie ordinary light) and the first The two sub-signal light 620 (physically e-light, ie, extraordinary light), wherein the o-light will follow the law of refraction, and the e-light generally does not follow the law of refraction, ie, the e-light does not coincide with the o-light.
  • the polarization directions of the o light and the e light are perpendicular to each other.
  • the first beam splitting component further includes the first half wave plate 32 and the second half wave plate 33, wherein the first half wave plate 32 and the second half wave plate 33 are two lights. a half wave plate having the same axial direction, the first half wave plate 32 for receiving the first sub-signal light 610, and rotating a polarization direction of the first sub-signal light 610 by a predetermined angle, the second The half wave plate 33 is configured to receive the second sub-signal light 620 and rotate the polarization direction of the second sub-signal light 620 by a predetermined angle, wherein the first half-wave plate 32 and the second half-wave The first sub-signal light 610 and the second sub-signal light 620 outputted from the slice 33 constitute the set of light beams and are transmitted to the first phase retarder 10.
  • the first half wave plate 32 and the second half wave plate 33 may be 22.5° or 67.5° half wave plates, that is, the vibration surface of the first sub-signal light 610 when incident and the first half wave plate 32 crystal.
  • the angle between the main sections is 22.5° or 67.5°
  • the angle between the vibration surface of the second sub-signal 620 and the main section of the second half-wave plate 33 is 22.5° or 67.5°.
  • the polarization direction thereof will rotate by 45°, so that the first The sub-signal light 610 and the second sub-signal light 620 will become two beams of light having parallel polarization directions, and the polarization directions are both 45°.
  • the first half-wave plate 32 makes the first The direction in which the polarization direction of the sub-signal light 610 rotates should be the second half-wave plate 33 to make the second The polarization direction of the sub-signal light 620 is reversed.
  • the first half-wave plate 32 rotates the polarization direction of the first sub-signal light 610 by 45° clockwise
  • the second half-wave plate 33 should be The polarization direction of the second sub-signal light 620 is rotated 45° counterclockwise (or 135° clockwise) to ensure that the polarization directions of the first sub-signal light 610 and the second sub-signal light 620 after rotation are Parallel. That is, when the first half-wave plate 32 is a 22.5° half-wave plate, the second half-wave plate is a 67.5° half-wave plate, or when the first half-wave plate 32 is a 67.5° half-wave plate, The second half wave plate is a 22.5° half wave plate.
  • FIG. 3 is a schematic structural diagram of a first phase retarder according to a first embodiment of the present invention.
  • the first phase retarder 10 includes a first polarization beam splitter 11 , a first air arm and a second air arm, and the first polarization beam splitter 11 has a first beam splitting surface 112 .
  • the first air arm includes a first polarizer 12 and a first mirror 13 , and the first polarizer 12 is disposed on a second sidewall of the first polarizing beam splitter 11 and the first mirror 13 And an optical path between the second sidewall of the first polarization beam splitter 11 and the first mirror 13 is a first optical path L 1 ;
  • the second air arm includes a second polarizer And a second mirror 15 disposed between the third sidewall of the first polarization beam splitter 11 and the second mirror 15, and the first polarization beam splitting
  • the optical path between the third side wall of the device 11 and the second mirror 43 is a second optical path L 2 , wherein the second side wall is adjacent to the third side wall.
  • the first optical path L 1 and the second optical path L 2 are unequal and have a first optical path difference ⁇ L 1 , that is, an absolute value of (L 1 -L 2 ) is ⁇ L 1 .
  • the first polarizing plate 12 and the second polarizing plate 14 may be a 45° quarter-wave plate. In this case, when the linearly polarized light passes through the first polarizing plate 12 or the second polarizing plate 14, it will change. Polarized light is polarized, and when the circularly polarized light passes through the first polarizing plate 12 or the second polarizing plate 14 again, it will be changed back to linearly polarized light, and its polarization direction will be relative to the original linearly polarized light. A 90° rotation occurs.
  • the first phase retarder is incident from the first sidewall of the first polarization beam splitter 11 into the first phase retarder. 10, and decomposed at the first beam splitting surface 112 to propagate in the first direction (ie, the z direction in FIG. 1, where the z- forward and z-negative transmissions are both defined as transmitting in the first direction)
  • the first sub-light component ie, the s-light whose polarization direction is parallel to the incident surface will be reflected at the first spectroscopic surface 112 and in the second direction (ie, the x-direction in FIG.
  • the second sub-light component propagated along the x-negative transmission is defined as being transmitted in the second direction (ie, the p-light having a polarization direction perpendicular to the incident surface will be transmitted at the first spectroscopic surface 112), wherein a first sub-light component enters the first air arm and transmits the first polarizer 12 to the first mirror 13 , and the first mirror 13 reflects the first sub-light component After the first sub-light component is again transmitted through the first polarizer 12, it returns to the first polarization beam splitter 11 and is transmitted to the first Surface 112, since the first sub-light component has experienced two of the first polarizing plate 12, thereby rotating its polarization direction 90 ° (i.e.
  • the second sub-light component is transmitted to the first beam splitting surface 112 and then transmitted to the second air arm, and transmits the second polarizing sheet 14 to the second mirror 15 , the second mirror Reflecting the second sub-light component such that the second sub-light component is transmitted again to the second polarizer 14, returns to the first polarization beam splitter 11 and is transmitted to the first beam splitter 112. Since the second sub-light component has undergone the second polarizing plate 14 twice, its polarization direction will be rotated by 90° (ie, the polarization direction is rotated from perpendicular to the incident surface to be parallel to the incident surface).
  • the propagation directions of the first sub-light component and the second sub-light component after passing through the first dichroic surface 112 are along the first direction. Since the first optical path L 1 and the second optical path L 2 are not equal, the first sub-light component and the second sub-light component will interfere at the first spectroscopic surface 112, And generating the first interference light 611.
  • the first phase delay is The device 10 can be configured to cause the incident first sub-signal light 610 to generate a predetermined phase delay and obtain the desired interference light by setting the first optical path difference ⁇ L 1 . Since the first phase retarder 10 adopts the design structure of the air arm, the first optical path difference ⁇ L 1 has temperature stability, that is, when the temperature changes significantly, the first optical path difference ⁇ L 1 does not generate a large Change.
  • Air arm design structure also greatly facilitates the adjustment ⁇ L 1 of the first optical path difference (simply moving the first mirror 13 and second reflecting mirror 15 can be adjusted to achieve a first optical path difference ⁇ L 1) of .
  • the design structure of the air arm also has the advantages of low insertion loss, very low dispersion in the filtering channel of the transmission spectrum, and is advantageous for application to various optical devices, and has high applicability.
  • the optical path propagation process of the second sub-signal light 620 in the first phase retarder 10 and the optical path of the first sub-signal light 610 in the first phase retarder 10 The propagation process is substantially the same, and the second sub-signal light 620 is decomposed within the first phase retarder 10 into a third sub-light component transmitted in a first direction and a fourth sub-light component transmitted in a second direction. After passing through the first air arm and the second air arm, interference occurs at the first beam splitting surface 112, and The second interference light 621 transmitted in one direction.
  • the second interference light 621 transmitted in one direction For specific optical path analysis, please refer to the above statement, and I will not repeat them here.
  • FSR Free Spectral Range
  • FIG. 4 is a schematic structural diagram of a first phase retarder according to a second embodiment of the present invention.
  • the first phase retarder 210 includes the first polarization beam splitter 11 of the first embodiment, the first polarizing plate 12, the first mirror 13, the second polarizing film 14, and the second reflection.
  • the mirror 15 and the connection placement relationship of these elements are also substantially the same, and will not be described again here.
  • the first mirror 13 and/or the second mirror 15 are adjustable micromirrors, and different channel spacing can be switched by adjusting the adjustable micro mirror or Realizing the dynamic adjustment of the central wavelength, for example, the first optical path L 1 and/or the second optical path L 2 can be greatly adjusted by the adjustable micro mirror, thereby obtaining different first optical path differences ⁇ L 1 and realizing different channels Dynamic switching of intervals.
  • the first optical path difference ⁇ L 1 dynamic switching of channel spacing of 100 GHz ⁇ 50 GHz ⁇ 52 GHz or 75 GHz is realized; or the first optical path difference ⁇ L 1 is adjusted by a small amplitude of the adjustable micro mirror to realize the central wavelength. Dynamic adjustment.
  • the tunable micromirror can be implemented by Micro-Electro-Mechanical Systems (MEMS) technology, for example, the tunable micromirror is in the form of a MEMS mirror, and the MEMS mirror is precisely controlled.
  • the first optical path difference ⁇ L 1 of the first phase retarder 210 is dynamically adjusted to realize the dynamic adjustment function of the channel interval.
  • the displacement adjustment of the adjustable micromirror can also be realized by piezoelectric technology, such as controlling the expansion and contraction of the piezoelectric crystal by power-on, thereby dynamically adjusting the lengths of the two air arms.
  • This dynamically adjustable structure eliminates the artificial adjustment process, saves time and effort, and can be remotely controlled, which can better meet the development needs of future dynamic optical networks. It can be understood that the above-mentioned adjustable micromirrors, in addition to MEMS technology, piezoelectric technology, and other possible implementation technologies, are all within the scope of protection of the present solution and will not be described herein.
  • FIG. 5 is a schematic structural diagram of a first phase retarder according to a third embodiment of the present invention.
  • the first phase retarder 310 further includes a first etalon in addition to the first polarization beam splitter 11 , the first polarizing plate 12 and the second polarizing plate 14 of the first embodiment described above. 316 and a second etalon 317, wherein the first etalon 316 has a first air cavity 3161 and a first reflective surface 3162, and the second etalon 317 has a second air cavity 3171 and a second reflective surface 3172.
  • the first polarizing plate 12 is received in the first air cavity 3161 and is located between the second sidewall and the first reflective surface 3162.
  • the second polarizer 14 is received in the second air cavity 3171 and located between the third sidewall and the second reflective surface 3172.
  • the first etalon 316 has a preset first optical path L 1
  • the second etalon 317 has a preset second optical path L 2 .
  • FIG. 6 is a schematic diagram of adjustment of the first optical compensation sheet and the second optical compensation sheet shown in FIG. 5.
  • the first air arm further includes a first light compensation sheet 318
  • the second air arm further includes a second light compensation sheet 319, wherein the first light compensation sheet 318 is disposed on the first a first air cavity 3161 of an etalon 316, and between the front wall 3163 of the first etalon 316 and the first reflective surface 3162, and the second optical compensation sheet 319 is disposed at the second
  • the second air chamber 3171 of the etalon 317 is located between the front wall 3173 of the second etalon 317 and the second reflecting surface 3172.
  • the first polarizing beam splitter 11, the arm length of the etalon, and the thickness of the front wall may have errors during processing, the first polarizing beam splitter 11, the two air arms, and the glass of the front wall are caused.
  • the block thicknesses are inconsistent such that the first optical path difference ⁇ L 1 of the two air arms of the first phase retarder 310 is no longer determined by the theoretical difference in length of the air arm, the first polarization beam splitter 11 and
  • the thickness of the glass block of the front wall also affects the first optical path difference ⁇ L 1 of the first phase retarder 310, causing the actual FSR to deviate from the theoretical FSR, thereby causing the transmission spectrum of the optical comb filter 100.
  • the center wavelength drifts.
  • the first light compensation sheet 318 and the second light compensation sheet 319 can be used to compensate the optical paths of the two air arms of the first phase retarder 310, thereby adjusting the center wavelength of the transmission spectrum. Specifically, if the first optical path of the first air arm is smaller than the optical path of the theoretical design, the first optical compensation sheet 318 is rotated, as shown in FIG. 6 , due to oblique incidence, light is in the first optical compensation sheet. Refraction occurs in 318, while the second optical compensator 319 of the second air arm remains placed perpendicular to the incident light, using a slight difference of Ls-Lp (as shown in Figure 6) to precisely adjust the relationship between the two air arms.
  • Ls-Lp as shown in Figure 6
  • the first optical path difference ⁇ L 1 which in turn precisely adjusts the center wavelength of the transmission spectrum.
  • the optical path of the second air arm is smaller than the theoretical design optical path, the first optical compensation sheet 318 of the first air arm is kept perpendicular to the optical path, and the second optical compensation sheet 319 on the second air arm is rotated to adjust the transmission.
  • the center wavelength of the spectrum is precisely adjusted.
  • FIG. 7 is another schematic structural diagram of the first phase retarder shown in FIG. 5.
  • an inner surface of the front wall 3163 of the first etalon 316 and an inner surface of the first reflective surface 3162 may be designed as a slope having a predetermined angle ⁇ , and preferably, two The inclined surfaces are parallel to each other; the inner surface of the front wall 3173 of the second etalon 317 and the inner surface of the second reflective surface 3172 may also be disposed as a slope having a predetermined angle ⁇ , so as to avoid being inside the front wall An unwanted interference phenomenon is generated between the surface and the reflective surface, thereby improving the optical performance of the optical comb filter 100.
  • the optical comb filter 100 further includes a third optical compensation component 34, and the third optical compensation component 34 is disposed on the first half wave plate 32 and the Between the first phase retarders 10.
  • the third optical compensation component 34 can be a Polarization Mode Dispersion (PMD) compensator for compensating for the first sub-signal light 610 to be transmitted in the first birefringent crystal 31 and the second The optical path difference when the sub-signal light 620 is transmitted within the first birefringent crystal 31.
  • PMD Polarization Mode Dispersion
  • the third optical compensation component 34 is disposed to compensate the optical path of the first sub-signal light 610 such that the first sub-signal light 610 and the second sub-signal light 620 are before entering the first phase retarder 10 , with the same phase.
  • the optical comb filter 100 further includes a second phase retarder 40, and the structural design of the second phase retarder 40 is compared with any of the foregoing first to third embodiments.
  • the structure of the first phase retarder 10 provided is substantially the same.
  • the second phase retarder 40 having the second polarization beam splitter 41, the third air and the fourth air arm arm, the third arm having a third optical path air L 3, the The fourth air arm has a fourth optical path L 4 and the value of (L 4 - L 3 ) is twice (L 2 - L 1 ).
  • the first interference light 611 is incident from a fifth side wall of the second polarization beam splitter 41, and is decomposed by the second polarization beam splitter 41 into a fifth sub-light component and along the first direction.
  • a sixth sub-light component transmitted in the second direction the second interference light 621 being incident from the fifth sidewall of the second polarization beam splitter 41, and being decomposed into the second polarization beam splitter 41.
  • the third air arm receives the fifth sub-light component and the seventh sub-light component, and reflects the fifth sub-light component and the seventh sub-light component back to the second polarization component through the third mirror 43
  • the beamer 41 since the fifth sub-light component and the seventh sub-light component go back and forth twice through the third polarizer 42 in the third air arm, the fifth sub-light component and the seventh sub-light component
  • the polarization direction is rotated by 90°.
  • the fourth air arm receives the sixth sub-light component and the eighth sub-light component, and reflects the sixth sub-light component and the eighth sub-light component back to the first through the fourth mirror 45
  • the second polarizing beam splitter 41 since the sixth sub-light component and the eighth sub-light component go back and forth twice through the fourth polarizing plate 44 in the fourth air arm, the sixth sub-light component and the eighth The polarization direction of the sub-light component is rotated by 90 degrees. Thereafter, in the second polarization beam splitter 41, the fifth sub-light component interferes with the sixth sub-light component and generates a third interference light 612, the seventh sub-light component and the first The eight sub-light components interfere and generate a fourth interfering light 622.
  • the structure of the second phase retarder 40 may also be the structure of the first phase retarder 10 described in the second embodiment and the third embodiment, and Let me repeat.
  • the second phase retarder 40 is configured to shape the lines of the first interference light 611 and the second interference light 621 output by the first phase retarder 10. Correction is made to make the shape of the line more rectangular and flattened.
  • the optical comb filter 100 may also cascade more phase retarders, such as a third phase retarder, a fourth phase retarder, and the like. In theory, the more harmonic terms are superimposed (ie, the more phase retarders are cascaded), the closer the shape of the line is to the square wave, the better the waveform can be obtained.
  • a third half-wave plate 46 between the first phase retarder 10 and the second phase retarder 40, a third half-wave plate 46, the third half-wave plate is further disposed.
  • 46 may be a 28.5° half-wave plate for adjusting the shape of the transmission spectrum, the isolation, and the like. It can be understood that, in other embodiments of the present invention, the third half-wave plate 46 may also be a half-wave plate of other degrees, that is, the vibration surface of the incident light and the third half-wave plate 46, according to actual needs.
  • the angle of the main section of the crystal can be designed according to actual needs, and is not specifically limited in the present invention.
  • a fourth half wave plate 51 is further disposed, and the fourth half wave plate 51 may be It is an 8° half-wave plate for adjusting the shape and isolation of the transmission spectrum. It will be appreciated that other implementations of the invention For example, the fourth half-wave plate 51 may be a half-wave plate of other degrees according to actual needs, and the invention is not specifically limited.
  • FIG. 8 is a schematic diagram of the optical path of the light beam in the second birefringent crystal and the back reflecting prism.
  • the second beam splitting assembly includes a second birefringent crystal 61 and a back reflecting prism 62.
  • the third interference light 612 and the fourth interference light 622 are incident after being transmitted through the fourth half wave plate 51.
  • the second birefringent crystal 61 is decomposed into the o-light 613 and the e-light 614, and the fourth interfering light 622 is also decomposed into the o-ray 623.
  • the two o-beams and the two e-lights are transmitted to the back-reflecting prism 62, and are reflected by the back-reflecting prism 62 back to the second birefringent crystal 61 and output to the second phase Delayer 40.
  • the optical comb filter 100 further includes a fifth half wave plate 71 and a sixth half wave plate 72, and the fifth half wave plate 71 and the sixth half wave plate 72 is disposed between the second birefringent crystal 61 and the fourth half wave plate 51, wherein the fifth half wave plate 71 is configured to receive the o light 613 and the o light reflected by the second beam splitting component 623, in order to rotate the polarization directions of the o-light 613 and the o-light 623 by a predetermined angle, the sixth half-wave plate 72 is configured to receive the e-light 614 and the e-light 624 reflected by the second beam splitting component to The polarization directions of the e-light 614 and the e-light 624 are rotated by a predetermined angle.
  • the fifth half-wave plate 52 and the sixth half-wave plate 53 may be 45° half-wave plates.
  • the predetermined angle is 90°.
  • the fifth half-wave plate 71 and the sixth half-wave plate 72 adjust the polarization direction of the o-light 613, the e-light 614, the o-light 623, and the e-light 624, thereby adjusting the transmitted pattern shape.
  • the o-light 613, the e-light 614, the o-light 623, and the e-light 624 pass through the fifth half-wave plate 71 and the sixth half-wave plate 72, and then transmit the fourth half-wave plate 51 again.
  • the second phase retarder 40 and the third half-wave plate 46 After passing through the second phase retarder 40 and the third half-wave plate 46, it becomes a beam 615, a beam 616, a beam 625, and a beam 626, and the beam 615, the beam 616, the beam 625, and the beam 626 enter.
  • the light beam 615 and the light beam 625 are emitted from a bottom position of the first polarization beam splitter 11, the light beam 616 and the light beam. 626 exits from the top position of the first polarization beam splitter 11.
  • the optical comb filter 100 further includes a seventh half wave plate 81 and an eighth half wave plate 82, and the seventh half wave plate 81 and the eighth half wave plate 82 is disposed between the third optical compensation sheet 34 and the first phase retarder 10, wherein the seventh half-wave plate 81 And the eighth half wave plate 82 can be a 0° half wave plate.
  • the seventh half wave plate 81, the third light compensation sheet 34, and the first half wave plate 32 are transmitted and transmitted to the first
  • beam 615, beam 616, beam 625, and beam 626 are incident into said first birefringent crystal 10, within said first birefringent crystal 10, beam 615 and beam 625, due to birefringent crystals
  • the beam 615 and the beam 625 will merge and eventually form a first output light 617, the beam 616 and the beam 626. Due to the nature of the birefringent crystal, the beam 616 and the beam 626 will merge. And finally forming a second output light 627.
  • the first output light 617 and the second output light 627 are two columns of signal light having a predetermined frequency interval.
  • the input collimator 21 is disposed between the first output collimator 22 and the second output collimator 23, and the first output collimator 22 A first output light 617 for receiving the output of the first birefringent crystal 31, and a second output collimator 23 for receiving the second output light 627 output by the first birefringent crystal 31.
  • the working distance of the collimator should be equal to or slightly larger than the optical path of the light passing through the optical comb filter 100.
  • the optical comb filter 100 further includes a first oblique prism 91 and a second oblique prism 92, and the first oblique prism 91 is aligned with the first
  • the collimator 22 is output and used to transmit the first output light 617 output by the first birefringent crystal 31 to the first output collimator 22, and the second oblique prism 92 is aligned with the second
  • the collimator 23 is output and used to transmit the second output light 627 output by the first birefringent crystal 31 to the second output collimator 23.
  • the first oblique prism 91 and the second oblique prism 92 can be used to increase the distance between the first output light 617 and the second output light 627 in the space to prevent the first output light 617 and the second output light.
  • the 627 is inconvenient to place because the space is too close.
  • FIG. 9 is a transmission diagram of the optical comb filter 100.
  • the present invention realizes the required FSR by precisely controlling the first optical path difference ⁇ L 1 of the first phase retarder 10, and simultaneously passes The optical path difference of the second phase retarder 40 is precisely controlled to correct the shape of the transmission pattern to make it more rectangular and planar.
  • the optical comb filter 100 of the embodiment of the present invention can obtain a desired first optical path difference ⁇ L 1 by controlling the optical path of the air arm, thereby achieving different FSR and different channel spacing.
  • the FSR of the optical comb filter is controlled by adjusting the optical path of the air arm. Since the air is a good thermal insulator, and the refractive index of the air changes very little with temperature, The effect of temperature is very small and can be ignored. Of course, due to the processing errors of PBS, etalon, etc., the glass error of the PBS arms also participates in contributing the optical path difference. As shown in Table 2, Table 2 is the thermo-optic coefficient and thermal expansion coefficient of air and fused silica. It can be seen from Fig.
  • the optical comb filter of the embodiment of the invention has a good temperature drift effect.
  • the dispersion problem in the communication system becomes very important.
  • the accumulated dispersion amount in the 40 Gbit/s system is less than 50 ps/nm, and the 160 Gbit/s system is less than 5 ps/nm, so that the value of the system dispersion is reduced. Small fluctuations in the total dispersion of the system may cause deterioration in transmission quality.
  • 11(a) and 11(b) are dispersion curves of the odd and even channels of the optical comb filter in the embodiment of the present invention with a channel spacing of 50 GHz.
  • Curve 713 and curve 715 are the dispersion curves of the odd channel and the even channel, respectively.
  • the curves 711 and 714 are the dispersion curves of the odd channel and the even channel, respectively, and the curve 712 and the curve 714 are the odd channels respectively.
  • the odd channel and the even channel are in the range of ITU ⁇ 25 Hz, and the dispersion value is substantially zero, exhibiting superior dispersion characteristics.
  • the reason for this phenomenon is that the out-of-range dispersion curve 711 and the back-end dispersion curve 713, or the curve 715 and the curve 716, in the range of ITU ⁇ 25 Hz, the dispersion value shows a good complementary cancellation phenomenon. That is, after the signal light travels back and forth within the device, the dispersion is cancelled within the filter channel.
  • the optical comb filter 100 of the embodiment of the present invention achieves the adjustability of the channel spacing by designing a first phase retarder 10 and a second phase retarder 40 with adjustable optical path differences.
  • the birefringence crystal type optical comb filter is difficult to upgrade, and can achieve comb filtering of 100 GHz ⁇ 50 GHz ⁇ 25 GHz or a denser channel.
  • the first phase retarder 10 and the second phase retarder 40 both adopt the structural design of the air arm (or air cavity), the temperature drift effect is very small, the insertion loss is low, the isolation is high, and the transmission spectrum is In the range of the filtering channel, the dispersion is very low, which satisfies the transmission application scenario of the dense wave division multiplexing system with higher rate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Polarising Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种相位延迟器(10)及光学梳状滤波器(100),包括偏振分束器(11)、第一空气臂及第二空气臂,其中,偏振分束器(11)用于将从第一侧壁入射的光束分解为沿第一方向传输的第一光分量及沿第二方向传输的第二光分量,第一方向垂直于所述第二方向,第一光分量的偏振态垂直于第二光分量的偏振态;第一空气臂,设置于偏振分束器(11)的第二侧壁,用于接收第一光分量,并将第一光分量反射回偏振分束器;第二空气臂,设置于偏振分束器(11)的第三侧壁,用于接收第二光分量,并将第二光分量反射回偏振分束器(11),以与第一光分量发生干涉后形成干涉光,并使得所述干涉光从所述偏振分束器(11)的第四侧壁射出。

Description

相位延迟器及其光学梳状滤波器 技术领域
本发明涉及光通信领域,尤其涉及一种相位延迟器及其光学梳状滤波器。
背景技术
在带宽就是资源的时代,为了充分利用有限的带宽资源,小波道间隔已成为发展趋势。为了满足迅速增长的带宽需求,更有效地使用当前技术成熟的掺铒光纤放大器(EDFA)的增益带宽,密集型波分复用系统必须提供更多的复用波道数,由此波道间隔变得越来越窄。40波100GHz间隔的密集型波分复用系统已经得到广泛商用。为了更进一步提高带宽利用率,波道间隔已从100GHz向50GHz或更窄的方向发展。然而,波道间隔越窄,对密集型波分复用系统的复用/解复用器的要求就越高,对传统制作工艺的难度也越大。用作解复用器的100GHz及更窄带通的滤波器的成品率很低,导致窄带滤波器价格极高。
波长交错复用技术(Interleaver)的运用大大降低了密集型波分复用系统的成本,缓解密集型波分复用系统对滤波器件的压力,其通过把一列频率间隔为f的信号光分成两列频率间隔为2f的信号光,并分别从两个通道输出,其中,一个通道为奇通道,另外一个为偶通道,通常人们将Interleaver技术制作的器件也称之为Interleaver,或者光学梳状滤波器。
目前已有若干光学梳状滤波器的设计方案,然而这些光学梳状滤波器往往存在隔离度低、工艺制造难度大、通道间隔不能动态可调、不易升级及温漂效应难以控制等缺点,无法满足使用需求。
发明内容
有鉴于此,本发明的目的在于提供一种通道间隔动态可调的光学梳状滤波器,通过设计一个光程可调的相位延迟器,实现通道间隔的动态可调。
第一方面,提供一种相位延迟器,包括偏振分束器、第一空气臂及第二空气臂,其中,
所述偏振分束器,用于将从所述偏振分束器的第一侧壁入射的光束分解为沿第一方向传输的第一光分量及沿第二方向传输的第二光分量,其中,所述第一方向垂直于所述第二方向,所述第一光分量的偏振态垂直于所述第二光分量 的偏振态;
所述第一空气臂,设置于所述偏振分束器的第二侧壁,用于接收所述第一光分量,并将所述第一光分量反射回所述偏振分束器;
所述第二空气臂,设置于所述偏振分束器的第三侧壁,用于接收所述第二光分量,并将所述第二光分量反射回所述偏振分束器,以与所述第一光分量发生干涉后形成干涉光,并使得所述干涉光从所述偏振分束器的第四侧壁射出;其中,所述第一空气臂的第一光程不等于所述第二空气臂的第二光程,且所述第一侧壁与所述第三侧壁相对设置,所述第二侧壁与所述第四侧壁相对设置。
在第一方面的第一种可能的实现方式中,所述第一空气臂包括第一偏振片及第一反射镜,所述第一偏振片设置于所述第二侧壁与所述第一反射镜之间,其中,
所述第一偏振片,用于改变从所述第二侧壁射出的第一光分量的偏振态,其中,所述第一光分量透射所述第一偏振片后传输至所述第一反射镜;
所述第一反射镜,用于将接收到的所述第一光分量反射至所述第一偏振片,使得所述第一偏振片再次改变所述第一光分量的偏振态后,传输所述第一光分量至所述偏振分束器,以使所述第一光分量在所述第一方向上传输。
在第一方面的第二种可能的实现方式中,所述第二空气臂包括第二偏振片及第二反射镜,所述第二偏振片设置于所述第三侧壁与所述第二反射镜之间,其中,
所述第二偏振片,用于改变从所述第三侧壁射出的第二光分量的偏振态,其中,所述第二光分量透射所述第二偏振片后传输至所述第二反射镜;
所述第二反射镜,用于将接收到的所述第二光分量反射至所述第二偏振片,使得所述第二偏振片再次改变所述第二光分量的偏振态后,传输所述第二光分量至所述偏振分束器,以使所述第二光分量在所述第一方向上传输。
在第一方面的第三种可能的实现方式中,所述第一反射镜为可调微镜,并用于调节所述第一光程。
在第一方面的第四种可能的实现方式中,所述第二反射镜为可调微镜,并用于调节所述第二光程。
在第一方面的第五种可能的实现方式中,所述可调微镜通过微机电系统或 者压电技术控制微镜的位移或旋转实现光程的调节。
在第一方面的第六种可能的实现方式中,所述第一空气臂包括第一标准具及第一偏振片,所述第一标准具具有第一空气腔及第一反射面,所述第一偏振片设置于所述第一空气腔内,其中,
所述第一偏振片,用于改变从所述第二侧壁射出的第一光分量的偏振态,其中,所述第一光分量透射所述第一偏振片后传输至所述第一反射面;
所述第一反射面,用于将接收到的所述第一光分量反射至所述第一偏振片,使得所述第一偏振片再次改变所述第一光分量的偏振态后,传输所述第一光分量至所述偏振分束器,以使所述第一光分量在所述第一方向上传输。
在第一方面的第七种可能的实现方式中,第二空气臂包括第二标准具及第二偏振片,所述第二标准具具有第二空气腔及第二反射面,所述第二偏振片设置于所述第二空气腔内,其中,
所述第二偏振片,用于改变从所述第三侧壁射出的第二光分量的偏振态,其中,所述第二光分量透射所述第二偏振片后传输至所述第二反射面;
所述第二反射面,用于将接收到的所述第二光分量反射至所述第二偏振片,使得所述第二偏振片再次改变所述第二光分量的偏振态后,传输所述第二光分量至所述偏振分束器,以使所述第二光分量在所述第一方向上传输。
在第一方面的第八种可能的实现方式中,所述第一空气臂还包括第一光补偿片,所述第一光补偿片设置于所述第一标准具的第一空气腔内,并位于所述第一偏振片与所述第一反射面之间,以通过旋转调节所述第一光程;所述第二空气臂还包括第二光补偿片,所述第二光补偿片设置于所述第二标准具的第二空气腔内,并位于所述第二偏振片与所述第二反射面之间,以通过旋转调节所述第二光程。
在第一方面的第九种可能的实现方式中,所述第一标准具的第一反射面的内表面及设置于所述第二侧壁上的前壁的内表面为具有预定角度的斜面;所述第二标准具的第二反射面的内表面及设置于所述第三侧壁上的前壁的内表面为具有预定角度的斜面。
第二方面,提供一种光学梳状滤波器,包括第一分光组件、第一相位延迟器及第二分光组件,其中,
所述第一分光组件,用于将一组光束发射至所述第一相位延迟器;
所述第一相位延迟器,包括第一偏振分束器、第一空气臂及第二空气臂,其中,
所述第一偏振分束器,用于将从所述第一偏振分束器的第一侧壁入射的一组光束分解为沿第一方向传输的第一光分量及沿第二方向传输的第二光分量,其中,所述第一方向垂直于所述第二方向,所述第一光分量的偏振态垂直于所述第二光分量的偏振态;
所述第一空气臂,设置于所述第一偏振分束器的第二侧壁,用于接收所述第一光分量,并将所述第一光分量反射回所述第一偏振分束器;
所述第二空气臂,设置于所述第一偏振分束器的第三侧壁,用于接收所述第二光分量,并将所述第二光分量反射回所述第一偏振分束器,以与所述第一光分量发生干涉后形成干涉光,并使得所述干涉光从所述第一偏振分束器的第四侧壁射出;其中,所述第一空气臂的第一光程不等于所述第二空气臂的第二光程,且所述第一侧壁与所述第三侧壁相对设置,所述第二侧壁与所述第四侧壁相对设置,
所述第二分光组件,用于将所述第一相位延迟器输出的干涉光反射回所述第一相位延迟器及第一分光组件,使得所述第一分光组件射出第一输出光及第二输出光。
在第二方面的第一种可能的实现方式中,所述光学梳状滤波器还包括输入准直器,所述输入准直器用于将入射的信号光准直后,传输至所述第一分光组件。
在第二方面的第二种可能的实现方式中,所述第一分光组件包括第一双折射晶体、第一半波片及第二半波片,所述第一双折射晶体用于接收所述信号光,并将信号光分解成第一子信号光和第二子信号光,所述第一半波片用于接收所述第一子信号光,并使所述第一子信号光的偏振方向转过预定角度,所述第二半波片用于接收所述第二子信号光,并使所述第二子信号光的偏振方向转过预定的角度,其中,所述第一半波片及第二半波片输出的第一子信号光和第二子信号光构成所述一组光束,并传输至所述第一偏振分束器。
在第二方面的第三种可能的实现方式中,所述第一偏振分束器用于将从第 一侧壁入射的第一子信号光分解为沿第一方向传输的第一子光分量及沿第二方向传输的第二子光分量,将第二子信号光分解为沿第一方向传输的第二子光分量及沿第三方向传输的第四子光分量,其中,所述第一及第三子光分量构成所述第一光分量,所述第二及第四子光分量构成所述第二光分量。
在第二方面的第四种可能的实现方式中,所述第一分光组件还包括第三光补偿片,所述第三光补偿片设置于所述第一半波片与所述第一偏振分束器之间,用于补偿所述第一半波片出射的第一子信号光的光程。
在第二方面的第五种可能的实现方式中,所述第一空气臂包括第一偏振片及第一反射镜,所述第一偏振片设置于所述第二侧壁与所述第一反射镜之间,其中,
所述第一偏振片,用于改变从所述第二侧壁射出的第一光分量的偏振态,其中,所述第一光分量透射所述第一偏振片后传输至所述第一反射镜;
所述第一反射镜,用于将接收到的所述第一光分量反射至所述第一偏振片,使得所述第一偏振片再次改变所述第一光分量的偏振态后,传输所述第一光分量至所述第一偏振分束器,以使所述第一光分量在所述第一方向上传输。
在第二方面的第六种可能的实现方式中,所述第二空气臂包括第二偏振片及第二反射镜,所述第二偏振片设置于所述第三侧壁与所述第二反射镜之间,其中,
所述第二偏振片,用于改变从所述第三侧壁射出的第二光分量的偏振态,其中,所述第二光分量透射所述第二偏振片后传输至所述第二反射镜;
所述第二反射镜,用于将接收到的所述第二光分量反射至所述第二偏振片,使得所述第二偏振片再次改变所述第二光分量的偏振态后,传输所述第二光分量至所述第一偏振分束器,以使所述第二光分量在所述第一方向上传输。
在第二方面的第七种可能的实现方式中,所述第一反射镜为可调微镜,并用于调节所述第一光程。
在第二方面的第八种可能的实现方式中,所述第二反射镜为可调微镜,并用于调节所述第二光程。
在第二方面的第九种可能的实现方式中,所述可调微镜通过微机电系统或者压电技术控制微镜的位移或旋转实现光程的调节。
在第二方面的第十种可能的实现方式中,所述第一空气臂包括第一标准具及第一偏振片,所述第一标准具具有第一空气腔及第一反射面,所述第一偏振片设置于所述第一空气腔内,其中,
所述第一偏振片,用于改变从所述第二侧壁射出的第一光分量的偏振态,其中,所述第一光分量透射所述第一偏振片后传输至所述第一反射面;
所述第一反射面,用于将接收到的所述第一光分量反射至所述第一偏振片,使得所述第一偏振片再次改变所述第一光分量的偏振态后,传输所述第一光分量至所述偏振分束器,以使所述第一光分量在所述第一方向上传输。
在第二方面的第十一种可能的实现方式中,第二空气臂包括第二标准具及第二偏振片,所述第二标准具具有第二空气腔及第二反射面,所述第二偏振片设置于所述第二空气腔内,其中,
所述第二偏振片,用于改变从所述第三侧壁射出的第二光分量的偏振态,其中,所述第二光分量透射所述第二偏振片后传输至所述第一反射面;
所述第二反射面,用于将接收到的所述第二光分量反射至所述第二偏振片,使得所述第二偏振片再次改变所述第二光分量的偏振态后,传输所述第二光分量至所述偏振分束器,以使所述第二光分量在所述第一方向上传输。
在第二方面的第十二种可能的实现方式中,所述第一空气臂还包括第一光补偿片,所述第一光补偿片设置于所述第一空气腔内,并位于所述第一偏振片与所述第一反射面之间,以通过旋转调节所述第一光程;所述第二空气臂还包括第二光补偿片,所述第二光补偿片设置于所述第二空气腔内,并位于所述第二偏振片与所述第二反射面之间,以通过旋转调节所述第二光程。
在第二方面的第十三种可能的实现方式中,所述第一标准具的第一反射面的内表面及设置于所述第二侧壁上的前壁的内表面为具有预定角度的斜面;所述第二标准具的第二反射面的内表面及设置于所述第三侧壁上的前壁的内表面为具有预定角度的斜面。
在第二方面的第十四种可能的实现方式中,所述光学梳状滤波器还包括第二相位延迟器,所述第二相位延迟器位于所述第一相位延迟器与所述第二分光组件之间,以对所述第一相位延迟器输出的干涉光的图谱进行修正,其中,所述干涉光包括第一干涉光及第二干涉光,所述第一子光分量与所述第二子光分 量干涉形成所述第一干涉光,所述第三子光分量及所述第四子光分量干涉形成所述第二干涉光。
在第二方面的第十五种可能的实现方式中,所述第二相位延迟器包括第二偏振分束器、第三空气臂及第四空气臂,其中,
所述第二偏振分束器,用于将从所述第二相位延迟器的第五侧壁入射的第一干涉光分解为沿第一方向传输的第五子光分量及沿第二方向传输的第六子光分量,将所述第二干涉光分解为沿第一方向传输的第七子光分量及沿第二方向传输的第八子光分量;
所述第三空气臂,设置于所述第二偏振分束器的第六侧壁,用于接收所述第五子光分量及第七子光分量,并将所述第五子光分量及第七子光分量反射回所述第二偏振分束器;
所述第四空气臂,设置于所述第二偏振分束器的第七侧壁,用于接收所述第六子光分量及第八子光分量,并将所述第六子光分量及第八子光分量反射回所述第二偏振分束器,其中,所述第五子光分量与所述第六子光分量干涉形成第三干涉光,所述第七子光分量与所述第八子光分量干涉形成第四干涉光,所述第三及第四干涉光从所述第二偏振分束器的第八侧壁射出至所述第二分光组件,且所述第五侧壁与所述第七侧壁相对设置,所述第六侧壁与所述第八侧壁相对设置。
在第二方面的第十六种可能的实现方式中,所述第三空气臂的第三光程不等于所述第四空气臂的第四光程,且所述第三光程与第四光程的差为所述第一光程与所述第二光程的差的两倍,
在第二方面的第十七种可能的实现方式中,所述第三空气臂包括第三偏振片及第三反射镜,所述第三偏振片设置于所述第六侧壁与所述第三反射镜之间,其中,
所述第三偏振片,用于改变从所述第六侧壁射出的第五及第七子光分量的偏振态,其中,所述第五及第七子光分量透射所述第三偏振片后传输至所述第三反射镜;
所述第三反射镜,用于将接收到的所述第五及第七子光分量反射至所述第三偏振片,使得所述第三偏振片再次改变所述第五及第六子光分量的偏振态后, 传输所述第五及第七子光分量至所述第二偏振分束器,以使所述第五及第七子光分量在所述第二方向上传输。
在第二方面的第十八种可能的实现方式中,所述第四空气臂包括第四偏振片及第四反射镜,所述第四偏振片设置于所述第七侧壁与所述第四反射镜之间,其中,
所述第四偏振片,用于改变从所述第七侧壁射出的第六及第八子光分量的偏振态,并将第六及第八子光分量传输至所述第二反射镜;
所述第四反射镜,用于将接收到的所述第六及第八子光分量反射至所述第四偏振片,使得所述第四偏振片再次改变所述第六及第八子光分量的偏振态后,传输所述第六及第八子光分量至所述第二偏振分束器,以使所述第六及第八子光分量在所述第二方向上传输。
在第二方面的第十九种可能的实现方式中,所述第三反射镜为可调微镜,并用于调节所述第三光程。
在第二方面的第二十种可能的实现方式中,所述第四反射镜为可调微镜,并用于调节所述第四光程。
在第二方面的第二十一种可能的实现方式中,所述可调微镜通过微机电系统或者压电技术控制微镜的位移或旋转实现光程的调节。
在第二方面的第二十二种可能的实现方式中,所述第三空气臂包括第三标准具及第三偏振片,所述第三标准具具有第三空气腔及第三反射面,所述第三偏振片设置于所述第三空气腔内,其中,
所述第三偏振片,用于改变从所述第六侧壁射出的第五及第七子光分量的偏振态,其中,所述第五及第七子光分量透射所述第三偏振片后传输至所述第三反射面;
所述第三反射面,用于将接收到的所述第五及第七子光分量反射至所述第三偏振片,使得所述第三偏振片再次改变所述第五及第七子光分量的偏振态后,传输所述第五及第七子光分量至所述第二偏振分束器,以使所述第五及第七子光分量沿所述第二方向传输。
在第二方面的第二十三种可能的实现方式中,所述第四空气臂包括第四标准具及第四偏振片,所述第四标准具具有第四空气腔及第四反射面,所述第四 偏振片设置于所述第四空气腔内,其中,
所述第四偏振片,用于改变从所述第七侧壁射出的第六及第八子光分量的偏振态,其中,所述第六及第八子光分量透射所述第四偏振片后传输至所述第四反射面;
所述第四反射面,用于将接收到的所述第六及第八子光分量反射至所述第四偏振片,使得所述第四偏振片再次改变所述第六及第八子光分量的偏振态后,传输所述第六及第八子光分量至所述第二偏振分束器,以使所述第六及第八子光分量沿所述第二方向传输。
在第二方面的第二十四种可能的实现方式中,所述第三空气臂还包括第三光补偿片,所述第三光补偿片设置于所述第三空气腔内,并位于所述第三偏振片与所述第三反射面之间,以通过旋转调节所述第三光程;所述第四空气臂还包括第四光补偿片,所述第四光补偿片设置于所述第四标准具的第四空气腔内,并位于所述第四偏振片与所述第四反射面之间,以通过旋转调节所述第四光程。
在第二方面的第二十五种可能的实现方式中,所述第三标准具的第三反射面的内表面及设置于所述第二侧壁上的前壁的内表面为具有预定角度的斜面;所述第四标准具的第四反射面的内表面及设置于所述第三侧壁上的前壁的内表面为具有预定角度的斜面。
在第二方面的第二十六种可能的实现方式中,所述光学梳状滤波器还包括第三半波片,所述第三半波片设置于所述第一相位延迟器与所述第二相位延迟器之间。
在第二方面的第二十七种可能的实现方式中,所述光学梳状滤波器还包括第四半波片,所述第四半波片设置于所述第二相位延迟器与所述第二分光组件之间。
在第二方面的第二十八种可能的实现方式中,所述第二分光组件包括第二双折射晶体及后反射棱镜,所述第二双折射晶体位于所述第四半波片与所述后反射棱镜之间,其中,
所述第二双折射晶体用于将所述第二相位延迟器出射的第三干涉光分解为o光与e光,将所述第二相位延迟器出射的第四干涉光分解为o光与e光;
所述后反射棱镜用于将所述o光与e光反射回所述第二双折射晶体,其中, 所述后反射棱镜反射的光束从经所述第二相位延迟器、第一相位延迟器后,传输至所述第一双折射晶体,并经所述第一双折射晶体合并为第一输出光及第二输出光。
在第二方面的第二十九种可能的实现方式中,所述光学梳状滤波器还包括第五半波片及第六半波片,所述第五半波片与所述第六半波片设置于所述第四半波片与所述第二双折射晶体之间。
在第二方面的第三十种可能的实现方式中,所述光学梳状滤波器还包括第七半波片及第八半波片,所述第七半波片及第八半波片设置于第三光补偿片与所述第一相位延迟器之间。
在第二方面的第三十一种可能的实现方式中,所述光学梳状滤波器还包括第一输出准直器及第二输出准直器,所述第一输出准直器用于准直所述第一双折射晶体输出的第一输出光,所述第二输出准直器用于接收所述第一双折射晶体输出的第二输出光。
在第二方面的第三十二种可能的实现方式中,所述光学梳状滤波器还包括第一斜方棱镜及第二斜方棱镜,所述第一斜方棱镜用于将所述第一双折射晶体输出的第一输出光传输至所述第一输出准直器,所述第二斜方棱镜用于将所述第二双折射晶体输出的第二输出光传输至所述第二输出准直器。
本发明实施例光学梳状滤波器,通过设计一光程差可调的第一相位延迟器,实现了通道间隔的可调节性,克服了双折射晶体型光学梳状滤波器难以升级的缺点,可以实现100GHz→50GHz→25GHz或者更密通道的梳状滤波。此外,由于所述相位延迟器采用了空气臂的结构设计,温漂效应非常小,插损低,隔离度高,在透射谱的滤波通道范围内,色散非常低,满足更高速率的密集波分复用系统的传输应用场景。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的光学梳状滤波器的结构示意图。
图2是光束在第一双折射晶体处的光路示意图。
图3是本发明第一实施例提供的第一相位延迟器的结构示意图。
图4是本发明第二实施例提供的第一相位延迟器的结构示意图。
图5是本发明第三实施例提供的第一相位延迟器的结构示意图。
图6是图5所示的第一光补偿片及第二光补偿片的调节示意图。
图7是图5所示的第一相位延迟器的另一种结构示意图。
图8是光束在第二双折射晶体和后反射棱镜的光路示意图。
图9是光学梳状滤波器的透射谱线示意图。
图10是光学梳状滤波器的温漂效应示意图。
图11(a)是奇通道的色散曲线图。
图11(b)是偶通道的色散曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例提供一种光学梳状滤波器100,用于在波长交错复用技术中,把一列频率间隔为f的信号光分成两列具有2f频率间隔的信号光。所述光学梳状滤波器100包括第一分光组件、第一相位延迟器10及第二分光组件,其中,所述第一分光组件接收输入准直器21传输的信号光600,并输出两束光至所述第一相位延迟器10,所述第一相位延迟器10接收这两束光后,产生并输出第一干涉光及第二干涉光,所述第二分光组件接收所述第一干涉光及第二干涉光,并对所述第一干涉光及第二干涉光进行分解后,将分解得到的光束反射回所述第一相位延迟器10,并传输至所述第一分光组件,所述第一分光组件接收所述第一相位延迟器10传输过来的光束,生成从第一输出准直器22出射的第一输出光617及从第二输出准直器23出射的第二输出光627,其中,所述第一输出光617及第二输出光627为在空间上分开的,并具 有2f频率间隔的信号光。
请一并参阅图2,图2是光束在第一双折射晶体处的光路示意图。在本发明实施例中,所述输入准直器21用于将入射的信号光600准直后,传输至所述第一分光组件。所述第一分光组件包括第一双折射晶体31,其中,所述第一双折射晶体31可为YVO4晶体或其他具有双折射效应的晶体,当所述信号光600沿不平行于所述第一双折射晶体31的光轴(光在晶体内沿某个特殊方向传播时不发生双折射,该方向称为晶体的光轴)入射进所述第一双折射晶体31时,由于双折射效应,所述信号600在所述第一双折射晶体31内传播时,将形成在空间分离的两束线偏振光,即第一子信号光610(物理上为o光,即寻常光)和第二子信号光620(物理上为e光,即非寻常光),其中,所述o光将遵循折射定律传输,而e光一般不遵从折射定律,即e光与所述o光不重合。其中,所述o光与所述e光的偏振方向互相垂直。
在本发明实施例中,所述第一分光组件还包括所述第一半波片32及第二半波片33,所述第一半波片32及第二半波片33为两个光轴方向相同的半波片,所述第一半波片32用于接收所述第一子信号光610,并使所述第一子信号光610的偏振方向转过预定角度,所述第二半波片33用于接收所述第二子信号光620,并使所述第二子信号光620的偏振方向转过预定的角度,其中,所述第一半波片32及第二半波片33输出的第一子信号光610和第二子信号光620构成所述一组光束,并传输至所述第一相位延迟器10。其中,所述第一半波片32及第二半波片33可为22.5°或者67.5°半波片,即所述第一子信号光610入射时的振动面与第一半波片32晶体主截面之间的夹角为22.5°或者67.5°,所述第二子信号光620入射时的振动面与第二半波片33的晶体主截面之间的夹角为22.5°或者67.5°,此时,所述第一子信号光610与第二子信号光620经所述第一半波片32及第二半波片33后,其偏振方向将发生45°旋转,从而所述第一子信号光光610和第二子信号光620将变成偏振方向平行的两束光,且偏振方向均为45°。
需要说明的是,由于所述第一子信号光610与第二子信号光620的偏振方向本来是垂直的,为了使得它们的偏振方向平行,所述第一半波片32使所述第一子信号光610的偏振方向旋转的方向应与所述第二半波片33使所述第二 子信号光620的偏振方向旋转的方向相反,例如,所述第一半波片32使所述第一子信号光610的偏振方向顺时针旋转45°,则所述第二半波片33应使所述第二子信号光620的偏振方向逆时针旋转45°(或者顺时针旋转135°),以保证旋转后的所述第一子信号光610与第二子信号光620的偏振方向是平行的。即当所述第一半波片32为22.5°半波片时,所述第二半波片为67.5°半波片,或者当所述第一半波片32为67.5°半波片时,所述第二半波片为22.5°半波片。
请一并参阅图1和图3,图3是本发明第一实施例提供的第一相位延迟器的结构示意图。在本发明实施例中,所述第一相位延迟器10包括第一偏振分束器11、第一空气臂及第二空气臂,所述第一偏振分束器11具有第一分光面112。所述第一空气臂包括第一偏振片12及第一反射镜13,所述第一偏振片12设置于所述第一偏振分束器11的第二侧壁与所述第一反射镜13之间,且所述第一偏振分束器11的第二侧壁与所述第一反射镜13之间的光程为第一光程L1;所述第二空气臂包括第二偏振片14及第二反射镜15,所述第二偏振片14设置于所述第一偏振分束器11的第三侧壁与所述第二反射镜15之间,且所述第一偏振分束器11的第三侧壁与所述第二反射镜43之间的光程为第二光程L2,其中,所述第二侧壁与所述第三侧壁相邻。所述第一光程L1及所述第二光程L2不相等,并具有第一光程差ΔL1,即(L1-L2)的绝对值为ΔL1。所述第一偏振片12及第二偏振片14可为45°的1/4波片,此时,当一线偏振光穿过所述第一偏振片12或第二偏振片14后,将变成圆偏振光,而当所述圆偏振光再次穿过所述第一偏振片12或第二偏振片14后,将重新变回线偏振光,且其偏振方向相对于原来的线偏振光将发生90°旋转。
在本发明实施例中,所述第一子信号光610透射所述第一半波片32后,从所述第一偏振分束器11的第一侧壁入射进所述第一相位延迟器10,并在所述第一分光面112处分解为沿第一方向(即图1中的z方向,这里将沿z正向和沿z负向传输均定义为在第一方向上传输)传播的第一子光分量(即偏振方向与入射面平行的s光将在所述第一分光面112发生反射)和沿第二方向(即图1中的x方向,这里将沿x正向和沿x负向传输均定义为在第二方向上传输)传播的第二子光分量(即偏振方向与入射面垂直的p光将在所述第一分光面112发生透射),其中,所述第一子光分量进入所述第一空气臂,并透射所述 第一偏振片12后到达所述第一反射镜13,所述第一反射镜13反射所述第一子光分量,使得所述第一子光分量再次透射所述第一偏振片12后,返回至所述第一偏振分束器11,并传输至所述第一分光面112,由于所述第一子光分量经历了两次所述第一偏振片12,因而其偏振方向将旋转90°(即偏振方向从平行于入射面旋转至垂直于入射面)。所述第二子光分量透射所述第一分光面112后传输至所述第二空气臂,并透射所述第二偏振片14后到达所述第二反射镜15,所述第二反射镜15反射所述第二子光分量,使得所述第二子光分量再次透射所述第二偏振片14后,返回至所述第一偏振分束器11,并传输至所述第一分光面112,由于所述第二子光分量经历了两次所述第二偏振片14,因而其偏振方向将旋转90°(即偏振方向从垂直于入射面旋转至平行于入射面)。此时,所述第一子光分量与所述第二子光分量经所述第一分光面112后的传播方向均沿所述第一方向。由于所述第一光程L1与所述第二光程L2不相等,因而所述第一子光分量与所述第二子光分量将在所述第一分光面112处产生干涉,并生成所述第一干涉光611。
需要说明的是,在本发明的实施例中,当入射进所述第一相位延迟器10的光束为一束时,如本实施例的第一子信号光610,则所述第一相位延迟器10可用于使入射的第一子信号光610产生预定的相位延时,并通过设置第一光程差ΔL1,获得所需的干涉光。由于所述第一相位延迟器10采用了空气臂的设计结构,因而其第一光程差ΔL1具有温度稳定性,即在温度变化明显时,第一光程差ΔL1也不会产生大的改变。空气臂的设计结构还大大方便了所述第一光程差ΔL1的调节(只需移动所述第一反射镜13及第二反射镜15即可实现第一光程差ΔL1的调节)。此外,空气臂的设计结构还具有插损低,在透射谱的滤波通道范围内,色散非常低等优点,利于应用到各种不同的光学器件中,具有较高的适用性。
在本发明实施例中,所述第二子信号光620在所述第一相位延迟器10内的光路传播过程与所述第一子信号光610在所述第一相位延迟器10内的光路传播过程大致相同,所述第二子信号光620在所述第一相位延迟器10内被分解为沿第一方向传输的第三子光分量及沿第二方向传输的第四子光分量,并经第一空气臂及第二空气臂后,在所述第一分光面112处发生干涉,并生成沿第 一方向传输的第二干涉光621。具体的光路分析请参考上面的陈述,在此不再赘述。
在本发明实施例,当入射进行所述第一相位延迟器10的光束为两束,如本实施例的第一子信号光610与第二子信号光620,则所述第一相位延迟器10的作用为使得入射的第一子信号光610与第二子信号光620获得所需的干涉周期或者自由光谱区(Free Spectral Range,FSR),进而使得第一子信号光610与第二子信号光620具有预定的频率间隔,其中,FSR=c/(2n*ΔL1),c为光束,n为光在空气中的折射率。如此可知,通过设计所述第一光程L1与所述第二光程L2的之间的第一光程差ΔL1,即可获得所需的干涉周期或者FSR。
请一并参阅图4,图4是本发明第二实施例提供的第一相位延迟器的结构示意图。在本发明实施例中,第一相位延迟器210包括上述的第一实施例的第一偏振分束器11、第一偏振片12、第一反射镜13、第二偏振片14及第二反射镜15,且这些元件的连接放置关系也基本相同,这里不再赘述。所不同的是,在本发明实施例中,所述第一反射镜13和/或第二反射镜15为可调微镜,并可通过调节所述可调微镜实现不同通道间隔的切换或实现中心波长的动态调节,如可通过可调微镜大幅度调节所述第一光程L1和/或第二光程L2,从而获得不同的第一光程差ΔL1,实现不同通道间隔的动态切换。例如通过大幅度调节第一光程差ΔL1,来实现100GHz→50GHz→52GHz,或者75GHz的通道间隔的动态切换;或者通过可调微镜小幅度调节第一光程差ΔL1,实现中心波长动态调节。需要说明的是,所述可调微镜可以用微机电系统(Micro-Electro-Mechanical Systems,MEMS)技术实现,例如把可调微镜做成MEMS镜(mirror)的形式,通过精确控制MEMS mirror的前后移动,来实现所述第一相位延迟器210的第一光程差ΔL1动态可调,进而实现通道间隔的动态调节功能。此外,所述可调微镜的位移调节,也可以通过压电技术实现,如通过加电来控制压电晶体的伸缩,进而来动态调节两个空气臂的长度。这种动态可调的结构,免去了人为的调节过程,省时省力,而且可以远程控制,能更好的满足未来动态光网络的发展需求。可以理解的是,上述的可调微镜,除了MEMS技术,压电技术,还有其他可能实现的技术,这些实现技术都在本方案保护范围内,在此不再赘述。
请一并参阅图5,图5是本发明第三实施例提供的第一相位延迟器的结构示意图。在本发明实施例中,第一相位延迟器310除了包括上述的第一实施例的第一偏振分束器11、第一偏振片12及第二偏振片14外,还进一步包括第一标准具316及第二标准具317,其中,所述第一标准具316具有第一空气腔3161及第一反射面3162,所述第二标准具317具有第二空气腔3171及第二反射面3172。所述第一偏振片12收容于所述第一空气腔3161内,并位于所述第二侧壁与所述第一反射面3162之间。所述第二偏振片14收容于所述第二空气腔3171内,并位于所述第三侧壁与所述第二反射面3172之间。所述第一标准具316具有预设的第一光程L1,所述第二标准具317具有预设的第二光程L2
请一并参阅图6,图6是图5所示的第一光补偿片及第二光补偿片的调节示意图。在本发明实施例中,所述第一空气臂还包括第一光补偿片318,所述第二空气臂还包括第二光补偿片319,所述第一光补偿片318设置于所述第一标准具316的第一空气腔3161内,并位于所述第一标准具316的前壁3163与所述第一反射面3162之间,所述第二光补偿片319设置于所述第二标准具317的第二空气腔3171内,并位于所述第二标准具317的前壁3173与所述第二反射面3172之间。由于所述第一偏振分束器11、所述标准具的臂长及前壁的厚度在加工过程可能存在误差,导致所述第一偏振分束器11、两个空气臂和前壁的玻璃块厚度不一致,就使得所述第一相位延迟器310两个空气臂的第一光程差ΔL1不再是由理论上的空气臂的长度差决定,所述第一偏振分束器11和前壁的玻璃块厚度也对所述第一相位延迟器310的第一光程差ΔL1产生影响,导致实际的FSR与理论FSR有偏差,进而导致所述光学梳状滤波器100的透射谱的中心波长漂移。所述第一光补偿片318及第二光补偿片319可用于补偿所述第一相位延迟器310的两个空气臂的光程,从而调整透射谱的中心波长。具体为,如果第一空气臂的第一光程小于理论设计的光程,则旋转所述第一光补偿片318,如图6所示,由于斜入射,光在所述第一光补偿片318中发生折射,而第二空气臂的第二光补偿片319保持与入射光垂直放置,利用Ls-Lp的微小差量(如图6所示),来精确调节两个空气臂之间的第一光程差ΔL1,进而精确调节透射谱的中心波长。同样,如果第二空气臂的光程小于理论设计 光程,则保持第一空气臂的第一光补偿片318与光路垂直,旋转第二空气臂上的第二光补偿片319,以调节透射谱的中心波长。
请一并参阅图7,图7是图5所示的第一相位延迟器的另一种结构示意图。在本发明的实施例中,所述第一标准具316的前壁3163的内表面与所述第一反射面3162的内表面可设计为具有预定角度θ的斜面,且较佳的,两个斜面互相平行;所述第二标准具317的前壁3173的内表面与所述第二反射面3172的内表面还可设置为具有预定角度θ的斜面,如此可避免在所述前壁的内表面与所述反射面上产生不需要的干涉现象,从而提高所述光学梳状滤波器100的光学性能。
请参阅图1,在本发明实施例中,所述光学梳状滤波器100还包括第三光补偿元件34,所述第三光补偿元件34设置于所述第一半波片32与所述第一相位延迟器10之间。所述第三光补偿元件34可为偏振模色散(Polarization Mode Dispersion,PMD)补偿片,其用于补偿所述第一子信号光610在所述第一双折射晶体31内传输时与第二子信号光620在所述第一双折射晶体31内传输时的光程差。由于所述第一子信号光610与第二子信号光620在所述第一双折射晶体10内经历的光程不同,且所述第二子信号光620经历的光程较大,因而通过设置所述第三光补偿元件34,补偿所述第一子信号光610的光程,从而所述第一子信号光610和第二子信号光620在进入所述第一相位延迟器10前,具有相同的相位。
在本发明实施例中,所述光学梳状滤波器100还包括第二相位延迟器40,所述第二相位延迟器40的结构设计与上述第一实施例至第三实施例任一实施例提供的第一相位延迟器10的结构基本相同。以第一实施例为例,所述第二相位延迟器40具有第二偏振分束器41、第三空气臂及第四空气臂,所述第三空气臂具有第三光程L3,所述第四空气臂具有第四光程L4,且(L4-L3)的值为(L2-L1)的两倍。所述第一干涉光611从所述第二偏振分束器41的第五侧壁入射,并被所述第二偏振分束器41分解为沿第一方向传输的第五子光分量及沿第二方向传输的第六子光分量,所述第二干涉光621从所述第二偏振分束器41的第五侧壁入射,并被所述第二偏振分束器41分解为沿第一方向传输的第七子光分量及沿第二方向传输的第八子光分量。所述第三空气臂接收所述第 五子光分量及第七子光分量,并通过第三反射镜43将所述第五子光分量及第七子光分量反射回所述第二偏振分束器41,由于在第三空气臂内,所述第五子光分量及第七子光分量来回经历了两次第三偏振片42,因而所述第五子光分量及第七子光分量的偏振方向发生90°旋转。同理,所述第四空气臂接收所述第六子光分量及第八子光分量,并通过第四反射镜45将所述第六子光分量及第八子光分量反射回所述第二偏振分束器41,由于在第四空气臂内,所述第六子光分量及第八子光分量来回经历了两次第四偏振片44,因而所述第六子光分量及第八子光分量的偏振方向发生90度旋转。此后,在所述第二偏振分束器41内,所述第五子光分量与所述第六子光分量发生干涉并生成第三干涉光612,所述第七子光分量与所述第八子光分量发生干涉并生成第四干涉光622。
需要说明的是,在本发明实施例中,所述第二相位延迟器40的结构还可为上述第二实施例及第三实施例所述的第一相位延迟器10的结构,在此不再赘述。
需要说明的是,在本发明的实施例中,所述第二相位延迟器40用于对所述第一相位延迟器10输出的第一干涉光611和第二干涉光621的谱线的形状进行修正,使得谱线的形状更加矩形化,平坦化。可以理解的是,在本发明的其他实施例中,所述光学梳状滤波器100还可级联更多的相位延迟器,如第三相位延迟器、第四相位延迟器等。理论上来说,叠加的谐波项越多(即级联越多的相位延迟器),谱线的形状越接近方波,即可获得具有更好波形的图谱。
需要说明的是,在本发明实施例中,在所述第一相位延迟器10与所述第二相位延迟器40之间,还设置有第三半波片46,所述第三半波片46可为28.5°半波片,其用于调节透射谱形状及隔离度等。可以理解的是,在本发明的其他实施例中,根据实际的需要,所述第三半波片46也可为其他度数的半波片,即入射光的振动面与第三半波片46的晶体主截面的夹角可根据实际需求进行设计,本发明不做具体限定。
需要说明的是,在本发明实施例中,在所述第二相位延迟器40与所述第二分光组件之间,还设置有第四半波片51,所述第四半波片51可为8°半波片,其用于调节透射谱形状及隔离度等。可以理解的是,在本发明的其他实施 例中,根据实际的需要,所述第四半波片51也可为其他度数的半波片,本发明不做具体限定。
请参阅图8,图8是光束在第二双折射晶体和后反射棱镜的光路示意图。在本发明实施例中,所述第二分光组件包括第二双折射晶体61及后反射棱镜62,所述第三干涉光612及第四干涉光622透射所述第四半波片51后入射进所述第二双折射晶体61,所述第二双折射晶体61将所述第三干涉光612分解成o光613和e光614,将所述第四干涉光622也分解成o光623和e光624,这两束o光和两束e光传输至所述后反射棱镜62,并被所述后反射棱镜62反射回所述第二双折射晶体61后输出至所述第二相位延迟器40。
需要说明的是,在本发明实施例中,所述光学梳状滤波器100还包括第五半波片71及第六半波片72,所述第五半波片71及第六半波片72设置于所述第二双折射晶体61与所述第四半波片51之间,其中,所述第五半波片71用于接收所述第二分光组件反射的o光613及o光623,以使所述o光613及o光623的偏振方向转过预定的角度,所述第六半波片72用于接收所述第二分光组件反射的e光614及e光624,以使所述e光614及e光624的偏振方向转过预定的角度,例如,较佳的,所述第五半波片52及第六半波片53可为45°半波片,所述预定的角度为90°。所述第五半波片71与所述第六半波片72通过调整o光613、e光614、o光623及e光624的偏振方向,从而调节透射的图谱形状。
在本发明实施例中,o光613、e光614、o光623及e光624经所述第五半波片71及第六半波片72后,再次透射所述第四半波片51,并经所述第二相位延迟器40、所述第三半波片46后,变成光束615、光束616、光束625及光束626,所述光束615、光束616、光束625及光束626进入所述第一相位延迟器10,并透射所述第一相位延迟器10后,所述光束615及光束625从所述第一偏振分束器11的靠底部位置出射,所述光束616及光束626从所述第一偏振分束器11的靠顶部位置出射。
需要说明的是,在本发明实施例中,所述光学梳状滤波器100还包括第七半波片81及第八半波片82,所述第七半波片81及第八半波片82设置于所述第三光补偿片34与所述第一相位延迟器10之间,其中,所述第七半波片81 及第八半波片82可为0°半波片。所述光束615及光束625从所述第一相位延迟器10出射时,将透射所述第七半波片81、第三光补偿片34及第一半波片32后传输至所述第一双折射晶体31,所述光束616及光束626从所述第一相位延迟器10出射后,将透射所述第八半波片82、第三光补偿片34及第二半波片33后传输至所述第一双折射晶体10。
在本发明实施例中,光束615、光束616、光束625及光束626入射进所述第一双折射晶体10,在所述第一双折射晶体10内,光束615与光束625,由于双折射晶体的特性,所述光束615与光束625会发生合光,并最终形成第一输出光617,所述光束616与光束626,由于双折射晶体的特性,所述光束616与光束626会发生合光,并最终形成第二输出光627。所述第一输出光617及第二输出光627即为所需的具有预定频率间隔的两列信号光。
需要说明的是,在本发明实施例中,所述输入准直器21设置于所述第一输出准直器22及第二输出准直器23之间,所述第一输出准直器22用于接收所述第一双折射晶体31输出的第一输出光617,所述第二输出准直器23用于接收所述第一双折射晶体31输出的第二输出光627。需要说明的是,所述准直器的工作距离应该等于或略大于光在光学梳状滤波器100中走过的光程。
需要说明的是,在本发明实施例中,所述光学梳状滤波器100还包括第一斜方棱镜91及第二斜方棱镜92,所述第一斜方棱镜91对准所述第一输出准直器22,并用于将所述第一双折射晶体31输出的第一输出光617传输至所述第一输出准直器22,所述第二斜方棱镜92对准所述第二输出准直器23,并用于将所述第一双折射晶体31输出的第二输出光627传输至所述第二输出准直器23。所述第一斜方棱镜91及第二斜方棱镜92可用于增加所述第一输出光617及第二输出光627在空间中的距离,防止所述第一输出光617及第二输出光627因为在空间上离得太近,而使得所述第一输出准直器22和第二输出准直器23不便于摆放。
请参阅图9,图9是上述光学梳状滤波器100的透射图谱,本发明通过精确控制所述第一相位延迟器10的第一光程差ΔL1,来实现所需要的FSR,同时通过精确控制所述第二相位延迟器40的光程差,来修正透射图的形状,使之更加矩形化和平坦化。
如表1所示,本发明实施例的光学梳状滤波器100可通过控制空气臂的光程来获得所需的第一光程差ΔL1,进而实现不同的FSR和不同的通道间隔。
表1,不同通道间隔所需的光程差对照表
名称 FSR(GHz) L2-L1(mm) L4-L3(mm)
100GHz 200 0.75 1.5
50GHz 100 1.5 3
25GHz 50 3 6
如表1所示,通过更改L2-L1及L4-L3的值,可以实现100GHz→50GHz→25Ghz,甚至更密通道间隔。可以理解的是,随着光网络的发展,加强网络灵活性,提高频谱利用效率,弹性的网络架构越来越受到人们的重视。一些特殊通道间隔的光学梳状滤波器可能受到人们的青睐,例如通道间隔为75GHz的光学梳状滤波器。此时,只需调整所述L2-L1=2mm及L4-L3=4mm,就可以实现75GHz的光学梳状滤波器。
请参阅图10,在本发明实施例中,通过调节空气臂的光程,来控制光学梳状滤波器的FSR,由于空气是良好的热绝缘体,且空气的折射率随温度变化非常微小,所以温度带来的影响非常小,可以忽略不计。当然由于PBS,etalon等加工的误差,PBS两臂的玻璃误差也参与贡献了光程差。如表2所示,表2是空气和熔石英的热光系数和热膨胀系数。从图10可以看出,对于工作温度在0℃到65℃的范围,由于温度变化而造成的漂移变化趋势,只有5.2×10-4GHz,这样微小的漂移,可以忽略不计,由此可表明本发明实施例的光学梳状滤波器具有良好的温漂效应。
表2:空气和熔石英的参数表
Figure PCTCN2014092596-appb-000001
此外,当高速密集波分复用系统的传输速率达到40Gbit/s以上时,通信系统中的色散问题就将变得非常的重要。一般在40Gbit/s系统积累色散量要小于50ps/nm,而160Gbit/s系统则要小于5ps/nm,致使系统色散容纳的数值减少, 系统总色散的微小波动都可能引起传输质量的劣化。图11(a)及图11(b)是本发明实施例中,通道间隔为50GHz时,光学梳状滤波器的奇通道与和偶通道的色散曲线。其中曲线713和曲线715分别是奇通道与和偶通道单独去程的色散曲线,曲线711和曲线714分别是奇通道与和偶通道单独回程的色散曲线,而曲线712,曲线714分别是奇通道与和偶通道总的出射色散曲线。从图11(a)及图11(b)中可以看到,奇通道与和偶通道在ITU±25Hz的范围内,色散值基本上为0,表现出了优越的色散特性。而造成这种现象的原因是,去程色散曲线711与回程色散曲线713,或者是曲线715与曲线716,在ITU±25Hz的范围内,色散值表现出了良好的互补相消现象。即信号光在器件内走往返后,在滤波通道范围内,色散相消了。
综上所述,本发明实施例的光学梳状滤波器100,通过设计一光程差可调的第一相位延迟器10及第二相位延迟器40,实现了通道间隔的可调节性,克服了双折射晶体型光学梳状滤波器难以升级的缺点,可以实现100GHz→50GHz→25GHz或者更密通道的梳状滤波。此外,由于所述第一相位延迟器10及第二相位延迟器40均采用了空气臂(或空气腔)的结构设计,温漂效应非常小,插损低,隔离度高,在透射谱的滤波通道范围内,色散非常低,满足更高速率的密集波分复用系统的传输应用场景。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (43)

  1. 一种相位延迟器,其特征在于,包括偏振分束器、第一空气臂及第二空气臂,其中,
    所述偏振分束器,用于将从所述偏振分束器的第一侧壁入射的光束分解为沿第一方向传输的第一光分量及沿第二方向传输的第二光分量,其中,所述第一方向垂直于所述第二方向,所述第一光分量的偏振态垂直于所述第二光分量的偏振态;
    所述第一空气臂,设置于所述偏振分束器的第二侧壁,用于接收所述第一光分量,并将所述第一光分量反射回所述偏振分束器;
    所述第二空气臂,设置于所述偏振分束器的第三侧壁,用于接收所述第二光分量,并将所述第二光分量反射回所述偏振分束器,以与所述第一光分量发生干涉后形成干涉光,并使得所述干涉光从所述偏振分束器的第四侧壁射出;其中,所述第一空气臂的第一光程不等于所述第二空气臂的第二光程,且所述第一侧壁与所述第三侧壁相对设置,所述第二侧壁与所述第四侧壁相对设置。
  2. 根据权利要求1所述的相位延迟器,其特征在于,所述第一空气臂包括第一偏振片及第一反射镜,所述第一偏振片设置于所述第二侧壁与所述第一反射镜之间,其中,
    所述第一偏振片,用于改变从所述第二侧壁射出的第一光分量的偏振态,其中,所述第一光分量透射所述第一偏振片后传输至所述第一反射镜;
    所述第一反射镜,用于将接收到的所述第一光分量反射至所述第一偏振片,使得所述第一偏振片再次改变所述第一光分量的偏振态后,传输所述第一光分量至所述偏振分束器,以使所述第一光分量在所述第一方向上传输。
  3. 根据权利要求2所述的相位延迟器,其特征在于,所述第二空气臂包括第二偏振片及第二反射镜,所述第二偏振片设置于所述第三侧壁与所述第二反射镜之间,其中,
    所述第二偏振片,用于改变从所述第三侧壁射出的第二光分量的偏振态,其中,所述第二光分量透射所述第二偏振片后传输至所述第二反射镜;
    所述第二反射镜,用于将接收到的所述第二光分量反射至所述第二偏振片,使得所述第二偏振片再次改变所述第二光分量的偏振态后,传输所述第二光分 量至所述偏振分束器,以使所述第二光分量在所述第一方向上传输。
  4. 根据权利要求2所述的相位延迟器,其特征在于,所述第一反射镜为可调微镜,并用于调节所述第一光程。
  5. 根据权利要求3或4所述的相位延迟器,其特征在于,所述第二反射镜为可调微镜,并用于调节所述第二光程。
  6. 根据权利要求4或5所述的相位延迟器,其特征在于,所述可调微镜通过微机电系统或者压电技术控制微镜的位移或旋转实现光程的调节。
  7. 根据权利要求1所述的相位延迟器,其特征在于,所述第一空气臂包括第一标准具及第一偏振片,所述第一标准具具有第一空气腔及第一反射面,所述第一偏振片设置于所述第一空气腔内,其中,
    所述第一偏振片,用于改变从所述第二侧壁射出的第一光分量的偏振态,其中,所述第一光分量透射所述第一偏振片后传输至所述第一反射面;
    所述第一反射面,用于将接收到的所述第一光分量反射至所述第一偏振片,使得所述第一偏振片再次改变所述第一光分量的偏振态后,传输所述第一光分量至所述偏振分束器,以使所述第一光分量沿所述第一方向传输。
  8. 根据权利要求7所述的相位延迟器,其特征在于,第二空气臂包括第二标准具及第二偏振片,所述第二标准具具有第二空气腔及第二反射面,所述第二偏振片设置于所述第二空气腔内,其中,
    所述第二偏振片,用于改变从所述第三侧壁射出的第二光分量的偏振态,其中,所述第二光分量透射所述第二偏振片后传输至所述第二反射面;
    所述第二反射面,用于将接收到的所述第二光分量反射至所述第二偏振片,使得所述第二偏振片再次改变所述第二光分量的偏振态后,传输所述第二光分量至所述偏振分束器,以使所述第二光分量沿所述第一方向传输。
  9. 根据权利要求8所述的相位延迟器,其特征在于,所述第一空气臂还包括第一光补偿片,所述第一光补偿片设置于所述第一标准具的第一空气腔内,并位于所述第一偏振片与所述第一反射面之间,以通过旋转调节所述第一光程;所述第二空气臂还包括第二光补偿片,所述第二光补偿片设置于所述第二标准具的第二空气腔内,并位于所述第二偏振片与所述第二反射面之间,以通过旋转调节所述第二光程。
  10. 根据权利要求8所述的相位延迟器,其特征在于,所述第一标准具的第一反射面的内表面及设置于所述第二侧壁上的前壁的内表面为具有预定角度的斜面;所述第二标准具的第二反射面的内表面及设置于所述第三侧壁上的前壁的内表面为具有预定角度的斜面。
  11. 一种光学梳状滤波器,其特征在于,包括第一分光组件、第一相位延迟器及第二分光组件,其中,
    所述第一分光组件,用于将一组光束发射至所述第一相位延迟器;
    所述第一相位延迟器,包括第一偏振分束器、第一空气臂及第二空气臂,其中,
    所述第一偏振分束器,用于将从所述第一偏振分束器的第一侧壁入射的一组光束分解为沿第一方向传输的第一光分量及沿第二方向传输的第二光分量,其中,所述第一方向垂直于所述第二方向,所述第一光分量的偏振态垂直于所述第二光分量的偏振态;
    所述第一空气臂,设置于所述第一偏振分束器的第二侧壁,用于接收所述第一光分量,并将所述第一光分量反射回所述第一偏振分束器;
    所述第二空气臂,设置于所述第一偏振分束器的第三侧壁,用于接收所述第二光分量,并将所述第二光分量反射回所述第一偏振分束器,以与所述第一光分量发生干涉后形成干涉光,并使得所述干涉光从所述第一偏振分束器的第四侧壁射出;其中,所述第一空气臂的第一光程不等于所述第二空气臂的第二光程,且所述第一侧壁与所述第三侧壁相对设置,所述第二侧壁与所述第四侧壁相对设置,
    所述第二分光组件,用于将所述第一相位延迟器输出的干涉光反射回所述第一相位延迟器及第一分光组件,使得所述第一分光组件射出第一输出光及第二输出光。
  12. 根据权利要求11所述的光学梳状滤波器,其特征在于,所述光学梳状滤波器还包括输入准直器,所述输入准直器用于将入射的信号光准直后,传输至所述第一分光组件。
  13. 根据权利要求12所述的光学梳状滤波器,其特征在于,所述第一分 光组件包括第一双折射晶体、第一半波片及第二半波片,所述第一双折射晶体用于接收所述信号光,并将信号光分解成第一子信号光和第二子信号光,所述第一半波片用于接收所述第一子信号光,并使所述第一子信号光的偏振方向转过预定角度,所述第二半波片用于接收所述第二子信号光,并使所述第二子信号光的偏振方向转过预定的角度,其中,所述第一半波片及第二半波片输出的第一子信号光和第二子信号光构成所述一组光束,并传输至所述第一偏振分束器。
  14. 根据权利要求13所述的光学梳状滤波器,其特征在于,所述第一偏振分束器用于将从第一侧壁入射的第一子信号光分解为沿第一方向传输的第一子光分量及沿第二方向传输的第二子光分量,将第二子信号光分解为沿第一方向传输的第二子光分量及沿第三方向传输的第四子光分量,其中,所述第一及第三子光分量构成所述第一光分量,所述第二及第四子光分量构成所述第二光分量。
  15. 根据权利要求13所述的光学梳状滤波器,其特征在于,所述第一分光组件还包括第三光补偿片,所述第三光补偿片设置于所述第一半波片与所述第一偏振分束器之间,用于补偿所述第一半波片出射的第一子信号光的光程。
  16. 根据权利要求14所述的光学梳状滤波器,其特征在于,所述第一空气臂包括第一偏振片及第一反射镜,所述第一偏振片设置于所述第二侧壁与所述第一反射镜之间,其中,
    所述第一偏振片,用于改变从所述第二侧壁射出的第一光分量的偏振态,其中,所述第一光分量透射所述第一偏振片后传输至所述第一反射镜;
    所述第一反射镜,用于将接收到的所述第一光分量反射至所述第一偏振片,使得所述第一偏振片再次改变所述第一光分量的偏振态后,传输所述第一光分量至所述第一偏振分束器,以使所述第一光分量在所述第一方向上传输。
  17. 根据权利要求16所述的光学梳状滤波器,其特征在于,所述第二空气臂包括第二偏振片及第二反射镜,所述第二偏振片设置于所述第三侧壁与所述第二反射镜之间,其中,
    所述第二偏振片,用于改变从所述第三侧壁射出的第二光分量的偏振态,其中,所述第二光分量透射所述第二偏振片后传输至所述第二反射镜;
    所述第二反射镜,用于将接收到的所述第二光分量反射至所述第二偏振片,使得所述第二偏振片再次改变所述第二光分量的偏振态后,传输所述第二光分量至所述第一偏振分束器,以使所述第二光分量沿所述第一方向传输。
  18. 根据权利要求16所述的光学梳状滤波器,其特征在于,所述第一反射镜为可调微镜,并用于调节所述第一光程。
  19. 根据权利要求17或18所述的光学梳状滤波器,其特征在于,所述第二反射镜为可调微镜,并用于调节所述第二光程。
  20. 根据权利要求18或19所述的光学梳状滤波器,其特征在于,所述可调微镜通过微机电系统或者压电技术控制微镜的位移或旋转实现光程的调节。
  21. 根据权利要求14所述的光学梳状滤波器,其特征在于,所述第一空气臂包括第一标准具及第一偏振片,所述第一标准具具有第一空气腔及第一反射面,所述第一偏振片设置于所述第一空气腔内,其中,
    所述第一偏振片,用于改变从所述第二侧壁射出的第一光分量的偏振态,其中,所述第一光分量透射所述第一偏振片后传输至所述第一反射面;
    所述第一反射面,用于将接收到的所述第一光分量反射至所述第一偏振片,使得所述第一偏振片再次改变所述第一光分量的偏振态后,传输所述第一光分量至所述偏振分束器,以使所述第一光分量沿所述第一方向传输。
  22. 根据权利要求21所述的光学梳状滤波器,其特征在于,第二空气臂包括第二标准具及第二偏振片,所述第二标准具具有第二空气腔及第二反射面,所述第二偏振片设置于所述第二空气腔内,其中,
    所述第二偏振片,用于改变从所述第三侧壁射出的第二光分量的偏振态,其中,所述第二光分量透射所述第二偏振片后传输至所述第一反射面;
    所述第二反射面,用于将接收到的所述第二光分量反射至所述第二偏振片,使得所述第二偏振片再次改变所述第二光分量的偏振态后,传输所述第二光分量至所述偏振分束器,以使所述第二光分量在所述第一方向上传输。
  23. 根据权利要求22所述的光学梳状滤波器,其特征在于,所述第一空气臂还包括第一光补偿片,所述第一光补偿片设置于所述第一空气腔内,并位于所述第一偏振片与所述第一反射面之间,以通过旋转调节所述第一光程;所述第二空气臂还包括第二光补偿片,所述第二光补偿片设置于所述第二空气腔 内,并位于所述第二偏振片与所述第二反射面之间,以通过旋转调节所述第二光程。
  24. 根据权利要求22所述的光学梳状滤波器,其特征在于,所述第一标准具的第一反射面的内表面及设置于所述第二侧壁上的前壁的内表面为具有预定角度的斜面;所述第二标准具的第二反射面的内表面及设置于所述第三侧壁上的前壁的内表面为具有预定角度的斜面。
  25. 根据权利要求14所述的光学梳状滤波器,其特征在于,所述光学梳状滤波器还包括第二相位延迟器,所述第二相位延迟器位于所述第一相位延迟器与所述第二分光组件之间,以对所述第一相位延迟器输出的干涉光的图谱进行修正,其中,所述干涉光包括第一干涉光及第二干涉光,所述第一子光分量与所述第二子光分量干涉形成所述第一干涉光,所述第三子光分量及所述第四子光分量干涉形成所述第二干涉光。
  26. 根据权利要求25所述的光学梳状滤波器,其特征在于,所述第二相位延迟器包括第二偏振分束器、第三空气臂及第四空气臂,其中,
    所述第二偏振分束器,用于将从所述第二相位延迟器的第五侧壁入射的第一干涉光分解为沿第一方向传输的第五子光分量及沿第二方向传输的第六子光分量,将所述第二干涉光分解为沿第一方向传输的第七子光分量及沿第二方向传输的第八子光分量;
    所述第三空气臂,设置于所述第二偏振分束器的第六侧壁,用于接收所述第五子光分量及第七子光分量,并将所述第五子光分量及第七子光分量反射回所述第二偏振分束器;
    所述第四空气臂,设置于所述第二偏振分束器的第七侧壁,用于接收所述第六子光分量及第八子光分量,并将所述第六子光分量及第八子光分量反射回所述第二偏振分束器,其中,所述第五子光分量与所述第六子光分量干涉形成第三干涉光,所述第七子光分量与所述第八子光分量干涉形成第四干涉光,所述第三及第四干涉光从所述第二偏振分束器的第八侧壁射出至所述第二分光组件,且所述第五侧壁与所述第七侧壁相对设置,所述第六侧壁与所述第八侧壁相对设置。
  27. 根据权利要求26所述的光学梳状滤波器,其特征在于,所述第三空 气臂的第三光程不等于所述第四空气臂的第四光程,且所述第三光程与第四光程的差为所述第一光程与所述第二光程的差的两倍。
  28. 根据权利要求27所述的光学梳状滤波器,其特征在于,所述第三空气臂包括第三偏振片及第三反射镜,所述第三偏振片设置于所述第六侧壁与所述第三反射镜之间,其中,
    所述第三偏振片,用于改变从所述第六侧壁射出的第五及第七子光分量的偏振态,其中,所述第五及第七子光分量透射所述第三偏振片后传输至所述第三反射镜;
    所述第三反射镜,用于将接收到的所述第五及第七子光分量反射至所述第三偏振片,使得所述第三偏振片再次改变所述第五及第六子光分量的偏振态后,传输所述第五及第七子光分量至所述第二偏振分束器,以使所述第五及第七子光分量沿所述第二方向传输。
  29. 根据权利要求28所述的光学梳状滤波器,其特征在于,所述第四空气臂包括第四偏振片及第四反射镜,所述第四偏振片设置于所述第七侧壁与所述第四反射镜之间,其中,
    所述第四偏振片,用于改变从所述第七侧壁射出的第六及第八子光分量的偏振态,并将第六及第八子光分量传输至所述第二反射镜;
    所述第四反射镜,用于将接收到的所述第六及第八子光分量反射至所述第四偏振片,使得所述第四偏振片再次改变所述第六及第八子光分量的偏振态后,传输所述第六及第八子光分量至所述第二偏振分束器,以使所述第六及第八子光分量沿所述第二方向传输。
  30. 根据权利要求28所述的光学梳状滤波器,其特征在于,所述第三反射镜为可调微镜,并用于调节所述第三光程。
  31. 根据权利要求29所述的光学梳状滤波器,其特征在于,所述第四反射镜为可调微镜,并用于调节所述第四光程。
  32. 根据权利要求30或31所述的光学梳状滤波器,其特征在于,所述可调微镜通过微机电系统或者压电技术控制微镜的位移或旋转实现光程的调节。
  33. 根据权利要求28所述的光学梳状滤波器,其特征在于,所述第三空气臂包括第三标准具及第三偏振片,所述第三标准具具有第三空气腔及第三反 射面,所述第三偏振片设置于所述第三空气腔内,其中,
    所述第三偏振片,用于改变从所述第六侧壁射出的第五及第七子光分量的偏振态,其中,所述第五及第七子光分量透射所述第三偏振片后传输至所述第三反射面;
    所述第三反射面,用于将接收到的所述第五及第七子光分量反射至所述第三偏振片,使得所述第三偏振片再次改变所述第五及第七子光分量的偏振态后,传输所述第五及第七子光分量至所述第二偏振分束器,以使所述第五及第七子光分量沿所述第二方向传输。
  34. 根据权利要求33所述的光学梳状滤波器,其特征在于,所述第四空气臂包括第四标准具及第四偏振片,所述第四标准具具有第四空气腔及第四反射面,所述第四偏振片设置于所述第四空气腔内,其中,
    所述第四偏振片,用于改变从所述第七侧壁射出的第六及第八子光分量的偏振态,其中,所述第六及第八子光分量透射所述第四偏振片后传输至所述第四反射面;
    所述第四反射面,用于将接收到的所述第六及第八子光分量反射至所述第四偏振片,使得所述第四偏振片再次改变所述第六及第八子光分量的偏振态后,传输所述第六及第八子光分量至所述第二偏振分束器,以使所述第六及第八子光分量在所述第二方向上传输。
  35. 根据权利要求34所述的光学梳状滤波器,其特征在于,所述第三空气臂还包括第三光补偿片,所述第三光补偿片设置于所述第三空气腔内,并位于所述第三偏振片与所述第三反射面之间,以通过旋转调节所述第三光程;所述第四空气臂还包括第四光补偿片,所述第四光补偿片设置于所述第四标准具的第四空气腔内,并位于所述第四偏振片与所述第四反射面之间,以通过旋转调节所述第四光程。
  36. 根据权利要求35所述的光学梳状滤波器,其特征在于,所述第三标准具的第三反射面的内表面及设置于所述第六侧壁上的前壁的内表面为具有预定角度的斜面;所述第四标准具的第四反射面的内表面及设置于所述第七侧壁上的前壁的内表面为具有预定角度的斜面。
  37. 根据权利要求26所述的光学梳状滤波器,其特征在于,所述光学梳 状滤波器还包括第三半波片,所述第三半波片设置于所述第一相位延迟器与所述第二相位延迟器之间。
  38. 根据权利要求26所述的光学梳状滤波器,其特征在于,所述光学梳状滤波器还包括第四半波片,所述第四半波片设置于所述第二相位延迟器与所述第二分光组件之间。
  39. 根据权利要求38所述的光学梳状滤波器,其特征在于,所述第二分光组件包括第二双折射晶体及后反射棱镜,所述第二双折射晶体位于所述第四半波片与所述后反射棱镜之间,其中,
    所述第二双折射晶体用于将所述第二相位延迟器出射的第三干涉光分解为o光与e光,将所述第二相位延迟器出射的第四干涉光分解为o光与e光;
    所述后反射棱镜用于将所述o光与e光反射回所述第二双折射晶体,其中,所述后反射棱镜反射的光束从经所述第二相位延迟器、第一相位延迟器后,传输至所述第一双折射晶体,并经所述第一双折射晶体合并为第一输出光及第二输出光。
  40. 根据权利要求39所述的光学梳状滤波器,其特征在于,所述光学梳状滤波器还包括第五半波片及第六半波片,所述第五半波片与所述第六半波片设置于所述第四半波片与所述第二双折射晶体之间。
  41. 根据权利要求15所述的光学梳状滤波器,其特征在于,所述光学梳状滤波器还包括第七半波片及第八半波片,所述第七半波片及第八半波片设置于第三光补偿片与所述第一相位延迟器之间。
  42. 根据权利要求13所述的光学梳状滤波器,其特征在于,所述光学梳状滤波器还包括第一输出准直器及第二输出准直器,所述第一输出准直器用于准直所述第一双折射晶体输出的第一输出光,所述第二输出准直器用于接收所述第一双折射晶体输出的第二输出光。
  43. 根据权利要求42所述的光学梳状滤波器,其特征在于,所述光学梳状滤波器还包括第一斜方棱镜及第二斜方棱镜,所述第一斜方棱镜用于将所述第一双折射晶体输出的第一输出光传输至所述第一输出准直器,所述第二斜方棱镜用于将所述第二双折射晶体输出的第二输出光传输至所述第二输出准直器。
PCT/CN2014/092596 2014-11-29 2014-11-29 相位延迟器及其光学梳状滤波器 WO2016082226A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480081312.8A CN106664152B (zh) 2014-11-29 2014-11-29 光学梳状滤波器
PCT/CN2014/092596 WO2016082226A1 (zh) 2014-11-29 2014-11-29 相位延迟器及其光学梳状滤波器
EP14906944.5A EP3223443B1 (en) 2014-11-29 2014-11-29 Phase retarder and optical comb filter thereof
US15/607,047 US10866350B2 (en) 2014-11-29 2017-05-26 Phase retarder and optical comb filter thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092596 WO2016082226A1 (zh) 2014-11-29 2014-11-29 相位延迟器及其光学梳状滤波器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/607,047 Continuation US10866350B2 (en) 2014-11-29 2017-05-26 Phase retarder and optical comb filter thereof

Publications (1)

Publication Number Publication Date
WO2016082226A1 true WO2016082226A1 (zh) 2016-06-02

Family

ID=56073416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092596 WO2016082226A1 (zh) 2014-11-29 2014-11-29 相位延迟器及其光学梳状滤波器

Country Status (4)

Country Link
US (1) US10866350B2 (zh)
EP (1) EP3223443B1 (zh)
CN (1) CN106664152B (zh)
WO (1) WO2016082226A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145760B2 (ja) * 2016-04-21 2022-10-03 サイテック バイオサイエンスィズ インコーポレイテッド デュアルレーザービームを用いたフローサイトメトリー
CN108680257B (zh) * 2018-07-06 2023-11-03 清华大学 一种实现弱测量的装置
US11391969B2 (en) * 2018-12-07 2022-07-19 Freedom Photonics Llc Systems and methods for wavelength monitoring
CN109632089B (zh) * 2019-01-15 2021-02-19 深圳市合飞科技有限公司 一种多通道可变波长的偏振干涉滤波器的参数确定方法
CN112630879B (zh) * 2020-12-25 2022-09-30 中国工程物理研究院激光聚变研究中心 一种相位延迟元件及相位延迟装置
US11906770B2 (en) * 2021-10-21 2024-02-20 KLA Corporal Monolithic optical retarder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304689B1 (en) * 1998-01-09 2001-10-16 Communications Research Laboratory Ministry Of Posts And Telecommunications General multi-function optical filter
CN201340488Y (zh) * 2008-10-13 2009-11-04 武汉光迅科技股份有限公司 具有低色散的小型化梳状滤波器
CN101943772A (zh) * 2010-08-26 2011-01-12 华中科技大学 G-t谐振腔与双折射元件结合的可调谐光梳状滤波器
CN102681096A (zh) * 2011-03-17 2012-09-19 昂纳信息技术(深圳)有限公司 一种偏振光干涉型的梳状滤波器
CN203732757U (zh) * 2014-03-06 2014-07-23 昂纳信息技术(深圳)有限公司 具有低色散的光学梳状滤波器
CN203732814U (zh) * 2014-03-19 2014-07-23 昂纳信息技术(深圳)有限公司 一种具有低色散的光学梳状滤波器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628461B2 (en) * 2001-01-10 2003-09-30 Finisar Corporation Method and apparatus for a polarization beam splitter/combiner with an integrated optical isolator
US6683721B2 (en) * 2001-02-27 2004-01-27 Jds Uniphase Corporation Low dispersion interleaver
US6867868B1 (en) * 2002-01-08 2005-03-15 Avanex Corporation Method and apparatus for tunable interferometer utilizing variable air density
CN203705684U (zh) * 2013-12-20 2014-07-09 福州百讯光电有限公司 一种采用扩束光纤准直器的梳状滤波器
CN104166243B (zh) * 2014-08-20 2017-01-25 湖北捷讯光电有限公司 一种不等带宽光学梳状滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304689B1 (en) * 1998-01-09 2001-10-16 Communications Research Laboratory Ministry Of Posts And Telecommunications General multi-function optical filter
CN201340488Y (zh) * 2008-10-13 2009-11-04 武汉光迅科技股份有限公司 具有低色散的小型化梳状滤波器
CN101943772A (zh) * 2010-08-26 2011-01-12 华中科技大学 G-t谐振腔与双折射元件结合的可调谐光梳状滤波器
CN102681096A (zh) * 2011-03-17 2012-09-19 昂纳信息技术(深圳)有限公司 一种偏振光干涉型的梳状滤波器
CN203732757U (zh) * 2014-03-06 2014-07-23 昂纳信息技术(深圳)有限公司 具有低色散的光学梳状滤波器
CN203732814U (zh) * 2014-03-19 2014-07-23 昂纳信息技术(深圳)有限公司 一种具有低色散的光学梳状滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3223443A4 *

Also Published As

Publication number Publication date
US10866350B2 (en) 2020-12-15
EP3223443A1 (en) 2017-09-27
EP3223443B1 (en) 2020-01-08
EP3223443A4 (en) 2017-12-20
CN106664152B (zh) 2019-12-24
US20170261669A1 (en) 2017-09-14
CN106664152A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US10866350B2 (en) Phase retarder and optical comb filter thereof
Cao et al. Interleaver technology: comparisons and applications requirements
US20030007157A1 (en) Rhomb interleaver
US20050025410A1 (en) Dispersion-compensated optical wavelength router and cascaded architectures
US6570711B2 (en) Virtual waveplate and optical channel interleaver formed therewith
US6498680B1 (en) Compact tunable optical wavelength interleaver
US6765679B2 (en) Multi-cavity interferometer with dispersion compensating resonators
US6804063B2 (en) Optical interference filter having parallel phase control elements
JP2017513071A5 (zh)
US7173763B2 (en) Optical interleaver and filter cell design with enhanced clear aperture
US8503058B2 (en) Etalon with temperature-compensation and fine-tuning adjustment
US6909511B2 (en) Athermal interferometer
US20020154845A1 (en) Method and apparatus for an optical filter
US6836581B1 (en) Optical filter for wavelength division multipled optical signals
CN104166243B (zh) 一种不等带宽光学梳状滤波器
US6850364B2 (en) Method and apparatus for an optical multiplexer and demultiplexer with an optical processing loop
US6574049B1 (en) Optical interleaver and de-interleaver
CN204086700U (zh) 一种不等带宽光学梳状滤波器
US6785000B2 (en) Bulk optical interferometer
US7268944B2 (en) Optical interleaver, filter cell, and component design with reduced chromatic dispersion
US7106508B2 (en) Hybrid cell
CN112255814A (zh) 一种窄带可调滤波器
EP1152265A2 (en) Dispersion free optical filters
JP5086317B2 (ja) 可変分散補償器
JP2004240215A (ja) 光通信デバイスおよび光通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014906944

Country of ref document: EP