WO2016080709A1 - Method for arranging micro-led elements in electrode assembly - Google Patents

Method for arranging micro-led elements in electrode assembly Download PDF

Info

Publication number
WO2016080709A1
WO2016080709A1 PCT/KR2015/012247 KR2015012247W WO2016080709A1 WO 2016080709 A1 WO2016080709 A1 WO 2016080709A1 KR 2015012247 W KR2015012247 W KR 2015012247W WO 2016080709 A1 WO2016080709 A1 WO 2016080709A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
led device
composite fiber
fiber
ultra
Prior art date
Application number
PCT/KR2015/012247
Other languages
French (fr)
Korean (ko)
Inventor
성연국
Original Assignee
피에스아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피에스아이 주식회사 filed Critical 피에스아이 주식회사
Publication of WO2016080709A1 publication Critical patent/WO2016080709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a method of disposing an ultra-small LED device in an electrode assembly, and more particularly, to connect a micro-scale LED device on a nano-scale micro electrode to a micro-LED device at a desired electrode position.
  • the present invention relates to a method of disposing an ultra-small LED device in an electrode assembly that can be mass-produced by improving accessibility and shortening the manufacturing time and convenience of the micro LED device.
  • LED has been actively developed in 1992 by Nakamura of Nichia, Japan, by applying a low-temperature GaN compound complete layer to fuse high-quality monocrystalline GaN nitride semiconductors.
  • An LED is a semiconductor having a structure in which n-type semiconductor crystals in which a plurality of carriers are electrons and p-type semiconductor crystals in which a plurality of carriers are holes are bonded to each other by using characteristics of a compound semiconductor. It is a semiconductor device that is converted to light and expressed. These LED semiconductors are called light revolutions because of their high light conversion efficiency, very low energy consumption, semi-permanent and environmentally friendly life.
  • GaN-based compound semiconductors having a wide bandgap are materials used in the manufacture of LED semiconductors emitting light in the green, blue and ultraviolet regions, and many studies have been conducted since white LED devices can be manufactured using blue LED devices. Is being done.
  • the LED device for lighting, display, etc.
  • the LED device and an electrode capable of supplying power to the device are required.
  • the arrangement of the two electrodes has been studied in various ways.
  • the study of the arrangement of the LED element and the electrode can be classified into the growth of the LED element on the electrode and the LED element is grown separately and placed on the electrode.
  • a study of growing an LED device on an electrode involves thinning a lower electrode on a substrate, and sequentially stacking an n-type semiconductor layer, an active layer, a p-type semiconductor layer, and an upper electrode on the substrate, and then stacking the electrode prior to etching or stacking the upper electrode.
  • a method of arranging the LED elements separately and independently on the electrodes is a method of individually disposing each LED device independently grown and manufactured on the patterned electrodes through separate processes.
  • the former method has a problem that it is very difficult to crystallize very high crystallinity and high efficiency of the thin film and the LED device, and the latter method has a problem that the light extraction efficiency is lowered and the luminous efficiency may be lowered.
  • the latter method can be used to connect the three-dimensional LED device manually or mechanically one by one if the LED device of the normal size, but manually or mechanically connected to the electrode one by one if the LED device is a micro-sized micro-sized unit. It is very difficult to arrange a very small LED device on a nanoscale electrode and difficult to connect the disposed small LED device with the electrode.
  • Figure 1 is a micro LED device disclosed in the patent application to the electrode
  • a nano-scale micro electrode formed on the base substrate 100 in a solution state by including the micro LED device 120 manufactured by growing independently as shown in FIG. 1A in a solvent 140.
  • the ultra-small LED device is connected to the two different small electrodes as shown in Figure 1c. .
  • the micro LED device is more easily disposed in the desired electrode region among the micro electrodes, and even after the device is disposed on the electrode, the micro LED device does not spread beyond the intended electrode region, thereby making the micro LED device an intended electrode region.
  • the present invention has been made to solve the above-described problems, it is possible to more easily arrange the ultra-small LED element in the desired electrode region of the micro-electrode, even after the element is disposed on the electrode the electrode region of the micro-LED element By not spreading, it is possible to connect the micro LED device to the intended electrode area more easily, significantly reducing the deployment time of the micro LED device on the electrode, and improving the convenience of placement, thereby enabling mass production.
  • the present invention relates to a method of disposing an ultra-small LED element in an electrode assembly, which can be applied to products such as LED lamps and LED displays of excellent quality by significantly increasing the number of micro-LED elements disposed in a desired electrode region.
  • a composite fiber assembly including a composite fiber comprising a fiber-forming component and a plurality of ultra-small LED device; And (2) removing the fiber forming component of the composite fiber.
  • the composite fiber assembly may be in the shape of any one of yarn, woven fabric, knitted fabric and nonwoven fabric.
  • the plurality of micro-elements may be included in the composite fiber, the plurality of micro-elements may be arranged in at least one row in the longitudinal direction of the composite fiber.
  • the composite fiber is a core portion formed by forming a plurality of ultra-small LED elements in a row; And a fiber forming component formed around the core portion.
  • the diameter of the composite fiber may be 1.2 to 8.0 times the shorter length of the ultra-small LED device, more preferably 1.2 to 6.0 times.
  • the plurality of ultra-small LED device may be arranged in a plurality of rows in the longitudinal direction of the composite fiber.
  • the composite fiber may include 30 to 90 parts by weight of the ultra-small LED device with respect to 100 parts by weight of the fiber forming component.
  • the micro LED device has a rod shape, and the micro LED device may have a length of 100 nm to 10 ⁇ m.
  • the micro LED device comprises a first conductive semiconductor layer; An active layer formed on the first conductive semiconductor layer; And a second conductive semiconductor layer formed on the active layer.
  • the micro LED device may include a first electrode layer formed under the first conductive semiconductor layer; And a second electrode layer formed on the second conductive semiconductor layer.
  • the outer surface of the micro LED device may be coated with an insulating coating covering at least the entire outer surface of the active layer portion.
  • step (2) may remove the fiber forming component by treating at least one or more of heat or a solvent.
  • the solvent may include any one or more solvents selected from the group consisting of acetone, toluene and isopropyl alcohol.
  • the present invention a plurality of electrodes; And a composite fiber assembly disposed on the plurality of electrodes, the composite fiber assembly including a composite fiber including a fiber forming component and a plurality of ultra-small LED devices.
  • the present invention to solve the above problems, the base substrate; A plurality of electrodes formed on the base substrate; And a plurality of ultra-small LED elements positioned on the plurality of electrodes after being injected onto the plurality of electrodes with the composite fibers including the fiber forming component and then removing the fiber forming component.
  • the plurality of microminiature elements are included in the composite fibers in at least one row in the longitudinal direction of the composite fibers,
  • the fiber forming component of the composite fiber is removed so that the plurality of ultra-small LED elements can be positioned in at least one row on the plurality of electrodes.
  • the plurality of microminiature elements are included in the composite fiber in a core shape having one or more rows formed therein with respect to a sheath formed of a fiber forming component, and the composite fiber is formed on a plurality of electrodes. After being injected into, the ultra-small portions of the composite fibers are removed so that the plurality of ultra-small LED elements can be positioned in at least one row on the plurality of electrodes.
  • the composite fiber assembly including the ultra-small LED device of the present invention can more easily place the micro-LED device in a desired electrode region of the micro-electrode than when the micro-LED device is simply included in a solvent and put into the micro-electrode in a solution state. After the micro LED device is disposed on the electrode, the micro LED device does not spread beyond the target electrode area, thereby easily connecting the micro LED device to the target electrode area. Significantly reduce the batch time to enable mass production and at the same time significantly increase the number of ultra-small LED elements arranged in the desired electrode area can be widely applied to products such as LED lamps, LED displays of excellent quality.
  • 1 is a schematic diagram showing a manufacturing process of self-aligning an ultra-small LED element to an electrode.
  • FIG. 2 is a perspective view of a composite fiber according to a preferred embodiment of the present invention.
  • FIG. 3 is an optical micrograph showing a micro LED device disposed on an electrode after the micro LED device is included in a solvent and injected onto the electrode.
  • FIG. 4 is a perspective view of a micro LED device included in a preferred embodiment of the present invention.
  • FIG. 5 is a vertical cross-sectional view of a conventional micro electrode assembly.
  • FIG. 6 is a plan view and a vertical sectional view of a micro LED electrode assembly in which a micro LED device is connected to a first electrode and a second electrode through a composite fiber assembly according to a preferred embodiment of the present invention.
  • FIG. 7 is a perspective view of a composite fiber according to a preferred embodiment of the present invention.
  • FIG. 8 is a plan view of a micro LED electrode assembly in which a micro LED device is connected to an electrode through a composite fiber assembly according to a preferred embodiment of the present invention.
  • FIG. 9 is a perspective view of a composite fiber according to a preferred embodiment of the present invention.
  • FIG. 10 is a schematic diagram illustrating a method of disposing an ultra-small LED device in an electrode assembly according to an exemplary embodiment of the present invention.
  • FIG. 11 is a cross-sectional perspective view of a composite fiber included in a preferred embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a double orifice spinning nozzle used for producing a composite fiber included in a preferred embodiment of the present invention.
  • FIG. 13 is a cross-sectional perspective view of an island-in-the-sea fiber manufactured according to a preferred embodiment of the present invention.
  • FIG. 14 is a plan view of a composite fiber assembly including a composite fiber according to a preferred embodiment of the present invention.
  • FIG. 15 is a schematic diagram illustrating a method of disposing an ultra-small LED device in an electrode assembly according to an exemplary embodiment of the present invention.
  • 16 is a perspective view of an electrode included in a preferred embodiment of the present invention.
  • a micro-LED device is included in a solvent and placed in a solution state, and the micro-LED device is placed on an electrode.
  • the micro LEDs are extended to the electrode regions other than the electrode regions to which the micro LEDs are connected as they are introduced into the electrodes, the number of micro LEDs arranged in the desired electrode region has been significantly reduced.
  • such a problem significantly reduces the performance of the lighting and display to be implemented by including a small LED device, and the micro LED device has to be put into the electrode in solution in one bar, which is unsuitable for mass production.
  • a composite fiber aggregate comprising a composite fiber comprising a fiber-forming component and a plurality of ultra-small LED device; And (2) removing the fiber-forming component of the composite fiber.
  • micro LED device makes it easier to place the micro LED device in the desired electrode region of the micro electrodes, and even after the device is disposed on the electrode, the micro LED device does not spread out beyond the intended electrode region. It can be more easily connected to the electrode region, it is possible to significantly reduce the placement time of the small LED element on the electrode to enable mass production and at the same time significantly increase the number of the small LED element disposed in the desired electrode region.
  • a step (1) a step of introducing a composite fiber aggregate comprising a composite fiber comprising a fiber forming component and a plurality of ultra-small LED device on the electrode.
  • the composite fiber 30A includes a fiber forming component 10 and a plurality of micro LEDs 20, the plurality of micro LEDs The device 20 is included in the fiber forming component 10.
  • the fiber forming component may serve as a support for supporting a plurality of ultra-small LED elements included therein and may provide easier access than placing the ultra-small LED elements in a desired electrode region. It is easier to handle than managing in solution, and it can be more advantageous to realize mass production and large area electrode assembly because it is easy to place a small LED device in a desired electrode region of a large area of the small electrode line. .
  • micro LED devices are included in a solvent when placed on a micro electrode and are put on the electrode in a solution state. At this time, the micro LED device is suspended in a solution without any directivity, and thus the place where the solution is first introduced is an LED device. Even after the intended electrode region to be disposed, there is a problem that after the introduction of the solution, the ultra-small LED device spreads out of the desired electrode region or to the edge of the desired electrode region.
  • FIG. 3 is an optical microscope photograph of a micro LED device disposed on an electrode after the micro LED device is included in a solvent and injected into an electrode.
  • the micro LED device has a central portion of an electrode region. You can see that the focus is placed on the edges rather than the edges. Accordingly, the present inventors continue to research to solve the above problems, and when the micro LED device is included in the support electrode and placed in the target electrode region, it is physically supported by the support that the micro LED device spreads out of the target electrode region. As it is blocked by the present invention, it has been found that the micro LED device can be more easily disposed in the desired electrode region.
  • the fiber forming component may be used without limitation in the case of a material capable of supporting a plurality of micro LED devices, but may be easily removed through the step (2) to be described later, and may be made of fiber. It may be, and may be a material that does not have a physical / chemical effect on the micro LED device. More preferably a thermoplastic polymer compound removed by heat; And / or a polymer compound removed by any one or more solvents selected from the group consisting of acetone, toluene, chloroform and isopropyl alcohol; The thermoplastic polymer compound may include at least one or more of the above, and specifically, the thermoplastic polymer compound removed by the heat may have a melting point of 50 ° C.
  • the polymer compound dissolved by the solvent preferably includes at least one polymer compound selected from the group consisting of PMMA (Poly (methyl methacrylate)), PS (Polystyrene), PVC, and PVA.
  • the polymer compound which can function as a support as the fiber forming component and can be easily removed by being removed by heat and / or by solvent is more preferable because the composite fiber assembly including at least one composite fiber is formed on the electrode. This is because it is required to remove the fiber forming component surrounding the micro LED device to directly connect the micro LED device to the electrode after being disposed. Accordingly, a polymer compound which can be easily removed by heat and / or a solvent is particularly preferable. Through this, the composite fiber assembly is disposed on the electrode, and the fiber-forming component is removed in step (2) described below, and the ultra-small LED device is electrode. The time required to position the phase can be significantly reduced.
  • the fiber-forming component is a polymer compound that is dissolved by a solvent
  • both the removal of the fiber-forming component and the self-alignment of the ultra-small LED device can be performed through one solvent input.
  • the reason for including the ultra-small LED device 120 in the solvent 140 in FIG. 1A and injecting the electrodes 110 and 130 into the solvent 140 is that the ultra-small LED device has almost no mobility, thus making it difficult to self-align the electrode. Because. More specifically, as shown in FIG. 1B, when the power is applied to the electrodes 110 and 130, the outer surface of the micro LED device 120 is charged with a positive charge or a negative charge by symmetry with respect to the longitudinal center of the micro LED device by electric field induction.
  • the ultra small LED device having polarized external surface of the device is very difficult to move to two electrodes having different potentials by electrostatic attraction and to be connected to the self alignment and the electrode.
  • a mobile phase such as a solvent is required.
  • the fiber-forming component is a polymer compound dissolved by a solvent
  • the fiber-forming component is dissolved in the solvent when the solvent is added to the composite fiber assembly in step (2) described later.
  • the solution can function as a mobile phase capable of moving and aligning the ultra-small LED elements disposed on the electrodes, thereby removing the fibrous component and then self-aligning the ultra-small LED elements to the electrodes without additional solvent. And there is an advantage that can be connected.
  • the ultra-small LED device that can be used in the present invention can be used without limitation as long as it is a micro-LED device generally used for lighting or display, preferably, the length of the ultra-small LED device can be 100 nm to 10 ⁇ m, even more preferably May be 500 nm to 5 ⁇ m. If the length of the ultra-small LED device is less than 100 nm, it is difficult to manufacture a high-efficiency LED device, and if it exceeds 10 ⁇ m, the luminous efficiency of the LED device may be reduced. In addition, the diameter of the ultra-small LED device may be preferably 100nm to 5 ⁇ m.
  • the shape of the ultra-small LED device may be a rod shape, specifically, may be a variety of shapes, such as a cylinder, a rectangular parallelepiped, and preferably may be a cylindrical shape, but is not limited to the above description.
  • 'up', 'down', 'up', 'low', 'upper' and 'lower' refer to the vertical up and down directions based on each layer included in the ultra-small LED device. Means.
  • the micro LED device may include a first conductive semiconductor layer; An active layer formed on the first conductive semiconductor layer; And a second conductive semiconductor layer formed on the active layer.
  • FIG. 4 is a perspective view of an ultra-small size LED device included in a preferred embodiment of the present invention, and includes a first conductive semiconductor layer 20b, an active layer 20c formed on the first conductive semiconductor layer 20b, and the active layer.
  • the second conductive semiconductor layer 20d formed on 20c is shown.
  • the first conductive semiconductor layer 20b may include, for example, an n-type semiconductor layer.
  • a semiconductor material having, for example, InAlGaN, GaN, AlGaN, InGaN, AlN, InN, or the like may be selected, and a first conductive dopant (eg, Si, Ge, Sn, etc.) may be doped.
  • the thickness of the first conductive semiconductor layer 20b may be 500 nm to 5 ⁇ m, but is not limited thereto. Since the light emission of the ultra-small LED is not limited to blue, there is no limitation in using another type III-V semiconductor material as the n-type semiconductor layer when the emission color is different.
  • the active layer 20c may be formed on the first conductive semiconductor layer 20b and may have a single or multiple quantum well structure.
  • a cladding layer (not shown) doped with a conductive dopant may be formed on and / or under the active layer 20c, and the cladding layer doped with the conductive dopant may be formed of an AlGaN layer or an InAlGaN layer.
  • materials such as AlGaN and AlInGaN may also be used as the active layer 20c.
  • the active layer 20c when an electric field is applied, light is generated by the combination of the electron-hole pairs.
  • the thickness of the active layer 20c may be 10 to 200 nm, but is not limited thereto.
  • the position of the active layer 20c may be formed in various ways depending on the type of LED. Since the light emission of the ultra-small LED is not limited to blue, there is no limitation in using another type III-V semiconductor material as the active layer when the emission color is different.
  • a second conductive semiconductor layer 20d is formed on the active layer 20c, and the second conductive semiconductor layer 23 may be implemented with at least one p-type semiconductor layer.
  • Mg second conductive dopant
  • the light emitting structure includes the first conductive semiconductor layer 20b, the active layer 20c, and the second conductive semiconductor layer 20d as minimum components, and another phosphor layer above and below each layer, It may further include an active layer, a semiconductor layer and / or an electrode layer.
  • the thickness of the second conductive semiconductor layer 20d is 50 nm to 500 nm But may not be limited thereto. Since the light emission of the ultra-small LED is not limited to blue, there is no limitation in using another type III-V semiconductor material as the p-type semiconductor layer when the emission color is different.
  • the micro LED device may further include a first electrode layer formed below the first conductive semiconductor layer and a second electrode layer formed above the second conductive semiconductor layer.
  • FIG. 4 shows the first electrode layer 20a formed below the first conductive semiconductor layer 20b and the second electrode layer 20e formed above the second conductive semiconductor layer 20d.
  • the first electrode layer 20a and the second electrode layer 20e may use a metal or a metal oxide used as an electrode of a conventional LED device.
  • a metal or a metal oxide used as an electrode of a conventional LED device.
  • each of chromium (Cr), titanium (Ti), and aluminum is independently used.
  • Al gold
  • Au gold
  • Ni nickel
  • ITO oxides or alloys thereof
  • the thickness of the first electrode layer 20a and the thickness of the second electrode layer 20e may be 1 to 100 nm, respectively, but are not limited thereto.
  • the ultra-small LED device includes the first electrode layer 20a and the second electrode layer 20e, the first conductive semiconductor layer 20b and / or the second conductive semiconductor layer 20d;
  • the metal ohmic layer can be formed at a temperature lower than the temperature required in the process of forming the mixed layer.
  • the outer surface of the ultra-small LED device may be coated with an insulating coating covering at least the entire outer surface of the active layer portion.
  • the insulating film 20f serves to prevent an electrical short circuit occurring when the active layer 20c included in the ultra-small LED device contacts the electrode.
  • the insulating film 20f protects the outer surface of the device including the active layer 20c and the semiconductor layer of the ultra-small LED device, thereby preventing deterioration in luminous efficiency of the ultra-small LED device.
  • the insulating film 20f is coated on the outer surface of the micro LED device including the outer surface of the active layer 20c.
  • the insulating film 20f as described above further prevents an electrical short circuit and prevents the durability and light extraction efficiency of the ultra-compact LED device due to damage to the external surface of the semiconductor layer, thereby reducing the first semiconductor layer 20b and the second semiconductor layer.
  • the insulating film 20f may be coated on any one or more of 20d.
  • a fatal problem may occur in which an ultra-small LED element does not even emit light when an electrical short circuit occurs before discussing a decrease in light extraction efficiency. Therefore, at least an outer surface of the active layer 20c may be disposed on an outer surface of the micro-LED element 20.
  • An insulating film 20f covering the entire surface may be coated.
  • the problem of the electrical short circuit may occur because it is difficult to manually and automatically arrange and connect the nano LED micro LED devices to different nano electrodes.
  • the inventors of the present invention used a method of applying the power to different electrodes to self-align the micro-LED devices at once and connecting them to two different electrodes. When aligning, the ultra-small LED device moves between two different electrodes and changes its position, and in this process, the active layer 20c of the micro-LED device contacts the electrode line and the active layer 20c is connected to the electrode. There may be a problem that an electrical short occurs frequently.
  • FIG. 5 is a vertical cross-sectional view of a conventional micro electrode assembly, in which a first semiconductor layer 71 a of a first micro LED element 71 communicates with each other on a first electrode line 61, and a second semiconductor layer ( It can be seen that 71c) is in communication with the second electrode line 62, and the first ultra-small LED element 71 is in communication with each other in an upright position.
  • the electrode assembly shown in FIG. 5 if the first ultra-small LED device 71 is connected to two electrodes at the same time, there is no possibility that the active layer 71b of the device contacts any one of two different electrodes 61 and 62. Electrical shorts due to contact between the active layer 71b and the electrodes 61 and 62 do not occur.
  • the second ultra-small LED element 72 lies on the first electrode 61, and in this case, the active layer 72b of the second ultra-small LED element 72 is in contact with the first electrode 61. .
  • the second micro LED device 72 is not connected to the first electrode 61 and the second electrode 62, respectively, but only an electrical short is not a problem.
  • the coating is coated on the outer surface of the semiconductor layer 71c, the coating may have only the purpose and effect of reducing the luminous efficiency through the damage prevention of the outer surface of the ultra-small LED device, and does not have the purpose and effect of preventing the electrical short.
  • the composite fiber assembly according to the present invention is different from the conventional ultra-small electrode assembly as shown in FIG.
  • an electrical short problem due to contact and / or connection between the active layer and the electrode of the micro LED device, which did not occur in the conventional micro electrode assembly inevitably occurs.
  • the outer surface of the micro LED device may include an insulating coating covering at least the entire outer surface of the active layer portion.
  • the active layer must be exposed to the outside.
  • the position of the active layer in the LED device of such a structure is not only located at the center of the center in the longitudinal direction of the device, it can be formed to be biased toward a specific semiconductor layer, the possibility of contact between the electrode and the active layer is bound to be higher.
  • an ultra-small LED device including an insulating coating coated over the entire outer surface of the active layer to prevent contact between the electrode and the active layer is connected to the electrode without an electric short to emit light in which the insulating film is not coated on the outer surface of the device.
  • FIG. 6 shows a plan view and a vertical sectional view of a micro LED electrode assembly in which a micro LED device is connected to a first electrode and a second electrode through a composite fiber according to a preferred embodiment of the present invention.
  • the ultra-small LED device is connected to the two different electrodes lying parallel to the electrode surface.
  • the active layer 121b of the first ultra-small LED elements 121a, 121b and 121c is not located at the center of the first ultra-small LED element 121 but is deviated much to the left.
  • the active layer 121b The possibility of part contacting the electrode 111 may be increased, which may cause an electrical short circuit, which may cause a failure of the micro LED electrode assembly.
  • the ultra-small LED device included in the present invention may be coated with an insulating film on the outer circumference including the active layer, and the active layer as shown in the first micro LED device 121 of FIG. 6 due to the insulating film. Even if 121b is connected to the electrode, a short circuit may not occur.
  • the insulating film 20f is preferably selected from silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), yttrium oxide (Y 2 O 3 ), and titanium dioxide (TiO 2 ). It may include any one or more, and more preferably consists of the above components, but may be transparent, but is not limited thereto. In the case of the transparent insulating film, by reducing the luminous efficiency that may occur in any case by coating the insulating film while serving as the insulating film 20f.
  • the insulating film 20f may not be coated with an insulating film on any one or more electrode layers of the first electrode layer 20a and the second electrode layer 20e of the micro LED device, More preferably, both electrode layers 20a and 20e may not be coated with an insulating coating. This is to be in electrical communication between the two electrode layers (20a, 20e) and the different electrodes, if the insulating film (20f) is coated on the two electrode layers (20a, 20e) can interfere with the electrical communication, the light emission of the ultra-small LED There is a problem that the light emission itself may not be reduced or not electrically connected.
  • the insulating film 20f may contact the electrodes with the first electrode layer 20a and the second electrode layer 20e of the micro LED device. It may be included in the remaining portions of the first electrode layer 20a and the second electrode layer 20e except for a portion (eg, an end portion of the electrode layer).
  • the micro LED device may include a hydrophobic film coated on the outer surface of the insulating film of the micro LED device in order to prevent aggregation between the devices.
  • the hydrophobic film 20g coated on the outer periphery of the insulating film 20f may be confirmed.
  • the hydrophobic coating (20g) is to prevent the agglomeration between the LED devices by having a hydrophobic characteristic on the surface of the ultra-small LED device as a micro-LED device when it is radiated together with the fiber-forming component to produce a composite fiber, micro LED device It can be more advantageous to minimize the coagulation of the liver and arrange them in rows without aggregation in the composite fiber.
  • the hydrophobic coating is easier to eliminate such problems. It is possible to self-align the small LED device in the electrode line.
  • the hydrophobic film 20g may be formed on an insulating film, and may be used without limitation as long as it can prevent aggregation between micro LED devices, and preferably octadecyltrichlorosilane (OTS).
  • OTS octadecyltrichlorosilane
  • SAMs Self-assembled monolayers
  • the fiber forming component and the ultra-small LED device included in the above-described composite fiber may include 30 to 90 parts by weight of the ultra-small LED device based on 100 parts by weight of the fiber forming component according to the preferred embodiment of the present invention. If the fiber forming component contains less than 30 parts by weight of the ultra-small LED device, the number of ultra-small LED devices per unit volume of the composite fiber is small, so the number of ultra-small LED devices that can be disposed through the composite fiber assembly in a predetermined electrode area is increased. It may be significantly lowered, and a larger amount of composite fiber aggregates should be included in order to place more ultra-small LED devices, in which case the time required for the removal of the fiber forming component and the cost required for the removal of the fiber-forming component in step (2) described later.
  • the ultra small LED device contains more than 90 parts by weight, the number of micro LED devices that can be included per unit volume of the composite fiber may increase, but the top, bottom, left and right spacing between the micro LED devices in the composite fiber becomes short, and in some cases, the micro LED device May be arranged in a cluster, and contact between the devices may occur frequently and / or the devices may be exposed to the outer surface of the composite fiber, thereby causing damage to the outer surface of the device.
  • the composite fiber comprises a fiber forming component 10 and a plurality of micro LED device 20, as shown in Figure 2, the plurality of micro LED device 20 is a fiber More preferably, it is located inside the forming component 10.
  • the ultra-small LED device 20 included in the composite fiber 30A of FIG. 2 is located inside the fiber forming component 10. If the ultra-small LED device 20 is located inside the fiber forming component 10. However, when exposed to the outer surface of the fiber forming component 10, there is a possibility of damage to the outer surface of the ultra-small LED device during the storage, movement, and handling of the composite fiber, damage of the outer surface of the ultra-small LED device can improve the light extraction efficiency There may be a problem that can be remarkably lowered so that a product of reduced quality can be implemented. Accordingly, the micro LED device is more preferably located inside the fiber forming component.
  • the composite fiber assembly including the composite fiber is disposed on the electrode, and in order to improve the arrangement alignment state of the ultra-small LED device remaining on the electrode after the fiber forming component is removed in step (2) to be described later.
  • the plurality of ultra-small LED device may be included in the composite fiber arranged in at least one row in the longitudinal direction of the composite fiber.
  • FIG. 7 is a perspective view of a composite fiber included in a composite fiber assembly according to a preferred embodiment of the present invention.
  • the composite fiber 30B includes a fiber forming component 10 and a plurality of ultra-small LED devices 20.
  • the micro LED device 10 is arranged inside the composite fiber in a first row P 1 and a second row P 2 in the longitudinal direction of the composite fiber.
  • the micro LED device 20 remaining on the electrode after the fiber forming component 10 is removed in step (2) will be described later.
  • the ultra-small LED device moves the minimum moving distance until it is connected to the electrode and at the same electrode area
  • the number of micro LEDs that can be connected to the electrodes can be significantly increased.
  • FIG. 8 is a plan view of a micro LED electrode assembly in which a micro LED device is connected to an electrode through a composite fiber assembly included in a composite fiber assembly according to an embodiment of the present invention, as shown in FIG. 2.
  • the micro LED device which remains on the electrode after the fiber forming component is removed, also has no orientation on the electrode. It may be arranged randomly, the micro LED device 20 ′ connected to the electrode when power is applied to the electrodes 110 and 130 may also be connected to two different electrodes 110 and 130 without direction as shown in FIG. 8. .
  • the ultra-small LED device is connected to different electrodes without constant direction as shown in FIG.
  • one micro-LED device is connected to a constant electrode area as the area occupying two different electrodes increases while preventing the electrode connection of the other ultra-small LED device.
  • the number of micro LED devices is reduced.
  • the area (Q) occupying two different electrodes while the first ultra-small LED device 20 ′ obliquely connected to the electrode blocks the electrode connection of the other ultra-small LED devices, and the longitudinal direction of the device is as perpendicular to the electrode as possible.
  • the second ultra-small LED element 21 ′ connected to and lying close to is significantly larger than the area R occupying two different electrodes.
  • the composite fiber assembly further improves the arrangement arrangement state of the ultra-small LED device remaining on the electrode after the fiber forming component is removed in step (2) described later, and the fiber forming component
  • a plurality of micro LED elements are formed in a row in a row;
  • a fiber forming component comprising a core formed around the core.
  • the core fiber may include a composite fiber of a heart type.
  • FIG. 9 is a perspective view of a composite fiber included in a composite fiber assembly according to a preferred embodiment of the present invention.
  • a plurality of micro LED devices 20 are arranged in a row (P 3).
  • the core portion formed in a) and the fiber forming component 10 includes a core portion formed to surround the core portion.
  • the composite fiber assembly including the composite fiber 30C as shown in FIG. 9 is a composite fiber including the composite fiber 30B in which a plurality of micro LED devices in the composite fiber 30B are arranged in two rows as shown in FIG. 7.
  • the arrangement of the ultra-small LED elements remaining on the electrodes may be easier than the vertical arrangement of the two different electrodes.
  • FIG. 10 is a schematic view illustrating a method of disposing an ultra-small LED device in an electrode assembly according to an exemplary embodiment of the present invention, wherein a plurality of micro-LED devices 210b and 220b are formed inside the fiber forming components 210a and 220a.
  • 9 shows a process of placing a composite fiber assembly including three composite fibers 210, 220, and 230 arranged in a row on the first electrode 201 and the second electrode 202.
  • the composite fiber assembly comprising a composite fiber as shown in Figure 9 is two electrodes different from each other in the arrangement arrangement of the ultra-small LED device remaining on the electrode when the fiber forming component is removed through step (2) to be described later It may be more advantageous to place it as shown in FIG. 10B so as to be perpendicular to.
  • the composite fiber assembly including the composite fiber 30B as shown in FIG. 7 includes a first row P 1 and a second row P 2 formed of a plurality of micro LED devices included in the composite fiber 30B.
  • the plurality of micro LEDs included in the first row P 1 positioned close to the electrode plane may be arranged vertically close to the electrode as shown in FIG. 10B.
  • the plurality of micro LED devices included in the second column P 2 disposed above the first column P 1 based on the electrode plane have a directionality as shown in FIG. 8 in the process of removing the fiber forming component. There may be a problem that can be placed on the electrode while being lost.
  • the composite fiber 30B as shown in FIG. 7 has a large diameter of the composite fiber as compared to the composite fiber 30C as shown in FIG. 9, which has an area of the remaining fiber forming component except for the ultra-small LED device in the cross section of the composite fiber. As it means larger, more removal time and / or more removal solvent may be required to remove the fiber forming component in step (2) described later in order to place the ultra-small LED device on the electrode.
  • FIG. 9 is a diameter (a) of FIG. 9 is preferably 1.2 to 8.0 times the shorter length of the ultra-small LED device (b of FIG. 9), and more preferably 1.2 to 6.0 times.
  • the ultra-small LED device may be included without being exposed to the outer surface of the composite fiber, and may have advantages such as shortening the removal time of the fiber forming component in step (2) to be described later, and reducing the input amount of the removal solvent.
  • the plurality of ultra-small LED device is the length of the composite fiber to increase the number of micro-LED devices disposed on the electrode before the self-aligned ultra-small LED device connected to the electrode It can be arranged in a plurality of columns in the direction.
  • FIG. 11 is a perspective view of a composite fiber included in a composite fiber assembly according to a preferred embodiment of the present invention, wherein the plurality of micro LED devices 21, 22, and 23 in the composite fiber 30D are arranged in five rows.
  • the arrangement of the ultra-small LED elements remaining on the electrode when the fiber forming component is removed in step (2) may be arranged to be perpendicular to two different electrodes, and at the same time, the fiber forming component 10 is removed.
  • the number of ultra-small LED devices remaining in two different electrode areas of a predetermined area can be significantly increased.
  • the above-described composite fiber can be prepared through the following manufacturing method.
  • the manufacturing method described below is only one embodiment, and the present invention is not limited by the description of the manufacturing method described below.
  • Method for producing a composite fiber according to the present invention can be used for producing a conventional fiber, specifically by chemical spinning or electrospinning, the chemical spinning is specifically melt spinning, wet spinning, dry spinning It may be by any one or more methods selected from, such as wet and dry spinning.
  • Composite fiber according to the present invention can be produced by selecting and changing the appropriate method of the spinning method in consideration of the specific type of the fiber-forming component used, the diameter of the desired composite fiber.
  • a spinning solution containing a micro LED device As a step (a), it can be prepared a spinning solution containing a micro LED device.
  • the spinning solution may be prepared by melting and / or dissolving a fiber-forming component to make a solution state and then mixing a micro LED device.
  • the spinning solution may be prepared as the first spinning solution and the second spinning solution according to the shape of the detention or composite fibers used.
  • the first spinning solution may be prepared by melting and / or dissolving the first fiber forming component into a solution state
  • the second spinning solution may be prepared by including an ultra-small LED device in a solvent such as acetone or micro-LED.
  • the device may be manufactured by incorporating the second fiber forming component into a molten and / or dissolved solution. Melting temperature or the solvent of the fiber-forming component can be determined in consideration of the fiber-forming component used specifically, it is not particularly limited in the present invention.
  • the spinning solution may be prepared separately before being introduced into the spinning machine and may be introduced into the spinning machine, or the fiber forming component may be added to a hopper included in a conventional spinning machine, and the micro LED device may be mixed with the melted fiber forming component through a melting part to form a sugar. It may be prepared by a method known in the art.
  • the intrinsic viscosity of the spinning solution may be determined in consideration of the spinning easiness, preferably 0.1 ⁇ 2.0 cps, more preferably 0.1 ⁇ 1.2 cps, through which the amount of the composite fiber is cut after spinning significantly There is an advantage in terms of being able to reduce and maintain the form stability of the composite fiber after spinning. However, the intrinsic viscosity may be changed according to the type of fiber forming component used, the type of spinning machine used, and the design of the detention.
  • FIG. 12 is a double orthogonal spinneret 5 used in the manufacture of a composite fiber included in a preferred embodiment of the present invention.
  • the external tube 2 of the above-mentioned step (1) is discharged into the outer tube 2, and the inner tube 1 of the second step of the above (a) step is discharged.
  • the spinning solution can be discharged.
  • the composite fiber 30 C as shown in FIG. 9 may be manufactured through a single tubular spinning nozzle when the diameter of the nozzle is adjusted in the single tubular spinning nozzle, but may not necessarily be manufactured only through the double tubular spinning nozzle.
  • Composite fiber spun through the nozzle as described above may be a staple yarn or filament yarn and the filament number of the filament yarn may vary depending on the detention is not particularly limited in the present invention.
  • the composite fiber spun through the step (b) may be subjected to a partial stretching or stretching process to improve the strength of the fiber and to further align the arrangement of the ultra-small LED device included in the composite fiber in the fiber length direction.
  • the specific method of the stretching or partial stretching may be by a publicly known method known in the art, and is not particularly limited in the present invention.
  • the diameter of the composite fiber produced through the above-described method may be preferably 200nm ⁇ 15 ⁇ m.
  • a composite fiber may be manufactured by using an electrospinning method widely used in the art or by preparing a island-in-the-sea type fiber by a chemical spinning method, and then removing the sea component.
  • the composite fiber may be manufactured through two kinds of spinning solution and two nozzles, or the composite fiber may be manufactured through one spinning solution and one nozzle.
  • the diameter of the nozzle may be changed in consideration of the length of the long axis or short axis of the ultra-small LED device included in the spinning solution, the distance between the tip and the collector during the electrospinning, the voltage is the type of fiber-forming component used, the spinning solution It may be changed in consideration of the viscosity, the diameter of the composite fiber and the like is not particularly limited in the present invention, the specific electrospinning method can be used in the art conventional methods.
  • the method for producing a composite fiber through the island-in-the-sea fiber is a method of spinning a spinning solution containing a heterogeneous polymer compound different from the fiber-forming component as a sea component, and a fiber-forming component and a micro LED as a island component. It can be prepared by spinning the use solution.
  • Figure 13 is a cross-sectional perspective view of the island-in-the-sea fiber (30E) prepared in accordance with a preferred embodiment of the present invention, the island-in-the-sea fiber (30E) is a island component (30C 1 , 30C 2 , 30C 3 ) and sea component 40, wherein the island component 30C 1 includes a fiber forming component 10 and an ultra-small LED device 20.
  • the sea component 40 of the island-in-the-sea fiber 30E may be a conventional alkali-soluble copolymer in the art that can be dissolved by a solvent (for example, an alkaline solution) that is difficult to dissolve the fiber-forming component. . Accordingly, even if the manufacturing process the fiber-type (30E) To a solution of alkali such as when to remove the sea component 40 island component of the composite fiber (30C 1, 30C 2, 30C 3 ) can be obtained.
  • a solvent for example, an alkaline solution
  • the composite fiber assembly disposed on the electrode in step (1) according to the present invention includes the composite fiber prepared according to the above-described manufacturing method.
  • the composite fiber assembly may be in the shape of any one of a yarn, a woven fabric, a knitted fabric, and a nonwoven fabric.
  • the composite fiber aggregate may be in the shape of a yarn.
  • the yarn may be staple yarns and / or filament yarns, and may be monolithic monofilament yarns and / or multifilament yarns.
  • the staple yarn may be spun yarn spun yarn, or may be a twisted yarn in which a plurality of spun yarn and filament yarn are combined.
  • the specific shape is not limited to the above description, and the shape of the thread known in the art may be all possible.
  • the fact that the composite fiber assembly is in the form of a yarn means that the composite fiber is included as it is, in which the physical (eg thermal) / chemical adhesion (eg, between the composite fibers or different portions of one composite fiber)
  • the composite fiber may mean that the shape of the fabric by the non-woven fabric or weaving, etc. with the use of heterogeneous adhesive).
  • the composite fiber assembly may have a fabric shape of a woven or knitted fabric.
  • the composite fiber aggregate having a fabric shape of the fabric or knitted fabric may include the composite fiber as a yarn used when weaving or knitting the fabric or knitted fabric.
  • the composite fiber assembly may include the composite fiber as a single yarn, or may include the composite fiber as a warp or weft of a fabric or a knitted fabric using the composite fiber and heterogeneous yarn.
  • the fabric may be any one or more of plain weave, twill weave, satin weave and double weave.
  • the double weave refers to the structure of a fabric in which either one of the warp yarns or the weft yarns is doubled or both are doubled.
  • Specific weaving method according to the structure of the fabric may be a weaving method known in the art.
  • the fabric is not limited to the description of the specific fabric structure, and in the case of the weft density in the weaving is not particularly limited.
  • the knitted fabric may include a composite fiber as a yarn, and may be by the method of knitting or warp knitting, and the specific method of knitting and warp knitting may be by conventional knitting or warp knitting.
  • FIG. 14 is a plan view of a composite fiber assembly including a composite fiber according to a preferred embodiment of the present invention.
  • the composite fiber assembly of FIG. 14 includes a plurality of ultra-small LED devices 20 and a fiber forming component 10.
  • the composite fiber 30 is included in the weft (or warp) is a woven fabric woven plain.
  • the heterogeneous yarn 50 other than the composite fiber 30 included in the fabric can be easily removed in step (2) to be described later by the same method as the fiber forming component 10 included in the composite fiber 30.
  • It may be a yarn containing a high molecular compound, and may include a compound of the same or different types as the fiber forming component (10).
  • the composite fiber assembly having the shape of a fabric or knitted fabric as shown in Figure 14 includes only the composite fiber in any one of the warp or weft yarn, to place the ultra-small LED device in the electrode assembly in which two different electrodes are alternately arranged in a row
  • the ultra-small LED device in the electrode assembly in which two different electrodes are alternately arranged in a row
  • FIG. 15 is a schematic diagram illustrating a method of disposing an ultra-small LED device according to an exemplary embodiment of the present invention in an electrode assembly.
  • FIG. 15A includes composite fibers 310, 320, and 330 in which the plurality of micro LEDs 310b and 320b are arranged in a row in the fiber forming components 310a and 320a as wefts (or warp yarns). And placing the fabric including the yarns 310 'and 320' containing the same polymer compound as the fiber forming component as the warp yarn (or the weft yarn) on the first electrode 301 and the second electrode 302. Indicates. Subsequently, when the fiber forming components 310a and 320a and the yarns 310 'and 320' are removed as described in step (2), the micro LEDs 310b and 320b are alternately arranged side by side as shown in FIG. 13B. It may be disposed on the first electrode and / or the second electrode close to the vertical in the longitudinal direction of the ultra-small LED device.
  • the composite fiber assembly may have a shape of a nonwoven fabric including a composite fiber.
  • the composite fiber assembly having the shape of a nonwoven fabric may include more amount of the composite fiber per unit volume of the composite fiber assembly than the composite fiber assembly having the shape of the fabric, and thus may be disposed on an electrode of a predetermined area.
  • Such a nonwoven fabric-like composite fiber assembly may be prepared using the composite fiber by methods known in the art, specifically, a melt-blown method, a flash-extrusion method, a super- The method may be any one of a super-draw method and the like, and the specific process of the method may be known in the art.
  • Step (1) according to the present invention is a step of injecting the above-described composite fiber assembly on the electrode.
  • the electrode preferably refers to an electrode in which the micro LED device remaining after the fiber forming component included in the composite fiber assembly is removed in step (2) to be described later is mounted, and the micro LED device is applied when power is applied to the electrode. It may include two different electrode lines so as to emit light, and the specific arrangement of the two electrode lines may be differently designed depending on the purpose is not particularly limited in the present invention.
  • FIG. 16 is a perspective view of an electrode included in a preferred embodiment of the present invention.
  • first electrode 411 formed on a base substrate 400; and the first electrode 411 Insulating layer 420 formed on the base substrate 400, including; The first electrode and the first electrode 413 formed on the insulating layer 420 spaced apart on the same plane and alternately mutually A second electrode 412 formed, a second electrode 421 connected to the second electrode; And a connection electrode 412 connecting the first electrode and the first electrode 411.
  • the first electrode 411 and the second electrode 421 may be located on different planes, but may be included in an area S in which the micro LED device may be mounted.
  • the first electrode 413 and the second electrode 421 may be formed on the same plane, whereby the axis connecting the first conductive semiconductor layer and the second conductive semiconductor layer is parallel to the same plane.
  • the device may be connected to the electrode while lying down.
  • the electrode included in step (1) according to the present invention may be embodied in various thicknesses and widths of the electrode according to various shapes and structures that can be implemented according to the purpose, and are not particularly limited in the present invention.
  • the width may be 100 nm to 50 ⁇ m, and the thickness may be 0.1 to 10 ⁇ m.
  • the material of the electrode may be a known electrode material commonly used in the art, preferably at least one metal material selected from the group consisting of aluminum, titanium, indium, gold and silver or indium tin oxide (ITO) It may be any one or more transparent materials selected from the group consisting of, ZnO: Al and CNT-conductive polymer (polmer) composite.
  • the electrode includes two or more materials, preferably, two or more materials may be stacked, and more preferably, a titanium / gold stacked structure, but is not limited thereto.
  • the formation and arrangement of the composite fiber assembly on the electrode can be performed simultaneously.
  • the composite fiber assembly prepared separately may be placed on the desired electrode region in various ways, and thus the specific method for arranging the composite fiber assembly on the electrode is not particularly limited.
  • step (1) may be performed to remove the fiber forming component of the composite fiber contained in the composite fiber assembly.
  • the ultra-small LED device When the fiber forming component of the composite fiber is removed through the step (2), only the ultra-small LED device remains on the electrode, and specifically, the composite disposed on the first electrode 201 and the second electrode 202 in FIG. 10A.
  • the micro LEDs 210b and 220b are formed on two different electrodes 201 and 202 as shown in FIG. 10B.
  • the small LED device may be disposed on the electrode.
  • a plurality of micro LED devices 310b and 320b are arranged in a row in the fiber forming components 310a and 320a on the first electrode 301 and the second electrode 302.
  • Fabric comprising a composite fiber (310, 320, 330) arranged in a weft (or warp), and comprising a yarn (310 ', 320') containing the same polymer compound as the fiber forming component as a warp (or weft) Position it.
  • the specific method of removing the fiber forming component of the composite fiber in the step (2) may vary depending on the specific type of the fiber forming component contained in the composite fiber, if the fiber forming component is a material that is easily removed by heat (In the step 2), the fiber forming component may be removed through a heating process, and the specific temperature may vary depending on the type of the fiber forming component used, and thus the present invention is not particularly limited.
  • the solvent may be added to the composite fiber assembly in step (2) to dissolve the fiber-forming component so that the micro LED device remains on the electrode.
  • the solvent may vary depending on the type of fiber forming component used, but preferably may be any one or more of acetone, toluene, chloroform and isopropyl alcohol.
  • step (2) may remove the fiber forming component using heating and a solvent.
  • FIG. 10B shows a state in which the ultra-small LED elements 210b and 220b are disposed on two different electrodes on the electrode, and in this state, the ultra-small LED element is located on the electrode.
  • Each of the first conductive semiconductor layer and the second conductive semiconductor layer of the LED device is not simultaneously connected to the first electrode 201 or the second electrode 202.
  • the first conductive semiconductor layer of the micro LED device is connected to the first electrode 201 or the second electrode 202, and the second conductive A process of connecting the semiconductor layer to an electrode different from the electrode to which the first conductive semiconductor layer is connected is required.
  • This process is possible by applying power to two different electrodes 201 and 202 as shown in FIG. 10C, and a polarization phenomenon in which positive and negative charges are charged on the outer surface of the micro LED device by the power applied to the electrodes.
  • the micro LED device may be moved by the electrostatic attraction and may be connected to two different electrodes as shown in FIG. 10D.
  • the power supply may be a variable power supply having an amplitude and a period
  • the waveform may be a pulse file consisting of sinusoidal waveforms such as sine waves or non-sinusoidal waveforms.
  • AC power Alternatively, DC power is repeatedly applied to the first electrode for 1000 times per second, 0V, 30V, 0V, 30V, 0V, 30V, and 30V, 0V, 30V, 0V, 30V, 0V is repeated to the second electrode as opposed to the first electrode. It is also possible to make a fluctuating power source with amplitude and period by applying it.
  • the voltage (amplitude) of the power supply may be 0.1V to 1000V, the frequency may be 10 Hz to 100 GHz, preferably the micro LED device is applied to two different electrodes by applying power for 5 to 120 seconds. Can be connected at the same time.
  • a solvent may be added in the process of self-aligning the ultra-small LED device by applying the power (FIG. 10C).
  • the solvent may serve as a mobile phase that allows the micro LED device to be easily moved and connected to the electrode.
  • it may be more preferable to add a solvent in the power supply step.
  • the time point at which the solvent is introduced into the electrode line may be the same as or different from the time point at which power is applied to the electrode line, and may be the same.
  • the present invention is a plurality of electrodes; And a composite fiber assembly disposed on the plurality of electrodes, the composite fiber assembly including a composite fiber including a fiber forming component and a plurality of ultra-small LED devices.
  • the electrode assembly including the composite fiber assembly removes the fiber-forming component contained in the composite fiber and when the power is applied to two different electrodes, the electrode assembly including the ultra-small LED element connected to the two different electrodes. Since it can be implemented there is an advantage that can further improve the mass production in the reduction of manufacturing time.
  • the present invention is a base substrate; A plurality of electrodes formed on the base substrate; And a plurality of ultra-small LED elements positioned on the plurality of electrodes by being injected onto the plurality of electrodes as a composite fiber including a fiber forming component, and then removing the fiber forming component.
  • the plurality of microminiature elements are included in the composite fiber in at least one row in the longitudinal direction of the composite fiber, the composite fiber is put on the plurality of electrodes, the fiber of the composite fiber.
  • the composite fiber may be a composite fiber in which a plurality of microminiature elements form a core portion, and a fiber forming component is formed in a core portion, and the fiber-forming component is introduced after the core sheath-type composite fiber of the above structure is put on an electrode.
  • the plurality of micro LED elements can be positioned in at least one row on the plurality of electrodes.

Abstract

The present invention relates to a method for arranging micro-LED elements in an electrode assembly and, more specifically, to a method for arranging micro-LED elements in an electrode assembly, which can increase accessibility such that, when a micro-LED element on a nanoscale is connected onto a micro electrode on a nanoscale, the micro-LED element can be placed in a target position on the electrode, and can achieve mass production through a reduction in the manufacturing time required for the arrangement of micro-LED elements and an increase of convenience.

Description

초소형 LED 소자를 전극어셈블리에 배치시키는 방법How to place an ultra-small LED device in an electrode assembly
본 발명은 초소형 LED 소자를 전극어셈블리에 배치시키는 방법에 관한 것으로, 보다 상세하게는 나노 스케일의 초소형 전극상에 나노 스케일의 초소형 LED 소자를 연결시킴에 있어 목적한 전극 위치에 초소형 LED 소자가 위치할 수 있도록 접근성을 향상시키고, 초소형 LED 소자의 배치에 소요되는 제조시간의 단축 및 편리성 향상을 통해 대량생산을 가능하게 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법에 관한 것이다.The present invention relates to a method of disposing an ultra-small LED device in an electrode assembly, and more particularly, to connect a micro-scale LED device on a nano-scale micro electrode to a micro-LED device at a desired electrode position. The present invention relates to a method of disposing an ultra-small LED device in an electrode assembly that can be mass-produced by improving accessibility and shortening the manufacturing time and convenience of the micro LED device.
LED는 1992년 일본 니치아사의 나카무라 등이 저온의 GaN 화합물 완층층을 적용하여 양질의 단결정 GaN 질화물 반도체를 융합시키는데 성공함으로써 개발이 활발하게 이루어져 왔다. LED는 화합물 반도체의 특성을 이용하여 다수의 캐리어가 전자인 n형 반도체 결정과 다수의 캐리어가 정공인 p형 반도체 결정이 서로 접합된 구조를 갖는 반도체로써, 전기신호를 원하는 영역의 파장대역을 가지는 빛으로 변환시켜 표출되는 반도체 소자이다. 이러한 LED 반도체는 광 변환 효율이 높기에 에너지 소비량이 매우 적으며 수명이 반영구적이고 환경 친화적이어서 그린 소재로서 빛의 혁명이라고 불린다. 최근에는 화합물 반도체 기술의 발달로 고휘도 적색, 주황, 녹색, 청색 및 백색 LED가 개발되었으며, 이를 활용하여 신호등, 핸드폰, 자동차 전조등, 옥외 전광판, LCD BLU(back light unit), 그리고 실내외 조명 등 많은 분야에서 응용되고 있으며 국내외에서 활발한 연구가 계속되고 있다. 특히 넓은 밴드갭을 갖는 GaN계 화합물 반도체는 녹색, 청색 그리고 자외선 영역의 빛을 방출하는 LED 반도체의 제조에 이용되는 물질이며, 청색 LED 소자를 이용하여 백색 LED 소자의 제작이 가능하므로 이에 대한 많은 연구가 이루어지고 있다. LED has been actively developed in 1992 by Nakamura of Nichia, Japan, by applying a low-temperature GaN compound complete layer to fuse high-quality monocrystalline GaN nitride semiconductors. An LED is a semiconductor having a structure in which n-type semiconductor crystals in which a plurality of carriers are electrons and p-type semiconductor crystals in which a plurality of carriers are holes are bonded to each other by using characteristics of a compound semiconductor. It is a semiconductor device that is converted to light and expressed. These LED semiconductors are called light revolutions because of their high light conversion efficiency, very low energy consumption, semi-permanent and environmentally friendly life. Recently, the development of compound semiconductor technology has led to the development of high-brightness red, orange, green, blue, and white LEDs, which have been used in many fields such as traffic lights, cell phones, automotive headlights, outdoor billboards, LCD back light units, and indoor and outdoor lighting. It is being applied to and is being actively researched at home and abroad. In particular, GaN-based compound semiconductors having a wide bandgap are materials used in the manufacture of LED semiconductors emitting light in the green, blue and ultraviolet regions, and many studies have been conducted since white LED devices can be manufactured using blue LED devices. Is being done.
한편, LED 소자를 조명, 디스플레이에 등에 활용하기 위해서는 LED 소자와 상기 소자에 전원을 인가할 수 있는 전극이 필요하며, 활용목적, 전극이 차지하는 공간의 감소 또는 제조방법과 연관되어 LED 소자와 서로 다른 두 전극의 배치는 다양하게 연구되어 왔다. On the other hand, in order to utilize the LED device for lighting, display, etc., the LED device and an electrode capable of supplying power to the device are required. The arrangement of the two electrodes has been studied in various ways.
이러한 LED 소자와 전극의 배치에 관한 연구는 전극에 LED 소자를 성장시키는 것과 LED 소자를 별도로 독립 성장시킨 후에 전극에 배치하는 것으로 분류할 수 있다. The study of the arrangement of the LED element and the electrode can be classified into the growth of the LED element on the electrode and the LED element is grown separately and placed on the electrode.
먼저, 전극에 LED 소자를 성장시키는 연구는 기판 위에 하부전극을 박막하고 그 위로 n형 반도체층, 활성층, p형 반도체층, 상부전극을 순차적으로 적층한 후 식각하거나 상부전극을 적층하기 전에 기 적층된 층들을 식각한 후 상부전극을 적층하는 방법 등을 통해 LED 소자와 전극을 일련의 제조과정에서 동시에 생성 및 배치시키는 bottom-up 방식이 있다. First, a study of growing an LED device on an electrode involves thinning a lower electrode on a substrate, and sequentially stacking an n-type semiconductor layer, an active layer, a p-type semiconductor layer, and an upper electrode on the substrate, and then stacking the electrode prior to etching or stacking the upper electrode. There is a bottom-up method in which LED devices and electrodes are simultaneously generated and arranged in a series of manufacturing processes by etching the layers and then stacking the upper electrodes.
다음으로, LED 소자를 별도로 독립성장 시킨 후에 전극에 배치하는 방법은 LED 소자를 별도의 공정을 통해 독립성장 제조한 각각의 LED 소자를 패터닝된 전극에 일일이 배치시키는 방법이다. Next, a method of arranging the LED elements separately and independently on the electrodes is a method of individually disposing each LED device independently grown and manufactured on the patterned electrodes through separate processes.
상기 전자의 방법은 고결정성/고효율의 박막 및 LED 소자의 성장이 결정학적으로 매우 어렵다는 문제가 있고 후자의 방법의 경우 광추출 효율이 낮아져 발광효율이 떨어질 수 있다는 문제점이 있었다. 또한, 후자의 방법은 통상적인 크기의 LED 소자라면 3차원의 LED 소자를 수동 또는 기계적으로 일일이 하나하나 전극과 연결할 수 있지만 LED 소자가 나노단위 크기의 초소형일 경우 전극에 수동 또는 기계적으로 하나하나 연결시키는 매우 어려워 초소형 LED 소자를 나노스케일의 전극상에 배치시키고 배치된 초소형 LED 소자를 전극과 연결시키기 어려운 문제점이 있었다. The former method has a problem that it is very difficult to crystallize very high crystallinity and high efficiency of the thin film and the LED device, and the latter method has a problem that the light extraction efficiency is lowered and the luminous efficiency may be lowered. In addition, the latter method can be used to connect the three-dimensional LED device manually or mechanically one by one if the LED device of the normal size, but manually or mechanically connected to the electrode one by one if the LED device is a micro-sized micro-sized unit. It is very difficult to arrange a very small LED device on a nanoscale electrode and difficult to connect the disposed small LED device with the electrode.
구체적으로 대한민국 특허출원 제2013-0080427호는 상기 후자의 방법에 따른 문제점을 해결하기 위해 본 발명의 발명자에 의해 발명된 것으로써, 더 구체적으로 도 1은 상기 특허출원에 개시된 초소형 LED 소자를 전극에 자기정렬 시키는 제조공정을 나타내는 모식도로써, 도 1a와 같이 독립하여 성장시켜 제조된 초소형 LED 소자(120)를 용매(140)에 포함시켜 용액상태로 베이스 기판(100)상에 형성된 나노 스케일의 초소형 전극(110, 130)상에 투입하고, 이후 도 1b와 같이 서로 다른 두 전극(110, 130)에 전원을 인가하여 초소형 LED 소자를 자기정렬 시켜 도 1c와 같이 초소형의 서로 다른 두 전극상에 연결시켰다. 이를 통해 초소형 LED 소자를 초소형의 서로 다른 두 전극에 연결시키기 어려운 종래의 난점은 극복할 수 있었지만, 초소형 LED 소자를 용액상태로 전극에 투입함에 따라 초소형 LED 소자가 연결되어야 할 전극영역 이외의 전극영역으로 초소형 LED 소자가 펴져나감에 따라 목적하는 전극영역에 배치되는 초소형 LED 소자의 개수는 현저히 적어지는 문제점이 있었다. 이러한 문제점은 초소형 LED 소자를 포함시켜 구현하려 하는 조명, 디스플레이의 성능을 현저히 저하시키고, 초소형 LED 소자를 용액상태로 전극에 일일이 투입해야 하는바 대량생산에는 부적합한 문제점이 있다.Specifically, the Republic of Korea Patent Application No. 2013-0080427 was invented by the inventor of the present invention to solve the problem according to the latter method, more specifically Figure 1 is a micro LED device disclosed in the patent application to the electrode As a schematic diagram showing a manufacturing process for self-alignment, a nano-scale micro electrode formed on the base substrate 100 in a solution state by including the micro LED device 120 manufactured by growing independently as shown in FIG. 1A in a solvent 140. After input to the (110, 130), and then applied power to the two different electrodes (110, 130) as shown in Figure 1b to self-align the ultra-small LED device is connected to the two different small electrodes as shown in Figure 1c. . This overcomes the conventional difficulty of connecting a small LED device to two different small electrodes, but electrode areas other than the electrode area to which the small LED device should be connected as the small LED device is put into the electrode in solution. As the ultra-small LED device is opened, the number of micro-LED devices arranged in the desired electrode region has been significantly reduced. This problem significantly reduces the performance of the lighting and display to be implemented by including an ultra-small LED device, and the micro-LED device has to be put into the electrode in a solution state, which is not suitable for mass production.
또한, 상기와 같은 문제점을 해결하기 위해서 초소형 LED 소자를 포함하는 용액을 반복해서 투입할 경우 목적하는 전극영역에 배치되는 초소형 LED 소자의 개수를 증가시킬 수 있어도 용액의 반복 투입에 따른 제조시간, 제조비용의 현저한 상승을 초래하고 대량생산에도 부적합한 문제점이 상존한다.In addition, in order to solve the above problems, when repeatedly adding a solution containing a small LED device, even if the number of the small LED device disposed in the desired electrode region can be increased, the manufacturing time, manufacturing according to the repeated input of the solution There is a problem that causes a significant increase in costs and is unsuitable for mass production.
이에 따라 초소형 전극 중 목적하는 전극영역에 초소형 LED 소자를 보다 용이하게 배치시키고, 소자가 전극상에 배치된 이후에도 초소형 LED 소자가 목적하는 전극영역 이외로 퍼져나가지 않음으로써 초소형 LED 소자를 목적한 전극영역에 보다 용이하게 연결시킬 수 있는 방법에 대한 연구가 시급한 실정이다.Accordingly, the micro LED device is more easily disposed in the desired electrode region among the micro electrodes, and even after the device is disposed on the electrode, the micro LED device does not spread beyond the intended electrode region, thereby making the micro LED device an intended electrode region. There is an urgent need for research on a method that can be connected more easily.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 초소형 전극 중 목적하는 전극영역에 초소형 LED 소자를 보다 용이하게 배치할 수 있고, 소자가 전극상에 배치된 이후에도 초소형 LED 소자가 목적하는 전극영역 이외로 퍼져나가지 않음으로써 초소형 LED 소자를 목적한 전극영역에 보다 용이하게 연결시킬 수 있으며, 전극상 초소형 LED 소자의 배치시간을 현저히 감소시키고, 배치의 편리성을 향상시켜 대량생산을 가능하게 하는 동시에 목적하는 전극영역에 배치되는 초소형 LED 소자의 개수를 현저히 증가시켜 우수한 품질의 LED 램프, LED 디스플레이 등의 제품으로 응용될 수 있는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법에 관한 것이다.The present invention has been made to solve the above-described problems, it is possible to more easily arrange the ultra-small LED element in the desired electrode region of the micro-electrode, even after the element is disposed on the electrode the electrode region of the micro-LED element By not spreading, it is possible to connect the micro LED device to the intended electrode area more easily, significantly reducing the deployment time of the micro LED device on the electrode, and improving the convenience of placement, thereby enabling mass production. The present invention relates to a method of disposing an ultra-small LED element in an electrode assembly, which can be applied to products such as LED lamps and LED displays of excellent quality by significantly increasing the number of micro-LED elements disposed in a desired electrode region.
상술한 과제를 해결하기 위해 본 발명은, (1) 섬유형성성분 및 복수개의 초소형 LED 소자를 포함하는 복합섬유가 포함된 복합섬유집합체;를 전극상에 투입시키는 단계; 및 (2) 상기 복합섬유의 섬유형성성분을 제거하는 단계;를 포함하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법을 제공한다.In order to solve the above problems, the present invention, (1) a composite fiber assembly including a composite fiber comprising a fiber-forming component and a plurality of ultra-small LED device; And (2) removing the fiber forming component of the composite fiber.
본 발명의 바람직한 일실시예에 따르면, 상기 복합섬유 집합체는 실, 직물, 편성물 및 부직포 중 어느 하나의 형상일 수 있다.According to a preferred embodiment of the present invention, the composite fiber assembly may be in the shape of any one of yarn, woven fabric, knitted fabric and nonwoven fabric.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 복수개의 초소형 소자는 복합섬유의 내부에 포함할 수 있고, 상기 복수개의 초소형 소자는 복합섬유의 길이방향으로 적어도 하나 이상의 열을 지어 배열될 수 있다.According to another preferred embodiment of the present invention, the plurality of micro-elements may be included in the composite fiber, the plurality of micro-elements may be arranged in at least one row in the longitudinal direction of the composite fiber.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 복합섬유는 복수개의 초소형 LED 소자가 일렬로 열을 지어 형성된 심부; 및 섬유형성성분이 상기 심부를 감싸 형성된 초부;를 포함할 수 있다.According to another preferred embodiment of the present invention, the composite fiber is a core portion formed by forming a plurality of ultra-small LED elements in a row; And a fiber forming component formed around the core portion.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 복합섬유의 직경은 초소형 LED 소자 단축길이의 1.2 ~ 8.0배일 수 있고 더 바람직하게는 1.2 ~ 6.0배일 수 있다.According to another preferred embodiment of the present invention, the diameter of the composite fiber may be 1.2 to 8.0 times the shorter length of the ultra-small LED device, more preferably 1.2 to 6.0 times.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 복수개의 초소형 LED 소자는 복합섬유의 길이방향으로 복수개의 열을 지어 배열될 수 있다.According to another preferred embodiment of the present invention, the plurality of ultra-small LED device may be arranged in a plurality of rows in the longitudinal direction of the composite fiber.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 섬유형성성분은 PMMA (Poly(methyl methacrylate)), PVA (Polyvinyl alchol) PS (Polystyrene), PVC (Polyvinyl chloride) 및 PVA (Polyvinyl acetate) 로 이루어진 군에서 선택된 어느 하나 이상의 고분자 화합물을 포함할 수 있다.According to another preferred embodiment of the present invention, the fiber forming component in the group consisting of PMMA (Poly (methyl methacrylate)), PVA (Polyvinyl alchol) PS (Polystyrene), PVC (Polyvinyl chloride) and PVA (Polyvinyl acetate) It may include any one or more polymer compounds selected.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 복합섬유는 섬유형성성분 100 중량부에 대해 초소형 LED 소자를 30 ~ 90 중량부로 포함할 수 있다. According to another preferred embodiment of the present invention, the composite fiber may include 30 to 90 parts by weight of the ultra-small LED device with respect to 100 parts by weight of the fiber forming component.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 초소형 LED 소자는 로드(rod) 형상이며, 초소형 LED 소자의 길이는 100 nm 내지 10㎛일 수 있다.According to another preferred embodiment of the present invention, the micro LED device has a rod shape, and the micro LED device may have a length of 100 nm to 10 μm.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 초소형 LED 소자는 제1 도전성 반도체층; 상기 제1 도전성 반도체층상에 형성된 활성층; 및 상기 활성층 상에 형성된 제2 도전성 반도체층;을 포함할 수 있다. 또한, 상기 초소형 LED 소자는 제1 도전성 반도체층 하부에 형성된 제1 전극층; 및 제2 도전성 반도체층 상부에 형성된 제2 전극층;을 더 포함할 수 있다. 또한, 상기 초소형 LED 소자의 외부면에는 적어도 활성층 부분의 외부면 전체를 덮는 절연피막이 코팅될 수 있다.According to another preferred embodiment of the present invention, the micro LED device comprises a first conductive semiconductor layer; An active layer formed on the first conductive semiconductor layer; And a second conductive semiconductor layer formed on the active layer. In addition, the micro LED device may include a first electrode layer formed under the first conductive semiconductor layer; And a second electrode layer formed on the second conductive semiconductor layer. In addition, the outer surface of the micro LED device may be coated with an insulating coating covering at least the entire outer surface of the active layer portion.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (2) 단계는 섬유형성성분을 열 또는 용매 중 적어도 하나 이상을 처리하여 제거시킬 수 있다.According to another preferred embodiment of the present invention, step (2) may remove the fiber forming component by treating at least one or more of heat or a solvent.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 용매는 아세톤, 톨루엔 및 이소프로필알코올로 이루어진 군에서 선택된 어느 하나 이상의 용매를 포함할 수 있다.According to another preferred embodiment of the present invention, the solvent may include any one or more solvents selected from the group consisting of acetone, toluene and isopropyl alcohol.
한편, 상술한 과제를 해결하기 위해 본 발명은, 복수의 전극; 및 상기 복수의 전극상에 배치되고, 섬유형성성분 및 복수개의 초소형 LED 소자를 포함하는 복합섬유를 포함하는 복합섬유집합체;를 포함하는 복합섬유 집합체를 포함하는 전극어셈블리를 제공한다.On the other hand, in order to solve the above problems, the present invention, a plurality of electrodes; And a composite fiber assembly disposed on the plurality of electrodes, the composite fiber assembly including a composite fiber including a fiber forming component and a plurality of ultra-small LED devices.
또한, 상술한 과제를 해결하기 위해 본 발명은, 베이스기판; 상기 베이스기판 상에 형성되는 복수의 전극; 및 섬유형성성분을 포함한 복합섬유로 상기 복수의 전극상에 투입된 후, 상기 섬유형성성분이 제거됨으로써 상기 복수의 전극상에 위치되는 복수개의 초소형 LED 소자;를 포함하는 전극어셈블리를 제공한다.In addition, the present invention to solve the above problems, the base substrate; A plurality of electrodes formed on the base substrate; And a plurality of ultra-small LED elements positioned on the plurality of electrodes after being injected onto the plurality of electrodes with the composite fibers including the fiber forming component and then removing the fiber forming component.
본 발명의 바람직한 일실시예에 따르면, 상기 복수개의 초소형 소자는 복합섬유의 길이방향으로 적어도 하나 이상의 열을 지어 복합섬유에 포함되며,According to a preferred embodiment of the present invention, the plurality of microminiature elements are included in the composite fibers in at least one row in the longitudinal direction of the composite fibers,
상기 복합 섬유가 복수의 전극상에 투입된 후, 복합섬유의 섬유형성성분이 제거됨으로써 복수개의 초소형 LED 소자는 복수의 전극상에 적어도 하나 이상의 열을 지어 위치될 수 있다.After the composite fiber is put on the plurality of electrodes, the fiber forming component of the composite fiber is removed so that the plurality of ultra-small LED elements can be positioned in at least one row on the plurality of electrodes.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 복수개의 초소형 소자는 섬유형성성분으로 형성된 초부에 대하여 그 내부에 하나 이상의 열을 지은 심부 형상으로 복합섬유에 포함되며, 상기 복합섬유가 복수의 전극상에 투입된 후, 복합섬유의 초부가 제거됨으로써 복수개의 초소형 LED 소자는 복수의 전극상에 적어도 하나 이상의 열을 지어 위치될 수 있다.According to another preferred embodiment of the present invention, the plurality of microminiature elements are included in the composite fiber in a core shape having one or more rows formed therein with respect to a sheath formed of a fiber forming component, and the composite fiber is formed on a plurality of electrodes. After being injected into, the ultra-small portions of the composite fibers are removed so that the plurality of ultra-small LED elements can be positioned in at least one row on the plurality of electrodes.
본 발명의 초소형 LED 소자를 포함하는 복합섬유집합체는 초소형 LED 소자를 단순히 용매에 포함시켜 용액상태로 초소형 전극에 투입할 때에 비해 초소형 전극 중 목적하는 전극영역에 초소형 LED 소자를 보다 용이하게 배치할 수 있게 하고, 초소형 LED 소자가 전극상에 배치된 이후에도 초소형 LED 소자가 목적하는 전극영역 이외로 퍼져나가지 않음으로써 초소형 LED 소자를 목적한 전극영역에 보다 용이하게 연결시킬 수 있으며, 전극상 초소형 LED 소자의 배치시간을 현저히 감소시켜 대량생산을 가능하게 하는 동시에 목적하는 전극영역에 배치되는 초소형 LED 소자의 개수를 현저히 증가시켜 우수한 품질의 LED 램프, LED 디스플레이 등의 제품으로 널리 응용될 수 있다.The composite fiber assembly including the ultra-small LED device of the present invention can more easily place the micro-LED device in a desired electrode region of the micro-electrode than when the micro-LED device is simply included in a solvent and put into the micro-electrode in a solution state. After the micro LED device is disposed on the electrode, the micro LED device does not spread beyond the target electrode area, thereby easily connecting the micro LED device to the target electrode area. Significantly reduce the batch time to enable mass production and at the same time significantly increase the number of ultra-small LED elements arranged in the desired electrode area can be widely applied to products such as LED lamps, LED displays of excellent quality.
도 1은 초소형 LED 소자를 전극에 자기정렬 시키는 제조공정을 나타내는 모식도이다. 1 is a schematic diagram showing a manufacturing process of self-aligning an ultra-small LED element to an electrode.
도 2는 본 발명의 바람직한 일구현예에 따른 복합섬유의 사시도이다.2 is a perspective view of a composite fiber according to a preferred embodiment of the present invention.
도 3은 초소형 LED 소자를 용매에 포함시켜 전극상에 투입한 후 전극상에 배치된 초소형 LED 소자를 나타내는 광학현미경 사진이다.FIG. 3 is an optical micrograph showing a micro LED device disposed on an electrode after the micro LED device is included in a solvent and injected onto the electrode.
도 4는 본 발명의 바람직한 일구현예에 포함되는 초소형 LED 소자의 사시도이다.4 is a perspective view of a micro LED device included in a preferred embodiment of the present invention.
도 5는 종래의 초소형 전극 어셈블리의 수직단면도이다.5 is a vertical cross-sectional view of a conventional micro electrode assembly.
도 6은 본 발명의 바람직한 일구현예에 따른 복합섬유집합체를 통해 초소형 LED 소자를 제1 전극과 제2 전극에 연결시킨 초소형 LED 전극어셈블리의 평면도 및 수직단면도이다.FIG. 6 is a plan view and a vertical sectional view of a micro LED electrode assembly in which a micro LED device is connected to a first electrode and a second electrode through a composite fiber assembly according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 일구현예에 따른 복합섬유의 사시도다.7 is a perspective view of a composite fiber according to a preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 일구현예에 따른 복합섬유집합체를 통해 전극상에 초소형 LED 소자를 연결시킨 초소형 LED 전극어셈블리의 평면도이다.8 is a plan view of a micro LED electrode assembly in which a micro LED device is connected to an electrode through a composite fiber assembly according to a preferred embodiment of the present invention.
도 9는 본 발명의 바람직한 일구현예에 따른 복합섬유의 사시도이다.9 is a perspective view of a composite fiber according to a preferred embodiment of the present invention.
도 10은 본 발명의 바람직한 일구현예에 따라 초소형 LED 소자를 전극어셈블리에 배치시키는 방법을 나타낸 모식도이다.FIG. 10 is a schematic diagram illustrating a method of disposing an ultra-small LED device in an electrode assembly according to an exemplary embodiment of the present invention.
도 11은 본 발명의 바람직한 일구현예에 포함되는 복합섬유의 횡단면사시도이다.11 is a cross-sectional perspective view of a composite fiber included in a preferred embodiment of the present invention.
도 12는 본 발명의 바람직한 일구현예에 포함되는 복합섬유 제조에 사용되는 2중 관현 방사노즐의 단면도이다.12 is a cross-sectional view of a double orifice spinning nozzle used for producing a composite fiber included in a preferred embodiment of the present invention.
도 13은 본 발명의 바람직한 일구현예에 따라 제조된 해도형 섬유의 횡단면사시도이다.13 is a cross-sectional perspective view of an island-in-the-sea fiber manufactured according to a preferred embodiment of the present invention.
도 14는 본 발명의 바람직한 일구현예에 따른 복합섬유를 포함하는 복합섬유집합체의 평면도이다.14 is a plan view of a composite fiber assembly including a composite fiber according to a preferred embodiment of the present invention.
도 15는 본 발명의 바람직한 일구현예에 따라 초소형 LED 소자를 전극어셈블리에 배치시키는 방법을 나타낸 모식도이다.FIG. 15 is a schematic diagram illustrating a method of disposing an ultra-small LED device in an electrode assembly according to an exemplary embodiment of the present invention.
도 16은 본 발명의 바람직한 일구현예에 포함되는 전극에 대한 사시도이다.16 is a perspective view of an electrode included in a preferred embodiment of the present invention.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
상술한 바와 같이 종래에 초소형 LED 소자를 초소형의 전극에 연결시키기 위해서는 초소형 LED 소자를 용매에 포함시켜 용액상태로 전극에 투입하여 초소형 LED 소자를 전극상에 배치시켰는데, 초소형 LED 소자를 용액상태로 전극에 투입함에 따라 초소형 LED 소자가 연결되어야 할 전극영역 이외의 전극영역으로 초소형 LED 소자가 펴져나감에 따라 목적하는 전극영역에 배치되는 초소형 LED 소자의 개수는 현저히 적어지는 문제점이 있었다. 또한, 이러한 문제점은 초소형 LED 소자를 포함시켜 구현하려 하는 조명, 디스플레이의 성능을 현저히 저하시키고, 초소형 LED 소자를 용액상태로 전극에 일일이 투입해야 하는 바 대량생산에는 부적합한 문제점이 있었다. 나아가, 상기와 같은 문제점을 해결하기 위해서 초소형 LED 소자를 포함하는 용액을 반복해서 투입할 경우 목적하는 전극영역에 배치되는 초소형 LED 소자의 개수를 증가시킬 수 있어도 용액의 반복 투입에 따른 제조시간, 제조비용의 현저한 상승을 초래하고 대량생산에도 부적합한 문제점이 상존했다. 이에 본 발명에서는 (1) 섬유형성성분 및 복수개의 초소형 LED 소자를 포함하는 복합섬유를 포함하는 복합섬유집합체;를 전극상에 투입시키는 단계; 및 (2) 상기 복합섬유의 섬유형성성분을 제거하는 단계;를 포함하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법을 제공함으로써 상술한 문제의 해결을 모색하였다. 이를 통해 초소형 전극 중 목적하는 전극영역에 초소형 LED 소자를 보다 용이하게 배치할 수 있고, 소자가 전극상에 배치된 이후에도 초소형 LED 소자가 목적하는 전극영역 이외로 퍼져나가지 않음으로써 초소형 LED 소자를 목적한 전극영역에 보다 용이하게 연결시킬 수 있으며, 전극상 초소형 LED 소자의 배치시간을 현저히 감소시켜 대량생산을 가능하게 하는 동시에 목적하는 전극영역에 배치되는 초소형 LED 소자의 개수를 현저히 증가시킬 수 있다.As described above, in order to connect an ultra-small LED device to an ultra-small electrode, a micro-LED device is included in a solvent and placed in a solution state, and the micro-LED device is placed on an electrode. As the micro LEDs are extended to the electrode regions other than the electrode regions to which the micro LEDs are connected as they are introduced into the electrodes, the number of micro LEDs arranged in the desired electrode region has been significantly reduced. In addition, such a problem significantly reduces the performance of the lighting and display to be implemented by including a small LED device, and the micro LED device has to be put into the electrode in solution in one bar, which is unsuitable for mass production. Furthermore, in order to solve the above problems, if the solution containing the ultra-small LED element is repeatedly added, the manufacturing time and manufacturing time due to the repeated dosing of the solution may be increased even though the number of the micro-LED elements disposed in the desired electrode region may be increased. There were problems that led to a significant increase in costs and unsuitable for mass production. In the present invention, (1) a composite fiber aggregate comprising a composite fiber comprising a fiber-forming component and a plurality of ultra-small LED device; And (2) removing the fiber-forming component of the composite fiber. The above-described problem was sought by providing a method of disposing an ultra-small LED device in an electrode assembly. This makes it easier to place the micro LED device in the desired electrode region of the micro electrodes, and even after the device is disposed on the electrode, the micro LED device does not spread out beyond the intended electrode region. It can be more easily connected to the electrode region, it is possible to significantly reduce the placement time of the small LED element on the electrode to enable mass production and at the same time significantly increase the number of the small LED element disposed in the desired electrode region.
본 발명에 따른 (1) 단계로써, 섬유형성성분 및 복수개의 초소형 LED 소자를 포함하는 복합섬유를 포함하는 복합섬유집합체;를 전극상에 투입시키는 단계에 대해 설명한다.As a step (1) according to the present invention, a step of introducing a composite fiber aggregate comprising a composite fiber comprising a fiber forming component and a plurality of ultra-small LED device on the electrode.
먼저, 복합섬유집합체에 포함되는 섬유형성성분 및 복수개의 초소형 LED 소자를 포함하는 복합섬유에 대해 설명한다.First, a description will be given of a composite fiber comprising a fiber-forming component and a plurality of ultra-small LED device included in the composite fiber assembly.
구체적으로 도 2는 본 발명의 바람직한 일구현예에 따른 복합섬유의 사시도로써, 복합섬유(30A)는 섬유형성성분(10) 및 복수개의 초소형 LED 소자(20)를 포함하고, 상기 복수개의 초소형 LED 소자(20)는 섬유형성성분(10)의 내부에 포함되어 있다. 2 is a perspective view of a composite fiber according to a preferred embodiment of the present invention, the composite fiber 30A includes a fiber forming component 10 and a plurality of micro LEDs 20, the plurality of micro LEDs The device 20 is included in the fiber forming component 10.
상기 섬유형성성분은 내부에 포함되는 복수개의 초소형 LED 소자를 담지하는 지지체의 역할을 하여 초소형 LED 소자를 목적한 전극영역에 배치시키기 보다 더 용이한 접근성을 제공할 수 있고, 복수개의 초소형 LED 소자를 용액상태로 관리하는 것에 비해 취급의 용이성이 있으며, 대면적의 초소형 전극라인 중 목적하는 전극영역에 초소형 LED 소자를 배치하기 용이함에 따라 대량생산 및 대면적의 전극어셈블리를 구현하는데 보다 더 유리할 수 있다. The fiber forming component may serve as a support for supporting a plurality of ultra-small LED elements included therein and may provide easier access than placing the ultra-small LED elements in a desired electrode region. It is easier to handle than managing in solution, and it can be more advantageous to realize mass production and large area electrode assembly because it is easy to place a small LED device in a desired electrode region of a large area of the small electrode line. .
종래의 초소형 LED 소자는 초소형의 전극에 배치될 때 용매에 포함되어 용액상태로 전극상에 투입되는데, 이때 초소형 LED소자는 용액 내에서 일정한 방향성 없이 부유함에 따라 용액을 처음 투입한 곳이 LED 소자를 배치시키려는 목적한 전극영역일지라도 용액의 투입 이후에는 초소형 LED 소자가 목적한 전극영역 밖 또는 목적한 전극영역의 가장자리 부분으로 퍼져나가 배치되는 문제점이 있었다. Conventional micro LED devices are included in a solvent when placed on a micro electrode and are put on the electrode in a solution state. At this time, the micro LED device is suspended in a solution without any directivity, and thus the place where the solution is first introduced is an LED device. Even after the intended electrode region to be disposed, there is a problem that after the introduction of the solution, the ultra-small LED device spreads out of the desired electrode region or to the edge of the desired electrode region.
구체적으로 도 3은 초소형 LED 소자를 용매에 포함시켜 전극상에 투입한 후 전극상에 배치된 초소형 LED 소자를 나타내는 광학현미경 사진으로써, 도 3을 통해 확인할 수 있듯이 초소형 LED 소자는 전극영역의 중심부가 아닌 가장자리 부분에 집중하여 배치된 것을 확인할 수 있다. 이에 본 발명자는 상기와 같은 문제점을 해결하기 위해 연구를 계속하던 중, 초소형 LED 소자를 지지체에 포함시켜 목적한 전극영역에 배치시킬 경우 초소형 LED 소자가 목적한 전극영역 밖으로 퍼져나가는 것이 지지체에 의해 물리적으로 차단됨에 따라 초소형 LED 소자를 목적한 전극영역에 더 쉽게 배치시킬 수 있음을 알게 되어 본 발명에 이르게 되었다.Specifically, FIG. 3 is an optical microscope photograph of a micro LED device disposed on an electrode after the micro LED device is included in a solvent and injected into an electrode. As shown in FIG. 3, the micro LED device has a central portion of an electrode region. You can see that the focus is placed on the edges rather than the edges. Accordingly, the present inventors continue to research to solve the above problems, and when the micro LED device is included in the support electrode and placed in the target electrode region, it is physically supported by the support that the micro LED device spreads out of the target electrode region. As it is blocked by the present invention, it has been found that the micro LED device can be more easily disposed in the desired electrode region.
이에 따라 상기 섬유형성성분은 복수개의 초소형 LED 소자 담지하여 지지체로 기능할 수 있는 물질인 경우 제한 없이 사용될 수 있으나, 바람직하게는 후술하는 (2) 단계에서 통해 쉽게 제거될 수 있고, 섬유로 제조할 수 있으며, 초소형 LED 소자에 물리적/화학적 영향을 미치지 않는 물질일 수 있다. 보다 바람직하게는 열에 제거되는 열가소성 고분자 화합물; 및/또는 아세톤, 톨루엔, 클로로포름 및 이소프로필알코올로 이루어지는 군에서 선택된 어느 하나 이상의 용매 의해 제거되는 고분자 화합물; 중 적어도 하나 이상을 포함할 수 있고, 구체적으로 상기 열에 의해 제거되는 열가소성 고분자 화합물은 융점이 50 ~ 400℃, 보다 바람직하게는 50 ~ 300℃일 수 있고, 이에 대한 비제한적인 예로써, PMMA (Poly(methyl methacrylate), PS (polystyrene), PVC (polyvinyl chloride), PVA (polyvinyl acetate), PE (polyethylene), PET (Polyethylene terephthalate), PP (polypropylene) 등의 고분자 화합물을 1종 또는 2종 이상 병용할 수 있다. 또한, 상기 용매에 의해 용해되는 고분자 화합물은 PMMA (Poly(methyl methacrylate)), PS (Polystyrene), PVC 및 PVA 로 이루어진 군에서 선택된 어느 하나 이상의 고분자 화합물을 포함하는 것이 바람직하다. Accordingly, the fiber forming component may be used without limitation in the case of a material capable of supporting a plurality of micro LED devices, but may be easily removed through the step (2) to be described later, and may be made of fiber. It may be, and may be a material that does not have a physical / chemical effect on the micro LED device. More preferably a thermoplastic polymer compound removed by heat; And / or a polymer compound removed by any one or more solvents selected from the group consisting of acetone, toluene, chloroform and isopropyl alcohol; The thermoplastic polymer compound may include at least one or more of the above, and specifically, the thermoplastic polymer compound removed by the heat may have a melting point of 50 ° C. to 400 ° C., more preferably 50 ° C. to 300 ° C., and as a non-limiting example, PMMA ( Use of one or two or more polymer compounds such as poly (methyl methacrylate), PS (polystyrene), PVC (polyvinyl chloride), PVA (polyvinyl acetate), PE (polyethylene), PET (Polyethylene terephthalate) and PP (polypropylene) In addition, the polymer compound dissolved by the solvent preferably includes at least one polymer compound selected from the group consisting of PMMA (Poly (methyl methacrylate)), PS (Polystyrene), PVC, and PVA.
상기 섬유형성성분으로 지지체로 기능할 수 있는 동시에 열에 의한 제거 및/또는 용매에 의해 용해되어 쉽게 제거될 수 있는 고분자화합물이 보다 바람직한 이유는 복합섬유를 적어도 하나 이상 포함하는 복합섬유집합체가 전극상에 배치된 후 초소형 LED 소자를 전극에 직접적으로 연결시키기 위해서는 초소형 LED 소자를 감싸고 있는 섬유형성성분의 제거가 요구되기 때문이다. 이에 따라 쉽게 열 및/또는 용매 등에 의해 제거될 수 있는 고분자화합물이 특히 바람직하며, 이를 통해 복합섬유집합체를 전극상에 배치 후 후술한 (2) 단계에서 섬유형성성분을 제거하고 초소형 LED 소자를 전극상에 위치시키는데 소요되는 시간을 현저히 감소시킬 수 있다. The reason why the polymer compound which can function as a support as the fiber forming component and can be easily removed by being removed by heat and / or by solvent is more preferable because the composite fiber assembly including at least one composite fiber is formed on the electrode. This is because it is required to remove the fiber forming component surrounding the micro LED device to directly connect the micro LED device to the electrode after being disposed. Accordingly, a polymer compound which can be easily removed by heat and / or a solvent is particularly preferable. Through this, the composite fiber assembly is disposed on the electrode, and the fiber-forming component is removed in step (2) described below, and the ultra-small LED device is electrode. The time required to position the phase can be significantly reduced.
한편, 상기 섬유형성성분이 용매에 의해 용해되는 고분자화합물인 경우 한번의 용매 투입을 통해 섬유형성성분의 제거 및 초소형 LED 소자의 자기정렬을 동시에 할 수 있는 이점이 더 있다. 구체적으로 도 1a에서 초소형 LED 소자(120)를 용매(140)에 포함시켜 전극(110, 130)에 투입하는 이유는 용매가 없는 상태에서 초소형 LED 소자는 이동성이 거의 없어 전극에 자기정렬이 어렵기 때문이다. 더 구체적으로 도 1b와 같이 전극(110, 130)에 전원을 인가시 초소형 LED 소자(120)의 외표면은 전기장 유도에 의해 초소형 LED 소자의 길이방향 중심부를 기준으로 대칭하여 양전하 또는 음전하로 각각 하전되어 분극이 형성된다. 만일 용매가 없는 경우 소자의 외부표면이 분극된 초소형 LED 소자는 정전기적 인력에 의해 서로 다른 전위를 갖는 두 전극으로 이동하여 자기정렬 및 전극에 연결되기 매우 어려운 문제점이 있다 이에 따라 초소형 LED 소자의 이동성 향상을 위해 자기정렬 시킬 때는 용매와 같은 이동상이 필요한데, 만일 섬유형성성분이 용매에 의해 용해되는 고분자 화합물일 경우 후술하는 (2) 단계에서 복합섬유집합체에 용매를 투입하면 섬유형성성분은 용매에 용해되어 용액을 형성하고, 상기 용액은 전극상에 배치된 초소형 LED 소자를 이동시켜 자기정렬 시킬 수 있는 이동상으로 기능할 수 있어 섬유형성성분을 제거한 후 별도의 용매 투입 없이도 초소형 LED 소자를 전극에 자기정렬 및 연결 시킬 수 있는 이점이 있다.On the other hand, when the fiber-forming component is a polymer compound that is dissolved by a solvent, there is a further advantage that both the removal of the fiber-forming component and the self-alignment of the ultra-small LED device can be performed through one solvent input. In detail, the reason for including the ultra-small LED device 120 in the solvent 140 in FIG. 1A and injecting the electrodes 110 and 130 into the solvent 140 is that the ultra-small LED device has almost no mobility, thus making it difficult to self-align the electrode. Because. More specifically, as shown in FIG. 1B, when the power is applied to the electrodes 110 and 130, the outer surface of the micro LED device 120 is charged with a positive charge or a negative charge by symmetry with respect to the longitudinal center of the micro LED device by electric field induction. Resulting in polarization. If there is no solvent, the ultra small LED device having polarized external surface of the device is very difficult to move to two electrodes having different potentials by electrostatic attraction and to be connected to the self alignment and the electrode. In order to improve self-alignment, a mobile phase such as a solvent is required. If the fiber-forming component is a polymer compound dissolved by a solvent, the fiber-forming component is dissolved in the solvent when the solvent is added to the composite fiber assembly in step (2) described later. To form a solution, and the solution can function as a mobile phase capable of moving and aligning the ultra-small LED elements disposed on the electrodes, thereby removing the fibrous component and then self-aligning the ultra-small LED elements to the electrodes without additional solvent. And there is an advantage that can be connected.
다음으로 상술한 섬유형성성분과 함께 복합섬유에 포함되는 복수개의 초소형 LED 소자에 대해 설명한다.Next, a plurality of ultra-small LED devices included in the composite fiber together with the above-described fiber forming component will be described.
본 발명에 사용될 수 있는 초소형 LED 소자는 일반적으로 조명 또는 디스플레이 등에 사용되는 초소형 LED 소자이면 제한 없이 사용될 수 있으며, 바람직하게는 초소형 LED 소자의 길이는 100 nm 내지 10㎛일 수 있고, 보다 더 바람직하게는 500 nm 내지 5㎛ 일 수 있다. 만일 초소형 LED 소자의 길이가 100 nm 미만인 경우 고효율의 LED 소자의 제조가 어려우며, 10 ㎛ 를 초과하는 경우 LED 소자의 발광 효율을 저하시킬 수 있다. 또한, 초소형 LED 소자의 직경은 바람직하게는 100nm 내지 5㎛일 수 있다. 초소형 LED 소자의 형상은 로드(rod) 형상일 수 있고, 구체적으로 원기둥, 직육면체 등 다양한 형상일 수 있고, 바람직하게는 원기둥 형상일 수 있으나 상기 기재에 한정되는 것은 아니다. The ultra-small LED device that can be used in the present invention can be used without limitation as long as it is a micro-LED device generally used for lighting or display, preferably, the length of the ultra-small LED device can be 100 nm to 10 ㎛, even more preferably May be 500 nm to 5 μm. If the length of the ultra-small LED device is less than 100 nm, it is difficult to manufacture a high-efficiency LED device, and if it exceeds 10 μm, the luminous efficiency of the LED device may be reduced. In addition, the diameter of the ultra-small LED device may be preferably 100nm to 5㎛. The shape of the ultra-small LED device may be a rod shape, specifically, may be a variety of shapes, such as a cylinder, a rectangular parallelepiped, and preferably may be a cylindrical shape, but is not limited to the above description.
이하, 초소형 LED 소자의 설명에서 ‘위’, ‘아래’, ‘상’, ‘하’, ‘상부’ 및 ‘하부’는 초소형 LED 소자에 포함된 각 층을 기준으로 하여 수직의 상, 하 방향을 의미한다.Hereinafter, in the description of the ultra-small LED device, 'up', 'down', 'up', 'low', 'upper' and 'lower' refer to the vertical up and down directions based on each layer included in the ultra-small LED device. Means.
먼저, 본 발명의 바람직한 일구현예에 따르면 상기 초소형 LED 소자는 제1 도전성 반도체층; 상기 제1 도전성 반도체층상에 형성된 활성층; 및 상기 활성층상에 형성된 제2 도전성 반도체층;을 포함할 수 있다.First, according to one preferred embodiment of the present invention, the micro LED device may include a first conductive semiconductor layer; An active layer formed on the first conductive semiconductor layer; And a second conductive semiconductor layer formed on the active layer.
구체적으로 도 4는 본 발명의 바람직한 일구현예에 포함되는 초소형 LED 소자의 사시도로써, 제1 도전성 반도체층(20b), 상기 제1 도전성 반도체층(20b)상에 형성된 활성층(20c) 및 상기 활성층(20c)상에 형성된 제2 도전성 반도체층(20d)을 나타낸다.Specifically, FIG. 4 is a perspective view of an ultra-small size LED device included in a preferred embodiment of the present invention, and includes a first conductive semiconductor layer 20b, an active layer 20c formed on the first conductive semiconductor layer 20b, and the active layer. The second conductive semiconductor layer 20d formed on 20c is shown.
먼저, 제1 도전성 반도체층(20b)에 대해 설명한다. First, the first conductive semiconductor layer 20b will be described.
상기 제1 도전성 반도체층(20b)은 예컨대, n형 반도체층을 포함할 수 있다. 상기 초소형 LED 소자가 청색 발광 소자일 경우에는, 상기 n형 반도체층은 InxAlyGa1-x-yN (0=x=1, 0 =y=1, 0=x+y=1)의 조성식을 갖는 반도체 재료 예컨대, InAlGaN, GaN, AlGaN, InGaN, AlN, InN 등에서 어느 하나 이상이 선택될 수 있으며, 제1 도전성 도펀트(예: Si, Ge, Sn 등)가 도핑될 수 있다. 바람직하게 상기 제1 도전성 반도체층(20b)의 두께는 500 nm ~ 5㎛ 일 수 있으나 이에 제한되지 않는다. 상기 초소형 LED의 발광은 청색에 제한되지 않으므로, 발광색이 다른 경우 다른 종류의 III-V족 반도체 물질을 n형 반도체 층으로 사용하는데 제한이 없다.The first conductive semiconductor layer 20b may include, for example, an n-type semiconductor layer. When the micro LED device is a blue light emitting device, the n-type semiconductor layer has a composition formula of In x Al y Ga 1-xy N (0 = x = 1, 0 = y = 1, 0 = x + y = 1). At least one of a semiconductor material having, for example, InAlGaN, GaN, AlGaN, InGaN, AlN, InN, or the like may be selected, and a first conductive dopant (eg, Si, Ge, Sn, etc.) may be doped. Preferably, the thickness of the first conductive semiconductor layer 20b may be 500 nm to 5 μm, but is not limited thereto. Since the light emission of the ultra-small LED is not limited to blue, there is no limitation in using another type III-V semiconductor material as the n-type semiconductor layer when the emission color is different.
다음으로, 상기 제1 도전성 반도체층(20b)상에 형성되는 활성층(20c)에 대해 설명한다. Next, the active layer 20c formed on the first conductive semiconductor layer 20b will be described.
상기 초소형 LED 소자가 청색 발광 소자일 경우에는, 상기 활성층(20c)은 상기 제 1도전성 반도체층(20b) 위에 형성되며, 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 상기 활성층(20c)의 위 및/또는 아래에는 도전성 도펀트가 도핑된 클래드층(미도시)이 형성될 수도 있으며, 상기 도전성 도펀트가 도핑된 클래드층은 AlGaN층 또는 InAlGaN층으로 구현될 수 있다. 그 외에 AlGaN, AlInGaN 등의 물질도 활성층(20c)으로 이용될 수 있음은 물론이다. 이러한 활성층(20c)에서는 전계를 인가하였을 때, 전자-정공 쌍의 결합에 의하여 빛이 발생하게 된다. 바람직하게 상기 활성층(20c)의 두께는 10 ~ 200 nm 일 수 있으나 이에 제한되지 않는다. 상기 활성층(20c)의 위치는 LED 종류에 따라 다양하게 위치하여 형성될 수 있다. 상기 초소형 LED의 발광은 청색에 제한되지 않으므로, 발광색이 다른 경우 다른 종류의 III-V족 반도체 물질을 활성층으로 사용하는데 제한이 없다.When the micro LED device is a blue light emitting device, the active layer 20c may be formed on the first conductive semiconductor layer 20b and may have a single or multiple quantum well structure. A cladding layer (not shown) doped with a conductive dopant may be formed on and / or under the active layer 20c, and the cladding layer doped with the conductive dopant may be formed of an AlGaN layer or an InAlGaN layer. In addition, materials such as AlGaN and AlInGaN may also be used as the active layer 20c. In the active layer 20c, when an electric field is applied, light is generated by the combination of the electron-hole pairs. Preferably, the thickness of the active layer 20c may be 10 to 200 nm, but is not limited thereto. The position of the active layer 20c may be formed in various ways depending on the type of LED. Since the light emission of the ultra-small LED is not limited to blue, there is no limitation in using another type III-V semiconductor material as the active layer when the emission color is different.
다음으로, 상기 활성층(20c)상에 형성되는 제2 도전성 반도체층(20d)에 대해 설명한다. Next, the second conductive semiconductor layer 20d formed on the active layer 20c will be described.
상기 초소형 LED 소자가 청색 발광 소자일 경우에는, 상기 활성층(20c) 상에는 제 2도전성 반도체층(20d)이 형성되며, 상기 제 2도전성 반도체층(23)은 적어도 하나의 p형 반도체층으로 구현될 수 있는 데, 상기 p형 반도체층은 InxAlyGa1 -x- yN (0=x=1, 0 =y=1, 0=x+y=1)의 조성식을 갖는 반도체 물질 예컨대, InAlGaN, GaN, AlGaN, InGaN, AlN, InN 등에서 어느 하나 이상이 선택될 수 있으며, 제 2도전성 도펀트(예: Mg)가 도핑될 수 있다. 여기서, 발광 구조물은 상기 제1도전성 반도체층(20b), 상기 활성층(20c), 상기 제 2도전성 반도체층(20d)을 최소 구성 요소로 포함하며, 각 층의 위/아래에 또 다른 형광체층, 활성층, 반도체층 및/또는 전극층을 더 포함할 수도 있다. 바람직하게 상기 제2 도전성 반도체층(20d)의 두께는 50 nm ~ 500 nm 일 수 있으나 이에 제한되지 않는다. 상기 초소형 LED의 발광은 청색에 제한되지 않으므로, 발광색이 다른 경우 다른 종류의 III-V족 반도체 물질을 p형 반도체 층으로 사용하는데 제한이 없다.When the ultra-small LED device is a blue light emitting device, a second conductive semiconductor layer 20d is formed on the active layer 20c, and the second conductive semiconductor layer 23 may be implemented with at least one p-type semiconductor layer. be used in the p-type semiconductor layer is a semiconductor material having a compositional formula of in x Al y Ga 1 -x- y N (0 = x = 1, 0 = y = 1, 0 = x + y = 1) , for example, At least one of InAlGaN, GaN, AlGaN, InGaN, AlN, InN, and the like may be selected, and a second conductive dopant (eg, Mg) may be doped. Here, the light emitting structure includes the first conductive semiconductor layer 20b, the active layer 20c, and the second conductive semiconductor layer 20d as minimum components, and another phosphor layer above and below each layer, It may further include an active layer, a semiconductor layer and / or an electrode layer. Preferably, the thickness of the second conductive semiconductor layer 20d is 50 nm to 500 nm But may not be limited thereto. Since the light emission of the ultra-small LED is not limited to blue, there is no limitation in using another type III-V semiconductor material as the p-type semiconductor layer when the emission color is different.
또한, 본 발명의 바람직한 일구현예에 따르면, 상기 초소형 LED 소자는 제1 도전성 반도체층 하부에 형성된 제1 전극층 및 제2 도전성 반도체층 상부에 형성된 제2 전극층을 더 포함할 수 있다. In addition, according to a preferred embodiment of the present invention, the micro LED device may further include a first electrode layer formed below the first conductive semiconductor layer and a second electrode layer formed above the second conductive semiconductor layer.
구체적으로 도 4에서 제1 도전성 반도체층(20b) 하부에 형성된 제1 전극층(20a) 및 제2 도전성 반도체층(20d) 상부에 형성된 제2 전극층(20e)을 나타낸다.Specifically, FIG. 4 shows the first electrode layer 20a formed below the first conductive semiconductor layer 20b and the second electrode layer 20e formed above the second conductive semiconductor layer 20d.
상기 제1 전극층(20a) 및 제2 전극층(20e)은 통상의 LED 소자의 전극으로 사용되는 금속 또는 금속산화물을 이용할 수 있으며, 바람직하게는 각각 독립적으로 크롬(Cr), 티타늄(Ti), 알루미늄(Al), 금(Au), 니켈(Ni), ITO 및 이들의 산화물 또는 합금 등을 단독 또는 혼합하여 사용할 수 있으나 이에 제한되지 않는다. 바람직하게 상기 제1 전극층(20a)의 두께 및 제2 전극층(20e)의 두께는 각각 1 ~ 100 nm 일 수 있으나 이에 제한되지 않는다. 초소형 LED 소자에 제1 전극층(20a) 및 제2 전극층(20e)을 포함할 경우 제1 도전성 반도체층(20b) 및/또는 제2 도전성 반도체층(20d);과 전극라인의 연통부위에 금속오믹층을 형성하는 공정에서 요구되는 온도보다 낮은 온도로 금속오믹층을 형성 시킬 수 있는 이점이 있다. The first electrode layer 20a and the second electrode layer 20e may use a metal or a metal oxide used as an electrode of a conventional LED device. Preferably, each of chromium (Cr), titanium (Ti), and aluminum is independently used. (Al), gold (Au), nickel (Ni), ITO and oxides or alloys thereof may be used alone or in combination, but is not limited thereto. Preferably, the thickness of the first electrode layer 20a and the thickness of the second electrode layer 20e may be 1 to 100 nm, respectively, but are not limited thereto. In the case where the ultra-small LED device includes the first electrode layer 20a and the second electrode layer 20e, the first conductive semiconductor layer 20b and / or the second conductive semiconductor layer 20d; There is an advantage that the metal ohmic layer can be formed at a temperature lower than the temperature required in the process of forming the mixed layer.
한편, 상기 초소형 LED 소자의 외부면에는 적어도 활성층 부분의 외부면 전체를 덮는 절연피막이 코팅될 수 있다. On the other hand, the outer surface of the ultra-small LED device may be coated with an insulating coating covering at least the entire outer surface of the active layer portion.
절연피막(20f)은 초소형 LED 소자에 포함된 활성층(20c)이 전극과 접촉 시에 발생하는 전기적 단락을 방지하는 역할을 한다. 또한, 절연피막(20f)은 초소형 LED 소자의 활성층(20c) 및 반도체층을 포함한 소자 외부 표면을 보호함으로써 초소형 LED 소자의 발광 효율 저하를 막을 수 있다. The insulating film 20f serves to prevent an electrical short circuit occurring when the active layer 20c included in the ultra-small LED device contacts the electrode. In addition, the insulating film 20f protects the outer surface of the device including the active layer 20c and the semiconductor layer of the ultra-small LED device, thereby preventing deterioration in luminous efficiency of the ultra-small LED device.
구체적으로 도 4에서 절연피막(20f)은 활성층(20c)의 외부면을 포함하여 초소형 LED 소자의 외부면에 코팅되어 있다. 상기와 같은 절연피막(20f)은 전기적 단락을 더욱 방지하고, 반도체층의 외부 표면 손상에 따른 초소형 LED 소자의 내구성, 광추출 효율 저하를 방지하기 위해 제1 반도체층(20b) 및 제2 반도체층(20d) 중 어느 하나 이상에도 절연피막(20f)이 코팅될 수 있다. 다만, 광추출 효율의 저하를 논하기 앞서 전기적 단락이 발생시에는 초소형 LED 소자가 발광조차 되지 않는 치명적 문제점이 발생할 수 있기 때문에, 상기 초소형 LED 소자(20)의 외부면에는 적어도 활성층(20c) 부분의 외부면 전체를 덮는 절연피막(20f)이 코팅될 수 있다.Specifically, in FIG. 4, the insulating film 20f is coated on the outer surface of the micro LED device including the outer surface of the active layer 20c. The insulating film 20f as described above further prevents an electrical short circuit and prevents the durability and light extraction efficiency of the ultra-compact LED device due to damage to the external surface of the semiconductor layer, thereby reducing the first semiconductor layer 20b and the second semiconductor layer. The insulating film 20f may be coated on any one or more of 20d. However, a fatal problem may occur in which an ultra-small LED element does not even emit light when an electrical short circuit occurs before discussing a decrease in light extraction efficiency. Therefore, at least an outer surface of the active layer 20c may be disposed on an outer surface of the micro-LED element 20. An insulating film 20f covering the entire surface may be coated.
상기 전기적 단락의 문제가 발생할 수 있는 원인은 나노 단위의 초소형의 서로 다른 전극에 나노 단위의 초소형 LED 소자를 일일이 수동 또는 자동으로 배치 및 연결시키기 어렵기 때문이다. 이러한 초소형 LED 소자의 배치 및 연결 문제점을 해결하기 위해 본 발명의 발명자는 서로 다른 전극에 전원을 인가하여 초소형 LED 소자를 한번에 자기정렬 시켜 서로 다른 두 전극에 연결시키는 방법을 사용했으나 초소형 LED 소자를 자기정렬 시킬 때 초소형 LED 소자는 서로 다른 두 전극 사이를 이동, 정렬 등의 위치변경을 하게 되며, 이 과정에서 초소형 LED 소자의 활성층(20c)이 전극라인에 접촉 및 활성층(20c) 부분이 전극에 연결될 수 있어 전기적 단락이 빈번히 발생하는 문제점이 있을 수 있다.The problem of the electrical short circuit may occur because it is difficult to manually and automatically arrange and connect the nano LED micro LED devices to different nano electrodes. In order to solve the problem of disposition and connection of the ultra-small LED device, the inventors of the present invention used a method of applying the power to different electrodes to self-align the micro-LED devices at once and connecting them to two different electrodes. When aligning, the ultra-small LED device moves between two different electrodes and changes its position, and in this process, the active layer 20c of the micro-LED device contacts the electrode line and the active layer 20c is connected to the electrode. There may be a problem that an electrical short occurs frequently.
한편, 종래에 초소형 LED 소자를 전극에 실장하는 방법으로 초소형 LED 소자를 전극상에 직립하여 세우고, 상기 소자의 상부에 다른 전극을 배치시킬 경우에는 활성층과 전극라인이 접촉하여 발생하는 전기적 단락의 문제가 발생하지 않을 수 있다. 즉, 초소형 LED 소자를 전극상에 직립하여 세우지 못하여 전극상에 LED 소자가 누워있는 경우에만 활성층과 전극라인이 접촉할 수 있으며, 이러한 경우는 초소형 LED 소자를 서로 다른 두 전극에 연결시키지 못한 경우이므로 소자를 서로 다른 두 전극에 전기적으로 연통시키지 못한 문제가 있을 뿐, 전기적 단락의 문제는 발생하지 않을 수 있다. 구체적으로 도 5는 종래의 초소형 전극 어셈블리의 수직단면도로써, 제1 전극라인(61)상에 제1 초소형 LED 소자(71)의 제1 반도체층(71a)이 연통되어 있고, 제2 반도체층(71c)이 제2 전극라인(62)에 연통되어 있으며, 제1 초소형 LED 소자(71)가 상하로 위치하는 두 전극(61, 62)에 직립하여 연통되고 있음을 확인할 수 있다. 도 5와 같은 전극어셈블리에서는 상기 제1 초소형 LED 소자(71)가 두 전극에 동시에 연결되어 있다면 상기 소자의 활성층(71b)이 서로 다른 두 전극(61, 62) 중 어느 하나에 접촉할 가능성이 없어 활성층(71b)과 전극(61, 62)의 접촉에 따른 전기적 단락은 발생하지 않는다.On the other hand, when a small LED device is erected upright on an electrode by a method of mounting a small LED device on an electrode, and the other electrode is disposed on the top of the device, there is a problem of electrical short circuit caused by contact between the active layer and the electrode line. May not occur. In other words, the active layer and the electrode line can be contacted only when the LED element is laid on the electrode because the small LED element cannot stand upright on the electrode. In this case, the micro LED element is not connected to two different electrodes. There is a problem in that the device is not electrically connected to two different electrodes, and the problem of an electrical short may not occur. Specifically, FIG. 5 is a vertical cross-sectional view of a conventional micro electrode assembly, in which a first semiconductor layer 71 a of a first micro LED element 71 communicates with each other on a first electrode line 61, and a second semiconductor layer ( It can be seen that 71c) is in communication with the second electrode line 62, and the first ultra-small LED element 71 is in communication with each other in an upright position. In the electrode assembly shown in FIG. 5, if the first ultra-small LED device 71 is connected to two electrodes at the same time, there is no possibility that the active layer 71b of the device contacts any one of two different electrodes 61 and 62. Electrical shorts due to contact between the active layer 71b and the electrodes 61 and 62 do not occur.
이에 반하여, 도 5에서 제2 초소형 LED 소자(72)는 제1 전극(61)에 누워있으며 이 경우 제2 초소형 LED 소자(72)의 활성층(72b)이 제1 전극(61)과 접촉하고 있다. 그러나 이때는 제2 초소형 LED 소자(72)가 제1 전극(61) 및 제2 전극(62)에 각각 연결 되지 않은 것이 문제될 뿐 전기적 단락은 문제되지 않는다.In contrast, in FIG. 5, the second ultra-small LED element 72 lies on the first electrode 61, and in this case, the active layer 72b of the second ultra-small LED element 72 is in contact with the first electrode 61. . However, in this case, the second micro LED device 72 is not connected to the first electrode 61 and the second electrode 62, respectively, but only an electrical short is not a problem.
따라서, 도 5와 같은 전극과 초소형 LED 소자의 연결구조를 갖는 초소형 LED 전극어셈블리에서 도 5의 제1 초소형 LED 소자(71)의 제1 도전성 반도체층(71a), 활성층(71b) 및 제2 도전성 반도체층(71c)의 외부면에 피막이 코팅되어 있더라도, 상기 피막은 초소형 LED 소자 외부 표면의 손상 방지를 통한 발광효율 감소의 목적 및 효과만 가질 수 있고 전기적 단락방지의 목적과 효과는 가지지 않는다.  Accordingly, the first conductive semiconductor layer 71a, the active layer 71b, and the second conductivity of the first ultra-small LED device 71 of FIG. 5 in the ultra-small LED electrode assembly having the connection structure of the electrode and the ultra-small LED device as shown in FIG. 5. Although the coating is coated on the outer surface of the semiconductor layer 71c, the coating may have only the purpose and effect of reducing the luminous efficiency through the damage prevention of the outer surface of the ultra-small LED device, and does not have the purpose and effect of preventing the electrical short.
그러나 본 발명에 따른 복합섬유집합체는 도 5와 같은 종래의 초소형 전극 어셈블리와 다르게 서로 다른 두 전극에 초소형 LED 소자를 눕힌 상태로 연결시키는데 이용됨에 따라 본 발명에 따른 복합섬유집합체에 포함된 초소형 LED 소자는 종래의 초소형 전극 어셈블리에서는 발생하지 않았던 초소형 LED 소자의 활성층과 전극간의 접촉 및/또는 연결에 따른 전기적 단락 문제가 필연적으로 발생할 수 밖에 없다. 이에 따라 이를 방지하기 위해 초소형 LED 소자의 외부면에는 적어도 활성층 부분의 외부면 전체를 덮는 절연피막을 포함할 수 있다.However, the composite fiber assembly according to the present invention is different from the conventional ultra-small electrode assembly as shown in FIG. Inevitably, an electrical short problem due to contact and / or connection between the active layer and the electrode of the micro LED device, which did not occur in the conventional micro electrode assembly, inevitably occurs. Accordingly, in order to prevent this, the outer surface of the micro LED device may include an insulating coating covering at least the entire outer surface of the active layer portion.
또한, 본 발명의 바람직한 일구현예에 포함되는 초소형 LED 소자와 같이 제1 도전성 반도체층, 활성층, 제2 도전성 반도체층이 순차적으로 수직하여 배열되는 구조의 초소형 LED 소자에서 활성층은 반드시 외부에 노출될 수 밖에 없다. 나아가, 이러한 구조의 LED 소자에서 활성층의 위치는 상기 소자의 길이방향으로 정중앙에만 위치하는 것이 아니고, 특정 반도체층 쪽으로 치우쳐 형성될 수 있어 전극과 활성층이 접촉할 가능성이 더욱 높아질 수 밖에 없다. 따라서 전극과 활성층의 접촉을 방지하기 위해 활성층 부분의 외부면 전체를 덮어 코팅된 절연피막을 포함하는 초소형 LED 소자는 전기적 단락 없이 전극에 연결되어 발광하는데 있어서 절연피막이 소자의 외부면에 코팅되지 않은 LED 소자 보다 본 발명의 목적을 달성하는데 더 유리한 이점이 있다.In addition, in the micro LED device having a structure in which the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer are sequentially vertically arranged like the micro LED device included in the preferred embodiment of the present invention, the active layer must be exposed to the outside. There is no choice but to. In addition, the position of the active layer in the LED device of such a structure is not only located at the center of the center in the longitudinal direction of the device, it can be formed to be biased toward a specific semiconductor layer, the possibility of contact between the electrode and the active layer is bound to be higher. Therefore, an ultra-small LED device including an insulating coating coated over the entire outer surface of the active layer to prevent contact between the electrode and the active layer is connected to the electrode without an electric short to emit light in which the insulating film is not coated on the outer surface of the device. There is a more advantageous advantage in achieving the object of the invention than in the device.
구체적으로 도 6은 본 발명의 바람직한 일구현예에 따른 복합섬유를 통해 초소형 LED 소자를 제1 전극과 제2 전극에 연결시킨 초소형 LED 전극어셈블리의 평면도 및 수직단면도를 나타낸다. 도 6에서 확인할 수 있듯이 초소형 LED 소자는 전극면에 평행하게 누워서 서로다른 두 전극에 연결됨을 확인할 수 있다. 그러나 A-A 단면도와 같이 제1 초소형 LED 소자(121a, 121b, 121c) 중 활성층(121b)은 제1 초소형 LED 소자(121)의 중앙부에 위치하지 않고 왼쪽으로 많이 치우쳐 있으며, 이 경우 활성층(121b)의 일부가 전극(111)에 접촉될 가능성이 높아져 전기적 단락이 발생할 수 있으며, 이는 초소형 LED 전극어셈블리의 불량을 유발하는 원인이 될 수 있다. 상기와 같은 문제점을 해결하기 위해 본 발명에 포함되는 초소형 LED 소자는 활성층을 포함하는 외주연에 절연피막이 코팅될 수 있으며, 상기 절연피막으로 인해 도 6의 제1 초소형 LED 소자(121)와 같이 활성층(121b)이 전극에 연결되어 있어도 단락은 발생하지 않을 수 있다. Specifically, FIG. 6 shows a plan view and a vertical sectional view of a micro LED electrode assembly in which a micro LED device is connected to a first electrode and a second electrode through a composite fiber according to a preferred embodiment of the present invention. As can be seen in Figure 6 it can be seen that the ultra-small LED device is connected to the two different electrodes lying parallel to the electrode surface. However, as shown in the cross-sectional view of the AA, the active layer 121b of the first ultra-small LED elements 121a, 121b and 121c is not located at the center of the first ultra-small LED element 121 but is deviated much to the left. In this case, the active layer 121b The possibility of part contacting the electrode 111 may be increased, which may cause an electrical short circuit, which may cause a failure of the micro LED electrode assembly. In order to solve the above problems, the ultra-small LED device included in the present invention may be coated with an insulating film on the outer circumference including the active layer, and the active layer as shown in the first micro LED device 121 of FIG. 6 due to the insulating film. Even if 121b is connected to the electrode, a short circuit may not occur.
상기 절연피막(20f)은 바람직하게는 질화규소(Si3N4), 산화알루미늄(Al2O3), 산화하프늄(HfO2), 산화이트륨(Y2O3) 및 이산화티타늄(TiO2) 중 어느 하나 이상을 포함할 수 있으며, 보다 바람직하게는 상기 성분으로 이루어지나 투명한 것일 수 있으며, 다만 이에 한정되지 않는다. 투명한 절연피막의 경우 상기의 절연피막(20f)의 역할을 하는 동시에 절연피막을 코팅함으로써 만일하나 발생할 수 있는 발광효율의 감소를 최소화할 수 있다. The insulating film 20f is preferably selected from silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), yttrium oxide (Y 2 O 3 ), and titanium dioxide (TiO 2 ). It may include any one or more, and more preferably consists of the above components, but may be transparent, but is not limited thereto. In the case of the transparent insulating film, by reducing the luminous efficiency that may occur in any case by coating the insulating film while serving as the insulating film 20f.
다만, 본 발명의 바람직한 일구현예에 따르면, 상기 절연피막(20f)은 초소형 LED 소자의 제1 전극층(20a) 및 제2 전극층(20e) 중 어느 하나 이상의 전극층에는 절연피막이 코팅되지 않을 수 있고, 보다 바람직하게는 두 전극층(20a, 20e) 모두 절연피막이 코팅되지 않을 수 있다. 이는 상기 두 전극층(20a, 20e)과 서로 다른 전극간에는 전기적으로 연통이 되어야 하는데 만일 두 전극층(20a, 20e)에 절연피막(20f)이 코팅되는 경우 전기적 연통을 방해할 수 있어 초소형 LED의 발광이 감소되거나 전기적으로 연통되지 않아 발광 자체가 되지 않을 수 있는 문제점이 있다. 다만, 두 전극층(20a, 20e)과 서로 다른 전극간에 전기적 연통되면 문제가 없으므로 상기 절연피막(20f)은 초소형 LED 소자의 제1 전극층(20a) 및 제2 전극층(20e)이 전극과 접촉할 수 있는 부분(예를 들어 전극층의 끝단부)을 제외한 나머지 제1 전극층(20a) 및 제2 전극층(20e)의 부분에는 포함될 수 있다. However, according to a preferred embodiment of the present invention, the insulating film 20f may not be coated with an insulating film on any one or more electrode layers of the first electrode layer 20a and the second electrode layer 20e of the micro LED device, More preferably, both electrode layers 20a and 20e may not be coated with an insulating coating. This is to be in electrical communication between the two electrode layers (20a, 20e) and the different electrodes, if the insulating film (20f) is coated on the two electrode layers (20a, 20e) can interfere with the electrical communication, the light emission of the ultra-small LED There is a problem that the light emission itself may not be reduced or not electrically connected. However, since there is no problem when the two electrode layers 20a and 20e are electrically connected between different electrodes, the insulating film 20f may contact the electrodes with the first electrode layer 20a and the second electrode layer 20e of the micro LED device. It may be included in the remaining portions of the first electrode layer 20a and the second electrode layer 20e except for a portion (eg, an end portion of the electrode layer).
한편, 본 발명의 바람직한 일구현예에 따르면, 상기 초소형 LED 소자는 소자 상호간 응집을 방지하기 위하여 초소형 LED 소자의 절연피막 외부면에 코팅된 소수성 피막을 포함할 수 있다. On the other hand, according to a preferred embodiment of the present invention, the micro LED device may include a hydrophobic film coated on the outer surface of the insulating film of the micro LED device in order to prevent aggregation between the devices.
구체적으로 도 4에서 절연피막(20f) 외주연에 코팅된 소수성 피막(20g)을 확인할 수 있다. 상기 소수성 피막(20g)은 초소형 LED 소자의 표면에 소수성 특성을 갖게 하여 LED 소자들 간에 응집현상을 방지하기 위한 것으로서 초소형 LED 소자에 섬유형성성분과 함께 방사되어 복합섬유를 제조할 때, 초소형 LED 소자간에 응집을 최소화 하여 복합섬유 내에서 응집되지 않고 열을 지어 정렬 배치시킬 수 있는데 보다 유리할 수 있다. 또한, 복합섬유에서 섬유형성성분을 제거한 후 초소형 LED 소자들이 전극상에 응집된 상태로 남아 있는 경우 전극라인에 이동 및 위치정렬하기 어려운 문제점이 있는데, 상기 소수성 피막은 이러한 문제점을 제거함에 따라 보다 용이하게 전극라인에 초소형 LED 소자를 자기정렬 시킬 수 있다. Specifically, in FIG. 4, the hydrophobic film 20g coated on the outer periphery of the insulating film 20f may be confirmed. The hydrophobic coating (20g) is to prevent the agglomeration between the LED devices by having a hydrophobic characteristic on the surface of the ultra-small LED device as a micro-LED device when it is radiated together with the fiber-forming component to produce a composite fiber, micro LED device It can be more advantageous to minimize the coagulation of the liver and arrange them in rows without aggregation in the composite fiber. In addition, after removing the fiber-forming component from the composite fiber, there is a problem that it is difficult to move and position the electrode lines when the micro LEDs remain in the aggregated state on the electrode, and the hydrophobic coating is easier to eliminate such problems. It is possible to self-align the small LED device in the electrode line.
상기 소수성 피막(20g)은 절연피막 상에 형성될 수 있고, 초소형 LED 소자들 간에 응집현상을 방지할 수 있는 것이라면 제한 없이 사용될 수 있으며, 바람직하게는 옥타데실트리크로로실리란(octadecyltrichlorosilane, OTS)과 플루오로알킬트리크로로실란(fluoroalkyltrichlorosilane), 퍼플루오로알킬트리에톡시실란(perfluoroalkyltriethoxysilane) 등과 같은 자기조립 단분자막(SAMs, self-assembled monolayers)과 테프론(teflon), Cytop 등과 같은 플루오로 폴리머 (fluoropolymer) 등을 단독 또는 혼합하여 사용할 수 있으나 이에 제한되는 것은 아니다.The hydrophobic film 20g may be formed on an insulating film, and may be used without limitation as long as it can prevent aggregation between micro LED devices, and preferably octadecyltrichlorosilane (OTS). Self-assembled monolayers (SAMs) such as fluoroalkyltrichlorosilane, perfluoroalkyltriethoxysilane, and fluoropolymers such as teflon and Cytop. ) May be used alone or in combination, but is not limited thereto.
이상으로 상술한 복합섬유에 포함되는 섬유형성성분 및 초소형 LED 소자는 본 발명의 바람직한 일구현예에 따르면, 섬유형성성분 100 중량부에 대해 초소형 LED 소자를 30 ~ 90 중량부로 포함할 수 있다. 만일 섬유형성성분에 대해 초소형 LED 소자를 30 중량부 미만으로 포함하는 경우 복합섬유 단위부피당 포함되는 초소형 LED 소자의 개수가 적어 일정한 전극면적에 복합섬유집합체를 통해 배치할 수 있는 초소형 LED 소자의 개수가 현저히 저하될 수 있고, 더 많은 초소형 LED 소자를 배치시키기 위해 더 많은 양의 복합섬유집합체를 포함시켜야 되며, 이 경우 후술하는 (2) 단계에서 섬유형성성분의 제거에 소요되는 시간 및 제거에 필요한 비용이 상승할 수 있는 문제점이 있을 수 있다. 만일 초소형 LED 소자가 90 중량부를 초과하여 포함할 경우 복합섬유의 단위부피당 포함시킬 수 있는 초소형 LED 소자의 개수는 증가할 수 있으나 복합섬유 내 초소형 LED 소자간의 상하좌우 간격이 짧아지고 어떤 경우 초소형 LED 소자가 뭉쳐서 배열될 수 있으며, 소자간의 접촉이 빈번히 발생 및/또는 소자가 복합섬유의 외부표면에 노출되어 소자의 외부 표면 손상이 일어나기 쉬운 문제점이 있을 수 있다.The fiber forming component and the ultra-small LED device included in the above-described composite fiber may include 30 to 90 parts by weight of the ultra-small LED device based on 100 parts by weight of the fiber forming component according to the preferred embodiment of the present invention. If the fiber forming component contains less than 30 parts by weight of the ultra-small LED device, the number of ultra-small LED devices per unit volume of the composite fiber is small, so the number of ultra-small LED devices that can be disposed through the composite fiber assembly in a predetermined electrode area is increased. It may be significantly lowered, and a larger amount of composite fiber aggregates should be included in order to place more ultra-small LED devices, in which case the time required for the removal of the fiber forming component and the cost required for the removal of the fiber-forming component in step (2) described later. There can be problems that can rise. If the ultra small LED device contains more than 90 parts by weight, the number of micro LED devices that can be included per unit volume of the composite fiber may increase, but the top, bottom, left and right spacing between the micro LED devices in the composite fiber becomes short, and in some cases, the micro LED device May be arranged in a cluster, and contact between the devices may occur frequently and / or the devices may be exposed to the outer surface of the composite fiber, thereby causing damage to the outer surface of the device.
한편, 본 발명의 바람직한 일구현예에 따르면, 상기 복합섬유는 도 2와 같이 섬유형성성분(10) 및 복수개의 초소형 LED 소자(20)를 포함하고, 상기 복수개의 초소형 LED 소자(20)는 섬유형성성분(10)의 내부에 위치하여 포함되는 것이 보다 바람직하다.On the other hand, according to a preferred embodiment of the present invention, the composite fiber comprises a fiber forming component 10 and a plurality of micro LED device 20, as shown in Figure 2, the plurality of micro LED device 20 is a fiber More preferably, it is located inside the forming component 10.
구체적으로 도 2의 복합섬유(30A)에 포함된 초소형 LED 소자(20)는 섬유형성성분(10)의 내부에 위치하는데, 만일 초소형 LED 소자(20)가 섬유형성성분(10)의 내부에 위치하지 않고, 섬유형성성분(10)의 외부표면에 노출될 경우 복합섬유의 보관, 이동, 취급과정에서 초소형 LED 소자의 외부표면의 손상 가능성이 있고, 초소형 LED 소자의 외부표면 손상은 광추출 효율을 현저히 저하시킬 수 있어 품질이 저하된 제품이 구현될 수 있는 문제점이 있을 수 있다. 이에 따라 초소형 LED 소자는 섬유형성성분 내부에 위치하는 것이 보다 바람직하다.Specifically, the ultra-small LED device 20 included in the composite fiber 30A of FIG. 2 is located inside the fiber forming component 10. If the ultra-small LED device 20 is located inside the fiber forming component 10. However, when exposed to the outer surface of the fiber forming component 10, there is a possibility of damage to the outer surface of the ultra-small LED device during the storage, movement, and handling of the composite fiber, damage of the outer surface of the ultra-small LED device can improve the light extraction efficiency There may be a problem that can be remarkably lowered so that a product of reduced quality can be implemented. Accordingly, the micro LED device is more preferably located inside the fiber forming component.
다만, 복합섬유를 포함하는 복합섬유집합체가 전극에 배치되고, 후술할 (2) 단계에서 섬유형성성분이 제거되고 난 뒤 전극상에 남게 되는 초소형LED 소자의 배치정렬 상태를 향상시키기 위해 바람직하게는 상기 복수개의 초소형 LED 소자는 복합섬유의 길이방향으로 적어도 하나 이상의 열을 지어 복합섬유 내부에 배열되어 포함될 수 있다.However, the composite fiber assembly including the composite fiber is disposed on the electrode, and in order to improve the arrangement alignment state of the ultra-small LED device remaining on the electrode after the fiber forming component is removed in step (2) to be described later. The plurality of ultra-small LED device may be included in the composite fiber arranged in at least one row in the longitudinal direction of the composite fiber.
구체적으로 도 7은 본 발명의 바람직한 일구현예에 따른 복합섬유집합체에 포함되는 복합섬유의 사시도로써, 복합섬유(30B)는 섬유형성성분(10) 및 복수개의 초소형 LED 소자(20)를 포함하고, 상기 초소형 LED 소자(10)는 복합섬유의 길이방향으로 제1 열(P1) 및 제2 열(P2)을 지어 복합섬유 내부에 배열되어 있다. 이러한 복합섬유(30B)가 포함된 복합섬유집합체가 전극에 배치될 경우 후술할 (2) 단계에서 섬유형성성분(10)이 제거되고 난 뒤 전극상에 남게 되는 초소형 LED 소자(20)는 상기 소자의 길이방향으로 서로 다른 두 전극과 수직에 가깝도록 배치 정렬시킬 수 있고, 이를 통해 전극에 전원을 인가할 때 초소형 LED 소자는 전극에 연결될 때까지 최소의 이동거리를 이동함과 동시에 일정한 전극 영역에 전극과 연결시킬 수 있는 초소형 LED 소자의 개수를 현저히 증가시킬 있다. Specifically, FIG. 7 is a perspective view of a composite fiber included in a composite fiber assembly according to a preferred embodiment of the present invention. The composite fiber 30B includes a fiber forming component 10 and a plurality of ultra-small LED devices 20. The micro LED device 10 is arranged inside the composite fiber in a first row P 1 and a second row P 2 in the longitudinal direction of the composite fiber. When the composite fiber assembly including the composite fiber 30B is disposed on the electrode, the micro LED device 20 remaining on the electrode after the fiber forming component 10 is removed in step (2) will be described later. It can be arranged to be perpendicular to the two different electrodes in the longitudinal direction of the, so that when the power is applied to the electrode, the ultra-small LED device moves the minimum moving distance until it is connected to the electrode and at the same electrode area The number of micro LEDs that can be connected to the electrodes can be significantly increased.
구체적으로 도 8은 본 발명의 바람직한 일구현예에 따른 복합섬유집합체에 포함되는 복합섬유집합체를 통해 전극상에 초소형 LED 소자를 연결시킨 초소형 LED 전극어셈블리의 평면도로써, 도 2와 같이 복합섬유(30A) 내부에 방향성 없이 복수개의 초소형 LED 소자(20)가 배열된 복합섬유(30A)를 포함하는 복합섬유집합체를 이용할 경우 섬유형성성분이 제거된 후 전극에 남게 되는 초소형 LED 소자 역시 전극상에 방향성 없이 무질서하게 배치될 수 있고, 전극(110, 130)에 전원을 인가 시에 전극에 연결되는 초소형 LED 소자(20')도 도 8과 같이 방향성 없이 서로 다른 두 전극(110, 130)에 연결될 수 있다. 도 8과 같이 일정한 방향성 없이 초소형 LED 소자가 서로 다른 전극에 연결될 경우 한 개의 초소형 LED 소자가 다른 초소형 LED 소자의 전극연결을 막으면서 서로 다른 두 전극을 차지하는 면적이 증가함에 따라 일정한 전극면적에 연결되는 초소형 LED 소자의 개수가 감소되는 등의 문제점이 있을 수 있다. 구체적으로 도 8에서 전극에 비스듬히 누워 연결된 제1 초소형 LED 소자(20')가 다른 초소형 LED 소자의 전극연결을 막으면서 서로 다른 두 전극을 차지하는 면적(Q)은 소자의 길이방향이 전극에 최대한 수직에 가깝게 누워 연결된 제2 초소형 LED 소자(21')가 서로 다른 두 전극을 차지하는 면적(R)보다 현저히 크다는 것을 확인할 수 있다.Specifically, FIG. 8 is a plan view of a micro LED electrode assembly in which a micro LED device is connected to an electrode through a composite fiber assembly included in a composite fiber assembly according to an embodiment of the present invention, as shown in FIG. 2. In the case of using a composite fiber assembly including a composite fiber 30A in which a plurality of micro LED devices 20 are arranged without direction, the micro LED device, which remains on the electrode after the fiber forming component is removed, also has no orientation on the electrode. It may be arranged randomly, the micro LED device 20 ′ connected to the electrode when power is applied to the electrodes 110 and 130 may also be connected to two different electrodes 110 and 130 without direction as shown in FIG. 8. . When the ultra-small LED device is connected to different electrodes without constant direction as shown in FIG. 8, one micro-LED device is connected to a constant electrode area as the area occupying two different electrodes increases while preventing the electrode connection of the other ultra-small LED device. There may be a problem that the number of micro LED devices is reduced. Specifically, in FIG. 8, the area (Q) occupying two different electrodes while the first ultra-small LED device 20 ′ obliquely connected to the electrode blocks the electrode connection of the other ultra-small LED devices, and the longitudinal direction of the device is as perpendicular to the electrode as possible. It can be seen that the second ultra-small LED element 21 ′ connected to and lying close to is significantly larger than the area R occupying two different electrodes.
한편, 본 발명의 바람직한 일구현예에 따르면, 복합섬유집합체는 후술한 (2) 단계에서 섬유형성성분이 제거되고 난 뒤 전극상에 남게 되는 초소형LED 소자의 배치정렬 상태를 더욱 향상시키고 섬유형성성분의 제거를 더욱 용이하게 하기 위하여, 상기 복합섬유는 복수개의 초소형 LED 소자가 일렬로 열을 지어 형성된 심부; 및 섬유형성성분이 상기 심부를 감싸 형성된 초부;를 포함하는 심초형의 복합섬유를 포함할 수 있다.On the other hand, according to a preferred embodiment of the present invention, the composite fiber assembly further improves the arrangement arrangement state of the ultra-small LED device remaining on the electrode after the fiber forming component is removed in step (2) described later, and the fiber forming component In order to further facilitate the removal of the composite fiber, a plurality of micro LED elements are formed in a row in a row; And a fiber forming component comprising a core formed around the core. The core fiber may include a composite fiber of a heart type.
구체적으로 도 9는 본 발명의 바람직한 일구현예에 따른 복합섬유집합체에 포함되는 복합섬유의 사시도로써, 도 5의 복합섬유(30C)는 복수개의 초소형 LED 소자(20)가 일렬로 열(P3)을 지어 형성된 심부 및 상기 섬유형성성분(10)이 상기 심부를 감싸 형성된 초부를 포함하고 있다. Specifically, FIG. 9 is a perspective view of a composite fiber included in a composite fiber assembly according to a preferred embodiment of the present invention. In the composite fiber 30C of FIG. 5, a plurality of micro LED devices 20 are arranged in a row (P 3). The core portion formed in a) and the fiber forming component 10 includes a core portion formed to surround the core portion.
상기 도 9와 같은 복합섬유(30C)를 포함하는 복합섬유집합체는 도 7과 같이 복합섬유(30B)내 복수개의 초소형 LED 소자가 2개의 열을 지어 배열된 복합섬유(30B)를 포함하는 복합섬유집합체에 비해 후술할 (2) 단계를 통해 섬유형성성분을 제거했을 때 전극에 남게 되는 초소형 LED 소자의 배치정렬이 서로 다른 두 전극에 수직에 가깝도록 배치되기 보다 더 용이할 수 있다. The composite fiber assembly including the composite fiber 30C as shown in FIG. 9 is a composite fiber including the composite fiber 30B in which a plurality of micro LED devices in the composite fiber 30B are arranged in two rows as shown in FIG. 7. When the fiber forming component is removed through step (2) to be described later, the arrangement of the ultra-small LED elements remaining on the electrodes may be easier than the vertical arrangement of the two different electrodes.
구체적으로 도 10은 본 발명의 바람직한 일구현예에 따라 초소형 LED 소자를 전극어셈블리에 배치시키는 방법을 나타낸 모식도로써, 섬유형성성분(210a, 220a) 내부에 복수개의 초소형 LED 소자(210b, 220b)가 일렬로 열을 지어 배열된 도 9와 같은 복합섬유(210, 220, 230)를 3개 포함하는 복합섬유 집합체를 제1 전극(201) 및 제2 전극(202) 상에 위치시키는 공정을 나타낸다. 도 10a에서 확인할 수 있듯이, 도 9와 같은 복합섬유를 포함하는 복합섬유집합체는 후술할 (2) 단계를 통해 섬유형성성분을 제거했을 때 전극에 남게 되는 초소형 LED 소자의 배치정렬이 서로 다른 두 전극에 수직에 가깝도록 도 10b와 같이 배치시키기에 더 유리할 수 있다. Specifically, FIG. 10 is a schematic view illustrating a method of disposing an ultra-small LED device in an electrode assembly according to an exemplary embodiment of the present invention, wherein a plurality of micro-LED devices 210b and 220b are formed inside the fiber forming components 210a and 220a. 9 shows a process of placing a composite fiber assembly including three composite fibers 210, 220, and 230 arranged in a row on the first electrode 201 and the second electrode 202. As can be seen in Figure 10a, the composite fiber assembly comprising a composite fiber as shown in Figure 9 is two electrodes different from each other in the arrangement arrangement of the ultra-small LED device remaining on the electrode when the fiber forming component is removed through step (2) to be described later It may be more advantageous to place it as shown in FIG. 10B so as to be perpendicular to.
이에 반하여, 도 7과 같은 복합섬유(30B)를 포함하는 복합섬유집합체는 복합섬유(30B)내 포함된 복수개의 초소형 LED 소자로 이루어진 제1 열(P1) 및 제2 열(P2)이 상호 교번하는 서로 다른 두 전극에 수직에 가깝도록 전극상에 배치되더라도 두 전극을 포함하는 전극평면을 기준으로 상기 2개의 열이 전극평면에 수직하여 복합섬유(30B)내에서 상하로 배치되는 복합섬유를 포함할 수 있다. 이러한 복합섬유는 섬유형성성분이 제거되었을 때, 상기 전극평면에 가깝게 위치하는 제1 열(P1)에 포함된 복수개의 초소형 LED 소자는 도 10b와 같이 전극상에 가지런히 수직에 가깝게 배치될 수 있으나, 상기 전극평면을 기준으로 제1 열(P1)보다 상부에 배치된 제2 열(P2)에 포함된 복수개의 초소형 LED 소자는 섬유형성성분이 제거되는 과정에서 도 8과 같이 방향성을 상실한 채로 전극에 배치될 수 있는 문제점이 있을 수 있다.In contrast, the composite fiber assembly including the composite fiber 30B as shown in FIG. 7 includes a first row P 1 and a second row P 2 formed of a plurality of micro LED devices included in the composite fiber 30B. Composite fibers arranged vertically in the composite fiber 30B with the two rows perpendicular to the electrode plane with respect to the electrode plane including the two electrodes even if disposed on the electrode so as to be perpendicular to the two mutually different electrodes. It may include. When the composite fiber is removed from the fiber forming component, the plurality of micro LEDs included in the first row P 1 positioned close to the electrode plane may be arranged vertically close to the electrode as shown in FIG. 10B. However, the plurality of micro LED devices included in the second column P 2 disposed above the first column P 1 based on the electrode plane have a directionality as shown in FIG. 8 in the process of removing the fiber forming component. There may be a problem that can be placed on the electrode while being lost.
또한, 도 7과 같은 복합섬유(30B)는 도 9와 같은 복합섬유(30C)에 비해 복합섬유의 직경이 커질 수밖에 없고, 이는 복합섬유의 횡단면에서 초소형LED 소자를 제외한 나머지 섬유형성성분의 면적이 더 커진다는 것을 의미하는 것으로써, 초소형 LED 소자를 전극상에 배치시키기 위해 후술할 (2) 단계에서 섬유형성성분을 제거하는데 더 많은 제거 시간 및/또는 더 많은 제거용매 등이 요구될 수 있다.In addition, the composite fiber 30B as shown in FIG. 7 has a large diameter of the composite fiber as compared to the composite fiber 30C as shown in FIG. 9, which has an area of the remaining fiber forming component except for the ultra-small LED device in the cross section of the composite fiber. As it means larger, more removal time and / or more removal solvent may be required to remove the fiber forming component in step (2) described later in order to place the ultra-small LED device on the electrode.
상기 도 9와 같은 심초형 복합섬유는 직경(도 9의 a)이 초소형 LED 소자 단축길이(도 9의 b)의 1.2 ~ 8.0배인 것이 바람직하며, 보다 바람직하게는 1.2 ~ 6.0배일 수 있다. 이를 통해 초소형 LED 소자가 복합섬유의 외부 표면에 노출되지 않고 포함될 수 있으며, 후술할 (2) 단계에서의 섬유형성성분의 제거시간 단축, 제거용매의 투입량 절감 등에 이점이 있을 수 있다.9 is a diameter (a) of FIG. 9 is preferably 1.2 to 8.0 times the shorter length of the ultra-small LED device (b of FIG. 9), and more preferably 1.2 to 6.0 times. Through this, the ultra-small LED device may be included without being exposed to the outer surface of the composite fiber, and may have advantages such as shortening the removal time of the fiber forming component in step (2) to be described later, and reducing the input amount of the removal solvent.
또한, 본 발명의 바람직한 다른 일구현예에 따르면, 초소형 LED 소자를 자기정렬 시켜 전극에 연결하기 전에 전극상에 배치되는 초소형 LED 소자의 개수를 증가시키기 위해 상기 복수개의 초소형 LED 소자는 복합섬유의 길이방향으로 복수개의 열을 지어 배열될 수 있다. 구체적으로 도 11은 본 발명의 바람직한 일구현예에 따른 복합섬유집합체에 포함된 복합섬유의 사시도로써, 복합섬유(30D)내 복수개의 초소형 LED 소자(21, 22, 23)가 5개의 열을 지어 배열됨으로써, 후술할 (2) 단계에서 섬유형성성분을 제거했을 때 전극에 남게 되는 초소형 LED 소자의 배치정렬이 서로 다른 두 전극에 수직에 가깝도록 배치될 수 있는 동시에 섬유형성성분(10)을 제거했을 때 일정면적의 서로 다른 두 전극영역에 남게 되는 초소형 LED 소자의 개수를 현저히 증가시킬 수 있는 이점이 있다.In addition, according to another preferred embodiment of the present invention, the plurality of ultra-small LED device is the length of the composite fiber to increase the number of micro-LED devices disposed on the electrode before the self-aligned ultra-small LED device connected to the electrode It can be arranged in a plurality of columns in the direction. Specifically, FIG. 11 is a perspective view of a composite fiber included in a composite fiber assembly according to a preferred embodiment of the present invention, wherein the plurality of micro LED devices 21, 22, and 23 in the composite fiber 30D are arranged in five rows. By arranging, the arrangement of the ultra-small LED elements remaining on the electrode when the fiber forming component is removed in step (2), which will be described later, may be arranged to be perpendicular to two different electrodes, and at the same time, the fiber forming component 10 is removed. In this case, there is an advantage in that the number of ultra-small LED devices remaining in two different electrode areas of a predetermined area can be significantly increased.
이상으로 상술한 복합섬유는 하기의 제조방법을 통해 제조될 수 있다. 다만, 후술되는 제조방법은 일실시예일 뿐이며, 후술되는 제조방법의 기재에 의해 본 발명이 한정되는 것은 아니다.The above-described composite fiber can be prepared through the following manufacturing method. However, the manufacturing method described below is only one embodiment, and the present invention is not limited by the description of the manufacturing method described below.
본 발명에 따른 복합섬유를 제조하는 방법은 통상적인 섬유를 제조하는 방법을 이용할 수 있으며, 구체적으로 화학방사 또는 전기방사에 의할 수 있고, 상기 화학방사는 구체적으로 용융방사, 습식방사, 건식방사, 건습식 방사 등 중 선택된 어느 하나 이상 방법에 의할 수 있다. 본 발명에 따른 복합섬유는 사용되는 섬유형성성분의 구체적 종류, 목적하는 복합섬유의 직경 등을 고려하여 상기 방사 방법 중 적절한 방법을 선택 및 변경하여 제조할 수 있다. Method for producing a composite fiber according to the present invention can be used for producing a conventional fiber, specifically by chemical spinning or electrospinning, the chemical spinning is specifically melt spinning, wet spinning, dry spinning It may be by any one or more methods selected from, such as wet and dry spinning. Composite fiber according to the present invention can be produced by selecting and changing the appropriate method of the spinning method in consideration of the specific type of the fiber-forming component used, the diameter of the desired composite fiber.
본 발명에 따른 복합섬유의 제조방법 일예시로 화학방사 중 용융방사법에 의한 초소형 LED 소자를 포함하는 복합섬유의 제조방법에 대해 설명한다.Method for Producing Composite Fiber According to the Present Invention As an example, a method for manufacturing a composite fiber including an ultra-small LED device by a melt spinning method during chemical spinning will be described.
먼저 (a) 단계로써, 초소형 LED 소자를 포함하는 방사용액을 제조할 수 있다. First, as a step (a), it can be prepared a spinning solution containing a micro LED device.
상기 방사용액은 섬유형성성분을 용융 및/또는 용해시켜 용액상태로 만든 후 초소형 LED 소자를 혼합하여 제조할 수 있다. The spinning solution may be prepared by melting and / or dissolving a fiber-forming component to make a solution state and then mixing a micro LED device.
또한, 상기 방사용액은 사용하는 구금이나 복합섬유 형상에 따라 제1 방사용액 및 제2 방사용액으로 제조할 수 있다. 이때, 상기 제1 방사용액은 제1 섬유형성성분을 용융 및/또는 용해시켜 용액상태로 만들어 제조할 수 있고, 상기 제2 방사용액은 초소형 LED소자를 아세톤 등의 용매에 포함시켜 제조하거나 초소형 LED 소자를 제2 섬유형성성분이 용융 및/또는 용해된 용해액에 포함시켜 제조될 수 있다. 상기 섬유형성성분의 용융온도 또는 상기 용매는 구체적으로 사용되는 섬유형성성분을 고려하여 결정될 수 있어 본 발명에서는 특별히 한정하지 않는다. In addition, the spinning solution may be prepared as the first spinning solution and the second spinning solution according to the shape of the detention or composite fibers used. In this case, the first spinning solution may be prepared by melting and / or dissolving the first fiber forming component into a solution state, and the second spinning solution may be prepared by including an ultra-small LED device in a solvent such as acetone or micro-LED. The device may be manufactured by incorporating the second fiber forming component into a molten and / or dissolved solution. Melting temperature or the solvent of the fiber-forming component can be determined in consideration of the fiber-forming component used specifically, it is not particularly limited in the present invention.
또한, 상기 방사용액은 방사기에 투입되기 전 별도로 제조되어 방사기에 투입될 수 있거나 통상적인 방사기에 포함된 호퍼에 섬유형성성분을 투입하고 용융부를 거쳐 용융된 섬유형성성분에 초소형 LED 소자를 혼합하여 당업계의 공지된 방법에 의해 제조될 수 있다. 이때 상기 방사용액의 고유점도는 방사용이성을 고려하여 결정될 수 있으며, 바람직하게는 0.1 ~ 2.0 cps일 수 있고, 보다 바람직하게는 0.1 ~ 1.2 cps있으며, 이를 통해 방사 후 절사되는 복합섬유의 양을 현저히 감소시킬 수 있고, 방사 후 복합섬유의 형태 안정성을 유지할 수 있는 측면에서 유리한 이점이 있다. 다만, 상기 고유점도는 사용되는 섬유형성성분의 종류, 사용되는 방사기의 종류, 구금의 설계에 따라 변경될 수 있다.In addition, the spinning solution may be prepared separately before being introduced into the spinning machine and may be introduced into the spinning machine, or the fiber forming component may be added to a hopper included in a conventional spinning machine, and the micro LED device may be mixed with the melted fiber forming component through a melting part to form a sugar. It may be prepared by a method known in the art. At this time, the intrinsic viscosity of the spinning solution may be determined in consideration of the spinning easiness, preferably 0.1 ~ 2.0 cps, more preferably 0.1 ~ 1.2 cps, through which the amount of the composite fiber is cut after spinning significantly There is an advantage in terms of being able to reduce and maintain the form stability of the composite fiber after spinning. However, the intrinsic viscosity may be changed according to the type of fiber forming component used, the type of spinning machine used, and the design of the detention.
다음으로 (b) 단계로써 상기에서 제조된 방사용액을 방사하여 복합섬유를 제조할 수 있다.Next, by spinning the spinning solution prepared in the step (b) it can be produced a composite fiber.
방사용액의 방사에 사용되는 구금의 경우 도 2와 같은 복합섬유(30A)를 제조할 때에는 단일관형 방사노즐을 갖는 방사구금을 사용할 수 있으나 도 6과 같이 복합섬유(30C)의 내부에 초소형 LED 소자가 일렬로 열을 지어 배열될 경우 상기 방사노즐은 이중 관형 방사노즐일 수 있고, 구체적으로 도 12는 본 발명의 바람직한 일구현예에 포함되는 복합섬유 제조시 사용되는 2중 관현 방사노즐(5)의 단면도로써, 이중 관형 방사 노즐(5)의 외부관(2)으로는 상술한 (1) 단계의 제1 방사용액을 토출하고, 내부관(1)으로는 상술한 (a) 단계의 제2 방사용액을 토출할 수 있다. 다만, 도 9와 같은 복합섬유(30 C)는 단일관형 방사노즐에서 노즐의 직경을 조정할 경우 단일관형 방사노즐을 통해서도 제조될 수 있어 반드시 이중관형 방사노즐을 통해서만 제조될 수 있는 것은 아니다. 상기와 같이 노즐을 통해 방사된 복합섬유는 스테이플사 또는 필라멘트사일 수도 있으며 상기 필라멘트사의 필라멘트수는 구금에 따라 달라질 수 있어 본 발명에서는 특별히 한정하지 않는다. In the case of the detention used for spinning of the spinning solution, when manufacturing the composite fiber 30A as shown in FIG. 2, a spinneret having a single tubular spinning nozzle may be used, but as shown in FIG. Is arranged in a row, the spinneret may be a double tubular spinneret, specifically, FIG. 12 is a double orthogonal spinneret 5 used in the manufacture of a composite fiber included in a preferred embodiment of the present invention. As a cross-sectional view of the dual tubular spinning nozzle 5, the external tube 2 of the above-mentioned step (1) is discharged into the outer tube 2, and the inner tube 1 of the second step of the above (a) step is discharged. The spinning solution can be discharged. However, the composite fiber 30 C as shown in FIG. 9 may be manufactured through a single tubular spinning nozzle when the diameter of the nozzle is adjusted in the single tubular spinning nozzle, but may not necessarily be manufactured only through the double tubular spinning nozzle. Composite fiber spun through the nozzle as described above may be a staple yarn or filament yarn and the filament number of the filament yarn may vary depending on the detention is not particularly limited in the present invention.
상기 (b) 단계를 통해 방사된 복합섬유는 섬유의 강도를 향상시키고 복합섬유 내부에 포함된 초소형 LED 소자의 배열을 섬유길이 방향으로 보다 더 정렬시키게 하기 위해 부분연신 또는 연신 공정을 더 거칠 수 있다. 상기 연신 또는 부분연신의 구체적 방법은 당업계의 공지공용의 방법에 의할 수 있어 본 발명에서는 특별히 한정하지 않는다.The composite fiber spun through the step (b) may be subjected to a partial stretching or stretching process to improve the strength of the fiber and to further align the arrangement of the ultra-small LED device included in the composite fiber in the fiber length direction. . The specific method of the stretching or partial stretching may be by a publicly known method known in the art, and is not particularly limited in the present invention.
한편, 상술한 방법을 통해 제조되는 복합섬유의 직경은 바람직하게는 200nm ~ 15㎛일 수 있다. 다만, 마이크로 단위 또는 나노 단위의 복합섬유 제조를 위해서는 당업계에서 널리 사용되는 전기방사법을 이용하거나 화학방사법에 의한 해도형의 섬유를 제조하고 이후 해성분을 제거하여 복합섬유를 제조할 수도 있다.On the other hand, the diameter of the composite fiber produced through the above-described method may be preferably 200nm ~ 15㎛. However, in order to manufacture a composite fiber of micro units or nano units, a composite fiber may be manufactured by using an electrospinning method widely used in the art or by preparing a island-in-the-sea type fiber by a chemical spinning method, and then removing the sea component.
상기 전기방사법에 의할 경우 상술한 (a) 단계에서와 같이 2종의 방사용액 및 2개의 노즐을 통해 복합섬유를 제조하거나 1개의 방사용액 및 1개의 노즐을 통해 복합섬유를 제조할 수 있고, 이때 노즐의 직경은 방사용액에 포함되는 초소형 LED 소자의 장축 또는 단축의 길이를 고려하여 변경될 수 있고, 전기방사시 팁과 콜렉터까지의 거리, 전압은 사용되는 섬유형성성분의 종류, 방사용액의 점도, 복합섬유의 직경 등을 고려하여 변경될 수 있어 본 발명에서는 특별히 한정하지 않으며, 구체적인 전기방사방법은 당업계 통상의 방법을 이용할 수 있다.In the case of the electrospinning method, as in step (a), the composite fiber may be manufactured through two kinds of spinning solution and two nozzles, or the composite fiber may be manufactured through one spinning solution and one nozzle. At this time, the diameter of the nozzle may be changed in consideration of the length of the long axis or short axis of the ultra-small LED device included in the spinning solution, the distance between the tip and the collector during the electrospinning, the voltage is the type of fiber-forming component used, the spinning solution It may be changed in consideration of the viscosity, the diameter of the composite fiber and the like is not particularly limited in the present invention, the specific electrospinning method can be used in the art conventional methods.
다음으로 해도형의 섬유를 통해 복합섬유를 제조하는 방법은 해성분으로 섬유형성성분과 상이한 이종의 고분자 화합물을 포함하는 방사용액을 방사하고, 도성분으로 섬유형성성분 및 초소형 LED 소자를 포함하는 방사용액을 방사하여 제조할 수 있다. 구체적으로 도 13은 본 발명의 바람직한 일구현예에 따라 제조된 해도형 섬유(30E)의 횡단면 사시도로써, 해도형 섬유(30E)는 도성분(30C1, 30C2, 30C3) 및 해성분(40)을 포함하고, 상기 도성분(30C1)은 섬유형성성분(10) 및 초소형 LED 소자(20)를 포함한다. Next, the method for producing a composite fiber through the island-in-the-sea fiber is a method of spinning a spinning solution containing a heterogeneous polymer compound different from the fiber-forming component as a sea component, and a fiber-forming component and a micro LED as a island component. It can be prepared by spinning the use solution. Specifically, Figure 13 is a cross-sectional perspective view of the island-in-the-sea fiber (30E) prepared in accordance with a preferred embodiment of the present invention, the island-in-the-sea fiber (30E) is a island component (30C 1 , 30C 2 , 30C 3 ) and sea component 40, wherein the island component 30C 1 includes a fiber forming component 10 and an ultra-small LED device 20.
상기와 같은 해도형 섬유(30E)의 해성분(40)은 섬유형성성분을 용해시키기 어려운 용매(예를 들어 알칼리 용액)에 의해 용해될 수 있는 당업계의 통상적인 알칼리 이용해성 코폴리머일 수 있다. 이에 따라 제조된 해도형 섬유(30E)를 알칼리 등의 용액에 처리하여 해성분(40)을 제거할 경우 도성분인 복합섬유(30C1, 30C2, 30C3)를 수득할 수 있다.The sea component 40 of the island-in-the-sea fiber 30E may be a conventional alkali-soluble copolymer in the art that can be dissolved by a solvent (for example, an alkaline solution) that is difficult to dissolve the fiber-forming component. . Accordingly, even if the manufacturing process the fiber-type (30E) To a solution of alkali such as when to remove the sea component 40 island component of the composite fiber (30C 1, 30C 2, 30C 3 ) can be obtained.
본 발명에 따른 (1) 단계에서 전극에 배치되는 복합섬유집합체는 상술한 제조방법에 따라 제조된 복합섬유를 포함한다.The composite fiber assembly disposed on the electrode in step (1) according to the present invention includes the composite fiber prepared according to the above-described manufacturing method.
상기 복합섬유집합체는 실, 직물, 편성물 및 부직포 중 어느 하나의 형상일 수 있다. 먼저, 복합섬유 집합체는 실의 형상일 수 있다. 상기 실은 스테이플사 및/또는 필라멘트사일 수 있고, 한올의 모노필라멘트사 및/또는 멀티필라멘트사일 수 있다. 또는 상기 스테이플사가 방적된 방적사일 수 있고, 상기 방적사 및 필라멘트사가 복수개로 합쳐진 합연사일 수도 있다. 다만 실의 형상인 경우 구체적 형상이 상기 기재에 한정되는 것은 아니고, 당업계의 공지된 실의 형태는 모두 가능할 수 있다.The composite fiber assembly may be in the shape of any one of a yarn, a woven fabric, a knitted fabric, and a nonwoven fabric. First, the composite fiber aggregate may be in the shape of a yarn. The yarn may be staple yarns and / or filament yarns, and may be monolithic monofilament yarns and / or multifilament yarns. Alternatively, the staple yarn may be spun yarn spun yarn, or may be a twisted yarn in which a plurality of spun yarn and filament yarn are combined. However, in the case of the shape of the thread, the specific shape is not limited to the above description, and the shape of the thread known in the art may be all possible.
또한, 복합섬유집합체가 실의 형상이라는 것은 복합섬유를 섬유형상 그대로 포함한다는 것을 의미하며, 이때 복합섬유간 또는 하나의 복합섬유내 각기 다른 부위간에 어떠한 물리적(예를 들어 열)/화학적 접착(예를 들어 이종의 접착제 사용)이 있는 부직포 또는 제직 등에 의한 원단의 형상이 아닌 것을 의미할 수 있다.In addition, the fact that the composite fiber assembly is in the form of a yarn means that the composite fiber is included as it is, in which the physical (eg thermal) / chemical adhesion (eg, between the composite fibers or different portions of one composite fiber) For example, it may mean that the shape of the fabric by the non-woven fabric or weaving, etc. with the use of heterogeneous adhesive).
다음으로 복합섬유집합체는 직물 또는 편성물의 원단형상을 가질 수 있다.Next, the composite fiber assembly may have a fabric shape of a woven or knitted fabric.
상기 직물 또는 편성물의 원단형상을 갖는 복합섬유집합체는 복합섬유를 상기 직물 또는 편성물을 제직 또는 편성할 때 사용되는 원사로 포함할 수 있다. 이 경우 상기 복합섬유집합체는 복합섬유를 단독의 원사로 포함하거나 또는 복합섬유와 이종의 원사를 사용하여 직물 또는 편성물의 경사 또는 위사로 복합섬유를 포함할 수 있다. The composite fiber aggregate having a fabric shape of the fabric or knitted fabric may include the composite fiber as a yarn used when weaving or knitting the fabric or knitted fabric. In this case, the composite fiber assembly may include the composite fiber as a single yarn, or may include the composite fiber as a warp or weft of a fabric or a knitted fabric using the composite fiber and heterogeneous yarn.
상기 직물의 조직은 평직, 능직, 수자직 및 이중직 중 어느 하나 이상일 수 있다. 상기 이중직은 경사 또는 위사의 어느 한쪽이 2중으로 되어있거나 양쪽이 모두 2중으로 된 직물의 조직을 의미한다. 상기 직물의 조직에 따른 구체적 제직방법은 당업계에 공지된 제직방법일 수 있다. 다만, 상기 직물은 구체적 직물조직의 기재에 한정되지 않으며, 제직에서의 경위사 밀도의 경우 특별하게 한정하지 않는다.The fabric may be any one or more of plain weave, twill weave, satin weave and double weave. The double weave refers to the structure of a fabric in which either one of the warp yarns or the weft yarns is doubled or both are doubled. Specific weaving method according to the structure of the fabric may be a weaving method known in the art. However, the fabric is not limited to the description of the specific fabric structure, and in the case of the weft density in the weaving is not particularly limited.
또한 상기 편성물은 복합섬유를 원사로 포함하여 위편성 또는 경편성의 방법에 의할 수 있으며, 상기 위편성과 경편성의 구체적인 방법은 통상적인 위편성 또는 경편성의 편성방법에 의할 수 있다.In addition, the knitted fabric may include a composite fiber as a yarn, and may be by the method of knitting or warp knitting, and the specific method of knitting and warp knitting may be by conventional knitting or warp knitting.
구체적으로 도 14는 본 발명의 바람직한 일구현예에 따른 복합섬유를 포함하는 복합섬유집합체의 평면도로써, 도 14의 복합섬유집합체는 복수개의 초소형 LED 소자(20) 및 섬유형성성분(10)을 포함하는 복합섬유(30)가 위사(또는 경사)로 포함되어 평직으로 제직된 직물이다. 이때 상기 원단에 포함된 복합섬유(30) 이외의 다른 이종의 원사(50)는 복합섬유(30)에 포함된 섬유형성성분(10)과 동일한 방법에 의해 후술할 (2) 단계에서 쉽게 제거될 수 있는 고분자화합물을 포함하는 원사일 수 있으며, 섬유형성성분(10)과 동종 또는 이종의 화합물을 포함할 수 있다.Specifically, FIG. 14 is a plan view of a composite fiber assembly including a composite fiber according to a preferred embodiment of the present invention. The composite fiber assembly of FIG. 14 includes a plurality of ultra-small LED devices 20 and a fiber forming component 10. The composite fiber 30 is included in the weft (or warp) is a woven fabric woven plain. At this time, the heterogeneous yarn 50 other than the composite fiber 30 included in the fabric can be easily removed in step (2) to be described later by the same method as the fiber forming component 10 included in the composite fiber 30. It may be a yarn containing a high molecular compound, and may include a compound of the same or different types as the fiber forming component (10).
만일 도 14와 같이 직물 또는 편성물의 형상을 가지는 복합섬유집합체가 경사 또는 위사 중 어느 하나로만 복합섬유를 포함할 경우 서로 다른 두 전극이 상호 교번하여 일렬로 배치되는 전극어셈블리에 초소형 LED 소자를 배치하는데 있어 초소형 LED 소자의 길이방향으로 상기 두 전극에 초소형 LED 소자를 수직에 가깝게 배치시킬 수 있는 이점이 있다.If the composite fiber assembly having the shape of a fabric or knitted fabric as shown in Figure 14 includes only the composite fiber in any one of the warp or weft yarn, to place the ultra-small LED device in the electrode assembly in which two different electrodes are alternately arranged in a row There is an advantage that can be arranged in the longitudinal direction of the ultra-small LED device, the micro-LED device on the two electrodes close to the vertical.
구체적으로 도 15는 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자를 전극어셈블리에 배치시키는 방법을 나타낸 모식도이다.Specifically, FIG. 15 is a schematic diagram illustrating a method of disposing an ultra-small LED device according to an exemplary embodiment of the present invention in an electrode assembly.
먼저, 도 15a는 섬유형성성분(310a, 320a) 내부에 복수개의 초소형 LED 소자(310b, 320b)가 일렬로 열을 지어 배열된 복합섬유(310, 320, 330)를 위사(또는 경사)로 포함하고, 상기 섬유형성성분과 동일한 고분자화합물을 포함하는 원사(310', 320')를 경사(또는 위사)로 포함한 원단을 제1 전극(301) 및 제2 전극(302)상에 위치시키는 공정을 나타낸다. 이후 후술할 (2) 단계와 같이 섬유형성성분(310a, 320a) 및 원사(310', 320')를 제거할 경우 도 13b와 같이 초소형 LED 소자(310b, 320b)가 상호 교번하여 나란히 배열되는 제1 전극 및/또는 제2 전극 상에 초소형 LED 소자의 길이방향으로 수직에 가깝게 배치될 수 있다.First, FIG. 15A includes composite fibers 310, 320, and 330 in which the plurality of micro LEDs 310b and 320b are arranged in a row in the fiber forming components 310a and 320a as wefts (or warp yarns). And placing the fabric including the yarns 310 'and 320' containing the same polymer compound as the fiber forming component as the warp yarn (or the weft yarn) on the first electrode 301 and the second electrode 302. Indicates. Subsequently, when the fiber forming components 310a and 320a and the yarns 310 'and 320' are removed as described in step (2), the micro LEDs 310b and 320b are alternately arranged side by side as shown in FIG. 13B. It may be disposed on the first electrode and / or the second electrode close to the vertical in the longitudinal direction of the ultra-small LED device.
다음으로 복합섬유집합체는 복합섬유를 포함하여 부직포의 형상을 가질 수 있다. 부직포의 형상을 가지는 복합섬유집합체는 복합섬유집합체의 단위부피당 포함되는 복합섬유의 양을 직물의 형상의 복합섬유집합체에 비해 더 많이 포함시킬 수 있고, 이를 통해 일정면적의 전극상에 배치시킬 수 있는 초소형 LED 소자의 개수를 현저히 증가시킬 수 있는 장점이 있다. 이러한 부직포 형상의 복합섬유집합체는 당업계 공지된 방법으로 복합섬유를 이용해 제조할 수 있으며, 구체적으로 멜트-블로운(melt-blown)법, 플래쉬-익스트루젼(flash-extrusion)법, 슈퍼-드로우(super-draw)법 등 중 어느 하나의 방법에 의할 수 있고, 상기 방법의 구체적인 공정은 당업계 공지된 것에 의할 수 있다.Next, the composite fiber assembly may have a shape of a nonwoven fabric including a composite fiber. The composite fiber assembly having the shape of a nonwoven fabric may include more amount of the composite fiber per unit volume of the composite fiber assembly than the composite fiber assembly having the shape of the fabric, and thus may be disposed on an electrode of a predetermined area. There is an advantage that can significantly increase the number of ultra-small LED device. Such a nonwoven fabric-like composite fiber assembly may be prepared using the composite fiber by methods known in the art, specifically, a melt-blown method, a flash-extrusion method, a super- The method may be any one of a super-draw method and the like, and the specific process of the method may be known in the art.
본 발명에 따른 (1) 단계는 이상으로 상술한 복합섬유집합체를 전극상에 투입시키는 단계로써, 먼저, 전극에 대해 설명한다. 상기 전극은 바람직하게는 후술할 (2) 단계에서 복합섬유집합체에 포함된 섬유형성성분이 제거된 후 남게 되는 초소형 LED 소자가 실장되는 전극을 의미하고, 전극에 전원을 인가 시에 초소형 LED 소자가 발광할 수 있도록 서로 다른 두 전극라인을 포함할 수 있고, 상기 두 전극라인의 구체적인 배치는 목적에 따라 달리 설계 변경될 수 있어 본 발명에서는 특별히 한정하지 않는다.Step (1) according to the present invention is a step of injecting the above-described composite fiber assembly on the electrode. First, the electrode will be described. The electrode preferably refers to an electrode in which the micro LED device remaining after the fiber forming component included in the composite fiber assembly is removed in step (2) to be described later is mounted, and the micro LED device is applied when power is applied to the electrode. It may include two different electrode lines so as to emit light, and the specific arrangement of the two electrode lines may be differently designed depending on the purpose is not particularly limited in the present invention.
다만, 본 발명에 따라 배치되는 초소형 LED 소자는 전극면과 평행하게 누워서 서로 다른 두 전극에 연결되므로 상기 초소형 LED 소자가 최종적으로 서로 다른 두 전극라인에 실장되는 전극영역에 포함된 서로 다른 두 전극은 동일평면상에 위치할 수 있다. 구체적으로 도 16은 본 발명의 바람직한 일구현예에 포함되는 전극에 대한 사시도로써, 도 16의 전극라인은 베이스기판(400) 상에 형성된 제Ⅰ 전극(411);, 상기 제Ⅰ 전극(411)을 포함하여 베이스기판(400) 상에 형성된 절연층(420);, 상기 절연층(420) 상에 형성되는 제1 전극 및 상기 제1 전극(413)과 동일평면상에 이격하여 상호 교번적으로 형성된 제2 전극(412);, 상기 제2 전극과 연결된 제Ⅱ 전극(421); 및 상기 제1 전극과 제Ⅰ 전극(411)을 연결하는 연결전극(412);을 포함하고 있다. However, since the ultra-small LED device disposed according to the present invention is connected to two different electrodes by laying parallel to the electrode surface, the two different electrodes included in the electrode region where the micro LED device is finally mounted on two different electrode lines It may be located on the same plane. Specifically, FIG. 16 is a perspective view of an electrode included in a preferred embodiment of the present invention. The electrode line of FIG. 16 includes: a first electrode 411 formed on a base substrate 400; and the first electrode 411 Insulating layer 420 formed on the base substrate 400, including; The first electrode and the first electrode 413 formed on the insulating layer 420 spaced apart on the same plane and alternately mutually A second electrode 412 formed, a second electrode 421 connected to the second electrode; And a connection electrode 412 connecting the first electrode and the first electrode 411.
도 16과 같은 구조의 전극라인의 경우 제Ⅰ 전극(411)과 제Ⅱ 전극(421)이 서로 다른 평면상에 위치할 수 있지만 초소형 LED 소자가 실질적으로 실장될 수 있는 영역(S)에 포함된 제1 전극(413) 및 제2 전극(421)은 동일평면상에 형성될 수 있고, 이를 통해 초소형 LED 소자는 제1 도전성 반도체층 및 제2 도전성 반도체층을 연결하는 축이 상기 동일평면과 평행하게 소자가 누운 상태로 전극상에 연결될 수 있다.In the case of the electrode line of FIG. 16, the first electrode 411 and the second electrode 421 may be located on different planes, but may be included in an area S in which the micro LED device may be mounted. The first electrode 413 and the second electrode 421 may be formed on the same plane, whereby the axis connecting the first conductive semiconductor layer and the second conductive semiconductor layer is parallel to the same plane. The device may be connected to the electrode while lying down.
본 발명에 따른 (1) 단계에 포함되는 전극은 목적에 따라 구현 가능한 형상, 구조가 다양함에 따라 전극의 두께 및 폭 역시 다양하게 구현될 수 있어 본 발명에서 특별히 한정하지 않는다. 다만, 초소형 LED 소자가 최종적으로 실장되는 전극영역에 포함되는 전극의 경우 폭은 100 nm ~ 50㎛일 수 있고, 두께는 0.1 내지 10 ㎛일 수 있다. 상기 전극의 재질은 통상적으로 당업계에서 사용되는 공지의 전극 재질을 사용할 수 있고, 바람직하게는 알루미늄, 타이타늄, 인듐, 골드 및 실버로 이루어진 군에서 선택된 어느 하나 이상의 금속물질 또는 ITO(Indum Tin Oxide), ZnO:Al 및 CNT-전도성 폴리머(polmer) 복합체로 이루어진 군에서 선택된 어느 하나 이상의 투명물질 일수 있다. 상기 전극이 2 종 이상의 물질을 포함하는 경우 바람직하게는 2종 이상의 물질이 적층된 구조일 수 있고 보다 더 바람직하게는 타이타늄/골드의 적층 구조일 수 있으나, 이에 한정되는 것은 아니다.The electrode included in step (1) according to the present invention may be embodied in various thicknesses and widths of the electrode according to various shapes and structures that can be implemented according to the purpose, and are not particularly limited in the present invention. However, in the case of an electrode included in an electrode region in which an ultra-small LED device is finally mounted, the width may be 100 nm to 50 μm, and the thickness may be 0.1 to 10 μm. The material of the electrode may be a known electrode material commonly used in the art, preferably at least one metal material selected from the group consisting of aluminum, titanium, indium, gold and silver or indium tin oxide (ITO) It may be any one or more transparent materials selected from the group consisting of, ZnO: Al and CNT-conductive polymer (polmer) composite. When the electrode includes two or more materials, preferably, two or more materials may be stacked, and more preferably, a titanium / gold stacked structure, but is not limited thereto.
상술한 것과 같은 전극에 복합섬유집합체를 투입하는 방법은 복합섬유 집합체에 포함된 복합섬유를 직접 전극상에 전기방사 등을 통해 제조함으로써 전극상에 복합섬유집합체의 형성 및 배치를 동시에 할 수 있다. 또는 별도로 제조된 복합섬유집합체를 목적하는 전극영역에 다양한 방법으로 올려놓아 배치시킬 수도 있음에 따라 본 발명에서 복합섬유집합체를 전극에 배치시키는 구체적 방법에 대해서는 특별히 한정하지 않는다.In the method of injecting the composite fiber assembly into the electrode as described above, by forming the composite fiber contained in the composite fiber assembly directly on the electrode by electrospinning or the like, the formation and arrangement of the composite fiber assembly on the electrode can be performed simultaneously. Alternatively, the composite fiber assembly prepared separately may be placed on the desired electrode region in various ways, and thus the specific method for arranging the composite fiber assembly on the electrode is not particularly limited.
다음으로 본 발명에 따른 (2) 단계로써, (1) 단계에서 복합섬유집합체에 포함된 복합섬유의 섬유형성성분을 제거하는 단계를 수행할 수 있다.Next, in step (2) according to the present invention, step (1) may be performed to remove the fiber forming component of the composite fiber contained in the composite fiber assembly.
상기 (2) 단계를 통해 복합섬유의 섬유형성성분이 제거되면 전극상에 초소형 LED 소자만 남아 있게 되며, 구체적으로 도 10a에서 제1 전극(201) 및 제2 전극(202)상에 배치된 복합섬유집합체에 포함된 복합섬유(210, 220, 230)의 섬유형성성분(210a, 220a)이 제거되면 도 10b와 같이 초소형 LED 소자(210b, 220b)들이 서로 다른 두 전극(201, 202) 상에 남게 되어 전극상에 초소형 LED 소자가 배치될 수 있다.When the fiber forming component of the composite fiber is removed through the step (2), only the ultra-small LED device remains on the electrode, and specifically, the composite disposed on the first electrode 201 and the second electrode 202 in FIG. 10A. When the fiber forming components 210a and 220a of the composite fibers 210, 220, and 230 included in the fiber assembly are removed, the micro LEDs 210b and 220b are formed on two different electrodes 201 and 202 as shown in FIG. 10B. The small LED device may be disposed on the electrode.
또한, 구체적으로 도 15a와 같이, 제1 전극(301) 및 제2 전극(302)상에 섬유형성성분(310a, 320a) 내부에 복수개의 초소형 LED 소자(310b, 320b)가 일렬로 열을 지어 배열된 복합섬유(310, 320, 330)를 위사(또는 경사)로 포함하고, 상기 섬유형성성분과 동일한 고분자화합물을 포함하는 원사(310', 320')를 경사(또는 위사)로 포함한 원단을 위치시킨다. 이후 섬유형성성분(310a, 320a) 및 원사(310', 320')를 제거할 경우 도 15b와 같이 초소형 LED 소자(310b, 320b)가 상호 교번하여 나란히 배열되는 제1 전극 및/또는 제2 전극 상에 초소형 LED 소자의 길이방향으로 수직에 가깝게 배치될 수 있다.In detail, as illustrated in FIG. 15A, a plurality of micro LED devices 310b and 320b are arranged in a row in the fiber forming components 310a and 320a on the first electrode 301 and the second electrode 302. Fabric comprising a composite fiber (310, 320, 330) arranged in a weft (or warp), and comprising a yarn (310 ', 320') containing the same polymer compound as the fiber forming component as a warp (or weft) Position it. Subsequently, when the fiber forming components 310a and 320a and the yarns 310 'and 320' are removed, the first and / or second electrodes in which the ultra-small LED elements 310b and 320b are alternately arranged side by side as shown in FIG. 15B. It can be disposed close to the vertical in the longitudinal direction of the ultra-small LED device.
상기 (2) 단계에서 복합섬유의 섬유형성성분을 제거하는 구체적인 방법은 복합섬유에 포함된 섬유형성성분의 구체적 종류에 따라 달라질 수 있고, 만일 상기 섬유형성성분이 열에 의해 쉽게 제거되는 물질인 경우 (2) 단계에서 가열공정을 거쳐 섬유형성성분을 제거할 수 있으며, 이때 구체적 온도는 사용되는 섬유형성성분의 종류에 따라 달라질 수 있어 본 발명에서는 특별히 한정하지 않는다. The specific method of removing the fiber forming component of the composite fiber in the step (2) may vary depending on the specific type of the fiber forming component contained in the composite fiber, if the fiber forming component is a material that is easily removed by heat ( In the step 2), the fiber forming component may be removed through a heating process, and the specific temperature may vary depending on the type of the fiber forming component used, and thus the present invention is not particularly limited.
또한, 만일 상기 섬유형성성분이 용매에 의해 쉽게 제거되는 물질인 경우 (2) 단계에서 용매를 복합섬유집합체에 투입하여 섬유형성성분을 녹여 초소형 LED 소자를 전극상에 남아 있게 할 수 있다. 이때 상기 용매는 사용되는 섬유형성성분의 종류에 따라 달라질 수 있으나, 바람직하게는 아세톤, 톨루엔, 클로로포름 및 이소프로필알코올 중 어느 하나 이상에 의할 수 있다. 또한, 섬유형성성분의 구체적 종류에 따라 상기 (2) 단계는 가열 및 용매를 사용하여 섬유형성성분을 제거할 수도 있다.In addition, if the fiber-forming component is a material easily removed by the solvent, the solvent may be added to the composite fiber assembly in step (2) to dissolve the fiber-forming component so that the micro LED device remains on the electrode. At this time, the solvent may vary depending on the type of fiber forming component used, but preferably may be any one or more of acetone, toluene, chloroform and isopropyl alcohol. In addition, according to the specific type of the fiber forming component, step (2) may remove the fiber forming component using heating and a solvent.
이하, 상기 (2) 단계를 통해 섬유형성성분이 제거되고 전극상에 초소형 LED 소자만이 남아있게 된 이후 초소형 LED 소자를 서로 다른 두 전극에 자기정렬 시켜 연결시키는 과정에 대해 설명한다.Hereinafter, a process of self-aligning and connecting the micro LED device to two different electrodes after the fiber forming component is removed through the step (2) and only the micro LED device remains on the electrode will be described.
구체적으로 도 10b(또는 도 15b)는 전극상에 초소형 LED 소자(210b, 220b)들이 서로 다른 두 전극상에 배치된 상태로, 이 상태는 초소형 LED 소자가 전극상에 위치된 상태일 뿐, 초소형 LED 소자의 제1 도전성 반도체층 및 제2 도전성 반도체층 각각이 제1 전극(201) 또는 제2 전극(202)에 동시에 연결된 상태가 아니다. 초소형 LED 소자가 발광될 수 있는 초소형 LED 소자를 포함하는 전극어셈블리를 구현하기 위해서는 초소형 LED 소자의 제1 도전성 반도체층을 제1 전극(201) 또는 제2 전극(202)에 연결시키고, 제2 도전성 반도체층을 제1 도전성 반도체층이 연결된 전극과 다른 전극에 연결시키는 공정이 요구된다. 이러한 공정은 도 10c와 같이 서로 다른 두 전극(201, 202)에 전원을 인가함을 통해 가능하며, 전극에 인가된 전원에 의해 초소형 LED 소자의 외부표면에는 양전하, 음전하가 하전되는 분극현상이 발생하고, 정전기적 인력에 의해 초소형 LED 소자가 이동하여 도 10d와 같이 서로 다른 두 전극에 연결될 수 있다. Specifically, FIG. 10B (or FIG. 15B) shows a state in which the ultra-small LED elements 210b and 220b are disposed on two different electrodes on the electrode, and in this state, the ultra-small LED element is located on the electrode. Each of the first conductive semiconductor layer and the second conductive semiconductor layer of the LED device is not simultaneously connected to the first electrode 201 or the second electrode 202. In order to implement an electrode assembly including a micro LED device capable of emitting a micro LED device, the first conductive semiconductor layer of the micro LED device is connected to the first electrode 201 or the second electrode 202, and the second conductive A process of connecting the semiconductor layer to an electrode different from the electrode to which the first conductive semiconductor layer is connected is required. This process is possible by applying power to two different electrodes 201 and 202 as shown in FIG. 10C, and a polarization phenomenon in which positive and negative charges are charged on the outer surface of the micro LED device by the power applied to the electrodes. In addition, the micro LED device may be moved by the electrostatic attraction and may be connected to two different electrodes as shown in FIG. 10D.
바람직하게는 상기 전원은 진폭과 주기를 갖는 변동하는 전원일 수 있으며, 그 파형은 싸인파와 같은 정현파 또는 정현파가 아닌 파형들로 구성된 펄스파일 수 있다. 그 예로서 교류전원을 인가하거나, 또는 직류전원을 초당 1000 회 동안 제1 전극에 0V, 30V, 0V, 30V, 0V, 30V 반복하여 인가하고 제2 전극에는 제1 전극과 상반되게 30V, 0V, 30V, 0V, 30V, 0V를 반복하여 인가함으로써 진폭과 주기를 갖는 변동하는 전원을 만들 수도 있다. 바람직하게 상기 전원의 전압(진폭)은 0.1V 내지 1000 V 일 수 있으며, 주파수는 10 Hz 내지 100 GHz 일 수 있고, 바람직하게 초소형 LED 소자는 5 내지 120 초 동안 전원을 인가함으로써 서로 다른 두 전극에 동시에 연결될 수 있다.Preferably, the power supply may be a variable power supply having an amplitude and a period, and the waveform may be a pulse file consisting of sinusoidal waveforms such as sine waves or non-sinusoidal waveforms. As an example Apply AC power, Alternatively, DC power is repeatedly applied to the first electrode for 1000 times per second, 0V, 30V, 0V, 30V, 0V, 30V, and 30V, 0V, 30V, 0V, 30V, 0V is repeated to the second electrode as opposed to the first electrode. It is also possible to make a fluctuating power source with amplitude and period by applying it. Preferably the voltage (amplitude) of the power supply may be 0.1V to 1000V, the frequency may be 10 Hz to 100 GHz, preferably the micro LED device is applied to two different electrodes by applying power for 5 to 120 seconds. Can be connected at the same time.
한편, 바람직하게는 상기 전원을 인가하여 초소형 LED 소자를 자기정렬시키는 공정(도 10c)에서 용매를 투입할 수 있다. 상기 용매는 초소형 LED 소자가 쉽게 전극에 이동하여 연결될 수 있도록 하는 이동상으로 기능을 담당할 수 있다. 특히 본 발명에 따른 (2) 단계에서 섬유형성성분이 열에 의해 제거되는 경우 전원인가 단계에서 용매를 투입하는 것이 더욱 바람직할 수 있다. On the other hand, preferably, a solvent may be added in the process of self-aligning the ultra-small LED device by applying the power (FIG. 10C). The solvent may serve as a mobile phase that allows the micro LED device to be easily moved and connected to the electrode. In particular, when the fiber-forming component is removed by heat in step (2) according to the present invention, it may be more preferable to add a solvent in the power supply step.
상기 용매를 전극라인에 투입하는 시점은 전극라인에 전원을 인가하는 시점과 동일하거나 순서에 관계없이 상이할 수 있으며, 바람직하게는 동일할 수 있다. The time point at which the solvent is introduced into the electrode line may be the same as or different from the time point at which power is applied to the electrode line, and may be the same.
한편, 본 발명은 복수의 전극; 및 상기 복수의 전극상에 배치되고, 섬유형성성분 및 복수개의 초소형 LED 소자를 포함하는 복합섬유를 포함하는 복합섬유집합체;를 포함하는 복합섬유 집합체를 포함하는 전극어셈블리를 포함한다.On the other hand, the present invention is a plurality of electrodes; And a composite fiber assembly disposed on the plurality of electrodes, the composite fiber assembly including a composite fiber including a fiber forming component and a plurality of ultra-small LED devices.
복합섬유집합체를 포함하는 전극어셈블리는 복합섬유에 포함된 섬유형성성분을 제거하고, 서로 다른 두 전극상에 전원을 인가 시에 초소형 LED 소자가 서로 다른 두 전극에 연결된 초소형 LED 소자를 포함하는 전극어셈블리를 구현할 수 있기 때문에 제조시간의 감축에 양산성을 더욱 향상시킬 수 있는 이점이 있다.The electrode assembly including the composite fiber assembly removes the fiber-forming component contained in the composite fiber and when the power is applied to two different electrodes, the electrode assembly including the ultra-small LED element connected to the two different electrodes. Since it can be implemented there is an advantage that can further improve the mass production in the reduction of manufacturing time.
또한, 본 발명은 베이스기판; 상기 베이스기판 상에 형성되는 복수의 전극; 및 섬유형성성분을 포함한 복합섬유로 상기 복수의 전극상에 투입된 후, 상기 섬유형성성분이 제거됨으로써 상기 복수의 전극상에 위치되는 복수개의 초소형 LED 소자;를 포함하는 전극어셈블리를 포함한다.In addition, the present invention is a base substrate; A plurality of electrodes formed on the base substrate; And a plurality of ultra-small LED elements positioned on the plurality of electrodes by being injected onto the plurality of electrodes as a composite fiber including a fiber forming component, and then removing the fiber forming component.
본 발명의 바람직한 일실시예에 따르면, 상기 복수개의 초소형 소자는 복합섬유의 길이방향으로 적어도 하나 이상의 열을 지어 복합섬유에 포함되며, 상기 복합 섬유가 복수의 전극상에 투입된 후, 복합섬유의 섬유형성성분이 제거됨으로써 복수개의 초소형 LED 소자는 복수의 전극상에 적어도 하나 이상의 열을 지어 위치할 수 있고, 이 경우 초소형 LED 소자가 자기정렬 전에 이미 목적하는 전극상에 일렬로 위치정렬함에 따라 자기정렬에 소요되는 시간 및 자기정렬된 개개의 초소형 LED 소자의 전극상 위치정렬성을 더욱 향상시킬 수 있는 이점이 있다. 보다 바람직하게는 상기 복합섬유는 복수개의 초소형 소자가 심부를 형성하고, 섬유형성성분이 초부를 형성한 복합섬유일 수 있고, 상기와 같은 구조의 심초형 복합섬유가 전극상에 투입된 후 섬유형성성분이 제거됨으로써, 복수개의 초소형 LED 소자는 복수의 전극상에 적어도 하나 이상의 열을 지어 위치할 수 있다.According to a preferred embodiment of the present invention, the plurality of microminiature elements are included in the composite fiber in at least one row in the longitudinal direction of the composite fiber, the composite fiber is put on the plurality of electrodes, the fiber of the composite fiber The removal of the forming components allows the plurality of micro LED elements to be positioned in at least one row on the plurality of electrodes, in which case the micro LED elements are self-aligned as they are aligned in line on the desired electrode prior to self alignment. There is an advantage of further improving the time alignment required and the positional alignment on the electrodes of the individual micro LED devices which are self-aligned. More preferably, the composite fiber may be a composite fiber in which a plurality of microminiature elements form a core portion, and a fiber forming component is formed in a core portion, and the fiber-forming component is introduced after the core sheath-type composite fiber of the above structure is put on an electrode. By this removal, the plurality of micro LED elements can be positioned in at least one row on the plurality of electrodes.

Claims (19)

  1. (1) 섬유형성성분 및 복수개의 초소형 LED 소자를 포함하는 복합섬유를 포함하는 복합섬유집합체;를 전극상에 투입시키는 단계; 및(1) a composite fiber assembly comprising a composite fiber comprising a fiber forming component and a plurality of ultra-small LED devices; And
    (2) 상기 복합섬유의 섬유형성성분을 제거하는 단계;를 포함하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.(2) removing the fiber-forming component of the composite fiber; a method for disposing a micro LED device comprising an electrode assembly.
  2. 제1항에 있어서,The method of claim 1,
    상기 복합섬유 집합체는 실, 직물, 편성물 및 부직포 중 어느 하나의 형상을 갖는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.The composite fiber assembly has a shape of any one of a yarn, a woven fabric, a knitted fabric and a non-woven fabric.
  3. 제1항에 있어서,The method of claim 1,
    상기 복수개의 초소형 소자는 복합섬유의 내부에 포함되어 있는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.And the plurality of microminiature elements are included in the composite fiber.
  4. 제3항에 있어서,The method of claim 3,
    상기 복수개의 초소형 소자는 복합섬유의 길이방향으로 적어도 하나 이상의 열을 지어 배열되는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.And said plurality of microminiature elements are arranged in at least one or more rows in the longitudinal direction of the composite fiber.
  5. 제4항에 있어서, 상기 복합섬유는The method of claim 4, wherein the composite fiber
    복수개의 초소형 LED 소자가 일렬로 열을 지어 형성된 심부; 및 A core portion in which a plurality of micro LED elements are arranged in a row; And
    섬유형성성분이 상기 심부를 감싸 형성된 초부;를 포함하는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.Ultra-finished LED element, characterized in that it comprises a fiber-forming component formed around the core; disposed on the electrode assembly.
  6. 제5항에 있어서,The method of claim 5,
    상기 복합섬유의 직경은 초소형 LED 소자 단축길이의 1.2 ~ 8.0배인 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.The diameter of the composite fiber is a method of placing a micro LED device in the electrode assembly, characterized in that 1.2 ~ 8.0 times the short length of the micro LED device.
  7. 제3항에 있어서,The method of claim 3,
    상기 복수개의 초소형 LED 소자는 복합섬유의 길이방향으로 복수개의 열을 지어 배열되는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.And the plurality of micro LEDs are arranged in a plurality of rows in the longitudinal direction of the composite fiber.
  8. 제1항에 있어서,The method of claim 1,
    상기 섬유형성성분은 PMMA (Poly(methyl methacrylate), PS (polystyrene), PVC (polyvinyl chloride), PVA (polyvinyl acetate), PE (polyethylene), PET (Polyethylene terephthalate), PP (polypropylene)로 이루어진 군에서 선택된 어느 하나 이상의 고분자 화합물을 포함하는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.The fiber forming component is selected from the group consisting of PMMA (Poly (methyl methacrylate), PS (polystyrene), PVC (polyvinyl chloride), PVA (polyvinyl acetate), PE (polyethylene), PET (Polyethylene terephthalate), PP (polypropylene) A method of disposing an ultra-small LED device in an electrode assembly, characterized in that it comprises at least one polymer compound.
  9. 제1항에 있어서,The method of claim 1,
    상기 복합섬유는 섬유형성성분 100 중량부에 대해 초소형 LED 소자를 30 ~ 90 중량부로 포함하는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.The composite fiber is a method for placing a micro LED device in the electrode assembly, characterized in that it comprises 30 to 90 parts by weight of the ultra-small LED device with respect to 100 parts by weight of the fiber forming component.
  10. 제1항에 있어서, The method of claim 1,
    상기 초소형 LED 소자는 로드(rod) 형상이며, 초소형 LED 소자의 길이는 100 nm 내지 10㎛ 인 것을 특징으로 하는 인 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.The micro LED device has a rod shape, and the micro LED device has a length of 100 nm to 10 μm, wherein the micro LED device is disposed in the electrode assembly.
  11. 제1항에 있어서, 상기 초소형 LED 소자는 The method of claim 1, wherein the micro LED device
    제1 도전성 반도체층; A first conductive semiconductor layer;
    상기 제1 도전성 반도체층상에 형성된 활성층; 및 An active layer formed on the first conductive semiconductor layer; And
    상기 활성층 상에 형성된 제2 도전성 반도체층;을 포함하는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.And a second conductive semiconductor layer formed on the active layer.
  12. 제11항에 있어서, The method of claim 11,
    상기 초소형 LED 소자는 제1 도전성 반도체층 하부에 형성된 제1 전극층; 및 제2 도전성 반도체층 상부에 형성된 제2 전극층;을 더 포함하는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.The micro LED device may include a first electrode layer formed under the first conductive semiconductor layer; And a second electrode layer formed on the second conductive semiconductor layer, wherein the ultra-small LED device is disposed on the electrode assembly.
  13. 제11항에 있어서, The method of claim 11,
    상기 초소형 LED 소자의 외부면에는 적어도 활성층 부분의 외부면 전체를 덮는 절연피막이 코팅된 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.A method of disposing an ultra-small LED device in an electrode assembly, characterized in that the outer surface of the micro-LED device is coated with an insulating coating covering at least the entire outer surface of the active layer portion.
  14. 제1항에 있어서,The method of claim 1,
    상기 (2) 단계는 섬유형성성분을 열 또는 용매 중 적어도 하나 이상을 처리하여 제거시키는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.Wherein step (2) is a method of placing a micro LED device on the electrode assembly, characterized in that to remove the fiber-forming component by treatment of at least one of heat or solvent.
  15. 제14항에 있어서, The method of claim 14,
    상기 용매는 아세톤, 톨루엔 및 이소프로필알코올로 이루어진 군에서 선택된 어느 하나 이상의 용매를 포함하는 것을 특징으로 하는 초소형 LED 소자를 전극어셈블리에 배치시키는 방법.Wherein said solvent comprises at least one solvent selected from the group consisting of acetone, toluene and isopropyl alcohol.
  16. 복수의 전극; 및 A plurality of electrodes; And
    상기 복수의 전극상에 배치되고, 섬유형성성분 및 복수개의 초소형 LED 소자를 포함하는 복합섬유를 포함하는 복합섬유집합체;를 포함하는 복합섬유 집합체를 포함하는 전극어셈블리.And a composite fiber assembly disposed on the plurality of electrodes, the composite fiber assembly including a composite fiber including a fiber forming component and a plurality of ultra-small LED devices.
  17. 베이스기판;Base substrate;
    상기 베이스기판 상에 형성되는 복수의 전극; 및A plurality of electrodes formed on the base substrate; And
    섬유형성성분을 포함한 복합섬유로 상기 복수의 전극상에 투입된 후, 상기 섬유형성성분이 제거됨으로써 상기 복수의 전극상에 위치되는 복수개의 초소형 LED 소자;를 포함하는 전극어셈블리.And a plurality of ultra-small LED elements positioned on the plurality of electrodes by being injected onto the plurality of electrodes as composite fibers including a fiber forming component and then removing the fiber forming component.
  18. 제17항에 있어서,The method of claim 17,
    상기 복수개의 초소형 소자는 복합섬유의 길이방향으로 적어도 하나 이상의 열을 지어 복합섬유에 포함되며,The plurality of microminiature elements are included in the composite fibers in at least one row in the longitudinal direction of the composite fibers,
    상기 복합 섬유가 복수의 전극상에 투입된 후, 복합섬유의 섬유형성성분이 제거됨으로써 복수개의 초소형 LED 소자는 복수의 전극상에 적어도 하나 이상의 열을 지어 위치되는 것을 특징으로 하는 전극어셈블리.And after the composite fiber is put on the plurality of electrodes, the fiber forming component of the composite fiber is removed so that the plurality of micro LEDs are positioned in at least one row on the plurality of electrodes.
  19. 제18항에 있어서,The method of claim 18,
    상기 복수개의 초소형 소자는 섬유형성성분으로 형성된 초부에 대하여 그 내부에 하나 이상의 열을 지은 심부 형상으로 복합섬유에 포함되며,The plurality of microminiature elements are included in the composite fiber in a core shape having one or more rows formed therein with respect to a sheath formed of a fiber forming component,
    상기 복합섬유가 복수의 전극상에 투입된 후, 복합섬유의 초부가 제거됨으로써 복수개의 초소형 LED 소자는 복수의 전극상에 적어도 하나 이상의 열을 지어 위치되는 것을 특징으로 하는 전극어셈블리.And after the composite fiber is put on the plurality of electrodes, the ultra-parts of the composite fiber are removed so that the plurality of micro LEDs are positioned in at least one row on the plurality of electrodes.
PCT/KR2015/012247 2014-11-18 2015-11-13 Method for arranging micro-led elements in electrode assembly WO2016080709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140161052A KR101674052B1 (en) 2014-11-18 2014-11-18 Method for placing nano-scale LED on electrode assembly
KR10-2014-0161052 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016080709A1 true WO2016080709A1 (en) 2016-05-26

Family

ID=56014179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012247 WO2016080709A1 (en) 2014-11-18 2015-11-13 Method for arranging micro-led elements in electrode assembly

Country Status (2)

Country Link
KR (1) KR101674052B1 (en)
WO (1) WO2016080709A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3852155A1 (en) * 2020-01-16 2021-07-21 Samsung Display Co., Ltd. Light emitting element, manufacturing method thereof, and composition including the same
EP3955325A1 (en) * 2020-08-13 2022-02-16 Samsung Display Co., Ltd. Light-emitting element, method of fabricating the light-emitting element, and display device
WO2022169088A1 (en) * 2021-02-05 2022-08-11 전북대학교산학협력단 Electrode unit for nanoscale led, and nanoscale led array module using same
EP4024480A4 (en) * 2019-08-26 2023-10-04 Samsung Display Co., Ltd. Light emitting element, manufacturing method therefor and display device including same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361246B2 (en) 2017-09-15 2019-07-23 Samsung Display Co., Ltd. Ultra-small LED electrode assembly having improved luminance and method of manufacturing the same
TWI647810B (en) * 2017-10-13 2019-01-11 行家光電股份有限公司 Giant array method and system for micro components
KR102568353B1 (en) * 2018-08-16 2023-08-18 삼성디스플레이 주식회사 Light emitting element, Method of manufacturing the same and Display device comprising the Light emitting element
KR102610424B1 (en) 2018-08-30 2023-12-07 삼성디스플레이 주식회사 Pixel and display device including the pixel
KR20200062458A (en) * 2018-11-26 2020-06-04 삼성디스플레이 주식회사 Display device
KR20200063380A (en) * 2018-11-27 2020-06-05 삼성디스플레이 주식회사 Display device
KR20200063386A (en) * 2018-11-27 2020-06-05 삼성디스플레이 주식회사 Display device
KR20200102615A (en) * 2019-02-21 2020-09-01 삼성디스플레이 주식회사 Light emitting element and display device having the same
KR20200118937A (en) * 2019-04-08 2020-10-19 삼성디스플레이 주식회사 Pixel, display device including the same and method of fabricating the display device
KR20210059088A (en) * 2019-11-13 2021-05-25 삼성디스플레이 주식회사 Display device and fabricating method for display device
KR20220014472A (en) * 2020-07-28 2022-02-07 삼성디스플레이 주식회사 Display device
WO2022039309A1 (en) * 2020-08-21 2022-02-24 엘지전자 주식회사 Substrate for manufacturing display apparatus and display apparatus comprising same
KR102532677B1 (en) * 2021-02-05 2023-05-17 전북대학교산학협력단 Micro LED array body, manufacturing method thereof and Micro LED array module manufacturing method
KR20230013705A (en) * 2021-07-19 2023-01-27 삼성디스플레이 주식회사 Light emitting element and display device including the same
KR20230130184A (en) * 2022-03-02 2023-09-12 삼성디스플레이 주식회사 Light emitting element and display device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060008943A1 (en) * 2004-06-30 2006-01-12 Berthold Hahn Mounting semiconductor chips
KR20120120377A (en) * 2010-03-05 2012-11-01 샤프 가부시키가이샤 Light emitting device, method for manufacturing light emitting device, illuminating device, and backlight
KR20120122159A (en) * 2011-04-28 2012-11-07 국민대학교산학협력단 Micro LED device and manufacturing method thereof
JP2012230967A (en) * 2011-04-25 2012-11-22 Mitsubishi Chemicals Corp Wiring board and light-emitting diode module
KR20130046175A (en) * 2011-10-27 2013-05-07 서울반도체 주식회사 Multi chip type light emitting diode package

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209446B1 (en) * 2011-04-28 2012-12-07 피에스아이 주식회사 Micro LED device bundle and manufacturing method thereof
KR101209449B1 (en) * 2011-04-29 2012-12-07 피에스아이 주식회사 Full-color LED display device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060008943A1 (en) * 2004-06-30 2006-01-12 Berthold Hahn Mounting semiconductor chips
KR20120120377A (en) * 2010-03-05 2012-11-01 샤프 가부시키가이샤 Light emitting device, method for manufacturing light emitting device, illuminating device, and backlight
JP2012230967A (en) * 2011-04-25 2012-11-22 Mitsubishi Chemicals Corp Wiring board and light-emitting diode module
KR20120122159A (en) * 2011-04-28 2012-11-07 국민대학교산학협력단 Micro LED device and manufacturing method thereof
KR20130046175A (en) * 2011-10-27 2013-05-07 서울반도체 주식회사 Multi chip type light emitting diode package

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024480A4 (en) * 2019-08-26 2023-10-04 Samsung Display Co., Ltd. Light emitting element, manufacturing method therefor and display device including same
EP3852155A1 (en) * 2020-01-16 2021-07-21 Samsung Display Co., Ltd. Light emitting element, manufacturing method thereof, and composition including the same
US20210226103A1 (en) * 2020-01-16 2021-07-22 Samsung Display Co., Ltd. Light emitting element, manufacturing method thereof, and composition including the same
US11728464B2 (en) 2020-01-16 2023-08-15 Samsung Display Co., Ltd. Light emitting element, manufacturing method thereof, and composition including the same
EP3955325A1 (en) * 2020-08-13 2022-02-16 Samsung Display Co., Ltd. Light-emitting element, method of fabricating the light-emitting element, and display device
US11949046B2 (en) 2020-08-13 2024-04-02 Samsung Display Co., Ltd. Light-emitting element, method of fabricating the light-emitting element, and display device
WO2022169088A1 (en) * 2021-02-05 2022-08-11 전북대학교산학협력단 Electrode unit for nanoscale led, and nanoscale led array module using same

Also Published As

Publication number Publication date
KR20160059569A (en) 2016-05-27
KR101674052B1 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2016080709A1 (en) Method for arranging micro-led elements in electrode assembly
WO2016080710A1 (en) Electrode assembly comprising micro-led elements and method for manufacturing same
KR101490758B1 (en) Nano-scale LED electrode assembly and method for manufacturing thereof
KR101628345B1 (en) Method for manufacturing nano-scale LED electrode assembly
WO2016080712A1 (en) Micro-led element for horizontally-aligned assembly, method for manufacturing same, and horizontally-aligned assembly comprising same
KR101770632B1 (en) Solvent for manufacture of Self-assembled nano-scale LED electrode assembly and method for manufacturing Self-assembled nano-scale LED electrode assembly by the same
KR101730929B1 (en) Method for manufacturing Nano-scale LED electrode assembly comprising selective metal ohmic layer
WO2014208896A1 (en) Vertical organic light-emitting transistor and organic led illumination apparatus having the same
US9978725B2 (en) LED lamp using ultra-small LED electrode assembly
WO2012148231A2 (en) Micro led bundle and method for manufacturing same
WO2012148234A2 (en) Full-color led display apparatus and method for manufacturing same
WO2011078467A2 (en) Laser diode using zinc oxide nanorods and manufacturing method thereof
WO2012165739A1 (en) Semiconductor light-emitting device, method of fabricating the same, and package comprising the same
WO2014046373A1 (en) Organic light-emitting diode provided with transparent electrode having conductive filaments and method for manufacturing same
CN106653793B (en) Nano luminescent array and its manufacturing method and nano luminescent device
KR101723822B1 (en) Complex fiber for manufacturing ultra-small LED electrode assembly and fabric comprising thereof
WO2015046766A1 (en) Transparent electrode and method for manufacturing same
KR100568640B1 (en) Fibers and Ribbons for Use in the Manufacture of Solar Cells
WO2012118246A1 (en) Nitride-based light-emitting element using silicon substrate and method for manufacturing same
TWI733029B (en) Flexible and stretchable perovskite fibers and methods of making the same and flexible and stretchable light-emitting elements comprising the same
Jayathilaka et al. Electrospinning of luminescence nanofibers: Current and future trends in wearable light-emitting devices
KR102375861B1 (en) Ultra-small double LED devices with back-to-back construction and their manufacturing methods and Electrode assembly and manufacturing method of ultra-small double LED with back-to-back structure
KR102309119B1 (en) Ultra-small led electrode assembly having improved unidirectional polar ordering by irradiation of pulsed light from outer light source and making method for the same
KR102065246B1 (en) LED pickup head and manufacturing method thereoff
KR102295710B1 (en) Ultra-small led electrode assembly having improved unidirectional polar ordering by irradiation of light from outer light source and making method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860692

Country of ref document: EP

Kind code of ref document: A1