WO2016080545A1 - ナノ複合材及びその製造方法並びに吸着剤及びその使用方法 - Google Patents
ナノ複合材及びその製造方法並びに吸着剤及びその使用方法 Download PDFInfo
- Publication number
- WO2016080545A1 WO2016080545A1 PCT/JP2015/082799 JP2015082799W WO2016080545A1 WO 2016080545 A1 WO2016080545 A1 WO 2016080545A1 JP 2015082799 W JP2015082799 W JP 2015082799W WO 2016080545 A1 WO2016080545 A1 WO 2016080545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanocomposite
- water
- organic
- adsorbent
- aqueous dispersion
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/45—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
- C07C233/46—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/47—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
Definitions
- the present invention relates to a nanocomposite in which a ferromagnetic material is complexed to an organic nanomaterial that adsorbs a chemical component contained in water, a method of manufacturing the same, an adsorbent containing the nanocomposite, and a method of using the same.
- the present inventors report that the peptide lipid bonds with a metal ion in a water-alcohol dispersion to form a metal complex type organic nanotube (see Patent Document 3).
- Patent Document 3 Although the adsorption by binding of metal ions in an alcohol dispersion is examined, the adsorption in water is not examined. Also, the adsorptivity of chemical components other than heavy metals has not been studied. Furthermore, the recovery method etc. after use at the time of using as an adsorbent are not examined, but there is a problem which is difficult to apply to purification processing of drainage as it is.
- the present inventors have also reported on a technique for forming an organic nanotube in which a low molecular weight organic compound is intercalated in a glycolipid or a peptide lipid (see Patent Document 4).
- this technique is to incorporate low molecular weight organic compounds such as dissolved fluorescent dye in the lipid of a bilayer membrane in a heated alcohol environment, and is not a technique that can be generally applied to the purification treatment of waste water.
- Non-Patent Document 1 a technique for complexing an organic nanotube formed by a peptide lipid and a gold nanoparticle.
- the organic nanotubes and the gold nanoparticles are under conditions where the organic functional groups present on each other interact with each other. Under these other conditions, for example, organic nanotubes have not been shown to bind to the surface of the metal itself.
- Non-Patent Document 2 As a technology related to organic nanomaterials, organic nanotubes combined with magnetite have been reported (see Non-Patent Document 2). However, since oleic acid is used for complexing with magnetite, there is a problem of further producing drainage containing oleic acid. In addition, magnetite and organic nanotubes are bonded by electrostatic interaction due to surface potential, so they are stable only with acidity, and complexing with weak acidity to alkalinity is solved. There is a problem that can not be used for
- JP 2004-275884 A Japanese Patent Application Laid-Open No. 5-245472 JP, 2009-233825, A JP, 2008-264897, A
- the present invention solves the above-mentioned problems in the prior art, does not require oil removal, desalting, pretreatment such as desulfurization, and simultaneously adsorbs oil, heavy metal, hydrogen sulfide and organic compounds by adding to waste water.
- a nanocomposite that can be easily and efficiently removed, is easy to recover after adsorption, and can be used for purification treatment of wastewater having a wide pH range from acidic to weakly alkaline, and a method for producing the same.
- An object of the present invention is to provide an adsorbent containing a nanocomposite and a method of using the same.
- organic nanomaterials which are self-assembled nanomaterials formed by peptide lipids, contain chemical components such as oil, heavy metals, hydrogen sulfide, and organic compounds in waste water.
- chemical components such as oil, heavy metals, hydrogen sulfide, and organic compounds in waste water.
- this organic nanomaterial forms a stable composite structure by mixing it with magnetite nanoparticles as a ferromagnetic material in an aqueous dispersion adjusted to pH 3 to 4, and forms a composite structure once.
- magnetite nanoparticles as a ferromagnetic material in an aqueous dispersion adjusted to pH 3 to 4, and forms a composite structure once.
- a nanocomposite comprising magnetite nanoparticles complexed to an organic nanomaterial represented by the following general formula (1).
- R represents a hydrocarbon group having 6 to 24 carbon atoms
- R ′ represents an amino acid side chain
- m represents an integer of 1 to 5.
- ⁇ 3> The nanocomposite according to any one of ⁇ 1> to ⁇ 2>, wherein RCO— is any of a myristoyl group, a palmitoyl group and a stearoyl group.
- ⁇ 5> The nanocomposite according to any one of ⁇ 1> to ⁇ 4>, wherein m is 1 or 2.
- An adsorbent comprising the nanocomposite according to any one of ⁇ 1> to ⁇ 5> as an adsorption component.
- ⁇ 7> A method of using an absorbent comprising introducing the adsorbent according to ⁇ 6> into water to be treated.
- ⁇ 8> The method of using the adsorbent according to ⁇ 7>, wherein the adsorbent is introduced into the water to be treated after adjusting the pH of the water to be treated to 1 to 9.5.
- ⁇ 9> A method of using the adsorbent according to any one of ⁇ 7> to ⁇ 8>, wherein the water to be treated is accompanying water produced concomitantly with energy resource production.
- Manufacturing a nanocomposite comprising: a dispersion preparation step; and a complexation step of adjusting the pH of the mixed dispersion to 3 to 4 to complex the magnetite nanoparticles to the organic nanomaterial Method.
- R represents a hydrocarbon group having 6 to 24 carbon atoms
- R ′ represents an amino acid side chain
- m represents an integer of 1 to 5.
- the above-mentioned problems in the prior art can be solved, and oil removal, desalting, desulfurization, desulfurization and other pretreatments are not required, and oil, heavy metals, hydrogen sulfide, organic compounds simply added to waste water Simultaneously adsorbs and can be removed easily and efficiently, and recovery after adsorption is easy, and furthermore, nanocomposites that can be used for purification treatment of wastewater from a wide pH range of acidic to weakly alkaline, and their production Methods can be provided, as well as adsorbents comprising the nanocomposites and methods of using the same.
- FIG. 1 is a scanning electron microscope image of an organic nanotube formed from N- (glycylglycine) pentadecanecarboxamide.
- FIG. 2 is a view showing a scanning transmission electron microscope image of a nanocomposite (adsorption component) according to Example 1.
- FIG. 2 is a schematic view schematically showing a structure of a nanocomposite (adsorption component) according to Example 1.
- FIG. 7 is a view showing a scanning transmission electron microscope image of a nanocomposite (adsorption component) according to Example 2.
- the nanocomposite of the present invention has a configuration in which magnetite nanoparticles are complexed to an organic nanomaterial represented by the following general formula (1).
- R represents a hydrocarbon group having 6 to 24 carbon atoms
- R ′ represents an amino acid side chain
- m represents an integer of 1 to 5.
- the hydrocarbon group is not particularly limited and may be linear or branched, but linear is preferable.
- the hydrocarbon group is not particularly limited, and may be saturated or unsaturated. In the case of the unsaturated group, it is preferable that the hydrocarbon group contains 3 or less double bonds.
- the number of carbon atoms of the hydrocarbon group is not particularly limited as long as it is 6 to 24. However, 10 to 19 is preferable, 11 to 17 is more preferable, 11, 13, 15 or 17 is particularly preferable.
- the type of the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, an aralkyl group and a cycloalkylalkyl group.
- the alkyl group and the alkenyl group are preferable.
- these groups may be substituted by one or more suitable substituents.
- the substituent is not particularly limited, and examples thereof include a hydrocarbon group having 6 or less carbon atoms (such as an alkyl group, an alkenyl group and an alkynyl group), a halogen (a chlorine atom, a fluorine atom, an iodine atom and a bromine atom) And a hydroxyl group, an amino group, a carboxyl group and the like.
- a hydrocarbon group having 6 or less carbon atoms such as an alkyl group, an alkenyl group and an alkynyl group
- a halogen a chlorine atom, a fluorine atom, an iodine atom and a bromine atom
- n-tridecyl group, n-pentadecyl group and n-heptadecyl group in which RCO- in the general formula (1) constitutes a myristoyl group, palmitoyl group or stearoyl group are most preferable.
- the amino acid side chain is not particularly limited, and, for example, the structure of the amino acid ((NH—CHR′—CO) —) is 20 kinds of natural amino acids (glycine , Alanine, leucine, isoleucine, valine, arginine, lysine, glutamate, glutamine, aspartic acid, asparagine, cysteine, methionine, histidine, proline, phenylalanine, tyrosine, threonine, serine, tryptophan), modified amino acids, non-natural amino acids (eg, Ornithine, norvaline, norleucine, hydroxylysine, phenylglycine, ⁇ -alanine and the like), and among them, the above glycine wherein R ′ is a hydrogen atom is preferable.
- natural amino acids glycine , Alanine, leucine, isoleucine, valine, arginine, lysine, glutamate, glutamine,
- m is the number of amino acid residues and is not particularly limited as long as it is an integer of 1 to 5. Among these, 1 or 2 is preferable, and 2 is particularly preferable.
- the structure of the amino acid ((NH-CHR'-CO)-) the structure of glycylglycine in which R 'is a hydrogen atom and m is 2 is most preferable.
- the organic nanomaterial is a peptide lipid self-assembled from a compound having the same composition, and the shape thereof is not particularly limited, but for example, nanotube-like, nanofibrous-like, sphere-like, and thin plate-like are preferable.
- the nanotube is particularly preferred.
- the size of the organic nanomaterial is any of vertical and horizontal heights of 1 nm to several hundred nm. Among these, the nanotube-like structure having an outer diameter of 10 nm to 200 nm is most preferable.
- the magnetite nanoparticle can select suitably from particles manufactured by a well-known method, and can be used. Examples of known methods include those described in US Pat. No. 3,843,540.
- the particle size of the magnetite nanoparticles is preferably smaller than that of the organic nanomaterial, and is 1 nm to 100 nm.
- the said nanocomposite can be manufactured by the below-mentioned manufacturing method.
- the adsorbent of the present invention contains an adsorptive component, and, if necessary, other components.
- the nanocomposite of the present invention is applicable, and the contents thereof are as described for the nanocomposite, and therefore, redundant description will be omitted.
- the other components are not particularly limited as long as the effects of the present invention are not impaired, and any component may be mentioned.
- the method of using the adsorbent of the present invention is a method of introducing the adsorbent of the present invention into water to be treated. Once the organic nanomaterial and the magnetite nanoparticle are complexed, the adsorption component contained in the adsorbent maintains a stable complexed structure, and the organic nanomaterial in a wide pH range from acidic to weakly alkaline. And the magnetite nanoparticles do not separate from each other. Therefore, the treatment water can be purified in a wide range of pH 1 to 9.5.
- the adsorbent can be used by adjusting the pH to within the application range by adding an appropriate acid or alkali. That is, the pH of the water to be treated is measured, and when the pH is 1 to 9.5, the adsorbent is introduced into the water to be treated without adjusting the pH, and the pH is 1 to 9 If not, after adjusting the pH to 1 to 9.5, the adsorbent can be introduced into the water to be treated.
- the water to be treated is not particularly limited, and accompanying water produced concomitantly with the production of energy resources such as petroleum, shale oil, coalbed methane gas, methane gas, shale gas, oil sand, and mineral wastewater associated with mineral production
- energy resources such as petroleum, shale oil, coalbed methane gas, methane gas, shale gas, oil sand, and mineral wastewater associated with mineral production
- the method for producing a nanocomposite according to the present invention is a method for producing the nanocomposite according to the present invention, wherein at least a first aqueous dispersion preparation step, a second aqueous dispersion preparation step, a mixed dispersion preparation step, a composite And, if necessary, other steps.
- the first aqueous dispersion preparation step is a step of preparing a first aqueous dispersion in which magnetite nanoparticles are dispersed and the pH is adjusted to 1 or less.
- the magnetite particles the magnetite particles described for the nanocomposite of the present invention can be used.
- the method of adjusting the aqueous dispersion of magnetite particles to a strong acidity of pH 1 or less include a method of adding a strong acid such as hydrochloric acid or nitric acid. By setting it as such pH, the said magnetite particle of the state to aggregate can be disperse
- the second aqueous dispersion preparation step is a step of preparing a second aqueous dispersion in which the organic nanomaterial is dispersed together with an alkali. By adding the alkali, the carboxylic acid present at the terminal of the organic nanomaterial can be ionized and dispersed in water.
- the alkali is not particularly limited, but from the viewpoint of purification of waste water, an inorganic salt is preferable, and sodium hydroxide is particularly preferable.
- the amount of the alkali added is not particularly limited, but is preferably 0.1 equivalent to 1.0 equivalent to the organic nanomaterial.
- the mixed dispersion preparation step is a step of preparing a mixed dispersion in which the first aqueous dispersion and the second aqueous dispersion are mixed.
- the mixed dispersion preparation step is a step of preparing a mixed dispersion in which the first aqueous dispersion and the second aqueous dispersion are mixed.
- the compounding step is a step of adjusting the mixed dispersion to pH 3 to 4 and compounding the magnetite nanoparticles with the organic nanomaterial. If the pH is out of this range, the dispersibility of the organic nanomaterial and the magnetite nanoparticles is reduced, and complexation does not proceed easily, and the complexation is gradually released before becoming stable in weak acidity and weak alkalinity. Be done. On the other hand, when the mixed dispersion liquid is adjusted to this pH range, the organic nanomaterial and the magnetite nanoparticles can be composited in a suitably dispersed state.
- Non-Patent Document 2 has an unknown property such that magnetite particles are separated due to a change in surface potential when the dispersion is returned from neutral to neutral, and the nanocomposite is When applied to an adsorbent, it can be used for purification treatment of wastewater having a wide pH range, and imparts excellent versatility to the adsorbent.
- a method of adjusting the pH of the mixed dispersion to 3 to 4 for example, a method of adding an appropriate acid and an alkali may be mentioned.
- the separation step is a step of magnetizing the nanocomposite material in the mixed dispersion with a magnet to separate it from the mixed dispersion.
- a method of recovering the nanocomposite from the dispersion liquid a filtration method using a filter, etc. may be mentioned.
- the nanocomposite contains the magnetite nanoparticles as a ferromagnetic material, it is in the dispersion liquid. Can be easily recovered with a magnet.
- the redispersion step is a step of redispersing the nanocomposite separated from the mixed dispersion in water. By performing the separation step and the re-dispersion step, it is possible to manufacture the nanocomposite in which the mixture of the impurities not containing the magnetite particles is suppressed.
- the Example of this invention is explained in full detail below, the thought of this invention is not limited by these examples.
- Example 1 [Synthesis of N- (glycylglycine) pentadecanecarboxamide (organic nanomaterial precursor)] 77.1 mL (36.5 mmol) of an aqueous solution of sodium hydroxide is added to 4.82 g (36.5 mmol) of glycylglycine, and 40 mL (36.5 mmol) of an aqueous solution of sodium hydroxide and acetone of pentadecanecarboxylic acid chloride are added thereto. At the same time, 30 mL (36.5 mmol) of the solution was added dropwise.
- FIG. 1 is a view showing a scanning electron microscope image of an organic nanotube formed from N- (glycylglycine) pentadecanecarboxamide.
- the first aqueous dispersion and the second aqueous dispersion were mixed to prepare a mixed dispersion of these (mixed dispersion preparation step).
- 1 M hydrochloric acid was added to the mixed dispersion to adjust the pH to 3.5, and the organic nanomaterial and the magnetite nanoparticles were complexed (complexing step).
- the solid nanocomposite material in the mixed dispersion was magnetically attached by a magnet and separated from the mixed dispersion (separation step). Then, the separated nanocomposite was re-dispersed in water (re-dispersion step).
- FIG. 2A is a view showing a scanning transmission electron microscope image of the nanocomposite material (adsorption component) according to Example 1.
- FIG. 2 (b) is a schematic view schematically showing the structure of the nanocomposite (adsorption component) according to Example 1.
- Reference numeral 1 is the organic nanomaterial, and reference numeral 2 is the magnetite nano. Show particles.
- Example 2 The production of the nanocomposite or adsorbent according to Example 1 is the same as the production of the nanocomposite or adsorbent according to Example 1 except that the second aqueous dispersion preparation step is carried out as follows.
- the nanocomposite or adsorbent according to Example 2 was manufactured. That is, 25 mg of the organic nanomaterial is dispersed in a mixture of 0.01 mL of a 30 wt% aqueous sodium hydroxide solution and 2 mL of heavy water to prepare a second aqueous dispersion, thereby carrying out the second aqueous dispersion preparation step. did.
- FIG. 3 is a figure which shows the scanning transmission electron microscope image of the nanocomposite (adsorption component) which concerns on Example 2.
- adsorbent dispersion liquid of the organic nanomaterial according to the reference example 2 in the same manner as the reference sample, and finally the total volume is 5 mL with heavy water. did. After shaking this at room temperature for 1 hour, the solid component was removed with a 0.45 ⁇ m filter, and the concentration of the residual component was measured by 1 H-NMR.
- Example 2 0.5 mg of phenol, 1 mg of propionic acid and 10 mg of dimethyl sulfone are added to the nanocomposite or adsorbent (dispersion liquid of the adsorption component) according to Example 2 in the same manner as the reference sample, and finally with heavy water The total volume was 5 mL. After shaking this at room temperature for 1 hour, the solid component was removed with a 0.45 ⁇ m filter, and the concentration of the residual component was measured by 1 H-NMR. The measurement results of the 1 H-NMR using the adsorbents according to Reference Example 2 and Example 2 are shown in Table 2 below. Table 2 below also shows the measurement results for the reference sample.
- the adsorbent according to Reference Example 2 can adsorb and remove 18 ppm of phenol and 30 ppm of propionic acid per 5,000 ppm of the organic nanomaterial. Further, even with the nanocomposite or adsorbent according to Example 2, 16 ppm of phenol and 27 ppm of propionic acid can be removed by adsorption per 5,000 ppm of the adsorption component, and even after magnetite nanoparticles are complexed. It was confirmed that similar adsorption removal was possible.
- the nanocomposite of the present invention and the method of producing the same, and the adsorbent containing the nanocomposite and the method of using the same are capable of removing chemical components in waste water, and being complexed with a ferromagnetic material. Since it can be easily recovered by magnets, it is extremely useful in the fields of oil and gas development and wastewater purification in chemical plants and the like. In addition, as an organic nanomaterial complexed with a ferromagnetic material, it can be used in the field of electronic component materials, or in the field of contrast agent for examining a chemical component adsorbed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
更に、環境問題に対する意識の高まりに伴い、排水の浄化処理に対して、より高度な処理が求められている。例えば、随伴水に含まれる化学成分には、少量の油ガス成分、硫化水素、無機塩類、多種にわたる有機物、重金属類などの有害成分が含まれる一方で、これら有害成分は、随伴水からの除去が非常に困難な成分であることから、より効果的な浄化技術の開発が必要とされている。また、有害成分の種類や含有量は、産出される地域、地層などにより大きく異なることから、汎用性の高い浄化技術の開発も必要とされている。
<1> 下記一般式(1)で表される有機ナノ材料にマグネタイトナノ粒子が複合化されたことを特徴とするナノ複合材。
<2> 有機ナノ材料が外径10nm~200nmのナノチューブ状の構造を有する前記<1>に記載のナノ複合材。
<3> RCO-がミリストイル基、パルミトイル基及びステアロイル基のいずれかである前記<1>から<2>のいずれかに記載のナノ複合材。
<4> R’が水素原子である前記<1>から<3>のいずれかに記載のナノ複合材。
<5> mが1又は2である前記<1>から<4>のいずれかに記載のナノ複合材。
<6> 前記<1>から<5>のいずれかに記載のナノ複合材を吸着成分として含むことを特徴とする吸着剤。
<7> 前記<6>に記載の吸着剤を被処理水に導入することを特徴とする吸収剤の使用方法。
<8> 被処理水のpHを1~9.5に調整後、吸着剤を前記被処理水に導入する前記<7>に記載の吸着剤の使用方法。
<9> 被処理水がエネルギー資源産出に付随して産出される随伴水である前記<7>から<8>のいずれかに記載の吸着剤の使用方法。
<10> マグネタイトナノ粒子を分散させ、pHを1以下に調整させた第1の水分散液を調製する第1水分散液調製工程と、下記一般式(1)で表される有機ナノ材料をアルカリとともに分散させた第2の水分散液を調製する第2水分散液調製工程と、前記第1の水分散液と前記第2の水分散液とを混合させた混合分散液を調製する混合分散液調製工程と、前記混合分散液のpHを3~4に調整して前記有機ナノ材料に前記マグネタイトナノ粒子を複合化させる複合化工程と、を含むことを特徴とするナノ複合材の製造方法。
<11> 更に、混合分散液中のナノ複合材を磁石で磁着して前記混合分散液から分離させる分離工程を含む前記<10>に記載のナノ複合材の製造方法。
<12> 更に、混合分散液から分離されたナノ複合材を水中に再分散させる再分散工程を含む前記<11>に記載のナノ複合材の製造方法。
本発明のナノ複合材は、下記一般式(1)で表される有機ナノ材料にマグネタイトナノ粒子が複合化された構成とされる。
また、前記炭化水素基の炭素数としては、6~24であれば、特に制限はないが、10~19が好ましく、11~17がより好ましく、11、13、15又は17が特に好ましい。
また、前記炭化水素基の種類としては、特に制限はなく、例えば、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基、シクロアルキルアルキル基等が挙げられるが、中でも、前記アルキル基、前記アルケニル基が好ましい。また、これらの基としては、1又は2以上の適当な置換基で置換されていてもよい。このような置換基としては、特に制限はなく、例えば、炭素数6以下の炭化水素基(アルキル基、アルケニル基、アルキニル基等)、ハロゲン(塩素原子、フッ素原子、ヨウ素原子、臭素原子等)、水酸基、アミノ基、カルボキシル基等が挙げられる。
これら前記炭化水素基のうち、前記一般式(1)中のRCO-がミリストイル基、パルミトイル基、ステアロイル基を構成する、n-トリデシル基、n-ペンタデシル基、n-ヘプタデシル基が最も好ましい。
また、前記一般式(1)中のmに関し、mは、アミノ酸残基数であり、1~5の整数であれば特に制限はないが、中でも、1又は2が好ましく、2が特に好ましい。
前記アミノ酸の構造((NH-CHR’-CO)-)としては、R’が水素原子であり、mが2であるグリシルグリシンの構造が最も好ましい。
前記有機ナノ材料の大きさとしては、縦横高さのうち、いずれかが1nm~数百nmである。
これらの中でも、外径が10nm~200nmの前記ナノチューブ状の構造を有することが最も好ましい。
なお、前記ナノ複合材は、後述の製造方法により製造することができる。
本発明の吸着剤は、吸着成分を含み、必要に応じて、その他の成分を含む。
前記吸着成分としては、本発明の前記ナノ複合材が該当し、その内容としては、前記ナノ複合材について説明した通りであるため、重複した説明を省略する。
前記その他の成分としては、本発明の効果を妨げない限り、特に制限はなく、任意の成分が挙げられ、例えば、前記吸着剤を前記吸着成分の分散液として保存、収容等する場合の分散液等が挙げられる。
本発明の吸着剤の使用方法は、本発明の前記吸着剤を被処理水に導入する方法である。
前記吸着剤に含まれる前記吸着成分は、前記有機ナノ材料と前記マグネタイトナノ粒子とが一旦複合化すると、安定な複合化構造が維持され、酸性~弱アルカリ性までの幅広いpH範囲で前記有機ナノ材料から前記マグネタイトナノ粒子が分離することがない。そのため、pH1~9.5の広い範囲で前記被処理水の浄化処理を行うことができる。
また、前記被処理水のpHが適用範囲から外れる場合であっても、適当な酸、アルカリを加えることで、pHを適用範囲内に調整することで、前記吸着剤を用いることができる。
即ち、前記被処理水のpHを測定し、前記pHが1~9.5であるときは、前記pHを調整せずに前記吸着剤を前記被処理水に導入し、前記pHが1~9.5でないときは、前記pHを1~9.5に調整後、前記吸着剤を前記被処理水に導入することができる。
なお、前記被処理水としては、特に制限はなく、石油、シェールオイル、炭層メタンガス、メタンガス、シェールガス、オイルサンド等のエネルギー資源産出に付随して産出される随伴水、鉱物生産に伴う鉱廃水、シェールを大量の水で水圧破砕した後にガスとともに地上に戻ってくる水(フローバック水)、各種工場廃水等を含む排水全般が挙げられる。
本発明のナノ複合材の製造方法は、本発明の前記ナノ複合材を製造する方法であり、少なくとも、第1水分散液調製工程、第2水分散液調製工程、混合分散液調製工程、複合化工程を含み、必要に応じて、その他の工程を含む。
前記第1水分散液調製工程は、マグネタイトナノ粒子を分散させ、pHを1以下に調整させた第1の水分散液を調製する工程である。
前記マグネタイト粒子としては、本発明の前記ナノ複合材について説明した前記マグネタイト粒子を用いることができる。
前記マグネタイト粒子の水分散液をpH1以下の強酸性に調整する方法としては、塩酸、硝酸等の強酸を加える方法が挙げられる。このようなpHとすることで、凝集する状態の前記マグネタイト粒子を水中に分散させることができる。
前記第2水分散液調製工程は、前記有機ナノ材料をアルカリとともに分散させた第2の水分散液を調製する工程である。前記アルカリを加えることで、前記有機ナノ材料の末端に存在するカルボン酸をイオン化させて、水中に分散させることができる。
また、前記アルカリの添加量としては、特に制限はないが、前記有機ナノ材料に対し、0.1当モル量~1.0当モル量が好ましい。
前記混合分散液調製工程は、前記第1の水分散液と前記第2の水分散液とを混合させた混合分散液を調製する工程である。
なお、混合の方法としては、特に制限はなく、公知の方法により実施することができる。
前記複合化工程は、前記混合分散液をpH3~4に調整して前記有機ナノ材料に前記マグネタイトナノ粒子を複合化させる工程である。
このpH範囲以外であると、前記有機ナノ材料及び前記マグネタイトナノ粒子の分散性が低下して複合化が進み難く、また、弱酸性、弱アルカリ性中で複合化が安定に至る前に徐々に解除される。
一方で、前記混合分散液をこのpH範囲に調整すると、前記有機ナノ材料と前記マグネタイトナノ粒子とがそれぞれ好適に分散した状態で複合化可能とされる。また、一旦複合化すると、安定な複合化構造が維持され、酸性~弱アルカリ性までの幅広いpH範囲で前記有機ナノ材料から前記マグネタイトナノ粒子が分離することがない。この点は、非特許文献2に記載の化合物では、分散液を酸性から中性に戻すと表面電位の変化によりマグネタイト粒子が分離してしまうように、未知の特性であり、前記ナノ複合材を吸着剤に適用すると、幅広いpH範囲の排水の浄化処理に利用でき、前記吸着剤に優れた汎用性を付与する。
なお、前記混合分散液のpHを3~4に調整する方法としては、例えば、適当な酸、アルカリを加える方法が挙げられる。
前記その他の工程としては、本発明の効果を妨げない限り、特に制限はなく、任意の工程を挙げることができ、例えば、分離工程、再分散工程を挙げることができる。
前記分離工程は、前記混合分散液中の前記ナノ複合材を磁石で磁着して前記混合分散液から分離させる工程である。
前記ナノ複合材を分散液中から回収する方法としては、フィルタを用いたろ過方法等が挙げられるが、前記ナノ複合材は、強磁性体としての前記マグネタイトナノ粒子を含むため、前記分散液中から磁石で容易に回収することができる。
前記再分散工程は、前記混合分散液から分離された前記ナノ複合材を水中に再分散させる工程である。
前記分離工程と前記再分散工程とを実施することで、前記マグネタイト粒子を含まない不純物の混在が抑制された前記ナノ複合材の製造が可能とされる。
なお、以下では、本発明の実施例について詳述するが、本発明の思想は、これらの例によって限定を受けるものではない。
[N-(グリシルグリシン)ペンタデカンカルボキサミド(有機ナノ材料前駆体)の合成]
グリシルグリシン4.82g(36.5ミリモル)に水酸化ナトリウム水溶液77.1mL(36.5ミリモル)を加え、これに水酸化ナトリウム水溶液40mL(36.5ミリモル)とペンタデカンカルボン酸塩化物のアセトン溶液30mL(36.5ミリモル)とを同時に滴下した。一日後、反応溶液を塩酸70mL(73ミリモル)に添加し、沈殿物をろ過した後、水150mLでろ液が中性になるまで洗浄した。粗生成物をメタノール60mLに懸濁して数時間還流させた後、沈殿物をろ過、メタノール洗浄し、有機ナノ材料前駆体としてN-(グリシルグリシン)ペンタデカンカルボキサミド9.5g(収率75%)を得た。
得られたN-(グリシルグリシン)ペンタデカンカルボキサミド5gをメタノール1Lに分散し、60℃で還流しながら溶解させた。このメタノール溶液をロータリーエバポレータにかけ、60℃で加熱しながら蒸発乾固し、N-(グリシルグリシン)ペンタデカンカルボキサミドを自己組織化させて形成される有機ナノ材料を得た。
この有機ナノ材料は、図1に示すように、平均外径80nmのナノチューブ構造を有していた。なお、図1は、N-(グリシルグリシン)ペンタデカンカルボキサミドから形成される有機ナノチューブの走査電子顕微鏡像を示す図である。
水に平均直径25nmのマグネタイトナノ粒子10mgを分散し、1M塩酸によりpH1に調整した第1の水分散液0.5mLを調製した(第1水分散液調製工程)。
また、前記有機ナノ材料34mgを1M水酸化ナトリウム水溶液0.1mLと水1mLとの混合液に分散し、第2の水分散液を調製した(第2水分散液調製工程)。
次いで、前記第1の水分散液と前記第2の水分散液とを混合し、これらの混合分散液を調製した(混合分散液調製工程)。
次いで、前記混合分散液に1M塩酸を加えてpHを3.5に調整し、前記有機ナノ材料と前記マグネタイトナノ粒子とを複合化させた(複合化工程)。
次いで、前記混合分散液中の固体状の前記ナノ複合材を磁石で磁着させて前記混合分散液から分離させた(分離工程)。
次いで、分離された前記ナノ複合材を水に再び分散させた(再分散工程)。
これら分離工程及び再分散工程を繰り返して合計2度行い、実施例1に係るナノ複合材であるとともに前記ナノ複合材を吸着成分とする吸着剤を、前記吸着成分の分散液2mLとして製造した。
前記分散液から固体状の前記ナノ複合材(吸着成分)を分離したところ、図2(a)、(b)に示すように、前記有機ナノ材料に前記マグネタイトナノ粒子が結合して複合化されていることが確認された。なお、図2(a)は、実施例1に係るナノ複合材(吸着成分)の走査透過電子顕微鏡像を示す図である。また、図2(b)は、実施例1に係るナノ複合材(吸着成分)の構造を模式的に示した模式図であり、符号1は、前記有機ナノ材料、符号2は、前記マグネタイトナノ粒子を示す。
前記有機ナノ材料34mgを1M水酸化ナトリウム水溶液0.1mLと水2mLとの混合液に分散し、参考例1に係る吸着剤として前記有機ナノ材料の分散液2.1mLを製造した。
参考例1に係る吸着剤(前記有機ナノ材料の分散液)に対して、10mM塩化銅水溶液0.5mLと10mM塩化マグネシウム水溶液0.5mLとを加えた。
次いで、1M水酸化ナトリウム水溶液を加えてpHを7に調整し、生じた沈殿を0.45μmフィルタで除去し、ろ液の分光スペクトルを測定した。
次いで、1M水酸化ナトリウム水溶液を加えてpHを7.5に調整し、生じた沈殿を0.45μmフィルタで除去し、ろ液の分光スペクトルを測定した。
参考例1に係る吸着剤及び実施例1に係るナノ複合材ないし吸着剤を用いた前記分光スペクトルの測定結果を下記表1に示す。なお、下記表1では、参照用サンプルとして1mM塩化銅水溶液に対する分光スペクトルの測定結果を併せて示す。また、各測定結果は、ピーク波長領域の750nmにおける吸光度で示す。
また、実施例1に係るナノ複合材ないし吸着剤では、参考例1に係る吸着剤と同様、吸光度が大幅に低下しており、マグネタイトナノ粒子を複合化させた後でも、同様の吸着除去が可能であることが確認された。
実施例1に係るナノ複合材ないし吸着剤の製造において、前記第2水分散液調製工程を次のように実施したこと以外は、実施例1に係るナノ複合材ないし吸着剤の製造と同様にして、実施例2に係るナノ複合材ないし吸着剤を製造した。即ち、前記有機ナノ材料25mgを30wt%重水酸化ナトリウム水溶液0.01mLと重水2mLとの混合液に分散し、第2の水分散液を調製することで、前記第2水分散液調製工程を実施した。
前記分散液から固体状の前記ナノ複合材(吸着成分)を分離したところ、図3に示すように、前記有機ナノ材料に前記マグネタイトナノ粒子が結合して複合化されていることが確認された。なお、図3は、実施例2に係るナノ複合材(吸着成分)の走査透過電子顕微鏡像を示す図である。また、この有機ナノ材料の平均外径は、80nmであった。
前記有機ナノ材料25mgを30wt%重水酸化ナトリウム水溶液0.01mLと重水4.59mLとの混合液に分散し、参考例2に係る吸着剤として前記有機ナノ材料の分散液5mLを製造した。
[参照用サンプルの調製]
有機化合物としてフェノール0.5mg及びプロピオン酸1mgと、NMR用の内部標準としてジメチルスルホン10mgとをそれぞれ重水に溶解させ、室温で1時間震蕩させて、1H-NMRの参照用サンプル5mLを調製した。
参考例2及び実施例2に係る吸着剤を用いた前記1H-NMRの測定結果を下記表2に示す。なお、下記表2では、前記参照用サンプルに対する測定結果を併せて示す。
また、実施例2に係るナノ複合材ないし吸着剤でも、前記吸着成分5,000ppm当たり、フェノールを16ppm、プロピオン酸を27ppm吸着除去することができており、マグネタイトナノ粒子を複合化させた後でも、同様の吸着除去が可能であることが確認された。
2 マグネタイトナノ粒子
Claims (12)
- 有機ナノ材料が外径10nm~200nmのナノチューブ状の構造を有する請求項1に記載のナノ複合材。
- RCO-がミリストイル基、パルミトイル基及びステアロイル基のいずれかである請求項1から2のいずれかに記載のナノ複合材。
- R’が水素原子である請求項1から3のいずれかに記載のナノ複合材。
- mが1又は2である請求項1から4のいずれかに記載のナノ複合材。
- 請求項1から5のいずれかに記載のナノ複合材を吸着成分として含むことを特徴とする吸着剤。
- 請求項6に記載の吸収剤を被処理水に導入することを特徴とする吸収剤の使用方法。
- 被処理水のpHを1~9.5に調整後、吸着剤を前記被処理水に導入する請求項7に記載の吸着剤の使用方法。
- 被処理水がエネルギー資源産出に付随して産出される随伴水である請求項7から8のいずれかに記載の吸着剤の使用方法。
- 更に、混合分散液中のナノ複合材を磁石で磁着して前記混合分散液から分離させる分離工程を含む請求項10に記載のナノ複合材の製造方法。
- 更に、混合分散液から分離されたナノ複合材を水中に再分散させる再分散工程を含む請求項11に記載のナノ複合材の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2968493A CA2968493C (en) | 2014-11-21 | 2015-11-20 | Nanocomposite and method for producing same, and adsorbent and method for using same |
MX2017006508A MX2017006508A (es) | 2014-11-21 | 2015-11-20 | Nanocomposicion y metodo para producir la misma, y adsorbente y metodo para usar el mismo. |
JP2016560316A JP6528100B2 (ja) | 2014-11-21 | 2015-11-20 | ナノ複合材及びその製造方法並びに吸着剤及びその使用方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-237158 | 2014-11-21 | ||
JP2014237158 | 2014-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016080545A1 true WO2016080545A1 (ja) | 2016-05-26 |
Family
ID=56014075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082799 WO2016080545A1 (ja) | 2014-11-21 | 2015-11-20 | ナノ複合材及びその製造方法並びに吸着剤及びその使用方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6528100B2 (ja) |
CA (1) | CA2968493C (ja) |
MX (1) | MX2017006508A (ja) |
WO (1) | WO2016080545A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2796307C1 (ru) * | 2022-07-07 | 2023-05-22 | Общество с ограниченной ответственностью "Навигатор" | Наноструктурированные сорбенты для очистки воды от нефтепродуктов и способ очистки воды |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007531517A (ja) * | 2004-03-19 | 2007-11-08 | リサーチ ファウンデーション オブ ザ シティー ユニバーシティ オブ ニューヨーク | 磁性ナノチューブ |
JP2011036760A (ja) * | 2009-08-07 | 2011-02-24 | National Institute Of Advanced Industrial Science & Technology | 水に分散可能なナノ粒子及びナノ粒子分散液の製造方法 |
JP2012040631A (ja) * | 2010-08-18 | 2012-03-01 | National Institute Of Advanced Industrial Science & Technology | 金属又は金属酸化物のナノ粒子を内包するピーポッド型有機ナノチューブ |
-
2015
- 2015-11-20 CA CA2968493A patent/CA2968493C/en active Active
- 2015-11-20 WO PCT/JP2015/082799 patent/WO2016080545A1/ja active Application Filing
- 2015-11-20 JP JP2016560316A patent/JP6528100B2/ja active Active
- 2015-11-20 MX MX2017006508A patent/MX2017006508A/es unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007531517A (ja) * | 2004-03-19 | 2007-11-08 | リサーチ ファウンデーション オブ ザ シティー ユニバーシティ オブ ニューヨーク | 磁性ナノチューブ |
JP2011036760A (ja) * | 2009-08-07 | 2011-02-24 | National Institute Of Advanced Industrial Science & Technology | 水に分散可能なナノ粒子及びナノ粒子分散液の製造方法 |
JP2012040631A (ja) * | 2010-08-18 | 2012-03-01 | National Institute Of Advanced Industrial Science & Technology | 金属又は金属酸化物のナノ粒子を内包するピーポッド型有機ナノチューブ |
Non-Patent Citations (2)
Title |
---|
MASAKI KOGISO ET AL.: "Jiko Soshiki-ka Nano Zairyo no Kyuchakuzai eno Oyo", CSJ, vol. 94 th, no. 1, 12 March 2014 (2014-03-12), pages 51 * |
MASAKI KOGISO ET AL.: "Kotonaru Hyomen o Motsu Yuki Nanotube no Ko-koritsu Gosei to Kyuchakuzai to shite no Oyo", SYMPOSIUM ON MACROMOLECULES YOKOSHU, vol. 59, no. 2, 1 September 2010 (2010-09-01), pages 1Y12 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2796307C1 (ru) * | 2022-07-07 | 2023-05-22 | Общество с ограниченной ответственностью "Навигатор" | Наноструктурированные сорбенты для очистки воды от нефтепродуктов и способ очистки воды |
Also Published As
Publication number | Publication date |
---|---|
JP6528100B2 (ja) | 2019-06-12 |
CA2968493A1 (en) | 2016-05-26 |
MX2017006508A (es) | 2018-03-23 |
JPWO2016080545A1 (ja) | 2017-11-02 |
CA2968493C (en) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Juang et al. | Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents | |
Ke et al. | Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@ metal-organic framework core-shell magnetic microspheres | |
JP6528101B2 (ja) | 吸着剤並びにその使用方法及び製造方法 | |
Shao et al. | Magnetic responsive metal–organic frameworks nanosphere with core–shell structure for highly efficient removal of methylene blue | |
Zhao et al. | Perfluorooctane sulfonate removal by nanofiltration membrane—the effect and interaction of magnesium ion/humic acid | |
Ali et al. | Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents | |
Giraldo et al. | Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization | |
Nasirimoghaddam et al. | Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples | |
Shen et al. | One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury (II) removal from aqueous solutions | |
Zhang et al. | A magnetic nanomaterial modified with poly-lysine for efficient removal of anionic dyes from water | |
Chaudhary et al. | Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles | |
Amini et al. | Synthesis of magnetic Cu/CuFe2O4@ MIL-88A (Fe) nanocomposite and application to dispersive solid-phase extraction of chlorpyrifos and phosalone in water and food samples | |
Zhou et al. | Preparation of Fe 3 O 4-embedded graphene oxide for removal of methylene blue | |
JP2016019976A (ja) | 磁性ナノ粒子を用いた水の浄化 | |
Chen et al. | Synthesis of magnetic carboxymethyl cellulose/graphene oxide nanocomposites for adsorption of copper from aqueous solution | |
Shyam Sunder et al. | Synthesis and characterization of poly (pyrrole-1-carboxylic acid) for preconcentration and determination of rare earth elements and heavy metals in water matrices | |
Salman et al. | Synthesis and surface modification of magnetic Fe 3 O 4@ SiO 2 core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media | |
CN111871400A (zh) | 一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用 | |
Igwegbe et al. | Removal of fluoride from aqueous solution by nickel oxide nanoparticles: equilibrium and kinetic studies | |
Li et al. | Polyethyleneimine-functionalized Fe 3 O 4/attapulgite particles for hydrophilic interaction-based magnetic dispersive solid-phase extraction of fluoroquinolones in chicken muscle | |
Vakh et al. | Chemical and computational strategy for design of “switchable” sorbent based on hydroxyapatite nanoparticles for dispersive micro-solid phase extraction of tetracyclines | |
Saçmacı et al. | Highly selective adsorption of cadmium ions by water‐dispersible magnetic thioglycolic acid/graphene oxide composites | |
Yu et al. | Occurrence and removal of engineered nanoparticles in drinking water treatment and wastewater treatment processes: A review | |
Adlnasab et al. | A new magnetic bio-sorbent for arsenate removal from the contaminated water: Characterization, isotherms, and kinetics | |
Khazaei et al. | Modeling mercury (II) removal at ultra-low levels from aqueous solution using graphene oxide functionalized with magnetic nanoparticles: optimization, kinetics, and isotherm studies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15861821 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/006508 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2968493 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2016560316 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15861821 Country of ref document: EP Kind code of ref document: A1 |