WO2016080243A1 - Method for treating water for indoor swimming pool - Google Patents

Method for treating water for indoor swimming pool Download PDF

Info

Publication number
WO2016080243A1
WO2016080243A1 PCT/JP2015/081603 JP2015081603W WO2016080243A1 WO 2016080243 A1 WO2016080243 A1 WO 2016080243A1 JP 2015081603 W JP2015081603 W JP 2015081603W WO 2016080243 A1 WO2016080243 A1 WO 2016080243A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
water
hydrogen peroxide
chlorine
pool
Prior art date
Application number
PCT/JP2015/081603
Other languages
French (fr)
Japanese (ja)
Inventor
釜土 良則
賢一 関原
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to JP2016560161A priority Critical patent/JP6409193B2/en
Publication of WO2016080243A1 publication Critical patent/WO2016080243A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Definitions

  • the present invention relates to an indoor pool water treatment method. More specifically, the present invention relates to a method for treating indoor pool water that is highly effective without ultraviolet irradiation.
  • This application claims priority based on Japanese Patent Application No. 2014-233077 filed in Japan on November 17, 2014 and Japanese Patent Application No. 2015-143808 filed in Japan on July 21, 2015, and its contents Is hereby incorporated by reference.
  • Sodium hypochlorite is known as a representative example of chlorinated drugs. Sodium hypochlorite is used at a concentration of less than 1 ppm, because when used at high concentrations, trihalomethane, which is highly carcinogenic, is produced as a by-product, combined with organic substances to generate off-flavors, and generates chlorine gas. Is done. Legionella bacteria die theoretically at a concentration of about 0.5 ppm.
  • Patent Document 2 discloses that oxidation treatment is performed to purify raw water such as pool water to obtain purified water.
  • oxidation treatment can be performed, for example, by adding an oxidizing agent such as chlorine, sodium hypochlorite, calcium hypochlorite, hydrogen peroxide, etc. to water; or adding an oxidizing agent to water and irradiating ultraviolet rays.
  • an oxidizing agent such as chlorine, sodium hypochlorite, calcium hypochlorite, hydrogen peroxide, etc.
  • Patent Document 3 discloses a method of disinfecting and sterilizing bath water using a chlorine dioxide agent and an activator for activating chlorine dioxide or an activity sustaining agent for maintaining the activity of chlorine dioxide. is doing.
  • the activator for activating chlorine dioxide or the activity sustaining agent for maintaining the activity of chlorine dioxide include sodium hypochlorite, calcium hypochlorite, and dichloroisocyanuric acid.
  • the chlorine dioxide agent activated by organic acids, such as a citric acid, hydrogen peroxide, alcohol, etc. is illustrated.
  • Patent Document 4 discloses a slime-removing cleaning agent that is used in the vicinity of a kitchen sink or a drain of a bathroom.
  • the cleaning agent for removing slime contains a layer containing at least one selected from persulfate, percarbonate or perborate, and at least one selected from trichloroisocyanuric acid or a halogenated hydantoin compound.
  • Patent Documents 5 to 9 disclose drug supply devices used for disinfecting various bacteria such as pool circulating water.
  • Japanese Patent Laid-Open No. 10-337569 Japanese Patent Laid-Open No. 08-323396 JP 2005-254223 A JP 2008-222756 A JP 2009-172584
  • Japanese Patent Publication No. 4-500171 JP-T 6-501418 Japanese Examined Patent Publication No.59-13890 JP-A-8-155465
  • An object of the present invention is to provide a method for treating indoor pool water that is highly effective without generating ozone or ultraviolet irradiation with the use of electric power.
  • a method for treating indoor pool water comprising: obtaining a hydrogen peroxide generator aqueous solution, mixing a chlorine-based chemical aqueous solution and a hydrogen peroxide generator aqueous solution to obtain a mixed aqueous solution, and returning the mixed aqueous solution to the indoor pool.
  • water for indoor pools of the present invention water for indoor pools can be sterilized and decomposed with organic substances with high efficiency without performing ozone treatment or ultraviolet irradiation.
  • effective chlorine does not react rapidly with hydrogen peroxide, and exhibits a bactericidal action and an organic matter decomposition action for indoor pool water for a long period of time.
  • the water treatment method for indoor pools of the present invention extracts water from an indoor pool, divides the extracted water into two, dissolves a chlorine-based chemical in one water to obtain a chlorine-based chemical aqueous solution, and peroxidizes to the other water
  • FIG. 1 is a view showing an example of an apparatus for carrying out the indoor pool water treatment method of the present invention.
  • Pool 1 means a facility that can store water and soak a part of the human body in the water. Examples of the pool include a swimming pool, a bathing pool, a full-body or half-body bathing pool, a footbath pool, a bathtub, and the like.
  • Pool 1 is indoors. The indoor pool is not easily exposed to ultraviolet rays such as direct sunlight, so the bactericidal effect of ultraviolet rays cannot be expected.
  • the water stored in Pool 1 contains fungi such as Legionella spp., And organic substances such as human-derived skin, sebum, hair, and nails.
  • the water is withdrawn from pool 1.
  • the extraction can be performed by a water intake pump 7 or the like.
  • the extracted water is divided into at least two.
  • one water is sent to the first injector 2.
  • the other water is sent to the second injector 3.
  • the remaining water is further sent to the filter 4.
  • the first injector 2 and the second injector 3 can be known drug dissolvers.
  • drug dissolver for example, drug supply devices disclosed in Patent Documents 5 to 9 can be used.
  • it can replace with a chemical
  • the dissolution of the chlorine-based chemical in water and the dissolution of the hydrogen peroxide generator in water may be performed by continuous unit operation using the apparatus as described above.
  • the apparatus used for the unit operation of dissolution does not have a device requiring high power such as a UV irradiation apparatus or an ozone generator.
  • the first injector 2 shown in FIG. 1 is loaded with a chlorinated drug, and the chlorinated drug dissolves in the water that is sent to prepare a chlorinated drug aqueous solution having a predetermined concentration.
  • Chlorine-based drugs are known drugs used for water sterilization.
  • the chlorinated drug used in the present invention preferably contains at least one selected from the group consisting of calcium hypochlorite, trichloroisocyanuric acid, sodium dichloroisocyanurate, and chlorinated hydantoin, more preferably hypochlorous acid. It contains calcium acid.
  • calcium hypochlorite is a compound represented by the chemical formula Ca (ClO) 2 . It is considered that calcium hypochlorite is in a state of dissociation equilibrium between hypochlorous acid and calcium hydroxide in water.
  • Hypochlorous acid is an aquatic microorganism such as Escherichia coli, Adenovirus type 3 (Pool fever pathogen), Shigella Amoeba, Aerobic Neisseria gonorrhoeae, Salmonella typhi, Cossackievirus A2 type (Aseptic encephalitis pathogen), Bacillus anthracis, etc. Can be killed and water disinfected.
  • the amount of calcium hypochlorite contained in the chlorinated drug is preferably 59 to 73.5 parts by mass and more preferably 63 to 72.8 parts by mass with respect to 100 parts by mass of the chlorinated drug.
  • medical agent is not specifically limited by the dosage form.
  • a powder form, a granular form, a tablet (tablet), a pellet, etc. can be mentioned.
  • a dosage form molded using a dry molding method is preferable.
  • a known molding machine such as a tableting machine or a briquette machine can be used.
  • the molding pressure (tablet pressure) in the dry molding method is not particularly limited, but is preferably 5 to 70 MPaG, more preferably 10 to 30 MPaG. When the molding pressure is within this range, the tablet or pellet has sufficient strength and does not collapse during storage, and the amount of water dissolved in the dissolver can be set to a desired range.
  • the shape of the tablet or pellet is not particularly limited, and examples thereof include a disk shape, a rectangular parallelepiped shape, and a columnar shape.
  • the size of the tablet or pellet is not particularly limited.
  • the cylindrical tablet can be 50 to 70 mm in diameter and 25 to 35 mm in height.
  • the chlorine-based drug used in the present invention may contain additives such as a scale inhibitor, a dissolution rate adjuster, a pH adjuster, and an excipient as necessary. You may use these individually by 1 type or in combination of 2 or more types.
  • Additives include alkaline agents such as sodium hydroxide, sodium bicarbonate, calcium hydroxide; boron compounds such as boric acid, borax, sodium tetraborate; silicates such as sodium silicate; magnesium sulfate, alum, etc. Can be mentioned.
  • the second injector 3 shown in FIG. 1 is loaded with a hydrogen peroxide generator, and the hydrogen peroxide generator is dissolved in the water to be sent to prepare a hydrogen peroxide generator aqueous solution having a predetermined concentration.
  • the hydrogen peroxide generator is not particularly limited as long as it contains a substance that generates hydrogen peroxide when dissolved in water.
  • the hydrogen peroxide generator used in the present invention preferably contains at least one selected from the group consisting of sodium percarbonate, potassium persulfate and potassium perborate, and more preferably contains sodium percarbonate.
  • the amount of sodium percarbonate contained in the hydrogen peroxide generator is preferably 80 to 99 parts by mass, more preferably 85 to 95 parts by mass with respect to 100 parts by mass of the hydrogen peroxide generator.
  • the hydrogen peroxide generator is not particularly limited depending on the dosage form.
  • a powder form, a granular form, a tablet (tablet), a pellet, etc. can be mentioned.
  • a dosage form molded using a dry molding method is preferable.
  • a known molding machine such as a tableting machine or a briquette machine can be used.
  • the molding pressure, tablet or pellet shape, tablet or pellet size, etc. may be the same as described in the description of the chlorinated drug.
  • the hydrogen peroxide generator used in the present invention may contain additives such as a scale inhibitor, a dissolution rate adjuster, a pH adjuster, and an excipient as necessary. You may use these individually by 1 type or in combination of 2 or more types.
  • gypsum calcium sulfate dihydrate
  • the amount of gypsum contained in the hydrogen peroxide generator is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the hydrogen peroxide generator.
  • the prepared chlorinated chemical aqueous solution and hydrogen peroxide generator aqueous solution are mixed.
  • a chlorine-based chemical aqueous solution and a hydrogen peroxide generator aqueous solution flow into the mixing head 5 and are mixed together.
  • the mixing head 5 a commercially available one can be used as appropriate.
  • a chlorinated chemical and a hydrogen peroxide generator are dissolved together in water, a chlorinated chemical is dissolved in an aqueous hydrogen peroxide generator solution, or a hydrogen peroxide generator is dissolved in an aqueous chlorinated chemical solution.
  • the bactericidal effect is not sufficiently increased due to a direct reaction between hydrogen peroxide and effective chlorine.
  • the mixing ratio of the chlorine-based chemical aqueous solution and the hydrogen peroxide generator aqueous solution is preferably 1/1000 to 1000/1000, more preferably 1/100 to 50/100, more preferably as the weight ratio of hydrogen peroxide / effective chlorine. Preferably, it is 5/100 to 20/100. If the weight ratio of hydrogen peroxide / effective chlorine is too small, the effect of activating effective chlorine by adding hydrogen peroxide tends to be low. If the weight ratio of hydrogen peroxide / effective chlorine is too large, the direct reaction between hydrogen peroxide and effective chlorine becomes dominant, and the effect of effective chlorine tends to be reduced.
  • the weight of available chlorine in chlorinated aqueous chemicals is based on the DPD (N, N-diethyl-p-phenylenediammonium sulfate) method (edited by the Japan Pharmaceutical Association, “Hygiene Test Method, Appendix 1990. Supplement 1995”). Measured value.
  • the weight of hydrogen peroxide in the hydrogen peroxide generator aqueous solution is a value obtained by measuring hydrogen peroxide generated from the hydrogen peroxide generator by a known quantitative method.
  • Adjustment of the hydrogen peroxide / effective chlorine weight ratio includes the flow rate of the chlorine-based chemical aqueous solution, the flow rate of the hydrogen peroxide generator aqueous solution, the weight of the effective chlorine contained in the chlorine-based chemical aqueous solution, and the hydrogen peroxide generator aqueous solution. This can be done by controlling the weight of hydrogen peroxide.
  • the mixed aqueous solution obtained by the mixing head is sent to a tube on the outlet side of the filter 4 through a tube with a check valve 6. Then, the mixed aqueous solution is returned to the pool 1 together with the water that has passed through the filter 4, hydrogen peroxide and effective chlorine are spread throughout the pool 1, and sterilization of water accumulated in the pool 1 and organic matter decomposition are performed.
  • L-histidine hydrochloride was dissolved in pure water to obtain a 50 mg / L aqueous L-histidine hydrochloride solution.
  • L-histidine hydrochloride is a substance known as a raw material for alkaline artificial sweat.
  • the absorbance of the L-histidine hydrochloride aqueous solution at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 1.24.
  • Example 1 Calcium hypochlorite was dissolved in pure water to obtain an aqueous solution A having an effective chlorine concentration of 0.70 mg / L.
  • Sodium percarbonate was dissolved in pure water to obtain an aqueous solution B having a hydrogen peroxide concentration of 0.048 mg / L.
  • the aqueous solution A and the aqueous solution B were mixed to obtain an aqueous solution ab having an effective chlorine concentration of 0.35 mg / L and a hydrogen peroxide concentration of 0.024 mg / L.
  • L-histidine hydrochloride was dissolved in the aqueous solution ab immediately after mixing so as to be 50 mg / L to obtain an aqueous solution 1.
  • the absorbance of the aqueous solution 1 at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 0.42. The absorbance decreased by 0.82 with the aqueous solution ab.
  • aqueous solution A was diluted with pure water to obtain an aqueous solution a having an effective chlorine concentration of 0.35 mg / L.
  • aqueous solution a L-histidine hydrochloride was dissolved at 50 mg / L to obtain aqueous solution 2.
  • the absorbance of the aqueous solution 2 at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 0.62. The absorbance decreased by 0.62 due to the aqueous solution a.
  • aqueous solution B was diluted with pure water to obtain an aqueous solution b having a hydrogen peroxide concentration of 0.024 mg / L.
  • aqueous solution b L-histidine hydrochloride was dissolved at 50 mg / L to obtain aqueous solution 3.
  • the absorbance of the aqueous solution 3 at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 0.62. The absorbance decreased by 0.62 due to the aqueous solution b.
  • Comparative Example 3 An experiment was conducted assuming that tablets composed of calcium hypochlorite powder and sodium percarbonate powder absorbed moisture during storage. That is, calcium hypochlorite powder and sodium percarbonate powder were mixed so that the weight ratio of effective chlorine / hydrogen peroxide was 93.6 / 6.4. The mixed powder was put in a petri dish. The petri dish was placed in a desiccator with water on the bottom and allowed to stand for 2 days to allow the mixed powder to absorb moisture. The mixed powder having absorbed moisture was dissolved in pure water to obtain an aqueous solution c having an effective chlorine concentration of 0.35 mg / L and a hydrogen peroxide concentration of 0.024 mg / L.
  • aqueous solution c L-histidine hydrochloride was dissolved at 50 mg / L to obtain aqueous solution 4.
  • the absorbance of the aqueous solution 4 at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 0.59. The absorbance decreased by 0.66 due to the aqueous solution c.
  • Example 2 A 200 g tablet (chlorine chemical) containing calcium hypochlorite and a scale adhesion inhibitor at an effective chlorine concentration of about 70% was prepared. 90 parts by mass of sodium percarbonate and 10 parts by mass of gypsum were mixed together, and the mixture was subjected to tableting to prepare 100 g tablets (hydrogen peroxide generator).
  • a 300 m 3 indoor pool 1, a water intake pump 7, a filter 4, a first injector 2 (drug dissolving device: Nisso HYCRONATOR N-15 type), a second injector 3 (chemical) Dissolver: Nisso Hychronator N-15 type) and a tube with check valve 6 were installed.
  • the first injector 2 was filled with 2 tablets of a chlorinated drug
  • the second injector 3 was filled with 1 tablet of a hydrogen peroxide generator
  • the pool water was circulated for 6 hours.
  • 2 tablets of chlorinated chemicals were filled in the first injector 2
  • 1 tablet of hydrogen peroxide generator was charged in the second injector 3, and the pool water was circulated for 7 hours.
  • the state of the pool water was confirmed with the naked eye. High clarity pool water could be seen from one end wall of 300 meters 3 indoor pool 1 clearly the course line of the other end wall.
  • Comparative Example 4 A 200 g tablet (chlorine chemical) containing calcium hypochlorite and a scale adhesion inhibitor at an effective chlorine concentration of about 70% was prepared.
  • a water pump 107, a filter 104, a chemical dissolver (Nisso Hychronator N-15 type) 102, and a pipe with a check valve 106 were installed in a 300 m 3 indoor pool 101.
  • the drug dissolver 102 was filled with 2 tablets of chlorinated drug and the pool water was circulated for 6 hours. Subsequently, the drug dissolver 102 was filled with 2 tablets of chlorinated drug and the pool water was circulated for 7 hours. Thereafter, the state of the pool water was confirmed with the naked eye. Pool water is cloudy slightly, it is impossible to visually recognize the course line of the other end wall from one end wall of 300 meters 3 indoor pool 101.
  • water for indoor pools of the present invention water for indoor pools can be sterilized and decomposed with organic substances with high efficiency without performing ozone treatment or ultraviolet irradiation.
  • effective chlorine does not react rapidly with hydrogen peroxide, and exhibits a bactericidal action and an organic matter decomposition action for indoor pool water for a long period of time.

Abstract

Water for an indoor swimming pool can be cleaned by performing a method comprising: draining water from the indoor swimming pool; dividing the drained water into at least two portions; dissolving a chlorine-containing drug in one of the portions of the water to prepare an aqueous chlorine-containing drug solution; dissolving a hydrogen peroxide generator in the other of the portions of the water to prepare an aqueous hydrogen peroxide generator solution; mixing the aqueous chlorine-containing drug solution with the aqueous hydrogen peroxide generator solution to prepare a mixed aqueous solution; and then returning the mixed aqueous solution to the indoor swimming pool.

Description

屋内プール用水の処理方法Indoor pool water treatment method
 本発明は、屋内プール用水の処理方法に関する。より詳細に、本発明は、紫外線照射を行わなくても、高い効果を奏する屋内プール用水の処理方法に関する。
 本願は、2014年11月17日に日本に出願された特願2014-233077号及び2015年7月21日に日本に出願された特願2015-143808号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an indoor pool water treatment method. More specifically, the present invention relates to a method for treating indoor pool water that is highly effective without ultraviolet irradiation.
This application claims priority based on Japanese Patent Application No. 2014-233077 filed in Japan on November 17, 2014 and Japanese Patent Application No. 2015-143808 filed in Japan on July 21, 2015, and its contents Is hereby incorporated by reference.
 レジオネラ属菌などの有害菌に起因する疾病を防止するために、温泉水、風呂浴用水、水泳プール用水などを塩素系薬剤によって殺菌することが知られている。
 塩素系薬剤の代表例として次亜塩素酸ナトリウムが知られている。次亜塩素酸ナトリウムは、高濃度で使用すると、発がん性の強いトリハロメタンが副生したり、有機物と結合して異臭を発生したり、塩素ガスを発生したりするので、1ppm未満の濃度で使用される。レジオネラ属菌は0.5ppm程度の濃度で理論的には死滅する。しかし、実際のプール水などにおいては、pH、温度、有機物含有量などの環境変動によって、有効塩素の活性が不足して、殺菌が不十分になることがある。塩素系殺菌剤による殺菌が不十分な場合には、紫外線照射法を併用することが提案されている(特許文献1など)。屋外プールでは直射日光による紫外線によって有効塩素の殺菌効果が増大する。しかし、日光の当たらない屋内プールでは、紫外線ランプとオゾンとを併用することで分解を促進し、活性を上げてやらなければならず、運転コストが増大する。
In order to prevent diseases caused by harmful bacteria such as Legionella, it is known to sterilize hot spring water, bath water, swimming pool water, and the like with a chlorine-based chemical.
Sodium hypochlorite is known as a representative example of chlorinated drugs. Sodium hypochlorite is used at a concentration of less than 1 ppm, because when used at high concentrations, trihalomethane, which is highly carcinogenic, is produced as a by-product, combined with organic substances to generate off-flavors, and generates chlorine gas. Is done. Legionella bacteria die theoretically at a concentration of about 0.5 ppm. However, in actual pool water and the like, due to environmental fluctuations such as pH, temperature and organic matter content, the activity of effective chlorine may be insufficient and sterilization may be insufficient. When sterilization with a chlorine-based disinfectant is insufficient, it has been proposed to use an ultraviolet irradiation method in combination (Patent Document 1, etc.). In an outdoor pool, the effective sterilization effect of effective chlorine is increased by ultraviolet rays from direct sunlight. However, in an indoor pool that is not exposed to sunlight, decomposition must be promoted and activity increased by using an ultraviolet lamp and ozone in combination, resulting in increased operating costs.
 特許文献2は、プール水などの原水を浄化して浄化水を得るために、酸化処理することを開示している。係る酸化処理は、例えば、塩素、次亜塩素酸ナトリウム、次亜塩素酸カルシウム、過酸化水素などの酸化剤を水に添加することによって;または酸化剤を水に添加して紫外線を照射することによって、さらには、電解、無声放電、紫外線照射によりオゾンを発生させることによって行うようである。 Patent Document 2 discloses that oxidation treatment is performed to purify raw water such as pool water to obtain purified water. Such oxidation treatment can be performed, for example, by adding an oxidizing agent such as chlorine, sodium hypochlorite, calcium hypochlorite, hydrogen peroxide, etc. to water; or adding an oxidizing agent to water and irradiating ultraviolet rays. Furthermore, it seems to be performed by generating ozone by electrolysis, silent discharge, or ultraviolet irradiation.
 特許文献3は、二酸化塩素剤と二酸化塩素を活性化させるための賦活剤或いは二酸化塩素の活性を維持するための活性持続剤とを併用して、浴用水の除菌・殺菌を行う方法を開示している。二酸化塩素を活性化させるための賦活剤或いは二酸化塩素の活性を維持するための活性持続剤として、次亜塩素酸ナトリウム、次亜塩素酸カルシウム、ジクロロイソシアヌル酸などが例示されている。また、クエン酸などの有機酸、過酸化水素、アルコールなどにより活性化された二酸化塩素剤が例示されている。 Patent Document 3 discloses a method of disinfecting and sterilizing bath water using a chlorine dioxide agent and an activator for activating chlorine dioxide or an activity sustaining agent for maintaining the activity of chlorine dioxide. is doing. Examples of the activator for activating chlorine dioxide or the activity sustaining agent for maintaining the activity of chlorine dioxide include sodium hypochlorite, calcium hypochlorite, and dichloroisocyanuric acid. Moreover, the chlorine dioxide agent activated by organic acids, such as a citric acid, hydrogen peroxide, alcohol, etc. is illustrated.
 特許文献4は、台所の流しや風呂場の排水口周辺に設置して使用されるヌメリ取り用洗浄剤を開示している。該ヌメリ取り用洗浄剤は、過硫酸塩、過炭酸塩又は過ホウ酸塩から選択される少なくとも一種を含有する層と、トリクロロイソシアヌル酸又はハロゲン化ヒダントイン化合物から選択される少なくとも一種とを含有する層とから構成されているので、吸湿若しくは少量の水に触れた際に、過酸化水素と有効塩素とが同時に発生し、それらの直接反応が起こり、有効塩素が消失するのみならず、過度な反応が生じることも懸念される。 Patent Document 4 discloses a slime-removing cleaning agent that is used in the vicinity of a kitchen sink or a drain of a bathroom. The cleaning agent for removing slime contains a layer containing at least one selected from persulfate, percarbonate or perborate, and at least one selected from trichloroisocyanuric acid or a halogenated hydantoin compound. As a result, when hydrogen absorption or contact with a small amount of water occurs, hydrogen peroxide and effective chlorine are generated at the same time. There is also concern about the reaction.
 特許文献5~9には、プール循環水等の水の雑菌消毒処理に使用される薬剤供給装置が開示されている。 Patent Documents 5 to 9 disclose drug supply devices used for disinfecting various bacteria such as pool circulating water.
特開平10-337569号公報Japanese Patent Laid-Open No. 10-337569 特開平08-323396号公報Japanese Patent Laid-Open No. 08-323396 特開2005-254223号公報JP 2005-254223 A 特開2008-222756号公報JP 2008-222756 A 特開2009-172584号公報JP 2009-172584 A 特表平4-500171号公報Japanese Patent Publication No. 4-500171 特表平6-501418号公報JP-T 6-501418 特公昭59-13890号公報Japanese Examined Patent Publication No.59-13890 特開平8-155465号公報JP-A-8-155465
 本発明の課題は、電力の使用を伴うオゾン発生や紫外線照射などを行わなくても、高い効果を奏する屋内プール用水の処理方法を提供することである。 An object of the present invention is to provide a method for treating indoor pool water that is highly effective without generating ozone or ultraviolet irradiation with the use of electric power.
 上記目的を達成するために検討した結果、以下の形態を包含する本発明を完成するに至った。 As a result of studies to achieve the above object, the present invention including the following embodiments has been completed.
〔1〕屋内プールから水を抜き出し、抜き出した水を少なくとも二つに分け、一方の水に塩素系薬剤を溶解させて塩素系薬剤水溶液を得、他方の水に過酸化水素発生剤を溶解させて過酸化水素発生剤水溶液を得、塩素系薬剤水溶液と過酸化水素発生剤水溶液とを混ぜ合わせて混合水溶液を得、該混合水溶液を屋内プールに戻すことを含む屋内プール用水の処理方法。
〔2〕塩素系薬剤が、次亜塩素酸カルシウム、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム、および塩素化ヒダントインからなる群より選ばれる少なくとも一つを含むものである、〔1〕に記載の処理方法。
〔3〕過酸化水素発生剤が、過炭酸ナトリウム、過硫酸カリウムおよび過硼酸カリウムからなる群より選ばれる少なくとも一つを含むものである、〔1〕または〔2〕に記載の処理方法。
〔4〕塩素系薬剤水溶液と過酸化水素発生剤水溶液との混合比が、過酸化水素/有効塩素の重量比として1/1000~1000/1000である、〔1〕~〔3〕のいずれかひとつに記載の処理方法。
[1] Extract water from the indoor pool, divide the extracted water into at least two parts, dissolve the chlorinated chemical in one of the water to obtain a chlorinated chemical aqueous solution, and dissolve the hydrogen peroxide generator in the other water. A method for treating indoor pool water, comprising: obtaining a hydrogen peroxide generator aqueous solution, mixing a chlorine-based chemical aqueous solution and a hydrogen peroxide generator aqueous solution to obtain a mixed aqueous solution, and returning the mixed aqueous solution to the indoor pool.
[2] The processing method according to [1], wherein the chlorinated drug contains at least one selected from the group consisting of calcium hypochlorite, trichloroisocyanuric acid, sodium dichloroisocyanurate, and chlorinated hydantoin.
[3] The treatment method according to [1] or [2], wherein the hydrogen peroxide generator contains at least one selected from the group consisting of sodium percarbonate, potassium persulfate, and potassium perborate.
[4] Any of [1] to [3], wherein the mixing ratio of the chlorine-based chemical aqueous solution and the hydrogen peroxide generator aqueous solution is 1/1000 to 1000/1000 as a weight ratio of hydrogen peroxide / effective chlorine. The processing method as described in one.
 本発明の屋内プール用水処理方法によれば、オゾン処理や紫外線照射などを行わなくても、屋内プール用水を高効率で殺菌および有機物分解することができる。本発明の処理方法によれば、有効塩素が、過酸化水素と急激に反応することがなく、屋内プール用水に対して長期間持続的に殺菌作用や有機物分解作用を発揮する。 According to the water treatment method for indoor pools of the present invention, water for indoor pools can be sterilized and decomposed with organic substances with high efficiency without performing ozone treatment or ultraviolet irradiation. According to the treatment method of the present invention, effective chlorine does not react rapidly with hydrogen peroxide, and exhibits a bactericidal action and an organic matter decomposition action for indoor pool water for a long period of time.
本発明の屋内プール用水処理方法を実施するための装置の一例を示す図である。It is a figure which shows an example of the apparatus for enforcing the water treatment method for indoor pools of this invention. 従来のプール用水処理方法を実施するための装置の一例を示す図である。It is a figure which shows an example of the apparatus for enforcing the conventional pool water treatment method.
 本発明の屋内プール用水処理方法は、屋内プールから水を抜き出し、抜き出した水を二つに分け、一方の水に塩素系薬剤を溶解させて塩素系薬剤水溶液を得、他方の水に過酸化水素発生剤を溶解させて過酸化水素発生剤水溶液を得、塩素系薬剤水溶液と過酸化水素発生剤水溶液とを混ぜ合わせて混合水溶液を得、該混合水溶液を屋内プールに戻すことを含む。 The water treatment method for indoor pools of the present invention extracts water from an indoor pool, divides the extracted water into two, dissolves a chlorine-based chemical in one water to obtain a chlorine-based chemical aqueous solution, and peroxidizes to the other water This includes dissolving the hydrogen generator to obtain a hydrogen peroxide generator aqueous solution, mixing the chlorine-based chemical aqueous solution and the hydrogen peroxide generator aqueous solution to obtain a mixed aqueous solution, and returning the mixed aqueous solution to the indoor pool.
 本発明に係る屋内プール用水処理方法を、図1を参照して、説明する。図1は本発明の屋内プール用水処理方法を実施するための装置の一例を示す図である。
 プール1は、水を貯めて人体の一部を水に浸けることができる設備を意味する。プールとしては、水泳用プール、沐浴用プール、全身浴または半身浴用のプール、足湯用のプール、浴槽などが挙げられる。プール1は屋内にあるものである。屋内プールでは直射日光などの紫外線が当たりにくいので、紫外線による殺菌効果が期待できない。
An indoor pool water treatment method according to the present invention will be described with reference to FIG. FIG. 1 is a view showing an example of an apparatus for carrying out the indoor pool water treatment method of the present invention.
Pool 1 means a facility that can store water and soak a part of the human body in the water. Examples of the pool include a swimming pool, a bathing pool, a full-body or half-body bathing pool, a footbath pool, a bathtub, and the like. Pool 1 is indoors. The indoor pool is not easily exposed to ultraviolet rays such as direct sunlight, so the bactericidal effect of ultraviolet rays cannot be expected.
 プール1に貯められた水には、レジオネラ属菌などの菌類、人体由来の皮膚、皮脂、毛、爪などの有機物が含まれている。該水をプール1から抜き出す。抜き出しは取水ポンプ7などによって行うことができる。 The water stored in Pool 1 contains fungi such as Legionella spp., And organic substances such as human-derived skin, sebum, hair, and nails. The water is withdrawn from pool 1. The extraction can be performed by a water intake pump 7 or the like.
 抜き出された水は少なくとも二つに分けられる。図1に示す装置においては、一方の水は第1の注入器2に送られる。他方の水は第2の注入器3に送られる。図1に示す装置では、さらに残りの水はろ過器4に送られる。第1の注入器2および第2の注入器3は公知の薬剤溶解器であることができる。薬剤溶解器としては、例えば、特許文献5~9などに開示されている薬剤供給器が使用できる。また、薬剤溶解器に代えて、化学工業等において使用される充填塔や充填槽などを用いることができる。塩素系薬剤の水への溶解および過酸化水素発生剤の水への溶解は上記のような装置を用いた連続的な単位操作で行ってもよいし、水を容器に所定量を溜めて各薬剤を添加して溶解させるような回分式の単位操作で行ってもよい。本発明においては、溶解の単位操作に使用される装置は、UV照射装置、オゾン発生器などの大電力を必要する機器を有しないものが好ましい。 The extracted water is divided into at least two. In the apparatus shown in FIG. 1, one water is sent to the first injector 2. The other water is sent to the second injector 3. In the apparatus shown in FIG. 1, the remaining water is further sent to the filter 4. The first injector 2 and the second injector 3 can be known drug dissolvers. As the drug dissolver, for example, drug supply devices disclosed in Patent Documents 5 to 9 can be used. Moreover, it can replace with a chemical | medical agent dissolver and can use the packed tower, a filling tank, etc. which are used in chemical industry etc. The dissolution of the chlorine-based chemical in water and the dissolution of the hydrogen peroxide generator in water may be performed by continuous unit operation using the apparatus as described above. You may carry out by the batch type unit operation which adds and melt | dissolves a chemical | medical agent. In the present invention, it is preferable that the apparatus used for the unit operation of dissolution does not have a device requiring high power such as a UV irradiation apparatus or an ozone generator.
 図1に示す第1の注入器2には、塩素系薬剤が装填されていて、送られてくる水に塩素系薬剤が溶け込み、所定濃度の塩素系薬剤水溶液が調製される。
 塩素系薬剤は、水の殺菌に使用される公知の薬剤である。本発明に用いられる塩素系薬剤は、好ましくは次亜塩素酸カルシウム、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム、および塩素化ヒダントインからなる群より選ばれる少なくとも一つを含むもの、より好ましくは次亜塩素酸カルシウムを含むものである。
The first injector 2 shown in FIG. 1 is loaded with a chlorinated drug, and the chlorinated drug dissolves in the water that is sent to prepare a chlorinated drug aqueous solution having a predetermined concentration.
Chlorine-based drugs are known drugs used for water sterilization. The chlorinated drug used in the present invention preferably contains at least one selected from the group consisting of calcium hypochlorite, trichloroisocyanuric acid, sodium dichloroisocyanurate, and chlorinated hydantoin, more preferably hypochlorous acid. It contains calcium acid.
 ところで、次亜塩素酸カルシウムは、化学式Ca(ClO)2で表される化合物である。次亜塩素酸カルシウムは、水の中においては、次亜塩素酸と水酸化カルシウムとの解離平衡の状態になっていると考えられる。次亜塩素酸は、大腸菌、アデノビールス3型(プール熱病原菌)、赤痢アメーバ菌、好気性悍菌、チフス菌、コサッキッビールスA2型(無菌脳膜炎病原体)、炭疽菌、などの水中微生物を殺滅し、水の消毒を行うことができる。 By the way, calcium hypochlorite is a compound represented by the chemical formula Ca (ClO) 2 . It is considered that calcium hypochlorite is in a state of dissociation equilibrium between hypochlorous acid and calcium hydroxide in water. Hypochlorous acid is an aquatic microorganism such as Escherichia coli, Adenovirus type 3 (Pool fever pathogen), Shigella Amoeba, Aerobic Neisseria gonorrhoeae, Salmonella typhi, Cossackievirus A2 type (Aseptic encephalitis pathogen), Bacillus anthracis, etc. Can be killed and water disinfected.
 塩素系薬剤に含まれる次亜塩素酸カルシウムの量は、塩素系薬剤100質量部に対して、好ましくは59~73.5質量部、より好ましくは63~72.8質量部である。
 塩素系薬剤は、その剤型によって特に限定されない。例えば、粉状、顆粒状、錠剤(タブレット)、ペレット等を挙げることができる。これらのなかで、乾式成形法を用いて成形される剤型が好ましい。乾式成形法においては、打錠成形機、ブリケットマシーンなどの公知の成形機を用いることができる。
The amount of calcium hypochlorite contained in the chlorinated drug is preferably 59 to 73.5 parts by mass and more preferably 63 to 72.8 parts by mass with respect to 100 parts by mass of the chlorinated drug.
A chlorinated chemical | medical agent is not specifically limited by the dosage form. For example, a powder form, a granular form, a tablet (tablet), a pellet, etc. can be mentioned. Among these, a dosage form molded using a dry molding method is preferable. In the dry molding method, a known molding machine such as a tableting machine or a briquette machine can be used.
 乾式成形法における成形圧力(打錠圧)は、特に制限されないが、好ましくは5~70MPaG、より好ましくは10~30MPaGである。成形圧力がこの範囲にあると、タブレットまたはペレットが十分な強度を有し保管中に崩れたりすることがなく、溶解器における水への溶解量を所望の範囲にすることができる。 The molding pressure (tablet pressure) in the dry molding method is not particularly limited, but is preferably 5 to 70 MPaG, more preferably 10 to 30 MPaG. When the molding pressure is within this range, the tablet or pellet has sufficient strength and does not collapse during storage, and the amount of water dissolved in the dissolver can be set to a desired range.
 タブレットまたはペレットの形状は、特に制限されないが、例えば、円盤状、直方体状、円柱状などを挙げることができる。タブレットまたはペレットの大きさは、特に制限されない。例えば、円柱状タブレットは、直径50~70mm、高さ25~35mmの大きさであることができる。 The shape of the tablet or pellet is not particularly limited, and examples thereof include a disk shape, a rectangular parallelepiped shape, and a columnar shape. The size of the tablet or pellet is not particularly limited. For example, the cylindrical tablet can be 50 to 70 mm in diameter and 25 to 35 mm in height.
 本発明に用いられる塩素系薬剤には、必要に応じて、スケール防止剤、溶解速度調整剤、pH調整剤、賦形剤などの添加剤を含有してもよい。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。添加剤としては、水酸化ナトリウム、炭酸水素ナトリウム、水酸化カルシウムなどのアルカリ剤;ホウ酸、ホウ砂、四ホウ酸ナトリウムなどのホウ素化合物;ケイ酸ナトリウムなどのケイ酸塩;硫酸マグネシウム、ミョウバンなどを挙げることができる。 The chlorine-based drug used in the present invention may contain additives such as a scale inhibitor, a dissolution rate adjuster, a pH adjuster, and an excipient as necessary. You may use these individually by 1 type or in combination of 2 or more types. Additives include alkaline agents such as sodium hydroxide, sodium bicarbonate, calcium hydroxide; boron compounds such as boric acid, borax, sodium tetraborate; silicates such as sodium silicate; magnesium sulfate, alum, etc. Can be mentioned.
 図1に示す第2の注入器3には、過酸化水素発生剤が装填されていて、送られてくる水に過酸化水素発生剤が溶け込み、所定濃度の過酸化水素発生剤水溶液が調製される。
 過酸化水素発生剤は、水に溶解したときに過酸化水素が生成する物質を含むものであれば特に制限されない。本発明に用いられる過酸化水素発生剤は、好ましくは過炭酸ナトリウム、過硫酸カリウムおよび過硼酸カリウムからなる群より選ばれる少なくとも一つを含むもの、より好ましくは過炭酸ナトリウムを含むものである。
 過酸化水素発生剤に含まれる過炭酸ナトリウムの量は、過酸化水素発生剤100質量部に対して、好ましくは80~99質量部、より好ましくは85~95質量部である。
 過酸化水素発生剤は、その剤型によって特に限定されない。例えば、粉状、顆粒状、錠剤(タブレット)、ペレット等を挙げることができる。これらのなかで、乾式成形法を用いて成形される剤型が好ましい。乾式成形法においては、打錠成形機、ブリケットマシーンなどの公知の成形機を用いることができる。成形圧力、タブレットまたはペレットの形状、タブレットまたはペレットの大きさなどは塩素系薬剤の説明において述べたのと同じであってもよい。
The second injector 3 shown in FIG. 1 is loaded with a hydrogen peroxide generator, and the hydrogen peroxide generator is dissolved in the water to be sent to prepare a hydrogen peroxide generator aqueous solution having a predetermined concentration. The
The hydrogen peroxide generator is not particularly limited as long as it contains a substance that generates hydrogen peroxide when dissolved in water. The hydrogen peroxide generator used in the present invention preferably contains at least one selected from the group consisting of sodium percarbonate, potassium persulfate and potassium perborate, and more preferably contains sodium percarbonate.
The amount of sodium percarbonate contained in the hydrogen peroxide generator is preferably 80 to 99 parts by mass, more preferably 85 to 95 parts by mass with respect to 100 parts by mass of the hydrogen peroxide generator.
The hydrogen peroxide generator is not particularly limited depending on the dosage form. For example, a powder form, a granular form, a tablet (tablet), a pellet, etc. can be mentioned. Among these, a dosage form molded using a dry molding method is preferable. In the dry molding method, a known molding machine such as a tableting machine or a briquette machine can be used. The molding pressure, tablet or pellet shape, tablet or pellet size, etc. may be the same as described in the description of the chlorinated drug.
 本発明に用いられる過酸化水素発生剤には、必要に応じて、スケール防止剤、溶解速度調整剤、pH調整剤、賦形剤などの添加剤を含有してもよい。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。賦形剤としては、石膏(硫酸カルシウム2水和物)が好ましい。過酸化水素発生剤に含まれる石膏の量は、過酸化水素発生剤100質量部に対して、好ましくは1~20質量部、より好ましくは5~15質量部である。 The hydrogen peroxide generator used in the present invention may contain additives such as a scale inhibitor, a dissolution rate adjuster, a pH adjuster, and an excipient as necessary. You may use these individually by 1 type or in combination of 2 or more types. As the excipient, gypsum (calcium sulfate dihydrate) is preferable. The amount of gypsum contained in the hydrogen peroxide generator is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the hydrogen peroxide generator.
 調製された塩素系薬剤水溶液と過酸化水素発生剤水溶液とは、混ぜ合わせられる。図1においてはミキシングヘッド5に、塩素系薬剤水溶液と過酸化水素発生剤水溶液とが流入し、混ぜ合わせられる。調製された塩素系薬剤水溶液と過酸化水素発生剤水溶液とを混ぜ合わせると、過酸化水素と有効塩素との接触機会が減り、直接反応が起きにくくなる。ミキシングヘッド5としては、市販のものを適宜使用することができる。
 一方、塩素系薬剤と過酸化水素発生剤とを一緒に水に溶解させたり、塩素系薬剤を過酸化水素発生剤水溶液に溶解させたり、または過酸化水素発生剤を塩素系薬剤水溶液に溶解させたりすると、過酸化水素と有効塩素との直接反応などに起因して殺菌効果が十分に高くならない。
The prepared chlorinated chemical aqueous solution and hydrogen peroxide generator aqueous solution are mixed. In FIG. 1, a chlorine-based chemical aqueous solution and a hydrogen peroxide generator aqueous solution flow into the mixing head 5 and are mixed together. When the prepared aqueous chloric chemical solution and aqueous hydrogen peroxide generator solution are mixed, the chance of contact between hydrogen peroxide and effective chlorine is reduced, and direct reaction is less likely to occur. As the mixing head 5, a commercially available one can be used as appropriate.
On the other hand, a chlorinated chemical and a hydrogen peroxide generator are dissolved together in water, a chlorinated chemical is dissolved in an aqueous hydrogen peroxide generator solution, or a hydrogen peroxide generator is dissolved in an aqueous chlorinated chemical solution. In such a case, the bactericidal effect is not sufficiently increased due to a direct reaction between hydrogen peroxide and effective chlorine.
 塩素系薬剤水溶液と過酸化水素発生剤水溶液との混合比は、過酸化水素/有効塩素の重量比として、好ましくは1/1000~1000/1000、より好ましくは1/100~50/100、さらに好ましくは5/100~20/100である。過酸化水素/有効塩素の重量比が小さすぎると、過酸化水素添加による有効塩素の活性化効果が低くなる傾向がある。過酸化水素/有効塩素の重量比が大きすぎると過酸化水素と有効塩素との直接反応が優勢となって、有効塩素の効果が低減する傾向がある。
 なお、塩素系薬剤水溶液における有効塩素の重量は、DPD(硫酸N,N-ジエチル-p-フェニレンジアンモニウム)法(日本薬学会編、「衛生試験法・注解1990 付. 追補1995」に準拠して測定された値である。
 また、過酸化水素発生剤水溶液における過酸化水素の重量は、過酸化水素発生剤から発生する過酸化水素を公知の定量法にて測定された値である。
 過酸化水素/有効塩素の重量比の調整は、塩素系薬剤水溶液の流量、過酸化水素発生剤水溶液の流量、塩素系薬剤水溶液に含まれる有効塩素の重量、および過酸化水素発生剤水溶液に含まれる過酸化水素の重量を制御することによって行うことができる。
The mixing ratio of the chlorine-based chemical aqueous solution and the hydrogen peroxide generator aqueous solution is preferably 1/1000 to 1000/1000, more preferably 1/100 to 50/100, more preferably as the weight ratio of hydrogen peroxide / effective chlorine. Preferably, it is 5/100 to 20/100. If the weight ratio of hydrogen peroxide / effective chlorine is too small, the effect of activating effective chlorine by adding hydrogen peroxide tends to be low. If the weight ratio of hydrogen peroxide / effective chlorine is too large, the direct reaction between hydrogen peroxide and effective chlorine becomes dominant, and the effect of effective chlorine tends to be reduced.
The weight of available chlorine in chlorinated aqueous chemicals is based on the DPD (N, N-diethyl-p-phenylenediammonium sulfate) method (edited by the Japan Pharmaceutical Association, “Hygiene Test Method, Appendix 1990. Supplement 1995”). Measured value.
The weight of hydrogen peroxide in the hydrogen peroxide generator aqueous solution is a value obtained by measuring hydrogen peroxide generated from the hydrogen peroxide generator by a known quantitative method.
Adjustment of the hydrogen peroxide / effective chlorine weight ratio includes the flow rate of the chlorine-based chemical aqueous solution, the flow rate of the hydrogen peroxide generator aqueous solution, the weight of the effective chlorine contained in the chlorine-based chemical aqueous solution, and the hydrogen peroxide generator aqueous solution. This can be done by controlling the weight of hydrogen peroxide.
 ミキシングヘッドで得られる混合水溶液は、逆止弁6付きの管を経て、ろ過器4の出口側の管に送られる。そして、ろ過器4を通過した水とともに混合水溶液はプール1に戻され、プール1全体に過酸化水素と有効塩素が広がり、プール1に溜まる水の殺菌および有機物分解が行われる。 The mixed aqueous solution obtained by the mixing head is sent to a tube on the outlet side of the filter 4 through a tube with a check valve 6. Then, the mixed aqueous solution is returned to the pool 1 together with the water that has passed through the filter 4, hydrogen peroxide and effective chlorine are spread throughout the pool 1, and sterilization of water accumulated in the pool 1 and organic matter decomposition are performed.
 以下、実施例を挙げて本発明をより具体的に説明する。なお、本発明は以下の実施例によって限定を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples. It should be noted that the present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within the scope that can meet the spirit of the present invention. To be included in the scope.
製造例
 L-ヒスチジン塩酸塩を純水に溶解させて、50mg/LのL-ヒスチジン塩酸塩水溶液を得た。L-ヒスチジン塩酸塩はアルカリ性人工汗液の原料として知られる物質である。L-ヒスチジン塩酸塩水溶液を得た後30分経過した時に、日立製作所製の分光光度計U-200Aにて、波長215nmにおけるL-ヒスチジン塩酸塩水溶液の吸光度を測定した。吸光度は1.24であった。
Production Example L-histidine hydrochloride was dissolved in pure water to obtain a 50 mg / L aqueous L-histidine hydrochloride solution. L-histidine hydrochloride is a substance known as a raw material for alkaline artificial sweat. When 30 minutes had elapsed after obtaining the L-histidine hydrochloride aqueous solution, the absorbance of the L-histidine hydrochloride aqueous solution at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 1.24.
実施例1
 次亜塩素酸カルシウムを純水に溶解させて有効塩素濃度0.70mg/Lの水溶液Aを得た。
 過炭酸ナトリウムを純水に溶解させて、過酸化水素濃度0.048mg/Lの水溶液Bを得た。
 水溶液Aと水溶液Bとを混ぜ合わせて有効塩素濃度0.35mg/Lおよび過酸化水素濃度0.024mg/Lの水溶液abを得た。
 混合直後の水溶液abに、L-ヒスチジン塩酸塩を50mg/Lとなるように溶解させて水溶液1を得た。
 水溶液1を得た後30分経過した時に、日立製作所製の分光光度計U-200Aにて、波長215nmにおける水溶液1の吸光度を測定した。吸光度は0.42であった。水溶液abによって吸光度が0.82低下した。
Example 1
Calcium hypochlorite was dissolved in pure water to obtain an aqueous solution A having an effective chlorine concentration of 0.70 mg / L.
Sodium percarbonate was dissolved in pure water to obtain an aqueous solution B having a hydrogen peroxide concentration of 0.048 mg / L.
The aqueous solution A and the aqueous solution B were mixed to obtain an aqueous solution ab having an effective chlorine concentration of 0.35 mg / L and a hydrogen peroxide concentration of 0.024 mg / L.
L-histidine hydrochloride was dissolved in the aqueous solution ab immediately after mixing so as to be 50 mg / L to obtain an aqueous solution 1.
When 30 minutes passed after obtaining the aqueous solution 1, the absorbance of the aqueous solution 1 at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 0.42. The absorbance decreased by 0.82 with the aqueous solution ab.
比較例1
 水溶液Aを純水で希釈して有効塩素濃度0.35mg/Lの水溶液aを得た。
 水溶液aに、L-ヒスチジン塩酸塩を50mg/Lとなるように溶解させて水溶液2を得た。
 水溶液2を得た後30分経過した時に、日立製作所製の分光光度計U-200Aにて、波長215nmにおける水溶液2の吸光度を測定した。吸光度は0.62であった。水溶液aによって吸光度が0.62低下した。
Comparative Example 1
The aqueous solution A was diluted with pure water to obtain an aqueous solution a having an effective chlorine concentration of 0.35 mg / L.
In aqueous solution a, L-histidine hydrochloride was dissolved at 50 mg / L to obtain aqueous solution 2.
When 30 minutes passed after obtaining the aqueous solution 2, the absorbance of the aqueous solution 2 at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 0.62. The absorbance decreased by 0.62 due to the aqueous solution a.
比較例2
 水溶液Bを純水で希釈して過酸化水素濃度0.024mg/Lの水溶液bを得た。
 水溶液bに、L-ヒスチジン塩酸塩を50mg/Lとなるように溶解させて水溶液3を得た。
 水溶液3を得た後30分経過した時に、日立製作所製の分光光度計U-200Aにて、波長215nmにおける水溶液3の吸光度を測定した。吸光度は0.62であった。水溶液bによって吸光度が0.62低下した。
Comparative Example 2
The aqueous solution B was diluted with pure water to obtain an aqueous solution b having a hydrogen peroxide concentration of 0.024 mg / L.
In aqueous solution b, L-histidine hydrochloride was dissolved at 50 mg / L to obtain aqueous solution 3.
When 30 minutes passed after obtaining the aqueous solution 3, the absorbance of the aqueous solution 3 at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 0.62. The absorbance decreased by 0.62 due to the aqueous solution b.
比較例3
 次亜塩素酸カルシウム粉末と過炭酸ナトリウム粉末とからなる錠剤が保管中に吸湿したことを想定した実験を行った。
 すなわち、次亜塩素酸カルシウム粉末と過炭酸ナトリウム粉末とを有効塩素/過酸化水素の重量比で93.6/6.4となるように混ぜ合わせた。該混合粉をシャーレに入れた。該シャーレを下部に水を張ったデシケータに入れて2日間放置し、混合粉に湿気を吸わせた。
 吸湿した混合粉を純水に溶解させて、有効塩素濃度0.35mg/Lおよび過酸化水素濃度0.024mg/Lの水溶液cを得た。
 水溶液cに、L-ヒスチジン塩酸塩を50mg/Lとなるように溶解させて水溶液4を得た。
 水溶液4を得た後30分経過した時に、日立製作所製の分光光度計U-200Aにて、波長215nmにおける水溶液4の吸光度を測定した。吸光度は0.59であった。水溶液cによって吸光度が0.66低下した。
Comparative Example 3
An experiment was conducted assuming that tablets composed of calcium hypochlorite powder and sodium percarbonate powder absorbed moisture during storage.
That is, calcium hypochlorite powder and sodium percarbonate powder were mixed so that the weight ratio of effective chlorine / hydrogen peroxide was 93.6 / 6.4. The mixed powder was put in a petri dish. The petri dish was placed in a desiccator with water on the bottom and allowed to stand for 2 days to allow the mixed powder to absorb moisture.
The mixed powder having absorbed moisture was dissolved in pure water to obtain an aqueous solution c having an effective chlorine concentration of 0.35 mg / L and a hydrogen peroxide concentration of 0.024 mg / L.
In aqueous solution c, L-histidine hydrochloride was dissolved at 50 mg / L to obtain aqueous solution 4.
When 30 minutes passed after obtaining the aqueous solution 4, the absorbance of the aqueous solution 4 at a wavelength of 215 nm was measured with a spectrophotometer U-200A manufactured by Hitachi, Ltd. Absorbance was 0.59. The absorbance decreased by 0.66 due to the aqueous solution c.
実施例2
 次亜塩素酸カルシウムおよびスケール付着防止剤を有効塩素濃度約70%で含有する200g錠剤(塩素系薬剤)を用意した。
 過炭酸ナトリウム90質量部と石膏10質量部とを混ぜ合わせ、該混合物を打錠成形して100g錠剤(過酸化水素発生剤)を用意した。
 図1に示すレイアウトで300m3屋内プール1に、取水ポンプ7、ろ過器4、第1の注入器2(薬剤溶解器:日曹ハイクロネーターN-15型)、第2の注入器3(薬剤溶解器:日曹ハイクロネーターN-15型)、及び逆止弁6付きの管を設置した。
 第1の注入器2に塩素系薬剤2錠を充填し、第2の注入器3に過酸化水素発生剤1錠を充填して6時間プール水を循環させた。続けて第1の注入器2に塩素系薬剤2錠を充填し、第2の注入器3に過酸化水素発生剤1錠を充填して7時間プール水を循環させた。
 その後、プール水の状態を肉眼で確認した。プール水の清澄性が高く、300m3屋内プール1の一方の端壁から他方の端壁のコースラインをはっきりと視認することができた。
Example 2
A 200 g tablet (chlorine chemical) containing calcium hypochlorite and a scale adhesion inhibitor at an effective chlorine concentration of about 70% was prepared.
90 parts by mass of sodium percarbonate and 10 parts by mass of gypsum were mixed together, and the mixture was subjected to tableting to prepare 100 g tablets (hydrogen peroxide generator).
In the layout shown in FIG. 1, a 300 m 3 indoor pool 1, a water intake pump 7, a filter 4, a first injector 2 (drug dissolving device: Nisso HYCRONATOR N-15 type), a second injector 3 (chemical) Dissolver: Nisso Hychronator N-15 type) and a tube with check valve 6 were installed.
The first injector 2 was filled with 2 tablets of a chlorinated drug, the second injector 3 was filled with 1 tablet of a hydrogen peroxide generator, and the pool water was circulated for 6 hours. Subsequently, 2 tablets of chlorinated chemicals were filled in the first injector 2, and 1 tablet of hydrogen peroxide generator was charged in the second injector 3, and the pool water was circulated for 7 hours.
Thereafter, the state of the pool water was confirmed with the naked eye. High clarity pool water could be seen from one end wall of 300 meters 3 indoor pool 1 clearly the course line of the other end wall.
比較例4
 次亜塩素酸カルシウムおよびスケール付着防止剤を有効塩素濃度約70%で含有する200g錠剤(塩素系薬剤)を用意した。
 図2に示すレイアウトで300m3屋内プール101に、取水ポンプ107、ろ過器104、薬剤溶解器(日曹ハイクロネーターN-15型)102、および逆止弁106付きの管を設置した。
 薬剤溶解器102に塩素系薬剤2錠を充填して6時間プール水を循環させた。続けて薬剤溶解器102に塩素系薬剤2錠を充填して7時間プール水を循環させた。
 その後、プール水の状態を肉眼で確認した。プール水は若干濁っていて、300m3屋内プール101の一方の端壁から他方の端壁のコースラインを視認することができなかった。
Comparative Example 4
A 200 g tablet (chlorine chemical) containing calcium hypochlorite and a scale adhesion inhibitor at an effective chlorine concentration of about 70% was prepared.
In the layout shown in FIG. 2, a water pump 107, a filter 104, a chemical dissolver (Nisso Hychronator N-15 type) 102, and a pipe with a check valve 106 were installed in a 300 m 3 indoor pool 101.
The drug dissolver 102 was filled with 2 tablets of chlorinated drug and the pool water was circulated for 6 hours. Subsequently, the drug dissolver 102 was filled with 2 tablets of chlorinated drug and the pool water was circulated for 7 hours.
Thereafter, the state of the pool water was confirmed with the naked eye. Pool water is cloudy slightly, it is impossible to visually recognize the course line of the other end wall from one end wall of 300 meters 3 indoor pool 101.
 本発明の屋内プール用水処理方法によれば、オゾン処理や紫外線照射などを行わなくても、屋内プール用水を高効率で殺菌および有機物分解することができる。本発明の処理方法によれば、有効塩素が、過酸化水素と急激に反応することがなく、屋内プール用水に対して長期間持続的に殺菌作用や有機物分解作用を発揮する。 According to the water treatment method for indoor pools of the present invention, water for indoor pools can be sterilized and decomposed with organic substances with high efficiency without performing ozone treatment or ultraviolet irradiation. According to the treatment method of the present invention, effective chlorine does not react rapidly with hydrogen peroxide, and exhibits a bactericidal action and an organic matter decomposition action for indoor pool water for a long period of time.
 1   プール
 2   第1の注入器
 3   第2の注入器
 4   ろ過器
 5   ミキシングヘッド
 6   逆止弁
 7   取水ポンプ
 101 屋内プール
 102 薬剤溶解器
 104 ろ過器
 106 逆止弁
 107 取水ポンプ
DESCRIPTION OF SYMBOLS 1 Pool 2 1st injector 3 2nd injector 4 Filter 5 Mixing head 6 Check valve 7 Water intake pump 101 Indoor pool 102 Drug dissolver 104 Filter 106 Check valve 107 Water intake pump

Claims (4)

  1.  屋内プールから水を抜き出し、
     抜き出した水を少なくとも二つに分け、
     一方の水に塩素系薬剤を溶解させて塩素系薬剤水溶液を得、
     他方の水に過酸化水素発生剤を溶解させて過酸化水素発生剤水溶液を得、
     塩素系薬剤水溶液と過酸化水素発生剤水溶液とを混ぜ合わせて混合水溶液を得、
     該混合水溶液を屋内プールに戻すことを含む屋内プール用水の処理方法。
    Draw water from the indoor pool,
    Divide the extracted water into at least two
    Dissolve the chlorinated drug in one water to obtain a chlorinated drug aqueous solution,
    A hydrogen peroxide generator is dissolved in the other water to obtain a hydrogen peroxide generator aqueous solution,
    Mixing a chlorine-based chemical aqueous solution and a hydrogen peroxide generator aqueous solution to obtain a mixed aqueous solution,
    A method for treating water for indoor pools, comprising returning the mixed aqueous solution to the indoor pool.
  2.  塩素系薬剤が、次亜塩素酸カルシウム、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム、および塩素化ヒダントインからなる群より選ばれる少なくとも一つである、請求項1に記載の処理方法。 The treatment method according to claim 1, wherein the chlorinated chemical is at least one selected from the group consisting of calcium hypochlorite, trichloroisocyanuric acid, sodium dichloroisocyanurate, and chlorinated hydantoin.
  3.  過酸化水素発生剤が、過炭酸ナトリウム、過硫酸カリウムおよび過硼酸カリウムからなる群より選ばれる少なくとも一つである、請求項1または2に記載の処理方法。 The treatment method according to claim 1 or 2, wherein the hydrogen peroxide generator is at least one selected from the group consisting of sodium percarbonate, potassium persulfate, and potassium perborate.
  4.  塩素系薬剤水溶液と過酸化水素発生剤水溶液との混合比が、過酸化水素/有効塩素の重量比として1/1000~1000/1000である、請求項1~3のいずれかひとつに記載の処理方法。 The treatment according to any one of claims 1 to 3, wherein a mixing ratio of the chlorine-based chemical aqueous solution and the hydrogen peroxide generator aqueous solution is 1/1000 to 1000/1000 as a weight ratio of hydrogen peroxide / effective chlorine. Method.
PCT/JP2015/081603 2014-11-17 2015-11-10 Method for treating water for indoor swimming pool WO2016080243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560161A JP6409193B2 (en) 2014-11-17 2015-11-10 Indoor pool water treatment method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014233077 2014-11-17
JP2014-233077 2014-11-17
JP2015143808 2015-07-21
JP2015-143808 2015-07-21

Publications (1)

Publication Number Publication Date
WO2016080243A1 true WO2016080243A1 (en) 2016-05-26

Family

ID=56013788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081603 WO2016080243A1 (en) 2014-11-17 2015-11-10 Method for treating water for indoor swimming pool

Country Status (2)

Country Link
JP (1) JP6409193B2 (en)
WO (1) WO2016080243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830277A (en) * 2017-03-14 2017-06-13 南京大学 The advanced oxidization method of NSAIDs in a kind of ultraviolet persulfate removal sewage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299468A (en) * 1994-05-11 1995-11-14 Hakuto Co Ltd Sterilizing method in water system
JP2002346565A (en) * 2001-05-28 2002-12-03 Sanyo Electric Co Ltd Water treatment apparatus
JP2007216181A (en) * 2006-02-20 2007-08-30 Jfe Engineering Kk Ballast water treatment apparatus and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984003274A1 (en) * 1983-02-25 1984-08-30 Peter Berger Method for producing a modified aqueous chlorite solution, solution produced thereby and utilization thereof
AUPP216198A0 (en) * 1998-03-05 1998-03-26 Rex, Hans Method of sanitizing a body of water
US6409926B1 (en) * 1999-03-02 2002-06-25 United States Filter Corporation Air and water purification using continuous breakpoint halogenation and peroxygenation
DE10127729C2 (en) * 2001-06-07 2003-05-28 P & W Invest Vermoegensverwalt Stable aqueous chlorine-oxygen solution which is essentially free of chlorite, process for its preparation and its use
DE10201089A1 (en) * 2002-01-14 2003-07-31 P & W Invest Vermoegensverwalt Process for the disinfection and cleaning of water-bearing systems, in particular in swimming and bathing pool systems, and device for carrying it out
WO2010024742A1 (en) * 2008-08-26 2010-03-04 Lennart Olausson A method for treatment of circulating water and a swimming pool circulation system having an arrangement for treating water
WO2010034519A2 (en) * 2008-09-26 2010-04-01 Lonza Inc Synergistic peroxide based biocidal compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299468A (en) * 1994-05-11 1995-11-14 Hakuto Co Ltd Sterilizing method in water system
JP2002346565A (en) * 2001-05-28 2002-12-03 Sanyo Electric Co Ltd Water treatment apparatus
JP2007216181A (en) * 2006-02-20 2007-08-30 Jfe Engineering Kk Ballast water treatment apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830277A (en) * 2017-03-14 2017-06-13 南京大学 The advanced oxidization method of NSAIDs in a kind of ultraviolet persulfate removal sewage

Also Published As

Publication number Publication date
JPWO2016080243A1 (en) 2017-06-29
JP6409193B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
US8492419B2 (en) Multifunctional solid formulations for water conditioning
US7842195B2 (en) Clathrate of chlorine dioxide
KR20140008329A (en) Method for producing an aqueous stable chlorine dioxide solution
WO2007072697A1 (en) Bactericidal water, method of producing the same and apparatus for producing the same
JP6047699B2 (en) Production method, production apparatus and ozone-containing aqueous solution of ozone-containing aqueous solution
JP6409193B2 (en) Indoor pool water treatment method
KR20150005010A (en) Apparatus for producing sterilized water comprising chlorine and ozone
ES2933031T3 (en) Tablet containing slow dissolving hypochlorite
CN111087036A (en) Method for synchronously removing chlorite and emerging organic micropollutants in water by using ultraviolet light
JP2011111386A (en) Method for production of hypochlorous acid water
JP4299012B2 (en) Chlorine dioxide water production apparatus, production method, and sterilization apparatus
WO2012124039A1 (en) Ballast water disinfectant and ballast water treatment device
CN103523877A (en) Disinfecting device
KR20090078892A (en) Appatatus of generating ozonied-water
TWM500101U (en) Hypochlorous acid sterilization device
US20110024367A1 (en) Cyclic process for in-situ generation of chlorine dioxide in biguanide treated aquatic facilities
JP3101502U (en) A device that irradiates a stabilized chlorine dioxide solution with an ultraviolet germicidal lamp, transforms it into a chlorine dioxide solution, and injects it into a warm water circulation circuit to obtain a sterilizing, purifying, deodorizing, and anticorrosive effect.
CN201901609U (en) Effluent disinfection groove capable of adjusting medicine addition dosage
Włodyka-Bergier et al. Influence of medium pressure UV lamp in hot tub water treatment on disinfection by-products concentration
JP3851932B2 (en) Chlorine dioxide water production method
JP2001286871A (en) Manufacturing method of sterilizer and sterilizing method of water and device used therefor
EP0265709A2 (en) A method and composition for the treatment of bathtubs
CN107912432A (en) A kind of bromochloroin compound disinfectant
JP4130175B2 (en) Hot spring water disinfection method and system
JP2008119330A (en) Method of disinfecting bed rock bathroom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861970

Country of ref document: EP

Kind code of ref document: A1