WO2016080183A1 - 情報処理装置、情報処理システム、情報処理方法、およびプログラム - Google Patents

情報処理装置、情報処理システム、情報処理方法、およびプログラム Download PDF

Info

Publication number
WO2016080183A1
WO2016080183A1 PCT/JP2015/080959 JP2015080959W WO2016080183A1 WO 2016080183 A1 WO2016080183 A1 WO 2016080183A1 JP 2015080959 W JP2015080959 W JP 2015080959W WO 2016080183 A1 WO2016080183 A1 WO 2016080183A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
information processing
power
monitoring device
signal
Prior art date
Application number
PCT/JP2015/080959
Other languages
English (en)
French (fr)
Inventor
矢島 正一
新倉 英生
真崇 鈴木
やよい 渕木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201580061043.3A priority Critical patent/CN107148238A/zh
Priority to US15/525,653 priority patent/US20170347892A1/en
Priority to EP15860596.4A priority patent/EP3222205A4/en
Priority to JP2016560142A priority patent/JPWO2016080183A1/ja
Publication of WO2016080183A1 publication Critical patent/WO2016080183A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/38Footwear characterised by the shape or the use with electrical or electronic arrangements with power sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present disclosure relates to an information processing apparatus, an information processing system, an information processing method, and a program.
  • monitoring devices that use various sensors to detect information about the state of the mounting target and the surrounding environment.
  • a monitoring device for example, a monitoring device including a position sensor using radio waves as disclosed in Non-Patent Document 1 below can be exemplified.
  • a monitoring device using various sensors consumes power for driving various sensors and converting signals of detected information. Therefore, it is difficult to continuously drive the monitoring device for a long time in a place or situation where it is difficult to supply power to the monitoring device.
  • a new and improved information processing apparatus, information processing system, and information processing capable of detecting the state of at least one of a wearing target and the surrounding environment without being restricted by time. Propose methods and programs.
  • a power generation signal acquisition unit that acquires a power generation signal based on power generation by at least one power generation device, and the surrounding environment of the power generation device or the power generation device is mounted based on the power generation signal
  • An information processing apparatus includes a determination unit that determines at least one state of a mounting target.
  • a monitoring device including at least one power generation device, a power generation signal acquisition unit that acquires a power generation signal based on power generation by the power generation device, and an environment around the monitoring device based on the power generation signal
  • an information processing apparatus including a determination unit that determines at least one state of a mounting target on which the monitoring device is mounted.
  • a power generation signal based on power generation by at least one power generation device is obtained, and an environment around the power generation device or the power generation is performed based on the power generation signal by an arithmetic processing device.
  • An information processing method comprising: determining a state of at least one of the mounting targets on which the device is mounted is provided.
  • the computer generates a power generation signal acquisition unit that acquires a power generation signal based on power generation by at least one power generation device, and based on the power generation signal, the environment around the power generation device, or the power generation
  • a program is provided that functions as a determination unit that determines at least one state of a mounting target on which the apparatus is mounted.
  • determining at least one of the environment around the power generation device or the state of the mounting target on which the power generation device is mounted Is possible.
  • FIG. 9 is a flowchart illustrating an operation example of an information processing system according to an embodiment of the present disclosure. It is explanatory drawing explaining the specific system configuration
  • FIG. 3 is a block diagram illustrating a hardware configuration example of an information processing apparatus according to an embodiment of the present disclosure.
  • a monitoring device that detects information related to a wearing target that is a living body
  • various sensors that detect body temperature, pulse (that is, heartbeat), electrocardiogram, myoelectricity, sweating, activity, etc. are provided, and such information is detected.
  • a monitoring device for detecting information related to a wearing object other than a living body there is known a device that includes various sensors for detecting internal temperature, surface temperature, vibration frequency, vibration acceleration, and the like and detects these information.
  • a monitoring device that detects information about the environment around the mounting target, it is equipped with various sensors that detect temperature, humidity, illuminance, or the moving direction, moving speed, or position of the mounting target, and these information What is to be detected is known.
  • each of the various sensors included in the monitoring device described above consumes power for signal processing such as driving of the sensor itself and AD (Analog-Digital) conversion of detected information. For this reason, in places or situations where it is difficult to supply power to various sensors, it is time-consuming to drive these various sensors and continue to detect the state of the mounting target and the surrounding environment with a monitoring device. Therefore, it was difficult.
  • the driving time of the monitoring device is determined by the power consumption of various sensors provided in the monitoring device and the size of the monitoring device.
  • the size of the monitoring device is also constrained by the size of the mounting target on which the monitoring device is mounted and the situation in which the monitoring device is used.
  • the monitoring device needs to be small in size in order to continue wearing the monitoring device without a sense of incongruity.
  • the driving time is shorter as the monitoring device is always mounted on the mounting target. Moreover, since the power consumption increases as the number of various sensors included in the monitoring device increases, the driving time tends to be shortened. Furthermore, as the driving time of the monitoring device is shortened, there is a tendency that the frequency of opportunity loss that the monitoring device cannot be used due to unexpected power depletion (that is, the battery has run out) increases.
  • the background described above makes it difficult for a monitoring device to notify the other of the state of the mounting target when the mounting target of the monitoring device is encountered in an unexpected disaster, accident, incident, or distress, for example.
  • a monitoring device that notifies the position of the wearing target to others in the event of a disaster or the like by a position sensor using GNSS (Global Navigation Satellite System) or the like has a finite continuous drive time because the position sensor consumes power. It is. Also, with such a monitoring device, it has been difficult to notify others of the state of the mounting target such as whether or not the mounting target that has encountered a disaster or the like is in a dangerous state.
  • GNSS Global Navigation Satellite System
  • such a monitoring device charges the mounting target or power so as not to incur an opportunity loss that the monitoring device cannot be used due to power depletion in the event of a sudden disaster, accident, incident or distress. Will pay attention to the amount of electricity stored in the monitoring device. For this reason, such a monitoring device imposes a psychological burden on the wearing target or the person who charges the power when it is owned and used.
  • An information processing apparatus does not use various sensors, and uses a power generation apparatus in which the amount of power generation varies depending on the state of the mounting target or the surrounding environment, and at least either the state of the mounting target or the surrounding environment. Determine the state.
  • the information processing apparatus is based on the power generated by the power generation device included in the monitoring device, the output voltage, or the power generation amount, or the amount of change in these values. Determine at least one state of the environment.
  • the information processing apparatus does not worry about loss of opportunity for using the monitoring device due to power depletion, and does not give the burden of charging the monitoring device to the wearing target and the like, and without time restrictions It is possible to monitor the state of the wearing target and the surrounding environment.
  • the position of the mounting target can be estimated by determining the state of the environment around the mounting target.
  • the information processing apparatus according to the present embodiment is a disaster, an accident, an incident, a victim who suffered a distress, or a lost item that was difficult to realize with a monitoring device that drives various sensors using a battery or the like as a power source. It is possible to search for a wearing object for a long time. Further, according to the information processing apparatus according to the present embodiment, it is possible not only to estimate the position of the mounting target but also to grasp the state of the mounting target.
  • FIG. 1 is an explanatory diagram illustrating an example of the form of the monitoring device 100
  • FIG. 2 is an explanatory diagram illustrating an example of a power generation method of a power generation device included in the monitoring device 100
  • 3 and 4 are explanatory diagrams showing an example of an information processing system including the monitoring device 100.
  • FIG. below after demonstrating the structural example of the information processing system containing a monitoring apparatus first, the structural example of a monitoring apparatus is demonstrated.
  • the monitoring device 100 includes at least one power generation device.
  • the monitoring device 100 is a device that can be worn or carried by a user or the like, and can take various forms.
  • the monitoring device 100 may be a badge-type monitoring device 100 attached to a cap or the like, or may be a strap-type monitoring device 100 attached to a portable terminal device or the like. It is good also as the bracelet type monitoring apparatus 100 with which it is mounted
  • the power generation device provided in the monitoring device 100 may be a device that generates power using sunlight, or a device that generates power using the body temperature of the user, Alternatively, it may be a device that generates power using vibrations accompanying the user's operation.
  • the monitoring device 100 may be capable of communicating with other monitoring devices 100 by providing a communication device together with the power generation device, for example.
  • the monitoring device 100 worn by the user A and the monitoring device 100 worn by the user B may be used as a beacon device.
  • the monitoring device 100 is used as a beacon device, information can be transmitted / received to / from each other if the two monitoring devices 100 are within a range of a distance of 0 km to 2 km, for example.
  • the monitoring device 100 when the monitoring device 100 includes a communication device that can communicate with a communication network such as the Internet, or the monitoring device 100 is connected to a smartphone or a dedicated terminal device that can communicate with a communication network such as the Internet.
  • the two monitoring devices 100 can transmit and receive information to and from each other via the communication network. For example, when the monitoring device 100 carried by the user B receives information on the current location of the user A transmitted from the monitoring device 100 worn by the user A, the user B acquires information on the position of the user A. Can do.
  • the dedicated terminal device may be a device having a display screen such as a tablet terminal, a PDA (Personal Digital Assistance), a mobile phone including a smartphone, and a personal computer, or a gateway device having no display screen, or a predetermined device It may be an antenna device installed at a point.
  • a PDA Personal Digital Assistance
  • monitoring device 100 may be used in various modes.
  • the monitoring device 100 according to the present embodiment includes at least one power generation device.
  • FIG. 5 is a block diagram illustrating an example of the configuration of the monitoring device 100.
  • the monitoring device 100 includes, for example, three power generation devices 10A, 10B, and 10C, three power storage devices 20A, 20B, and 20C, three signal generation devices 22A, 22B, and 22C, and three Arithmetic devices 30A, 30B, 30C, three storage devices 32A, 32B, 32C, and one communication device 40 are provided.
  • the power generation devices 10A, 10B, and 10C are, for example, vibration / motion power generation devices, solar power generation devices, thermoelectric conversion power generation devices, enzyme power generation devices, radio wave power generation devices, nearby electromagnetic field power generation devices, or magnetic field resonance, electromagnetic induction, or electric fields. Any one or a plurality of power transmission devices by coupling are selected and used. In addition, types of power generation devices other than the above examples may be used as the power generation devices 10A, 10B, and 10C. The power generation devices 10A, 10B, and 10C may all be the same type of power generation device. However, if the types of power generation devices are different, it is possible to acquire information on various mounting targets and surrounding environmental conditions. .
  • the vibration / kinetic power generation device is configured using, for example, an electrostatic, electromagnetic, inverse magnetostrictive, or piezoelectric power generation element, and generates power using vibration energy or vibration energy.
  • a solar power generation device is configured using, for example, a solar battery, and generates power using sunlight.
  • the thermoelectric conversion power generation device is configured using, for example, a power generation element, a thermoelectron power generation element, or a thermomagnetic power generation element using the Seebeck effect or the Thomson effect, and generates power using at least one of body temperature and outside air temperature. I do.
  • the enzyme power generation device generates power by, for example, decomposing a carbohydrate (such as glucose) contained in an organic substance or the like with an enzyme.
  • the radio wave generator generates power using radio waves such as Wi-Fi (registered trademark) or terrestrial digital waves.
  • the near electromagnetic field power generation device generates power using electromagnetic waves in the near field.
  • the magnetic field resonance power transmission device and the electromagnetic induction power transmission device are devices that use two coils as a resonator and cause a current to flow in a power receiving side coil by flowing a current in the power feeding side coil.
  • the electric field coupled power transmission device is a device in which a current flows to the other electrode plate when a high-frequency current flows to one of the two electrode plates facing each other.
  • Power storage device As the power storage devices 20A, 20B, and 20C, for example, any one or a plurality of power storage devices selected from a capacitor, a capacitor, a secondary battery, or a power storage element having an intermediate property thereof are selected and used.
  • the power storage devices 20A (20B, 20C) are connected to the power generation devices 10A (10B, 10C), respectively, and can store the power generated by the power generation devices 10A (10B, 10C). Further, other types of power storage devices than the above examples may be used as the power storage devices 20A, 20B, and 20C. Power storage devices 20A, 20B, and 20C may all be the same type of power storage device or different types of power storage devices.
  • the power storage capacity of the power storage devices 20A, 20B, and 20C May be relatively small. Further, the electric power stored in the power storage devices 20A, 20B, and 20C may be used for control of the entire monitoring device 100 and the like.
  • the signal generation devices 22A, 22B, and 22C make a state transition based on the power generated by the power generation devices 10A, 10B, and 10C, respectively, and store the state transition.
  • switching elements can be exemplified as a minimum configuration.
  • the switching element can perform two-state state transitions of ON and OFF, for example, by supplying power from the power generation devices 10A, 10B, and 10C.
  • the switching element may not be able to continue to store the transition state unless the energy supply state is maintained, or may be capable of continuing to store the transition state without maintaining the energy supply state.
  • the single switching element corresponds to the signal generation devices 22A, 22B, and 22C.
  • the switching element cannot continue to store the transition state unless the energy supply state is maintained, another element that can continue to store the transition state without connecting the energy supply state is connected to the switching element.
  • the state transition of the switching element is memorized in an element that changes the state due to the state transition of the switching element and can maintain the state transition even if energy is not supplied. State transitions can be stored.
  • a group of switching elements and a series of elements connected to the switching elements corresponds to the signal generation devices 22A, 22B, and 22C.
  • the signal generators 22A, 22B, and 22C may be more complicated based on the above switch operation.
  • the signal generation devices 22A, 22B, and 22C generate a command signal as a state transition based on the power generated by the power generation devices 10A, 10B, and 10C, and one operation in units of a series of operations that achieve a certain purpose
  • An instruction group of a unit or a plurality of operation units may be executed.
  • a storage process of data or the like is performed along with the process, but the matter stored in the storage process may be used as a memory representing the state transition.
  • the signal generation devices 22A, 22B, and 22C may be separately provided with a counter or the like for storing the operation state.
  • the storage devices 32A, 32B, and 32C may be used as the storage device that stores the above-described items.
  • the storage device included in the communication device 40 may be used. Good.
  • storage device shares each memory area by a time division or interruption process, and each of the signal based on the electric power generated by the electric power generation apparatus 10A, 10B, 10C is used. Can be remembered.
  • the signal generation device 22A (22B, 22C) generates a signal including information relating to the switch circuit operation state such as unique identification information of the power generation device 10A (10B, 10C) and a reset IC (Integrated Circuit). To do.
  • the generated signal may be stored in the storage device 32A (32B, 32C) or the storage device included in the communication device 40.
  • the signal generation device 22A (22B, 22C) may generate a signal further including information on the characteristics of the power generation device 10A (10B, 10C) such as the impedance and output characteristics of the power generation device 10A (10B, 10C). .
  • the signal generation device 22A may be used as a signal for generating a signal similar to an identification signal necessary for authentication with the object with which the communication device 40 communicates. That is, when the power necessary for driving the communication device 40 is stored in the power storage device 20A (20B, 20C), the power supply line from the power storage device 20A to the communication device 40 is turned ON by a reset IC or the like. The power is supplied to the communication device 40. At this time, the signal generation device 22A (22B, 22C) may generate, as a signal, information necessary for performing authentication and connection operation with an object with which the communication device 40 communicates.
  • the information transmitted from the communication device 40 includes identification information for identifying the system of the power generation device 10A (10B, 10C), whether or not a signal is generated in the power generation device 10A (10B, 10C), or the number of signal generations. Is basically included. Information relating to time may be added to the information transmitted from the communication device 40 as necessary.
  • the information transmitted from the communication device 40 is processed into information on at least one of the state of the wearing target on which the monitoring device 100 is worn and the environment around the monitoring device 100 by the arithmetic device provided in the received information processing device.
  • the information transmitted from the communication device 40 relates to at least one of the state of the mounting target in which the monitoring device 100 is mounted by the arithmetic devices 30A, 30B, and 30C included in the monitoring device 100 and the environment around the monitoring device 100.
  • Information processed into information may be used.
  • the arithmetic devices 30A, 30B, and 30C depend on the usage application of the monitoring device 100, they may be, for example, a comparator or a microcomputer with a simple configuration, and are not particularly limited.
  • the arithmetic devices 30A, 30B, and 30C may all be the same type of arithmetic device, or may be different types of arithmetic devices.
  • the storage devices 32A, 32B, and 32C may be volatile storage devices or non-volatile storage devices.
  • the storage devices 32A, 32B, and 32C may be storage elements such as a RAM (Random Access Memory) that can temporarily store information.
  • the monitoring device 100 saves information to the storage devices 32A, 32B, and 32C before the power stored in the storage devices 20A, 20B, and 20C is exhausted. Information and a state before the power is exhausted can be stored.
  • the other monitoring device 100 and the reading device can be used before the power is exhausted. Information and status of the monitoring device 100 can be read.
  • the storage device 32A (32B, 32C) is mounted on the arithmetic device 30A (30B, 30C), and one storage device 32A (32B, 32C) and one arithmetic device 30A (30B, 30C) A unit block may be configured. Further, the storage devices 32A, 32B, and 32C may be independent unit blocks.
  • the storage devices 32A, 32B, and 32C may include a storage element such as a ROM (Read Only Memory) that stores a program executed by the microcomputer.
  • the storage devices 32A, 32B, and 32C may all be the same type or may be different types.
  • the communication device 40 is a device that outputs information stored in the monitoring device 100 to the outside, and may be a wireless or wired physical signal line.
  • the communication device 40 may be a wireless device using infrared rays, electromagnetic waves, or an electric field.
  • the communication device 40 includes Wi-Fi (registered trademark), ZigBee (registered trademark), Bluetooth (registered trademark), Bluetooth Low Energy (registered trademark), ANT (registered trademark), ANT + (registered trademark), It may be a device capable of transmitting and receiving wavelength signals in the band of several hundreds of MHz to several GHz represented by EnOcean Alliance (registered trademark) and the like.
  • the communication device 40 may be a device capable of near field communication represented by NFC (Near Field Communication).
  • the communication device 40 may include a storage device (not shown).
  • said arithmetic device 30A, 30B, 30C may be implement
  • the communication device 40 may be a wired device.
  • the monitoring device 100 may include various devices as necessary in addition to the devices illustrated in FIG. For example, a rectifier circuit that rectifies the output of the power generation devices 10A, 10B, and 10C, a regulator that boosts or lowers the output voltage of the power generation devices 10A, 10B, and 10C, and controls or monitors the charge / discharge states of the power storage devices 20A, 20B, and 20C Charging circuit for performing signal processing, arithmetic device and storage device for switching power supply to signal generation devices 22A, 22B, and 22C for signal generation in a more complicated manner, actuator, LED (Light Emitting Diode) lamp, memory type display, and the like
  • the display device or the like may be further provided in the monitoring device 100.
  • the power required for signal generation by the signal generation devices 22A, 22B, and 22C, analysis and processing of the generated signals, communication by the communication device 40, driving of the actuator, and display by the display device are the power generation devices 10A, 10B, Electric power generated at 10C may be used.
  • the power generation devices 10A, 10B, and 10C connected to the power generation devices 20A, 20B, and 20C connected to the signal generation devices 22A, 22B, and 22C have a predetermined common power from the power generated by the power generation devices 10A, 10B, and 10C. Electric power may be stored and used.
  • a part of the electric power stored in the power storage devices 20A, 20B, and 20C connected to the signal generation devices 22A, 22B, and 22C may be used.
  • electric power stored in a power storage device charged from a primary battery or an external power source may be used.
  • the configuration example of the monitoring device 100 illustrated in FIG. 5 includes the power generation devices 10A, 10B, and 10C, the power storage devices 20A, 20B, and 20C, the signal generation devices 22A, 22B, and 22C, the arithmetic devices 30A, 30B, and 30C, and the storage.
  • Three devices 32A, 32B, and 32C are provided, but the number is not limited to three, and may be two or less, or four or more. In the configuration example shown in FIG.
  • the unit block may be configured by a plurality of devices appropriately selected from 32C and the communication device 40.
  • the power generation device 10A, the power storage device 20A, the signal generation device 22A, the arithmetic device 30A, the storage device 32A, and the communication device 40 may be configured as one unit block.
  • the monitoring device 100 for example, when the minimum amount of power driven by the signal generation devices 22A, 22B, and 22C is stored in the power storage devices 20A, 20B, and 20C, Generate a system-specific signal.
  • the monitoring device 100 according to the present embodiment uses a combination of signals generated at this time as sensing information.
  • the sensing information may include information that there is no signal (that is, the power generation devices 10A, 10B, and 10C are not generating power).
  • the monitoring device 100 generates a signal (that is, a primary signal) that the power generator generates power and the signal generator is driven by the generated power.
  • the information processing apparatus that has received the primary signal, based on the primary signal, information on at least one of the state of the wearing target wearing the monitoring device 100 and the environment around the monitoring device 100 (that is, the secondary signal). Signal) can be generated.
  • the information processing apparatus that has received the secondary signal further includes information regarding the correspondence to the mounting target from information regarding at least one of the state of the mounting target on which the monitoring device 100 is mounted or the environment around the monitoring device 100 ( That is, a tertiary signal) may be generated.
  • the tertiary signal may be, for example, a control command for an external device connected to the monitoring device 100 or the information processing apparatus that has generated the tertiary signal by wire or wireless or an application installed in the external device. It may be a higher order signal than the control command.
  • the monitoring device 100 or the information processing apparatus generates a primary signal or a secondary signal as a control command for an external device connected to the information processing device in a wired or wireless manner or an application installed in the external device. Also good.
  • FIG. 6 is a block diagram illustrating another configuration example of the monitoring device 100.
  • the monitoring device 100 includes, for example, three power generation devices 10A, 10B, and 10C, three power storage devices 20A, 20B, and 20C, three signal generation devices 22A, 22B, and 22C, and one An arithmetic device 30, a storage device 32 provided in the arithmetic device 30, one communication device 40, and a storage device 42 provided in the communication device 40 are provided.
  • the configuration example of the monitoring device 100 illustrated in FIG. 6 includes a single arithmetic device 30 and a storage device 32 that are common to all the power generation devices 10A, 10B, and 10C and the power storage devices 20A, 20B, and 20C. 5 is different from the configuration example of the monitoring device 100 shown in FIG.
  • each device in the configuration example of the monitoring device 100 shown in FIG. 6 may be the same as each device in the configuration example shown in FIG.
  • the storage device 42 provided in the communication device 40 may be appropriately selected from storage elements that can be used as the storage device 32 provided in the arithmetic device 30.
  • the arithmetic device 30 may be realized using an arithmetic device provided in the communication device 40.
  • the storage device 32 can store each of the signals based on the power generated by the three power generation devices 10A, 10B, and 10C by sharing the storage area by time division or interrupt processing.
  • the configuration example of the monitoring device 100 illustrated in FIG. 6 includes the power generation devices 10A, 10B, and 10C, the power storage devices 20A, 20B, and 20C, and the signal generation devices 22A, 22B, and 22C.
  • the number is not limited to three, but may be two or less, or four or more.
  • the unit block may be configured by a plurality of devices appropriately selected from among 42.
  • the power generation device 10A, the power storage device 20A, the signal generation device 22A, the arithmetic device 30, the storage device 32, and the communication device 40 may be configured as one unit block.
  • FIG. 7 is a block diagram illustrating another configuration example of the monitoring device 100.
  • the monitoring device 100 includes, for example, three power generation devices 10A, 10B, and 10C, three power storage devices 20A, 20B, and 20C, three signal generation devices 22A, 22B, and 22C, and one Arithmetic device 30, storage device 32 provided in arithmetic device 30, one communication device 40, storage device 42 provided in communication device 40, and power storage device that supplies power to arithmetic device 30 and communication device 40 50.
  • a part of the power generated by the power generation devices 10 ⁇ / b> A, 10 ⁇ / b> B, and 10 ⁇ / b> C is stored in the power storage device 50, and the arithmetic device 30 and the power stored in the power storage device 50 are stored. It is different from the configuration example of the monitoring device 100 shown in FIG. 6 in that the communication device 40 is driven.
  • the power storage device 50 may be appropriately selected from among power storage devices that can be used as the power storage devices 20A, 20B, and 20C connected to the power generation devices 10A, 10B, and 10C. However, since the power storage device 50 stores electric power for driving the arithmetic device 30 and the communication device 40, a relatively large-capacity secondary battery or the like may be used.
  • the power storage device 50 stores the remaining power excluding the power required to drive the signal generation devices 22A, 22B, and 22C among the power generated by the power generation devices 10A, 10B, and 10C.
  • the power storage device 50 stores electric power other than that necessary for generating signals by the signal generation devices 22A, 22B, and 22C, thereby supplying the generated power to the arithmetic device 30 and the communication device 40 more efficiently. it can.
  • the configuration example of the monitoring device 100 shown in FIG. 7 also includes three power generation devices 10A, 10B, and 10C, power storage devices 20A, 20B, and 20C, and signal generation devices 22A, 22B, and 22C.
  • the number of is not limited to three, but may be two or less, or four or more.
  • the unit block may be configured by a plurality of devices appropriately selected from the devices 42.
  • the power generation device 10A, the power storage device 20A, the signal generation device 22A, the arithmetic device 30, the storage device 32, and the communication device 40 may be configured as one unit block.
  • the basic configuration of the monitoring device 100 according to the present embodiment has been described above.
  • FIG. 8 is a block diagram illustrating a functional configuration of an information processing system including the monitoring device 100 described above.
  • the information processing system includes a monitoring device 100 attached to the attachment target and an information processing device 300 that communicates with the monitoring device 100 via the communication network 5.
  • the monitoring device 100 includes a power generation device 10, a power storage device 20, a management unit 102, and a control unit 104.
  • the information processing device 300 includes a power generation signal acquisition unit 302, a determination unit 304, and an output unit 306. With.
  • the power generation apparatus 10 is an apparatus that generates electric power using various methods.
  • the power storage device 20 is a device that stores the power generated by the power generation device 10.
  • the power generation device 10 and the power storage device 20 may be at least one, and the upper limit is not particularly limited. Note that the details of the power generation device 10 and the power storage device 20 are as described above, and thus the description thereof is omitted here.
  • the management unit 102 manages the electric power stored in the power storage device 20. Specifically, the management unit 102 checks the power stored in the power storage device 20 and determines whether the power storage device 20 stores power equal to or higher than a threshold value.
  • the threshold value used as a criterion for determination by the management unit 102 is, for example, power necessary for generating a power generation signal indicating that the power generation device 10 is generating power and transmitting the information to the information processing device 300. There may be.
  • the management unit 102 determines that the power storage device 20 stores power equal to or higher than the threshold, for example, a power generation signal indicating that the power generation device 10 is generating power by the signal generation device 22 (22A, 22B, 22C) is generated. Generated.
  • the function of the management unit 102 may be executed by the arithmetic device 30 (30A, 30B, 30C), for example.
  • the control unit 104 controls input to the monitoring device 100 from the outside and output from the monitoring device 100 to the outside. Specifically, the control unit 104 outputs the power generation signal generated by the signal generation device 22 (22A, 22B, 22C) to the information processing device 300 via the communication network 5. In addition, when a control command or the like is input from the information processing apparatus 300 to the monitoring device 100 in the tertiary signal or the like, the control unit 104 receives the input and controls the monitoring device 100 based on the input. To do.
  • the function of the control unit 104 may be executed by, for example, the arithmetic device 30 (30A, 30B, 30C) and the arithmetic device included in the communication device 40.
  • the communication network 5 is a network in which communication is performed by the communication device 40 described above.
  • the communication network 5 may be a public line network such as the Internet, a satellite communication network, a telephone line network, and a mobile communication network (for example, a 3G line network).
  • the power generation signal acquisition unit 302 acquires the power generation signal transmitted from the monitoring device 100. Specifically, the power generation signal acquisition unit 302 receives a power generation signal including information related to power generation by the power generation apparatus 10 included in the monitoring device 100 via the communication network 5.
  • the power generation signal acquisition unit 302 is a communication interface configured with, for example, a communication device for connecting to the communication network 5.
  • the power generation signal acquisition unit 302 may be a wired or wireless LAN (Local Area Network) compatible communication device, a cable communication device that performs wired cable communication, or an antenna communication device that performs wireless communication using radio waves. It may be.
  • the determination unit 304 determines the state of at least one of the mounting target to which the power generation device 10 is mounted and the environment around the power generation device 10 based on the power generation signal received from the monitoring device 100. Note that the mounting target to which the power generation device 10 is mounted is substantially the same as the mounting target to which the monitoring device 100 is mounted, and the environment around the power generation device 10 is substantially the same as the environment around the monitoring device 100. Are the same.
  • the determination unit 304 determines the power generation state of the power generation device 10 based at least on information such as the power generation amount of the power generation device 10 or the output voltage included in the power generation signal. In addition, the determination unit 304 determines at least one of a state where the power generation device 10 is mounted and an environment around the power generation device 10 based on the power generation state of the power generation device 10.
  • the determination unit 304 may determine that the power generation device 10 exists outside the room. In addition, when the power generation amount of the power generation device 10 that is a vibration power generation device is large, the determination unit 304 may determine that the mounting target on which the power generation device 10 is mounted is moving or exercising. Furthermore, when the power generation amount of the power generation device 10 that is a radio power generation device is small, the determination unit 304 may determine that there are no electronic devices and facilities that emit radio waves in the vicinity of the power generation device 10.
  • the determination unit 304 emits a beacon or the like from a communication facility installed at a predetermined point, thereby determining whether or not the power generation device 10 is near the communication facility that emitted the beacon. It is also possible to determine whether. In such a case, the determination unit 304 can acquire information on the position of the power generation device 10, and therefore, at least one of the state where the power generation device 10 is mounted and the environment around the power generation device 10 is more determined. Judge in detail.
  • the determination unit 304 differentiates information such as the power generation amount of the power generation device 10 or the output voltage included in the power generation signal, and the mounting target on which the power generation device 10 is mounted based on the change amount and change rate of the power generation amount, Alternatively, at least one state of the environment around the power generation apparatus 10 may be determined. Furthermore, the determination unit 304 is based on a value obtained by integrating information such as the power generation amount of the power generation device 10 or the output voltage included in the power generation signal, or a mounting target on which the power generation device 10 is mounted or an environment around the power generation device 10. At least one of the states may be determined.
  • the determination unit 304 is at least one of the mounting target to which the power generation device 10 is mounted and the environment around the power generation device 10. Can be determined in more detail.
  • the determination unit 304 determines whether the power generation signal is received (that is, the generation interval). Thus, the degree of power generation by the power generation apparatus 10 may be determined. When the reception frequency of the power generation signal is high, the determination unit 304 can determine that the amount of power generated by the power generation apparatus 10 is large.
  • the determination unit 304 may determine the state of at least one of the mounting target to which the power generation device 10 is mounted and the environment around the power generation device 10 by combining the power generation signals of the plurality of power generation devices 10. For example, the determination unit 304 prepares a determination table as illustrated in FIG. 9 in advance, and based on the combination of the power generation devices 10 having a large amount of power generation, the mounting target to which the power generation device 10 is mounted or the environment around the power generation device 10. At least one of the states may be determined.
  • FIG. 9 is an explanatory diagram illustrating an example of a determination table for the determination unit 304 to determine a state of at least one of a mounting target on which the power generation device 10 is mounted and an environment around the power generation device 10.
  • the case where the power generation amount exceeds the threshold is expressed as “1”, and the case where the power generation amount is less than the threshold is expressed as “0”.
  • PV1, PV2 represents whether the power generation amount in the power generation apparatus 10 that generates power based on at least one of the absorption wavelength and the light intensity of the solar power generation apparatus exceeds a threshold value.
  • KN1, KN2, KN3 represents whether or not the amount of power generation in the power generation apparatus 10 that generates power based on at least one of the resonance frequency and vibration intensity of the vibration / kinetic power generation apparatus exceeds a threshold value.
  • TE1, TE2, TE3 represents whether or not the amount of power generated by the power generation apparatus 10 that generates power based on at least one of the heat capacity and temperature of the thermoelectric conversion power generation apparatus exceeds a threshold value.
  • RE1 represents whether or not the amount of power generated by the power generation apparatus 10 that generates power based on at least one of the radio frequency and the radio field intensity of the radio power generation apparatus exceeds a threshold value.
  • the determination unit 304 attaches the power generation device 10 from each power generation amount of the power generation device 10 with simpler information processing based on the determination table. Or at least one state of the environment around the power generation apparatus 10 can be determined.
  • the determination unit 304 determines the power generation device 10 based on a temporal change in the power generation amount in the power generation devices 10 mounted on the same mounting target or a difference in power generation amount in the power generation devices 10 mounted on different mounting targets. You may determine the state of at least any one of the mounting
  • the determination unit 304 compares the power generation amount in the power generation device 10 mounted on the same mounting target with past history data, and if the power generation amount in the power generation device 10 indicates an abnormal value, the determination target 304 It may be determined that an abnormality has occurred.
  • the determination unit 304 compares the power generation amount in the power generation device 10 mounted on a different mounting target, and if the power generation amount is abnormally high or low relative to the power generation device 10 mounted on another mounting target, the determination target 304 It may be determined that an abnormality has occurred. In addition, since there may be individual differences due to manufacturing variations in the power generation apparatuses 10 mounted on different mounting targets, the power generation amount in each of the power generation apparatuses 10 using a normal distribution, a histogram, and the like for each population. May be corrected.
  • the determination unit 304 may perform machine learning by feeding back what kind of abnormality has actually occurred in the mounting target with respect to each power generation amount abnormality of the power generation apparatus 10. When a predetermined amount of data samples are accumulated, the determination unit 304 can automatically determine what abnormality is occurring in the mounting target for each power generation amount abnormality of the power generation apparatus 10. become able to.
  • the output unit 306 outputs a signal (for example, a secondary signal or a tertiary signal) generated by the determination unit 304 to an external device connected to the information processing apparatus 300 by wire or wirelessly.
  • the signal output from the output unit 306 may be, for example, a control command for an external device that outputs the signal or an application installed in the external device, or may be a higher-order signal than these control commands.
  • the output unit 306 may output an alert signal indicating that an abnormality of the mounting target has been detected.
  • the output unit 306 is a connection interface configured by a connection port for connecting to an external device such as a USB (Universal Serial Bus) port, an Ethernet (registered trademark) port, an IEEE 80671 standard port, and an optical audio terminal, for example. It may be a communication interface constituted by a communication device or the like for connecting to a communication network 5 such as a wired or wireless LAN compatible communication device.
  • an external device such as a USB (Universal Serial Bus) port, an Ethernet (registered trademark) port, an IEEE 80671 standard port, and an optical audio terminal, for example.
  • It may be a communication interface constituted by a communication device or the like for connecting to a communication network 5 such as a wired or wireless LAN compatible communication device.
  • all or some of the functions of the power generation signal acquisition unit 302, the determination unit 304, and the output unit 306 may be executed by the monitoring device 100. In such a case, all or some of the functions of the power generation signal acquisition unit 302, the determination unit 304, and the output unit 306 may be executed by the arithmetic device 30 (30A, 30B, 30C), for example.
  • FIG. 10 is a flowchart for explaining an operation example of the information processing system according to the present embodiment.
  • the operation example of the information processing system shown below is merely an example for explaining the operation of the information processing system according to the present embodiment, and the operation of the information processing system according to the present embodiment is limited to the following example. It is not done.
  • the management unit 102 and the like generate a power generation signal based on the power generated by the power generation device 10 (S102).
  • the control unit 104 transmits the generated power generation signal to the information processing apparatus 300 (S104).
  • the power generation signal acquisition unit 302 of the information processing apparatus 300 receives the transmitted power generation signal (S110).
  • the determination unit 304 determines at least one state of a mounting target on which the power generation apparatus 10 is mounted or an environment around the power generation apparatus 10 (S112). Subsequently, the determination unit 304 determines the correspondence to the mounting target based on at least one of the mounting target and the surrounding environment (S114). Further, the output unit 306 outputs information regarding the correspondence to the mounting target to an external device or the like based on the determined response to the mounting target (S114).
  • the information processing system does not use various sensors that consume power, but based on the power generation by the power generation device, the environment around the power generation device or the mounting target that is equipped with the power generation device. At least one of the states can be determined.
  • the monitoring device 100 includes, as the power generation device 10, a Si solar power generation device, a dye-sensitized solar power generation device, a piezoelectric power generation device, an electromagnetic induction power generation device, a temperature difference power generation device, and a thermal response difference power generation device. And a radio wave generator.
  • each power generation device 10 is independently connected with a power storage device 20 and a signal generation device 22 such as an MPU (Micro-Processing Unit) or an arithmetic device 30.
  • the power storage device 20 can be an all-solid-state secondary battery, a capacitor, or the like.
  • the power storage device 20 supplies the power generated by the power generation device 10 to the signal generation device 22 or the arithmetic device 30 connected thereto, respectively. To supply.
  • the signal generator 22 or the arithmetic unit 30 to which power is supplied stores the number of times the power has been supplied in any of the storage devices 32 and 42 by consuming the supplied power. Further, the signal generation device 22 or the arithmetic device 30 may store the presence / absence of power supply in one of the storage devices 32 and 42 in the binary value of ON / OFF.
  • a common communication device 40 is connected to each signal generation device 22 or the arithmetic device 30.
  • the power generated by the power generation device 10 is supplied to the communication device 40 via the power storage device 20 after the power is supplied to the signal generation device 22 or the arithmetic device 30.
  • Information regarding the number of times of power supply generated by each signal generation device 22 or the arithmetic device 30 or the presence or absence of power supply is stored in one of the storage devices 32 and 42.
  • the communication device 40 transmits information stored in the storage devices 32 and 42 to the information processing device 300 or the like.
  • the communication device 40 may further transmit identification information unique to the monitoring device 100 to the information processing device 300 or the like when transmitting information regarding the number of times of power supply or the presence or absence of power supply.
  • the information processing apparatus 300 that has received the transmitted information further generates a secondary signal and a tertiary signal by performing arithmetic processing on the received information. Furthermore, the information processing apparatus 300 outputs an analysis result corresponding to the external device and the application installed in the external device, and a control command accompanying the analysis result as a secondary signal and a tertiary signal.
  • a first use example of the information processing system according to the present embodiment is a search system that searches for the location of a victim or victim who has encountered a disaster, an incident, an accident, or a distress.
  • the information processing device 300 has sufficient power for signal generation in each power generation device 10 such as a solar power generation device, a vibration power generation device, a thermoelectric conversion power generation device, a radio wave power generation device, and an enzyme power generation device provided in the monitoring device 100. It is possible to obtain a primary signal indicating whether or not the power is generated. Based on the acquired primary signal, the information processing apparatus 300 can generate a secondary signal related to the state of the mounting target on which the monitoring device 100 is mounted or the environment around the monitoring device 100.
  • each power generation device 10 such as a solar power generation device, a vibration power generation device, a thermoelectric conversion power generation device, a radio wave power generation device, and an enzyme power generation device provided in the monitoring device 100. It is possible to obtain a primary signal indicating whether or not the power is generated. Based on the acquired primary signal, the information processing apparatus 300 can generate a secondary signal related to the state of the mounting target on which the monitoring device 100 is mounted or the environment around the monitoring device 100.
  • the information processing device 300 when the photovoltaic power generator is generating enough power for signal generation, the signal is generated, and the presence or absence of signal generation changes depending on day and night, the information processing device 300 It is possible to generate a secondary signal indicating that the environment is sunny rather than shaded and that there is little or no obstruction between the wearing object and the sun. In addition, when the vibration power generation device does not generate enough power for signal generation and no signal is generated, the information processing device 300 generates a secondary signal that the activity amount of the wearing target is reduced. Can do.
  • thermoelectric conversion power generation device when the thermoelectric conversion power generation device generates power enough for signal generation and the signal is generated, the information processing device 300 is metabolized in the wearing target and is active in life 2 A next signal can be generated.
  • the radio wave generator does not generate enough power for signal generation and no signal is generated, the information processing apparatus 300 emits an electronic device that emits radio waves or radio waves to the surrounding environment of the mounting target. A secondary signal indicating that no infrastructure equipment exists can be generated.
  • the enzyme power generation device does not generate enough power for signal generation and no signal is generated, the information processing device 300 indicates that the blood glucose level of the wearing target has decreased, or the surrounding environment of the wearing target. Can generate a secondary signal that there is no nutrition.
  • the information processing apparatus 300 may further generate a tertiary signal by arithmetic processing based on the secondary signal group as described above.
  • Tertiary signals can be used to prioritize rescues, such as, for example, the need for urgent rescue of the wear target, the need for the rescue of the wear target not urgent, and the need for rescue of the wear target. It may be a signal made.
  • the conditions under which power can be generated in the power generation device 10 vary depending on the material and shape of the power generation device 10. For example, if it is a solar power generation device, the absorption wavelength that can be generated, if it is a vibration power generation device, the resonance frequency that can be generated, if it is a thermoelectric conversion power generation device, the temperature range and heat capacity that can be generated, and if it is an enzyme power generation device, it can generate power If it is a simple substance or a radio wave power generation device, the absorption wavelength that can be generated varies depending on the material and shape of the power generation device 10.
  • a second use example of the information processing system according to the present embodiment is a lost article search system in which the monitoring object 100 is not a living body but a lost item, and the state of the lost item and the surrounding environment are grasped. is there.
  • the information processing device 300 has generated enough power for signal generation in each power generation device 10 such as a solar power generation device, a vibration power generation device, a thermoelectric conversion power generation device, and a radio wave power generation device included in the monitoring device 100.
  • the information processing apparatus 300 may generate a secondary signal related to the state of the mounting target (that is, the lost item) on which the monitoring device 100 is mounted or the environment around the monitoring device 100. it can.
  • the information processing device 300 it is possible to generate a secondary signal indicating that the environment is sunny rather than shaded and that there is little or no obstruction between the wearing object and the sun. Further, when the vibration power generator does not generate enough power for signal generation and no signal is generated, the information processing device 300 is not moving in the moving object or the information on the mounting target is not moving. A secondary signal indicating that there is no vibration source close to the resonance frequency of the vibration power generator can be generated.
  • thermoelectric conversion power generation device when the thermoelectric conversion power generation device generates sufficient power for signal generation, and the signal is generated, the information processing device 300 is in contact with any one of the mounting targets having different heat capacities, Alternatively, it is possible to generate a secondary signal indicating that there is an environment in which there is a temperature difference such as that other people wear.
  • the radio wave generator does not generate enough power for signal generation and no signal is generated, the information processing apparatus 300 emits an electronic device that emits radio waves or radio waves to the surrounding environment of the mounting target. A secondary signal indicating that no infrastructure equipment exists can be generated.
  • the information processing apparatus 300 may further generate a tertiary signal by arithmetic processing based on the secondary signal group as described above.
  • the tertiary signal determines, for example, information on the environment in which the lost item is located, information notifying that the lost item has been stolen, and the amount of insurance paid for the valuables stored in the lost item. It may contain information about the grade.
  • the conditions under which power can be generated in the power generation device 10 vary depending on the material and shape of the power generation device 10. For example, if it is a solar power generation device, the absorption wavelength that can be generated, if it is a vibration power generation device, the resonance frequency that can be generated, if it is a thermoelectric conversion power generation device, the temperature range and heat capacity that can be generated, and if it is a radio power generation device, it can generate power
  • the appropriate absorption wavelength varies depending on the material and shape of the power generation apparatus 10.
  • FIG. 11 is an explanatory diagram illustrating a specific system configuration of the information processing system according to the present embodiment.
  • the information processing system includes, for example, a small tag-shaped monitoring device 100, a receiving device 200 that receives a power generation signal from the monitoring device 100, a receiving device 200, and a communication network. 5 and an information processing apparatus 300 connected via the display 5 and display apparatuses 400A and 400B for presenting information from the monitoring device 100 to the user.
  • the communication method between the monitoring device 100 and the receiving device 200 may be any method.
  • a communication method such as NFC (Near Field Communication) that performs a proximity communication of about several centimeters using a 13.56 MHz frequency, and a communication up to about 50 m using a 2.4 GHz frequency.
  • Examples include communication systems such as Wi-Fi, Bluetooth, and BLE (Bluetooth Low Energy) that perform communication, communication systems that perform communication up to about 1 km using a frequency of 920 MHz, and the like.
  • communication may be performed between a plurality of monitoring devices 100, and the monitoring device 100 may be used as a communication relay.
  • a communication method using a frequency of 920 MHz capable of relatively long distance communication is used for communication between the monitoring devices 100, and communication between the receiving device 200 and the monitoring device 100 is used. It is possible to select an optimal communication method according to the role, such as using a wired or wireless communication method such as NFC, BLE, and USB, which enables relatively short-range communication.
  • the receiving device 200 when the receiving device 200 is a mobile phone, a smartphone, a tablet terminal, a gateway device, a notebook personal computer, or the like, and the receiving device 200 and the monitoring device 100 are connected by USB, the monitoring device 100 communicates. Can be received from the receiving device 200.
  • the receiving device 200 may not include a communication interface for communicating with the monitoring device 100 and may communicate with the monitoring device 100 via the monitoring device 100 connected via USB.
  • the receiving device 200 is connected to the communication network 5 such as the Internet, a satellite communication network, a telephone line network, and a mobile communication network (for example, a 3G line network, a 4G line network, etc.), and receives from the monitoring device 100.
  • the generated power signal is transmitted to the information processing apparatus 300.
  • the information processing apparatus 300 can determine the state of at least one of the mounting target to which the monitoring device 100 is mounted and the environment around the monitoring device 100 by performing the above-described information processing based on the received power generation signal. Is possible.
  • At least one of the mounting target wearing the monitoring device 100 determined by the information processing apparatus 300 or the environment surrounding the monitoring device 100 is, for example, a mobile phone, a smartphone, a tablet terminal, a notebook personal computer, and It can be confirmed with display devices 400A, 400B such as a television device.
  • the information processing system determines at least one state of the mounting target to which the monitoring device 100 is mounted or the environment around the monitoring device 100, and manages each of the mounting targets. Is possible. Further, the information processing apparatus 300 receives the power generation signal from the monitoring device 100 via the reception device 200, so that even when many monitoring devices 100 exist over a wide area, the information processing device 300 receives the power generation signal from each of the monitoring devices 100. Is possible.
  • the information processing system is used for management of deliverables in logistics, management of animals such as livestock and pets, watching of elderly people, dementia patients, children and general adults, and entertainment such as attractions Can be used.
  • the monitoring device 100 is a delivery tag and the receiving device 200 is installed in each logistics base.
  • the monitoring device 100 is a search tag attached to livestock
  • the receiving device 200 is a grazing land, Installed in barns, drinking fountains, milking grounds, feeding grounds, and offices.
  • the monitoring device 100 is a search tag or watching tag attached to a person
  • the receiving device 200 is a park, school, or government office.
  • Public facilities such as police stations, public halls, museums, public school facilities, and hospitals, private facilities such as factories, department stores, malls, attraction facilities, private school facilities, and cram schools, as well as stations, bus stops, intersections, traffic lights, It is installed at the starting point of movement such as ports, airports, mountain huts, and mountain trails.
  • the receiving device 200 may be installed in an arbitrary place such as a home, each region in each facility described above, and a monitoring point.
  • the receiving device 200 includes an entertainment facility, an attraction facility, and each venue, a monitoring point, and an event occurrence point (that is, an event facility) (that is, It is installed at the place where an event occurs by passing through or reaching the place.
  • the receiving device 200 may be installed in a natural space such as a park, a public road, a general facility, a wild mountain, a river, a lake, a marsh, and the sea that is not an entertainment facility or an attraction facility, and these receiving devices 200 are installed.
  • the designated place may be used as a monitoring point or an event occurrence point. In such a case, any space can be used as a place for providing entertainment such as attractions or events.
  • the monitoring device 100 may be registered in the information processing apparatus 300 or the like in association with information related to the mounting target.
  • the identification information of the monitoring device 100 is registered in association with information such as the individual identification number of the livestock that is the wearing target, the herd to which the livestock belongs, body spots, and breeding history. Also good.
  • the identification information of the monitoring device 100 may be registered in association with information such as the name, age, address, face photograph, past illness, and medication history of the person who is the wearing target. .
  • the identification information of the receiving device 200 may be registered in the information processing apparatus 300 or the like.
  • the identification information of the receiving device 200 may be registered in association with the identification information of the communication device included in the receiving device 200, the position of the receiving device 200, and the role of the receiving device 200.
  • the information regarding the registered monitoring device 100 and the receiving device 200 may be protected with high information security from the viewpoint of privacy protection and the like.
  • access authority for information inquiry to the registered information of the monitoring device 100 and the receiving device 200 may be set, and the registration information of the monitoring device 100 and the receiving device 200 may be encrypted.
  • the registration information of the monitoring device 100 and the receiving device 200 may be managed in an integrated manner.
  • FIG. 12 is an explanatory diagram illustrating a specific configuration of the information processing system when the mounting target is livestock
  • FIG. 13 is an explanatory diagram illustrating an example of mounting of the monitoring device 100 when the mounting target is livestock. is there.
  • the monitoring device 100 when the mounting target is livestock, the monitoring device 100 is formed in a coin shape, for example, and is housed in a cover for mounting on livestock. The monitoring device 100 is attached to a part of a livestock such as a cow.
  • the receiving device 200 is formed, for example, as a cylindrical pile having a communication module at the top of the tower. Moreover, the receiving device 200 may be formed in a shape with a sharp lower end so that it can be easily installed on the ground. For example, the receiving device 200 may be installed by being driven into a ground such as a grazing land at an appropriate interval so that the signal from the monitoring device 100 can be received without omission.
  • the power generation signal transmitted from the monitoring device 100 is first received by the receiving device 200, and then transmitted from the receiving device 200 to the information processing device 300. Based on the received power generation signal, the information processing apparatus 300 determines at least one of the state of the livestock to which the monitoring device 100 is attached and the environment around the monitoring device 100. In addition, the information processing apparatus 300 manages information determined regarding at least one of the state of livestock or the surrounding environment, and generates a display for referring to the managed information. Accordingly, the user refers to the display generated by the information processing apparatus 300 using a device including a display unit such as a mobile phone, a smartphone, a tablet terminal, or a laptop personal computer, so that the livestock wearing the monitoring device 100 can be used. Can be managed centrally.
  • a display unit such as a mobile phone, a smartphone, a tablet terminal, or a laptop personal computer
  • FIGS. 14 to 18 are flowcharts for explaining the operation of determining the state of the mounting target using the power generation signal of the monitoring device 100.
  • FIG. 14 to 18 are flowcharts for explaining the operation of determining the state of the mounting target using the power generation signal of the monitoring device 100.
  • the information processing apparatus 300 performs initial settings such as a communication protocol in the monitoring device 100, a monitoring interval of power generation amount, and a determination condition of power generation amount (S200).
  • the information processing apparatus 300 starts monitoring the power generation state of the monitoring device 100 (S201).
  • the information processing apparatus 300 acquires information regarding the power generation amount in the monitoring device 100 at the set monitoring interval (S202).
  • the information processing apparatus 300 determines whether or not the power generation amount at the monitoring device 100 satisfies the determination condition (S203).
  • the determination condition S203
  • the information processing apparatus 300 determines that the state to be mounted is the predetermined state 1 (S204).
  • the information processing apparatus 300 determines that the state to be mounted is the predetermined state 2 (S205). Note that the information processing apparatus 300 repeats the operations of S202 to S205 until the monitoring of the power generation state of the monitoring device 100 is completed.
  • the information processing apparatus 300 may perform the state determination of the mounting target only when the amount of change in the power generation amount of the monitoring device 100 is equal to or greater than the threshold value.
  • the information processing apparatus 300 is configured such that the communication protocol in the monitoring device 100, the power generation amount monitoring interval, the power generation amount change threshold value, the power generation amount determination conditions, and the like are initial values. Setting is performed (S210). Next, the information processing apparatus 300 starts monitoring the power generation state of the monitoring device 100 (S211). Here, the information processing apparatus 300 acquires information regarding the power generation amount in the monitoring device 100 at the set monitoring interval (S212). Subsequently, the information processing apparatus 300 determines whether or not the amount of change in the power generation amount in the monitoring device 100 is equal to or greater than a threshold value (S213). When the change amount of the power generation amount is less than the threshold (S213 / No), the information processing apparatus 300 returns to the monitoring of the power generation state (S212) and does not determine the state of the mounting target.
  • a threshold value S213
  • the information processing apparatus 300 determines whether the power generation amount in the monitoring device 100 satisfies the determination condition (S214). When the power generation amount satisfies the determination condition (S214 / Yes), the information processing apparatus 300 determines that the mounting target state is the predetermined state 1 (S215). On the other hand, when the power generation amount does not satisfy the determination condition (S214 / No), the information processing apparatus 300 determines that the state to be mounted is the predetermined state 2 (S216). Note that the information processing apparatus 300 repeats the operations of S212 to S216 until the monitoring of the power generation state of the monitoring device 100 is completed.
  • the information processing apparatus 300 may perform the state determination of the mounting target using a plurality of determination conditions.
  • the information processing apparatus 300 performs initial settings such as a communication protocol in the monitoring device 100, a power generation amount monitoring interval, a power generation amount change threshold value, and a power generation amount determination condition. Setting is performed (S220).
  • the information processing apparatus 300 starts monitoring the power generation state of the monitoring device 100 (S221).
  • the information processing apparatus 300 acquires information on the power generation amount in the monitoring device 100 at the set monitoring interval (S222).
  • the information processing apparatus 300 determines whether or not the amount of change in the power generation amount in the monitoring device 100 is greater than or equal to a threshold value (S223).
  • the information processing apparatus 300 returns to the monitoring of the power generation state (S222) and does not determine the state of the mounting target.
  • the information processing apparatus 300 determines which of the condition 1 to condition 3 the power generation amount in the monitoring device 100 satisfies ( S224).
  • the power generation amount satisfies Condition 1 (S224 / Condition 1)
  • the information processing apparatus 300 determines that the mounting target state is the predetermined state 1 (S225).
  • the power generation amount satisfies the condition 2 (S224 / condition 2)
  • the information processing apparatus 300 determines that the mounting target state is the predetermined state 2 (S226).
  • the information processing apparatus 300 determines that the state to be mounted is the predetermined state 3 (S227). Note that the information processing apparatus 300 repeats the operations of S222 to S227 until the monitoring of the power generation state of the monitoring device 100 is completed.
  • the information processing apparatus 300 may determine whether or not an abnormality has occurred in the monitoring device 100 using an abnormality determination condition for detecting an abnormality of the monitoring device 100 in addition to determining the state of the mounting target. .
  • the information processing apparatus 300 includes a communication protocol in the monitoring device 100, a monitoring interval of the power generation amount, a threshold value for the change amount of the power generation amount, a determination condition for the power generation amount, and abnormality determination. Conditions and other initial settings are made (S230).
  • the information processing apparatus 300 starts monitoring the power generation state of the monitoring device 100 (S231).
  • the information processing apparatus 300 acquires information on the power generation amount in the monitoring device 100 at the set monitoring interval (S232).
  • the information processing apparatus 300 determines whether or not the amount of change in the power generation amount in the monitoring device 100 is equal to or greater than a threshold value (S233).
  • a threshold value S233
  • the information processing apparatus 300 returns to the power generation state monitoring (S232) and does not determine the state of the mounting target.
  • the information processing apparatus 300 satisfies any determination condition of the condition 1, the condition 2, or the abnormality determination condition for the power generation amount in the monitoring device 100. Is determined (S234).
  • the power generation amount satisfies the condition 1 (S234 / condition 1)
  • the information processing apparatus 300 determines that the state to be mounted is the predetermined state 1 (S235).
  • the power generation amount satisfies the condition 2 (S234 / condition 2)
  • the information processing apparatus 300 determines that the state to be mounted is the predetermined state 2 (S236). If no abnormality has occurred in the monitoring device 100, the information processing apparatus 300 repeats the operations of S232 to S225 until the monitoring of the power generation state of the monitoring device 100 is completed.
  • the information processing apparatus 300 determines that an abnormality has occurred in the monitoring device 100 and generates an abnormality signal (S237). Subsequently, the information processing apparatus 300 transmits an abnormality signal to notify the user that an abnormality has occurred in the monitoring device 100 (S238). In this case, the information processing apparatus 300 ends the monitoring of the power generation state of the monitoring device 100.
  • FIGS. 19 to 21 are sequence diagrams illustrating an operation for determining a change in the environment around the monitoring device 100 based on a power generation signal from the monitoring device 100.
  • a predetermined power generation amount is stored, and a power generation signal can be transmitted (S300).
  • the monitoring device 100 transmits the power generation signal to the reception device 200 (S301), and the reception device 200 that has received the power generation signal has changed the environment around the monitoring device 100 based on the received power generation signal. It is determined whether or not (S302).
  • the receiving device 200 transmits information regarding the change in the surrounding environment to the monitoring device 100 (S303), and the monitoring device 100 that has received the information
  • the information related to the surrounding environment stored in is changed (S304).
  • a predetermined power generation amount is stored, and a power generation signal can be transmitted (S310).
  • the monitoring device 100 transmits the power generation signal to the reception device 200 (S311), and the reception device 200 that has received the power generation signal uses the communication protocol of the received power generation signal outside the communication area of the reception device 200. It is determined whether or not the communication protocol is used (S312).
  • the receiving device 200 transmits a communication protocol change instruction to the monitoring device 100 (S313).
  • the monitoring device 100 changes the communication protocol (S314).
  • the receiving device 200 can control all the communication protocols of the generated power signal to the same communication protocol, it is possible to prepare the preconditions of the generated power signal.
  • the receiving device 200 may specify the monitoring device 100 or the target location where the monitoring device 100 is mounted from the communication protocol.
  • the receiving device 200 may use the communication protocol of the generated power signal as information for specifying the environment around the monitoring device 100.
  • information regarding changes in the environment around the monitoring device 100 may be transmitted to the information processing apparatus 300 instead of the monitoring device 100.
  • a predetermined power generation amount is stored, and a power generation signal can be transmitted (S320).
  • the monitoring device 100 transmits the power generation signal to the receiving device 200 (S321).
  • the receiving device 200 that has received the power generation signal determines whether or not the environment around the monitoring device 100 has changed based on the received power generation signal (S322).
  • the receiving device 200 transmits information related to a change in the environment around the monitoring device 100 and a power generation signal to the information processing apparatus 300 (S323). Note that, when it is determined that the environment around the monitoring device 100 has not changed, the receiving device 200 transmits only the power generation signal to the information processing device 300.
  • the information processing apparatus 300 changes the information related to the surrounding environment in the monitoring device 100 that has transmitted the power generation signal based on the received information related to the change in the surrounding environment of the monitoring device 100 (S324).
  • the information processing system can grasp that the environment around the monitoring device 100 has changed in the information processing device 300 without changing the information stored in the monitoring device 100.
  • information regarding changes in the environment around the monitoring device 100 may be transmitted to both the monitoring device 100 and the information processing apparatus 300.
  • a predetermined power generation amount is stored, and a power generation signal can be transmitted (S330).
  • the monitoring device 100 transmits the power generation signal to the reception device 200 (S331), and the reception device 200 that has received the power generation signal has changed the environment around the monitoring device 100 based on the received power generation signal. It is determined whether or not (S332).
  • the receiving device 200 transmits information related to a change in the surrounding environment to the monitoring device 100 (S333) and relates to a change in the surrounding environment of the monitoring device 100.
  • Information and a power generation signal are transmitted to the information processing apparatus 300 (S335).
  • the monitoring device 100 that has received the information changes the information related to the surrounding environment stored therein (S334), and the information processing apparatus 300 that has received the information transmits the power generation signal.
  • Information on the surrounding environment at is changed (S336).
  • information regarding changes in the environment around the monitoring device 100 can be stored in both the monitoring device 100 and the information processing apparatus 300, so that the consistency of the stored information can be improved.
  • 22 to 24 are flowcharts for explaining the operation of determining the state of the mounting target using the power generation signal of the monitoring device 100 and the information related to the change in the environment around the receiving device 200.
  • FIG. 22 to 24 are flowcharts for explaining the operation of determining the state of the mounting target using the power generation signal of the monitoring device 100 and the information related to the change in the environment around the receiving device 200.
  • the flowchart shown in FIG. 22 is an operation example in which an operation (S403) for determining the ambient environment of the monitoring device is inserted between S212 and S213 in the flowchart shown in FIG.
  • the operation (S403) for determining the surrounding environment of the monitoring device 100 is, for example, the operations of S322 to S324 in FIG.
  • the information processing apparatus 300 performs initial settings such as a communication protocol in the monitoring device 100, a monitoring interval of the power generation amount, a threshold value for the amount of power generation change, and a determination condition for the power generation amount (S400). ).
  • the information processing apparatus 300 starts monitoring the power generation state of the monitoring device 100 (S401).
  • the information processing apparatus 300 acquires information on the amount of power generated by the monitoring device 100 at the set monitoring interval (S402).
  • the information processing apparatus 300 acquires information related to changes in the environment around the monitoring device 100 and determines the state of the environment around the monitoring device 100 (S403).
  • the information processing apparatus 300 determines whether or not the amount of change in the power generation amount in the monitoring device 100 is greater than or equal to a threshold value (S404). When the amount of change in the power generation amount is less than the threshold (S404 / No), the information processing apparatus 300 returns to the power generation state monitoring (S402) and does not determine the state of the mounting target.
  • the information processing apparatus 300 determines whether the power generation amount in the monitoring device 100 satisfies the determination condition (S405). When the power generation amount satisfies the determination condition (S405 / Yes), the information processing apparatus 300 further determines that the state of the mounting target is the predetermined state 1 based on the state of the environment around the monitoring device 100 (S406). ). On the other hand, when the power generation amount does not satisfy the determination condition (S405 / No), the information processing apparatus 300 further determines that the state of the mounting target is the predetermined state 2 based on the state of the environment around the monitoring device 100. (S406). The information processing apparatus 300 repeats the operations of S402 to S407 until the monitoring of the power generation state of the monitoring device 100 is completed.
  • the information processing apparatus 300 may determine the state of the attachment target only when the power generation amount of the monitoring device 100 is equal to or greater than the threshold value.
  • the information processing apparatus 300 performs initial settings such as a communication protocol in the monitoring device 100, a power generation amount monitoring interval, a power generation amount threshold value, and a power generation amount determination condition. (S410).
  • the information processing apparatus 300 starts monitoring the power generation state of the monitoring device 100 (S411).
  • the information processing apparatus 300 acquires information on the power generation amount in the monitoring device 100 at the set monitoring interval (S412).
  • the information processing apparatus 300 acquires information related to changes in the environment around the monitoring device 100 and determines the state of the environment around the monitoring device 100 (S413).
  • the information processing apparatus 300 determines whether or not the power generation amount at the monitoring device 100 is equal to or greater than a threshold value (S414).
  • a threshold value S414 / No
  • the information processing apparatus 300 returns to the power generation state monitoring (S412) and does not determine the state of the mounting target.
  • the information processing apparatus 300 determines whether or not the power generation amount in the monitoring device 100 satisfies the determination condition (S415). When the power generation amount satisfies the determination condition (S415 / Yes), the information processing apparatus 300 further determines that the mounting target state is the predetermined state 1 based on, for example, the state of the environment around the monitoring device 100. (S416). On the other hand, when the power generation amount does not satisfy the determination condition (S415 / No), the information processing apparatus 300 further determines that the state of the mounting target is the predetermined state 2 based on the state of the environment around the monitoring device 100. (S416). Note that the information processing apparatus 300 repeats the operations of S412 to S417 until the monitoring of the power generation state of the monitoring device 100 is completed.
  • the operation of determining the ambient environment of the monitoring device 100 is performed before determining whether the power generation amount at the monitoring device 100 satisfies the determination condition, the operation of determining the ambient environment of the monitoring device 100 is performed.
  • the number of times can be increased. Therefore, the information processing apparatus 300 can more accurately determine the surrounding environment of the monitoring device 100.
  • the information processing apparatus 300 estimates that the surrounding environment of the monitoring device 100 has changed when the power generation amount at the monitoring device 100 satisfies the determination condition, and performs an operation of determining the surrounding environment of the monitoring device 100. Good.
  • the operation for determining the surrounding environment of the monitoring device 100 (S425) is, for example, the operations of S322 to S324 in FIG.
  • the information processing apparatus 300 is configured to display initial values such as a communication protocol in the monitoring device 100, a power generation amount monitoring interval, a power generation amount change threshold value, and a power generation amount determination condition. Setting is performed (S420).
  • the information processing apparatus 300 starts monitoring the power generation state of the monitoring device 100 (S421).
  • the information processing apparatus 300 acquires information regarding the power generation amount in the monitoring device 100 at the set monitoring interval (S422).
  • the information processing apparatus 300 determines whether or not the amount of change in the power generation amount in the monitoring device 100 is greater than or equal to a threshold value (S422).
  • a threshold value S422
  • the information processing apparatus 300 returns to the power generation state monitoring (S422) and does not perform the state determination of the attachment target.
  • the information processing apparatus 300 determines whether the power generation amount in the monitoring device 100 satisfies a predetermined condition (S424).
  • the information processing apparatus 300 estimates that the environment around the monitoring device 100 has changed, and determines the state of the environment around the monitoring device 100 (S425). .
  • the information processing apparatus 300 estimates that the environment around the monitoring device 100 has not changed, and is mounted based on the power generation amount in the monitoring device 100.
  • the state of the target is determined (S426). Note that the information processing device 300 repeats the operations of S422 to S426 until the monitoring of the power generation state of the monitoring device 100 is completed.
  • the information processing apparatus 300 may determine the state of the attachment target only when the power generation amount of the monitoring device 100 is equal to or greater than the threshold value.
  • the information processing apparatus 300 performs initial settings such as a communication protocol in the monitoring device 100, a power generation amount monitoring interval, a power generation amount threshold value, and a power generation amount determination condition. (S430). Next, the information processing apparatus 300 starts monitoring the power generation state of the monitoring device 100 (S431). Here, the information processing apparatus 300 acquires information on the power generation amount in the monitoring device 100 at the set monitoring interval (S432).
  • the information processing apparatus 300 determines whether or not the power generation amount in the monitoring device 100 is equal to or greater than a threshold value (S433). When the power generation amount is less than the threshold (S433 / No), the information processing apparatus 300 returns to the power generation state monitoring (S432) and does not determine the state of the mounting target.
  • the information processing apparatus 300 determines whether or not the power generation amount in the monitoring device 100 satisfies a predetermined condition (S434).
  • the information processing apparatus 300 estimates that the environment around the monitoring device 100 has changed, and determines the state of the environment around the monitoring device 100 (S435). .
  • the information processing apparatus 300 estimates that the environment around the monitoring device 100 has not changed, and is mounted based on the power generation amount in the monitoring device 100. The state of the object is determined (S436). The information processing apparatus 300 repeats the operations of S432 to S436 until the monitoring of the power generation state of the monitoring device 100 is completed.
  • the information processing apparatus 300 can reduce the amount of information processing and power consumption.
  • FIG. 26 is a block diagram illustrating a hardware configuration example of the information processing apparatus 300 according to the present embodiment. Note that information processing by the information processing apparatus 300 according to the present embodiment is realized by cooperation between software and hardware.
  • the information processing apparatus 300 includes a CPU 352, a ROM 354, a RAM 356, a bridge 362, internal buses 358 and 360, an interface 364, an input device 366, an output device 368, and a storage device 370.
  • the CPU 352 functions as an arithmetic processing device and a control device, and controls the overall operation of the information processing device 300 according to various programs stored in the ROM 354 and the like.
  • the ROM 354 stores programs and calculation parameters used by the CPU 352, and the RAM 356 temporarily stores programs used in the execution of the CPU 352, parameters that change as appropriate in the execution, and the like.
  • the CPU 352 may execute functions such as the determination unit 304.
  • the CPU 352, ROM 354, and RAM 356 are connected to each other by a bridge 362, internal buses 358 and 360, and the like.
  • the CPU 352, ROM 354, and RAM 356 are also connected to an input device 366, an output device 368, a storage device 370, a drive 372, a connection port 374, and a communication device 376 via an interface 364.
  • the input device 366 includes an input device for inputting various information such as a touch panel, a keyboard, a mouse, a button, a microphone, a switch, and a lever.
  • the input device 366 also includes an input control circuit for generating an input signal based on the input information and outputting it to the CPU 352.
  • the output device 368 includes, for example, a display device such as a CRT (Cathode Ray Tube) display device, a liquid crystal display device, an organic EL (Organic ElectroLuminescence) display device, and an audio output device such as a speaker and headphones.
  • a display device such as a CRT (Cathode Ray Tube) display device, a liquid crystal display device, an organic EL (Organic ElectroLuminescence) display device, and an audio output device such as a speaker and headphones.
  • the storage device 370 is a data storage device configured as an example of a storage unit of the information processing device 300.
  • the storage device 370 may include a storage medium, a storage device that stores data in the storage medium, a reading device that reads data from the storage medium, and a deletion device that deletes stored data.
  • the drive 372 is a storage medium reader / writer, and is built in or externally attached to the information processing apparatus 300.
  • the drive 372 reads information stored in a removable storage medium such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 356.
  • the drive 372 can also write information to a removable storage medium.
  • connection port 374 is a connection interface including connection ports for connecting external connection devices such as a USB port, an Ethernet port, an IEEE 80671 standard port, and an optical audio terminal, for example.
  • connection port 374 may execute the function of the output unit 306.
  • the communication device 376 is a communication interface configured by a communication device for connecting to the communication network 5, for example. Further, the communication device 376 may be a cable communication device that performs wired cable communication, or may be a wired or wireless LAN compatible communication device. For example, the communication device 376 may execute the function of the power generation signal acquisition unit 302.
  • the monitoring device 100 includes the power generation device whose power generation amount varies depending on the state of the mounting target or the surrounding environment.
  • the information processing apparatus and the information processing system according to the present embodiment can display at least one of the state of the mounting target or the surrounding environment in which the monitoring device 100 is mounted without using various sensors that consume power. It is possible to judge.
  • the information processing apparatus and the information processing system according to the present embodiment can monitor the state of the wearing target and the surrounding environment, etc. without considering time constraints and depletion of the stored power. It is.
  • the wearing target is a person has been described as a basis, but the present technology is not limited to such an example.
  • the wearing target may be an animal such as a pet and a domestic animal.
  • a power generation signal acquisition unit that acquires a power generation signal based on power generation by at least one power generation device;
  • a determination unit that determines, based on the power generation signal, a surrounding environment of the power generation device or a state of at least one of a mounting target on which the power generation device is mounted;
  • An information processing apparatus comprising: (2) The information processing apparatus according to (1), wherein the power generation signal includes information regarding whether or not the power generated by the power generation apparatus exceeds a threshold value.
  • the power generation signal is generated when the power generated by the power generation device exceeds a threshold,
  • Processing equipment. (4) The information processing apparatus according to any one of (1) to (3), further including an output unit configured to output information related to the attachment target based on the determination of the determination unit.
  • a monitoring device comprising at least one power generation device; A power generation signal acquisition unit that acquires a power generation signal based on power generation by the power generation device; based on the power generation signal, determines a surrounding environment of the monitoring device or a state of a mounting target on which the monitoring device is mounted
  • An information processing apparatus comprising a determination unit; Information processing system including (6) The information processing system according to (5), wherein the monitoring device further includes a storage device that individually stores a power generation signal based on power generation. (7) The information processing system according to (6), wherein the storage device shares a storage area with each of the power generation devices by time division or interrupt processing.
  • the monitoring device includes a plurality of power generation devices, The information processing system according to (5), wherein the monitoring device further includes a storage device that stores a power generation signal based on power generation for each of the plurality of power generation devices. (9) The information processing system according to (8), wherein the storage device shares a storage area with the plurality of power generation devices by time division or interrupt processing. (10) The information processing system according to any one of (5) to (9), wherein the power generation device supplies generated power to at least the monitoring device.
  • the information processing system is a switch circuit that is driven based on the power generated by the power generation device, a storage device that stores a power generation signal generated by the switch circuit, and outputs the power generation signal stored in the storage device
  • the information processing system according to any one of (5) to (10), further including an external output device and an arithmetic device that performs signal processing on the power generation signal.
  • the power generation device includes a vibration power generation device, a motion power generation device, a solar power generation device, a thermoelectric conversion power generation device, an enzyme power generation device, a radio wave power generation device, and a nearby electromagnetic field power generation device, or power generated by magnetic field resonance or electromagnetic induction.
  • the information processing system according to any one of (5) to (11), wherein the information processing system is any one of transmission devices or a combination of two or more.
  • the monitoring device further includes a power storage device that stores electric power generated by the power generation device.
  • the monitoring device further includes a management unit that manages power stored in the power storage device, The information processing system according to (13), wherein the management unit determines whether or not electric power that exceeds a threshold for generating the power generation signal is stored in the power storage device.
  • the monitoring device further includes a control unit that controls an input to the monitoring device from the outside and an output from the monitoring device to the outside. Processing system.
  • a power generation signal acquisition unit for acquiring a power generation signal based on power generation by at least one power generation device;
  • a determination unit that determines, based on the power generation signal, a surrounding environment of the power generation device or a state of at least one of a mounting target on which the power generation device is mounted;
  • a program that functions as

Abstract

時間的な制約を受けずに、装着対象または周囲の環境の少なくともいずれかの状態を検出する。 少なくとも1つ以上の発電装置による発電に基づく発電信号を取得する発電信号取得部と、前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する判断部と、を備える、情報処理装置。

Description

情報処理装置、情報処理システム、情報処理方法、およびプログラム
 本開示は、情報処理装置、情報処理システム、情報処理方法、およびプログラムに関する。
 例えば、各種センサを用いて、装着対象の状態および周囲の環境に関する情報を検出するモニタリング機器が知られている。
 このようなモニタリング機器としては、例えば、下記の非特許文献1に開示されるような電波による位置センサを備えたモニタリング機器などを例示することができる。
http://www.authjapan.com/#!about/clse
 しかし、各種センサを用いたモニタリング機器では、各種センサの駆動および検出した情報の信号変換等に電力を消費する。そのため、モニタリング機器への電力供給が困難な場所または状況下では、該モニタリング機器を連続して長時間駆動させることは困難であった。
 そこで、本開示では、時間的な制約を受けずに、装着対象または周囲の環境の少なくともいずれかの状態を検出することが可能な、新規かつ改良された情報処理装置、情報処理システム、情報処理方法、およびプログラムを提案する。
 本開示によれば、少なくとも1つ以上の発電装置による発電に基づく発電信号を取得する発電信号取得部と、前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する判断部と、を備える、情報処理装置が提供される。
 本開示によれば、少なくとも1つ以上の発電装置を備えるモニタリング機器と、前記発電装置による発電に基づく発電信号を取得する発電信号取得部、前記発電信号に基づいて、前記モニタリング機器の周囲の環境、または前記モニタリング機器を装着した装着対象の少なくともいずれかの状態を判断する判断部、を備える情報処理装置と、を含む情報処理システムが提供される。
 また、本開示によれば、少なくとも1つ以上の発電装置による発電に基づく発電信号を取得することと、演算処理装置によって、前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断することと、を備える、情報処理方法が提供される。
 さらに、本開示によれば、コンピュータを少なくとも1つ以上の発電装置による発電に基づく発電信号を取得する発電信号取得部と、前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する判断部と、として機能させる、プログラムが提供される。
 本開示によれば、電力を消費する各種センサを用いずに、発電装置による発電に基づいて、発電装置の周囲の環境、または発電装置を装着した装着対象の少なくともいずれかの状態を判断することが可能である。
 以上説明したように本開示によれば、時間的な制約を受けずに、装着対象または周囲の環境の少なくともいずれかの状態に関する情報を検出することが可能である。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
モニタリング機器の形態の一例を示した説明図である。 モニタリング機器が備える発電装置の発電方法の一例を示す説明図である。 モニタリング機器を含む情報処理システムの一例を示す説明図である。 モニタリング機器を含む情報処理システムの一例を示す説明図である。 モニタリング機器の構成の一例を示すブロック図である。 モニタリング機器の他の構成例を示すブロック図である。 モニタリング機器の他の構成例を示すブロック図である。 モニタリング機器を含む情報処理システムの機能構成を説明するブロック図である。 装着対象、または周囲の環境の少なくともいずれかの状態を判断するための判断テーブルの一例を示した説明図である。 本開示の一実施形態に係る情報処理システムの動作例を説明するフローチャート図である。 本開示の一実施形態に係る情報処理システムの具体的なシステム構成を説明する説明図である。 装着対象が家畜である場合の情報処理システムの具体的な構成を示す説明図である。 装着対象が家畜である場合のモニタリング機器の装着例を示す説明図である。 モニタリング機器の発電信号を用いて、装着対象の状態を判定する動作を説明するフローチャート図である。 モニタリング機器の発電信号を用いて、装着対象の状態を判定する動作を説明するフローチャート図である。 モニタリング機器の発電信号を用いて、装着対象の状態を判定する動作を説明するフローチャート図である。 モニタリング機器の発電信号を用いて、装着対象の状態を判定する動作を説明するフローチャート図である。 モニタリング機器の発電信号を用いて、装着対象の状態を判定する動作を説明するフローチャート図である。 モニタリング機器からの発電信号に基づいて、モニタリング機器の周囲の環境の変化を判断する動作を説明するシーケンス図である。 モニタリング機器からの発電信号に基づいて、モニタリング機器の周囲の環境の変化を判断する動作を説明するシーケンス図である。 モニタリング機器からの発電信号に基づいて、モニタリング機器の周囲の環境の変化を判断する動作を説明するシーケンス図である。 モニタリング機器の発電信号と、受信機器の周囲の環境の変化に関する情報とを用いて、装着対象または装着対象の周囲の状態を判定する動作を説明するフローチャート図である。 モニタリング機器の発電信号と、受信機器の周囲の環境の変化に関する情報とを用いて、装着対象または装着対象の周囲の状態を判定する動作を説明するフローチャート図である。 モニタリング機器の発電信号と、受信機器の周囲の環境の変化に関する情報とを用いて、装着対象または装着対象の周囲の状態を判定する動作を説明するフローチャート図である。 モニタリング機器の発電信号と、受信機器の周囲の環境の変化に関する情報とを用いて、装着対象または装着対象の周囲の状態を判定する動作を説明するフローチャート図である。 本開示の一実施形態に係る情報処理装置のハードウェア構成例を示したブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.背景の詳述
 2.モニタリング機器の基本構成例
  2-1.システムの全体概要
  2-2.モニタリング機器の構成例
   2-2-1.個別の演算装置を用いる例
   2-2-2.共通の演算装置を用いる例
   2-2-3.共通の蓄電装置を用いる例
  2-3.システムの機能構成例
  2-4.システムの動作例
  2-5.システムの使用例
   2-5-1.第1の使用例
   2-5-2.第2の使用例
  2-6.情報処理システムの具体例
 3.情報処理装置のハードウェア構成例
 4.まとめ
 <<1.背景の詳述>>
 例えば、生体である装着対象に関する情報を検出するモニタリング機器として、体温、脈拍(すなわち、心拍)、心電、筋電、発汗、または活動量などを検出する各種センサを備え、これらの情報を検出するものが知られている。また、生体以外の装着対象に関する情報を検出するモニタリング機器として、内部温度、表面温度、振動周波数、または振動加速度などを検出する各種センサを備え、これらの情報を検出するものが知られている。
 さらに、例えば、装着対象の周囲の環境に関する情報を検出するモニタリング機器として、気温、湿度、照度、もしくは装着対象の移動方向、移動速度、または位置などを検出する各種センサを備え、これらの情報を検出するものが知られている。
 ただし、上述したモニタリング機器が備える各種センサは、いずれもセンサ自体の駆動、および検出した情報のAD(Analog-Digital)変換などの信号処理に電力を消費する。そのため、各種センサへの電力供給が困難な場所または状況下では、これらの各種センサを駆動させ、モニタリング機器にて装着対象および周囲の環境の状態を検出し続けることは、時間的な制約があるため、困難であった。
 また、モニタリング機器が備える各種センサを長時間駆動させるために、モニタリング機器が備える電池等の蓄電装置の容量を大きくした場合、モニタリング機器の大きさをより大きくする必要がある。すなわち、モニタリング機器の駆動時間は、モニタリング機器に備えられる各種センサの消費電力と、モニタリング機器の大きさとにより決まることになる。
 一方、モニタリング機器の大きさは、モニタリング機器を装着する装着対象の大きさ、およびモニタリング機器を使用する状況によっても制約される。特に、装着対象が違和感なく、モニタリング機器を装着し続けるには、モニタリング機器は、小型である必要がある。
 したがって、装着対象に常時、装着されるモニタリング機器ほど、駆動時間が短くなる傾向があった。また、モニタリング機器が備える各種センサの数が多いほど、消費電力が大きくなるため、駆動時間が短くなる傾向があった。さらに、モニタリング機器の駆動時間が短くなるほど、不意の電力の枯渇(すなわち、電池切れ)によって、モニタリング機器が使用できなくなるという機会損失の頻度が上昇してしまう傾向があった。
 上述した背景は、例えば、不意の災害、事故、事件、または遭難などにモニタリング機器の装着対象が遭遇した場合、モニタリング機器によって装着対象の状態を他者に通知することを困難にしていた。例えば、GNSS(Global Navigation Satellite System)等を用いた位置センサによって、災害等の際に他者に装着対象の位置を通知するモニタリング機器は、位置センサが電力を消費するため、連続駆動時間が有限である。また、このようなモニタリング機器では、災害等に遭遇した装着対象が危険な状態であるのか否か等の装着対象の状態を他者に通知することは困難であった。
 さらに、このようなモニタリング機器は、不意の災害、事故、事件、または遭難などに遭った際に電力の枯渇によってモニタリング機器が使用できないという機会損失を招かないために、装着対象または電力を充電する者に対して、モニタリング機器の蓄電量に注意を払わせることになる。そのため、このようなモニタリング機器は、所持および使用の際に、装着対象または電力を充電する者に対して、心理的負担を強いることになってしまう。
 本開示の一実施形態に係る情報処理装置は、各種センサを用いず、装着対象の状態または周囲の環境によって発電量が変化する発電装置を用いて、装着対象の状態または周囲の環境の少なくともいずれかの状態を判断する。具体的には、本実施形態に係る情報処理装置は、モニタリング機器が備える発電装置によって発電される電力、出力電圧、もしくは発電量、またはこれらの値の変化量に基づいて、装着対象または周囲の環境の少なくともいずれかの状態を判断する。
 これにより、本実施形態に係る情報処理装置は、電力の枯渇によるモニタリング機器の使用の機会損失への不安、およびモニタリング機器の充電の負担を装着対象等に与えることなく、かつ時間的な制約なく、装着対象および周囲の環境等の状態をモニタリングすることを可能とする。
 具体的には、本実施形態に係る情報処理装置によれば、装着対象の周囲の環境の状態を判断することで、装着対象の位置を推定することができる。これにより、本実施形態に係る情報処理装置は、電池等を電源として各種センサを駆動させるモニタリング機器では実現が困難であった災害、事故、事件、もしくは遭難に遭った被災者、または遺失物などの装着対象の探索を長期に亘って行うことが可能である。また、本実施形態に係る情報処理装置によれば、装着対象の位置を推定するだけでなく、装着対象の状態を把握することも可能である。
 <<2.モニタリング機器の基本構成例>>
 次に、図1~図4を参照して、本開示の各実施形態に係るモニタリング機器を含む情報処理システムに共通する基本構成について説明する。図1は、モニタリング機器100の形態の一例を示した説明図であり、図2は、モニタリング機器100が備える発電装置の発電方法の一例を示す説明図である。また、図3および図4は、モニタリング機器100を含む情報処理システムの一例を示す説明図である。以下では、まず、モニタリング機器を含む情報処理システムの構成例を説明した後に、モニタリング機器の構成例を説明する。
 <2-1.システムの全体概要>
 本実施形態に係るモニタリング機器100は、少なくとも1つの発電装置を備える。また、モニタリング機器100は、ユーザ等に装着され、または携帯され得る装置であって、種々の形態とすることができる。例えば、図1に示すように、モニタリング機器100は、キャップ等に取り付けられるバッヂ型のモニタリング機器100としてもよく、携帯端末装置等に取り付けられるストラップ型のモニタリング機器100としてもよく、ユーザの腕等に装着されるブレスレット型のモニタリング機器100としてもよい。
 例えば、図2に示すように、モニタリング機器100に備えられる発電装置は、太陽光を利用して発電する装置であってもよく、ユーザの体温を利用して発電する装置であってもよく、または、ユーザの動作に伴う振動を利用して発電する装置であってもよい。
 モニタリング機器100は、例えば、発電装置と併せて通信装置を備えることにより、他のモニタリング機器100との間での通信が可能になっていてもよい。例えば、図3に示すように、ユーザAが装着したモニタリング機器100と、ユーザBが装着したモニタリング機器100とをビーコン装置として使用してもよい。モニタリング機器100がビーコン装置として使用される場合、2つのモニタリング機器100が、例えば、0km~2kmの距離の範囲内にあれば、互いに情報を送受信することができる。
 また、図4に示すように、モニタリング機器100がインターネット等の通信網と通信可能な通信装置を備える場合、または、モニタリング機器100がインターネット等の通信網と通信可能なスマートフォンまたは専用端末装置との通信装置を備える場合、2つのモニタリング機器100は、該通信網を介して、互いに情報を送受信することができる。例えば、ユーザAが装着したモニタリング機器100から送信されたユーザAの現在地の情報を、ユーザBが携帯するモニタリング機器100が受信することによって、ユーザBは、ユーザAの位置に関する情報を取得することができる。
 なお、モニタリング機器100が検出した情報は、インターネット等の通信網を介して、情報処理装置、またはデータベース等に集約されてもよい。また、専用端末装置は、タブレット端末、PDA(Personal Digigtal Assistance)、スマートフォンを含む携帯電話、およびパーソナルコンピュータなどの表示画面を有する装置であってもよく、表示画面を有しないゲートウェイ装置、または所定の地点に設置されたアンテナ装置などであってもよい。
 この他、本実施形態に係るモニタリング機器100は、様々な様態にて使用されてもよい。
 <2-2.モニタリング機器の構成例>
 次に、図5~図7を参照して、本実施形態に係るモニタリング機器100の構成例について説明する。なお、本実施形態に係るモニタリング機器100は、少なくとも1つ以上の発電装置を備える。
 (2-2-1.個別の演算装置を用いる例)
 図5は、モニタリング機器100の構成の一例を示すブロック図である。図5に示すように、モニタリング機器100は、例えば、3つの発電装置10A、10B、10Cと、3つの蓄電装置20A、20B、20Cと、3つの信号生成装置22A、22B、22Cと、3つの演算装置30A、30B、30Cと、3つの記憶装置32A、32B、32Cと、1つの通信装置40と、を備える。
 (発電装置)
 発電装置10A、10B、10Cは、例えば、振動・運動発電装置、太陽光発電装置、熱電変換発電装置、酵素発電装置、電波発電装置、近傍電磁界発電装置、または磁界共鳴、電磁誘導、もしくは電界結合による電力伝送装置のいずれか1つまたは複数の発電装置が選択されて用いられる。また、上記の例以外の種類の発電装置が発電装置10A、10B、10Cとして用いられてもよい。発電装置10A、10B、10Cは、すべて同一の種類の発電装置であってもよいが、種類が異なる発電装置であれば、様々な装着対象および周囲の環境の状態に関する情報を取得することができる。
 振動・運動発電装置は、例えば、静電型、電磁型、逆磁歪型または圧電型の発電素子を用いて構成され、振動エネルギまたは振動エネルギを利用して発電を行う。太陽光発電装置は、例えば、太陽電池を用いて構成され、太陽光を利用して発電を行う。熱電変換発電装置は、例えば、ゼーベック効果、またはトムソン効果を用いた発電素子、熱電子発電素子、または熱磁気発電素子を用いて構成され、体温および外気温のうち少なくとも1つを利用して発電を行う。酵素発電装置は、例えば、有機物等に含まれる炭水化物(ぶどう糖など)を酵素で分解することで発電を行う。
 電波発電装置は、例えば、Wi-Fi(登録商標)、または地上デジタル波等の電波を利用して発電を行う。近傍電磁界発電装置は、例えば、近傍界の電磁波を利用して発電を行う。磁界共鳴電力伝送装置および電磁誘導電力伝送装置は、2つのコイルを共振器として利用し、給電側のコイルに電流を流すことによって受電側のコイルに電流が流れる装置である。電界結合電力伝送装置は、対面する2つの電極板の一方に高周波の電流が流れることによって他方の電極板に電流が流れる装置である。
 (蓄電装置)
 蓄電装置20A、20B、20Cは、例えば、キャパシタ、コンデンサ、もしくは2次電池、またはこれらの中間的性質の蓄電素子のいずれか1つまたは複数の蓄電装置が選択されて用いられる。蓄電装置20A(20B、20C)は、それぞれ発電装置10A(10B、10C)に接続され、発電装置10A(10B、10C)により発電された電力を蓄電可能になっている。また、上記の例以外の種類の蓄電装置が蓄電装置20A、20B、20Cとして用いられてもよい。蓄電装置20A、20B、20Cは、すべて同一の種類の蓄電装置であってもよく、異なる種類の蓄電装置であってもよい。
 蓄電装置20A、20B、20Cに蓄えられた電力が、装着対象の状態、または周囲の環境の少なくともいずれかに関する情報を含む信号の生成にのみ用いられる場合、蓄電装置20A、20B、20Cの蓄電容量は、比較的小さくともよい。また、蓄電装置20A、20B、20Cに蓄えられた電力は、モニタリング機器100全体の制御等にも用いられてもよい。
 (信号生成装置)
 信号生成装置22A、22B、22Cは、それぞれ発電装置10A、10B、10Cにより発電された電力に基づいて状態遷移し、状態遷移したことを記憶する。信号生成装置22A、22B、22Cとしては、例えば、最小構成としてスイッチング素子を例示することができる。スイッチング素子は、例えば、発電装置10A、10B、10Cからの電力供給により、ONおよびOFFの2状態の状態遷移を行うことができる。
 スイッチング素子は、エネルギ供給状態を維持しないと遷移状態を記憶し続けられないものであってもよく、エネルギ供給状態を維持しなくとも遷移状態を記憶し続けられるものであってもよい。ここで、スイッチング素子がエネルギ供給状態を維持しなくとも遷移状態を記憶し続けられるものである場合、スイッチング素子単体が信号生成装置22A、22B、22Cに相当する。
 一方、スイッチング素子がエネルギ供給状態を維持しないと遷移状態を記憶し続けられないものである場合、エネルギ供給状態を維持しなくとも遷移状態を記憶し続けられる他の素子をスイッチング素子に接続すればよい。具体的には、スイッチング素子の状態遷移によって状態が遷移し、かつエネルギ供給がなくとも状態遷移を維持可能な素子にスイッチング素子の状態遷移を記憶させることで、スイッチング素子のONおよびOFFの2状態の状態遷移を記憶することができる。このような場合、スイッチング素子、およびスイッチング素子に接続する素子の一連の素子のまとまりが信号生成装置22A、22B、22Cに相当する。
 また、信号生成装置22A、22B、22Cは、上記のスイッチ動作を基本としたより複雑なものであってもよい。例えば、信号生成装置22A、22B、22Cは、発電装置10A、10B、10Cにて発電された電力に基づく状態遷移として命令信号を生成し、ある目的を達成する一連の動作を単位とする1動作単位または複数動作単位の命令群を実行してもよい。このような場合、上記の命令群の実行の処理において、処理に伴ってデータ等の記憶処理が行われるが、当該記憶処理にて記憶される事項を、状態遷移を表す記憶として利用してもよい。また、信号生成装置22A、22B、22Cは、別途、動作状態を記憶するカウンタ等を設けてもよい。
 なお、上述した事項が記憶される記憶装置は、記憶装置32A、32B、32Cを用いてもよく、通信装置40等が記憶装置を備えている場合、通信装置40が備える記憶装置を用いてもよい。また、通信装置40が備える記憶装置を用いる場合、記憶装置は、記憶領域を時分割または割り込み処理によって共有することで、発電装置10A、10B、10Cにて発電された電力に基づく信号の各々を記憶することができる。
 具体的には、信号生成装置22A(22B、22C)は、発電装置10A(10B、10C)の固有の識別情報、およびリセットIC(Integrated Circuit)などのスイッチ回路動作状態に関する情報を含む信号を生成する。生成された信号は、記憶装置32A(32B、32C)または通信装置40が備える記憶装置に記憶されてもよい。また、信号生成装置22A(22B、22C)は、発電装置10A(10B、10C)のインピーダンスおよび出力特性などの発電装置10A(10B、10C)の特性に関する情報をさらに含む信号を生成してもよい。
 さらに、信号生成装置22A(22B、22C)は、通信装置40が通信する対象との認証に必要な識別信号に類する信号を生成する信号として利用してもよい。すなわち、通信装置40を駆動させるために必要な電力が蓄電装置20A(20B、20C)に蓄えられた場合、リセットIC等によって蓄電装置20Aから通信装置40への電力供給ラインをONにすることで、通信装置40へ電力を供給する。このとき、信号生成装置22A(22B、22C)は、通信装置40が通信する対象と認証および接続動作をするために必要な情報を信号として生成してもよい。
 このような場合、通信装置40から送信される情報は、発電装置10A(10B、10C)の系統を識別する識別情報と、発電装置10A(10B、10C)での信号発生の有無または信号発生回数とを基本的に含むものとなる。なお、通信装置40から送信される情報には、必要に応じて、時間に関する情報が追加されてもよい。
 通信装置40から送信される情報は、受信した情報処理装置が備える演算装置によってモニタリング機器100を装着した装着対象の状態、またはモニタリング機器100の周囲の環境の少なくともいずれかに関する情報へと情報処理される。ただし、通信装置40から送信される情報は、モニタリング機器100が備える演算装置30A、30B、30Cによって、モニタリング機器100を装着した装着対象の状態、またはモニタリング機器100の周囲の環境の少なくともいずれかに関する情報へと情報処理されたものであってもよい。
 (演算装置)
 演算装置30A、30B、30Cは、モニタリング機器100の使用用途にもよるが、例えば、簡易な構成の比較器、またはマイクロコンピュータ等であってもよく、特に限定されない。演算装置30A、30B、30Cは、すべて同一の種類の演算装置であってもよく、異なる種類の演算装置であってもよい。
 (記憶装置)
 記憶装置32A、32B、32Cは、揮発性の記憶装置であってもよく、不揮発性の記憶装置であってもよい。例えば、記憶装置32A、32B、32Cは、情報を一時記憶可能なRAM(Random Access Memory)等の記憶素子であってもよい。記憶装置32A、32B、32Cが不揮発性の記憶装置である場合、モニタリング機器100は、蓄電装置20A、20B、20Cに蓄電された電力が尽きる前に、記憶装置32A、32B、32Cに情報を退避させ、電力が尽きる前の情報および状態を記憶させておくことができる。このような場合、蓄電装置20A、20B、20Cに電力が蓄電されていなくとも通信可能なNFCおよびRFID等の通信技術を利用することで、他のモニタリング機器100および読取装置は、電力が尽きる前のモニタリング機器100の情報および状態を読み取ることができる。図5に示したように、記憶装置32A(32B、32C)は、演算装置30A(30B、30C)に実装され、記憶装置32A(32B、32C)および演算装置30A(30B、30C)により1つの単位ブロックが構成されていてもよい。また、記憶装置32A、32B、32Cは、独立した単位ブロックとなっていてもよい。
 演算装置30A、30B、30Cがマイクロコンピュータである場合、記憶装置32A、32B、32Cは、マイクロコンピュータにより実行されるプログラムを記憶するROM(Read Only Memory)等の記憶素子を含んでいてもよい。なお、記憶装置32A、32B、32Cは、すべて同一の種類であってもよく、異なる種類であってもよい。
 (通信装置)
 通信装置40は、モニタリング機器100の内部に記憶された情報を外部に出力する装置であり、無線または有線の物理的信号線であってもよい。例えば、通信装置40は、赤外線、電磁波または電界を利用した無線方式の装置であってもよい。具体的には、通信装置40は、Wi-Fi(登録商標)、ZigBee(登録商標)、Bluetooth(登録商標)、Bluetooth Low Energy(登録商標)、ANT(登録商標)、ANT+(登録商標)、EnOcean Alliance(登録商標)等に代表される数百MHz~数GHzの帯域の波長信号を送受信可能な装置であってもよい。また、通信装置40は、NFC(Near Feild Communication)に代表される近接通信可能な装置であってもよい。また、通信装置40は、図示しない記憶装置を備えていてもよい。
 なお、図5に破線で示したように、上記の演算装置30A、30B、30Cが、通信装置40に備えられた演算装置を用いて実現されていてもよい。また、モニタリング機器100が周囲に設置される他の装置を介して、他のモニタリング機器100またはインターネット等に接続される場合、通信装置40は、有線方式の装置であってもよい。
 (他の装置)
 モニタリング機器100は、図5にて示した各装置以外にも、必要に応じて種々の装置を備えていてもよい。例えば、発電装置10A、10B、10Cの出力を整流する整流回路、発電装置10A、10B、10Cの出力電圧を昇圧または降圧するレギュレータ、蓄電装置20A、20B、20Cの充放電状態の制御もしくは以上監視をする充電回路、信号生成を行う信号生成装置22A、22B、22Cへの電力供給をより複雑にスイッチングするための演算装置および記憶装置、アクチュエータ、ならびにLED(Light Emitting Diode)ランプおよびメモリ型ディスプレイなどの表示装置などが、さらにモニタリング機器100に備えられていてもよい。
 なお、信号生成装置22A、22B、22Cによる信号生成、生成された信号の解析および加工、通信装置40による通信、アクチュエータの駆動、および表示装置による表示に必要な電力は、発電装置10A、10B、10Cにて発電した電力を利用してもよい。具体的には、信号生成装置22A、22B、22Cと接続された蓄電装置20A、20B、20Cとは別系統の蓄電装置に、発電装置10A、10B、10Cにて発電した電力から共通に所定の電力が蓄えられて利用されてもよい。また、信号生成装置22A、22B、22Cと接続された蓄電装置20A、20B、20Cに蓄えられた電力の一部が利用されてもよい。さらに、別途、一次電池または外部電源から充電された蓄電装置に蓄えられた電力が利用されてもよい。
 なお、図5で示したモニタリング機器100の構成例は、発電装置10A、10B、10C、蓄電装置20A、20B、20C、信号生成装置22A、22B、22C、演算装置30A、30B、30C、および記憶装置32A、32B、32Cをそれぞれ3つ備えているが、これらの数は、3つに限られるものではなく、2つ以下であってもよく、4つ以上であってもよい。また、図5で示した構成例において、発電装置10A、10B、10C、蓄電装置20A、20B、20C、信号生成装置22A、22B、22C、演算装置30A、30B、30C、記憶装置32A、32B、32C、および通信装置40のうちから適宜選択される複数の装置により、単位ブロックが構成されていてもよい。例えば、発電装置10A、蓄電装置20A、信号生成装置22A、演算装置30A、記憶装置32A、および通信装置40が1つの単位ブロックとして構成されていてもよい。
 本実施形態に係るモニタリング機器100は、例えば、信号生成装置22A、22B、22Cが駆動する最低限の電力量が蓄電装置20A、20B、20Cに蓄えられた場合、発電装置10A、10B、10Cの系統固有の信号を生成する。本実施形態に係るモニタリング機器100は、この際に生成された信号の組み合わせをセンシング情報として利用するものである。なお、上記のセンシング情報には、信号がない(すなわち、発電装置10A、10B、10Cが発電をしていない)という情報が含まれていてもよい。
 具体的には、モニタリング機器100は、発電装置が発電し、発電された電力によって信号生成装置が駆動したという信号(すなわち、1次信号)を生成する。該1次信号を受信した情報処理装置は、該1次信号に基づいて、モニタリング機器100を装着した装着対象の状態、またはモニタリング機器100の周囲の環境の少なくともいずれかに関する情報(すなわち、2次信号)を生成することができる。なお、該2次信号を受信した情報処理装置は、モニタリング機器100を装着した装着対象の状態、またはモニタリング機器100の周囲の環境の少なくともいずれかに関する情報から、さらに装着対象への対応に関する情報(すなわち、3次信号)を生成してもよい。
 3次信号は、例えば、3次信号を生成したモニタリング機器100または情報処理装置と有線または無線にて接続された外部機器または該外部機器に搭載されたアプリケーションに対する制御命令であってもよく、これらの制御命令よりも高次の信号であってもよい。また、モニタリング機器100または情報処理装置は、情報処理装置と有線または無線にて接続された外部機器または該外部機器に搭載されたアプリケーションに対する制御命令として、1次信号または2次信号を生成してもよい。
 (2-2-2.共通の演算装置を用いる例)
 続いて、図6を参照して、モニタリング機器100の構成の他の例を説明する。図6は、モニタリング機器100の他の構成例を示すブロック図である。
 図6に示すように、モニタリング機器100は、例えば、3つの発電装置10A、10B、10Cと、3つの蓄電装置20A、20B、20Cと、3つの信号生成装置22A、22B、22Cと、1つの演算装置30と、演算装置30に設けられた記憶装置32と、1つの通信装置40と、通信装置40に設けられた記憶装置42とを備える。図6に示したモニタリング機器100の構成例は、全ての発電装置10A、10B、10C、および蓄電装置20A、20B、20Cに共通の演算装置30および記憶装置32を1つのみ備える点で、図5で示したモニタリング機器100の構成例と異なる。
 ここで、図6で示したモニタリング機器100の構成例における各装置の基本的な機能は、図5で示した構成例における各装置と同様であってもよい。また、通信装置40に設けられた記憶装置42は、演算装置30に設けられた記憶装置32として使用され得る記憶素子の中から適宜選択されて用いられてもよい。また、図6で示したモニタリング機器100の構成において、演算装置30は、通信装置40に備えられた演算装置を用いて実現されてもよい。なお、記憶装置32は、記憶領域を時分割または割り込み処理によって共有することで、3つの発電装置10A、10B、10Cにて発電された電力に基づく信号の各々を記憶することができる。
 また、図6で示したモニタリング機器100の構成例は、発電装置10A、10B、10C、蓄電装置20A、20B、20C、信号生成装置22A、22B、22Cをそれぞれ3つ備えているが、これらの数は、3つに限られるものではなく、2つ以下であってもよく、4つ以上であってもよい。また、図6で示した構成例において、発電装置10A、10B、10C、蓄電装置20A、20B、20C、信号生成装置22A、22B、22C、演算装置30、記憶装置32、通信装置40および記憶装置42のうちから適宜選択される複数の装置により、単位ブロックが構成されていてもよい。例えば、発電装置10A、蓄電装置20A、信号生成装置22A、演算装置30、記憶装置32、および通信装置40が1つの単位ブロックとして構成されていてもよい。
 (2-2-3.共通の蓄電装置を用いる例)
 続いて、図7を参照して、モニタリング機器100の構成の他の例を説明する。図7は、モニタリング機器100の他の構成例を示すブロック図である。
 図7に示すように、モニタリング機器100は、例えば、3つの発電装置10A、10B、10Cと、3つの蓄電装置20A、20B、20Cと、3つの信号生成装置22A、22B、22Cと、1つの演算装置30と、演算装置30に設けられた記憶装置32と、1つの通信装置40と、通信装置40に設けられた記憶装置42と、演算装置30および通信装置40に電力を供給する蓄電装置50とを備える。
 図7に示したモニタリング機器100の構成例は、発電装置10A、10B、10Cにて発電された電力の一部を蓄電装置50に蓄え、蓄電装置50に蓄えられた電力にて演算装置30および通信装置40を駆動させる点で、図6で示したモニタリング機器100の構成例と異なる。
 なお、図7で示したモニタリング機器100の構成例における各装置の基本的な機能は、図5で示した構成例における各装置と同様であってもよい。また、蓄電装置50は、発電装置10A、10B、10Cと接続する蓄電装置20A、20B、20Cとして使用され得る蓄電装置の中から適宜選択されて用いられてもよい。ただし、蓄電装置50は、演算装置30および通信装置40を駆動させる電力を蓄えるため、比較的大容量の二次電池等が用いられてもよい。
 蓄電装置50は、発電装置10A、10B、10Cにて発電した電力のうち、信号生成装置22A、22B、22Cを駆動させるために必要な電力を除いた残りの電力を蓄える。蓄電装置50は、信号生成装置22A、22B、22Cによって信号を生成するために必要な電力以外を蓄えることにより、発電された電力をより効率的に演算装置30および通信装置40に供給することができる。
 なお、図7で示したモニタリング機器100の構成例においても、発電装置10A、10B、10C、蓄電装置20A、20B、20C、信号生成装置22A、22B、22Cをそれぞれ3つ備えているが、これらの数は、3つに限られるものではなく、2つ以下であってもよく、4つ以上であってもよい。また、図7で示した構成例においても、発電装置10A、10B、10C、蓄電装置20A、20B、20C、信号生成装置22A、22B、22C、演算装置30、記憶装置32、通信装置40および記憶装置42のうちから適宜選択される複数の装置により、単位ブロックが構成されていてもよい。例えば、発電装置10A、蓄電装置20A、信号生成装置22A、演算装置30、記憶装置32、および通信装置40が1つの単位ブロックとして構成されていてもよい。
 以上にて、本実施形態に係るモニタリング機器100の基本構成について説明した。
 <2-3.システムの機能構成例>
 続いて、図8を参照して、本実施形態に係る情報処理システムの機能構成例について説明する。図8は、上述したモニタリング機器100を含む情報処理システムの機能構成を説明するブロック図である。
 図8に示すように、本実施形態に係る情報処理システムは、装着対象に装着されたモニタリング機器100と、通信網5を介してモニタリング機器100と通信する情報処理装置300とを含む。
 また、モニタリング機器100は、発電装置10と、蓄電装置20と、管理部102と、制御部104とを備え、情報処理装置300は、発電信号取得部302と、判断部304と、出力部306とを備える。
 (モニタリング機器)
 発電装置10は、種々の方法を用いて電力を生成する装置である。また、蓄電装置20は、発電装置10が発電した電力を蓄える装置である。発電装置10および蓄電装置20は、少なくとも1つ以上であればよく、上限は特に限定されない。なお、発電装置10および蓄電装置20の詳細は、上記にて説明したとおりであるため、ここでの説明は省略する。
 管理部102は、蓄電装置20に蓄えられた電力を管理する。具体的には、管理部102は、蓄電装置20に蓄えられた電力を確認し、蓄電装置20に閾値以上の電力が蓄えられているか否かを判断する。ここで、管理部102が判断の基準とする閾値は、例えば、発電装置10が発電していることを示す発電信号の生成および情報処理装置300への送信の動作を行うために必要な電力であってもよい。管理部102が蓄電装置20に閾値以上の電力が蓄えられていると判断した場合、例えば、信号生成装置22(22A、22B,22C)によって発電装置10が発電していることを示す発電信号が生成される。管理部102の機能は、例えば、演算装置30(30A、30B、30C)によって実行されてもよい。
 制御部104は、外部からのモニタリング機器100への入力、およびモニタリング機器100から外部への出力を制御する。具体的には、制御部104は、信号生成装置22(22A、22B,22C)によって生成された発電信号を通信網5によって情報処理装置300へと出力する。また、制御部104は、3次信号等において、情報処理装置300からモニタリング機器100への制御命令等の入力があった場合、該入力を受信し、該入力に基づいて、モニタリング機器100を制御する。制御部104の機能は、例えば、演算装置30(30A、30B、30C)、および通信装置40が備える演算装置によって実行されてもよい。
 (通信網)
 通信網5は、上述した通信装置40によって通信が行われるネットワークである。通信網5は、例えば、インターネット、衛星通信網、電話回線網、および移動体通信網(例えば、3G回線網など)等の公衆回線網などであってもよい。
 (情報処理装置)
 発電信号取得部302は、モニタリング機器100から送信された発電信号を取得する。具体的には、発電信号取得部302は、モニタリング機器100が備える発電装置10による発電に関する情報を含む発電信号を通信網5によって受信する。発電信号取得部302は、例えば、通信網5に接続するための通信デバイス等で構成された通信インタフェースである。また、発電信号取得部302は、有線または無線LAN(Local Area Network)対応通信装置であっても、有線によるケーブル通信を行うケーブル通信装置であってもよく、電波による無線通信を行うアンテナ通信装置であってもよい。
 判断部304は、モニタリング機器100から受信した発電信号に基づいて、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断する。なお、発電装置10を装着した装着対象とは、モニタリング機器100を装着した装着対象と実質的に同一であり、発電装置10の周囲の環境とは、モニタリング機器100の周囲の環境と実質的に同一である。
 具体的には、判断部304は、発電信号に含まれる発電装置10の発電量、または出力電圧などの情報に少なくとも基づいて、発電装置10の発電状態を判断する。また、判断部304は、発電装置10の発電状態に基づいて、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断する。
 例えば、太陽光発電装置である発電装置10の発電量が多い場合、判断部304は、発電装置10が室外に存在すると判断してもよい。また、振動発電装置である発電装置10の発電量が多い場合、判断部304は、発電装置10を装着した装着対象が移動または運動していると判断してもよい。さらに、電波発電装置である発電装置10の発電量が少ない場合、判断部304は、電波を発する電子機器および設備が発電装置10の周囲にないと判断してもよい。
 また、発電装置10が電波発電装置である場合、判断部304は、所定の地点に設置された通信設備からビーコン等を発することにより、発電装置10がビーコンを発した通信設備の近くにいるか否かを判断することも可能である。このような場合、判断部304は、発電装置10の位置に関する情報を取得することができるため、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態をより詳細に判断することができる。
 また、判断部304は、発電信号に含まれる発電装置10の発電量、または出力電圧などの情報を微分し、発電量の変化量および変化割合に基づいて、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断してもよい。さらに、判断部304は、発電信号に含まれる発電装置10の発電量、または出力電圧などの情報を積分した値に基づいて、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断してもよい。このような場合、判断部304が判断に使用することができる情報の量が増加するため、判断部304は、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態をより詳細に判断することができる。
 さらに、モニタリング機器100が、発電装置10によって発電された電力が閾値を超えた際に発電信号を送信するものである場合、判断部304は、発電信号の受信頻度(すなわち、生成間隔)に基づいて、発電装置10の発電の程度を判断してもよい。発電信号の受信頻度が高い場合、判断部304は、発電装置10による発電量が多いと判断することができる。
 また、判断部304は、複数の発電装置10の発電信号を組み合わせることで、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断してもよい。例えば、判断部304は、あらかじめ図9に示すような判断テーブルを用意し、発電量が多い発電装置10の組み合わせに基づいて、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断してもよい。図9は、判断部304が発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断するための判断テーブルの一例を示した説明図である。
 図9に示す判断テーブルでは、発電量が閾値を超えた場合を「1」、発電量が閾値未満である場合を「0」として表現している。ここで、図9において、「PV1、PV2」は、太陽光発電装置などの吸収波長および光強度の少なくともいずれかに基づいて発電する発電装置10での発電量が閾値を超えたか否かを表している。「KN1、KN2、KN3」は、振動・運動発電装置などの共振周波数または振動強度の少なくともいずれかに基づいて発電する発電装置10での発電量が閾値を超えたか否かを表している。「TE1、TE2、TE3」は、熱電変換発電装置などの熱容量または温度の少なくともいずれかに基づいて発電する発電装置10での発電量が閾値を超えたか否かを表している。「RE1」は、電波発電装置などの電波周波数または電波強度の少なくともいずれかに基づいて発電する発電装置10での発電量が閾値を超えたか否かを表している。
 図9で示す判断テーブルでは、発電装置10の各々にて発電量が閾値を超えたか否かの組み合わせと、どのような装着対象の状態または装着対象の周囲の環境との対応関係を「Case1~CaseN」として記憶している。このような判断テーブルをあらかじめ記憶している場合、判断部304は、該判断テーブルに基づいて、より簡易な情報処理にて、発電装置10の各々の発電量から発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断することができる。
 さらに、判断部304は、同一の装着対象に装着された発電装置10における発電量の時間的な変化、または異なる装着対象に装着された発電装置10における発電量の差に基づいて、発電装置10を装着した装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断してもよい。
 具体的には、判断部304は、同一の装着対象に装着された発電装置10における発電量と、過去の履歴データと比較し、発電装置10における発電量が異常値を示した場合、装着対象に異常が発生したと判断してもよい。
 また、判断部304は、異なる装着対象に装着された発電装置10における発電量を比較し、他の装着対象に装着された発電装置10に対して発電量が異常に高いまたは低い場合、装着対象に異常が発生したと判断してもよい。なお、異なる装着対象に装着された発電装置10は、製造ばらつきによる個体差が存在する可能性があるため、母集団ごとに正規分布、およびヒストグラム等を用いて、発電装置10の各々における発電量の値を補正してもよい。
 さらに、判断部304は、発電装置10の各々の発電量の異常に対して、実際に装着対象にどのような異常が発生していたのかをフィードバックすることで機械学習を行ってもよい。所定量のデータサンプルが蓄積した場合、判断部304は、発電装置10の各々の発電量の異常に対して、どのような異常が装着対象に発生しているのかを自動的に判断することができるようになる。
 出力部306は、判断部304によって生成された信号(例えば、2次信号または3次信号)を情報処理装置300と有線または無線にて接続された外部機器に出力する。出力部306が出力する信号は、例えば、信号を出力した外部機器または該外部機器に搭載されたアプリケーションに対する制御命令であってもよく、これらの制御命令よりも高次の信号であってもよい。例えば、出力部306は、装着対象の異常を検出した旨を示すアラート信号を出力してもよい。
 出力部306は、例えば、USB(Universal Serial Bus)ポート、イーサネット(登録商標)ポート、IEEE80671規格ポート、および光オーディオ端子等のような外部機器と接続するための接続ポートで構成された接続インタフェースであってもよく、有線または無線LAN対応通信装置などの通信網5に接続するための通信デバイス等で構成された通信インタフェースであってもよい。
 なお、発電信号取得部302、判断部304、および出力部306のすべてまたは一部の機能は、モニタリング機器100にて実行されてもよい。このような場合、発電信号取得部302、判断部304、および出力部306のすべてまたは一部の機能は、例えば、演算装置30(30A、30B、30C)によって実行されてもよい。
 以上にて、本実施形態に係る情報処理システムの機能構成例について詳細に説明した。
 <2-4.システムの動作例>
 次に、図10を参照して、本実施形態に係る情報処理システムの動作例について説明する。図10は、本実施形態に係る情報処理システムの動作例を説明するフローチャート図である。なお、以下で示す情報処理システムの動作例は、あくまでも本実施形態に係る情報処理システムの動作を説明するための一例であって、本実施形態に係る情報処理システムの動作が以下の例に限定されるわけではない。
 図10に示すように、まず、モニタリング機器100の発電装置10の各々にて発電が行われる(S100)。次に、管理部102等は、発電装置10にて発電された電力に基づいて、発電信号を生成する(S102)。続いて、制御部104は、生成された発電信号を情報処理装置300に送信する(S104)。
 また、情報処理装置300の発電信号取得部302は、送信された発電信号を受信する(S110)。次に、判断部304は、受信した発電信号に基づいて、発電装置10を装着する装着対象、または発電装置10の周囲の環境の少なくともいずれかの状態を判断する(S112)。続いて、判断部304は、装着対象または周囲の環境の少なくともいずれかの状態に基づいて、装着対象への対応を判断する(S114)。さらに、出力部306は、判断した装着対象への対応に基づいて、外部機器等に装着対象への対応に関する情報を出力する(S114)。
 以上の動作により、本実施形態に係る情報処理システムは、電力を消費する各種センサを用いずに、発電装置による発電に基づいて、発電装置の周囲の環境、または発電装置を装着した装着対象の少なくともいずれかの状態を判断することが可能である。
 <2-5.システムの使用例>
 続いて、上述した本実施形態に係る情報処理システムの具体的な使用例について説明する。なお、以下で説明する本実施形態に係る情報処理システムの具体的な使用例は、本実施形態に係る情報処理システムを説明するための例示であって、本実施形態に係る情報処理システムの使用例が以下の例示に限定されるわけではない。
 具体的には、モニタリング機器100は、発電装置10として、Si系太陽光発電装置、色素増感型太陽光発電装置、圧電発電装置、電磁誘導発電装置、温度差発電装置、熱応答差発電装置、および電波発電装置を備える。また、各発電装置10には、それぞれ蓄電装置20、ならびにMPU(Micro-Processing Unit)等の信号生成装置22または演算装置30が独立して接続されている。なお、蓄電装置20には、全固体二次電池またはキャパシタ等を用いることができ、蓄電装置20は、発電装置10にて発電された電力をそれぞれ接続された信号生成装置22または演算装置30に対して供給する。
 電力が供給された信号生成装置22または演算装置30は、供給された電力を消費することで、電力が供給された回数をいずれかの記憶装置32、42に記憶する。また、信号生成装置22または演算装置30は、電力供給の有無をON/OFFの二値でいずれかの記憶装置32、42に記憶してもよい。
 さらに、各信号生成装置22または演算装置30には、共通の通信装置40が接続されている。通信装置40には、発電装置10にて発電された電力が、信号生成装置22または演算装置30への電力供給の後、蓄電装置20を介して供給される。各信号生成装置22または演算装置30にて生成された電力供給の回数または電力供給の有無に関する情報は、いずれかの記憶装置32、42に記憶される。通信装置40は、通信装置40が駆動した際に、記憶装置32、42に記憶された情報を情報処理装置300等に送信する。なお、通信装置40は、電力供給の回数または電力供給の有無に関する情報を送信する際に、モニタリング機器100に固有の識別情報をさらに情報処理装置300等に送信してもよい。
 送信された情報を受信した情報処理装置300は、受信した情報を演算処理することにより、さらに2次信号および3次信号を生成する。さらに、情報処理装置300は、2次信号および3次信号として、外部機器および外部機器に搭載されたアプリケーションに応じた分析結果、および分析結果に伴う制御命令を出力する。
 (2-5-1.第1の使用例)
 例えば、本実施形態に係る情報処理システムの第1の使用例は、災害、事件、事故、または遭難等に遭遇した被災者または被害者の居場所を捜索する捜索システムである。
 例えば、情報処理装置300は、モニタリング機器100が備える太陽光発電装置、振動発電装置、熱電変換発電装置、電波発電装置、および酵素発電装置などの各発電装置10にて、信号生成に十分な電力が発電されたか否かという1次信号を得ることができる。情報処理装置300は、取得した1次信号に基づいて、モニタリング機器100を装着した装着対象の状態、またはモニタリング機器100の周囲の環境に関する2次信号を生成することができる。
 具体的には、太陽光発電装置が信号生成に十分な発電をしており、信号が生成されており、かつ昼夜によって信号生成の有無が変化する場合、情報処理装置300は、装着対象の周囲の環境が日陰ではなく日向であり、かつ装着対象と太陽との間に遮る物が少ない、またはないという2次信号を生成することができる。また、振動発電装置が信号生成に十分な発電をしておらず、信号が生成されていない場合、情報処理装置300は、装着対象の活動量が低下しているという2次信号を生成することができる。
 また、熱電変換発電装置が信号生成に十分な発電をしており、信号が生成されている場合、情報処理装置300は、装着対象にて代謝が行われており、生命活動しているという2次信号を生成することができる。また、電波発電装置が信号生成に十分な発電をしておらず、信号が生成されていない場合、情報処理装置300は、装着対象の周囲の環境には、電波を発する電子機器または電波を発するインフラ設備が存在しないという2次信号を生成することができる。さらに、酵素発電装置が信号生成に十分な発電をしておらず、信号が生成されていない場合、情報処理装置300は、装着対象の血糖値が低下している、または装着対象の周囲の環境に栄養になるものがないという2次信号を生成することができる。
 さらに、情報処理装置300は、上述したような2次信号群に基づいて、演算処理によってさらに3次信号を生成してもよい。3次信号は、例えば、装着対象の救助が急ぎ必要である旨、装着対象の救助が急ぎではないが必要である旨、および装着対象の救助が必要ではない旨等の救助の優先順位付けがなされた信号であってもよい。
 なお、発電装置10において、発電可能な条件は、発電装置10の材料および形状によって異なる。例えば、太陽光発電装置であれば発電可能な吸収波長、振動発電装置であれば発電可能な共振周波数、熱電変換発電装置であれば発電可能な温度範囲および熱容量、酵素発電装置であれば発電可能な物質、電波発電装置であれば発電可能な吸収波長は、発電装置10の材料および形状によって異なる。そのため、太陽光発電装置であれば、Si系太陽発電装置、および色素増感型太陽光発電装置を併用するなど、同じ発電方法であっても複数の種類の発電装置10を用いることで、装着対象の状態、または装着対象の周囲の環境の少なくともいずれかをより複雑に検出および表現することが可能である。
 (2-5-2.第2の使用例)
 例えば、本実施形態に係る情報処理システムの第2の使用例は、モニタリング機器100の装着対象が生体ではなく遺失物であり、該遺失物の状態および周囲の環境を把握する遺失物捜索システムである。
 例えば、情報処理装置300は、モニタリング機器100が備える太陽光発電装置、振動発電装置、熱電変換発電装置、および電波発電装置などの各発電装置10にて、信号生成に十分な電力が発電されたか否かという1次信号を得ることができる。情報処理装置300は、取得した1次信号に基づいて、モニタリング機器100が装着された装着対象(すなわち、遺失物)の状態、またはモニタリング機器100の周囲の環境に関する2次信号を生成することができる。
 具体的には、太陽光発電装置が信号生成に十分な発電をしており、信号が生成されており、かつ昼夜によって信号生成の有無が変化する場合、情報処理装置300は、装着対象の周囲の環境が日陰ではなく日向であり、かつ装着対象と太陽との間に遮る物が少ない、またはないという2次信号を生成することができる。また、振動発電装置が信号生成に十分な発電をしておらず、信号が生成されていない場合、情報処理装置300は、装着対象が移動体の中になく移動していない、または装着対象の近くに振動発電装置の共振周波数になるような振動源がないという2次信号を生成することができる。
 また、熱電変換発電装置が信号生成に十分な発電をしており、信号が生成されている場合、情報処理装置300は、装着対象のいずれかの面が熱容量の異なるものに接触している、または他者が身に付けているなどの温度差が存在する環境下にあるという2次信号を生成することができる。また、電波発電装置が信号生成に十分な発電をしておらず、信号が生成されていない場合、情報処理装置300は、装着対象の周囲の環境には、電波を発する電子機器または電波を発するインフラ設備が存在しないという2次信号を生成することができる。
 さらに、情報処理装置300は、上述したような2次信号群に基づいて、演算処理によってさらに3次信号を生成してもよい。3次信号は、例えば、遺失物がどのような環境下にあるかという情報、遺失物が盗難されていることを通報する情報、遺失物に収納されていた貴重品に関する保険金支払額を決める等級に関する情報を含むものであってもよい。
 なお、発電装置10において、発電可能な条件は、発電装置10の材料および形状によって異なる。例えば、太陽光発電装置であれば発電可能な吸収波長、振動発電装置であれば発電可能な共振周波数、熱電変換発電装置であれば発電可能な温度範囲および熱容量、電波発電装置であれば発電可能な吸収波長は、発電装置10の材料および形状によって異なる。そのため、太陽光発電装置であれば、Si系太陽発電装置、および色素増感型太陽光発電装置を併用するなど、同じ発電方法であっても複数の種類の発電装置10を用いることで、装着対象の状態、または装着対象の周囲の環境の少なくともいずれかをより複雑に検出および表現することが可能である。
 (2-6.情報処理システムの具体例)
 さらに、図11~図25を参照して、上述した本実施形態に係る情報処理システムの具体例について詳述する。図11は、本実施形態に係る情報処理システムの具体的なシステム構成を説明する説明図である。
 図11に示すように、本実施形態に係る情報処理システムは、例えば、小型のタグ状のモニタリング機器100と、モニタリング機器100からの発電信号を受信する受信機器200と、受信機器200と通信網5を介して接続された情報処理装置300と、モニタリング機器100からの情報をユーザに提示するための表示装置400A、400Bとを備える。
 モニタリング機器100と、受信機器200との間の通信方式は、どのようなものであってもよい。使用可能な通信方式としては、例えば、13.56MHzの周波数を用いて数cm程度の近接通信を行うNFC(Near Feild Communication)などの通信方式、2.4GHzの周波数を用いて50m程度までの通信を行うWi-Fi、Bluetooth、およびBLE(Bluetooth Low Energy)などの通信方式、920MHzの周波数を用いて1km程度までの通信を行う通信方式などを例示することができる。
 また、本実施形態に係る情報処理システムでは、複数のモニタリング機器100同士で通信を行い、モニタリング機器100を通信の中継機として使用してもよい。このような場合、例えば、モニタリング機器100の間の通信には、比較的長距離の通信が可能な920MHzの周波数による通信方式を用い、受信機器200と、モニタリング機器100との間の通信には、比較的近距離の通信が可能なNFC、BLE、およびUSBなどの有線または無線の通信法式を用いるなど、役割に応じて最適な通信方式を選択することができる。
 例えば、受信機器200が携帯電話、スマートフォン、タブレット端末、ゲートウェイ装置、またはノート型パーソナルコンピュータ等であり、受信機器200とモニタリング機器100とがUSBにて接続されている場合、モニタリング機器100は、通信に必要な電力を受信機器200から受け取ることができる。また、受信機器200は、モニタリング機器100と通信するための通信インタフェースを備えず、USBにて接続されたモニタリング機器100を介してモニタリング機器100と通信してもよい。
 また、受信機器200は、インターネット、衛星通信網、電話回線網、および移動体通信網(例えば、3G回線網、4G回線網など)等の通信網5に接続しており、モニタリング機器100から受信した発電信号を情報処理装置300に送信する。
 情報処理装置300は、受信した発電信号に基づいて上述した情報処理を行うことにより、モニタリング機器100を装着した装着対象、またはモニタリング機器100の周囲の環境の少なくともいずれかの状態を判断することが可能である。
 なお、情報処理装置300が判断したモニタリング機器100を装着した装着対象、またはモニタリング機器100の周囲の環境の少なくともいずれかの状態は、例えば、携帯電話、スマートフォン、タブレット端末、ノート型パーソナルコンピュータ、およびテレビジョン装置などの表示装置400A、400Bなどにて確認することが可能である。
 このような構成により、本実施形態に係る情報処理システムは、モニタリング機器100が装着された装着対象、またはモニタリング機器100の周囲の環境の少なくともいずれかの状態を判断し、装着対象の各々を管理することが可能である。また、情報処理装置300は、受信機器200を介してモニタリング機器100からの発電信号を受信することにより、多くのモニタリング機器100が広域にわたって存在する場合でも、モニタリング機器100の各々から発電信号を受信することが可能である。
 例えば、本実施形態に係る情報処理システムは、物流における配送物の管理、家畜およびペットなどの動物の管理、高齢者、認知症患者、子供および一般成人などの見守り、ならびにアトラクションなどのエンターテイメントの用途に用いることが可能である。
 本実施形態に係る情報処理システムが物流における配送物の管理に用いられる場合、例えば、モニタリング機器100は、配送物の管理タグであり、受信機器200は、各物流拠点等に設置される。
 また、本実施形態に係る情報処理システムが家畜(例えば、牛)などの管理に用いられる場合、例えば、モニタリング機器100は、家畜に装着される捜索タグであり、受信機器200は、放牧地、畜舎、水飲み場、搾乳場、餌場、および事務所等に設置される。
 また、本実施形態に係る情報処理システムが人の見守り用途に用いられる場合、例えば、モニタリング機器100は、人に装着される捜索タグまたは見守りタグであり、受信機器200は、公園、学校、役所、警察署、公民館、美術館、公的学童施設、および病院などの公的施設、工場、デパート、モール、アトラクション施設、民間学童施設、および塾などの民間施設、ならびに駅、バス停、交差点、信号機、港、空港、山小屋および登山口などの移動起点などに設置される。また、受信機器200は、自宅、上記の各施設内の各領域、およびモニタリングポイントなどの任意の場所に設置されてもよい。
 さらに、本実施形態に係る情報処理システムがアトラクションなどのエンターテイメント用途に用いられる場合、受信機器200は、エンターテインメント施設、アトラクション施設、およびこれらの施設内の各会場、モニタリングポイント、イベント発生ポイント(すなわち、その場所を通過する、またはその場所に到達することで、イベントが発生する場所)に設置される。また、受信機器200は、エンターテイメント施設、およびアトラクション施設ではない公園、公道、一般施設、野山、川、湖、沼、および海などの自然空間に設置されてもよく、これらの受信機器200が設置された場所をモニタリングポイント、またはイベント発生ポイントとしてもよい。このような場合、あらゆる空間をアトラクションまたはイベント等のエンターテイメントを提供する場とすることができる。
 また、モニタリング機器100は、情報処理装置300等において、装着対象に関する情報と紐付けられて登録されていてもよい。例えば、装着対象が家畜である場合、モニタリング機器100の識別情報は、装着対象である家畜の個体識別番号、所属する群れ、体の斑紋、および飼育履歴などの情報と紐付けられて登録されてもよい。また、装着対象が人である場合、モニタリング機器100の識別情報は、装着対象である人の氏名、年齢、住所、顔写真、既往症、投薬履歴などの情報と紐付けられて登録されてもよい。
 また、受信機器200の識別情報についても、同様に、情報処理装置300等に登録されていてもよい。例えば、受信機器200の識別情報は、受信機器200が備える通信装置の識別情報、受信機器200の位置、および受信機器200の役割と紐付けられて登録されていてもよい。
 なお、装着対象が人である場合、プライバシー保護等の観点から、登録されたモニタリング機器100および受信機器200に関する情報は、高い情報セキュリティにて保護されていてもよい。例えば、モニタリング機器100および受信機器200の登録情報への情報照会等のためのアクセス権限が設定されていてもよく、モニタリング機器100および受信機器200の登録情報の暗号化が行われてもよい。また、モニタリング機器100および受信機器200の登録情報は、一元管理されていてもよい。
 さらに、図12および図13を参照して、装着対象が家畜である場合における本実施形態に係る情報処理システムの具体的な構成について説明する。図12は、装着対象が家畜である場合の情報処理システムの具体的な構成を示す説明図であり、図13は、装着対象が家畜である場合のモニタリング機器100の装着例を示す説明図である。
 図12および図13に示すように、装着対象が家畜である場合、モニタリング機器100は、例えば、コイン形状に形成され、家畜に装着するためのカバーに収納される。また、モニタリング機器100は、例えば、牛などの家畜の体の一部に装着される。
 受信機器200は、例えば、塔頂に通信モジュールを備える円柱形状の杭として形成される。また、受信機器200は、容易に地面に設置することができるように下端が尖った形状にて形成されてもよい。受信機器200は、例えば、モニタリング機器100からの信号を漏れなく受信できるように、適切な間隔にて放牧地などの地面に打ち込まれて設置されてもよい。
 モニタリング機器100から送信された発電信号は、まず、受信機器200によって受信され、次に受信機器200から情報処理装置300に送信される。情報処理装置300は、受信した発電信号に基づいて、モニタリング機器100を装着した家畜、またはモニタリング機器100の周囲の環境の少なくともいずれかの状態を判断する。また、情報処理装置300は、家畜、または周囲の環境の少なくともいずれかの状態に関して判断した情報を管理し、管理している情報を参照するための表示を生成する。これにより、ユーザは、携帯電話、スマートフォン、タブレット端末、ノート型パーソナルコンピュータ等の表示部を備えるデバイスを用いて、情報処理装置300が生成した表示を参照することで、モニタリング機器100を装着した家畜の状態を一元的に管理することが可能である。
 次に、図14~図25を参照して、上述した情報処理システムの具体的な動作例について説明する。
 まず、図14~図18を参照して、情報処理装置300がモニタリング機器100の発電信号を用いて、装着対象の状態を判定する際の動作について説明する。図14~図18は、モニタリング機器100の発電信号を用いて、装着対象の状態を判定する動作を説明するフローチャート図である。
 図14に示すように、まず、情報処理装置300は、モニタリング機器100における通信プロトコル、発電量の監視間隔、および発電量の判定条件等の初期設定を行う(S200)。次に、情報処理装置300は、モニタリング機器100の発電状態の監視を開始する(S201)。ここで、情報処理装置300は、設定された監視間隔にてモニタリング機器100での発電量に関する情報を取得する(S202)。続いて、情報処理装置300は、モニタリング機器100での発電量が判定条件を満たすか否かを判定する(S203)。発電量が判定条件を満たす場合(S203/Yes)、情報処理装置300は、装着対象の状態を所定の状態1であると判定する(S204)。一方、発電量が判定条件を満たさない場合(S203/No)、情報処理装置300は、装着対象の状態を所定の状態2であると判定する(S205)。なお、情報処理装置300は、モニタリング機器100の発電状態の監視が終了するまで、S202~S205の動作を繰り返す。
 また、情報処理装置300は、モニタリング機器100の発電量の変化量が閾値以上となった場合に限り、装着対象の状態判定を行ってもよい。
 具体的には、図15に示すように、まず、情報処理装置300は、モニタリング機器100における通信プロトコル、発電量の監視間隔、発電量の変化量の閾値、および発電量の判定条件等の初期設定を行う(S210)。次に、情報処理装置300は、モニタリング機器100の発電状態の監視を開始する(S211)。ここで、情報処理装置300は、設定された監視間隔にてモニタリング機器100での発電量に関する情報を取得する(S212)。続いて、情報処理装置300は、モニタリング機器100での発電量の変化量が閾値以上であるか否かを判断する(S213)。発電量の変化量が閾値に満たない場合(S213/No)、情報処理装置300は、発電状態の監視(S212)に戻り、装着対象の状態判定を行わない。
 一方、発電量の変化量が閾値以上である場合(S213/Yes)、情報処理装置300は、モニタリング機器100での発電量が判定条件を満たすか否かを判定する(S214)。発電量が判定条件を満たす場合(S214/Yes)、情報処理装置300は、装着対象の状態を所定の状態1であると判定する(S215)。一方、発電量が判定条件を満たさない場合(S214/No)、情報処理装置300は、装着対象の状態を所定の状態2であると判定する(S216)。なお、情報処理装置300は、モニタリング機器100の発電状態の監視が終了するまで、S212~S216の動作を繰り返す。
 さらに、情報処理装置300は、複数の判定条件を用いて、装着対象の状態判定を行ってもよい。
 具体的には、図16に示すように、まず、情報処理装置300は、モニタリング機器100における通信プロトコル、発電量の監視間隔、発電量の変化量の閾値、および発電量の判定条件等の初期設定を行う(S220)。次に、情報処理装置300は、モニタリング機器100の発電状態の監視を開始する(S221)。ここで、情報処理装置300は、設定された監視間隔にてモニタリング機器100での発電量に関する情報を取得する(S222)。続いて、情報処理装置300は、モニタリング機器100での発電量の変化量が閾値以上であるか否かを判断する(S223)。発電量の変化量が閾値に満たない場合(S223/No)、情報処理装置300は、発電状態の監視(S222)に戻り、装着対象の状態判定を行わない。
 一方、発電量の変化量が閾値以上である場合(S223/Yes)、情報処理装置300は、モニタリング機器100での発電量が条件1~条件3のいずれの判定条件を満たすかを判定する(S224)。発電量が条件1を満たす場合(S224/条件1)、情報処理装置300は、装着対象の状態を所定の状態1であると判定する(S225)。また、発電量が条件2を満たす場合(S224/条件2)、情報処理装置300は、装着対象の状態を所定の状態2であると判定する(S226)。また、発電量が条件3を満たす場合(S224/条件3)、情報処理装置300は、装着対象の状態を所定の状態3であると判定する(S227)。なお、情報処理装置300は、モニタリング機器100の発電状態の監視が終了するまで、S222~S227の動作を繰り返す。
 また、情報処理装置300は、装着対象の状態判定に加えて、モニタリング機器100の異常を検出する異常判定条件を用いて、モニタリング機器100にて異常が発生したか否かを判定してもよい。
 具体的には、図17に示すように、まず、情報処理装置300は、モニタリング機器100における通信プロトコル、発電量の監視間隔、発電量の変化量の閾値、および発電量の判定条件、異常判定条件等の初期設定を行う(S230)。次に、情報処理装置300は、モニタリング機器100の発電状態の監視を開始する(S231)。ここで、情報処理装置300は、設定された監視間隔にてモニタリング機器100での発電量に関する情報を取得する(S232)。続いて、情報処理装置300は、モニタリング機器100での発電量の変化量が閾値以上であるか否かを判断する(S233)。発電量の変化量が閾値に満たない場合(S233/No)、情報処理装置300は、発電状態の監視(S232)に戻り、装着対象の状態判定を行わない。
 一方、発電量の変化量が閾値以上である場合(S233/Yes)、情報処理装置300は、モニタリング機器100での発電量が条件1、条件2、または異常判定条件のいずれの判定条件を満たすかを判定する(S234)。発電量が条件1を満たす場合(S234/条件1)、情報処理装置300は、装着対象の状態を所定の状態1であると判定する(S235)。また、発電量が条件2を満たす場合(S234/条件2)、情報処理装置300は、装着対象の状態を所定の状態2であると判定する(S236)。モニタリング機器100にて異常が発生していない場合、情報処理装置300は、モニタリング機器100の発電状態の監視が終了するまで、S232~S225の動作を繰り返す。
 一方、発電量が異常判定条件を満たす場合(S234/異常判定条件)、情報処理装置300は、モニタリング機器100にて異常が発生したと判定し、異常信号を生成する(S237)。続いて、情報処理装置300は、異常信号を送信し、ユーザにモニタリング機器100にて異常が発生したことを通知する(S238)。この場合、情報処理装置300は、モニタリング機器100の発電状態の監視を終了する。
 続いて、図19~図21を参照して、情報処理システムにおいて、モニタリング機器100からの発電信号に基づいて、モニタリング機器100の周囲の環境の変化を判断する動作について説明する。図19~図21は、モニタリング機器100からの発電信号に基づいて、モニタリング機器100の周囲の環境の変化を判断する動作を説明するシーケンス図である。
 図19に示すように、まず、モニタリング機器100において、所定の発電量が蓄えられ、発電信号が送信可能になる(S300)。これにより、モニタリング機器100は、発電信号を受信機器200に送信し(S301)、発電信号を受信した受信機器200は、受信した発電信号に基づいて、モニタリング機器100の周囲の環境が変化したか否かを判断する(S302)。モニタリング機器100の周囲の環境が変化したと判断された場合、受信機器200は、周囲の環境の変化に関する情報をモニタリング機器100に送信し(S303)、該情報を受信したモニタリング機器100は、内部に記憶されていた周囲の環境に関する情報を変更する(S304)。
 続いて、図20を参照して、図19にて説明したモニタリング機器100の周囲の環境の変化を判断する動作について、より具体的に説明する。
 図20に示すように、まず、モニタリング機器100において、所定の発電量が蓄えられ、発電信号が送信可能になる(S310)。これにより、モニタリング機器100は、発電信号を受信機器200に送信し(S311)、発電信号を受信した受信機器200は、受信した発電信号の通信プロトコルが受信機器200の通信領域外で使用される通信プロトコルか否かを判断する(S312)。発電信号の通信プロトコルが受信機器200の通信領域外で使用される通信プロトコルであると判断された場合、受信機器200は、モニタリング機器100に通信プロトコルの変更指示を送信し(S313)、該情報を受信したモニタリング機器100は、通信プロトコルを変更する(S314)。
 このような場合、受信機器200は、送信される発電信号の通信プロトコルをすべて同じ通信プロトコルに制御することができるため、発電信号の前提条件をそろえることができる。
 また、受信機器200は、モニタリング機器100、またはモニタリング機器100が装着された対象の場所を通信プロトコルから特定してもよい。また、受信機器200は、送信される発電信号の通信プロトコルをモニタリング機器100の周囲の環境を特定するための情報として使用してもよい。
 また、モニタリング機器100の周囲の環境の変化に関する情報は、モニタリング機器100ではなく、情報処理装置300に送信されてもよい。
 具体的には、図20に示すように、まず、モニタリング機器100において、所定の発電量が蓄えられ、発電信号が送信可能になる(S320)。これにより、モニタリング機器100は、発電信号を受信機器200に送信する(S321)。発電信号を受信した受信機器200は、受信した発電信号に基づいて、モニタリング機器100の周囲の環境が変化したか否かを判断する(S322)。
 モニタリング機器100の周囲の環境が変化したと判断された場合、受信機器200は、モニタリング機器100の周囲の環境の変化に関する情報と、発電信号とを情報処理装置300に送信する(S323)。なお、モニタリング機器100の周囲の環境が変化していないと判断された場合、受信機器200は、発電信号のみを情報処理装置300に送信する。
 情報処理装置300は、受信したモニタリング機器100の周囲の環境の変化に関する情報に基づいて、発電信号を送信したモニタリング機器100における周囲の環境に関する情報を変更する(S324)。
 このような場合、情報処理システムは、モニタリング機器100に記憶された情報を変更することなく、情報処理装置300にてモニタリング機器100の周囲の環境が変化したことを把握することができる。
 さらに、モニタリング機器100の周囲の環境の変化に関する情報は、モニタリング機器100と、情報処理装置300との両方に送信されてもよい。
 具体的には、図21に示すように、まず、モニタリング機器100において、所定の発電量が蓄えられ、発電信号が送信可能になる(S330)。これにより、モニタリング機器100は、発電信号を受信機器200に送信し(S331)、発電信号を受信した受信機器200は、受信した発電信号に基づいて、モニタリング機器100の周囲の環境が変化したか否かを判断する(S332)。
 モニタリング機器100の周囲の環境が変化したと判断された場合、受信機器200は、周囲の環境の変化に関する情報をモニタリング機器100に送信し(S333)、かつモニタリング機器100の周囲の環境の変化に関する情報と、発電信号とを情報処理装置300に送信する(S335)。これにより、該情報を受信したモニタリング機器100は、内部に記憶されていた周囲の環境に関する情報を変更し(S334)、該情報を受信した情報処理装置300は、発電信号を送信したモニタリング機器100における周囲の環境に関する情報を変更する(S336)。
 このような場合、モニタリング機器100の周囲の環境の変化に関する情報をモニタリング機器100と、情報処理装置300との双方にて記憶することができるため、記憶された情報の整合性を高めることができる。
 次に、図22~図24を参照して、モニタリング機器100の発電信号と、受信機器200の周囲の環境の変化に関する情報とを用いて、装着対象の状態を判定する動作について説明する。図22~図24は、モニタリング機器100の発電信号と、受信機器200の周囲の環境の変化に関する情報とを用いて、装着対象の状態を判定する動作を説明するフローチャート図である。
 図22に示すフローチャートは、例えば、図15で示したフローチャートのS212と、S213との間にモニタリング機器の周囲環境を判断する動作(S403)が挿入された動作例である。なお、モニタリング機器100の周囲環境を判断する動作(S403)とは、例えば、図20におけるS322~S324の動作である。
 図22に示すように、まず、情報処理装置300は、モニタリング機器100における通信プロトコル、発電量の監視間隔、発電量の変化量の閾値、および発電量の判定条件等の初期設定を行う(S400)。次に、情報処理装置300は、モニタリング機器100の発電状態の監視を開始する(S401)。ここで、情報処理装置300は、設定された監視間隔にてモニタリング機器100での発電量に関する情報を取得する(S402)。ここで、情報処理装置300は、モニタリング機器100の周囲の環境の変化に関する情報を取得し、モニタリング機器100の周囲の環境の状態を判断する(S403)。
 続いて、情報処理装置300は、モニタリング機器100での発電量の変化量が閾値以上であるか否かを判断する(S404)。発電量の変化量が閾値に満たない場合(S404/No)、情報処理装置300は、発電状態の監視(S402)に戻り、装着対象の状態判定を行わない。
 一方、発電量の変化量が閾値以上である場合(S404/Yes)、情報処理装置300は、モニタリング機器100での発電量が判定条件を満たすか否かを判定する(S405)。発電量が判定条件を満たす場合(S405/Yes)、情報処理装置300は、さらにモニタリング機器100の周囲の環境の状態に基づいて、装着対象の状態を所定の状態1であると判定する(S406)。一方、発電量が判定条件を満たさない場合(S405/No)、情報処理装置300は、さらにモニタリング機器100の周囲の環境の状態に基づいて、装着対象の状態を所定の状態2であると判定する(S406)。なお、情報処理装置300は、モニタリング機器100の発電状態の監視が終了するまで、S402~S407の動作を繰り返す。
 また、情報処理装置300は、モニタリング機器100の発電量が閾値以上となった場合に限り、装着対象の状態判定を行ってもよい。
 具体的には、図23に示すように、まず、情報処理装置300は、モニタリング機器100における通信プロトコル、発電量の監視間隔、発電量の閾値、および発電量の判定条件等の初期設定を行う(S410)。次に、情報処理装置300は、モニタリング機器100の発電状態の監視を開始する(S411)。ここで、情報処理装置300は、設定された監視間隔にてモニタリング機器100での発電量に関する情報を取得する(S412)。ここで、情報処理装置300は、モニタリング機器100の周囲の環境の変化に関する情報を取得し、モニタリング機器100の周囲の環境の状態を判断する(S413)。
 続いて、情報処理装置300は、モニタリング機器100での発電量が閾値以上であるか否かを判断する(S414)。発電量が閾値に満たない場合(S414/No)、情報処理装置300は、発電状態の監視(S412)に戻り、装着対象の状態判定を行わない。
 一方、発電量が閾値以上である場合(S414/Yes)、情報処理装置300は、モニタリング機器100での発電量が判定条件を満たすか否かを判定する(S415)。発電量が判定条件を満たす場合(S415/Yes)、情報処理装置300は、例えば、さらにモニタリング機器100の周囲の環境の状態に基づいて、装着対象の状態を所定の状態1であると判定する(S416)。一方、発電量が判定条件を満たさない場合(S415/No)、情報処理装置300は、さらにモニタリング機器100の周囲の環境の状態に基づいて、装着対象の状態を所定の状態2であると判定する(S416)。なお、情報処理装置300は、モニタリング機器100の発電状態の監視が終了するまで、S412~S417の動作を繰り返す。
 このようにモニタリング機器100での発電量が判定条件を満たしているか否かを判断する前に、モニタリング機器100の周囲環境を判断する動作を行う場合、モニタリング機器100の周囲環境を判断する動作の回数を増加させることができる。したがって、情報処理装置300は、モニタリング機器100の周囲環境をより正確に判断することが可能になる。
 また、情報処理装置300は、モニタリング機器100での発電量が判定条件を満たす場合に、モニタリング機器100の周囲環境が変化したと推定し、モニタリング機器100の周囲環境を判断する動作を行ってもよい。なお、モニタリング機器100の周囲環境を判断する動作(S425)とは、例えば、図20におけるS322~S324の動作である。
 具体的には、図24に示すように、まず、情報処理装置300は、モニタリング機器100における通信プロトコル、発電量の監視間隔、発電量の変化量の閾値、および発電量の判定条件等の初期設定を行う(S420)。次に、情報処理装置300は、モニタリング機器100の発電状態の監視を開始する(S421)。ここで、情報処理装置300は、設定された監視間隔にてモニタリング機器100での発電量に関する情報を取得する(S422)。
 続いて、情報処理装置300は、モニタリング機器100での発電量の変化量が閾値以上であるか否かを判断する(S422)。発電量の変化量が閾値に満たない場合(S422/No)、情報処理装置300は、発電状態の監視(S422)に戻り、装着対象の状態判定を行わない。
 一方、発電量の変化量が閾値以上である場合(S423/Yes)、情報処理装置300は、モニタリング機器100での発電量が所定の条件を満たすか否か判断する(S424)。発電量が所定の条件を満たす場合(S424/Yes)、情報処理装置300は、モニタリング機器100の周囲の環境が変化したと推定し、モニタリング機器100の周囲の環境の状態を判断する(S425)。
 発電量が所定の条件を満たさない場合(S424/No)、情報処理装置300は、モニタリング機器100の周囲の環境が変化していないと推定し、モニタリング機器100での発電量に基づいて、装着対象の状態を判定する(S426)。なお、情報処理装置300は、モニタリング機器100の発電状態の監視が終了するまで、S422~S426の動作を繰り返す。
 また、情報処理装置300は、モニタリング機器100の発電量が閾値以上となった場合に限り、装着対象の状態判定を行ってもよい。
 具体的には、図25に示すように、まず、情報処理装置300は、モニタリング機器100における通信プロトコル、発電量の監視間隔、発電量の閾値、および発電量の判定条件等の初期設定を行う(S430)。次に、情報処理装置300は、モニタリング機器100の発電状態の監視を開始する(S431)。ここで、情報処理装置300は、設定された監視間隔にてモニタリング機器100での発電量に関する情報を取得する(S432)。
 続いて、情報処理装置300は、モニタリング機器100での発電量が閾値以上であるか否かを判断する(S433)。発電量が閾値に満たない場合(S433/No)、情報処理装置300は、発電状態の監視(S432)に戻り、装着対象の状態判定を行わない。
 一方、発電量が閾値以上である場合(S433/Yes)、情報処理装置300は、モニタリング機器100での発電量が所定の条件を満たすか否か判断する(S434)。発電量が所定の条件を満たす場合(S434/Yes)、情報処理装置300は、モニタリング機器100の周囲の環境が変化したと推定し、モニタリング機器100の周囲の環境の状態を判断する(S435)。
 発電量が所定の条件を満たさない場合(S434/No)、情報処理装置300は、モニタリング機器100の周囲の環境が変化していないと推定し、モニタリング機器100での発電量に基づいて、装着対象の状態を判定する(S436)。なお、情報処理装置300は、モニタリング機器100の発電状態の監視が終了するまで、S432~S436の動作を繰り返す。
 このようにモニタリング機器100での発電量が所定の条件を満たしているか否かを判断した後に、モニタリング機器100の周囲環境を判断する動作を行う場合、モニタリング機器100の周囲環境を判断する動作の回数を削減することができる。したがって、情報処理装置300において、情報処理量および消費電力を削減することができる。
 <<3.情報処理装置のハードウェア構成例>>
 以下では、図26を参照して、本実施形態に係る情報処理システムに含まれる情報処理装置300のハードウェア構成の一例について説明する。図26は、本実施形態に係る情報処理装置300のハードウェア構成例を示したブロック図である。なお、本実施形態に係る情報処理装置300による情報処理は、ソフトウェアとハードウェアとの協働によって実現される。
 図26に示すように、情報処理装置300は、CPU352と、ROM354と、RAM356と、ブリッジ362と、内部バス358および360と、インタフェース364と、入力装置366と、出力装置368と、ストレージ装置370と、ドライブ372と、接続ポート374と、通信装置376と、を備える。
 CPU352は、演算処理装置および制御装置として機能し、ROM354等に記憶された各種プログラムに従って、情報処理装置300の動作全般を制御する。ROM354は、CPU352が使用するプログラム、演算パラメータを記憶し、RAM356は、CPU352の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。例えば、CPU352は、判断部304等の機能を実行してもよい。
 これらCPU352、ROM354およびRAM356は、ブリッジ362、内部バス358および360等により相互に接続されている。また、CPU352、ROM354およびRAM356は、インタフェース364を介して入力装置366、出力装置368、ストレージ装置370、ドライブ372、接続ポート374および通信装置376とも接続されている。
 入力装置366は、タッチパネル、キーボード、マウス、ボタン、マイクロフォン、スイッチおよびレバーなどの各種情報が入力される入力装置を含む。また、入力装置366は、入力された情報に基づいて入力信号を生成し、CPU352に出力するための入力制御回路なども含む。
 出力装置368は、例えば、CRT(Cathod Ray Tube)表示装置、液晶表示装置、有機EL(Organic ElectroLuminessennce)表示装置などの表示装置、およびスピーカおよびヘッドフォンなどの音声出力装置を含む。
 ストレージ装置370は、情報処理装置300の記憶部の一例として構成されるデータ格納用の装置である。ストレージ装置370は、記憶媒体、記憶媒体にデータを記憶する記憶装置、記憶媒体からデータを読み出す読み出し装置、および記憶されたデータを削除する削除装置を含んでもよい。
 ドライブ372は、記憶媒体用リードライタであり、情報処理装置300に内蔵、または外付けされる。例えば、ドライブ372は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記憶媒体に記憶されている情報を読み出し、RAM356に出力する。また、ドライブ372は、リムーバブル記憶媒体に情報を書き込むことも可能である。
 接続ポート374は、例えば、USBポート、イーサネットポート、IEEE80671規格ポート、および光オーディオ端子等のような外部接続機器を接続するための接続ポートで構成された接続インタフェースである。例えば、接続ポート374は、出力部306の機能を実行してもよい。
 通信装置376は、例えば、通信網5に接続するための通信デバイス等で構成された通信インタフェースである。また、通信装置376は、有線によるケーブル通信を行うケーブル通信装置であってもよく、有線または無線LAN対応通信装置であってもよい。例えば、通信装置376は、発電信号取得部302の機能を実行してもよい。
 また、情報処理装置300に内蔵されるCPU、ROMおよびRAMなどのハードウェアを上述した情報処理装置300の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供される。
 <<4.まとめ>>
 以上にて説明したように、本開示の一実施形態に係るモニタリング機器100は、装着対象の状態または周囲の環境によって発電量が変化する発電装置を備える。これにより、本実施形態に係る情報処理装置、および情報処理システムは、電力を消費する各種センサを用いずに、モニタリング機器100を装着した装着対象の状態または周囲の環境の少なくともいずれかの状態を判断することが可能である。
 これにより、本実施形態に係る情報処理装置、および情報処理システムは、時間的な制約および蓄電された電力の枯渇を考慮することなく、装着対象および周囲の環境等の状態をモニタリングすることが可能である。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、装着対象が人間である場合を基本として説明したが、本技術はかかる例に限定されない。例えば、装着対象は、ペット、および家畜などの動物であってもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 少なくとも1つ以上の発電装置による発電に基づく発電信号を取得する発電信号取得部と、
 前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する判断部と、
を備える、情報処理装置。
(2)
 前記発電信号は、前記発電装置によって発電された電力が閾値を超えたか否かに関する情報を含む、前記(1)に記載の情報処理装置。
(3)
 前記発電信号は、前記発電装置によって発電された電力が閾値を超えた場合に生成され、
 前記判断部は、前記発電信号の生成間隔に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する、前記(2)に記載の情報処理装置。
(4)
 前記判断部の判断に基づいて、前記装着対象への対応に関する情報を出力する出力部をさらに備える、前記(1)~(3)のいずれか一項に記載の情報処理装置。
(5)
 少なくとも1つ以上の発電装置を備えるモニタリング機器と、
 前記発電装置による発電に基づく発電信号を取得する発電信号取得部、前記発電信号に基づいて、前記モニタリング機器の周囲の環境、または前記モニタリング機器を装着した装着対象の少なくともいずれかの状態を判断する判断部、を備える情報処理装置と、
を含む情報処理システム。
(6)
 前記モニタリング機器は、発電に基づく発電信号を個別に記憶する記憶装置をさらに備える、前記(5)に記載の情報処理システム。
(7)
 前記記憶装置は、時分割または割り込み処理によって、記憶領域を前記発電装置の各々にて共有する、前記(6)に記載の情報処理システム。
(8)
 前記モニタリング機器は、複数の発電装置を備え、
 前記モニタリング機器は、発電に基づく発電信号を前記複数の発電装置ごとに記憶する記憶装置をさらに備える、前記(5)に記載の情報処理システム。
(9)
 前記記憶装置は、時分割または割り込み処理によって、記憶領域を前記複数の発電装置にて共有する、前記(8)に記載の情報処理システム。
(10)
 前記発電装置は、発電した電力を少なくとも前記モニタリング機器に供給する、前記(5)~(9)のいずれか一項に記載の情報処理システム。
(11)
 前記情報処理システムは、前記発電装置によって発電された電力に基づいて駆動するスイッチ回路、前記スイッチ回路によって生成された発電信号を記憶する記憶装置、前記記憶装置に記憶された前記発電信号を出力する外部出力装置、前記発電信号を信号処理する演算装置を備える、前記(5)~(10)のいずれか一項に記載の情報処理システム。
(12)
 前記発電装置は、振動発電装置、運動発電装置、太陽光発電装置、熱電変換発電装置、酵素発電装置、電波発電装置、および近傍電磁界発電装置を含む発電装置、または磁界共鳴もしくは電磁誘導による電力伝送装置のいずれかまたは2以上の組み合わせである、前記(5)~(11)のいずれか一項に記載の情報処理システム。
(13)
 前記モニタリング機器は、前記発電装置によって発電された電力を蓄える蓄電装置をさらに備える、前記(5)~(12)のいずれか一項に記載の情報処理システム。
(14)
 前記モニタリング機器は、前記蓄電装置に蓄えられた電力を管理する管理部をさらに備え、
 前記管理部は、前記発電信号を生成する閾値を超える電力が前記蓄電装置に蓄えられたか否かを判断する、前記(13)に記載の情報処理システム。
(15)
 前記モニタリング機器は、外部からの前記モニタリング機器への入力、および前記モニタリング機器から外部への出力を制御する制御部をさらに備える、前記(5)~(14)のいずれか一項に記載の情報処理システム。
(16)
 少なくとも1つ以上の発電装置による発電に基づく発電信号を取得することと、
 演算処理装置によって、前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断することと、
を備える、情報処理方法。
(17)
 コンピュータを
 少なくとも1つ以上の発電装置による発電に基づく発電信号を取得する発電信号取得部と、
 前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する判断部と、
として機能させる、プログラム。

Claims (17)

  1.  少なくとも1つ以上の発電装置による発電に基づく発電信号を取得する発電信号取得部と、
     前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する判断部と、
    を備える、情報処理装置。
  2.  前記発電信号は、前記発電装置によって発電された電力が閾値を超えたか否かに関する情報を含む、請求項1に記載の情報処理装置。
  3.  前記発電信号は、前記発電装置によって発電された電力が閾値を超えた場合に生成され、
     前記判断部は、前記発電信号の生成間隔に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する、請求項2に記載の情報処理装置。
  4.  前記判断部の判断に基づいて、前記装着対象への対応に関する情報を出力する出力部をさらに備える、請求項1に記載の情報処理装置。
  5.  少なくとも1つ以上の発電装置を備えるモニタリング機器と、
     前記発電装置による発電に基づく発電信号を取得する発電信号取得部、前記発電信号に基づいて、前記モニタリング機器の周囲の環境、または前記モニタリング機器を装着した装着対象の少なくともいずれかの状態を判断する判断部、を備える情報処理装置と、
    を含む情報処理システム。
  6.  前記モニタリング機器は、発電に基づく発電信号を個別に記憶する記憶装置をさらに備える、請求項5に記載の情報処理システム。
  7.  前記記憶装置は、時分割または割り込み処理によって、記憶領域を前記発電装置の各々にて共有する、請求項6に記載の情報処理システム。
  8.  前記モニタリング機器は、複数の発電装置を備え、
     前記モニタリング機器は、発電に基づく発電信号を前記複数の発電装置ごとに記憶する記憶装置をさらに備える、請求項5に記載の情報処理システム。
  9.  前記記憶装置は、時分割または割り込み処理によって、記憶領域を前記複数の発電装置にて共有する、請求項8に記載の情報処理システム。
  10.  前記発電装置は、発電した電力を少なくとも前記モニタリング機器に供給する、請求項5に記載の情報処理システム。
  11.  前記情報処理システムは、前記発電装置によって発電された電力に基づいて駆動するスイッチ回路、前記スイッチ回路によって生成された発電信号を記憶する記憶装置、前記記憶装置に記憶された前記発電信号を出力する外部出力装置、前記発電信号を信号処理する演算装置を備える、請求項5に記載の情報処理システム。
  12.  前記発電装置は、振動発電装置、運動発電装置、太陽光発電装置、熱電変換発電装置、酵素発電装置、電波発電装置、および近傍電磁界発電装置を含む発電装置、または磁界共鳴もしくは電磁誘導による電力伝送装置のいずれかまたは2以上の組み合わせである、請求項5に記載の情報処理システム。
  13.  前記モニタリング機器は、前記発電装置によって発電された電力を蓄える蓄電装置をさらに備える、請求項5に記載の情報処理システム。
  14.  前記モニタリング機器は、前記蓄電装置に蓄えられた電力を管理する管理部をさらに備え、
     前記管理部は、前記発電信号を生成する閾値を超える電力が前記蓄電装置に蓄えられたか否かを判断する、請求項13に記載の情報処理システム。
  15.  前記モニタリング機器は、外部からの前記モニタリング機器への入力、および前記モニタリング機器から外部への出力を制御する制御部をさらに備える、請求項5に記載の情報処理システム。
  16.  少なくとも1つ以上の発電装置による発電に基づく発電信号を取得することと、
     演算処理装置によって、前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断することと、
    を備える、情報処理方法。
  17.  コンピュータを
     少なくとも1つ以上の発電装置による発電に基づく発電信号を取得する発電信号取得部と、
     前記発電信号に基づいて、前記発電装置の周囲の環境、または前記発電装置を装着した装着対象の少なくともいずれかの状態を判断する判断部と、
    として機能させる、プログラム。
PCT/JP2015/080959 2014-11-18 2015-11-02 情報処理装置、情報処理システム、情報処理方法、およびプログラム WO2016080183A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580061043.3A CN107148238A (zh) 2014-11-18 2015-11-02 信息处理装置、信息处理系统、信息处理方法及程序
US15/525,653 US20170347892A1 (en) 2014-11-18 2015-11-02 Information processing device, information processing system, information processing method, and program
EP15860596.4A EP3222205A4 (en) 2014-11-18 2015-11-02 Information processing device, information processing system, information processing method, and program
JP2016560142A JPWO2016080183A1 (ja) 2014-11-18 2015-11-02 情報処理装置、情報処理システム、情報処理方法、およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462081298P 2014-11-18 2014-11-18
US62/081,298 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016080183A1 true WO2016080183A1 (ja) 2016-05-26

Family

ID=56013736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080959 WO2016080183A1 (ja) 2014-11-18 2015-11-02 情報処理装置、情報処理システム、情報処理方法、およびプログラム

Country Status (5)

Country Link
US (1) US20170347892A1 (ja)
EP (1) EP3222205A4 (ja)
JP (1) JPWO2016080183A1 (ja)
CN (1) CN107148238A (ja)
WO (1) WO2016080183A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165641A (ja) * 2018-03-22 2019-10-03 株式会社エム・クーパーズ 生体情報計測ユニット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630358B (zh) * 2017-05-26 2018-07-21 汎宇股份有限公司 太陽能發電裝置之遠端監控系統及其方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268676A (ja) * 2008-05-07 2009-11-19 Oki Communication Systems Co Ltd 生体情報モニターシステム、及び生体情報端末

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476138B1 (en) * 1990-03-09 1997-11-19 Matsushita Electric Industrial Co., Ltd. Sleep detecting device
US7610463B2 (en) * 2004-10-22 2009-10-27 Qualcomm Incorporated Method and apparatus for performing an atomic semaphore operation
JP2011124287A (ja) * 2009-12-08 2011-06-23 Sony Corp 発電量予測装置、発電量予測システム、発電量予測方法及びコンピュータプログラム
JP2012029470A (ja) * 2010-07-23 2012-02-09 Sony Corp 制御装置および方法、発電装置および方法、蓄電装置および方法、並びに電力制御システム
US8793522B2 (en) * 2011-06-11 2014-07-29 Aliphcom Power management in a data-capable strapband
JP5887851B2 (ja) * 2011-11-14 2016-03-16 ソニー株式会社 特定装置、制御装置、特定方法、プログラムおよび特定システム
US9870726B2 (en) * 2013-02-22 2018-01-16 Sony Corporation Image display apparatus, image display method, storage medium, and monitoring system
EP3018747B1 (en) * 2013-08-13 2020-03-18 Sony Corporation Wearable device and power supply system
US20150081210A1 (en) * 2013-09-17 2015-03-19 Sony Corporation Altering exercise routes based on device determined information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268676A (ja) * 2008-05-07 2009-11-19 Oki Communication Systems Co Ltd 生体情報モニターシステム、及び生体情報端末

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165641A (ja) * 2018-03-22 2019-10-03 株式会社エム・クーパーズ 生体情報計測ユニット

Also Published As

Publication number Publication date
EP3222205A4 (en) 2018-07-04
JPWO2016080183A1 (ja) 2017-08-31
CN107148238A (zh) 2017-09-08
EP3222205A1 (en) 2017-09-27
US20170347892A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
US20160277879A1 (en) Battery beacon systems and methods of use
CA3043928C (en) Iot tag & invivo sensor system and communication method
JP6766816B2 (ja) 家畜管理システム及び家畜の管理方法
US20180262894A1 (en) Battery beacon systems and methods of use
US10560811B2 (en) Tracking device, system for tracking objects, and associated method of use
WO2016181605A1 (ja) 管理装置、個体管理システムおよび個体探索システム
WO2017130912A1 (ja) ウェアラブル機器、制御対象機器、近距離無線通信網、通信システム、制御システム、及び遠隔制御方法
US10613615B2 (en) Electronic apparatus, information processing system, and information processing method
JP6911839B2 (ja) 信号送信装置及び管理システム
US20220217517A1 (en) Battery beacon systems and methods of use
US20180310120A1 (en) Location-specific data acquisition
US11277726B2 (en) Battery beacon systems and methods of use
CN107945437A (zh) 便携式野外智能监控报警装置
WO2016080183A1 (ja) 情報処理装置、情報処理システム、情報処理方法、およびプログラム
JP2012165300A (ja) 徘徊者位置管理システム
Khalifeh et al. Radio frequency based wireless charging for unsupervised clustered WSN: System implementation and experimental evaluation
WO2008108816A1 (en) System and method for subject management using intelligent rf tag and reader
WO2017221301A1 (ja) 制御システム
US11744231B1 (en) Animal security and location detection method
US20220225070A1 (en) Battery beacon systems and methods of use
JP2017192353A (ja) カバーケース
JP6676986B2 (ja) 通信システム
Kanan et al. Batteryless radio system for hospital application
Boudhir et al. A REAL TIME HEALTH CONTROL AND LOCALIZATION OF PILGRIMS IN EL HAJJ: BSN APPLICATION.
CN108335448A (zh) 一种基于物联网技术的安防系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560142

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015860596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15525653

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE