WO2016080114A1 - Projection device - Google Patents

Projection device Download PDF

Info

Publication number
WO2016080114A1
WO2016080114A1 PCT/JP2015/079126 JP2015079126W WO2016080114A1 WO 2016080114 A1 WO2016080114 A1 WO 2016080114A1 JP 2015079126 W JP2015079126 W JP 2015079126W WO 2016080114 A1 WO2016080114 A1 WO 2016080114A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
light
polarization
optical system
beam splitter
Prior art date
Application number
PCT/JP2015/079126
Other languages
French (fr)
Japanese (ja)
Inventor
佐野永悟
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016560115A priority Critical patent/JPWO2016080114A1/en
Publication of WO2016080114A1 publication Critical patent/WO2016080114A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor

Definitions

  • the present invention relates to a projection apparatus that projects an image, and more particularly to a projection apparatus that can capture a projected image.
  • a projection apparatus that enlarges and projects an image displayed on an image display element onto a screen by a projection optical system, not only simply projecting a PC screen onto a screen, but also projecting the PC screen onto a whiteboard or the like, Some of them have interactive functions, such as writing handwritten characters and recording the information as images, or detecting the movement of the presenter and advancing the projection screen page.
  • a projection apparatus that realizes this requires various correction processes according to usage conditions such as trapezoidal distortion correction of projection images and brightness correction according to the surrounding environment.
  • a projection optical system is not provided as a separate unit from the projection optical system, but a part of the optical path of the projection optical system is branched so that the projection optical system can be used as a common imaging optical system.
  • An idea to be used (referred to as an integrated type in this specification) has been proposed (for example, Patent Documents 1 and 2).
  • the projection optical system By integrating the projection optical system as an imaging optical system as it is, various aberrations that occur in the lens system, including distortion aberrations that occur in the projection optical system, can be canceled at the time of shooting. A distorted photographed image can be obtained.
  • the optical axis of the projection optical system and the optical axis of the photographing optical system match, there is no parallax between the projected image and the photographed image, and a special image is used when superimposing handwritten characters on the projected image. No processing is required.
  • Patent Documents 1 and 2 do not mention countermeasures such as reflection of unnecessary light on the projection surface described above. Further, in the integrated optical system, since the image sensor is disposed at a position close to the illumination optical system, stray light in the optical system may enter the image sensor and cause deterioration of the captured image. Is not mentioned.
  • the present invention has been made in view of the above-mentioned background art, and is not affected by unnecessary reflected light on the projection surface or stray light in the optical system, and has a low-resolution and high-resolution captured image.
  • An object is to provide a projection apparatus that can be secured.
  • a projection apparatus reflecting one aspect of the present invention is an illumination optical system that emits illumination light, and transmits or reflects incident light according to the polarization direction of linearly polarized light of incident light.
  • a polarizing beam splitter (hereinafter also referred to as PBS), an image display element on which light from the illumination optical system enters through the polarizing beam splitter, and an image by the image display element to be projected through the polarizing beam splitter
  • PBS polarizing beam splitter
  • a projection optical system that magnifies and projects onto a surface, and an image sensor for capturing an image on the projection surface.
  • the projection optical system is used in common when imaging, and the optical path and image on the projection side are captured by a polarizing beam splitter.
  • An imaging device is arranged on the side where the P-polarized light from the projection surface advances with reference to the projection surface, and polarization restriction that cuts S-polarization with reference to the projection surface between the polarization beam splitter and the imaging device. Is provided.
  • an optical system in which the projection optical system and the photographing optical system are integrated is used, and is not affected by unnecessary reflected light on the projection surface or stray light in the optical system, and has low distortion and no parallax.
  • 2A and 2B are a rear view and a side view for explaining an example of the installation state of the projection apparatus shown in FIG. It is a graph explaining the relationship between the incident angle of the unnecessary light to a screen, and a reflectance. It is a graph explaining the relationship between a slow ratio and a reflectance. It is a figure explaining the structure of the projection apparatus of 2nd Embodiment. It is a figure explaining the structure of the projection apparatus of 3rd Embodiment.
  • a projection apparatus 100 enables imaging when projecting an image, and includes a projection optical system 10, an illumination optical system 20, a polarization beam splitter 30, and a reflective liquid crystal element. 40, an image driving circuit 50, an imaging device 60, an imaging driving circuit 70, a polarization limiting unit 80, and a control circuit 90.
  • the projection optical system 10 enlarges an image obtained from the reflective liquid crystal element 40 as an image display element and projects it on a screen or other projection target (not shown).
  • the projection optical system 10 is composed of a plurality of lens groups, and focusing and zooming can be performed by moving some lens groups in the direction of the optical axis OA ′.
  • the optical axis OA ′ of the projection optical system 10 is shifted in parallel from the center of the reflective liquid crystal element 40 (the optical axis OA of the illumination optical system 20) in order to project the projected image obliquely with respect to the projection target. Yes.
  • the illumination optical system 20 includes a light source 21, a uniformizing optical system 22, and the like.
  • the uniformizing optical system 22 two-dimensionally uniformizes the illuminance of the light irradiated on the reflective liquid crystal element 40 with respect to the cross section perpendicular to the optical axis OA by dividing and superimposing the light emitted from the light source 21.
  • the polarization beam splitter (PBS) 30 is a pair of right-angle prisms bonded together, and on the bonded surface, linearly polarized light in a predetermined direction incident from the illumination optical system 20 is selectively applied to the inclined surface of one right-angle prism.
  • a polarization separation surface 31 made of a polarization separation film that is transmitted through is formed. Thereby, the illumination light emitted from the illumination optical system 20 can be transmitted and incident on a reflective liquid crystal element 40 described later. Further, the polarization beam splitter 30 can reflect the modulated light emitted from the reflective liquid crystal element 40 and make it incident on the projection optical system 10. Further, the photographing light returned from the projection optical system 10 can be transmitted and incident on the image sensor 60.
  • the polarization beam splitter 30 has four surfaces 30a, 30b, 30c, and 30d that are opposed to the polarization separation surface 31 in an inclined state, and the first surface 30a is light of the illumination optical system 20.
  • the second surface 30 b faces the reflective liquid crystal element 40
  • the third surface 30 c faces the projection optical system 10
  • the fourth surface 30 d faces the image sensor 60.
  • the polarization separation surface 31 reflects S-polarized light with reference to this and transmits P-polarized light. With respect to S-polarized light with reference to the polarization separation surface 31, illumination optics is used.
  • the group consisting of the system 20 and the image sensor 60 and the group consisting of the projection optical system 10 and the reflective liquid crystal element 40 are separated from each other in the optical path and become independent from each other.
  • the group consisting of the illumination optical system 20 and the reflective liquid crystal element 40 and the group consisting of the projection optical system 10 and the imaging element 60 are separated in the optical path and independent of each other. It will be in the state.
  • the reflective liquid crystal element 40 is a display element (image display element) that forms image light, and can be said to be a light modulation element in that image light is formed from illumination light by changing a spatial reflectance.
  • the reflective liquid crystal element (image display element) 30 is an image display panel that is a plate-like electronic component.
  • the reflection type liquid crystal element 40 is a micro display also called LCOS (Liquid crystal on silicon), in which a circuit is directly formed on the surface of a silicon chip and a liquid crystal layer is sandwiched between a counter substrate.
  • the reflective liquid crystal element 40 modulates illumination light by changing the arrangement of liquid crystal molecules when a voltage corresponding to a driving signal is applied to a liquid crystal layer for each pixel, and displays a desired image by reflection. It is.
  • P-polarized light based on the polarization separation surface 31 is incident on the reflective liquid crystal element 40 as illumination light
  • S-polarized light based on the polarization separation surface 31 is reflected as video light.
  • the image driving circuit 50 is a circuit portion that operates the reflective liquid crystal element 40 based on an image signal.
  • the image drive circuit 50 operates based on a control signal from a control circuit 90 described later, and outputs a drive signal corresponding to the image signal to the reflective liquid crystal element 40 to perform an image display operation.
  • the image sensor 60 is a solid-state image sensor and is a CMOS image sensor that detects a subject image.
  • An image formed by the projection optical system 10 is projected onto the photoelectric conversion unit or the imaging surface (not shown) of the imaging element 60. That is, on the photoelectric conversion unit of the image sensor 60, an image of a whiteboard or other projection object is reduced and projected by the projection optical system 10 also used as an imaging optical system.
  • the image pickup device 60 is not limited to the above-described CMOS type image sensor, and may be one to which another device such as a CCD is applied. Note that the angle of view or area covered by the image sensor 60 is larger than the angle of view or area of the range where display is performed on the projection object by the reflective liquid crystal element 40.
  • the imaging driving circuit 70 outputs YUV and other digital pixel signals to an external circuit, and receives a voltage and a clock signal for driving the imaging element 60 from the control circuit 90, thereby causing an image on the imaging element 60.
  • the detection operation is performed.
  • the polarization limiting unit 80 is an optical element that is interposed between the polarization beam splitter 30 and the image sensor 60, and is S-polarized light with reference to the polarization separation surface 31 (resulting in S with reference to the projection surface 1a described later). (Polarized light).
  • the polarization limiting unit 80 for example, an absorption type glass polarizer, a reflection type polarizer using a wire grid, a reflection type polarizer in which multiple layers of birefringent dielectrics are stacked, and other polarization filters may be used. it can.
  • the polarization limiting unit 80 it is possible to prevent the S-polarized component of the illumination light from the illumination optical system 20 from entering the image sensor 60 through the polarization separation surface 31 of the polarization beam splitter 30 and preventing shooting.
  • the control circuit 90 can appropriately operate the image driving circuit 50, the imaging driving circuit 70, and the like based on a program incorporated therein or an instruction from an operation unit (not shown).
  • the control circuit 90 outputs a drive signal or an image signal to the image drive circuit 50 based on, for example, a video signal or other signal input from the outside, and causes the reflective liquid crystal element 40 to perform a display operation.
  • the control circuit 90 can perform various image processing on the imaging data obtained from the imaging device 60 via the imaging drive circuit 70, for example, and can store the acquired imaging data or processed data. it can.
  • the projection apparatus 100 is disposed so as to face the lower side of the front face with respect to the projection surface 1a such as a whiteboard, a screen, or the like.
  • the reflected light from the projection surface 1a that is incident on the projection optical system 10 of the projection apparatus 100 includes an S-polarized component and a P-polarized component with respect to the projection surface 1a.
  • the S-polarized light component with respect to the projection surface 1a is perpendicular to the plane formed by the central axis of the projection light and the normal line at the center of the projection image where the central axis of the projection light intersects the projection surface 1a.
  • the P-polarized component is a polarized component that oscillates in a direction parallel to the plane.
  • the S-polarized light and the P-polarized light with the projection surface 1a as a reference coincide with the S-polarized light and the P-polarized light with the polarization separation surface 31 of the polarizing beam splitter 30 as a reference. That is, the S-polarized light has an electric field vector common to the projection apparatus 100 and the projection surface 1a and vibrates perpendicularly to the yz plane extending vertically.
  • the light beam emitted from the light source 21 passes through the uniformizing optical system 22 for making the illuminance on the reflective liquid crystal element (image display element) 40 uniform, and is polarized light for separating the polarization state of the light beam into two.
  • the light enters the beam splitter 30.
  • the illustrated polarization beam splitter 30 has a polarization separation surface 31 that reflects the S polarization component and transmits the P polarization component.
  • the P-polarized light beam transmitted through the polarization separation surface 31 enters the reflective liquid crystal element 40, and only the S-polarized light beam (modulation component) reflected and emitted from the reflective liquid crystal element 40 is reflected by the polarization separation surface 31. Then, the light enters the projection optical system 10 and is projected onto the projection surface 1a.
  • the ray path at the time of imaging will be described.
  • the projection optical system 10 When photographing a handwritten character or a projected image written on a whiteboard or the like having the projection surface 1a, light rays from the projection surface 1a have passed through the projection optical system 10 so as to travel in the same optical path as during projection. Later, the light enters the polarization beam splitter 30 and is separated into an S-polarized component and a P-polarized component by the polarization separation surface 31.
  • the image sensor 60 is arranged in a direction in which the P-polarized component passing through the polarization separation surface 31 is emitted with respect to the polarization beam splitter 30, and only the P-polarized component transmitted through the polarization separation surface 31 is applied to the image sensor 60. Incident light is recorded as an image.
  • the imaging optical device 10 is disposed so as to face the fourth surface 30 d adjacent to the second surface 30 b that faces the reflective liquid crystal element 40.
  • Can be used as it is as a photographing optical system.
  • the light beam passes through the projection optical system 10 in the opposite direction to that during projection. Therefore, distortion aberration generated in the projection optical system 10 and other reductions in resolving power are reduced. The resulting lateral chromatic aberration will be cancelled. Therefore, it is possible to obtain a low distortion image with high resolution up to the peripheral part.
  • the projection optical system 10 and the photographing optical system can be configured with substantially the same optical path, no parallax occurs between the projected image and the photographed image.
  • a polarization limiting unit 80 is provided between the polarization beam splitter 30 and the imaging device 60 as means for cutting the S-polarized light component separated from the illumination light by the polarization separation surface 31 of the polarization beam splitter 30. Yes. Thereby, it is possible to prevent the light from the illumination optical system 20 from directly entering the image sensor 60, and to suppress the influence of stray light in the optical system.
  • the refractive index of the medium that reflects unnecessary light is 1.5.
  • a surface of a whiteboard is assumed as the projection surface 1a.
  • the whiteboard is coated with enamel or iron.
  • Enamel includes phthalate resin enamel, and the refractive index of phthalate resin enamel is about 1.5.
  • the light from the regular projection image and the characters written on the projection surface 1a passes through the projection optical system 10, and then the polarization component is separated by the polarization beam splitter 30, and the S polarization component. Therefore, the amount of light incident on the image sensor 60 is 0.5 with respect to the normal light intensity of 1.
  • the intensity of the unnecessary light FH is higher than the intensity of the normal light, and assuming that the unnecessary light intensity is 10 times the normal light intensity, the normal light intensity incident on the image sensor 60 and the unnecessary light intensity are
  • the unnecessary light FH is 0.08 with respect to 0.5 light (ratio of normal light to unnecessary light FH is 1: 0.16), and it can be seen that the unnecessary light FH can be sufficiently reduced with respect to normal light. .
  • the slow ratio Tr is a value obtained by dividing the projection distance D (the distance from the projection apparatus 100 to the projection surface 1a) by the horizontal size W of the projection image PG.
  • the projection image PG has an aspect ratio of 16: 9
  • the projection apparatus 100 projects from the same height as the lower end of the projection image PG.
  • the unnecessary light FH that is reflected at the largest angle on the projection surface 1a and enters the projection apparatus 100 is reflected at the upper end of the projection surface 1a. Therefore, when the slow ratio Tr is determined, the vertical size H obtained from the horizontal size W is obtained, and the maximum incident angle ⁇ of the unnecessary light FH incident on the projection device 100 can be determined.
  • FIG. 4 is a graph of the reflectance for each polarization of the unnecessary light FH from the maximum angle of the unnecessary light FH when the slow ratio Tr is changed.
  • the slow ratio Tr decreases, the reflection angle of the unnecessary light FH incident on the projection apparatus 100 correspondingly on the projection surface 1a tends to increase. Therefore, it is preferable to perform projection so that the slow ratio Tr is in the following range so that the difference between the reflectances of the S-polarized component and the P-polarized component is increased and the significance of arranging the polarization limiting unit 80 is increased.
  • 0.1 ⁇ Tr ⁇ 1.0 (1) By falling below the upper limit value of the conditional expression (1), unnecessary light FH reflected at a relatively large angle on the projection surface 1a is incident on the projection apparatus 100.
  • the difference in reflectance between the S-polarized component and the P-polarized component becomes larger, and the polarization limiting unit 80 is arranged between the polarizing beam splitter 30 and the image sensor 60 to capture unnecessary light FH such as reflection of an illumination lamp. It can be said that the suppression effect increases. On the contrary, if the slow ratio is too small, the reflection angle of the unnecessary light FH on the projection surface 1a becomes too large, and the difference between the reflectances of the S-polarized light and the P-polarized light becomes small.
  • the separation characteristics of the polarization separation surface 31 of the polarization beam splitter 30 can be reversed. That is, the S-polarized light with the polarization separation surface 31 as a reference is transmitted, and the P-polarized light with the polarization separation surface 31 as a reference is reflected.
  • the arrangement relationship between the reflective liquid crystal element 40 and the image sensor 60 is changed, the image sensor 60 is disposed opposite to the second surface 30b, and the reflective liquid crystal element 40 is opposed to the fourth surface 30d. Deploy.
  • the polarization limiting unit 80 interposed between the polarization beam splitter 30 and the image sensor 60 cuts S-polarized light having the polarization separation surface 31 as a reference (resulting in S-polarized light having the projection surface 1a as a reference). Shall.
  • the image sensor 60 is disposed on the side that transmits the P-polarized light with a small amount of reflected light on the projection surface 1a during photographing. Thereby, the influence of unnecessary reflected light on the projection surface 1a having a large proportion of S-polarized light is reduced.
  • a polarization limiting unit 80 that cuts S-polarized light between the polarization beam splitter 30 and the image sensor 60, the S-polarized light is cut, the influence of unnecessary reflected light is reduced, and handwritten characters are accurate. Can be read.
  • the image sensor 60 is arranged on the side where the S-polarized light is emitted from the polarizing beam splitter 30, and the P-polarized light is emitted on the side where the polarized light is emitted from the polarizing beam splitter 30.
  • a reflective liquid crystal element 40 is disposed.
  • the projection apparatus according to the second embodiment is a modification of the projection apparatus of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
  • a polarization conversion element 82 that aligns the polarization direction is disposed on the illumination optical system 20 side of the polarization beam splitter 30.
  • the polarization conversion element 82 is a combination of, for example, a polarization beam splitter and a wavelength plate, and converts S polarization into P polarization among S polarization and P polarization included in illumination light emitted from the illumination optical system 20. Thereby, only substantially P-polarized illumination light can be made incident on the polarization beam splitter 30, and not only the loss of the light source light is reduced, but also the light leaking to the image sensor 60 side can be surely reduced.
  • the P-polarized light is incident on the polarization beam splitter 30 from the polarization conversion element 82 with reference to the polarization separation surface 31, but as a result, the P-polarized light is incident on the projection surface 1a. It also becomes.
  • the projector according to the third embodiment will be described below.
  • the projection apparatus according to the third embodiment is a modification of the projection apparatus according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.
  • the paper surface is a horizontal xz plane. That is, in this arrangement, the S-polarized light with respect to the projection surface 1 a becomes the P-polarized light with the polarization separation surface 31 as a reference.
  • the arrangement relationship between the reflective liquid crystal element 40 and the imaging element 60 is changed, the imaging element 60 is arranged opposite to the second surface 30b, and the reflective liquid crystal element is arranged on the fourth surface 30d. 40 are arranged opposite to each other.
  • the separation characteristic of the polarization separation surface 31 of the polarization beam splitter 30 remains as in the first embodiment.
  • the illumination light emitted from the illumination optical system 20 is reflected by the polarization separation surface 31 to enter the reflection type liquid crystal element 40, and the modulated light emitted from the reflection type liquid crystal element 40 is reflected by the polarization separation surface 31.
  • the light is incident on the projection optical system 10 by being transmitted. Further, the imaging light returned from the projection optical system 10 is reflected by the polarization separation surface 31 to be incident on the image sensor 60.
  • the illumination light incident on the reflective liquid crystal element 40 is P-polarized light with respect to the projection surface 1a (that is, S-polarized light with reference to the polarization separation surface 31) and is incident on the projection optical system 10.
  • the projection light is S-polarized light with respect to the projection surface 1a (that is, P-polarization with reference to the polarization separation surface 31), and the image light incident on the image sensor 60 is based on the projection surface 1a.
  • P-polarized light that is, S-polarized light with the polarization separation surface 31 as a reference.
  • the polarization limiting unit 80 interposed between the polarization beam splitter 30 and the image sensor 60 cuts S-polarized light with the projection surface 1a as a reference (resulting in P-polarized light with the polarization separation surface 31 as a reference). It shall be.
  • the projector 100 according to the embodiment has been described above, but the projector according to the present invention is not limited to the above.
  • the specific configurations of the projection optical system 10 and the illumination optical system 20 are not limited to those shown in the drawings, and can be changed as appropriate according to the application.
  • the projection device may project downward or may project in the left-right direction. In any case, it is possible to cut S-polarized light which is large in the reflected light component on the projection surface 1a and reaches the image sensor 60.

Abstract

This projection device is provided with an illumination optical system 20, a polarized beam splitter 30, an image display element 40, a projection optical system 10, and an imaging element 60, wherein the imaging element 60 is arranged on the side in which P-polarized light having lesser reflection light components on a projection surface 1a transmits, and influence of unnecessary reflection light on the projection surface 1a, including S-polarized light at a high rate, is reduced. Further, for illumination light, the imaging element 60 is arranged on the side in which the S-polarized light is emitted from the polarized beam splitter 30, and a reflection-type liquid crystal element 40 is arranged on the side in which the P-polarized light is emitted from the polarized beam splitter 30. A polarized beam restriction section 80 for cutting the S-polarized light is provided between the polarized beam splitter 30 and the imaging element 60, and accordingly the S-polarized light can be prevented from entering the imaging element 60 directly and influence of stray light in the optical system can be inhibited.

Description

投影装置Projection device
 本発明は、画像を投影する投影装置に関するものであり、特に投影像などの撮影が可能な投影装置に関する。 The present invention relates to a projection apparatus that projects an image, and more particularly to a projection apparatus that can capture a projected image.
 近年、画像表示素子に表示された画像を投影光学系によってスクリーン上に拡大投影する投影装置には、単にPC画面をスクリーンなどに投影するだけでなく、ホワイトボードなどにPC画面を投影しながら、そこに手書きの文字を書き込み、その情報を画像として記録したり、発表者の動きを感知して投影画面のページを進ませるなどの、インタラクティブな機能の付いたものが出てきている。また、これを実現する投影装置には、投影画像の台形歪み補正や周辺環境に合わせた明るさ補正などの使用状況に応じた各種補正処理が必要となってくる。 In recent years, a projection apparatus that enlarges and projects an image displayed on an image display element onto a screen by a projection optical system, not only simply projecting a PC screen onto a screen, but also projecting the PC screen onto a whiteboard or the like, Some of them have interactive functions, such as writing handwritten characters and recording the information as images, or detecting the movement of the presenter and advancing the projection screen page. In addition, a projection apparatus that realizes this requires various correction processes according to usage conditions such as trapezoidal distortion correction of projection images and brightness correction according to the surrounding environment.
 単純な台形歪み補正や明るさ補正を行う、または人物の単純な動きを検出するだけであれば、撮影装置はVGA程度の画素数で十分であるが、手書きの文字を投影画像に重畳させて画像データとして取り込むためには、メガクラスの解像度が必要となり、それに用いられる撮像レンズにも高性能であることが望まれてくる。 If simple trapezoidal distortion correction or brightness correction is performed, or if only simple movements of a person are detected, the number of pixels of the imaging device is sufficient, but handwritten characters are superimposed on the projected image. In order to capture as image data, a mega-class resolution is required, and it is desired that an imaging lens used for the resolution has high performance.
 また、手書きを追加するためにホワイトボードなどの比較的光沢のある面に投影すると、天井にある蛍光灯や窓からの太陽光などが投影面で反射してしまい、手書きの文字が読み取りにくくなるといった不具合が生じる。 Also, when projecting onto a relatively glossy surface such as a whiteboard to add handwriting, fluorescent light on the ceiling or sunlight from the window is reflected on the projection surface, making it difficult to read handwritten characters Such a problem occurs.
 そういったインタラクティブ機能向けの撮影装置として、投影光学系と別体で撮影光学系を具備するのではなく、投影光学系の一部の光路を分岐して、投影光学系を共通で撮影光学系としても使用するアイデア(本明細書中では一体型と呼ぶ)が提案されている(例えば特許文献1及び2)。 As an imaging device for such an interactive function, a projection optical system is not provided as a separate unit from the projection optical system, but a part of the optical path of the projection optical system is branched so that the projection optical system can be used as a common imaging optical system. An idea to be used (referred to as an integrated type in this specification) has been proposed (for example, Patent Documents 1 and 2).
 投影光学系を撮影光学系としてそのまま用いる一体型とすることで、投影光学系で発生する歪曲収差をはじめとしたレンズ系で発生する各種収差を撮影時にキャンセルすることができるので、高解像度で低歪みな撮影画像を得ることができる。また、投影光学系の光軸と撮影光学系の光軸とが一致しているため、投影画像と撮影画像との間に視差が生じず、手書き文字を投影像に重畳させる際に特別な画像処理などが必要とならない。 By integrating the projection optical system as an imaging optical system as it is, various aberrations that occur in the lens system, including distortion aberrations that occur in the projection optical system, can be canceled at the time of shooting. A distorted photographed image can be obtained. In addition, since the optical axis of the projection optical system and the optical axis of the photographing optical system match, there is no parallax between the projected image and the photographed image, and a special image is used when superimposing handwritten characters on the projected image. No processing is required.
 しかしながら、上記特許文献1及び2において、前述した被投影面での不要光の反射などの対策については言及されていない。また、一体型の光学系では、撮像素子が照明光学系に近接した位置に配置されるため、光学系内の迷光が撮像素子に入射して撮影画像の劣化を招くおそれがあるが、その対策についても言及されていない。 However, Patent Documents 1 and 2 do not mention countermeasures such as reflection of unnecessary light on the projection surface described above. Further, in the integrated optical system, since the image sensor is disposed at a position close to the illumination optical system, stray light in the optical system may enter the image sensor and cause deterioration of the captured image. Is not mentioned.
特開2001-343703号公報JP 2001-343703 A 特開2012-68364号公報JP 2012-68364 A
 本発明は、上記背景技術に鑑みてなされたものであり、不要な被投影面での反射光や光学系内の迷光の影響を受けず、低歪曲で視差のない、高解像度な撮影画像を確保可能な投影装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned background art, and is not affected by unnecessary reflected light on the projection surface or stray light in the optical system, and has a low-resolution and high-resolution captured image. An object is to provide a projection apparatus that can be secured.
 上記目的を達成するため、本発明の一側面を反映した投影装置は、照明用の光を射出する照明光学系と、入射光の直線偏光の偏光方向に従い入射光を透過または反射することによって光の分離を行う偏光ビームスプリッター(以下、PBSとも呼ぶ)と、照明光学系からの光が偏光ビームスプリッターを介して入射する画像表示素子と、画像表示素子による像を偏光ビームスプリッターを介して被投影面に拡大投影する投影光学系と、被投影面における像を撮像するための撮像素子と、を備え、撮像する際に投影光学系を共通で使用し、偏光ビームスプリッターで投影側の光路と撮像側の光路とを分けており、照明光学系からの光のうち偏光ビームスプリッターの偏光分離面で分離されて画像表示素子に向かう光の経路から外れる側であって、被投影面からの被投影面を基準とするP偏光が進む側に、撮像素子は配置され、偏光ビームスプリッターと撮像素子との間に、被投影面を基準とするS偏光をカットする偏光制限部を設けている。
 これにより、投影光学系と撮影光学系とが一体型の光学系を用いることになり、不要な被投影面での反射光や光学系内の迷光の影響を受けず、低歪曲で視差のない、高解像度な撮影画像を確保可能な投影装置を提供することができる。
In order to achieve the above object, a projection apparatus reflecting one aspect of the present invention is an illumination optical system that emits illumination light, and transmits or reflects incident light according to the polarization direction of linearly polarized light of incident light. A polarizing beam splitter (hereinafter also referred to as PBS), an image display element on which light from the illumination optical system enters through the polarizing beam splitter, and an image by the image display element to be projected through the polarizing beam splitter A projection optical system that magnifies and projects onto a surface, and an image sensor for capturing an image on the projection surface. The projection optical system is used in common when imaging, and the optical path and image on the projection side are captured by a polarizing beam splitter. And is separated from the light path from the illumination optical system by the polarization separation surface of the polarization beam splitter and deviates from the light path toward the image display element. An imaging device is arranged on the side where the P-polarized light from the projection surface advances with reference to the projection surface, and polarization restriction that cuts S-polarization with reference to the projection surface between the polarization beam splitter and the imaging device. Is provided.
As a result, an optical system in which the projection optical system and the photographing optical system are integrated is used, and is not affected by unnecessary reflected light on the projection surface or stray light in the optical system, and has low distortion and no parallax. In addition, it is possible to provide a projection device that can ensure a high-resolution captured image.
本発明に係る第1実施形態の投影装置の構造を説明する図である。It is a figure explaining the structure of the projection apparatus of 1st Embodiment which concerns on this invention. 図2A及び2Bは、図1に示す投影装置の設置状態の一例を説明する背面図及び側面図である。2A and 2B are a rear view and a side view for explaining an example of the installation state of the projection apparatus shown in FIG. スクリーンへの不要光の入射角と反射率との関係を説明するグラフである。It is a graph explaining the relationship between the incident angle of the unnecessary light to a screen, and a reflectance. スローレシオと反射率との関係を説明するグラフである。It is a graph explaining the relationship between a slow ratio and a reflectance. 第2実施形態の投影装置の構造を説明する図である。It is a figure explaining the structure of the projection apparatus of 2nd Embodiment. 第3実施形態の投影装置の構造を説明する図である。It is a figure explaining the structure of the projection apparatus of 3rd Embodiment.
 〔第1実施形態〕
 以下、図面を参照しつつ、本発明に係る第1実施形態の投影装置の構造等について説明する。
[First Embodiment]
The structure and the like of the projection apparatus according to the first embodiment of the present invention will be described below with reference to the drawings.
 図1に示すように、第1実施形態に係る投影装置100は、画像の投影に際して撮像を可能にするものであり、投影光学系10、照明光学系20、偏光ビームスプリッター30、反射型液晶素子40、画像駆動回路50、撮像素子60、撮像駆動回路70、偏光制限部80、及び制御回路90を備える。 As shown in FIG. 1, a projection apparatus 100 according to the first embodiment enables imaging when projecting an image, and includes a projection optical system 10, an illumination optical system 20, a polarization beam splitter 30, and a reflective liquid crystal element. 40, an image driving circuit 50, an imaging device 60, an imaging driving circuit 70, a polarization limiting unit 80, and a control circuit 90.
 投影光学系10は、詳細な説明を省略するが、画像表示素子である反射型液晶素子40から得られる像を拡大してスクリーンその他の被投影体(不図示)に投影する。投影光学系10は、複数のレンズ群からなり、一部のレンズ群を光軸OA'方向に移動させることにより、フォーカシングや変倍を行わせることができる。投影光学系10の光軸OA'は投影像を被投影体に対して斜め方向から投影するために、反射型液晶素子40の中心(照明光学系20の光軸OA)から平行にシフトされている。 Although the detailed description is omitted, the projection optical system 10 enlarges an image obtained from the reflective liquid crystal element 40 as an image display element and projects it on a screen or other projection target (not shown). The projection optical system 10 is composed of a plurality of lens groups, and focusing and zooming can be performed by moving some lens groups in the direction of the optical axis OA ′. The optical axis OA ′ of the projection optical system 10 is shifted in parallel from the center of the reflective liquid crystal element 40 (the optical axis OA of the illumination optical system 20) in order to project the projected image obliquely with respect to the projection target. Yes.
 照明光学系20は、光源21、均一化光学系22等を備える。均一化光学系22は、光源21から射出された光の分割及び重畳によって、反射型液晶素子40上に照射する光の照度を光軸OAに垂直な断面に関して2次元的に均一化する。 The illumination optical system 20 includes a light source 21, a uniformizing optical system 22, and the like. The uniformizing optical system 22 two-dimensionally uniformizes the illuminance of the light irradiated on the reflective liquid crystal element 40 with respect to the cross section perpendicular to the optical axis OA by dividing and superimposing the light emitted from the light source 21.
 偏光ビームスプリッター(PBS)30は、一対の直角プリズムを貼り合わせたものであり、貼合わせ面において、一方の直角プリズムの斜面には、照明光学系20から入射した所定方向の直線偏光を選択的に透過させる偏光分離膜からなる偏光分離面31が形成されている。これにより、照明光学系20から射出された照明光を透過させ、後述する反射型液晶素子40に入射させることができる。また、偏光ビームスプリッター30は、この反射型液晶素子40から射出された変調光を反射し、投影光学系10に入射させることができる。さらに、投影光学系10から戻ってきた撮影光を透過させ、撮像素子60に入射させることができる。見方を変えれば、偏光ビームスプリッター30は、偏光分離面31に対して傾斜した状態で対向する4つの面30a,30b,30c,30dを有し、第1面30aは、照明光学系20の光射出部に対向し、第2面30bは、反射型液晶素子40に対向し、第3面30cは、投影光学系10に対向し、第4面30dは、撮像素子60に対向する。なお、詳細は後述するが、偏光分離面31は、これを基準とするS偏光を反射しP偏光を透過するものとなっており、偏光分離面31を基準とするS偏光に関しては、照明光学系20及び撮像素子60からなるグループと、投影光学系10及び反射型液晶素子40からなるグループとが光路的に分離され互いに独立した状態となる。一方、偏光分離面31を基準とするP偏光に関しては、照明光学系20及び反射型液晶素子40からなるグループと、投影光学系10及び撮像素子60からなるグループとが光路的に分離され互いに独立した状態となる。 The polarization beam splitter (PBS) 30 is a pair of right-angle prisms bonded together, and on the bonded surface, linearly polarized light in a predetermined direction incident from the illumination optical system 20 is selectively applied to the inclined surface of one right-angle prism. A polarization separation surface 31 made of a polarization separation film that is transmitted through is formed. Thereby, the illumination light emitted from the illumination optical system 20 can be transmitted and incident on a reflective liquid crystal element 40 described later. Further, the polarization beam splitter 30 can reflect the modulated light emitted from the reflective liquid crystal element 40 and make it incident on the projection optical system 10. Further, the photographing light returned from the projection optical system 10 can be transmitted and incident on the image sensor 60. In other words, the polarization beam splitter 30 has four surfaces 30a, 30b, 30c, and 30d that are opposed to the polarization separation surface 31 in an inclined state, and the first surface 30a is light of the illumination optical system 20. The second surface 30 b faces the reflective liquid crystal element 40, the third surface 30 c faces the projection optical system 10, and the fourth surface 30 d faces the image sensor 60. Although the details will be described later, the polarization separation surface 31 reflects S-polarized light with reference to this and transmits P-polarized light. With respect to S-polarized light with reference to the polarization separation surface 31, illumination optics is used. The group consisting of the system 20 and the image sensor 60 and the group consisting of the projection optical system 10 and the reflective liquid crystal element 40 are separated from each other in the optical path and become independent from each other. On the other hand, with respect to P-polarized light with the polarization separation surface 31 as a reference, the group consisting of the illumination optical system 20 and the reflective liquid crystal element 40 and the group consisting of the projection optical system 10 and the imaging element 60 are separated in the optical path and independent of each other. It will be in the state.
 反射型液晶素子40は、映像光を形成する表示素子(画像表示素子)であり、特に空間的な反射率を変化させることによって照明光から映像光を形成する点で光変調素子と言える。反射型液晶素子(画像表示素子)30は、板状の電子部品である画像表示パネルからなる。この反射型液晶素子40は、LCOS(Liquid crystal on silicon)とも称されるマイクロディスプレイであり、シリコンチップの表面に直接回路が形成され対向基板との間に液晶層を挟み込んだものである。反射型液晶素子40は、液晶層に対し駆動信号に応じた電圧が画素毎に印加されると、液晶分子の配列を変化させることで照明光を変調し、反射によって所望の画像を表示するものである。この際、偏光分離面31を基準とするP偏光を照明光として反射型液晶素子40に入射させる場合、偏光分離面31を基準とするS偏光が映像光として反射される。 The reflective liquid crystal element 40 is a display element (image display element) that forms image light, and can be said to be a light modulation element in that image light is formed from illumination light by changing a spatial reflectance. The reflective liquid crystal element (image display element) 30 is an image display panel that is a plate-like electronic component. The reflection type liquid crystal element 40 is a micro display also called LCOS (Liquid crystal on silicon), in which a circuit is directly formed on the surface of a silicon chip and a liquid crystal layer is sandwiched between a counter substrate. The reflective liquid crystal element 40 modulates illumination light by changing the arrangement of liquid crystal molecules when a voltage corresponding to a driving signal is applied to a liquid crystal layer for each pixel, and displays a desired image by reflection. It is. At this time, when P-polarized light based on the polarization separation surface 31 is incident on the reflective liquid crystal element 40 as illumination light, S-polarized light based on the polarization separation surface 31 is reflected as video light.
 画像駆動回路50は、画像信号に基づいて反射型液晶素子40を動作させる回路部分である。画像駆動回路50は、後述する制御回路90からの制御信号に基づいて動作し、反射型液晶素子40に画像信号に対応する駆動信号を出力し画像の表示動作を行わせる。 The image driving circuit 50 is a circuit portion that operates the reflective liquid crystal element 40 based on an image signal. The image drive circuit 50 operates based on a control signal from a control circuit 90 described later, and outputs a drive signal corresponding to the image signal to the reflective liquid crystal element 40 to perform an image display operation.
 撮像素子60は、固体撮像素子であり、被写体像を検出するCMOS型のイメージセンサーである。撮像素子60の光電変換部又は撮像面(不図示)上には、投影光学系10によって形成された画像が投影される。つまり、撮像素子60の光電変換部上には、撮像光学系としても用いられる投影光学系10によってホワイトボードその他の被投影体の画像が縮小投影される。なお、撮像素子60は、上述のCMOS型のイメージセンサーに限るものでなく、CCD等の他のものを適用したものであってもよい。なお、撮像素子60によってカバーされる画角又は面積は、反射型液晶素子40によって被投影体上に表示が行われる範囲の画角又は面積よりも広くなっている。 The image sensor 60 is a solid-state image sensor and is a CMOS image sensor that detects a subject image. An image formed by the projection optical system 10 is projected onto the photoelectric conversion unit or the imaging surface (not shown) of the imaging element 60. That is, on the photoelectric conversion unit of the image sensor 60, an image of a whiteboard or other projection object is reduced and projected by the projection optical system 10 also used as an imaging optical system. Note that the image pickup device 60 is not limited to the above-described CMOS type image sensor, and may be one to which another device such as a CCD is applied. Note that the angle of view or area covered by the image sensor 60 is larger than the angle of view or area of the range where display is performed on the projection object by the reflective liquid crystal element 40.
 撮像駆動回路70は、YUVその他のデジタル画素信号を外部回路へ出力したり、制御回路90から撮像素子60を駆動するための電圧やクロック信号の供給を受けたりすることによって、撮像素子60に像検出動作を行わせている。 The imaging driving circuit 70 outputs YUV and other digital pixel signals to an external circuit, and receives a voltage and a clock signal for driving the imaging element 60 from the control circuit 90, thereby causing an image on the imaging element 60. The detection operation is performed.
 偏光制限部80は、偏光ビームスプリッター30と撮像素子60との間に介在させる光学素子であり、偏光分離面31を基準とするS偏光(結果的に後述する被投影面1aを基準とするS偏光)をカットする役割を有する。偏光制限部80として、例えば吸収型のガラス偏光子、ワイヤーグリッドを用いた反射型の偏光子、複屈折性の誘電体を多数層積層した反射型の偏光子、その他の偏光フィルターを用いることができる。偏光制限部80を設けることで、照明光学系20からの照明光のうちS偏光成分が偏光ビームスプリッター30の偏光分離面31を介して撮像素子60に入射して撮影を妨げることを防止できる。 The polarization limiting unit 80 is an optical element that is interposed between the polarization beam splitter 30 and the image sensor 60, and is S-polarized light with reference to the polarization separation surface 31 (resulting in S with reference to the projection surface 1a described later). (Polarized light). As the polarization limiting unit 80, for example, an absorption type glass polarizer, a reflection type polarizer using a wire grid, a reflection type polarizer in which multiple layers of birefringent dielectrics are stacked, and other polarization filters may be used. it can. By providing the polarization limiting unit 80, it is possible to prevent the S-polarized component of the illumination light from the illumination optical system 20 from entering the image sensor 60 through the polarization separation surface 31 of the polarization beam splitter 30 and preventing shooting.
 制御回路90は、これに組み込まれたプログラムや不図示の操作部からの指示に基づいて、画像駆動回路50、撮像駆動回路70等を適宜動作させることができる。制御回路90は、例えば外部から入力されたビデオ信号その他の信号に基づいて画像駆動回路50に対して駆動信号や画像信号を出力し、反射型液晶素子40に表示動作を行わせる。また、制御回路90は、例えば撮像素子60から撮像駆動回路70を介して得た撮像データに対して種々の画像処理を行うことができ、取得した撮像データ又は処理後のデータを保管することができる。 The control circuit 90 can appropriately operate the image driving circuit 50, the imaging driving circuit 70, and the like based on a program incorporated therein or an instruction from an operation unit (not shown). The control circuit 90 outputs a drive signal or an image signal to the image drive circuit 50 based on, for example, a video signal or other signal input from the outside, and causes the reflective liquid crystal element 40 to perform a display operation. In addition, the control circuit 90 can perform various image processing on the imaging data obtained from the imaging device 60 via the imaging drive circuit 70, for example, and can store the acquired imaging data or processed data. it can.
 図2A及び2Bを参照して、図1に示す投影装置100の使用状態または設置状態について説明する。投影装置100は、ホワイトボード、スクリーンその他の被投影面1aに対して正面下側に対向するように配置されている。ここで、被投影面1aからの反射光であって投影装置100の投影光学系10に入射するものは、被投影面1aを基準としてS偏光成分とP偏光成分とを含む。ここで、被投影面1aを基準とするS偏光成分とは、投影光の中心軸と、投影光の中心軸が被投影面1aと交差する投影画像中心における法線とが作る平面に垂直な方向に振動する偏光成分であり、P偏光成分は、前記平面に平行な方向に振動する偏光成分である。図2A及び2Bの使用状態において、被投影面1aを基準とするS偏光及びP偏光は、偏光ビームスプリッター30の偏光分離面31を基準とするS偏光及びP偏光と一致する。つまり、S偏光は、その電界ベクトルが投影装置100及び被投影面1aに共通しており鉛直に延びるyz面に対して垂直に振動するものとなっている。 Referring to FIGS. 2A and 2B, the usage state or installation state of the projection apparatus 100 shown in FIG. 1 will be described. The projection apparatus 100 is disposed so as to face the lower side of the front face with respect to the projection surface 1a such as a whiteboard, a screen, or the like. Here, the reflected light from the projection surface 1a that is incident on the projection optical system 10 of the projection apparatus 100 includes an S-polarized component and a P-polarized component with respect to the projection surface 1a. Here, the S-polarized light component with respect to the projection surface 1a is perpendicular to the plane formed by the central axis of the projection light and the normal line at the center of the projection image where the central axis of the projection light intersects the projection surface 1a. The P-polarized component is a polarized component that oscillates in a direction parallel to the plane. 2A and 2B, the S-polarized light and the P-polarized light with the projection surface 1a as a reference coincide with the S-polarized light and the P-polarized light with the polarization separation surface 31 of the polarizing beam splitter 30 as a reference. That is, the S-polarized light has an electric field vector common to the projection apparatus 100 and the projection surface 1a and vibrates perpendicularly to the yz plane extending vertically.
 図1等に戻って、投影装置100の動作について説明する。まず、投影時の光線経路について説明する。光源21から出射された光線は、反射型液晶素子(画像表示素子)40上の照度を均一にするための均一化光学系22を通過し、光線の偏光状態を2つに分離するための偏光ビームスプリッター30に入射する。図示の偏光ビームスプリッター30は、S偏光成分を反射し、P偏光成分を透過させるような偏光分離面31を持っている。偏光分離面31を透過したP偏光の光線は、反射型液晶素子40へ入射し、反射型液晶素子40で反射されて出射したS偏光の光線(変調成分)のみが偏光分離面31で反射され、投影光学系10へと入射して被投影面1aに投影される。 Returning to FIG. 1 and the like, the operation of the projection apparatus 100 will be described. First, the light path during projection will be described. The light beam emitted from the light source 21 passes through the uniformizing optical system 22 for making the illuminance on the reflective liquid crystal element (image display element) 40 uniform, and is polarized light for separating the polarization state of the light beam into two. The light enters the beam splitter 30. The illustrated polarization beam splitter 30 has a polarization separation surface 31 that reflects the S polarization component and transmits the P polarization component. The P-polarized light beam transmitted through the polarization separation surface 31 enters the reflective liquid crystal element 40, and only the S-polarized light beam (modulation component) reflected and emitted from the reflective liquid crystal element 40 is reflected by the polarization separation surface 31. Then, the light enters the projection optical system 10 and is projected onto the projection surface 1a.
 次に、撮像時の光線経路について説明する。被投影面1aを有するホワイトボードなどに書いた手書き文字や投影像を撮影する際には、被投影面1aからの光線は、投影時と同じ光路を逆行するように投影光学系10を通過した後に偏光ビームスプリッター30へ入射し、偏光分離面31でS偏光成分とP偏光成分とに分離される。ここで、偏光ビームスプリッター30に対して偏光分離面31を通過するP偏光成分が出射する方向に撮像素子60が配置されており、偏光分離面31を透過したP偏光成分のみが撮像素子60に入射し画像として記録される。 Next, the ray path at the time of imaging will be described. When photographing a handwritten character or a projected image written on a whiteboard or the like having the projection surface 1a, light rays from the projection surface 1a have passed through the projection optical system 10 so as to travel in the same optical path as during projection. Later, the light enters the polarization beam splitter 30 and is separated into an S-polarized component and a P-polarized component by the polarization separation surface 31. Here, the image sensor 60 is arranged in a direction in which the P-polarized component passing through the polarization separation surface 31 is emitted with respect to the polarization beam splitter 30, and only the P-polarized component transmitted through the polarization separation surface 31 is applied to the image sensor 60. Incident light is recorded as an image.
 以上のように、偏光ビームスプリッター30を利用して、反射型液晶素子40を対向させる第2面30bに隣接する第4面30dに対向させて撮像素子60を配置することで、投影光学系10を撮影光学系としてそのまま使用することができるようになる。そうすることで、投影像を撮影する際には、光線が投影光学系10を投影時とは逆向きに通過することになるので、投影光学系10で発生する歪曲収差や、その他解像力低下を引き起こす倍率色収差がキャンセルされることになる。そのため、周辺部まで高解像力で、低歪みの画像を得ることができるようになる。また、投影光学系10と撮影光学系とを実質的に同じ光路で構成することができるので、投影像と撮影像の間に視差が生じることはない。 As described above, by using the polarizing beam splitter 30, the imaging optical device 10 is disposed so as to face the fourth surface 30 d adjacent to the second surface 30 b that faces the reflective liquid crystal element 40. Can be used as it is as a photographing optical system. By doing so, when taking a projection image, the light beam passes through the projection optical system 10 in the opposite direction to that during projection. Therefore, distortion aberration generated in the projection optical system 10 and other reductions in resolving power are reduced. The resulting lateral chromatic aberration will be cancelled. Therefore, it is possible to obtain a low distortion image with high resolution up to the peripheral part. Further, since the projection optical system 10 and the photographing optical system can be configured with substantially the same optical path, no parallax occurs between the projected image and the photographed image.
 この投影装置100では、偏光ビームスプリッター30の偏光分離面31で照明光から分離されたS偏光成分をカットする手段として、偏光制限部80を偏光ビームスプリッター30と撮像素子60との間に設けている。これにより、照明光学系20からの光が直接撮像素子60に入射することを防ぐことができ、光学系内の迷光の影響を抑制することが可能となる。 In the projection apparatus 100, a polarization limiting unit 80 is provided between the polarization beam splitter 30 and the imaging device 60 as means for cutting the S-polarized light component separated from the illumination light by the polarization separation surface 31 of the polarization beam splitter 30. Yes. Thereby, it is possible to prevent the light from the illumination optical system 20 from directly entering the image sensor 60, and to suppress the influence of stray light in the optical system.
 図3に示すように、S偏光及びP偏光の物質表面での反射率には、入射角度に依存する差がある(参考文献として、例えばEugene Hecht著、尾崎義治・朝倉利光訳「ヘクト光学II」(丸善出版)の103頁を参照のこと)。すなわち、被投影面1aでの不要な反射光は、S偏光成分が多く含まれていることとなる。そこで、撮影時には不要光の影響を受けにくいP偏光成分が透過する側、言い換えると、照明光学系20の光線のうちS偏光成分が偏光ビームスプリッター30から出射していく側に撮像素子60が配置されていることが望ましい。そうすることで、被投影面1aでの不要な反射光の影響を小さくし、手書き文字などを正確に読み取ることができるようになる。 As shown in FIG. 3, there is a difference depending on the incident angle in the reflectance on the material surface of S-polarized light and P-polarized light (for example, Eugene Hecht, Yoshiharu Ozaki and Toshimitsu Asakura, “Hech Optics II (See page 103 of Maruzen Publishing). That is, unnecessary reflected light on the projection surface 1a contains a large amount of S-polarized light components. Therefore, the imaging element 60 is arranged on the side through which the P-polarized light component that is not easily affected by unnecessary light at the time of photographing, in other words, on the side from which the S-polarized light component of the illumination optical system 20 exits from the polarization beam splitter 30. It is desirable that By doing so, the influence of unnecessary reflected light on the projection surface 1a can be reduced, and handwritten characters can be read accurately.
 なお、以上の図3のチャートにおいて、不要光を反射する媒質の屈折率が1.5であるとした。被投影面1aとして例えばホワイトボードの表面が想定される。ホワイトボードは、エナメルや鉄で表面がコートされている。エナメルにはフタル酸樹脂エナメルなどが含まれ、フタル酸樹脂エナメルの屈折率は約1.5程度である。 In the above chart of FIG. 3, it is assumed that the refractive index of the medium that reflects unnecessary light is 1.5. For example, a surface of a whiteboard is assumed as the projection surface 1a. The whiteboard is coated with enamel or iron. Enamel includes phthalate resin enamel, and the refractive index of phthalate resin enamel is about 1.5.
 以下、被投影面1aでの不要光の影響について定量的な数値結果を示す。図2B等に示すように、例えば投影装置100を被投影面1aの下方に配置し、被投影面1aに対して上向きに投影しているとする。このとき、太陽光や天井の照明灯などの不要光FHが被投影面に45°の角度で入射し、投影装置100の投影光学系10に入射してきたと仮定する。この場合、図3に示す特性により、不要光FHの強度を1とした場合の2つの偏光成分は、P偏光成分が0.008、S偏光成分が0.092となる。一方で、正規の投影像や被投影面1aに書かれた文字からの光(正規光と呼ぶ)は、投影光学系10を通過後、偏光ビームスプリッター30にて偏光成分が分離されS偏光成分が阻止されるため、撮像素子60に入射する光量は正規光強度1に対して0.5となる。通常、不要光FHの強度は正規光の強度よりも高く、仮に不要光強度を正規光強度の10倍であると仮定すると、撮像素子60に入射する正規光強度と不要光強度とは、正規光が0.5に対し不要光FHが0.08となり(正規光と不要光FHとの比は1:0.16)、正規光に対して不要光FHを十分小さくすることができることが分かる。 Hereinafter, quantitative numerical results regarding the influence of unnecessary light on the projection surface 1a will be shown. As shown in FIG. 2B and the like, for example, it is assumed that the projection apparatus 100 is disposed below the projection surface 1a and is projected upward with respect to the projection surface 1a. At this time, it is assumed that unnecessary light FH such as sunlight or a ceiling lamp enters the projection surface at an angle of 45 ° and enters the projection optical system 10 of the projection apparatus 100. In this case, the two polarization components when the intensity of the unnecessary light FH is 1 are 0.008 for the P polarization component and 0.092 for the S polarization component due to the characteristics shown in FIG. On the other hand, the light from the regular projection image and the characters written on the projection surface 1a (referred to as regular light) passes through the projection optical system 10, and then the polarization component is separated by the polarization beam splitter 30, and the S polarization component. Therefore, the amount of light incident on the image sensor 60 is 0.5 with respect to the normal light intensity of 1. Usually, the intensity of the unnecessary light FH is higher than the intensity of the normal light, and assuming that the unnecessary light intensity is 10 times the normal light intensity, the normal light intensity incident on the image sensor 60 and the unnecessary light intensity are The unnecessary light FH is 0.08 with respect to 0.5 light (ratio of normal light to unnecessary light FH is 1: 0.16), and it can be seen that the unnecessary light FH can be sufficiently reduced with respect to normal light. .
 一方、撮像素子60と反射型液晶素子40の位置関係が逆であった場合は、S偏光成分が撮像素子60に到達しやすくなり、上記と同じ条件下で計算すると、正規光が0.5に対し不要光FHが0.92となってしまい(正規光と不要光FHとの比は1:1.84)、正規光以上の強度で不要光FHが撮像素子60に入射してしまうこととなる。この結果をまとめたのが以下の表1である。この結果から、照明光学系20の光線において、S偏光成分が偏光ビームスプリッター30から出射していく側に撮像素子60が配置されていることが望ましいことが分かる。
〔表1〕
Figure JPOXMLDOC01-appb-I000001
On the other hand, when the positional relationship between the image sensor 60 and the reflective liquid crystal element 40 is reversed, the S-polarized component easily reaches the image sensor 60. When calculated under the same conditions as described above, the normal light is 0.5. In contrast, the unnecessary light FH becomes 0.92 (the ratio of the normal light and the unnecessary light FH is 1: 1.84), and the unnecessary light FH is incident on the image sensor 60 with an intensity higher than that of the normal light. It becomes. The results are summarized in Table 1 below. From this result, it can be seen that it is desirable that the image sensor 60 be disposed on the side where the S-polarized component is emitted from the polarization beam splitter 30 in the light beam of the illumination optical system 20.
[Table 1]
Figure JPOXMLDOC01-appb-I000001
 以下、投影光学系10のスローレシオについて説明する。図2A及び2Bを参照して説明すると、スローレシオTrは、投影距離D(投影装置100から被投影面1aまでの距離)を投影画像PGの水平方向サイズWで割った値である。説明を分かりやすくするため、投影画像PGは16:9のアスペクト比を持っており、投影装置100は投影画像PGの下端と同じ高さから投影していると仮定する。この場合、最も被投影面1aで大きな角度で反射されて投影装置100に入射してくる不要光FHは、被投影面1aの上端部における反射となる。そこで、スローレシオTrが決まると、水平方向サイズWから得た垂直方向サイズHを求めて、投影装置100に入射してくる不要光FHの最大入射角度θを決定できる。 Hereinafter, the slow ratio of the projection optical system 10 will be described. 2A and 2B, the slow ratio Tr is a value obtained by dividing the projection distance D (the distance from the projection apparatus 100 to the projection surface 1a) by the horizontal size W of the projection image PG. For ease of explanation, it is assumed that the projection image PG has an aspect ratio of 16: 9, and the projection apparatus 100 projects from the same height as the lower end of the projection image PG. In this case, the unnecessary light FH that is reflected at the largest angle on the projection surface 1a and enters the projection apparatus 100 is reflected at the upper end of the projection surface 1a. Therefore, when the slow ratio Tr is determined, the vertical size H obtained from the horizontal size W is obtained, and the maximum incident angle θ of the unnecessary light FH incident on the projection device 100 can be determined.
 図4は、スローレシオTrを変化させた場合の不要光FHの最大角度から、この不要光FHについての偏光ごとの反射率をグラフ化したものである。スローレシオTrが小さくなると、その分投影装置100に入射してくる不要光FHの被投影面1aにおける反射角度が大きくなる傾向がある。そこで、S偏光成分とP偏光成分の反射率の乖離が大きくなって偏光制限部80を配置する意義が高まるように、スローレシオTrを以下の範囲とするような投写を行うことが好ましい。
 0.1<Tr<1.0   …   (1)
上記条件式(1)の上限値を下回ることで、被投影面1aで比較的大きな角度で反射される不要光FHが投影装置100に入射してくることになるので、図4に示すように、よりS偏光成分とP偏光成分の反射率の乖離が大きくなり、偏光制限部80を偏光ビームスプリッター30と撮像素子60との間に配置して照明灯の写り込みといった不要光FHの撮影を抑制する効果が増大するといえる。逆に、スローレシオが小さくなりすぎると、被投影面1aにおける不要光FHの反射角度が大きくなりすぎて却ってS偏光とP偏光の反射率の乖離が小さくなってくる。つまり、条件式(1)の下限値を上回ることによっても、不要光FHの入射角度が過剰に大きくならずS偏光とP偏光の反射率の乖離が小さくなることを回避できるので、偏光制限部80を偏光ビームスプリッター30と撮像素子60との間に配置して照明灯の写り込みといった不要光FHの撮影を抑制する効果を維持することができる。
FIG. 4 is a graph of the reflectance for each polarization of the unnecessary light FH from the maximum angle of the unnecessary light FH when the slow ratio Tr is changed. When the slow ratio Tr decreases, the reflection angle of the unnecessary light FH incident on the projection apparatus 100 correspondingly on the projection surface 1a tends to increase. Therefore, it is preferable to perform projection so that the slow ratio Tr is in the following range so that the difference between the reflectances of the S-polarized component and the P-polarized component is increased and the significance of arranging the polarization limiting unit 80 is increased.
0.1 <Tr <1.0 (1)
By falling below the upper limit value of the conditional expression (1), unnecessary light FH reflected at a relatively large angle on the projection surface 1a is incident on the projection apparatus 100. Therefore, as shown in FIG. Thus, the difference in reflectance between the S-polarized component and the P-polarized component becomes larger, and the polarization limiting unit 80 is arranged between the polarizing beam splitter 30 and the image sensor 60 to capture unnecessary light FH such as reflection of an illumination lamp. It can be said that the suppression effect increases. On the contrary, if the slow ratio is too small, the reflection angle of the unnecessary light FH on the projection surface 1a becomes too large, and the difference between the reflectances of the S-polarized light and the P-polarized light becomes small. That is, even when exceeding the lower limit value of the conditional expression (1), it is possible to avoid the incident angle of the unnecessary light FH from being excessively increased and the difference in reflectance between the S-polarized light and the P-polarized light from being reduced. 80 can be disposed between the polarizing beam splitter 30 and the image sensor 60 to maintain the effect of suppressing unnecessary light FH shooting such as the reflection of an illumination lamp.
 なお、図1に示す投影装置100において、偏光ビームスプリッター30の偏光分離面31の分離特性を反転させることもできる。つまり、偏光分離面31を基準とするS偏光を透過させ、偏光分離面31を基準とするP偏光を反射させる。この場合、図示を省略するが、反射型液晶素子40と撮像素子60との配置関係を入れ替え、第2面30bに撮像素子60を対向配置し、第4面30dに反射型液晶素子40を対向配置する。そして、偏光ビームスプリッター30と撮像素子60との間に介在させる偏光制限部80は、偏光分離面31を基準とするS偏光(結果的に被投影面1aを基準とするS偏光)をカットするものとする。 In the projection apparatus 100 shown in FIG. 1, the separation characteristics of the polarization separation surface 31 of the polarization beam splitter 30 can be reversed. That is, the S-polarized light with the polarization separation surface 31 as a reference is transmitted, and the P-polarized light with the polarization separation surface 31 as a reference is reflected. In this case, although illustration is omitted, the arrangement relationship between the reflective liquid crystal element 40 and the image sensor 60 is changed, the image sensor 60 is disposed opposite to the second surface 30b, and the reflective liquid crystal element 40 is opposed to the fourth surface 30d. Deploy. Then, the polarization limiting unit 80 interposed between the polarization beam splitter 30 and the image sensor 60 cuts S-polarized light having the polarization separation surface 31 as a reference (resulting in S-polarized light having the projection surface 1a as a reference). Shall.
 以上で説明した実施形態の投影装置100では、撮影に際して被投影面1aにおける反射光成分が少ないP偏光を透過させる側に撮像素子60が配置されている。これにより、S偏光の割合が多い、被投影面1aでの不要な反射光の影響を小さくしている。また、S偏光をカットする偏光制限部80を、偏光ビームスプリッター30と撮像素子60との間に設けることで、S偏光をカットし、不要な反射光の影響を小さくし、手書き文字などを正確に読み取ることができる。 In the projection apparatus 100 according to the embodiment described above, the image sensor 60 is disposed on the side that transmits the P-polarized light with a small amount of reflected light on the projection surface 1a during photographing. Thereby, the influence of unnecessary reflected light on the projection surface 1a having a large proportion of S-polarized light is reduced. In addition, by providing a polarization limiting unit 80 that cuts S-polarized light between the polarization beam splitter 30 and the image sensor 60, the S-polarized light is cut, the influence of unnecessary reflected light is reduced, and handwritten characters are accurate. Can be read.
 この投影装置100では、照明光学系20からの照明光については、S偏光が偏光ビームスプリッター30から出射する側に、撮像素子60が配置され、P偏光が偏光ビームスプリッター30から出射する側に、反射型液晶素子40が配置されている。S偏光をカットする偏光制限部80を、偏光ビームスプリッター30と撮像素子60との間に設けることで、偏光分離面31に対するS偏光が照明光学系20から撮像素子60に直接入射することを防ぐことができ、光学系内の迷光の影響を抑制することが可能となる。 In the projection apparatus 100, for the illumination light from the illumination optical system 20, the image sensor 60 is arranged on the side where the S-polarized light is emitted from the polarizing beam splitter 30, and the P-polarized light is emitted on the side where the polarized light is emitted from the polarizing beam splitter 30. A reflective liquid crystal element 40 is disposed. By providing the polarization limiting unit 80 that cuts S-polarized light between the polarization beam splitter 30 and the image sensor 60, the S-polarized light with respect to the polarization separation surface 31 is prevented from directly entering the image sensor 60 from the illumination optical system 20. It is possible to suppress the influence of stray light in the optical system.
〔第2実施形態〕
 以下、第2実施形態に係る投影装置について説明する。なお、第2実施形態の投影装置は第1実施形態の投影装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
Hereinafter, the projection apparatus according to the second embodiment will be described. Note that the projection apparatus of the second embodiment is a modification of the projection apparatus of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
 図5に示すように、第2実施形態の投影装置100の場合、偏光ビームスプリッター30の照明光学系20側に偏光方向を揃える偏光変換素子82が配置されている。この偏光変換素子82は、例えば偏光ビームスプリッターや波長板を組み合わせたものであり、照明光学系20から射出された照明光に含まれるS偏光及びP偏光のうちS偏光をP偏光に変換する。これにより、偏光ビームスプリッター30に略P偏光の照明光のみを入射させることができ、光源光のロスが少なくなるだけでなく、撮像素子60側に漏れる光を確実に減少させることができる。なお、この場合、偏光変換素子82から偏光ビームスプリッター30へは、偏光分離面31を基準としてP偏光を入射させるとしたが、結果的に被投影面1aを基準とするP偏光を入射させることにもなる。 As shown in FIG. 5, in the case of the projection apparatus 100 according to the second embodiment, a polarization conversion element 82 that aligns the polarization direction is disposed on the illumination optical system 20 side of the polarization beam splitter 30. The polarization conversion element 82 is a combination of, for example, a polarization beam splitter and a wavelength plate, and converts S polarization into P polarization among S polarization and P polarization included in illumination light emitted from the illumination optical system 20. Thereby, only substantially P-polarized illumination light can be made incident on the polarization beam splitter 30, and not only the loss of the light source light is reduced, but also the light leaking to the image sensor 60 side can be surely reduced. In this case, the P-polarized light is incident on the polarization beam splitter 30 from the polarization conversion element 82 with reference to the polarization separation surface 31, but as a result, the P-polarized light is incident on the projection surface 1a. It also becomes.
〔第3実施形態〕
 以下、第3実施形態に係る投影装置について説明する。なお、第3実施形態の投影装置は第1実施形態の投影装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Third Embodiment]
The projector according to the third embodiment will be described below. The projection apparatus according to the third embodiment is a modification of the projection apparatus according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.
 図6に示すように、第3実施形態の投影装置100の場合、紙面が水平なxz面となっている。つまり、この配置では、被投影面1aを基準とするS偏光は、偏光分離面31を基準とするP偏光となる。これに対応するため、この投影装置100では、反射型液晶素子40と撮像素子60との配置関係を入れ替え、第2面30bに撮像素子60を対向配置し、第4面30dに反射型液晶素子40を対向配置する。ただし、偏光ビームスプリッター30の偏光分離面31の分離特性は、第1実施形態のままとなっている。この結果、照明光学系20から射出された照明光を偏光分離面31で反射させることによって、反射型液晶素子40に入射させ、反射型液晶素子40から射出された変調光を偏光分離面31で透過させることによって、投影光学系10に入射させる。さらに、投影光学系10から戻ってきた撮影光を偏光分離面31で反射させることによって、撮像素子60に入射させる。以上において、反射型液晶素子40に入射させる照明光は、被投影面1aを基準とするP偏光(つまり偏光分離面31を基準とするS偏光)となっており、投影光学系10に入射させる投影光は、被投影面1aを基準とするS偏光(つまり偏光分離面31を基準とするP偏光)となっており、撮像素子60に入射させる画像光は、被投影面1aを基準とするP偏光(つまり偏光分離面31を基準とするS偏光)となっている。この場合、偏光ビームスプリッター30と撮像素子60との間に介在させる偏光制限部80は、被投影面1aを基準とするS偏光(結果的に偏光分離面31を基準とするP偏光)をカットするものとする。 As shown in FIG. 6, in the case of the projection apparatus 100 of the third embodiment, the paper surface is a horizontal xz plane. That is, in this arrangement, the S-polarized light with respect to the projection surface 1 a becomes the P-polarized light with the polarization separation surface 31 as a reference. In order to cope with this, in the projection apparatus 100, the arrangement relationship between the reflective liquid crystal element 40 and the imaging element 60 is changed, the imaging element 60 is arranged opposite to the second surface 30b, and the reflective liquid crystal element is arranged on the fourth surface 30d. 40 are arranged opposite to each other. However, the separation characteristic of the polarization separation surface 31 of the polarization beam splitter 30 remains as in the first embodiment. As a result, the illumination light emitted from the illumination optical system 20 is reflected by the polarization separation surface 31 to enter the reflection type liquid crystal element 40, and the modulated light emitted from the reflection type liquid crystal element 40 is reflected by the polarization separation surface 31. The light is incident on the projection optical system 10 by being transmitted. Further, the imaging light returned from the projection optical system 10 is reflected by the polarization separation surface 31 to be incident on the image sensor 60. In the above, the illumination light incident on the reflective liquid crystal element 40 is P-polarized light with respect to the projection surface 1a (that is, S-polarized light with reference to the polarization separation surface 31) and is incident on the projection optical system 10. The projection light is S-polarized light with respect to the projection surface 1a (that is, P-polarization with reference to the polarization separation surface 31), and the image light incident on the image sensor 60 is based on the projection surface 1a. P-polarized light (that is, S-polarized light with the polarization separation surface 31 as a reference). In this case, the polarization limiting unit 80 interposed between the polarization beam splitter 30 and the image sensor 60 cuts S-polarized light with the projection surface 1a as a reference (resulting in P-polarized light with the polarization separation surface 31 as a reference). It shall be.
 以上、実施形態に係る投影装置100について説明したが、本発明に係る投影装置は、上記のものには限られない。例えば、投影光学系10や照明光学系20の具体的な構成は、図示のものに限らず用途等に応じて適宜変更することができる。また、投影装置は、下方に投影してもよく、左右方向に投影してもよい。いずれの場合であっても、撮像素子60に達する、被投影面1aでの反射光成分に多いS偏光をカットすることができる。 The projector 100 according to the embodiment has been described above, but the projector according to the present invention is not limited to the above. For example, the specific configurations of the projection optical system 10 and the illumination optical system 20 are not limited to those shown in the drawings, and can be changed as appropriate according to the application. The projection device may project downward or may project in the left-right direction. In any case, it is possible to cut S-polarized light which is large in the reflected light component on the projection surface 1a and reaches the image sensor 60.

Claims (7)

  1.  照明用の光を射出する照明光学系と、
     入射光の直線偏光の偏光方向に従い入射光を透過または反射することによって光の分離を行う偏光ビームスプリッターと、
     前記照明光学系からの光が前記偏光ビームスプリッターを介して入射する画像表示素子と、
     前記画像表示素子による像を前記偏光ビームスプリッターを介して被投影面に拡大投影する投影光学系と、
     前記被投影面における像を撮像するための撮像素子と、を備え、
     撮像する際に前記投影光学系を共通で使用し、前記偏光ビームスプリッターで投影側の光路と撮像側の光路とを分けており、
     前記照明光学系からの光のうち前記偏光ビームスプリッターの偏光分離面で分離されて前記画像表示素子に向かう光の経路から外れる側であって、前記被投影面からの前記被投影面を基準とするP偏光が進む側に、前記撮像素子は配置され、
     前記偏光ビームスプリッターと前記撮像素子との間に、前記被投影面を基準とするS偏光をカットする偏光制限部を設けた投影装置。
    An illumination optical system that emits light for illumination;
    A polarization beam splitter that separates light by transmitting or reflecting incident light according to the polarization direction of linearly polarized light of the incident light; and
    An image display element on which light from the illumination optical system enters through the polarization beam splitter;
    A projection optical system that magnifies and projects an image by the image display element onto a projection surface via the polarization beam splitter;
    An image sensor for capturing an image on the projection surface,
    When imaging, the projection optical system is used in common, and the polarizing beam splitter separates the projection-side optical path and the imaging-side optical path,
    Of the light from the illumination optical system, the light is separated from the polarization separation surface of the polarization beam splitter and deviated from the light path toward the image display element, and the projection surface from the projection surface is used as a reference. The image sensor is arranged on the side where the P-polarized light travels,
    A projection apparatus in which a polarization limiting unit that cuts S-polarized light with respect to the projection surface is provided between the polarization beam splitter and the imaging element.
  2.  前記撮像素子は、前記照明光学系からの光のうち、前記偏光ビームスプリッターの偏光分離面に対するS偏光の光が当該偏光分離面で反射されて前記偏光ビームスプリッターから出射する側に配置される請求項1に記載の投影装置。 The imaging device is disposed on a side of the light from the illumination optical system on the side where S-polarized light with respect to the polarization separation surface of the polarization beam splitter is reflected by the polarization separation surface and emitted from the polarization beam splitter. Item 4. The projection device according to Item 1.
  3.  前記投影光学系は、前記画像表示素子による像を前記被投影面に向けて上方または下方に投影し、
     前記撮像素子は、前記被投影面からの前記被投影面を基準とするP偏光が、前記偏光ビームスプリッターの偏光分離面を透過して前記偏光ビームスプリッターから出射する側に配置される請求項2に記載の投影装置。
    The projection optical system projects an image by the image display element upward or downward toward the projection surface,
    3. The imaging device is disposed on a side where P-polarized light with respect to the projection surface from the projection surface as a reference passes through a polarization separation surface of the polarization beam splitter and exits from the polarization beam splitter. The projection apparatus described in 1.
  4.  以下の条件式を満足する請求項1~3のいずれか一項に記載の投影装置。
     0.1<Tr<1.0   …   (1)
    ここで、
     Tr:投影光学系のスローレシオ
    The projection apparatus according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
    0.1 <Tr <1.0 (1)
    here,
    Tr: Slow ratio of the projection optical system
  5.  前記偏光制限部は、前記偏光ビームスプリッターと前記撮像素子との間に配置された吸収型の偏光フィルターである請求項1~4のいずれか一項に記載の投影装置。 The projection apparatus according to any one of claims 1 to 4, wherein the polarization limiting unit is an absorptive polarizing filter disposed between the polarization beam splitter and the imaging device.
  6.  前記偏光制限部は、前記偏光ビームスプリッターと前記撮像素子との間に配置された反射型の偏光フィルターである請求項1~4のいずれか一項に記載の投影装置。 The projection apparatus according to any one of claims 1 to 4, wherein the polarization limiting unit is a reflective polarizing filter disposed between the polarization beam splitter and the imaging device.
  7.  前記偏光ビームスプリッターの前記照明光学系側には、偏光方向を揃える偏光変換素子が配置されている請求項1~6のいずれか一項に記載の投影装置。 The projection apparatus according to any one of claims 1 to 6, wherein a polarization conversion element that aligns a polarization direction is disposed on the illumination optical system side of the polarization beam splitter.
PCT/JP2015/079126 2014-11-17 2015-10-15 Projection device WO2016080114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560115A JPWO2016080114A1 (en) 2014-11-17 2015-10-15 Projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014232714 2014-11-17
JP2014-232714 2014-11-17

Publications (1)

Publication Number Publication Date
WO2016080114A1 true WO2016080114A1 (en) 2016-05-26

Family

ID=56013672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079126 WO2016080114A1 (en) 2014-11-17 2015-10-15 Projection device

Country Status (2)

Country Link
JP (1) JPWO2016080114A1 (en)
WO (1) WO2016080114A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068903A1 (en) * 2015-10-20 2017-04-27 コニカミノルタ株式会社 Image projection apparatus
GB2546724A (en) * 2015-12-11 2017-08-02 Light Blue Optics Ltd Image processing systems and methods
CN111971605A (en) * 2018-04-09 2020-11-20 索尼公司 Optical system and projector
US11494882B2 (en) 2015-02-13 2022-11-08 Poly Communications International Unlimited Company Image processing systems and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343703A (en) * 2000-05-30 2001-12-14 Sony Corp Reflection type liquid crystal projector unit
JP2003044839A (en) * 2001-07-26 2003-02-14 Nitto Kogaku Kk Device for inputting and outputting image
JP2007052218A (en) * 2005-08-18 2007-03-01 Nikon Corp Projector having imaging function
JP2009047969A (en) * 2007-08-21 2009-03-05 Seiko Epson Corp Projector and display apparatus
JP2009128619A (en) * 2007-11-22 2009-06-11 Ricoh Co Ltd Projection optical device with imaging function
JP2010271717A (en) * 2009-05-22 2010-12-02 Jiangsu Lexvu Electronics Co Ltd Integrated microdisplay projection and imaging system
JP2012068364A (en) * 2010-09-22 2012-04-05 Konica Minolta Opto Inc Projection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343703A (en) * 2000-05-30 2001-12-14 Sony Corp Reflection type liquid crystal projector unit
JP2003044839A (en) * 2001-07-26 2003-02-14 Nitto Kogaku Kk Device for inputting and outputting image
JP2007052218A (en) * 2005-08-18 2007-03-01 Nikon Corp Projector having imaging function
JP2009047969A (en) * 2007-08-21 2009-03-05 Seiko Epson Corp Projector and display apparatus
JP2009128619A (en) * 2007-11-22 2009-06-11 Ricoh Co Ltd Projection optical device with imaging function
JP2010271717A (en) * 2009-05-22 2010-12-02 Jiangsu Lexvu Electronics Co Ltd Integrated microdisplay projection and imaging system
JP2012068364A (en) * 2010-09-22 2012-04-05 Konica Minolta Opto Inc Projection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11494882B2 (en) 2015-02-13 2022-11-08 Poly Communications International Unlimited Company Image processing systems and methods
WO2017068903A1 (en) * 2015-10-20 2017-04-27 コニカミノルタ株式会社 Image projection apparatus
GB2546724A (en) * 2015-12-11 2017-08-02 Light Blue Optics Ltd Image processing systems and methods
GB2546724B (en) * 2015-12-11 2020-03-11 Light Blue Optics Ltd Image processing systems and methods
CN111971605A (en) * 2018-04-09 2020-11-20 索尼公司 Optical system and projector
CN111971605B (en) * 2018-04-09 2023-09-12 索尼公司 Optical system and projector

Also Published As

Publication number Publication date
JPWO2016080114A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US9696854B2 (en) Projection display
US8434873B2 (en) Interactive projection device
JP2019179242A (en) Optical system and apparatus having optical system
US20080051135A1 (en) Combination camera/projector system
JP5174273B1 (en) projector
JP5713666B2 (en) Illumination optical system and image projection apparatus using the same
WO2016080114A1 (en) Projection device
US10564528B2 (en) Image projection apparatus including light modulation elements
WO2017014317A1 (en) Projection device
JP2009205442A (en) Image-projecting device
WO2016031447A1 (en) Projection type display device
JP2011154159A5 (en)
US20070182933A1 (en) Color separation optical system and image projection apparatus
JP2011154159A (en) Image projection apparatus
US20220365407A1 (en) Projection display apparatus
TWI431397B (en) Optical system and electrical device having the optical system
US20040207769A1 (en) Projection display device
JP2003177469A (en) Image projector, image input device, image input/output device, and its method of use
JP5769477B2 (en) Camera with projector function
CN215297927U (en) Projector optical device and projector
JP2020091342A (en) projector
JP2016114644A (en) Image capturing device and optical system
US20220368868A1 (en) Projection display apparatus
CN113504699A (en) Projector optical device and projector
WO2017061274A1 (en) Projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861725

Country of ref document: EP

Kind code of ref document: A1