WO2016079927A1 - Head-up display and vehicle - Google Patents

Head-up display and vehicle Download PDF

Info

Publication number
WO2016079927A1
WO2016079927A1 PCT/JP2015/005330 JP2015005330W WO2016079927A1 WO 2016079927 A1 WO2016079927 A1 WO 2016079927A1 JP 2015005330 W JP2015005330 W JP 2015005330W WO 2016079927 A1 WO2016079927 A1 WO 2016079927A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
display
head
reflecting
reflection
Prior art date
Application number
PCT/JP2015/005330
Other languages
French (fr)
Japanese (ja)
Inventor
聡 葛原
裕昭 岡山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP15860468.6A priority Critical patent/EP3223057B1/en
Priority to JP2016559796A priority patent/JPWO2016079927A1/en
Publication of WO2016079927A1 publication Critical patent/WO2016079927A1/en
Priority to US15/597,804 priority patent/US20170248786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/40Instruments specially adapted for improving the visibility thereof to the user, e.g. fogging prevention or anti-reflection arrangements
    • B60K35/425Anti-reflection arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/23Optical features of instruments using reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/33Illumination features
    • B60K2360/334Projection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/33Illumination features
    • B60K2360/347Optical elements for superposition of display information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/60Structural details of dashboards or instruments
    • B60K2360/68Features of instruments
    • B60K2360/693Cover plate features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/013Head-up displays characterised by optical features comprising a combiner of particular shape, e.g. curvature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality

Definitions

  • the present disclosure relates to a head-up display that allows an observer to visually recognize an image displayed on a display surface of a display device as a virtual image via a projection optical system.
  • Patent Document 1 discloses a head-up display that includes a Fresnel lens and a concave mirror, expands an image displayed on a display surface with the Fresnel lens, and allows an observer to visually recognize the image as a virtual image.
  • Patent Document 2 discloses a head-up display that includes a lens having a long focal length, enlarges an image displayed on the display surface with the lens having a long focal length, and allows an observer to visually recognize the image as a virtual image.
  • JP 2007-272061 A Japanese Patent Laid-Open No. 4-247489
  • This disclosure is intended to provide a head-up display with a small screen distortion in the entire viewpoint area of the observer.
  • the head-up display includes a display device having a display surface that displays an image, and a projection optical system that projects the image displayed on the display surface onto the viewpoint region of the observer.
  • the projection optical system includes a first reflective element and a second reflective element in the order of the optical path from the display surface to the viewpoint area. At least one reflecting surface of the first reflecting element and the second reflecting element has a concave shape.
  • a light beam that is emitted from the center of the display surface and reaches the center of the viewpoint area is set as a reference light beam.
  • the intersection of the reference light beam and the reflection surface of the first reflecting element is taken as the reference intersection.
  • a plane including the reference beam incident on the first reflecting element and the reference beam reflected by the first reflecting element is defined as a reference plane.
  • An intersection line between the reflection surface of the first reflection element and the reference plane is defined as a reference intersection line.
  • a tangent plane with respect to the reflecting surface of the first reflecting element at the reference intersection is defined as a reference tangent plane.
  • the respective heights from the two points, the upper point in the vertical direction and the lower point in the vertical direction, which are equidistant from the reference intersection point, to the reflecting surface of the first reflecting element are defined as the sag amount.
  • FIG. 1 is a schematic diagram illustrating a vehicle equipped with a head-up display according to the present disclosure.
  • FIG. 2 is a schematic diagram for explaining the head-up display according to the first embodiment.
  • FIG. 3 is a diagram for explaining the relationship between the first reflecting element and the reference light beam according to the first embodiment.
  • FIG. 4 is a diagram for explaining the shape of the projection optical system according to the first embodiment.
  • FIG. 5 is a schematic diagram for explaining a virtual image viewed from the viewpoint region of the observer.
  • FIG. 6 is a diagram illustrating image distortion in the viewpoint region of the observer according to Numerical Example 1.
  • FIG. 7 is a diagram illustrating image distortion in the viewpoint region of the observer according to Numerical Example 2.
  • FIG. 1 is a schematic diagram illustrating a vehicle equipped with a head-up display according to the present disclosure.
  • FIG. 2 is a schematic diagram for explaining the head-up display according to the first embodiment.
  • FIG. 3 is a diagram for explaining the relationship between the first
  • FIG. 8 is a diagram illustrating image distortion in the viewpoint region of the observer according to Numerical Example 3.
  • FIG. 9 is a diagram illustrating image distortion in the viewpoint region of the observer according to Numerical Example 4.
  • FIG. 10 is a schematic diagram for explaining the head-up display according to the second embodiment.
  • FIG. 11 is a schematic diagram for explaining the head-up display according to the third embodiment.
  • FIG. 12 is a schematic diagram for explaining the head-up display according to the fourth embodiment.
  • FIG. 13 is a diagram showing a coordinate system of Numerical Examples 1 to 4 according to the first embodiment.
  • FIG. 1 is a schematic diagram showing a vehicle 200 equipped with a head-up display 100 according to the present disclosure.
  • the head-up display 100 is disposed inside a dashboard 210 located below the windshield 220 of the vehicle 200.
  • FIG. 2 is a schematic diagram for explaining the head-up display 100 according to the first embodiment.
  • the head-up display 100 includes a housing 140, a projection optical system 120, and a display device 110.
  • the head-up display 100 causes the observer D inside the vehicle 200 to visually recognize the image displayed on the display surface 111 of the display device 110 as a virtual image I.
  • the image displayed on the display surface 111 is reflected through the windshield 220 and guided to the viewpoint region 300 (sometimes referred to as an eyebox) of the observer D, and is visually recognized by the observer D as a virtual image I. .
  • the viewpoint region 300 sometimes referred to as an eyebox
  • a light beam forming the upper end of the virtual image I is a light beam Lu.
  • a light beam that forms the lower end of the virtual image I is a light beam Ll.
  • a light beam that forms the center of the virtual image I (a light beam that is emitted from the center of the display surface 111 and reaches the center of the viewpoint region 300) is set as a reference light beam Lc.
  • the viewpoint of the observer D is at the center of the viewpoint area 300.
  • the housing 140 has an opening 130.
  • the opening 130 is provided with a transparent opening cover 131.
  • the opening cover 131 is partially curved. Therefore, external light such as sunlight reflected by the opening cover 131 is difficult to reach the observer D.
  • the opening cover 131 is not an essential component in the head-up display 100 according to the first embodiment.
  • the housing 140 is not an essential component in the head-up display 100 according to the first embodiment, and the dashboard 210 of the vehicle 200 may take the place of the housing 140.
  • the projection optical system 120 includes a first mirror 121 as a first reflecting element and a second mirror 122 as a second reflecting element.
  • the reference light beam Lc reflected by the first mirror 121 and incident on the second mirror 122 has a vector component that is horizontal and directed in the direction toward the display surface 111. Further, the reference light beam Lc emitted from the display surface 111 and incident on the first mirror 121 has a vector component in the forward direction in the vehicle 200.
  • the image displayed on the display surface 111 is reflected through the first mirror 121, then reflected through the second mirror 122, and further reflected through the windshield 220 to reach the viewpoint region 300.
  • the observer D visually recognizes the virtual image I.
  • the viewpoint area 300 refers to a movable area of the eye where the observer D can observe the entire virtual image I without losing the whole.
  • the display device 110 includes a liquid crystal display device, a backlight unit including a light source, a diffusion plate, a deflection lens, and the like, all not shown.
  • display image information is controlled by a control unit such as a microcomputer (not shown).
  • a control unit such as a microcomputer (not shown).
  • various information such as road progress guidance, the distance to the vehicle ahead, the remaining battery level of the car, and the current vehicle speed can be displayed as display image information.
  • a display device such as a liquid crystal display device (Liquid Crystal Display), an organic light emitting diode (electroluminescence), or a plasma display is used.
  • a projector or a scanning laser can be used instead of the display device.
  • a light shielding wall 150 is disposed inside the housing 140.
  • the light shielding wall 150 prevents stray light that is generated when a light beam emitted from the display surface 111 of the display device 110 directly enters the second mirror 122 without passing through the first mirror 121.
  • the light shielding wall 150 is fixed to the housing 140 by itself. The fixing of the light shielding wall 150 to the housing 140 is not limited to the above embodiment, and the light shielding wall 150 may be fixed integrally with the display device 110 or the second mirror 122.
  • the display device 110 is disposed on the upper side in the vertical direction from the second mirror 122 inside the housing 140.
  • the display device 110 it is desirable that at least a part of the display surface 111 is disposed above the second mirror 122 in the vertical direction.
  • the housing 140 can be made compact without the light beam Ll interfering with the second mirror 122.
  • the display surface 111 of the display device 110 is directed toward the first mirror 121. At this time, it is desirable that the display device 110 is arranged so that the reference light beam Lc emitted from the display surface 111 is inclined with respect to the display surface 111. Thereby, stray light generated when external light enters the inside of the housing 140 and is reflected by the display surface 111 of the display device 110 can be prevented.
  • the reflection surface 121 a of the first mirror 121 is directed in a direction in which an image displayed on the display surface 111 is reflected on the second mirror 122. Further, the reflection surface 121 a of the first mirror 121 is eccentric so that an image displayed on the display surface 111 is reflected on the second mirror 122.
  • the reflection area of the second mirror 122 is larger than the reflection area of the first mirror 121 in order to enlarge and display the image displayed on the display surface 111 as a virtual image I.
  • the reflection area is an area of the mirror that reflects incident light. The larger the reflection area, the larger the mirror.
  • the second mirror 122 is disposed inside the housing 140 closer to the horizontal display device than the first mirror 121.
  • the second mirror 122 When mounted on the vehicle 200, the second mirror 122 is disposed on the vehicle rear side with respect to the first mirror 121. Further, the reflection surface 122 a of the second mirror 122 is directed in the direction in which the reflected light from the first mirror 121 enters the windshield 220. Further, the reflection surface 122 a of the second mirror 122 is eccentric so that the reflected light from the first mirror 121 enters the windshield 220.
  • the first mirror 121 is a mirror having a reflecting surface 121a having a concave shape and a free-form surface.
  • the second mirror 122 is also a mirror whose reflecting surface 122a has a concave shape and a free-form surface shape.
  • the observer D can visually recognize the virtual image I that is enlarged from the image displayed on the display surface 111.
  • only one of the first mirror 121 and the second mirror 122 may have a free-form surface, and the other reflection surface may have a planar shape.
  • the power of one mirror can be dispersed, and the distortion aberration sensitivity during assembly can be reduced. it can.
  • the first mirror 121 employs a free curved surface shape as the reflecting surface 121a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
  • the second mirror 122 employs a free-form surface as the reflecting surface 122a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
  • FIG. 3 is a diagram for explaining the relationship between the first mirror 121 and the reference light beam Lc according to the first embodiment.
  • the reference light beam Lc is emitted from the center of the display surface 111 of the display device 110, is incident on the reflection surface 121a of the first mirror 121, and is reflected at a reference intersection 121c that is an intersection of the reference light beam Lc and the reflection surface 121a.
  • a plane including the reference ray Lc incident on the first mirror 121 and the reference ray Lc reflected by the first mirror 121 is defined as a reference plane.
  • an intersection line between the reflecting surface 121a of the first mirror 121 and the reference plane is defined as a reference intersection line Bc.
  • FIG. 4 is a diagram for explaining the shape of the projection optical system 120 according to the first embodiment.
  • the tangent plane with respect to the reflecting surface 121a of the first mirror 121 at the reference intersection 121c is defined as a reference tangent plane 170.
  • a point on the vertical direction that is equidistant from the reference intersection 121c is a point 170u
  • a point on the lower side in the vertical direction is a point 170l.
  • Each height from these two points to the reflecting surface 121a of the first mirror 121 is defined as a sag amount.
  • the point 170u is more than the sag amount at the point 170l.
  • the sag amount at is larger.
  • the reflection surface 121a has a rotationally asymmetric shape, but the so-called saddle type in which the signs of curvature are different between the X direction and the Y direction. It may have a surface shape.
  • the reflection surface 122a has a rotationally asymmetric shape, but the so-called saddle type in which the signs of curvature are different between the X direction and the Y direction. It may have a surface shape.
  • the housing 140 includes a light shielding wall 150. As shown in FIG. 4, the light shielding wall 150 is positioned on a virtual line connecting the upper end of the display surface 111 of the display device 110 and the end of the second mirror 122 on the vehicle front side (left side in the drawing).
  • the stray light generated when the light beam emitted from the display surface 111 of the display device 110 directly enters the second mirror 122 without passing through the first mirror 121 can be prevented.
  • FIG. 5 is a schematic diagram for explaining the virtual image I viewed from the viewpoint region 300 of the observer D.
  • the viewpoint area 300 is a rectangle of width 130 mm ⁇ length 40 mm.
  • FIG. 6 to 9 are diagrams showing image distortion in the viewpoint region 300 of the observer D.
  • the solid line indicates the virtual image I projected using the head-up display 100 in each of Numerical Examples 1 to 4.
  • a broken line indicates an ideal shape of the virtual image I when viewed from the viewpoint region 300.
  • (1) is a diagram illustrating screen distortion when the virtual image I is viewed from the center position of the viewpoint region 300 when viewed from the observer D.
  • (2) is a diagram showing screen distortion when the virtual image I is viewed from the upper left position of the viewpoint area 300.
  • FIG. (3) is a diagram illustrating screen distortion when the virtual image I is viewed from the lower left position of the viewpoint area 300.
  • FIG. (4) is a diagram showing screen distortion when the virtual image I is viewed from the upper right position of the viewpoint area 300.
  • FIG. (5) is a diagram showing screen distortion when the virtual image I is viewed from the lower right position of the viewpoint area 300.
  • the screen distortion is corrected well over the entire viewpoint area 300. That is, in the viewpoint area 300, the observer D can visually recognize a good virtual image I regardless of the position.
  • an image to be displayed on the display surface 111 of the display device 110 may be electronically distorted in advance.
  • the head-up display 100 includes a display device 110 that displays an image and a projection optical system 120 that projects an image displayed on the display device 110.
  • the projection optical system 120 includes a first mirror 121 and a second mirror 122 in the order of the optical path from the display device 110.
  • the head-up display 100 projects an image displayed on the display surface 111 of the display device 110 onto the windshield 220 so that the observer D can visually recognize the virtual image I. Thereby, the image displayed on the display surface 111 of the display device 110 can be visually recognized by the viewer D without blocking the front view of the viewer D.
  • the reflection surface 121a of the first mirror 121 is desirably a free-form surface.
  • the reflection surface 122a of the second mirror 122 has a free-form surface shape. Therefore, the screen distortion generated in the windshield 220 can be corrected well, and a good virtual image I with little screen distortion can be visually recognized over the entire viewpoint area 300.
  • the reflection surface 121a of the first mirror 121 has a concave shape or a planar shape. Therefore, compared with the case where the reflective surface 121a of the 1st mirror 121 is convex shape, distortion of the virtual image I which arises by reflection can be suppressed.
  • the reflection surface 122a of the second mirror 122 has a concave shape or a planar shape. Therefore, compared with the case where the 2nd mirror 122 is convex shape, distortion of virtual image I which arises by reflection can be controlled.
  • the outer shape of the first mirror 121 is a trapezoid. Thereby, regarding the first mirror 121, an unnecessary area other than the area where the image displayed on the display surface 111 is reflected can be reduced, and the head-up display 100 can be reduced in size. Note that the outer shape of the first mirror 121 is not limited to a trapezoid, and can be changed as appropriate according to the shape of the effective region.
  • the head-up display 100 desirably satisfies the following condition (1).
  • DL1 Optical path length of the reference light beam Lc between the display device 110 and the first mirror 121 (strictly speaking, the optical path length of the reference light beam Lc between the display surface 111 of the display device 110 and the reflection surface 121a of the first mirror 121) .
  • DL2 optical path length of the reference light beam Lc between the first mirror 121 and the second mirror 122 (strictly speaking, the reference light beam Lc between the reflection surface 121a of the first mirror 121 and the reflection surface 122a of the second mirror 122) Optical path length.) It is.
  • Condition (1) is a condition that regulates the ratio of the spacing between the display device 110 and the first mirror 121 and the spacing between the first mirror 121 and the second mirror 122.
  • the condition (1) is satisfied, it is easy to correct the distortion of the virtual image I. Therefore, it is possible to provide the head-up display 100 with a small screen distortion in the entire viewpoint area 300 of the observer D.
  • the lower limit of the condition (1) is not reached, the surface distance between the display device 110 and the first mirror 121 becomes small. Therefore, the curvature of the concave surface of the first mirror 121 needs to be increased, and the distortion of the virtual image I can be corrected. It becomes difficult.
  • the space between the display device 110 and the first mirror 121 is reduced, the effect of the light shielding wall 150 is reduced, and it is difficult to suppress stray light.
  • the head-up display 100 according to the first embodiment desirably satisfies the following condition (2).
  • IL the exit angle [deg] of the reference beam Lc emitted from the display device 110 It is.
  • Condition (2) is a condition that defines the emission angle of the reference light beam Lc emitted from the display surface 111 of the display device 110. If the lower limit of condition (2) is not reached, it will be difficult to prevent external light such as sunlight from becoming stray light that reaches the eyes of the observer D. The stray light is generated by reflecting external light such as sunlight in the order of the second mirror 122, the first mirror 121, the display surface 111 of the display device 110, the first mirror 121, the second mirror 122, and the windshield 220. It is stray light. If the upper limit of the condition (2) is exceeded, the contrast of the image displayed on the display surface 111 is lowered, and the visual performance of the virtual image I is lowered.
  • the head-up display 100 according to Embodiment 1 satisfies the following condition (3).
  • I2 incident angle [deg] of the reference light beam Lc incident on the second mirror 122 It is.
  • Condition (3) is a condition that defines the incident angle of the reference light beam Lc incident on the second mirror 122 from the first mirror 121.
  • the surface interval between the first mirror 121 and the second mirror 122 becomes large, and the dimension in the depth direction of the housing 140 increases. If the upper limit of the condition (3) is exceeded, it becomes difficult to correct asymmetric distortion generated in the second mirror 122.
  • the upper end of the light shielding wall 150 is above the straight line connecting the second mirror 122 and the image displayed on the display surface 111. Thereby, the stray light generated when the image displayed on the display surface 111 directly enters the second mirror 122 without passing through the first mirror can be prevented.
  • FIG. 10 is a schematic diagram for explaining the head-up display 100 according to the second embodiment.
  • the head-up display 100 is disposed inside a dashboard 210 located below the windshield 220.
  • the projection optical system 120 includes a first mirror 121 and a second mirror 122.
  • the image displayed on the display surface 111 of the display device 110 is reflected through the first mirror 121, then reflected through the second mirror 122, refracted through the refractive optical system 160, and further Reflected through the windshield 220. Then, it reaches the viewpoint region 300 of the observer D and is visually recognized by the observer D as a virtual image I.
  • the display device 110 is disposed below the first mirror 121 inside the housing 140. Further, the display surface 111 of the display device 110 is directed toward the first mirror 121. At this time, it is desirable that the display device 110 is arranged so that the reference light beam Lc emitted from the display surface 111 is inclined with respect to the display surface 111. Thereby, stray light generated when external light enters the inside of the housing 140 and is reflected on the display surface 111 of the display device 110 can be prevented.
  • the reflection surface 121 a of the first mirror 121 is directed in the direction in which the image displayed on the display surface 111 is reflected on the second mirror 122. Further, the reflection surface 121 a of the first mirror 121 is eccentric so that an image displayed on the display surface 111 is reflected on the second mirror 122.
  • the reflection area of the second mirror 122 is larger than the reflection area of the first mirror 121 in order to enlarge and display the image displayed on the display surface 111 as a virtual image I.
  • the reflection area is an area of the mirror that reflects incident light. The larger the reflection area, the larger the mirror.
  • the second mirror 122 is disposed inside the housing 140 on the vehicle front side in the horizontal direction with respect to the first mirror 121. Further, the reflection surface 122 a of the second mirror 122 is directed in the direction in which the reflected light from the first mirror 121 enters the windshield 220. Further, the reflection surface 122 a of the second mirror 122 is eccentric so that the reflected light from the first mirror 121 enters the windshield 220.
  • the first mirror 121 is a mirror having a reflective surface 121a having a convex shape and a free-form surface.
  • the second mirror 122 is a mirror whose reflecting surface 122a is concave and free-form.
  • image distortion generated in the first mirror 121 image distortion in which the image displayed on the display surface 111 is asymmetrically eccentrically distorted
  • the observer D can visually recognize the virtual image I that is enlarged from the image displayed on the display surface 111.
  • only one of the first mirror 121 and the second mirror 122 may have a free-form surface, and the other reflection surface may have a planar shape.
  • the concave surface power of the second mirror 122 can be increased, and the housing 140 can be downsized.
  • the first mirror 121 employs a free curved surface shape as the reflecting surface 121a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
  • the second mirror 122 employs a free-form surface as the reflecting surface 122a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
  • FIG. 11 is a schematic diagram for explaining the head-up display 100 according to the third embodiment.
  • the head-up display 100 is disposed inside a dashboard 210 located below the windshield 220.
  • the projection optical system 120 includes a first mirror 121 and a second mirror 122.
  • the image displayed on the display surface 111 of the display device 110 is reflected through the first mirror 121, then reflected through the second mirror 122, refracted through the refractive optical system 160, and further Reflected through the windshield 220. Then, it reaches the viewpoint region 300 of the observer D and is visually recognized by the observer D as a virtual image I.
  • the display device 110 is disposed above the first mirror 121 inside the housing 140. Further, the display surface 111 of the display device 110 is directed toward the first mirror 121. Thereby, the display surface 111 (liquid crystal surface) of the display device 110 can be prevented from being exposed to sunlight. At this time, it is desirable that the display device 110 is arranged so that the reference light beam Lc emitted from the display surface 111 is inclined with respect to the display surface 111. Thereby, stray light generated when external light enters the inside of the housing 140 and is reflected on the display surface 111 of the display device 110 can be prevented.
  • the reflection surface 121 a of the first mirror 121 is directed in a direction in which an image displayed on the display surface 111 is reflected on the second mirror 122. Further, the reflection surface 121 a of the first mirror 121 is eccentric so that the image displayed on the display surface 111 is reflected on the second mirror 122.
  • the reflection area of the second mirror 122 is larger than the reflection area of the first mirror 121 in order to enlarge and display the image displayed on the display surface 111 as a virtual image I.
  • the reflection area is an area of the mirror that reflects incident light. The larger the reflection area, the larger the mirror.
  • the second mirror 122 is disposed inside the housing 140 on the vehicle front side in the horizontal direction with respect to the first mirror 121. Further, the reflection surface 122 a of the second mirror 122 is directed in the direction in which the reflected light from the first mirror 121 enters the windshield 220. Further, the reflection surface 122 a of the second mirror 122 is eccentric so that the reflected light from the first mirror 121 enters the windshield 220.
  • the first mirror 121 is a mirror whose reflecting surface 121a has a concave shape and a free-form surface shape.
  • the second mirror 122 is a mirror whose reflecting surface 122a is concave and free-form.
  • first mirror 121 and the second mirror 122 may have a free-form surface, and the other reflection surface may have a planar shape. Further, only one of the first mirror 121 and the second mirror 122 may have a concave shape, and the other reflection surface may have a convex shape.
  • the power of one mirror can be dispersed, and the distortion aberration sensitivity during assembly can be reduced. it can.
  • the first mirror 121 employs a free curved surface shape as the reflecting surface 121a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
  • the second mirror 122 employs a free-form surface as the reflecting surface 122a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
  • FIG. 12 is a schematic diagram for explaining the head-up display 100 according to the fourth embodiment. At this time, for simplicity, a part of FIG. 12 is a projection view.
  • the head-up display 100 is disposed inside a dashboard 210 located below the windshield 220.
  • the projection optical system 120 includes a first mirror 121 and a second mirror 122.
  • the image displayed on the display surface 111 of the display device 110 is reflected through the first mirror 121, then reflected through the second mirror 122, refracted through the refractive optical system 160, and further Reflected through the windshield 220. Then, it reaches the viewpoint region 300 of the observer D and is visually recognized by the observer D as a virtual image I.
  • the display surface 111 of the display device 110 is directed toward the first mirror 121. Thereby, the display surface 111 (liquid crystal surface) can be prevented from exposure to sunlight. At this time, it is desirable that the display surface 111 of the display device 110 is arranged so that the reference light beam Lc emitted from the display surface 111 is inclined with respect to the display surface 111. Thereby, stray light generated when external light enters the inside of the housing 140 and is reflected on the display surface 111 of the display device 110 can be prevented.
  • the reflection surface 121 a of the first mirror 121 is directed in a direction in which an image displayed on the display surface 111 is reflected on the second mirror 122. Further, the reflection surface 121 a of the first mirror 121 is eccentric so that an image displayed on the display surface 111 is reflected on the second mirror 122.
  • the reflection area of the second mirror 122 is larger than the reflection area of the first mirror 121 in order to enlarge and display the image displayed on the display surface 111 as a virtual image I.
  • the reflection area is an area of the mirror that reflects incident light. The larger the reflection area, the larger the mirror.
  • the second mirror 122 is disposed inside the housing 140 on the vehicle front side in the horizontal direction with respect to the first mirror 121. Further, the reflection surface 122 a of the second mirror 122 is directed in the direction in which the reflected light from the first mirror 121 enters the windshield 220. Further, the reflection surface 122 a of the second mirror 122 is eccentric so that the reflected light from the first mirror 121 enters the windshield 220.
  • the first mirror 121 is a mirror having a reflective surface 121a having a convex shape and a free-form surface.
  • the second mirror 122 is a mirror whose reflecting surface 122a is concave and free-form.
  • image distortion generated in the first mirror 121 image distortion in which the image displayed on the display surface 111 is asymmetrically eccentrically distorted
  • the observer D can visually recognize the virtual image I that is enlarged from the image displayed on the display surface 111.
  • only one of the first mirror 121 and the second mirror 122 may have a free-form surface, and the other reflection surface may have a planar shape.
  • the concave surface power of the second mirror 122 can be increased, and the housing 140 can be downsized.
  • the first mirror 121 employs a free curved surface shape as the reflecting surface 121a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
  • the second mirror 122 employs a free-form surface as the reflecting surface 122a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
  • Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments that have been changed, replaced, added, omitted, and the like. In addition, it is possible to combine the components described in the first to fourth embodiments to form a new embodiment.
  • z is the sag amount at the position (x, y) from the axis defining the surface
  • r is the radius of curvature at the origin of the axis defining the surface
  • c is the curvature at the origin of the axis defining the surface
  • k is conic.
  • the constant, Cj is a coefficient of the monomial x m y n .
  • FIG. 13 is a diagram showing a coordinate system of numerical examples 1 to 4 according to the first embodiment.
  • the reference coordinate origin is the center of the image displayed on the display surface 111, and the X, Y, and Z axes are defined as shown in FIG.
  • ADE means the amount of rotation of the mirror from the Z axis direction to the Y axis direction around the X axis.
  • BDE means the amount of rotation about the Y axis from the X axis direction to the Z axis direction.
  • CDE means the amount of rotation about the Z axis from the X axis direction to the Y axis direction.
  • Table 1 shows configuration data of the projection optical system 120 of Numerical Example 1
  • Table 2 shows coefficients of the polynomial free-form surface.
  • Table 3 shows configuration data of the projection optical system 120 of Numerical Example 2
  • Table 4 shows coefficients of the polynomial free-form surface.
  • Table 5 shows configuration data of the projection optical system 120 according to Numerical Example 3
  • Table 6 shows coefficients of the polynomial free-form surface.
  • Table 7 shows configuration data of the projection optical system 120 of Numerical Example 4
  • Table 8 shows coefficients of the polynomial free-form surface.
  • Table 9 below shows the size of the image displayed on the display surface 111 in each numerical example 1 to 4, the size of the virtual image I, and the distance from the pupil of the observer D to the virtual image I.
  • Table 10 below shows the numerical values of the conditions (1) to (3) in the numerical examples 1 to 4.
  • Table 11 below shows the sag amount of the first mirror 121 in the numerical examples 1 to 3. However, the distance from the reference intersection line Bc indicates the vertically upper side when the sign is + and the vertically lower side when the sign is ⁇ .
  • the head-up display according to the present disclosure is suitable for a head-up display that requires high image quality, such as an on-vehicle head-up display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

A light beam emitted from the center of a display surface and extending to the center of a perspective region is set as a reference light beam (Lc). The intersecting point between the reference light beam (Lc) and the reflecting surface (121a) of a first reflecting element (121) is set as a reference intersecting point (121c). A plane containing the reference light beam (Lc) incident on the first reflecting element (121) and the reference light beam (Lc) reflected by the first reflecting element (121) is set as a reference plane. An intersecting line between the reference plane and the reflecting surface (121a) of the first reflecting element (121) is set as a reference intersecting line (Bc). A tangential plane to the reflecting surface (121a) of the first reflecting element (121) at the reference intersecting point (121c) is set as a reference tangential plane (170). The respective heights to the reflecting surface (121a) of the first reflecting element (121) from two points consisting of a perpendicular-direction upper point (170u) and a perpendicular-direction lower point (170l) located equal distances from the reference intersecting point (121c) in the reference tangential plane (170) are set as sag amounts. When the perpendicular lines (121u, 121l) intersect the reference intersecting line (Bc), the sag amount at point (170l) is greater than the sag amount at point (170u).

Description

ヘッドアップディスプレイ及び車両Head-up display and vehicle
 本開示は、投射光学系を介して、表示デバイスの表示面に表示された画像を虚像として観察者に視認させるヘッドアップディスプレイに関する。 The present disclosure relates to a head-up display that allows an observer to visually recognize an image displayed on a display surface of a display device as a virtual image via a projection optical system.
 特許文献1は、フレネルレンズと凹面ミラーを備え、表示面に表示された画像をそのフレネルレンズで拡大し、虚像として観察者に視認させるヘッドアップディスプレイを開示する。特許文献2は、焦点距離の長いレンズを備え、表示面に表示された画像をその焦点距離の長いレンズで拡大し、虚像として観察者に視認させるヘッドアップディスプレイを開示する。 Patent Document 1 discloses a head-up display that includes a Fresnel lens and a concave mirror, expands an image displayed on a display surface with the Fresnel lens, and allows an observer to visually recognize the image as a virtual image. Patent Document 2 discloses a head-up display that includes a lens having a long focal length, enlarges an image displayed on the display surface with the lens having a long focal length, and allows an observer to visually recognize the image as a virtual image.
特開2007-272061号公報JP 2007-272061 A 特開平4-247489号公報Japanese Patent Laid-Open No. 4-247489
 本開示は、観察者の視点領域の全域で画面歪みが小さいヘッドアップディスプレイを提供することを目的とする。 This disclosure is intended to provide a head-up display with a small screen distortion in the entire viewpoint area of the observer.
 本開示に係るヘッドアップディスプレイは、画像を表示する表示面を有する表示デバイスと、表示面に表示された画像を観察者の視点領域に投射する投射光学系と、を備える。投射光学系は、表示面から視点領域までの光路の順に、第1反射素子と第2反射素子とを有する。第1反射素子と第2反射素子の少なくとも一方の反射面は凹面形状を有する。表示面の中心から出射され視点領域の中心に到達する光線を基準光線とする。基準光線と第1反射素子の反射面との交点を基準交点とする。第1反射素子に入射する基準光線と第1反射素子で反射した基準光線とを含む平面を基準平面とする。第1反射素子の反射面と基準平面との交線を基準交線とする。基準交点における第1反射素子の反射面に対する接平面を基準接平面とする。基準接平面上において基準交点から等距離にある鉛直方向上側の点及び鉛直方向下側の点の2点から、第1反射素子の反射面までの、それぞれの高さをサグ量とする。鉛直方向上側の点と鉛直方向下側の点の2点から基準接平面と垂直になるようにたてた各垂線が、基準交線と交差するとき、鉛直方向下側の点におけるサグ量よりも鉛直方向上側の点におけるサグ量の方が大きい。 The head-up display according to the present disclosure includes a display device having a display surface that displays an image, and a projection optical system that projects the image displayed on the display surface onto the viewpoint region of the observer. The projection optical system includes a first reflective element and a second reflective element in the order of the optical path from the display surface to the viewpoint area. At least one reflecting surface of the first reflecting element and the second reflecting element has a concave shape. A light beam that is emitted from the center of the display surface and reaches the center of the viewpoint area is set as a reference light beam. The intersection of the reference light beam and the reflection surface of the first reflecting element is taken as the reference intersection. A plane including the reference beam incident on the first reflecting element and the reference beam reflected by the first reflecting element is defined as a reference plane. An intersection line between the reflection surface of the first reflection element and the reference plane is defined as a reference intersection line. A tangent plane with respect to the reflecting surface of the first reflecting element at the reference intersection is defined as a reference tangent plane. On the reference tangent plane, the respective heights from the two points, the upper point in the vertical direction and the lower point in the vertical direction, which are equidistant from the reference intersection point, to the reflecting surface of the first reflecting element are defined as the sag amount. When each perpendicular line that is perpendicular to the reference tangent plane from two points, the upper vertical point and the lower vertical point, intersects the reference intersection line, the sag amount at the lower vertical point Also, the amount of sag at the upper point in the vertical direction is larger.
 本開示によれば、観察者の視点領域の全域で画面歪みが小さいヘッドアップディスプレイを提供できる。 According to the present disclosure, it is possible to provide a head-up display with small screen distortion over the entire viewpoint area of the observer.
図1は、本開示に係るヘッドアップディスプレイを搭載した車両を示す模式図である。FIG. 1 is a schematic diagram illustrating a vehicle equipped with a head-up display according to the present disclosure. 図2は、実施の形態1に係るヘッドアップディスプレイを説明するための模式図である。FIG. 2 is a schematic diagram for explaining the head-up display according to the first embodiment. 図3は、実施の形態1に係る第1反射素子と基準光線との関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between the first reflecting element and the reference light beam according to the first embodiment. 図4は、実施の形態1に係る投射光学系の形状を説明するための図である。FIG. 4 is a diagram for explaining the shape of the projection optical system according to the first embodiment. 図5は、観察者の視点領域から見た虚像を説明するための模式図である。FIG. 5 is a schematic diagram for explaining a virtual image viewed from the viewpoint region of the observer. 図6は、数値実施例1に係る観察者の視点領域における画像歪みを表した図である。FIG. 6 is a diagram illustrating image distortion in the viewpoint region of the observer according to Numerical Example 1. 図7は、数値実施例2に係る観察者の視点領域における画像歪みを表した図である。FIG. 7 is a diagram illustrating image distortion in the viewpoint region of the observer according to Numerical Example 2. 図8は、数値実施例3に係る観察者の視点領域における画像歪みを表した図である。FIG. 8 is a diagram illustrating image distortion in the viewpoint region of the observer according to Numerical Example 3. 図9は、数値実施例4に係る観察者の視点領域における画像歪みを表した図である。FIG. 9 is a diagram illustrating image distortion in the viewpoint region of the observer according to Numerical Example 4. 図10は、実施の形態2に係るヘッドアップディスプレイを説明するための模式図である。FIG. 10 is a schematic diagram for explaining the head-up display according to the second embodiment. 図11は、実施の形態3に係るヘッドアップディスプレイを説明するための模式図である。FIG. 11 is a schematic diagram for explaining the head-up display according to the third embodiment. 図12は、実施の形態4に係るヘッドアップディスプレイを説明するための模式図である。FIG. 12 is a schematic diagram for explaining the head-up display according to the fourth embodiment. 図13は、実施の形態1に係る数値実施例1~4の座標系を示す図である。FIG. 13 is a diagram showing a coordinate system of Numerical Examples 1 to 4 according to the first embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者は、当業者が本開示を十分に理解するために図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 It should be noted that the inventor provides drawings and the following description for those skilled in the art to fully understand the present disclosure, and is not intended to limit the claimed subject matter.
 (実施の形態1)
 [1-1.構成]
 [1-1-1.ヘッドアップディスプレイの全体構成]
 本開示に係るヘッドアップディスプレイ100の具体的な実施の形態及び実施例を、図面を参照して、以下に説明する。
(Embodiment 1)
[1-1. Constitution]
[1-1-1. Overall configuration of the head-up display]
Specific embodiments and examples of the head-up display 100 according to the present disclosure will be described below with reference to the drawings.
 図1は、本開示に係るヘッドアップディスプレイ100を搭載した車両200を示す模式図である。 FIG. 1 is a schematic diagram showing a vehicle 200 equipped with a head-up display 100 according to the present disclosure.
 図1に示すように、ヘッドアップディスプレイ100は、車両200のウインドシールド220の下側に位置するダッシュボード210の内部に配置されている。 As shown in FIG. 1, the head-up display 100 is disposed inside a dashboard 210 located below the windshield 220 of the vehicle 200.
 図2は、実施の形態1に係るヘッドアップディスプレイ100を説明するための模式図である。図2に示すように、ヘッドアップディスプレイ100は、筐体140と、投射光学系120と、表示デバイス110とを備える。ヘッドアップディスプレイ100は、表示デバイス110の表示面111に表示された画像を、虚像Iとして車両200の内部の観察者Dに視認させるものである。表示面111に表示された画像は、ウインドシールド220を介して反射して、観察者Dの視点領域300(アイボックスと称する場合もある)に導かれ、虚像Iとして観察者Dに視認される。 FIG. 2 is a schematic diagram for explaining the head-up display 100 according to the first embodiment. As shown in FIG. 2, the head-up display 100 includes a housing 140, a projection optical system 120, and a display device 110. The head-up display 100 causes the observer D inside the vehicle 200 to visually recognize the image displayed on the display surface 111 of the display device 110 as a virtual image I. The image displayed on the display surface 111 is reflected through the windshield 220 and guided to the viewpoint region 300 (sometimes referred to as an eyebox) of the observer D, and is visually recognized by the observer D as a virtual image I. .
 ここで、虚像Iの上端を形成する光線を光線Luとする。また、虚像Iの下端を形成する光線を光線Llとする。また、虚像Iの中心を形成する光線(表示面111の中心から出射され視点領域300の中心に到達する光線)を基準光線Lcとする。ただし、観察者Dの視点が視点領域300の中心にあるものとする。 Here, a light beam forming the upper end of the virtual image I is a light beam Lu. A light beam that forms the lower end of the virtual image I is a light beam Ll. Further, a light beam that forms the center of the virtual image I (a light beam that is emitted from the center of the display surface 111 and reaches the center of the viewpoint region 300) is set as a reference light beam Lc. However, it is assumed that the viewpoint of the observer D is at the center of the viewpoint area 300.
 筺体140は開口130を有している。この開口130には、透明の開口カバー131が設けられている。この開口カバー131は、一部に湾曲形状を有している。そのため、開口カバー131に反射した太陽光などの外光が、観察者Dに届き難くなっている。この開口カバー131をレンズ形状とすることで、虚像Iの倍率を調整することも可能である。なお、この開口カバー131は、実施の形態1に係るヘッドアップディスプレイ100において必須の構成要素ではない。また、筐体140も、実施の形態1に係るヘッドアップディスプレイ100において必須の構成要素ではなく、車両200のダッシュボード210が筐体140の代わりを担っても良い。 The housing 140 has an opening 130. The opening 130 is provided with a transparent opening cover 131. The opening cover 131 is partially curved. Therefore, external light such as sunlight reflected by the opening cover 131 is difficult to reach the observer D. By making the opening cover 131 into a lens shape, the magnification of the virtual image I can be adjusted. The opening cover 131 is not an essential component in the head-up display 100 according to the first embodiment. Also, the housing 140 is not an essential component in the head-up display 100 according to the first embodiment, and the dashboard 210 of the vehicle 200 may take the place of the housing 140.
 投射光学系120は、第1反射素子としての第1ミラー121と、第2反射素子としての第2ミラー122とを有している。第1ミラー121で反射し第2ミラー122に入射する基準光線Lcは、水平且つ表示面111に向かう方向のベクトル成分を有する。また、表示面111から出射され第1ミラー121に入射する基準光線Lcは、車両200における前方方向のベクトル成分を有する。表示面111に表示された画像は、第1ミラー121を介して反射して、次に第2ミラー122を介して反射して、さらにウインドシールド220を介して反射して、視点領域300に届き、虚像Iとして観察者Dに視認される。ここで、視点領域300とは、観察者Dが虚像Iの全体を欠けることなく観察できる目の移動可能領域を指す。 The projection optical system 120 includes a first mirror 121 as a first reflecting element and a second mirror 122 as a second reflecting element. The reference light beam Lc reflected by the first mirror 121 and incident on the second mirror 122 has a vector component that is horizontal and directed in the direction toward the display surface 111. Further, the reference light beam Lc emitted from the display surface 111 and incident on the first mirror 121 has a vector component in the forward direction in the vehicle 200. The image displayed on the display surface 111 is reflected through the first mirror 121, then reflected through the second mirror 122, and further reflected through the windshield 220 to reach the viewpoint region 300. The observer D visually recognizes the virtual image I. Here, the viewpoint area 300 refers to a movable area of the eye where the observer D can observe the entire virtual image I without losing the whole.
 表示デバイス110は、いずれも図示しない、液晶表示装置、光源を含むバックライトユニット、拡散板、偏向レンズ等からなる。表示デバイス110では、図示しないマイコン等の制御部によって、表示画像情報が制御される。表示面111には、表示画像情報として、道路進行案内、前方車両までの距離、車のバッテリー残量、現在の車速などの各種情報を表示することができる。表示デバイス110には、液晶表示装置(Liquid Crystal Display)、有機発光ダイオード(エレクトロルミネッセンス)、プラズマディスプレイなどの表示装置が用いられる。また、表示装置の代わりに、プロジェクタや走査型レーザを用いることも可能である。 The display device 110 includes a liquid crystal display device, a backlight unit including a light source, a diffusion plate, a deflection lens, and the like, all not shown. In the display device 110, display image information is controlled by a control unit such as a microcomputer (not shown). On the display surface 111, various information such as road progress guidance, the distance to the vehicle ahead, the remaining battery level of the car, and the current vehicle speed can be displayed as display image information. For the display device 110, a display device such as a liquid crystal display device (Liquid Crystal Display), an organic light emitting diode (electroluminescence), or a plasma display is used. Further, a projector or a scanning laser can be used instead of the display device.
 筺体140の内部には遮光壁150が配置されている。この遮光壁150は、表示デバイス110の表示面111から出射された光線が第1ミラー121を介さずに第2ミラー122に直接入射することで発生する迷光を防ぐ。遮光壁150は、それ単体で筐体140に固定されている。なお、遮光壁150の筐体140への固定は上記態様に限定されず、遮光壁150が表示デバイス110または第2ミラー122と一体となって固定されていても良い。 A light shielding wall 150 is disposed inside the housing 140. The light shielding wall 150 prevents stray light that is generated when a light beam emitted from the display surface 111 of the display device 110 directly enters the second mirror 122 without passing through the first mirror 121. The light shielding wall 150 is fixed to the housing 140 by itself. The fixing of the light shielding wall 150 to the housing 140 is not limited to the above embodiment, and the light shielding wall 150 may be fixed integrally with the display device 110 or the second mirror 122.
 [1-1-2.投射光学系と表示装置の配置構成]
 実施の形態1に係るヘッドアップディスプレイ100では、表示デバイス110が、筐体140の内部において、第2ミラー122よりも鉛直方向上側に配置されている。表示デバイス110は、表示面111の少なくとも一部が、第2ミラー122よりも鉛直方向上側に配置されていることが望ましい。これにより、光線Llが第2ミラー122と干渉することなく、筐体140をコンパクトに構成することができる。
[1-1-2. Arrangement configuration of projection optical system and display device]
In the head-up display 100 according to the first embodiment, the display device 110 is disposed on the upper side in the vertical direction from the second mirror 122 inside the housing 140. In the display device 110, it is desirable that at least a part of the display surface 111 is disposed above the second mirror 122 in the vertical direction. As a result, the housing 140 can be made compact without the light beam Ll interfering with the second mirror 122.
 また、表示デバイス110の表示面111は、第1ミラー121の方向に向けられている。このとき、表示デバイス110は、表示面111から出射する基準光線Lcが表示面111に対して傾いた状態となるように配置されていることが望ましい。これにより、外光が筐体140の内部に進入して表示デバイス110の表示面111で反射することにより発生する迷光を、防ぐことができる。 Further, the display surface 111 of the display device 110 is directed toward the first mirror 121. At this time, it is desirable that the display device 110 is arranged so that the reference light beam Lc emitted from the display surface 111 is inclined with respect to the display surface 111. Thereby, stray light generated when external light enters the inside of the housing 140 and is reflected by the display surface 111 of the display device 110 can be prevented.
 また、第1ミラー121の反射面121aは、表示面111に表示される画像が第2ミラー122に映る方向に向けられている。また、第1ミラー121の反射面121aは、表示面111に表示される画像が第2ミラー122に映るように、偏心している。 Further, the reflection surface 121 a of the first mirror 121 is directed in a direction in which an image displayed on the display surface 111 is reflected on the second mirror 122. Further, the reflection surface 121 a of the first mirror 121 is eccentric so that an image displayed on the display surface 111 is reflected on the second mirror 122.
 ここで、第2ミラー122の反射領域は、表示面111に表示された画像を拡大して虚像Iとして表示させるために、第1ミラー121の反射領域よりも大きい。反射領域とは入射光を反射させるミラーの領域であり、反射領域が大きくなるほどミラーも大きくなる。 Here, the reflection area of the second mirror 122 is larger than the reflection area of the first mirror 121 in order to enlarge and display the image displayed on the display surface 111 as a virtual image I. The reflection area is an area of the mirror that reflects incident light. The larger the reflection area, the larger the mirror.
 第2ミラー122は、筐体140の内部において、第1ミラー121よりも水平方向表示デバイス側に配置されている。車両200に搭載される場合、第2ミラー122は、第1ミラー121よりも車両後方側に配置されている。また、第2ミラー122の反射面122aは、第1ミラー121からの反射光がウインドシールド220に入射する方向に向けられている。また、第2ミラー122の反射面122aは、第1ミラー121からの反射光がウインドシールド220に入射するように、偏心している。 The second mirror 122 is disposed inside the housing 140 closer to the horizontal display device than the first mirror 121. When mounted on the vehicle 200, the second mirror 122 is disposed on the vehicle rear side with respect to the first mirror 121. Further, the reflection surface 122 a of the second mirror 122 is directed in the direction in which the reflected light from the first mirror 121 enters the windshield 220. Further, the reflection surface 122 a of the second mirror 122 is eccentric so that the reflected light from the first mirror 121 enters the windshield 220.
 実施の形態1において、第1ミラー121は、反射面121aが凹面形状且つ自由曲面形状のミラーである。また、第2ミラー122も、反射面122aが凹面形状且つ自由曲面形状のミラーである。第2ミラー122の反射面122aを凹面形状とすることで、第1ミラー121で発生する画像歪み(表示面111に表示された画像が非対称に偏心歪曲する画像歪み)を、良好に補正することができる。また、第1ミラー121及び第2ミラー122の反射面121a,122aを凹面形状とすることで、観察者Dは表示面111に表示された画像よりも拡大された虚像Iを視認することができる。ただし、第1ミラー121及び第2ミラー122は、どちらか一方の反射面のみが自由曲面形状であって、他方の反射面が平面形状であってもよい。 In the first embodiment, the first mirror 121 is a mirror having a reflecting surface 121a having a concave shape and a free-form surface. The second mirror 122 is also a mirror whose reflecting surface 122a has a concave shape and a free-form surface shape. By making the reflecting surface 122a of the second mirror 122 into a concave shape, image distortion generated in the first mirror 121 (image distortion in which the image displayed on the display surface 111 is asymmetrically eccentrically distorted) can be corrected satisfactorily. Can do. In addition, by making the reflecting surfaces 121a and 122a of the first mirror 121 and the second mirror 122 into a concave shape, the observer D can visually recognize the virtual image I that is enlarged from the image displayed on the display surface 111. . However, only one of the first mirror 121 and the second mirror 122 may have a free-form surface, and the other reflection surface may have a planar shape.
 さらに、第1ミラー121及び第2ミラー122の反射面121a,122aを凹面形状とすることで、1枚のミラーがもつパワーを分散させることができ、組み立て時の歪曲収差感度を低減することができる。 Furthermore, by making the reflecting surfaces 121a and 122a of the first mirror 121 and the second mirror 122 concave, the power of one mirror can be dispersed, and the distortion aberration sensitivity during assembly can be reduced. it can.
 また、第1ミラー121は、反射面121aに自由曲面形状を採用している。これは、反射で生じた虚像Iの歪みを補正し、視点領域300の全域で良好な虚像Iが見えるようにするためである。 In addition, the first mirror 121 employs a free curved surface shape as the reflecting surface 121a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
 また、第2ミラー122は、反射面122aに自由曲面形状を採用している。これは、反射で生じた虚像Iの歪みを補正し、視点領域300の全域で良好な虚像Iが見えるようにするためである。 In addition, the second mirror 122 employs a free-form surface as the reflecting surface 122a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
 図3は、実施の形態1に係る第1ミラー121と基準光線Lcとの関係を説明するための図である。 FIG. 3 is a diagram for explaining the relationship between the first mirror 121 and the reference light beam Lc according to the first embodiment.
 基準光線Lcは、表示デバイス110の表示面111の中心から射出され、第1ミラー121の反射面121aに入射して、基準光線Lcと反射面121aとの交点である基準交点121cで反射される。このとき、第1ミラー121に入射する基準光線Lcと、第1ミラー121で反射した基準光線Lcとを含む平面を、基準平面と定義する。また、第1ミラー121の反射面121aと基準平面との交線を、基準交線Bcと定義する。 The reference light beam Lc is emitted from the center of the display surface 111 of the display device 110, is incident on the reflection surface 121a of the first mirror 121, and is reflected at a reference intersection 121c that is an intersection of the reference light beam Lc and the reflection surface 121a. . At this time, a plane including the reference ray Lc incident on the first mirror 121 and the reference ray Lc reflected by the first mirror 121 is defined as a reference plane. Further, an intersection line between the reflecting surface 121a of the first mirror 121 and the reference plane is defined as a reference intersection line Bc.
 図4は、実施の形態1に係る投射光学系120の形状を説明するための図である。 FIG. 4 is a diagram for explaining the shape of the projection optical system 120 according to the first embodiment.
 基準交点121cにおける第1ミラー121の反射面121aに対する接平面を基準接平面170と定義する。基準接平面170上において基準交点121cから等距離にある鉛直方向上側の点を点170u、鉛直方向下側の点を点170lとする。これら2点から第1ミラー121の反射面121aまでのそれぞれの高さをサグ量とする。ここで、点170uと点170lの2点から基準接平面170と垂直になるようにたてた各垂線121u,121lが、基準交線Bcと交差するとき、点170lにおけるサグ量よりも点170uにおけるサグ量の方が大きい。これにより、観察者Dの視点領域300の全域で画面歪みが小さいヘッドアップディスプレイ100を提供することができる。 The tangent plane with respect to the reflecting surface 121a of the first mirror 121 at the reference intersection 121c is defined as a reference tangent plane 170. On the reference tangent plane 170, a point on the vertical direction that is equidistant from the reference intersection 121c is a point 170u, and a point on the lower side in the vertical direction is a point 170l. Each height from these two points to the reflecting surface 121a of the first mirror 121 is defined as a sag amount. Here, when the perpendicular lines 121u and 121l formed so as to be perpendicular to the reference tangent plane 170 from the two points 170u and 170l intersect the reference intersection line Bc, the point 170u is more than the sag amount at the point 170l. The sag amount at is larger. Thereby, the head-up display 100 with a small screen distortion can be provided in the whole viewpoint area 300 of the observer D.
 実施の形態1に係るヘッドアップディスプレイ100で使用している第1ミラー121では、反射面121aが回転非対称な形状を有するが、X方向とY方向とで曲率の符号が異なる、いわゆる鞍型の面形状を有しても良い。 In the first mirror 121 used in the head-up display 100 according to the first embodiment, the reflection surface 121a has a rotationally asymmetric shape, but the so-called saddle type in which the signs of curvature are different between the X direction and the Y direction. It may have a surface shape.
 実施の形態1に係るヘッドアップディスプレイ100で使用している第2ミラー122では、反射面122aが回転非対称な形状を有するが、X方向とY方向とで曲率の符号が異なる、いわゆる鞍型の面形状を有しても良い。 In the second mirror 122 used in the head-up display 100 according to the first embodiment, the reflection surface 122a has a rotationally asymmetric shape, but the so-called saddle type in which the signs of curvature are different between the X direction and the Y direction. It may have a surface shape.
 [1-1-3.遮光壁の配置構成]
 筺体140は遮光壁150を備えている。図4に示すように、表示デバイス110の表示面111の上端と第2ミラー122の車両前方側(図面左側)端部を結ぶ仮想線上には遮光壁150が位置する。
[1-1-3. Shading wall layout]
The housing 140 includes a light shielding wall 150. As shown in FIG. 4, the light shielding wall 150 is positioned on a virtual line connecting the upper end of the display surface 111 of the display device 110 and the end of the second mirror 122 on the vehicle front side (left side in the drawing).
 これにより、表示デバイス110の表示面111から出射された光線が第1ミラー121を介さずに第2ミラー122に直接入射することで発生する迷光を、防ぐことができる。 Thereby, the stray light generated when the light beam emitted from the display surface 111 of the display device 110 directly enters the second mirror 122 without passing through the first mirror 121 can be prevented.
 [1.2.効果等]
 以上のように構成されたヘッドアップディスプレイ100について、図5~9を用いて、その効果を以下に説明する。
[1.2. Effect]
The effects of the head-up display 100 configured as described above will be described below with reference to FIGS.
 図5は、観察者Dの視点領域300から見た虚像Iを説明するための模式図である。実施の形態1に係るヘッドアップディスプレイ100において、視点領域300は、横130mm×縦40mmの矩形である。 FIG. 5 is a schematic diagram for explaining the virtual image I viewed from the viewpoint region 300 of the observer D. In the head-up display 100 according to the first embodiment, the viewpoint area 300 is a rectangle of width 130 mm × length 40 mm.
 図6~図9は、観察者Dの視点領域300における画像歪みを表した図である。図6~図9において、実線は、各数値実施例1~4におけるヘッドアップディスプレイ100を用いて投射した虚像Iを示している。破線は、視点領域300から見た場合の虚像Iの理想の形状を示している。 6 to 9 are diagrams showing image distortion in the viewpoint region 300 of the observer D. FIG. 6 to 9, the solid line indicates the virtual image I projected using the head-up display 100 in each of Numerical Examples 1 to 4. A broken line indicates an ideal shape of the virtual image I when viewed from the viewpoint region 300.
 図6~図9のそれぞれにおいて、(1)は、観察者Dから見て視点領域300の中心の位置から虚像Iを見たときの画面歪みを示す図である。(2)は、視点領域300の左上の位置から虚像Iを見たときの画面歪みを示す図である。(3)は、視点領域300の左下の位置から虚像Iを見たときの画面歪みを示す図である。(4)は、視点領域300の右上の位置から虚像Iを見たときの画面歪みを示す図である。(5)は視点領域300の右下の位置から虚像Iを見たときの画面歪みを示す図である。 6 to 9, (1) is a diagram illustrating screen distortion when the virtual image I is viewed from the center position of the viewpoint region 300 when viewed from the observer D. (2) is a diagram showing screen distortion when the virtual image I is viewed from the upper left position of the viewpoint area 300. FIG. (3) is a diagram illustrating screen distortion when the virtual image I is viewed from the lower left position of the viewpoint area 300. FIG. (4) is a diagram showing screen distortion when the virtual image I is viewed from the upper right position of the viewpoint area 300. FIG. (5) is a diagram showing screen distortion when the virtual image I is viewed from the lower right position of the viewpoint area 300. FIG.
 本開示に係るヘッドアップディスプレイ100を用いることによって、視点領域300の全域で画面歪みが良好に補正される。すなわち、視点領域300内において観察者Dはどの位置で観察しても良好な虚像Iを視認することが可能である。 画面 By using the head-up display 100 according to the present disclosure, the screen distortion is corrected well over the entire viewpoint area 300. That is, in the viewpoint area 300, the observer D can visually recognize a good virtual image I regardless of the position.
 なお、さらに良好な虚像Iを視認するために、表示デバイス110の表示面111に表示させる画像をあらかじめ電子的に歪ませておいても良い。 Note that in order to visually recognize a better virtual image I, an image to be displayed on the display surface 111 of the display device 110 may be electronically distorted in advance.
 [1.3.望ましい条件]
 以下、実施の形態1に係るヘッドアップディスプレイ100が満足することが望ましい条件を説明する。なお、ヘッドアップディスプレイ100に対して、複数の好ましい条件が規定されるが、これら複数の条件すべてを満足する構成が最も望ましい。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するヘッドアップディスプレイ100を得ることも可能である。
[1.3. Desirable conditions]
Hereinafter, conditions that the head-up display 100 according to Embodiment 1 should satisfy are described. In addition, although several preferable conditions are prescribed | regulated with respect to the head up display 100, the structure which satisfy | fills all these several conditions is the most desirable. However, by satisfying individual conditions, it is also possible to obtain a head-up display 100 that exhibits corresponding effects.
 実施の形態1に係るヘッドアップディスプレイ100は、画像を表示する表示デバイス110と、表示デバイス110に表示された画像を投射する投射光学系120とを備える。投射光学系120は、表示デバイス110からの光路の順に、第1ミラー121と、第2ミラー122とを有する。 The head-up display 100 according to the first embodiment includes a display device 110 that displays an image and a projection optical system 120 that projects an image displayed on the display device 110. The projection optical system 120 includes a first mirror 121 and a second mirror 122 in the order of the optical path from the display device 110.
 実施の形態1に係るヘッドアップディスプレイ100は、表示デバイス110の表示面111に表示された画像を、ウインドシールド220に投影し、虚像Iを観察者Dに視認させている。これにより、観察者Dの前方視界を遮ることなく、表示デバイス110の表示面111に表示された画像を観察者Dに視認させることができる。 The head-up display 100 according to the first embodiment projects an image displayed on the display surface 111 of the display device 110 onto the windshield 220 so that the observer D can visually recognize the virtual image I. Thereby, the image displayed on the display surface 111 of the display device 110 can be visually recognized by the viewer D without blocking the front view of the viewer D.
 本開示に係るヘッドアップディスプレイ100は、第1ミラー121の反射面121aが自由曲面形状であることが望ましい。これにより、ウインドシールド220で発生する画面歪みを良好に補正し、視点領域300の全域で画面歪みの少ない良好な虚像Iを視認することができる。 In the head-up display 100 according to the present disclosure, the reflection surface 121a of the first mirror 121 is desirably a free-form surface. Thereby, the screen distortion generated in the windshield 220 can be corrected well, and a good virtual image I with little screen distortion can be visually recognized over the entire viewpoint area 300.
 本開示に係るヘッドアップディスプレイ100は、第2ミラー122の反射面122aが自由曲面形状であることが望ましい。これにより、ウインドシールド220で発生する画面歪みを良好に補正し、視点領域300の全域で画面歪みの少ない良好な虚像Iを視認することができる。 In the head-up display 100 according to the present disclosure, it is desirable that the reflection surface 122a of the second mirror 122 has a free-form surface shape. Thereby, the screen distortion generated in the windshield 220 can be corrected well, and a good virtual image I with little screen distortion can be visually recognized over the entire viewpoint area 300.
 本開示に係るヘッドアップディスプレイ100は、第1ミラー121の反射面121aが、凹面形状または平面形状である。これにより、第1ミラー121の反射面121aが凸面形状の場合に比べて、反射で生じる虚像Iの歪みを抑制することができる。 In the head-up display 100 according to the present disclosure, the reflection surface 121a of the first mirror 121 has a concave shape or a planar shape. Thereby, compared with the case where the reflective surface 121a of the 1st mirror 121 is convex shape, distortion of the virtual image I which arises by reflection can be suppressed.
 本開示に係るヘッドアップディスプレイ100は、第2ミラー122の反射面122aが、凹面形状または平面形状である。これにより、第2ミラー122が凸面形状の場合に比べて、反射で生じる虚像Iの歪みを抑制することができる。 In the head-up display 100 according to the present disclosure, the reflection surface 122a of the second mirror 122 has a concave shape or a planar shape. Thereby, compared with the case where the 2nd mirror 122 is convex shape, distortion of virtual image I which arises by reflection can be controlled.
 本開示に係るヘッドアップディスプレイ100は、第1ミラー121の外形形状が台形である。これにより、第1ミラー121に関して、表示面111に表示された画像が反射する領域以外の不要な領域を削減することができ、ヘッドアップディスプレイ100を小型化することができる。なお、第1ミラー121の外形形状は台形に限られず、有効領域の形状に応じて適宜変更できるものである。 In the head-up display 100 according to the present disclosure, the outer shape of the first mirror 121 is a trapezoid. Thereby, regarding the first mirror 121, an unnecessary area other than the area where the image displayed on the display surface 111 is reflected can be reduced, and the head-up display 100 can be reduced in size. Note that the outer shape of the first mirror 121 is not limited to a trapezoid, and can be changed as appropriate according to the shape of the effective region.
 本開示に係るヘッドアップディスプレイ100は、以下の条件(1)を満足することが望ましい。 The head-up display 100 according to the present disclosure desirably satisfies the following condition (1).
  1.7 < DL1 / DL2 ・・・(1)
 ここで、
 DL1:表示デバイス110と第1ミラー121間の基準光線Lcの光路長(厳密には、表示デバイス110の表示面111と、第1ミラー121の反射面121aとの間の基準光線Lcの光路長。)
 DL2:第1ミラー121と第2ミラー122間の基準光線Lcの光路長(厳密には、第1ミラー121の反射面121aと、第2ミラー122の反射面122aとの間の基準光線Lcの光路長。)
 である。
1.7 <DL1 / DL2 (1)
here,
DL1: Optical path length of the reference light beam Lc between the display device 110 and the first mirror 121 (strictly speaking, the optical path length of the reference light beam Lc between the display surface 111 of the display device 110 and the reflection surface 121a of the first mirror 121) .)
DL2: optical path length of the reference light beam Lc between the first mirror 121 and the second mirror 122 (strictly speaking, the reference light beam Lc between the reflection surface 121a of the first mirror 121 and the reflection surface 122a of the second mirror 122) Optical path length.)
It is.
 条件(1)は、表示デバイス110と第1ミラー121の面間隔と、第1ミラー121と第2ミラー122の面間隔の比率を規定する条件である。条件(1)を満足した場合は虚像Iの歪みを補正しやすい。そのため、観察者Dの視点領域300の全域で画面歪みが小さいヘッドアップディスプレイ100を提供することができる。条件(1)の下限を下回ると、表示デバイス110と第1ミラー121の面間隔が小さくなるため、第1ミラー121の凹面の曲率を強くする必要があり、虚像Iの歪みを補正することが困難となる。また、表示デバイス110と第1ミラー121の面間隔が小さくなることで、遮光壁150の効果が小さくなり、迷光の抑制が困難となる。 Condition (1) is a condition that regulates the ratio of the spacing between the display device 110 and the first mirror 121 and the spacing between the first mirror 121 and the second mirror 122. When the condition (1) is satisfied, it is easy to correct the distortion of the virtual image I. Therefore, it is possible to provide the head-up display 100 with a small screen distortion in the entire viewpoint area 300 of the observer D. If the lower limit of the condition (1) is not reached, the surface distance between the display device 110 and the first mirror 121 becomes small. Therefore, the curvature of the concave surface of the first mirror 121 needs to be increased, and the distortion of the virtual image I can be corrected. It becomes difficult. In addition, since the space between the display device 110 and the first mirror 121 is reduced, the effect of the light shielding wall 150 is reduced, and it is difficult to suppress stray light.
 さらに以下の条件(1A)を満足することにより上述の効果をさらに奏功させることができる。 Furthermore, by satisfying the following condition (1A), the above effect can be further achieved.
  1.7 < DL1 / DL2 < 4.0 ・・・(1A)
 条件(1A)の上限値を上回ると、表示デバイス110と第1ミラー121の面間隔が大きくなるため、小型なヘッドアップディスプレイを提供することが困難となる。
1.7 <DL1 / DL2 <4.0 (1A)
If the upper limit value of the condition (1A) is exceeded, the surface distance between the display device 110 and the first mirror 121 becomes large, and it becomes difficult to provide a small head-up display.
 また、さらに以下の条件(1B)を満足することにより上述した効果をさらに奏功させることができる。 Further, the above-described effects can be further achieved by further satisfying the following condition (1B).
  1.7 < DL1 / DL2 < 3.0 ・・・(1B)
 実施の形態1にかかるヘッドアップディスプレイ100は、以下の条件(2)を満足することが望ましい。
1.7 <DL1 / DL2 <3.0 (1B)
The head-up display 100 according to the first embodiment desirably satisfies the following condition (2).
  5 < IL < 25 ・・・(2)
 ここで、
 IL:表示デバイス110から出射する基準光線Lcの出射角[deg]
 である。
5 <IL <25 (2)
here,
IL: the exit angle [deg] of the reference beam Lc emitted from the display device 110
It is.
 条件(2)は表示デバイス110の表示面111から出射する基準光線Lcの出射角を規定する条件である。条件(2)の下限を下回ると、太陽光などの外光が、観察者Dの目に届く迷光となることを防ぐことが困難となる。この迷光とは、太陽光などの外光が、第2ミラー122、第1ミラー121、表示デバイス110の表示面111、第1ミラー121、第2ミラー122、ウインドシールド220の順に反射して生じる迷光のことである。また、条件(2)の上限を上回ると、表示面111に表示された画像のコントラストが低下し、虚像Iの視認性能が低下する。 Condition (2) is a condition that defines the emission angle of the reference light beam Lc emitted from the display surface 111 of the display device 110. If the lower limit of condition (2) is not reached, it will be difficult to prevent external light such as sunlight from becoming stray light that reaches the eyes of the observer D. The stray light is generated by reflecting external light such as sunlight in the order of the second mirror 122, the first mirror 121, the display surface 111 of the display device 110, the first mirror 121, the second mirror 122, and the windshield 220. It is stray light. If the upper limit of the condition (2) is exceeded, the contrast of the image displayed on the display surface 111 is lowered, and the visual performance of the virtual image I is lowered.
 実施の形態1に係るヘッドアップディスプレイ100は、以下の条件(3)を満足することが望ましい。 It is desirable that the head-up display 100 according to Embodiment 1 satisfies the following condition (3).
  25 < I2 < 45 ・・・(3)
 ここで、
 I2:第2ミラー122に入射する基準光線Lcの入射角[deg]
 である。
25 <I2 <45 (3)
here,
I2: incident angle [deg] of the reference light beam Lc incident on the second mirror 122
It is.
 条件(3)は、第1ミラー121から第2ミラー122に入射する基準光線Lcの入射角を規定する条件である。条件(3)の下限を下回る場合、第1ミラー121と第2ミラー122の面間隔が大きくなり、筐体140の深さ方向の寸法が大型化する。また、条件(3)の上限を上回ると、第2ミラー122で発生する非対称な歪曲収差を補正することが困難となる。 Condition (3) is a condition that defines the incident angle of the reference light beam Lc incident on the second mirror 122 from the first mirror 121. When falling below the lower limit of the condition (3), the surface interval between the first mirror 121 and the second mirror 122 becomes large, and the dimension in the depth direction of the housing 140 increases. If the upper limit of the condition (3) is exceeded, it becomes difficult to correct asymmetric distortion generated in the second mirror 122.
 実施の形態1に係るヘッドアップディスプレイ100は、遮光壁150の上端が、第2ミラー122と表示面111に表示された画像とを結んだ直線よりも上方にあることが望ましい。これにより、表示面111に表示された画像が第1ミラーを介さずに第2ミラー122に直接入射することで発生する迷光を、防ぐことができる。 In the head-up display 100 according to the first embodiment, it is desirable that the upper end of the light shielding wall 150 is above the straight line connecting the second mirror 122 and the image displayed on the display surface 111. Thereby, the stray light generated when the image displayed on the display surface 111 directly enters the second mirror 122 without passing through the first mirror can be prevented.
 (実施の形態2)
 以下、実施の形態2について説明する。実施の形態1と同様の構成部材については同じ符号を付し、実施の形態1と同様の構成及び機能については詳細な説明を省略する場合がある。
(Embodiment 2)
The second embodiment will be described below. Constituent members similar to those in the first embodiment are denoted by the same reference numerals, and detailed description of configurations and functions similar to those in the first embodiment may be omitted.
 [2-1.構成]
 [2-1-1.ヘッドアップディスプレイの全体構成]
 図10は、実施の形態2に係るヘッドアップディスプレイ100を説明するための模式図である。図10に示すように、ヘッドアップディスプレイ100は、ウインドシールド220の下側に位置するダッシュボード210の内部に配置されている。投射光学系120は、第1ミラー121、第2ミラー122を有している。表示デバイス110の表示面111に表示された画像は、第1ミラー121を介して反射して、次に第2ミラー122を介して反射して、屈折光学系160を介して屈折して、さらにウインドシールド220を介して反射する。そして、観察者Dの視点領域300に届き、虚像Iとして観察者Dに視認される。
[2-1. Constitution]
[2-1-1. Overall configuration of the head-up display]
FIG. 10 is a schematic diagram for explaining the head-up display 100 according to the second embodiment. As shown in FIG. 10, the head-up display 100 is disposed inside a dashboard 210 located below the windshield 220. The projection optical system 120 includes a first mirror 121 and a second mirror 122. The image displayed on the display surface 111 of the display device 110 is reflected through the first mirror 121, then reflected through the second mirror 122, refracted through the refractive optical system 160, and further Reflected through the windshield 220. Then, it reaches the viewpoint region 300 of the observer D and is visually recognized by the observer D as a virtual image I.
 [2-1-2.投射光学系と表示装置の配置構成]
 表示デバイス110は、筐体140の内部において、第1ミラー121よりも下側に配置されている。また、表示デバイス110の表示面111は、第1ミラー121の方向に向けられている。このとき、表示デバイス110は、表示面111から出射する基準光線Lcが表示面111に対して傾いた状態となるように配置されていることが望ましい。これにより、外光が筐体140の内部に進入して表示デバイス110の表示面111に反射することにより発生する迷光を、防ぐことができる。
[2-1-2. Arrangement configuration of projection optical system and display device]
The display device 110 is disposed below the first mirror 121 inside the housing 140. Further, the display surface 111 of the display device 110 is directed toward the first mirror 121. At this time, it is desirable that the display device 110 is arranged so that the reference light beam Lc emitted from the display surface 111 is inclined with respect to the display surface 111. Thereby, stray light generated when external light enters the inside of the housing 140 and is reflected on the display surface 111 of the display device 110 can be prevented.
 また、第1ミラー121の反射面121aは、表示面111に表示された画像が第2ミラー122に映る方向に向けられている。また、第1ミラー121の反射面121aは、表示面111に表示される画像が第2ミラー122に映るように、偏心している。 Further, the reflection surface 121 a of the first mirror 121 is directed in the direction in which the image displayed on the display surface 111 is reflected on the second mirror 122. Further, the reflection surface 121 a of the first mirror 121 is eccentric so that an image displayed on the display surface 111 is reflected on the second mirror 122.
 ここで、第2ミラー122の反射領域は、表示面111に表示された画像を拡大して虚像Iとして表示させるために、第1ミラー121の反射領域よりも大きい。反射領域とは入射光を反射させるミラーの領域であり、反射領域が大きくなるほどミラーも大きくなる。 Here, the reflection area of the second mirror 122 is larger than the reflection area of the first mirror 121 in order to enlarge and display the image displayed on the display surface 111 as a virtual image I. The reflection area is an area of the mirror that reflects incident light. The larger the reflection area, the larger the mirror.
 第2ミラー122は、筐体140の内部において、第1ミラー121よりも水平方向車両前方側に配置されている。また、第2ミラー122の反射面122aは、第1ミラー121からの反射光がウインドシールド220に入射する方向に向けられている。また、第2ミラー122の反射面122aは、第1ミラー121からの反射光がウインドシールド220に入射するように、偏心している。 The second mirror 122 is disposed inside the housing 140 on the vehicle front side in the horizontal direction with respect to the first mirror 121. Further, the reflection surface 122 a of the second mirror 122 is directed in the direction in which the reflected light from the first mirror 121 enters the windshield 220. Further, the reflection surface 122 a of the second mirror 122 is eccentric so that the reflected light from the first mirror 121 enters the windshield 220.
 第1ミラー121は、反射面121aが凸面形状且つ自由曲面形状のミラーである。また、第2ミラー122は、反射面122aが凹面形状且つ自由曲面形状のミラーである。第2ミラー122の反射面122aを凹面形状とすることで、第1ミラー121で発生する画像歪み(表示面111に表示された画像が非対称に偏心歪曲する画像歪み)を、良好に補正することができる。また、第2ミラー122の反射面122aを凹面形状とすることで、観察者Dは表示面111に表示された画像よりも拡大された虚像Iを視認することができる。ただし、第1ミラー121及び第2ミラー122は、どちらか一方の反射面のみが自由曲面形状であって、他方の反射面が平面形状であってもよい。 The first mirror 121 is a mirror having a reflective surface 121a having a convex shape and a free-form surface. The second mirror 122 is a mirror whose reflecting surface 122a is concave and free-form. By making the reflecting surface 122a of the second mirror 122 into a concave shape, image distortion generated in the first mirror 121 (image distortion in which the image displayed on the display surface 111 is asymmetrically eccentrically distorted) can be corrected satisfactorily. Can do. In addition, by forming the reflecting surface 122a of the second mirror 122 to have a concave shape, the observer D can visually recognize the virtual image I that is enlarged from the image displayed on the display surface 111. However, only one of the first mirror 121 and the second mirror 122 may have a free-form surface, and the other reflection surface may have a planar shape.
 さらに、第1ミラー121の反射面121aを凸面形状とすることで、第2ミラー122の凹面パワーを増大させることができ、筐体140を小型化することができる。 Furthermore, by making the reflecting surface 121a of the first mirror 121 into a convex shape, the concave surface power of the second mirror 122 can be increased, and the housing 140 can be downsized.
 また、第1ミラー121は、反射面121aに自由曲面形状を採用している。これは、反射で生じた虚像Iの歪みを補正し、視点領域300の全域で良好な虚像Iが見えるようにするためである。 In addition, the first mirror 121 employs a free curved surface shape as the reflecting surface 121a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
 また、第2ミラー122は、反射面122aに自由曲面形状を採用している。これは、反射で生じた虚像Iの歪みを補正し、視点領域300の全域で良好な虚像Iが見えるようにするためである。 In addition, the second mirror 122 employs a free-form surface as the reflecting surface 122a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
 (実施の形態3)
 以下、実施の形態3について説明する。上記実施の形態と同様の構成部材については同じ符号を付し、上記実施の形態と同様の構成及び機能については詳細な説明を省略する場合がある。
(Embodiment 3)
Hereinafter, the third embodiment will be described. Constituent members similar to those in the above-described embodiment are denoted by the same reference numerals, and detailed description of configurations and functions similar to those in the above-described embodiment may be omitted.
 [3-1.構成]
 [3-1-1.ヘッドアップディスプレイの全体構成]
 図11は、実施の形態3に係るヘッドアップディスプレイ100を説明するための模式図である。
[3-1. Constitution]
[3-1-1. Overall configuration of the head-up display]
FIG. 11 is a schematic diagram for explaining the head-up display 100 according to the third embodiment.
 図11に示すように、ヘッドアップディスプレイ100は、ウインドシールド220の下側に位置するダッシュボード210の内部に配置されている。投射光学系120は、第1ミラー121、第2ミラー122を有している。表示デバイス110の表示面111に表示された画像は、第1ミラー121を介して反射して、次に第2ミラー122を介して反射して、屈折光学系160を介して屈折して、さらにウインドシールド220を介して反射する。そして、観察者Dの視点領域300に届き、虚像Iとして観察者Dに視認される。 As shown in FIG. 11, the head-up display 100 is disposed inside a dashboard 210 located below the windshield 220. The projection optical system 120 includes a first mirror 121 and a second mirror 122. The image displayed on the display surface 111 of the display device 110 is reflected through the first mirror 121, then reflected through the second mirror 122, refracted through the refractive optical system 160, and further Reflected through the windshield 220. Then, it reaches the viewpoint region 300 of the observer D and is visually recognized by the observer D as a virtual image I.
 [3-1-2.投射光学系と表示装置の配置構成]
 表示デバイス110は、筐体140の内部において、第1ミラー121よりも上側に配置されている。また、表示デバイス110の表示面111は、第1ミラー121の方向に向けられている。これにより、表示デバイス110の表示面111(液晶面)を、太陽光の暴露から防ぐことができる。また、このとき、表示デバイス110は、表示面111から出射する基準光線Lcが表示面111に対して傾いた状態となるように配置されていることが望ましい。これにより、外光が筐体140の内部に進入して表示デバイス110の表示面111に反射することにより発生する迷光を、防ぐことができる。
[3-1-2. Arrangement configuration of projection optical system and display device]
The display device 110 is disposed above the first mirror 121 inside the housing 140. Further, the display surface 111 of the display device 110 is directed toward the first mirror 121. Thereby, the display surface 111 (liquid crystal surface) of the display device 110 can be prevented from being exposed to sunlight. At this time, it is desirable that the display device 110 is arranged so that the reference light beam Lc emitted from the display surface 111 is inclined with respect to the display surface 111. Thereby, stray light generated when external light enters the inside of the housing 140 and is reflected on the display surface 111 of the display device 110 can be prevented.
 また、第1ミラー121の反射面121aは、表示面111に表示される画像が第2ミラー122に映る方向に向けられている。また、第1ミラー121の反射面121aは、表示面111に表示される画像が第2ミラー122に映るように偏心している。 Further, the reflection surface 121 a of the first mirror 121 is directed in a direction in which an image displayed on the display surface 111 is reflected on the second mirror 122. Further, the reflection surface 121 a of the first mirror 121 is eccentric so that the image displayed on the display surface 111 is reflected on the second mirror 122.
 ここで、第2ミラー122の反射領域は、表示面111に表示された画像を拡大して虚像Iとして表示させるために、第1ミラー121の反射領域よりも大きい。反射領域とは入射光を反射させるミラーの領域であり、反射領域が大きくなるほどミラーも大きくなる。 Here, the reflection area of the second mirror 122 is larger than the reflection area of the first mirror 121 in order to enlarge and display the image displayed on the display surface 111 as a virtual image I. The reflection area is an area of the mirror that reflects incident light. The larger the reflection area, the larger the mirror.
 第2ミラー122は、筐体140の内部において、第1ミラー121よりも水平方向車両前方側に配置されている。また、第2ミラー122の反射面122aは、第1ミラー121からの反射光がウインドシールド220に入射する方向に向けられている。また、第2ミラー122の反射面122aは、第1ミラー121からの反射光がウインドシールド220に入射するように、偏心している。 The second mirror 122 is disposed inside the housing 140 on the vehicle front side in the horizontal direction with respect to the first mirror 121. Further, the reflection surface 122 a of the second mirror 122 is directed in the direction in which the reflected light from the first mirror 121 enters the windshield 220. Further, the reflection surface 122 a of the second mirror 122 is eccentric so that the reflected light from the first mirror 121 enters the windshield 220.
 第1ミラー121は、反射面121aが凹面形状且つ自由曲面形状のミラーである。また、第2ミラー122は、反射面122aが凹面形状且つ自由曲面形状のミラーである。第1ミラー121の反射面121aを凹面形状とすることで、第2ミラー122で発生する画像歪み(表示面111に表示された画像が非対称に偏心歪曲する画像歪み)を、良好に補正することができる。また、第2ミラー122の反射面122aを凹面形状とすることで、観察者Dは表示面111に表示された画像よりも拡大された虚像Iを視認することができる。ただし、第1ミラー121及び第2ミラー122は、どちらか一方の反射面のみが自由曲面形状であって、他方の反射面が平面形状であってもよい。また、第1ミラー121及び第2ミラー122は、どちらか一方の反射面のみが凹面形状であって、他方の反射面が凸面形状であってもよい。 The first mirror 121 is a mirror whose reflecting surface 121a has a concave shape and a free-form surface shape. The second mirror 122 is a mirror whose reflecting surface 122a is concave and free-form. By making the reflecting surface 121a of the first mirror 121 into a concave shape, image distortion generated by the second mirror 122 (image distortion in which the image displayed on the display surface 111 is asymmetrically eccentrically distorted) can be corrected satisfactorily. Can do. In addition, by forming the reflecting surface 122a of the second mirror 122 to have a concave shape, the observer D can visually recognize the virtual image I that is enlarged from the image displayed on the display surface 111. However, only one of the first mirror 121 and the second mirror 122 may have a free-form surface, and the other reflection surface may have a planar shape. Further, only one of the first mirror 121 and the second mirror 122 may have a concave shape, and the other reflection surface may have a convex shape.
 さらに、第1ミラー121及び第2ミラー122の反射面121a,122aを凹面形状とすることで、1枚のミラーがもつパワーを分散させることができ、組み立て時の歪曲収差感度を低減することができる。 Furthermore, by making the reflecting surfaces 121a and 122a of the first mirror 121 and the second mirror 122 concave, the power of one mirror can be dispersed, and the distortion aberration sensitivity during assembly can be reduced. it can.
 また、第1ミラー121は、反射面121aに自由曲面形状を採用している。これは、反射で生じた虚像Iの歪みを補正し、視点領域300の全域で良好な虚像Iが見えるようにするためである。 In addition, the first mirror 121 employs a free curved surface shape as the reflecting surface 121a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
 また、第2ミラー122は、反射面122aに自由曲面形状を採用している。これは、反射で生じた虚像Iの歪みを補正し、視点領域300の全域で良好な虚像Iが見えるようにするためである。 In addition, the second mirror 122 employs a free-form surface as the reflecting surface 122a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
 (実施の形態4)
 以下、実施の形態4について説明する。上記実施の形態と同様の構成部材については同じ符号を付し、上記実施の形態と同様の構成及び機能については詳細な説明を省略する場合がある。
(Embodiment 4)
Hereinafter, the fourth embodiment will be described. Constituent members similar to those in the above-described embodiment are denoted by the same reference numerals, and detailed description of configurations and functions similar to those in the above-described embodiment may be omitted.
 [4-1.構成]
 [4-1-1.ヘッドアップディスプレイの全体構成]
 図12は、実施の形態4に係るヘッドアップディスプレイ100を説明するための模式図である。このとき、簡単のため図12は一部が射影図となっている。
[4-1. Constitution]
[4-1-1. Overall configuration of the head-up display]
FIG. 12 is a schematic diagram for explaining the head-up display 100 according to the fourth embodiment. At this time, for simplicity, a part of FIG. 12 is a projection view.
 図12に示すように、ヘッドアップディスプレイ100は、ウインドシールド220の下側に位置するダッシュボード210の内部に配置されている。投射光学系120は、第1ミラー121、第2ミラー122を有している。表示デバイス110の表示面111に表示された画像は、第1ミラー121を介して反射して、次に第2ミラー122を介して反射して、屈折光学系160を介して屈折して、さらにウインドシールド220を介して反射する。そして、観察者Dの視点領域300に届き、虚像Iとして観察者Dに視認される。 As shown in FIG. 12, the head-up display 100 is disposed inside a dashboard 210 located below the windshield 220. The projection optical system 120 includes a first mirror 121 and a second mirror 122. The image displayed on the display surface 111 of the display device 110 is reflected through the first mirror 121, then reflected through the second mirror 122, refracted through the refractive optical system 160, and further Reflected through the windshield 220. Then, it reaches the viewpoint region 300 of the observer D and is visually recognized by the observer D as a virtual image I.
 [4-1-2.投射光学系と表示装置の配置構成]
 表示デバイス110、第1ミラー121、第2ミラー122は、それぞれの少なくとも一部が、同一水平面内に配置されている。
[4-1-2. Arrangement configuration of projection optical system and display device]
At least a part of each of the display device 110, the first mirror 121, and the second mirror 122 is arranged in the same horizontal plane.
 また、表示デバイス110の表示面111は、第1ミラー121の方向に向けられている。これにより、表示面111(液晶面)を太陽光の暴露から防ぐことができる。また、このとき、表示デバイス110の表示面111は、表示面111から出射する基準光線Lcが表示面111に対して傾いた状態となるように配置されていることが望ましい。これにより、外光が筐体140の内部に進入して表示デバイス110の表示面111に反射することにより発生する迷光を、防ぐことができる。 Further, the display surface 111 of the display device 110 is directed toward the first mirror 121. Thereby, the display surface 111 (liquid crystal surface) can be prevented from exposure to sunlight. At this time, it is desirable that the display surface 111 of the display device 110 is arranged so that the reference light beam Lc emitted from the display surface 111 is inclined with respect to the display surface 111. Thereby, stray light generated when external light enters the inside of the housing 140 and is reflected on the display surface 111 of the display device 110 can be prevented.
 また、第1ミラー121の反射面121aは、表示面111に表示される画像が第2ミラー122に映る方向に向けられている。また、第1ミラー121の反射面121aは、表示面111に表示される画像が第2ミラー122に映るように、偏心している。 Further, the reflection surface 121 a of the first mirror 121 is directed in a direction in which an image displayed on the display surface 111 is reflected on the second mirror 122. Further, the reflection surface 121 a of the first mirror 121 is eccentric so that an image displayed on the display surface 111 is reflected on the second mirror 122.
 ここで、第2ミラー122の反射領域は、表示面111に表示される画像を拡大して虚像Iとして表示させるために、第1ミラー121の反射領域よりも大きい。反射領域とは入射光を反射させるミラーの領域であり、反射領域が大きくなるほどミラーも大きくなる。 Here, the reflection area of the second mirror 122 is larger than the reflection area of the first mirror 121 in order to enlarge and display the image displayed on the display surface 111 as a virtual image I. The reflection area is an area of the mirror that reflects incident light. The larger the reflection area, the larger the mirror.
 第2ミラー122は、筐体140の内部において、第1ミラー121よりも水平方向車両前方側に配置されている。また、第2ミラー122の反射面122aは、第1ミラー121からの反射光がウインドシールド220に入射する方向に向けられている。また、第2ミラー122の反射面122aは、第1ミラー121からの反射光がウインドシールド220に入射するように、偏心している。 The second mirror 122 is disposed inside the housing 140 on the vehicle front side in the horizontal direction with respect to the first mirror 121. Further, the reflection surface 122 a of the second mirror 122 is directed in the direction in which the reflected light from the first mirror 121 enters the windshield 220. Further, the reflection surface 122 a of the second mirror 122 is eccentric so that the reflected light from the first mirror 121 enters the windshield 220.
 第1ミラー121は、反射面121aが凸面形状且つ自由曲面形状のミラーである。また、第2ミラー122は、反射面122aが凹面形状且つ自由曲面形状のミラーである。第2ミラー122の反射面122aを凹面形状とすることで、第1ミラー121で発生する画像歪み(表示面111に表示された画像が非対称に偏心歪曲する画像歪み)を、良好に補正することができる。また、第2ミラー122の反射面122aを凹面形状とすることで、観察者Dは表示面111に表示された画像よりも拡大された虚像Iを視認することができる。ただし、第1ミラー121及び第2ミラー122は、どちらか一方の反射面のみが自由曲面形状であって、他方の反射面が平面形状であってもよい。 The first mirror 121 is a mirror having a reflective surface 121a having a convex shape and a free-form surface. The second mirror 122 is a mirror whose reflecting surface 122a is concave and free-form. By making the reflecting surface 122a of the second mirror 122 into a concave shape, image distortion generated in the first mirror 121 (image distortion in which the image displayed on the display surface 111 is asymmetrically eccentrically distorted) can be corrected satisfactorily. Can do. In addition, by forming the reflecting surface 122a of the second mirror 122 to have a concave shape, the observer D can visually recognize the virtual image I that is enlarged from the image displayed on the display surface 111. However, only one of the first mirror 121 and the second mirror 122 may have a free-form surface, and the other reflection surface may have a planar shape.
 さらに、第1ミラー121の反射面121aを凸面形状とすることで、第2ミラー122の凹面パワーを増大させることができ、筐体140を小型化することができる。 Furthermore, by making the reflecting surface 121a of the first mirror 121 into a convex shape, the concave surface power of the second mirror 122 can be increased, and the housing 140 can be downsized.
 また、第1ミラー121は、反射面121aに自由曲面形状を採用している。これは、反射で生じた虚像Iの歪みを補正し、視点領域300の全域で良好な虚像Iが見えるようにするためである。 In addition, the first mirror 121 employs a free curved surface shape as the reflecting surface 121a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
 また、第2ミラー122は、反射面122aに自由曲面形状を採用している。これは、反射で生じた虚像Iの歪みを補正し、視点領域300の全域で良好な虚像Iが見えるようにするためである。 In addition, the second mirror 122 employs a free-form surface as the reflecting surface 122a. This is to correct the distortion of the virtual image I caused by the reflection so that a good virtual image I can be seen in the entire viewpoint area 300.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1~4を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1~4で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments that have been changed, replaced, added, omitted, and the like. In addition, it is possible to combine the components described in the first to fourth embodiments to form a new embodiment.
 (数値実施例)
 以下、実施の形態1~4に係るヘッドアップディスプレイを具体的に実施した数値実施例1~4を説明する。なお、各数値実施例1~4において、各表の長さの単位はすべて「mm」であり、角度の単位はすべて「°」である。また、各数値実施例において、自由曲面は次式で定義している。
(Numerical example)
Hereinafter, Numerical Examples 1 to 4 in which the head-up display according to Embodiments 1 to 4 is specifically implemented will be described. In each numerical example 1 to 4, the unit of length in each table is “mm”, and the unit of angle is “°”. In each numerical example, the free-form surface is defined by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、zは面を定義する軸から(x,y)の位置におけるサグ量、rは面を定義する軸の原点における曲率半径、cは面を定義する軸の原点における曲率、kはコーニック定数、Cjは単項式xの係数である。 Here, z is the sag amount at the position (x, y) from the axis defining the surface, r is the radius of curvature at the origin of the axis defining the surface, c is the curvature at the origin of the axis defining the surface, and k is conic. The constant, Cj, is a coefficient of the monomial x m y n .
 図13は、実施の形態1に係る数値実施例1~4の座標系を示す図である。各数値実施例1~4において、基準となる座標原点は、表示面111に表示された画像の中心であり、図13で示すようにX,Y,Z軸を定義している。 FIG. 13 is a diagram showing a coordinate system of numerical examples 1 to 4 according to the first embodiment. In each of Numerical Examples 1 to 4, the reference coordinate origin is the center of the image displayed on the display surface 111, and the X, Y, and Z axes are defined as shown in FIG.
 さらに、各数値実施例1~4中の偏心データにおいて、ADEとは、ミラーをX軸を中心にZ軸方向からY軸方向に回転した量を意味する。BDEとは、Y軸を中心にX軸方向からZ軸方向に回転した量を意味する。CDEとは、Z軸を中心にX軸方向からY軸方向に回転した量を意味する。 Furthermore, in the eccentric data in each numerical example 1 to 4, ADE means the amount of rotation of the mirror from the Z axis direction to the Y axis direction around the X axis. BDE means the amount of rotation about the Y axis from the X axis direction to the Z axis direction. CDE means the amount of rotation about the Z axis from the X axis direction to the Y axis direction.
 (数値実施例1)
 数値実施例1の投射光学系120の構成データを表1に、多項式自由曲面の係数を表2に示す。
(Numerical example 1)
Table 1 shows configuration data of the projection optical system 120 of Numerical Example 1, and Table 2 shows coefficients of the polynomial free-form surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (数値実施例2)
 数値実施例2の投射光学系120の構成データを表3に、多項式自由曲面の係数を表4に示す。
(Numerical example 2)
Table 3 shows configuration data of the projection optical system 120 of Numerical Example 2, and Table 4 shows coefficients of the polynomial free-form surface.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (数値実施例3)
 数値実施例3の投射光学系120の構成データを表5に、多項式自由曲面の係数を表6に示す。
(Numerical Example 3)
Table 5 shows configuration data of the projection optical system 120 according to Numerical Example 3, and Table 6 shows coefficients of the polynomial free-form surface.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (数値実施例4)
 数値実施例4の投射光学系120の構成データを表7に、多項式自由曲面の係数を表8に示す。
(Numerical example 4)
Table 7 shows configuration data of the projection optical system 120 of Numerical Example 4, and Table 8 shows coefficients of the polynomial free-form surface.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以下の表9に、各数値実施例1~4における表示面111に表示された画像のサイズ、虚像Iのサイズ、観察者Dの瞳から虚像Iまでの距離を示す。 Table 9 below shows the size of the image displayed on the display surface 111 in each numerical example 1 to 4, the size of the virtual image I, and the distance from the pupil of the observer D to the virtual image I.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 以下の表10に、各数値実施例1~4における条件(1)~(3)の数値を示す。 Table 10 below shows the numerical values of the conditions (1) to (3) in the numerical examples 1 to 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以下の表11に、数値実施例1~3における第1ミラー121のサグ量を示す。ただし、基準交線Bcからの距離は、符号が+のときが鉛直上側、符号が-のときが鉛直下側を示す。 Table 11 below shows the sag amount of the first mirror 121 in the numerical examples 1 to 3. However, the distance from the reference intersection line Bc indicates the vertically upper side when the sign is + and the vertically lower side when the sign is −.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本開示にかかるヘッドアップディスプレイは、車載用などのヘッドアップディスプレイといった高画質が要求されるヘッドアップディスプレイに好適である。 The head-up display according to the present disclosure is suitable for a head-up display that requires high image quality, such as an on-vehicle head-up display.
 100 ヘッドアップディスプレイ
 110 表示デバイス
 111 表示面
 120 投射光学系
 121 第1ミラー(第1反射素子)
 121a 第1反射素子の反射面
 121c 基準交点
 121l 垂線
 121u 垂線
 122 第2ミラー(第2反射素子)
 122a 第2反射素子の反射面
 130 開口
 131 開口カバー
 140 筐体
 150 遮光壁
 160 屈折光学系
 170 基準接平面
 170l 鉛直方向下側の点
 170u 鉛直方向上側の点
 200 車両
 210 ダッシュボード
 220 ウインドシールド
 300 視点領域
 D 観察者
 I 虚像
 Bc 基準交線
 Lc 基準光線
 Ll 虚像の下端を形成する光線
 Lu 虚像の上端を形成する光線
DESCRIPTION OF SYMBOLS 100 Head-up display 110 Display device 111 Display surface 120 Projection optical system 121 1st mirror (1st reflective element)
121a Reflecting surface of the first reflecting element 121c Reference intersection 121l Perpendicular 121u Perpendicular 122 Second mirror (second reflecting element)
122a Reflecting surface of second reflecting element 130 Opening 131 Opening cover 140 Housing 150 Shading wall 160 Refractive optical system 170 Reference tangent plane 170l Vertical lower point 170u Vertical upper point 200 Vehicle 210 Dashboard 220 Windshield 300 Viewpoint Area D Observer I Virtual Image Bc Reference Intersecting Line Lc Reference Ray Ll Ray that forms the lower end of the virtual image Lu Lu Ray that forms the upper end of the virtual image

Claims (11)

  1.  画像を表示する表示面を有する表示デバイスと、
     前記表示面に表示された画像を観察者の視点領域に投射する投射光学系と、を備え、
     前記投射光学系は、前記表示面から前記視点領域までの光路の順に、第1反射素子と第2反射素子とを有し、前記第1反射素子と前記第2反射素子の少なくとも一方の反射面は凹面形状を有し、
     前記表示面の中心から出射され前記視点領域の中心に到達する光線を基準光線とし、
     前記基準光線と前記第1反射素子の反射面との交点を基準交点とし、
     前記第1反射素子に入射する前記基準光線と前記第1反射素子で反射した前記基準光線とを含む平面を基準平面とし、
     前記第1反射素子の反射面と前記基準平面との交線を基準交線とし、
     前記基準交点における前記第1反射素子の反射面に対する接平面を基準接平面とし、
     前記基準接平面上において前記基準交点から等距離にある鉛直方向上側の点及び鉛直方向下側の点の2点から、前記第1反射素子の反射面までの、それぞれの高さをサグ量とし、
     前記鉛直方向上側の点と前記鉛直方向下側の点の2点から前記基準接平面と垂直になるようにたてた各垂線が、基準交線と交差するとき、
     前記鉛直方向下側の点におけるサグ量よりも前記鉛直方向上側の点におけるサグ量の方が大きい、
    ヘッドアップディスプレイ。
    A display device having a display surface for displaying an image;
    A projection optical system for projecting the image displayed on the display surface onto the viewpoint area of the observer,
    The projection optical system includes a first reflecting element and a second reflecting element in order of an optical path from the display surface to the viewpoint area, and at least one reflecting surface of the first reflecting element and the second reflecting element. Has a concave shape,
    A light beam that is emitted from the center of the display surface and reaches the center of the viewpoint region is a reference light beam,
    The intersection of the reference ray and the reflection surface of the first reflective element is a reference intersection,
    A plane including the reference beam incident on the first reflective element and the reference beam reflected by the first reflective element is a reference plane,
    An intersection line between the reflection surface of the first reflection element and the reference plane is a reference intersection line,
    A tangential plane with respect to the reflection surface of the first reflective element at the reference intersection is a reference tangential plane,
    On each of the reference tangent planes, the height from the two points of the upper point in the vertical direction and the lower point in the vertical direction that are equidistant from the reference intersection point to the reflecting surface of the first reflecting element is defined as the sag amount. ,
    When each perpendicular formed so as to be perpendicular to the reference tangent plane from two points of the upper point in the vertical direction and the lower point in the vertical direction intersects the reference intersection line,
    The sag amount at the upper point in the vertical direction is larger than the sag amount at the lower point in the vertical direction.
    Head-up display.
  2.  前記第2反射素子に入射する前記基準光線は、水平且つ前記表示面に向かう方向のベクトル成分を有し、
    以下の条件(1)を満足する請求項1に記載のヘッドアップディスプレイ:
     1.7 < DL1 / DL2 ・・・(1)
    ここで、
     DL1:表示デバイスと第1反射素子間の基準光線の光路長
     DL2:第1反射素子と第2反射素子間の基準光線の光路長
    である。
    The reference light beam incident on the second reflective element has a vector component in a horizontal direction toward the display surface,
    The head-up display according to claim 1, which satisfies the following condition (1):
    1.7 <DL1 / DL2 (1)
    here,
    DL1: Optical path length of the reference light beam between the display device and the first reflection element DL2: Optical path length of the reference light beam between the first reflection element and the second reflection element.
  3.  車両に搭載され、
     前記第1反射素子に入射する前記基準光線は、前記車両における前方方向のベクトル成分を有する、
    請求項1に記載のヘッドアップディスプレイ。
    Mounted on the vehicle,
    The reference ray incident on the first reflecting element has a vector component in a forward direction in the vehicle.
    The head-up display according to claim 1.
  4.  前記第2反射素子の反射面は凹面形状を有する、
    請求項1に記載のヘッドアップディスプレイ。
    The reflective surface of the second reflective element has a concave shape,
    The head-up display according to claim 1.
  5.  前記第2反射素子の反射領域は前記第1反射素子の反射領域よりも大きい、
    請求項1に記載のヘッドアップディスプレイ。
    The reflective area of the second reflective element is larger than the reflective area of the first reflective element;
    The head-up display according to claim 1.
  6.  前記第2反射素子の反射面は回転非対称な自由曲面形状である、
    請求項1に記載のヘッドアップディスプレイ。
    The reflective surface of the second reflective element is a rotationally asymmetric free-form surface,
    The head-up display according to claim 1.
  7.  前記表示デバイスの表示面の少なくとも一部は、前記第2反射素子よりも鉛直方向上側に位置する、
    請求項1に記載のヘッドアップディスプレイ。
    At least a part of the display surface of the display device is positioned above the second reflecting element in the vertical direction.
    The head-up display according to claim 1.
  8.  更に、前記表示面の上端と前記第2反射素子の反射面の車両前方側端部を結ぶ仮想線上に遮光壁を備える、
    請求項1に記載のヘッドアップディスプレイ。
    Furthermore, a light shielding wall is provided on a virtual line connecting the upper end of the display surface and the vehicle front side end of the reflective surface of the second reflective element,
    The head-up display according to claim 1.
  9.  以下の条件(2)を満足する、請求項1に記載のヘッドアップディスプレイ:
     5 < IL < 25 ・・・(2)
    ここで、
     IL:表示デバイスから出射する基準光線の出射角[deg]
    である。
    The head-up display according to claim 1, wherein the following condition (2) is satisfied:
    5 <IL <25 (2)
    here,
    IL: Angle of reference beam emitted from the display device [deg]
    It is.
  10.  以下の条件(3)を満足する、請求項1に記載のヘッドアップディスプレイ:
     25 < I2 < 45 ・・・(3)
    ここで、
     I2:第2反射素子に入射する基準光線の入射角[deg]
    である。
    The head-up display according to claim 1, which satisfies the following condition (3):
    25 <I2 <45 (3)
    here,
    I2: incident angle [deg] of the reference beam incident on the second reflecting element
    It is.
  11.  請求項1に記載のヘッドアップディスプレイを備えた、車両。 A vehicle comprising the head-up display according to claim 1.
PCT/JP2015/005330 2014-11-19 2015-10-23 Head-up display and vehicle WO2016079927A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15860468.6A EP3223057B1 (en) 2014-11-19 2015-10-23 Head-up display and vehicle
JP2016559796A JPWO2016079927A1 (en) 2014-11-19 2015-10-23 Head-up display and vehicle
US15/597,804 US20170248786A1 (en) 2014-11-19 2017-05-17 Head-up display and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234416 2014-11-19
JP2014234416 2014-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/597,804 Continuation US20170248786A1 (en) 2014-11-19 2017-05-17 Head-up display and vehicle

Publications (1)

Publication Number Publication Date
WO2016079927A1 true WO2016079927A1 (en) 2016-05-26

Family

ID=56013505

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2015/005330 WO2016079927A1 (en) 2014-11-19 2015-10-23 Head-up display and vehicle
PCT/JP2015/005331 WO2016079928A1 (en) 2014-11-19 2015-10-23 Head-up display and vehicle
PCT/JP2015/005329 WO2016079926A1 (en) 2014-11-19 2015-10-23 Head-up display and vehicle

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/005331 WO2016079928A1 (en) 2014-11-19 2015-10-23 Head-up display and vehicle
PCT/JP2015/005329 WO2016079926A1 (en) 2014-11-19 2015-10-23 Head-up display and vehicle

Country Status (4)

Country Link
US (2) US10222614B2 (en)
EP (1) EP3223057B1 (en)
JP (2) JPWO2016079927A1 (en)
WO (3) WO2016079927A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116778A1 (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Virtual image display device
JPWO2019093085A1 (en) * 2017-11-07 2019-11-14 パナソニックIpマネジメント株式会社 Head-up display
CN110873954A (en) * 2018-08-30 2020-03-10 松下知识产权经营株式会社 Display system, electron mirror system, and moving object
JP2020037379A (en) * 2018-08-30 2020-03-12 パナソニックIpマネジメント株式会社 Display system, electronic mirror system, and movable body

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072841A1 (en) * 2015-10-27 2017-05-04 日立マクセル株式会社 Information display device
CN106932898A (en) * 2015-12-30 2017-07-07 光宝科技股份有限公司 Head-up display device
CN113433702B (en) * 2016-07-07 2023-04-07 麦克赛尔株式会社 Vehicle with a steering wheel
JP6857015B2 (en) * 2016-11-29 2021-04-14 デュアリタス リミテッド Image display device
JP2018132685A (en) 2017-02-16 2018-08-23 富士フイルム株式会社 Head-up display device
JP2018144648A (en) * 2017-03-06 2018-09-20 矢崎総業株式会社 Display image projection system
EP3608702A1 (en) * 2017-04-06 2020-02-12 Panasonic Intellectual Property Management Co., Ltd. Head-up display system, and mobile object provided with head-up display system
TWM554175U (en) * 2017-09-01 2018-01-11 Opticser Co Ltd Optical projection apparatus
JP6593464B2 (en) * 2018-01-12 2019-10-23 株式会社Jvcケンウッド Virtual image display device
EP3757656B1 (en) * 2018-02-23 2023-12-13 Panasonic Intellectual Property Management Co., Ltd. Head-up display and moving body equipped with head-up display
DE102018204274A1 (en) * 2018-03-20 2019-09-26 Bayerische Motoren Werke Aktiengesellschaft Projection arrangement for generating a floating projection display in the interior of a motor vehicle
FR3084476B1 (en) * 2018-07-30 2022-12-30 Valeo Comfort & Driving Assistance LIGHT SENSOR DISPLAY
CN109270693A (en) * 2018-08-06 2019-01-25 乔士琪 Automobile head-up display device is filled before a kind of
WO2020059620A1 (en) * 2018-09-19 2020-03-26 日本精機株式会社 Display device
JP7122919B2 (en) * 2018-09-21 2022-08-22 マクセル株式会社 Information display device and reflecting mirror used therefor
US11885964B2 (en) * 2018-12-26 2024-01-30 Lg Electronics Inc. Electronic device
JP2020112758A (en) * 2019-01-17 2020-07-27 株式会社リコー Projection device and movable body
US11353701B2 (en) 2019-06-19 2022-06-07 Toyota Motor Engineering & Manufacturing North America. Inc. Multi-piece heads up display bezel with long chute
WO2021054222A1 (en) * 2019-09-17 2021-03-25 株式会社デンソー Display device
DE102022111577B3 (en) * 2022-05-10 2023-08-03 Audi Aktiengesellschaft display system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247489A (en) * 1991-02-01 1992-09-03 Nippon Seiki Co Ltd Display device for vehicle
JPH05341226A (en) * 1992-06-11 1993-12-24 Fujitsu Ltd Headup display device
JP2008268883A (en) * 2007-03-29 2008-11-06 Denso Corp Head-up display apparatus
JP2012058294A (en) * 2010-09-06 2012-03-22 Konica Minolta Opto Inc Virtual image observation optical system and virtual image observation device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121099A (en) * 1990-08-31 1992-06-09 Hughes Aircraft Company Two-page automotive virtual image display
US5037182A (en) * 1990-09-12 1991-08-06 Delco Electronics Corporation Rearview mirror head-up display
DE69119017T2 (en) * 1990-09-20 1996-11-14 Yazaki Corp Image display device
GB9021246D0 (en) * 1990-09-29 1991-01-02 Pilkington Perkin Elmer Ltd Optical display apparatus
JPH058661A (en) * 1991-07-02 1993-01-19 Kansei Corp Head-up display device for vehicle
JPH07159718A (en) * 1993-12-02 1995-06-23 Fujitsu Ltd Headup display
JP4355134B2 (en) 2002-10-09 2009-10-28 矢崎総業株式会社 Vehicle display device
DE102005017207A1 (en) * 2005-04-14 2006-10-19 Carl Zeiss Jena Gmbh Projection unit for a head-up display
JP4760336B2 (en) * 2005-11-29 2011-08-31 株式会社デンソー Head-up display device
JP2007272061A (en) 2006-03-31 2007-10-18 Denso Corp Headup display device
JP2008195194A (en) * 2007-02-13 2008-08-28 Yazaki Corp Vehicular display device
US8289229B2 (en) 2007-03-29 2012-10-16 Denso Corporation Head-up display apparatus
JP2011022210A (en) * 2009-07-13 2011-02-03 Fujifilm Corp Display device
JP5240222B2 (en) * 2010-03-26 2013-07-17 株式会社デンソー Head-up display device
JP2013061554A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Image forming apparatus, and vehicle with image forming apparatus mounted thereon
JP5734888B2 (en) * 2012-01-31 2015-06-17 株式会社東芝 Display device, moving body, and installation method of display device
JP5831434B2 (en) * 2012-12-07 2015-12-09 株式会社デンソー Head-up display device
WO2014189692A2 (en) * 2013-05-24 2014-11-27 University Of Rochester Optical display apparatus, method, and applications
JP6315240B2 (en) * 2014-02-03 2018-04-25 株式会社リコー Image display device, moving body, and lens array
JP2015194707A (en) * 2014-03-27 2015-11-05 パナソニックIpマネジメント株式会社 display device
JP6375825B2 (en) * 2014-09-23 2018-08-22 株式会社デンソー Head-up display device
US10078217B2 (en) * 2014-10-24 2018-09-18 Ricoh Company, Ltd. Image display device and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247489A (en) * 1991-02-01 1992-09-03 Nippon Seiki Co Ltd Display device for vehicle
JPH05341226A (en) * 1992-06-11 1993-12-24 Fujitsu Ltd Headup display device
JP2008268883A (en) * 2007-03-29 2008-11-06 Denso Corp Head-up display apparatus
JP2012058294A (en) * 2010-09-06 2012-03-22 Konica Minolta Opto Inc Virtual image observation optical system and virtual image observation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116778A1 (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Virtual image display device
JP2018101099A (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Virtual image display device
US10775619B2 (en) 2016-12-21 2020-09-15 Panasonic Intellectual Property Management Co., Ltd. Virtual image display device
JPWO2019093085A1 (en) * 2017-11-07 2019-11-14 パナソニックIpマネジメント株式会社 Head-up display
US11048080B2 (en) 2017-11-07 2021-06-29 Panasonic Intellectual Property Management Co., Ltd. Head-up display
CN110873954A (en) * 2018-08-30 2020-03-10 松下知识产权经营株式会社 Display system, electron mirror system, and moving object
JP2020037379A (en) * 2018-08-30 2020-03-12 パナソニックIpマネジメント株式会社 Display system, electronic mirror system, and movable body
US10940800B2 (en) 2018-08-30 2021-03-09 Panasonic Intellectual Property Management Co., Ltd. Display system, electronic mirror system, and moving vehicle
CN110873954B (en) * 2018-08-30 2021-07-06 松下知识产权经营株式会社 Display system, electron mirror system, and moving object

Also Published As

Publication number Publication date
WO2016079928A1 (en) 2016-05-26
US10222614B2 (en) 2019-03-05
US20170242248A1 (en) 2017-08-24
EP3223057A4 (en) 2018-04-04
EP3223057A1 (en) 2017-09-27
US20170248786A1 (en) 2017-08-31
JPWO2016079927A1 (en) 2017-09-07
EP3223057B1 (en) 2020-04-15
JPWO2016079928A1 (en) 2017-10-05
JP6582245B2 (en) 2019-10-02
WO2016079926A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2016079927A1 (en) Head-up display and vehicle
JP6650584B2 (en) Head-up display and moving object equipped with head-up display
JP6630921B2 (en) Head-up display and moving object equipped with head-up display
WO2015145956A1 (en) Display apparatus
US10705333B2 (en) Projection optical system and head-up display apparatus using the same
US11448877B2 (en) Projection optical system and head-up display
JP6225341B2 (en) Head-up display and mobile body equipped with head-up display
JP6681546B2 (en) Head-up display and vehicles equipped with head-up display
JP7365621B2 (en) Imaging optical system and moving object equipped with an imaging optical system
JP2018146882A (en) Image projection device
US20180088327A1 (en) Head-up display and moving body equipped with head-up display
JPWO2016038767A1 (en) Head-up display and moving body
JP2023054016A (en) Head-up display
JPWO2019093085A1 (en) Head-up display
JP2017120388A (en) Head-up display and movable body mounting head-up display thereon
JP6857800B2 (en) Virtual image display device
JP2023054017A (en) Head-up display
JP6830182B2 (en) Image projection device
JPWO2018186149A1 (en) HEAD-UP DISPLAY SYSTEM AND MOVING BODY HAVING HEAD-UP DISPLAY SYSTEM
JP6628873B2 (en) Projection optical system, head-up display device, and automobile
JP7357233B2 (en) heads up display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559796

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015860468

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE