WO2016078077A1 - 触控式显示模组和显示装置 - Google Patents

触控式显示模组和显示装置 Download PDF

Info

Publication number
WO2016078077A1
WO2016078077A1 PCT/CN2014/091891 CN2014091891W WO2016078077A1 WO 2016078077 A1 WO2016078077 A1 WO 2016078077A1 CN 2014091891 W CN2014091891 W CN 2014091891W WO 2016078077 A1 WO2016078077 A1 WO 2016078077A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip electrode
strip
display
display module
width
Prior art date
Application number
PCT/CN2014/091891
Other languages
English (en)
French (fr)
Inventor
叶成亮
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/407,935 priority Critical patent/US20170300152A1/en
Publication of WO2016078077A1 publication Critical patent/WO2016078077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a touch display module and a display device.
  • 3D display technology has attracted much attention.
  • the basic principle of 3D display is to use the left and right eyes to receive different pictures, and then process the image information through the brain to form a stereoscopic effect.
  • a naked-eye 3D grating is added to the display screen in the prior art, and there are two types of naked-eye 3D gratings: a slit grating and a cylindrical lens grating, wherein the process of realizing the 3D of the grating is added to the original display screen.
  • a liquid crystal cell comprising a first substrate and a second substrate, and a liquid crystal layer filled in between the two substrates, wherein the electric field formed by the first substrate and the second substrate is adjusted to cause the liquid crystal to be tilted in a certain direction to form a similar lens
  • the effect is that the light of the display panel is concentrated in a certain direction to form a plurality of different viewing zones, and the left eye image and the right eye image are respectively transmitted to the left eye and the right eye, thereby sensing the 3D effect, or the liquid crystal is formed under the electric field. Similar to the structure of the slit grating, the left and right eyes can receive different images and thus feel the 3D effect.
  • the technical problem to be solved by the present invention is to provide a touch display module and a display device capable of performing 3D display, and the touch positioning function can be realized without adding a touch layer in 2D display, thereby facilitating the communication of the display module. Transmissibility and its thin design.
  • the present invention provides a touch display module, comprising: an upper substrate, a lower substrate disposed opposite to the upper substrate, and a liquid crystal layer disposed between the upper substrate and the lower substrate; the upper substrate facing downward a first strip electrode is disposed on one side of the substrate, and a second strip electrode is disposed on a side of the lower substrate facing the upper substrate.
  • the first strip electrode and the second strip electrode extend in a direction perpendicular to each other; the display module further includes a control chip connecting the first strip electrode and the second strip electrode, when performing 3D display, the control chip drives the first strip electrode and the second strip electrode to realize the liquid crystal lens or the liquid crystal grating function, When performing 2D display, the control chip drives the first strip electrode and the second strip electrode to realize the function of positioning the touch operation; the interval between any adjacent two first strip electrodes is the same, and the interval is a first distance; the spacing between any two adjacent second strip electrodes is the same, the spacing distance is a second distance; the first distance is greater than the second distance; all the first strip electrodes have the same width, The width is a first width; all of the second strip electrodes have the same width and a second width; the first width is smaller than the second width.
  • control chip When the 2D display is performed, the control chip further drives the first strip electrode and the second strip electrode to form mutual capacitance to realize the function of positioning the touch operation.
  • the first strip electrode and the second strip electrode are transparent indium tin oxide ITO electrodes.
  • the present invention provides another touch display module, comprising: an upper substrate, a lower substrate disposed opposite to the upper substrate, and a liquid crystal layer disposed between the upper substrate and the lower substrate; the upper substrate faces a first strip electrode is disposed on one side of the lower substrate, and a second strip electrode is disposed on a side of the lower substrate facing the upper substrate, and the first strip electrode and the second strip electrode extend in a direction intersecting each other; the display module further
  • the control chip includes a first strip electrode and a second strip electrode. When performing 3D display, the control chip drives the first strip electrode and the second strip electrode to implement a liquid crystal lens or a liquid crystal grating function, and performs 2D display. The control chip drives the first strip electrode and the second strip electrode to realize the function of positioning the touch operation.
  • first strip electrode and the second strip electrode extend in a direction perpendicular to each other.
  • the spacing between any two adjacent first strip electrodes is the same, and the spacing distance is the first distance; the spacing between any adjacent two second strip electrodes is the same, and the spacing distance is the second a distance; the first distance is greater than the second distance; all of the first strip electrodes have the same width and a width of the first width; all of the second strip electrodes have the same width and a width of the second width; the first width is less than Second width.
  • control chip When the 2D display is performed, the control chip further drives the first strip electrode and the second strip electrode to form mutual capacitance to realize the function of positioning the touch operation.
  • the first strip electrode and the second strip electrode are transparent indium tin oxide ITO electrodes.
  • the present invention provides a touch display device, including a display module and a display panel, the display panel being disposed under the display module;
  • the display module includes: an upper substrate, a lower substrate disposed opposite to the upper substrate, and a liquid crystal layer disposed between the upper substrate and the lower substrate; a first strip electrode disposed on a side of the upper substrate facing the lower substrate, the lower portion a second strip electrode is disposed on a side of the substrate facing the upper substrate, the first strip electrode and the second strip electrode intersecting each other; the display module further includes a first strip electrode and a second strip electrode Control
  • the chip is controlled to drive the first strip electrode and the second strip electrode to realize a liquid crystal lens or a liquid crystal grating function.
  • the control chip drives the first strip electrode and the second strip.
  • the electrode further realizes the function of positioning the touch operation.
  • first strip electrode and the second strip electrode extend in a direction perpendicular to each other.
  • the spacing between any two adjacent first strip electrodes is the same, and the spacing distance is the first distance; the spacing between any adjacent two second strip electrodes is the same, and the spacing distance is the second a distance; the first distance is greater than the second distance; all of the first strip electrodes have the same width and a width of the first width; all of the second strip electrodes have the same width and a width of the second width; the first width is less than Second width.
  • control chip When the 2D display is performed, the control chip further drives the first strip electrode and the second strip electrode to form mutual capacitance to realize the function of positioning the touch operation.
  • the display panel is a liquid crystal LCD display panel, an organic electroluminescence OLED display panel, a plasma PDP display panel or a cathode ray CRT display panel.
  • the present invention has the beneficial effects that the touch display module of the present invention comprises a liquid crystal layer disposed between the upper and lower substrates and the upper and lower substrates, and is disposed on the upper substrate and the lower substrate, respectively.
  • the strip electrode is driven and controlled by the control chip to make the liquid crystal layer exhibit a lens or a grating effect, and then the display module can realize 3D display; since the 3D display consumes a large amount of time and energy, it is sometimes not used in actual use.
  • 3D display is required, only 2D display is needed, and the display module is reused at this time, and the touch chip drives and controls the two electrodes in another manner, so that the display module realizes the function of positioning the touch operation,
  • the invention can perform 3D display, and the touch positioning function can be realized without adding a touch layer in 2D display, thereby facilitating the permeability of the display module and its thin and light design.
  • FIG. 1 is a schematic structural view of a first embodiment of a touch display module according to the present invention.
  • FIG. 2 is a schematic structural view of a first strip electrode and a second strip electrode in the first embodiment of the display module shown in FIG. 1;
  • FIG. 3 is a schematic diagram showing a manner of connecting a control chip to a first strip electrode or a second strip electrode in the first embodiment of the display module shown in FIG. 1;
  • FIG. 4 is a schematic view showing the liquid crystal molecules deflected along the electric field line direction in the first embodiment of the display module shown in FIG. 1 to realize the function of the liquid crystal lens;
  • FIG. 5 is a schematic diagram showing the principle of realizing 3D display in the case where the liquid crystal layer is a cylindrical lens structure in the first embodiment of the display module shown in FIG. 1;
  • FIG. 6 is a schematic diagram of applying a scan signal to a first strip electrode and a second strip electrode in a self-capacitance mode of operation in the first embodiment of the display module shown in FIG. 1;
  • FIG. 7 is a circuit diagram showing a self-capacitance operation mode of a first strip electrode and a second strip electrode in the first embodiment of the display module shown in FIG. 1;
  • FIG. 8 is a schematic diagram of applying a scan signal to a first strip electrode and a second strip electrode in a mutual capacitance operation mode in the first embodiment of the display module shown in FIG. 1;
  • FIG. 9 is a circuit diagram showing a mutual capacitance operation mode of a first strip electrode and a second strip electrode in the first embodiment of the display module shown in FIG. 1;
  • FIG. 10 is a schematic structural view of a second embodiment of the touch display module of the present invention.
  • FIG. 11 is a schematic structural view of a first embodiment of a touch display device according to the present invention.
  • FIG. 1 is a schematic structural view of a first embodiment of the touch display module of the present invention
  • FIG. 2 is a first strip electrode and a second embodiment of the display module of FIG.
  • the structure of the strip electrode is provided.
  • the present embodiment provides a display module 100 including an upper substrate 101, a lower substrate 102, a liquid crystal layer 103, and a control chip 104.
  • the upper substrate 101 and the lower substrate 102 are disposed opposite to each other, the liquid crystal layer 103 is disposed between the upper substrate 101 and the lower substrate 102; and the first strip electrode 105 is disposed on a side of the upper substrate 101 facing the lower substrate 102, and the lower substrate is disposed on the lower substrate
  • the second strip electrode 106 is disposed on one side of the upper substrate 101; the first strip electrode 105 and the second strip electrode 106 extend in a direction intersecting each other.
  • the liquid crystal layer 103 has a thickness of 100 ⁇ m, and the upper substrate 101 and the lower substrate 102 are both 0.5 mm thick glass substrates, and the ITO film layer is covered as a conductive electrode on the glass substrate. It has the advantages of good electrical conductivity and high transparency. In other embodiments, the thickness of the liquid crystal layer 103 may be set to 50 um, 30 um, or 20 um. The thickness of the liquid crystal layer 103 is not limited herein, and should be set according to actual use conditions, that is, different viewing angle requirements when used, and correspondingly set different thicknesses. Liquid crystal layer.
  • the upper substrate 101 and the lower substrate 102 are made of a transparent material. Since the glass substrate is relatively mature and can also achieve a high light transmittance, the glass is selected in the embodiment. Substrate. Of course, if you are pursuing a more lightweight design, you can also choose transparent plastic or other transparent polymer materials. At present, the mass-produced glass substrates are roughly divided into the following specifications according to the thickness: 2.0 mm, 1.1 mm, 0.7 mm, 0.5 mm, 0.4 mm, and 0.3 mm. In consideration of cost and use requirements, a glass substrate having a thickness of 0.5 mm is selected in the present embodiment. The technician can also select other thickness of the glass substrate according to actual needs, or customize a certain thickness of the glass substrate such as 0.2mm or 3.0mm.
  • the ITO film layer covers the glass substrate to form a strip electrode, and the first strip electrode 105 and the second strip electrode 106 extend in a direction intersecting each other.
  • the main component of the ITO film layer is indium tin oxide, in which the indium oxide transmittance is high and the tin oxide is highly conductive. If the display module does not require high light transmittance, conductive glue, conductive tape, etc. can also be used.
  • the control chip 104 connects the first strip electrode 105 and the second strip electrode 106.
  • connection between the control chip 104 and the first strip electrode 105 and the second strip electrode 106 is performed by a wire bonding process, that is, a thin metal wire (about 3 um in diameter) is connected to the control chip by ultrasonic welding or thermocompression bonding.
  • the circuit of 104 and the first strip electrode 105 or the second strip electrode 106 are connected to FIG. 3.
  • FIG. 3 is a schematic diagram showing a manner of connecting a control chip to a first strip electrode or a second strip electrode in the first embodiment of the display module shown in FIG.
  • the display module 100 has two display modes: a 3D display and a 2D display.
  • the control chip 104 drives the first strip electrode 105 and the second strip electrode 106 to implement a liquid crystal lens or a liquid crystal grating function.
  • the control chip 104 drives a potential difference between the first strip electrode 105 and the second strip electrode 106 to cause the liquid crystal layer 103 to function as a liquid crystal lens. Since the liquid crystal molecules in the liquid crystal layer 103 have a characteristic that the molecular potential energy changes to the lowest state, that is, the long-axis direction of the liquid crystal molecules coincides with the field strength direction of the applied electric field. Based on this principle, the liquid crystal lens function can be realized when an electric field is applied to the liquid crystal layer 103. For details, please refer to FIG. 4.
  • FIG. 4 is a schematic diagram of the liquid crystal molecules deflected along the electric field line direction in the first embodiment of the display module shown in FIG. 1 to realize the function of the liquid crystal lens.
  • the control chip 104 applies a voltage to the first strip electrode 105 and the second strip electrode 106 to form an electric field, and the second strip electrode 106 is at a potential of a potential; the liquid crystal molecules in the liquid crystal layer 103 are under the action of an electric field.
  • the deflection occurs to form a structure similar to a cylindrical lens, which in turn achieves a converging function of light.
  • FIG. 5 is a schematic diagram showing the principle of realizing 3D display in the case where the liquid crystal layer is a cylindrical lens structure in the first embodiment of the display module shown in FIG. At this time, the light of the left eye image can be concentrated to the left eye of the person, and the light of the right eye image can be concentrated to the right eye of the person, thereby realizing 3D display.
  • control chip 104 can also drive a potential difference between the first strip electrode 105 and the second strip electrode 106 to cause the liquid crystal layer 103 to implement a liquid crystal grating function. That is, the liquid crystal molecules form a structure similar to the slit grating under the action of the electric field, and then the left eye image emitted by the odd pixel column of the display panel is transmitted to the left eye, and the right eye image emitted by the even pixel column is transmitted to the right eye, thereby realizing 3D display.
  • control chip 104 drives the first strip electrode 105 and the second strip electrode 106 to realize the function of positioning the touch operation.
  • FIG. 6 is a scanning operation of the first strip electrode and the second strip electrode in the self-capacitance working mode in the first embodiment of the display module shown in FIG. 1 .
  • FIG. 7 is a schematic circuit diagram of a self-capacitance operation mode of a first strip electrode and a second strip electrode in the first embodiment of the display module shown in FIG. 1 .
  • the control chip 104 inputs the scan signal Input 701 to the first strip electrode 105 and the second strip electrode 106, and the first strip electrode 105 and the second strip electrode 106 simultaneously receive the touch signal Output 702.
  • the self-capacitance Cr 703 of the first strip electrode 105 and the self-capacitance Ct 704 of the second strip electrode 106 are detected, wherein the self-capacitance is a capacitance formed by the electrode and the ground. If the number of the first strip electrodes 105 is m and the number of the second strip electrodes 106 is n, the number of self-capacitances to be detected is m+n.
  • the first strip electrode 105 and the second strip electrode 106 where the touch point is located respectively receive the signal of the capacitance change, so that the first strip electrode 105 and the second where the touch point are located may be respectively determined.
  • the strip electrode 106 then pushes the intersection of the two electrodes, that is, the touch point.
  • FIG. 8 is a scanning operation of the first strip electrode and the second strip electrode in the mutual capacitance working mode in the first embodiment of the display module shown in FIG. 1 .
  • FIG. 9 is a schematic circuit diagram showing a mutual capacitance operation mode of a first strip electrode and a second strip electrode in the first embodiment of the display module shown in FIG. 1 .
  • the control chip 104 inputs the scan signal Input 901 to the second strip electrode 106, and the first strip electrode 105 simultaneously receives the touch signal Output 902 for the first strip electrode 105 and the second strip electrode.
  • the mutual capacitance Cm 903 of the 106 junction is detected, wherein the mutual capacitance 903 is a capacitance formed by the two electrodes. If the number of the first strip electrodes 105 is m and the number of the second strip electrodes 106 is n, the number of mutual capacitances to be detected is m ⁇ n.
  • touch occurs, the capacitance of each junction is detected according to The value determines the touch point. With this mode of operation, there are too many points to be detected and the work efficiency is low.
  • the working mode of mutual capacitance is adopted in this embodiment.
  • Other embodiments may also be selected from the mode of operation of the capacitor, or the combination of self-capacitance and mutual capacitance.
  • the touch display module of the present embodiment includes a liquid crystal layer disposed between the upper and lower substrates and the upper and lower substrates, and strip electrodes connected to each other on the upper substrate and the lower substrate are respectively controlled by
  • the chip drives and controls the two electrodes, so that the liquid crystal layer exhibits a lens or a grating effect, and then the display module can realize 3D display; and when the 3D display is not required, and the 2D display is performed, the display module is reused, that is,
  • the touch chip drives and controls the two electrodes in another manner, so that the display module realizes the function of positioning the touch operation.
  • the present embodiment can perform 3D display, and the touch positioning function can be realized without adding a touch layer in 2D display, thereby facilitating the transmittance of the display module and its slim design.
  • FIG. 10 is a schematic structural diagram of a touch display module according to a second embodiment of the present invention.
  • the present embodiment provides a display module 200 including an upper substrate 201 , a lower substrate 202 , and a liquid crystal layer 203 . And the control chip 204.
  • the upper substrate 201 is disposed opposite to the lower substrate 202.
  • the liquid crystal layer 203 is disposed between the upper substrate 201 and the lower substrate 202.
  • the first strip electrode 205 is disposed on a side of the upper substrate 201 facing the lower substrate 202.
  • the second strip electrode 206 is disposed on one side of the upper substrate 201; the first strip electrode 205 and the second strip electrode 206 extend in a direction intersecting each other.
  • the control chip 204 connects the first strip electrode 205 and the second strip electrode 206.
  • the control chip 204 drives the first strip electrode 205 and the second strip electrode 206 to realize a liquid crystal lens or a liquid crystal grating function.
  • the control chip 204 drives the first strip electrode 205 and the second strip electrode 206 to realize the function of positioning the touch operation.
  • the structures and arrangements of the upper substrate 201, the lower substrate 202, the liquid crystal layer 203, the control chip 204, the first strip electrode 205, and the second strip electrode 206 are similar to the first embodiment of the touch display module. , will not repeat them here.
  • first strip electrodes 205 and the second strip electrodes 206 extend in a direction perpendicular to each other.
  • the two electrodes are arranged perpendicular to each other to facilitate positioning during touch operation.
  • the spacing between any two adjacent first strip electrodes 205 is the same, and the spacing distance is the first distance d 1 ; the spacing between any adjacent two second strip electrodes 206 is the same, and the spacing distance is a second distance d 2 ; the first distance d 1 is greater than the second distance d 2 ; all of the first strip electrodes 205 have the same width and a width of the first width c 1 ; all the second strip electrodes 206 have the same width , the width is the second width c 2 ; the first width c 1 is smaller than the second width c 2 .
  • the second width c 2 is set larger and the second distance d 2 is set smaller in order not to affect the electric field formed between the upper and lower substrates during the 3D display. If the first width c 1 and the second width c 2 are set to be the same, and the first distance d 1 and the second distance d2 are also set to be the same, it is not easy to form a regular electric field, that is, the liquid crystal lens cannot be effectively realized or The function of the liquid crystal grating.
  • the touch display module of the present embodiment includes a liquid crystal layer disposed between the upper and lower substrates and the upper and lower substrates, and strip electrodes connected to each other on the upper substrate and the lower substrate are respectively controlled by The chip drives and controls the two electrodes, so that the liquid crystal layer exhibits a lens or a grating effect, and then the display module can realize 3D display; and when the 3D display is not required, and the 2D display is performed, the display module is reused, that is, The touch chip drives and controls the two electrodes in another manner, so that the display module realizes the function of positioning the touch operation.
  • the present embodiment can perform 3D display, and the touch positioning function can be realized without adding a touch layer in 2D display, thereby facilitating the transmittance of the display module and its slim design.
  • the second strip electrode is provided with a wider width and a narrower spacing distance than the first strip electrode, and the liquid crystal lens function can be better realized.
  • FIG. 11 is a schematic structural diagram of a touch display device according to a first embodiment of the present invention.
  • the display device 300 includes a display module 301 and a display panel 302 .
  • the display module 301 includes an upper substrate 3011, a lower substrate 3012, a liquid crystal layer 3013, a control chip 3014, a first strip electrode 3015, and a second strip electrode 3016.
  • the display module 301 in this embodiment is similar to the display module 200 in the second embodiment, and details are not described herein again.
  • the display panel 302 is disposed under the display module 301.
  • the display panel 302 When performing 3D display, the display panel 302 respectively transmits a left-eye 3D image and a right-eye 3D image, which are respectively transmitted to the left and right eyes of the person through the display module 301, and are presented. 3D display effect.
  • the display panel 302 When performing 2D display, the display panel 302 transmits a 2D image and transmits it to the human eye through the display module 302 to present a 2D display effect.
  • the display panel is a liquid crystal LCD display panel.
  • an organic electroluminescent OLED display panel, a plasma PDP display panel, or a cathode ray CRT display panel may also be selected.
  • the display panel respectively transmits the left eye 3D image and the right eye 3D image
  • the control chip in the display module drives the two electrodes, so that the liquid crystal layer presents the lens.
  • a raster effect which in turn causes the left eye 3D image to be transmitted to the person's left eye, and the right eye 3D image to the person's right eye for 3D display;
  • the control chip in the display module Driving the two electrodes in another way to make the display module touch Control the function of positioning.
  • the 3D display can be performed, and the touch positioning function can be realized without adding a touch layer in the 2D display, thereby facilitating the transmittance of the display module and its slim design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控式显示模组和显示装置,其中,显示模组(100)包括上基板(101)、与上基板(101)相对设置的下基板(102)和设置于上下基板之间的液晶层(103);上基板(101)面对下基板(102)的一侧设置有第一条状电极(105),下基板(102)面对上基板(101)的一侧设置有第二条状电极(106),第一条状电极(105)与第二条状电极(106)延伸方向相互交叉;显示模组(100)进一步包括连接第一条状电极(105)和第二条状电极(106)的控制芯片(104),在进行3D显示时,控制芯片(104)驱动第一条状电极(105)和第二条状电极(106)以实现液晶透镜或液晶光栅功能,在进行2D显示时,控制芯片(104)驱动第一条状电极(105)和第二条状电极(106)以实现对触控操作进行定位的功能。该显示模组(100)能够进行3D显示,并且2D显示时不增加触控层即能实现触控定位功能,进而利于显示模组(100)的通透率及其轻薄化设计。

Description

触控式显示模组和显示装置 【技术领域】
本发明涉及显示技术领域,特别涉及一种触控式显示模组和显示装置。
【背景技术】
目前3D显示技术备受关注,3D显示的基本原理是利用左右眼接收到不同画面,然后经过大脑对图像信息的处理,构成立体的影响。为实现3D显示,现有技术中在显示屏上增加一层裸眼3D光栅,裸眼3D光栅有两种类型:狭缝光栅和柱透镜光栅,其中光栅实现3D的过程是在原有的显示屏上增加一个液晶盒,液晶盒包括第一基板和第二基板,以及两层基板中间填充的液晶层,通过对第一基板和第二基板形成的电场进行调控,使液晶沿一定方向倾倒,形成类似透镜的效果,进而使显示面板的光沿一定方向聚集,形成多个不同视区,左眼图像和右眼图像分别传输至左眼和右眼,进而感受到3D效果,或者液晶在电场作用下形成类似狭缝光栅的结构,使得左右眼能够接收不同的图像,进而感受到3D效果。
在3D显示技术以及触控技术飞速发展的基础上,出现了能够同时实现3D显示和触控操作定位的显示屏,其结构是在3D显示屏上增加一触控层。使用这种结构,其生产工艺相对较复杂,制作成本高,并且会额外增加显示屏的厚度,新增的触控层还会影响光线的射出即影响显示屏的通透性。
【发明内容】
本发明主要解决的技术问题是提供一种触控式显示模组和显示装置,能够进行3D显示,并且2D显示时不增加触控层即能实现触控定位功能,进而利于显示模组的通透率及其轻薄化设计。
为解决上述技术问题,本发明提供一种触控式显示模组,包括:上基板、与上基板相对设置的下基板以及设置于上基板和下基板之间的液晶层;上基板面对下基板的一侧设置有第一条状电极,下基板面对上基板的一侧设置有第二条状电极,第一条状电极和第二条状电极延伸方向相互垂直;显示模组进一步包括连接第一条状电极和第二条状电极的控制芯片,在进行3D显示时,控制芯片驱动第一条状电极和第二条状电极进而实现液晶透镜或液晶光栅功能,在进 行2D显示时,控制芯片驱动第一条状电极和第二条状电极进而实现对触控操作进行定位的功能;任意相邻的两条第一条状电极之间的间隔相同,其间隔距离为第一距离;任意相邻的两条第二条状电极之间的间隔相同,其间隔距离为第二距离;第一距离大于第二距离;所有的第一条状电极的宽度相同,其宽度为第一宽度;所有的第二条状电极的宽度相同,其宽度为第二宽度;第一宽度小于第二宽度。
其中,在进行2D显示时,控制芯片进一步驱动第一条状电极和第二条状电极形成互电容进而实现对触控操作进行定位的功能。
其中,第一条状电极与第二条状电极均为透明氧化铟锡ITO电极。
为解决上述技术问题,本发明提供另一种触控式显示模组,包括:上基板、与上基板相对设置的下基板以及设置于上基板和下基板之间的液晶层;上基板面对下基板的一侧设置有第一条状电极,下基板面对上基板的一侧设置有第二条状电极,第一条状电极与第二条状电极延伸方向相互交叉;显示模组进一步包括连接第一条状电极和第二条状电极的控制芯片,在进行3D显示时,控制芯片驱动第一条状电极和第二条状电极进而实现液晶透镜或液晶光栅功能,在进行2D显示时,控制芯片驱动第一条状电极和第二条状电极进而实现对触控操作进行定位的功能。
其中,第一条状电极和第二条状电极延伸方向相互垂直。
其中,任意相邻的两条第一条状电极之间的间隔相同,其间隔距离为第一距离;任意相邻的两条第二条状电极之间的间隔相同,其间隔距离为第二距离;第一距离大于第二距离;所有的第一条状电极的宽度相同,其宽度为第一宽度;所有的第二条状电极的宽度相同,其宽度为第二宽度;第一宽度小于第二宽度。
其中,在进行2D显示时,控制芯片进一步驱动第一条状电极和第二条状电极形成互电容进而实现对触控操作进行定位的功能。
其中,第一条状电极与第二条状电极均为透明氧化铟锡ITO电极。
为解决上述技术问题,本发明提供一种触控式显示装置,包括显示模组以及显示面板,所述显示面板设置在所述显示模组下方;
所述显示模组包括:上基板、与上基板相对设置的下基板以及设置于上基板和下基板之间的液晶层;上基板面对下基板的一侧设置有第一条状电极,下基板面对上基板的一侧设置有第二条状电极,第一条状电极与第二条状电极延伸方向相互交叉;显示模组进一步包括连接第一条状电极和第二条状电极的控 制芯片,在进行3D显示时,控制芯片驱动第一条状电极和第二条状电极进而实现液晶透镜或液晶光栅功能,在进行2D显示时,控制芯片驱动第一条状电极和第二条状电极进而实现对触控操作进行定位的功能。
其中,第一条状电极和第二条状电极延伸方向相互垂直。
其中,任意相邻的两条第一条状电极之间的间隔相同,其间隔距离为第一距离;任意相邻的两条第二条状电极之间的间隔相同,其间隔距离为第二距离;第一距离大于第二距离;所有的第一条状电极的宽度相同,其宽度为第一宽度;所有的第二条状电极的宽度相同,其宽度为第二宽度;第一宽度小于第二宽度。
其中,在进行2D显示时,控制芯片进一步驱动第一条状电极和第二条状电极形成互电容进而实现对触控操作进行定位的功能。
其中,显示面板为液晶LCD显示面板、有机电致发光OLED显示面板、等离子体PDP显示面板或阴极射线CRT显示面板。
本发明的有益效果是:区别于现有技术,本发明触控式显示模组包括相对设置的上下基板以及上下基板之间的液晶层,并在上基板和下基板上分别设置有相互交叉的条状电极,通过控制芯片对两条状电极进行驱动控制,使得液晶层呈现透镜或光栅效果,继而显示模组能够实现3D显示;由于3D显示耗时耗能较大,因此实际使用中有时不需要3D显示,只需进行2D显示,此时对显示模组实现复用,触控芯片以另一种方式驱动控制两条状电极,使显示模组实现对触控操作进行定位的功能,本发明能够进行3D显示,并且2D显示时不增加触控层即能实现触控定位功能,进而利于显示模组的通透率及其轻薄化设计。
【附图说明】
图1是本发明触控式显示模组第一实施方式的结构示意图;
图2是图1所示的显示模组第一实施方式中第一条状电极和第二条状电极的结构示意图;
图3是图1所示的显示模组第一实施方式中控制芯片与第一条状电极或第二条状电极连接方式的示意图;
图4是图1所示的显示模组第一实施方式中液晶分子沿着电场线方向偏转以实现液晶透镜功能的示意图;
图5是图1所示的显示模组第一实施方式中液晶层为柱透镜结构的情况下实现3D显示的原理示意图;
图6是图1所示的显示模组第一实施方式中自电容工作方式中向第一条状电极和第二条状电极施加扫描信号的示意图;
图7是图1所示的显示模组第一实施方式中第一条状电极和第二条状电极自电容工作方式的电路示意图;
图8是图1所示的显示模组第一实施方式中互电容工作方式中向第一条状电极和第二条状电极施加扫描信号的示意图;
图9是图1所示的显示模组第一实施方式中第一条状电极和第二条状电极互电容工作方式的电路示意图;
图10是本发明触控式显示模组第二实施方式的结构示意图;
图11是本发明触控式显示装置第一实施方式的结构示意图。
【具体实施方式】
参阅图1和图2,图1是本发明触控式显示模组第一实施方式的结构示意图,图2是图1所示的显示模组第一实施方式中第一条状电极和第二条状电极的结构示意图,本实施方式提供了一种显示模组100,包括上基板101、下基板102、液晶层103以及控制芯片104。
其中,上基板101与下基板102相对设置,液晶层103设置于上基板101与下基板102之间;在上基板101面对下基板102的一侧设置有第一条状电极105,在下基板102面对上基板101的一侧设置有第二条状电极106;第一条状电极105与第二条状电极106延伸方向相互交叉。
为了在3D显示时有较大的视角,本实施方式中液晶层103厚度为100um,上基板101和下基板102均为0.5mm厚的玻璃基板,ITO膜层作为导电电极覆盖在玻璃基板上,其具有导电性好、透明度高的优点。其他实施方式中,可以将液晶层103厚度设置为50um、30um或20um,对于液晶层103的厚度在此不作限定,应根据实际使用情况,即使用时不同大小的视角要求,相应的设置不同厚度的液晶层。
由于最终光线需要通过显示模组实现显示的目的,因此上基板101和下基板102选用透明材料,由于玻璃基板以较为成熟,并且也能够实现较高的透光率,因此本实施方式中选用玻璃基板。当然若是追求更加轻量化的设计,也可选用透明塑料或其他透明高分子材料等。当前,已形成量产的玻璃基板按厚度分大致有以下几种规格:2.0mm、1.1mm、0.7mm、0.5mm、0.4mm和0.3mm, 考虑到成本及使用要求,本实施方式中选用0.5mm厚度的玻璃基板。技术人员也可根据实际需求选取其他厚度的玻璃基板,或自己定制一定厚度的玻璃基板如0.2mm或3.0mm等。
本实施方式中,ITO膜层覆盖在玻璃基板上形成条状电极,并且第一条状电极105与第二条状电极106延伸方向相互交叉。ITO膜层的主要成分为氧化铟锡,其中氧化铟透过率高、氧化锡导电性强。若显示模组对于光透过率要求不高时,也可以使用导电胶水、导电胶条等。
控制芯片104连接第一条状电极105以及第二条状电极106。
本实施方式中,控制芯片104与第一条状电极105和第二条状电极106的连接采用wire bonding工艺,即细金属线(直径大约3um)以超声焊或热压焊的方式连接控制芯片104的电路和第一条状电极105或第二条状电极106。具体请参阅图3,图3是图1所示的显示模组第一实施方式中控制芯片与第一条状电极或第二条状电极连接方式的示意图。在此,对于连接所采用的工艺方法不做限制。
显示模组100具有两种显示模式:3D显示和2D显示。在3D显示时,控制芯片104驱动第一条状电极105和第二条状电极106,进而实现液晶透镜或液晶光栅功能。
本实施方式中,控制芯片104驱动第一条状电极105和第二条状电极106间产生电位差,以使液晶层103实现液晶透镜功能。由于液晶层103中的液晶分子具有分子势能向最低状态变化的特性,即液晶分子的长轴方向与外加电场的场强方向一致。基于此原理,当向液晶层103施加电场时能够实现液晶透镜功能。具体请参阅图4,图4是图1所示的显示模组第一实施方式中液晶分子沿着电场线方向偏转以实现液晶透镜功能的示意图。其中,控制芯片104对第一条状电极105和第二条状电极106施加电压,以形成电场,并使第二条状电极106处于Com电位;液晶层103中的液晶分子在电场的作用下发生偏转形成类似柱透镜的结构,继而实现对光的会聚功能。
在液晶层103为柱透镜结构的情况下,光线能够通过液晶层103分别传输至人的左眼和右眼,即实现了3D显示。具体请参阅图5,图5是图1所示的显示模组第一实施方式中液晶层为柱透镜结构的情况下实现3D显示的原理示意图。此时,能使左眼图像的光线会聚至人的左眼,右眼图像的光线会聚至人的右眼,进而实现3D显示。
在其他实施方式中,控制芯片104还可驱动第一条状电极105和第二条状电极106间产生电位差,以使液晶层103实现液晶光栅功能。即液晶分子在电场作用下形成类似狭缝光栅的结构,继而使显示面板奇像素列发出的左眼图像传输至左眼,偶像素列发出的右眼图像传输至右眼,进而实现3D显示。
在2D显示时,控制芯片104驱动第一条状电极105和第二条状电极106,进而实现对触控操作进行定位的功能。
具体实现触控操作定位有两种工作方式,即自电容或互电容。对于自电容工作方式,具体请参阅图6和图7,图6是图1所示的显示模组第一实施方式中自电容工作方式中向第一条状电极和第二条状电极施加扫描信号的示意图,图7是图1所示的显示模组第一实施方式中第一条状电极和第二条状电极自电容工作方式的电路示意图。
采用自电容工作方式,控制芯片104对第一条状电极105和第二条状电极106输入扫描信号Input 701,第一条状电极105和第二条状电极106同时接收触控信号Output 702,对于第一条状电极105的自电容Cr703和第二条状电极106的自电容Ct704进行检测,其中自电容是电极与地构成的电容。若第一条状电极105数量为m,第二条状电极106数量为n,则需要检测的自电容数量为m+n。当发生触控时,触控点所在的第一条状电极105和第二条状电极106分别接收到电容变化的信号,因此可以分别确定触控点所在的第一条状电极105和第二条状电极106,继而推出两条状电极的交叉点即触控点,采用此工作方式,多点触控时,容易出现触控点不确定的问题,例如两点触控时,同时确定两条第一条状电极105和第二条状电极106,然而他们的交叉点有四个点,因此无法确定触控点到底是哪两个。
对于互电容工作方式,具体请参阅图8和图9,图8是图1所示的显示模组第一实施方式中互电容工作方式中向第一条状电极和第二条状电极施加扫描信号的示意图,图9是图1所示的显示模组第一实施方式中第一条状电极和第二条状电极互电容工作方式的电路示意图。
采用互电容的工作方式,控制芯片104对第二条状电极106输入扫描信号Input 901,第一条状电极105同时接收触控信号Output 902,对于第一条状电极105和第二条状电极106交汇处的互电容Cm 903进行检测,其中互电容903是两电极形成的电容。若第一条状电极105数量为m,第二条状电极106数量为n,则需要检测的互电容数量为m×n。当发生触控时,根据检测每个交汇点的电容 值即可确定触控点。采用此工作方式,需要检测的点过多,工作效率较低。
为了真正实现多点触控,本实施方式中采用互电容的工作方式。其他实施方式中也可以选自电容的工作方式,或自电容和互电容结合的工作方式。
区别于现有技术,本实施方式触控式显示模组包括相对设置的上下基板以及上下基板之间的液晶层,并在上基板和下基板上分别设置有相互交叉的条状电极,通过控制芯片对两条状电极进行驱动控制,使得液晶层呈现透镜或光栅效果,继而显示模组能够实现3D显示;且在不需要3D显示,而进行2D显示时,对显示模组实现复用,即触控芯片以另一种方式驱动控制两条状电极,使显示模组实现对触控操作进行定位的功能。本实施方式能够进行3D显示,并且2D显示时不增加触控层即能实现触控定位功能,进而利于显示模组的通透率及其轻薄化设计。
请参阅图10和图11,图10是本发明触控式显示模组第二实施方式的结构示意图,本实施方式提供一种显示模组200,包括上基板201、下基板202、液晶层203、以及控制芯片204。
其中,上基板201与下基板202相对设置,液晶层203设置于上基板201与下基板202之间;在上基板201面对下基板202的一侧设置有第一条状电极205,在下基板202面对上基板201的一侧设置有第二条状电极206;第一条状电极205与第二条状电极206延伸方向相互交叉。
控制芯片204连接第一条状电极205以及第二条状电极206,在3D显示时,控制芯片204驱动第一条状电极205和第二条状电极206,进而实现液晶透镜或液晶光栅功能。在2D显示时,控制芯片204驱动第一条状电极205和第二条状电极206,进而实现对触控操作进行定位的功能。
本实施方式中上基板201、下基板202、液晶层203、控制芯片204、第一条状电极205以及第二条状电极206的结构及设置均类似于触控式显示模组第一实施方式,在此不再赘述。
需要进一步说明,在本实施方式中,第一条状电极205和第二条状电极206延伸方向相互垂直。两电极相互垂直设置更利于触控操作时的定位。
任意相邻的两条第一条状电极205之间的间隔相同,其间隔距离为第一距离d1;任意相邻的两条第二条状电极206之间的间隔相同,其间隔距离为第二距离d2;第一距离d1大于第二距离d2;所有的第一条状电极205的宽度相同,其宽度为第一宽度c1;所有的第二条状电极206的宽度相同,其宽度为第二宽 度c2;第一宽度c1小于第二宽度c2
第二宽度c2设置的较大且第二距离d2设置较小是为了不影响3D显示过程中上下基板之间形成的电场。若将第一宽度c1和第二宽度c2设置为相同,且第一距离d1和第二距离d2也设置为相同,则不容易形成有规律的电场,即无法有效的实现液晶透镜或液晶光栅的功能。
区别于现有技术,本实施方式触控式显示模组包括相对设置的上下基板以及上下基板之间的液晶层,并在上基板和下基板上分别设置有相互交叉的条状电极,通过控制芯片对两条状电极进行驱动控制,使得液晶层呈现透镜或光栅效果,继而显示模组能够实现3D显示;且在不需要3D显示,而进行2D显示时,对显示模组实现复用,即触控芯片以另一种方式驱动控制两条状电极,使显示模组实现对触控操作进行定位的功能。本实施方式能够进行3D显示,并且2D显示时不增加触控层即能实现触控定位功能,进而利于显示模组的通透率及其轻薄化设计。进一步的,本实施方式中第二条状电极相对于第一条状电极设置了较宽的宽度以及较窄的间隔距离,能够更好地实现液晶透镜功能。
请参阅图11,图11是本发明触控式显示装置第一实施方式的结构示意图,本实施方式提供一种显示装置300,包括显示模组301和显示面板302。
其中显示模组301包括上基板3011、下基板3012、液晶层3013、控制芯片3014、第一条状电极3015以及第二条状电极3016。本实施方式中的显示模组301类似于第二实施方式中的显示模组200,在此也不再赘述。
显示面板302设置在显示模组301下方,在进行3D显示时,显示面板302分别发送左眼3D图像和右眼3D图像,经过显示模组301继而分别传送至人的左眼和右眼,呈现3D显示效果。在进行2D显示时,显示面板302发送2D图像,经过显示模组302传送至人眼,呈现2D显示效果。
本实施方式中,显示面板为液晶LCD显示面板,其他实施方式中还可以选用有机电致发光OLED显示面板、等离子体PDP显示面板或阴极射线CRT显示面板。
区别于现有技术,本实施方式中显示装置实现3D显示时,显示面板分别发送左眼3D图像和右眼3D图像,同时显示模组中的控制芯片驱动两条状电极,使得液晶层呈现透镜或光栅效果,继而使左眼3D图像传送到人的左眼,右眼3D图像传送到人的右眼,实现3D显示;在不需要3D显示,而进行2D显示时,显示模组中控制芯片以另一种方式驱动控制两条状电极,使显示模组实现对触 控操作进行定位的功能。本实施方式能够在能够进行3D显示,并且2D显示时不增加触控层即能实现触控定位功能,进而利于显示模组的通透率及其轻薄化设计。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种触控式显示模组,其中,所述显示模组包括:上基板、与所述上基板相对设置的下基板以及设置于所述上基板和所述下基板之间的液晶层;
    所述上基板面对所述下基板的一侧设置有第一条状电极,所述下基板面对所述上基板的一侧设置有第二条状电极,所述第一条状电极和所述第二条状电极延伸方向相互垂直;
    所述显示模组进一步包括连接所述第一条状电极和所述第二条状电极的控制芯片,在进行3D显示时,所述控制芯片驱动所述第一条状电极和所述第二条状电极进而实现液晶透镜或液晶光栅功能,在进行2D显示时,所述控制芯片驱动所述第一条状电极和所述第二条状电极进而实现对触控操作进行定位的功能;
    任意相邻的两条第一条状电极之间的间隔相同,其间隔距离为第一距离;任意相邻的两条第二条状电极之间的间隔相同,其间隔距离为第二距离;所述第一距离大于所述第二距离;
    所有的第一条状电极的宽度相同,其宽度为第一宽度;所有的第二条状电极的宽度相同,其宽度为第二宽度;所述第一宽度小于所述第二宽度。
  2. 根据权利要求1所述的显示模组,其中,在进行2D显示时,所述控制芯片进一步驱动所述第一条状电极和所述第二条状电极形成互电容进而实现对触控操作进行定位的功能。
  3. 根据权利要求1所述的显示模组,其中,所述第一条状电极与所述第二条状电极均为氧化铟锡ITO电极。
  4. 一种触控式显示模组,其中,所述显示模组包括:上基板、与所述上基板相对设置的下基板以及设置于所述上基板和所述下基板之间的液晶层;
    所述上基板面对所述下基板的一侧设置有第一条状电极,所述下基板面对所述上基板的一侧设置有第二条状电极,所述第一条状电极与所述第二条状电极延伸方向相互交叉;
    所述显示模组进一步包括连接所述第一条状电极和所述第二条状电极的控制芯片,在进行3D显示时,所述控制芯片驱动所述第一条状电极和所述第二条状电极进而实现液晶透镜或液晶光栅功能,在进行2D显示时,所述控制芯片驱动所述第一条状电极和所述第二条状电极进而实现对触控操作进行定位的功能。
  5. 根据权利要求4所述的显示模组,其中,所述第一条状电极和所述第二 条状电极延伸方向相互垂直。
  6. 根据权利要求4所述的显示模组,其中,任意相邻的两条第一条状电极之间的间隔相同,其间隔距离为第一距离;任意相邻的两条第二条状电极之间的间隔相同,其间隔距离为第二距离;所述第一距离大于所述第二距离;
    所有的第一条状电极的宽度相同,其宽度为第一宽度;所有的第二条状电极的宽度相同,其宽度为第二宽度;所述第一宽度小于所述第二宽度。
  7. 根据权利要求4所述的显示模组,其中,在进行2D显示时,所述控制芯片进一步驱动所述第一条状电极和所述第二条状电极形成互电容进而实现对触控操作进行定位的功能。
  8. 根据权利要求4所述的显示模组,其中,所述第一条状电极与所述第二条状电极均为氧化铟锡ITO电极。
  9. 一种触控式显示装置,其中,所述显示装置包括显示模组以及显示面板,所述显示面板设置在所述显示模组下方;
    所述显示模组包括:上基板、与所述上基板相对设置的下基板以及设置于所述上基板和所述下基板之间的液晶层;
    所述上基板面对所述下基板的一侧设置有第一条状电极,所述下基板面对所述上基板的一侧设置有第二条状电极,所述第一条状电极与所述第二条状电极延伸方向相互交叉;
    所述显示模组进一步包括连接所述第一条状电极和所述第二条状电极的控制芯片,在进行3D显示时,所述控制芯片驱动所述第一条状电极和所述第二条状电极进而实现液晶透镜或液晶光栅功能,在进行2D显示时,所述控制芯片驱动所述第一条状电极和所述第二条状电极进而实现对触控操作进行定位的功能。
  10. 根据权利要求9所述的显示装置,其中,所述第一条状电极和所述第二条状电极延伸方向相互垂直。
  11. 根据权利要求9所述的显示装置,其中,任意相邻的两条第一条状电极之间的间隔相同,其间隔距离为第一距离;任意相邻的两条第二条状电极之间的间隔相同,其间隔距离为第二距离;所述第一距离大于所述第二距离;
    所有的第一条状电极的宽度相同,其宽度为第一宽度;所有的第二条状电极的宽度相同,其宽度为第二宽度;所述第一宽度小于所述第二宽度。
  12. 根据权利要求9所述的显示装置,其中,在进行2D显示时,所述控制芯片进一步驱动所述第一条状电极和所述第二条状电极形成互电容进而实现对 触控操作进行定位的功能。
  13. 根据权利要求9所述的显示装置,其中,所述显示面板为液晶LCD显示面板、有机电致发光OLED显示面板、等离子体PDP显示面板或阴极射线CRT显示面板。
PCT/CN2014/091891 2014-11-18 2014-11-21 触控式显示模组和显示装置 WO2016078077A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/407,935 US20170300152A1 (en) 2014-11-18 2014-11-21 Touch control display module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410660274.3 2014-11-18
CN201410660274.3A CN104360520A (zh) 2014-11-18 2014-11-18 一种触控式显示模组和显示装置

Publications (1)

Publication Number Publication Date
WO2016078077A1 true WO2016078077A1 (zh) 2016-05-26

Family

ID=52527796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091891 WO2016078077A1 (zh) 2014-11-18 2014-11-21 触控式显示模组和显示装置

Country Status (3)

Country Link
US (1) US20170300152A1 (zh)
CN (1) CN104360520A (zh)
WO (1) WO2016078077A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698663B (zh) * 2015-03-30 2018-01-30 京东方科技集团股份有限公司 显示装置及其驱动方法
CN104730719B (zh) * 2015-04-09 2017-03-15 京东方科技集团股份有限公司 触控裸眼光栅3d显示装置及其制备和控制方法
CN104951131A (zh) * 2015-05-26 2015-09-30 业成光电(深圳)有限公司 触控显示装置
CN105093547B (zh) 2015-08-20 2019-06-07 京东方科技集团股份有限公司 3d显示装置及其驱动方法
CN105607270B (zh) 2016-01-05 2018-08-03 京东方科技集团股份有限公司 一种显示装置及其三维显示方法
CN106019731B (zh) * 2016-07-21 2019-05-17 京东方科技集团股份有限公司 液晶透镜及其制作方法、显示装置
CN106873283A (zh) * 2017-03-17 2017-06-20 京东方科技集团股份有限公司 显示器件、显示装置和显示方法
CN106950761A (zh) * 2017-05-23 2017-07-14 北京小米移动软件有限公司 液晶光栅、显示装置及其控制方法
CN107966867B (zh) 2018-01-02 2022-01-14 京东方科技集团股份有限公司 液晶透镜组件、液晶面板及液晶显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204938A (ja) * 2008-02-28 2009-09-10 Seiko Epson Corp 液晶表示装置および電子機器
CN101859028A (zh) * 2009-04-13 2010-10-13 索尼公司 立体显示器
CN102262478A (zh) * 2011-05-20 2011-11-30 深圳超多维光电子有限公司 触摸式液晶狭缝光栅、立体显示装置以及计算机系统
CN102789097A (zh) * 2011-05-18 2012-11-21 余瑞兰 可旋转3d显示器
CN103116233A (zh) * 2013-01-23 2013-05-22 北京京东方光电科技有限公司 一种触摸液晶光栅结构及3d触摸显示装置
CN103293726A (zh) * 2012-06-29 2013-09-11 上海天马微电子有限公司 液晶盒、3d触控显示装置及其控制方法
US20130235288A1 (en) * 2012-03-08 2013-09-12 Japan Display West Inc. Liquid-crystal lens, display apparatus and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231032B (zh) * 2011-05-20 2013-07-10 深圳超多维光电子有限公司 触摸式液晶透镜及其驱动方法、立体显示装置以及计算机系统
CN103293778B (zh) * 2012-03-31 2015-09-02 上海天马微电子有限公司 一种触摸液晶光栅装置和3d/2d平板显示装置
CN103018944B (zh) * 2012-12-20 2015-04-15 北京京东方光电科技有限公司 3d光栅盒、显示装置和3d光栅盒的触摸定位方法
CN103091909B (zh) * 2013-01-29 2015-10-14 北京京东方光电科技有限公司 一种触控3d显示模组及其制作方法和触控3d显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204938A (ja) * 2008-02-28 2009-09-10 Seiko Epson Corp 液晶表示装置および電子機器
CN101859028A (zh) * 2009-04-13 2010-10-13 索尼公司 立体显示器
CN102789097A (zh) * 2011-05-18 2012-11-21 余瑞兰 可旋转3d显示器
CN102262478A (zh) * 2011-05-20 2011-11-30 深圳超多维光电子有限公司 触摸式液晶狭缝光栅、立体显示装置以及计算机系统
US20130235288A1 (en) * 2012-03-08 2013-09-12 Japan Display West Inc. Liquid-crystal lens, display apparatus and electronic equipment
CN103293726A (zh) * 2012-06-29 2013-09-11 上海天马微电子有限公司 液晶盒、3d触控显示装置及其控制方法
CN103116233A (zh) * 2013-01-23 2013-05-22 北京京东方光电科技有限公司 一种触摸液晶光栅结构及3d触摸显示装置

Also Published As

Publication number Publication date
CN104360520A (zh) 2015-02-18
US20170300152A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2016078077A1 (zh) 触控式显示模组和显示装置
US8587556B2 (en) Touch screen 2D/3D display system and method
JP5714890B2 (ja) タッチスクリーンパネル内蔵型立体映像平板表示装置
US9606657B2 (en) Array substrate, capacitive touch panel and touch display device
CN1988677B (zh) 三维显示装置的驱动方法
US9195081B2 (en) Touch liquid crystal grating, 3D touch display device and driving method of touch liquid crystal grating
CN1960503B (zh) 三维显示设备及其驱动方法
CN101063921B (zh) 触摸面板和具有其的显示装置以及制造该显示装置的方法
US10082903B2 (en) Display panel and display device
WO2016161786A1 (zh) 触控裸眼光栅3d显示装置及其制备和控制方法
US20110096251A1 (en) Stereoscopic liquid crystal display device having touch panel and method for manufacturing the same
KR20110052241A (ko) 터치 패널 일체형 입체 영상 표시 장치 및 이의 제조 방법
CN103913906B (zh) 液晶透镜元件、显示装置及终端机
WO2016004725A1 (zh) 触摸式三维光栅及显示装置
TWI432781B (zh) 顯示裝置、視差屏障觸控板及其製造方法
CN102621763B (zh) 显示装置及液晶透镜
US9423623B2 (en) Gradient index liquid crystal optical device and image display device
WO2014000366A1 (zh) 液晶盒、3d显示装置及其控制方法
WO2013163872A1 (zh) 液晶光栅、其制备方法以及3d显示器
CN102955322B (zh) 三维显示装置
US20140160381A1 (en) 2d and 3d switchable display device and liquid crystal lenticular lens thereof
CN105576005A (zh) 轻薄低耗3d触控式oled显示装置
CN203070262U (zh) 集成3d光栅和电容触摸屏的装置及包括其的显示装置
CN202837756U (zh) 一种触控液晶光栅及3d触控显示装置
JP2015161806A (ja) タッチパネル付立体視有機エレクトロルミネッセンス表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14407935

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14906462

Country of ref document: EP

Kind code of ref document: A1