WO2016078041A1 - 数据传输方法、接入点和站点 - Google Patents

数据传输方法、接入点和站点 Download PDF

Info

Publication number
WO2016078041A1
WO2016078041A1 PCT/CN2014/091697 CN2014091697W WO2016078041A1 WO 2016078041 A1 WO2016078041 A1 WO 2016078041A1 CN 2014091697 W CN2014091697 W CN 2014091697W WO 2016078041 A1 WO2016078041 A1 WO 2016078041A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
station
request
unit
uplink
Prior art date
Application number
PCT/CN2014/091697
Other languages
English (en)
French (fr)
Inventor
卢伟山
林伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/091697 priority Critical patent/WO2016078041A1/zh
Publication of WO2016078041A1 publication Critical patent/WO2016078041A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a data transmission method, an access point, and a station.
  • MIMO technology can provide transmit (receive) beamforming to effectively improve transmit (receive) power and effectively improve the reliability of the communication system.
  • MIMO technology can generate additional spatial freedom to multiply the throughput of the system, effectively increasing the speed of the communication system. Because of these advantages of MIMO technology, MIMO technology has become one of the key technologies of the 802.11n standard protocol. Following 802.11n, in order to further improve system throughput, the Institute of Electrical and Electronic Engineers (IEEE) proposed a new 802.11ac standard specifically for the 5GHz band with bandwidth from the original 802.11.
  • IEEE Institute of Electrical and Electronic Engineers
  • the 40Mbit/s of n is increased to 80Mbit/s, even 160Mbit/s, and 802.11ac supports higher-order modulation mode-256QAM modulation.
  • 802.11ac supports up to 8 streams simultaneously.
  • 802.11ac introduces the multi-user-multiplexed-MIMO (Multi-user-Multiple Input Multiple Output, MU-MIMO) technology to achieve the goal of effectively utilizing MIMO degrees of freedom.
  • MU-MIMO Multi-user-Multiple Input Multiple Output
  • a node such as a user equipment contends for an access channel to follow carrier sense multiple access/collision detection (English: Carrier Sense Multiple Access With Collision) Avoidance, referred to as: CSMA/CA).
  • CSMA/CA carrier sense multiple access/collision detection
  • the node monitors whether the channel is idle. If the channel is idle, the node retreats for a period of time. If the channel is still idle, the node contends for the access channel and sends data to another node access point (English: Access Point, AP for short); When the channel is busy, the node needs to back off to avoid interference with the currently transmitted node data.
  • 802.11ac the system introduces a dynamic bandwidth negotiation strategy.
  • the transmitting node (such as a station) listens to 80M (four 20M, each of which is a unit wide channel). The channel is idle. Just at each On the 20M, the same request is sent (English: Request to Send, RTS for short), and the receiving node (such as AP) detects which channels are space after short interframe space (English: Short Interframe Space, SIFS).
  • RTS Request to Send
  • SIFS Short Interframe Space
  • the receiving node finds that the 40M channel in the 80M is interfered, and only the remaining 40M is idle, then the receiving node replies and clears the transmission on the idle 40M (English: Clear to Send, referred to as CTS ), the CTS packets are respectively transmitted after being copied on each 20M, and the purpose is to reserve the idle 40M channel for data packet reception.
  • CTS Clear to Send
  • the transmitting node finds that the receiving node can only receive 40M of data, and then the transmitting node performs data transmission on the idle 40M.
  • the dynamic bandwidth negotiation mechanism described above can effectively improve the efficiency of spectrum usage and avoid bandwidth waste. It is not necessary to wait for 80M to be completely idle before data transmission can be performed.
  • Site 1, Site 2, Site 3, and Site 4 use the uplink MU technology to simultaneously communicate with AP1.
  • CSMA detection is first performed, and the entire 80M channel is found to be If it is idle, then Site 1, Site 2, and Site 3 can communicate with AP1 using 80M bandwidth.
  • Site 4 initiates communication, it also performs CSMA detection first, and finds that AP2 consumes 60M bandwidth when communicating with Site 5. Therefore, Site 4 can only communicate with AP1 using the remaining 20M bandwidth in the channel. At this time, the bandwidth that can be used by Site 1, Site 2, and Site 3 is different from the bandwidth that Site 4 can use.
  • the AP1 receives different bandwidths. It may cause interference between subcarriers, causing decoding errors. If the minimum bandwidth that can be used in these four sites is selected to communicate with AP1, that is, four sites use 20M to communicate with AP1, although AP1 can decode correctly, it will cause waste of bandwidth, thereby reducing system throughput.
  • the embodiment of the invention provides a data transmission method, an access point and a station, and provides a transmission data mechanism for multi-user unbalanced bandwidth access, which can ensure the decoding is correct while avoiding waste. Wide, thereby increasing system throughput.
  • a data transmission method including:
  • the multiplexed channel is an idle channel monitored by the first reference station, and the first reference station is an idle channel monitored by the multiple sites The site containing the most channel width channels;
  • the first reference station is that the idle channel monitored by the multiple sites includes a channel-wide channel that is the most and the monitored idle channel is included.
  • the unit width channel does not exceed the channel number threshold
  • the channel number threshold is the maximum number of unit width channels supported by the second reference station, wherein the second reference station is a supported unit in the multiple sites The site with the smallest number of wide channels.
  • the method before the determining, by the plurality of stations that request uplink transmission, the multiplexing channel, the method further includes, for each station, receiving an uplink sent by the station.
  • the transmission request determines the channel occupied by the uplink transmission request as the idle channel monitored by the station.
  • the uplink transmission request includes a request sent by the station on each unit width channel included in the idle channel. Request To Send.
  • the method is performed by an access point, the method further comprising: after receiving a request to send a request, in the request A Clear To Send is issued on the unit width channel occupied by the transmission request, and a Clear To Send is issued on the idle channel monitored by the access point.
  • a data transmission method which is executed by a site, and includes:
  • Uplink transmission is performed through the multiplex channel according to the occupancy rule.
  • the performing uplink transmission by using the multiplexed channel according to the occupant rule includes:
  • an access point including:
  • a channel management unit configured to determine a multiplex channel for a plurality of sites that request uplink transmission, where the multiplex channel is an idle channel that is monitored by the first reference station, where the first reference site is in the multiple sites
  • the monitored idle channel contains the site with the most unit wide channel
  • a policy management unit configured to determine an occupation rule of the multiplex channel by each station
  • a notification unit configured to send, to each station, a notification indicating the multiplex channel and an occupation rule of the multiplex channel by the station, to notify the station to perform uplink transmission by using the multiplex channel according to the occupancy rule.
  • the first reference station is that the idle channel monitored by the multiple sites includes a channel-wide channel that is the most and the monitored idle channel is included.
  • the unit width channel does not exceed the channel number threshold
  • the channel number threshold is the maximum number of unit width channels supported by the second reference station, wherein the second reference station is a supported unit in the multiple sites The site with the smallest number of wide channels.
  • the channel management unit is further configured to:
  • the uplink transmission request includes a request sent by the station on each unit width channel included in the idle channel. request.
  • the access point further includes:
  • a sending unit configured to send a clear sending request on the unit-wide channel occupied by the request sending request after receiving a request sending request, and issue a clear sending request on the idle channel monitored by the access point.
  • a site comprising:
  • An reporting unit configured to report the monitored idle channel to the access point
  • a receiving unit configured to receive, by the access point, a notification indicating that the multiplexed channel and the station occupy an occupation rule of the multiplexed channel
  • a transmitting unit configured to perform uplink transmission by using the multiplexed channel according to the occupancy rule.
  • the transmission unit is specifically configured to:
  • a fifth aspect provides an access point, including: a processor and a memory; the processor, the memory is connected by a bus, the memory is used to store a computer program, and the processor is configured to execute the computer program to:
  • the multiplexed channel is an idle channel monitored by the first reference station, and the first reference station is an idle channel monitored by the multiple sites The site containing the most channel width channels;
  • the first reference station is that the idle channel monitored by the multiple sites includes a channel-wide channel that is the most and the monitored idle channel is included.
  • the unit width channel does not exceed the channel number threshold
  • the channel number threshold is the maximum number of unit width channels supported by the second reference station, wherein the second reference station The point is the site with the smallest number of unit width channels supported in the plurality of sites.
  • the executing the computer program by the processor is further configured to: before determining the multiplex channel for the multiple sites requesting uplink transmission, for each site, Receiving an uplink transmission request sent by the station, determining a channel occupied by the uplink transmission request as an idle channel monitored by the station.
  • the uplink transmission request includes a request sent by the station on each unit width channel included in the idle channel request.
  • the executing the computer program by the processor is further configured to: after receiving a request sending request, send a request in the request A clear transmission request is issued on the occupied unit width channel, and a clear transmission request is issued on the idle channel monitored by the access point.
  • a site including: a processor and a memory; the processor, the memory is connected by a bus, the memory is used to store a computer program, and the processor is configured to execute the computer program for:
  • Uplink transmission is performed through the multiplex channel according to the occupancy rule.
  • the processor executes the computer program specifically for:
  • Embodiments of the present invention provide a data transmission method, an access point, and a station, where an access point determines a multiplexed channel for multiple sites requesting uplink transmission, where the multiplexed channel is a first reference station a clear channel monitored by the point, the first reference station is a station having the most unit wide channel included in the idle channel monitored by the multiple stations, and then the access point determines each of the stations to the multiplex channel And occupying a rule, and sending, to each station, a notification indicating the multiplexed channel and an occupation rule of the multiplex channel by the station, to notify the station to perform uplink transmission by using the multiplex channel according to the occupation rule.
  • the access point determines the multiple channel multiplexing channel and the occupation rule according to the site with the largest unit width channel included in the idle bandwidth requested in the multiple sites, which can avoid more
  • the idle bandwidth of the sites is different, part of the idle bandwidth of the site with the larger idle bandwidth is wasted, and since the multiplexed channels of the multiple sites are consistent, the influence on the decoding is avoided, and the decoding is guaranteed to be correct.
  • an uplink transmission mechanism for multi-user unbalanced bandwidth access can be provided, which can ensure the decoding is correct while avoiding wasting bandwidth, thereby improving the throughput of the system.
  • FIG. 2 is a schematic diagram of multi-user unbalanced bandwidth uplink transmission in the prior art
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of still another data transmission method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a station sending an uplink transmission request according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a method for a station to perform uplink transmission by using a multiplexed channel according to an occupancy rule according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of another method for a station to perform uplink transmission by using a multiplexed channel according to an occupancy rule according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of an access point according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another access point according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a site according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of still another access point according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of still another station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the embodiments of the present invention can be applied to a WLAN system, and in particular, an uplink MU is introduced.
  • the WLAN system may include a plurality of BSSs, wherein each BSS includes an AP and a plurality of stations in communication with the AP.
  • a data transmission method provided in this embodiment is applicable to an access point. As shown in FIG. 3, the method includes:
  • Step 101 Determine a multiplex channel for multiple sites that request uplink transmission, where the multiplex channel is an idle channel that is monitored by the first reference station, where the first reference site is monitored by the multiple sites.
  • the idle channel contains the most units of the channel with the largest channel width.
  • Step 102 Determine an occupation rule of the multiplex channel by each station.
  • Step 103 Send a notification to each station indicating that the multiplex channel and the station occupy the multiplex channel, to notify the station to perform uplink transmission by using the multiplex channel according to the occupancy rule.
  • another data transmission method provided by this embodiment is applicable to a site. As shown in FIG. 4, the method includes:
  • Step 201 Report the monitored idle channel to the access point.
  • Step 202 Receive a notification indicating that the multiplex channel returned by the access point and the occupation rule of the multiplex channel by the station.
  • Step 203 Perform uplink transmission by using the multiplexed channel according to the occupancy rule.
  • the access point determines the multiplexed channel for the multiple sites that request uplink transmission, where the multiplexed channel is the idle channel monitored by the first reference station, and the first reference The station is a station with the largest unit-width channel included in the idle channel monitored by the multiple stations, and then the access point determines the occupancy rule of the multiplex channel for each station, and sends an indication to each station. And the multiplex channel and the notification of the occupation rule of the multiplex channel by the station, to notify the station to perform uplink transmission by using the multiplex channel according to the occupancy rule.
  • the access point determines the multiple channel multiplexing channel and the occupation rule according to the site with the largest unit width channel included in the idle bandwidth requested in the multiple sites, which can avoid more
  • the idle bandwidth of the sites is different, part of the idle bandwidth of the site with a large idle bandwidth is wasted, and the occupation rules of the multiplex channel are consistent due to multiple sites, thereby avoiding the influence on decoding and ensuring correct decoding.
  • an uplink transmission mechanism for multi-user unbalanced bandwidth access can be provided, which can ensure the decoding is correct while avoiding wasting bandwidth, thereby improving the throughput of the system.
  • the data transmission method provided by the embodiment of the present invention will be described in detail below by using a specific embodiment in order to enable a person skilled in the art to understand the technical solution provided by the embodiment of the present invention.
  • the access point is simply referred to as an AP.
  • the method includes:
  • Step 301 The station acquires an idle bandwidth of the station by using a listening channel.
  • the station may obtain, by CSMA/CA, a channel that is unoccupied in the channel and available for uplink transmission by the user equipment, as an idle channel of the user equipment (or may be referred to as a transportable channel of the station).
  • the station finds that D unit-width channels are unoccupied through CSMA/CA, the D unit-width channels are idle channels of the station.
  • the bandwidth of each unit width channel is a preset size bandwidth, and D is a positive integer.
  • the bandwidth of a unit-wide channel can be 20M bandwidth
  • the user equipment finds that two 20M unit-width channels are unoccupied through CSMA/CA, and the two 20M unit-width channels total 40M is the site. Idle channel.
  • Step 302 The station sends an uplink transmission request to the AP, where the uplink transmission request is used to request an idle channel of the station from the AP.
  • the D singles The RTS is sent to the AP on the bit width channel.
  • the bandwidth of the unit-wide channel is 20M
  • the maximum bandwidth that the WLAN system can support is 80M, which is composed of 4 unit-wide channels.
  • the station finds that the 2 unit-wide channel bandwidth can be used for uplink transmission through CSMA/CA, and the total bandwidth of the 40-unit wide channel is the idle channel of the station.
  • the station simultaneously sends an RTS to the AP on the two unit width channels.
  • Step 303 The AP responds to the uplink transmission request of the station.
  • the AP also obtains a channel that is unoccupied in the channel and can be used for uplink transmission of the station by performing CSMA/CA. If the AP acquires Q unit wide channels, after receiving the RTS, it passes through an SIFS. The AP transmits a CTS for responding to the RTS to the station on the Q unit wide channels.
  • the station simultaneously sends RTS to the AP on the two unit width channels, and that the idle channel acquired by the AP through CSMA/CA is 4 unit wide channels (including the 2 unit width channels requested by the station), That is to say, the AP finds that the channel with the bandwidth of 80M is an idle channel, and the AP simultaneously replies to the CTS to the station on the four unit width channels, and the process can be as shown in FIG. 6.
  • the AP can reserve a larger bandwidth than the 2 unit wide channel, and can avoid interference when the AP subsequently receives the uplink transmission request from the station and when the AP subsequently sends a notification to the station.
  • the above example is a process in which the station and the AP interact with each other when the Q unit width channel detected by the AP includes the D unit width channels detected by the station, and may also occur in actual situations, and the D unit width channels detected by the station include the AP detection.
  • the Q unit width channel to which the station arrives. After the station sends the RTS to the AP on the detected D unit width channels, the AP only replies to the CTS on the detected Q unit width channels.
  • the notification can be sent in the form of a trigger frame.
  • the above-mentioned site may be any one of the BSSs in which the AP is located, and the site may be a user equipment.
  • Each site in the BSS interacts with the AP to request an idle channel of the site, and the interaction process is as follows: Step 303 is identical.
  • N is a positive integer
  • the AP determines that the preset condition is met according to the preset policy, the AP is triggered to perform the following steps:
  • Step 304 The AP determines a multiplexed channel for multiple sites that request uplink transmission, where the multiplexed channel is a vacant channel monitored by the first reference station, where the first reference site is monitored by multiple sites.
  • the site that has heard the idle channel contains the most channel-wide channel.
  • the AP may determine, according to the RTS sent by any one station, the idle channel of the station, for example, the AP receives two RTS messages sent by the station through the 2 unit width channel, and the AP has the idle bandwidth channel of the station. Register as these 2 unit width channels (40M total). Similarly, the AP can get the idle channel of multiple sites that send uplink transmission requests.
  • the unit width channel (80M) is a multiplex channel for determining stations 1 to 5.
  • the user is limited by its own radio frequency and can only support limited bandwidth data transmission. Therefore, in addition to considering the idle channels of the multiple sites, it is also necessary to consider the actual radio frequency bandwidth support capability of each site, for example, the site can The maximum number of supported unit-width channels to prevent the bandwidth of the identified multiplexed channel from exceeding the RF bandwidth capabilities supported by certain sites.
  • step 305 is performed:
  • Step 305 The AP determines a multiplexed channel for the multiple stations that request uplink transmission, where the multiplexed channel is an idle channel that is monitored by the first reference station, and the first reference station is a vacant channel that is monitored by multiple sites.
  • the station that includes the most unit wide channel and the monitored idle channel does not exceed the channel number threshold, and the channel number threshold is the maximum number of unit wide channels supported by the second reference station.
  • the second reference site is the site with the smallest number of unit width channels supported by the plurality of sites.
  • the site's actual RF bandwidth support capability and corresponding modulation capabilities such as Fast Fourier Transformation (FFT)/Inverse Fast Fourier Transform (English: Inverse Fast Fourier Transform)
  • FFT Fast Fourier Transformation
  • Inverse Fast Fourier Transform International Standard for Fourier Transform
  • the abbreviation (FFT) is used to inform the AP when the site is associated with the AP. It can also be understood that the RF bandwidth support capability and corresponding modulation capability of each site are known to the AP.
  • the idle channels of stations 1 to 5 are respectively registered as one unit wide channel (20M in total), two unit width channels (40M in total), three unit width channels (60M in total), and three unit width channels (60M in total). 4 unit wide channel (80M); at the same time, the maximum number of supported unit width channels of stations 1 to 5 known by the AP are 2 unit width channels, 3 unit width channels, 3 unit width channels, 4 unit width channels and 4 unit width channels, it can be seen that station 1 is the above second reference station, and the channel number threshold is: 2 unit width channels.
  • the AP can determine that the station 2 is the first reference station, so that the multiplexed channel of the stations 1 to 5 determined by the AP is the idle channel of the station 2, that is, the two unit width channels (40M) are determined by the stations 1 to 5. Multiplexed channels.
  • the AP determines, according to the idle channels of the multiple sites, the station with the most unit wide channel included in the idle channel monitored by the multiple sites, and acquires the idle channel of the site. Bandwidth, recorded as P.
  • the bandwidth P1 is compared with the bandwidth P. If the bandwidth P1 is greater than the bandwidth P, the channel corresponding to the bandwidth P is determined as the multiplex channel of the multiple sites; if the bandwidth P1 is smaller than the bandwidth P, the channel corresponding to the bandwidth P1 is used. As a multiplexed channel for these multiple sites.
  • steps 304 and 305 may be performed alternatively, and step 305 in FIG. 5 is indicated by a dashed box.
  • Step 306 The AP determines an occupation rule of the multiplex channel for each station.
  • Step 307 The AP sends a notification to each station indicating the multiplexed channel and the occupation rule of the multiplex channel by the station.
  • the notification may be sent in the form of a trigger frame, where the trigger frame may be broadcasted by the AP to all stations in the BSS where the AP is located, where the trigger frame includes a multiplexed channel and an occupation rule of the multiplex channel of the station.
  • the function of the broadcast trigger frame is to indicate that the plurality of stations that send the uplink transmission request modulate the uplink data according to the indication of the trigger frame and send, and enable other stations in the BSS except the multiple sites to receive the trigger frame.
  • the channel can no longer be contending, that is, the uplink transmission request can no longer be sent.
  • an AP schedules a station, that is, an AP allocates resources to each site through resource scheduling information, thereby preventing resources from being wasted.
  • the idle channel of each station also needs to consider the resource scheduling information of the AP.
  • the resource scheduling information may also be included in the occupation rule delivered by the AP.
  • Step 308 The station performs uplink transmission by using a multiplexed channel according to the received occupancy rule.
  • the site can be any of a number of sites that send uplink transmission requests.
  • the station determines the number of subcarriers used to generate the uplink symbol according to the multiplexed channel.
  • the uplink symbol may be an uplink OFDM symbol. Since the subcarrier modulation may use IFFT, the number of subcarriers used to generate the uplink symbol may be determined according to the number of IFFT points. It may be understood that the number of IFFT points is equivalent to the number of the foregoing subcarriers.
  • the number of IFFT points can be determined according to the bandwidth of the multiplexed channel. Different IFFT points corresponding to different bandwidths, the correspondence between the bandwidth and the number of IFFT points can be preset in the AP and the station. For example, the number of IFFT points corresponding to the 20M bandwidth is 64, 40M. The number of IFFT points corresponding to the bandwidth is 128 (the correspondence between the IFFT points and the bandwidth, and the correspondence between the FFT and the bandwidth is the same).
  • the station determines the subcarriers for carrying the uplink data in the subcarriers used to generate the uplink symbols according to the occupancy rule.
  • Occupation rules can include:
  • the subcarrier corresponding to the same channel as the idle channel of the multiplex channel is used as the subcarrier for carrying the uplink data, and the subcarrier corresponding to the channel other than the idle channel of the multiplex channel is used as the bearer uplink data. Subcarriers other than subcarriers.
  • the idle channel of the station is identical to the multiplexed channel, all the subcarriers used to generate the uplink symbol determined according to the multiplexed channel can be used as the subcarrier for carrying the uplink data.
  • the station modulates the subcarriers used to carry the uplink data according to the uplink data, and uses 0 tone. And generating a subcarrier other than the subcarrier for carrying the uplink data in the subcarrier for generating the uplink symbol to generate the uplink symbol.
  • the idle channel of station 1 includes 1 unit wide channel (20M), and the idle channel of station 2 includes 2 unit wide channels (40M).
  • the multiplex channel indicated by the AP includes 2 unitwidth channels (40M), the corresponding IFFT points are 128, the multiplex channel contains 2 unit width channels and the station 2 idle channel contains 2 unit width channels, and the station 1
  • the idle channel includes one unit wide channel as one of two unit wide channels included in the multiplexed channel.
  • the one unit wide channel of the idle channel of station 1 is recorded as channel 1, and the multiplex channel is used.
  • Another unit width channel in the middle is recorded as channel 2.
  • the number of subcarriers used to generate the uplink symbol is determined to be 128 according to the IFFT point.
  • the subcarrier corresponding to the channel 1 of the 128 subcarriers is used to carry the uplink data.
  • the subcarriers, the subcarriers corresponding to the channel 2 of the 128 subcarriers are subcarriers other than the subcarriers carrying the uplink data, and the station 1 modulates the bearer uplink data according to the 0 modulation by modulating the subcarriers for carrying the uplink data according to the uplink data. Subcarriers other than the subcarriers, thereby obtaining an uplink symbol. It can be understood that station 1 fills in the uplink data to be transmitted on channel 1, complements data 0 on channel 2, and performs IFFT points on channel 1 and channel 2, that is, the data on the entire multiplex bandwidth 40M. 128 IFFT.
  • the 128 subcarriers can be used as subcarriers for carrying uplink data, and the station 2 obtains uplink symbols by modulating the subcarriers used for the uplink data according to the uplink data. It can be understood that the station 2 fills in the uplink data to be transmitted on the entire multiplex channel 40M bandwidth, and performs the IFFT with the IFFT point number of 128 on the data on the entire multiplex channel 40M.
  • the station sends the upstream symbol.
  • the occupancy rule may further include the foregoing resource scheduling information, where the resource scheduling information is used to indicate an actual transportable channel allocated by the station, where the bandwidth of the actual transportable channel is not greater than the idle channel bandwidth of the station and The bandwidth of the multiplexed channel indicated by the AP. It can be understood that the unit wide channel included in the actual transportable channel is included in the idle channel and the multiplexed channel of the station.
  • the station determines the subcarriers used to generate the uplink symbols according to the multiplexed channel. Quantity. The method herein is the same as the method for determining the number of subcarriers for generating an uplink symbol according to the multiplex channel, and details are not described herein again.
  • the station determines the subcarriers for carrying the uplink data in the subcarriers used to generate the uplink symbols according to the occupancy rule.
  • Occupation rules can include:
  • the subcarrier corresponding to the same channel as the actual transportable channel of the station in the multiplex channel is used as a subcarrier for carrying uplink data
  • the subcarrier corresponding to the channel other than the actual transportable channel of the station in the multiplex channel is used as A subcarrier other than the subcarrier carrying the uplink data.
  • all the subcarriers used to generate the uplink symbol determined according to the multiplexed channel can be used as the subcarrier for carrying the uplink data.
  • the station modulates the subcarriers for carrying the uplink data according to the uplink data, and uses 0 modulation to generate subcarriers other than the subcarriers for carrying the uplink data in the subcarriers of the uplink symbol to generate the uplink symbols.
  • the idle channel of station 1 contains 1 unit wide channel (20M), and the idle channel of station 2 includes 2 unit wide channels (40M).
  • the multiplex channel indicated by the AP includes 2 unitwidth channels (40M), the corresponding IFFT points are 128, the multiplex channel contains 2 unit width channels and the station 2 idle channel contains 2 unit width channels, and the station 1
  • the idle channel includes one unit width channel as one of two unit width channels included in the multiplex channel, and the actual transportable channel indicated by the station 1 and station 2 resource scheduling information is one unit wide channel (20M),
  • the one unit wide channel of the idle channel of the station 1 is referred to as channel 1
  • the other unit wide channel of the multiplexed channel is referred to as channel 2.
  • the number of subcarriers used to generate the uplink symbol is determined to be 128 according to the IFFT point.
  • the subcarrier corresponding to the channel 1 of the 128 subcarriers is a subcarrier for carrying uplink data.
  • the subcarrier corresponding to the channel 2 is a subcarrier other than the subcarrier carrying the uplink data, and the station 1 modulates the subcarrier for carrying the uplink data according to the uplink data, and modulates the subcarrier that carries the uplink data according to the 0 modulation.
  • the subcarriers thus get the up symbol. It can be understood that station 1 fills in the uplink data to be transmitted on channel 1, complements data 0 on channel 2, and performs IFFT points on channel 1 and channel 2, that is, the data on the entire multiplex bandwidth 40M. 128 IFFT.
  • the idle channel of station 2 is the same as the multiplexed channel, since the resource scheduling information indicates that the actual transportable channel is 1 unit wide channel (20M), among the 128 subcarriers and the multiplexed channel
  • the subcarriers corresponding to one unit width channel are used for the subcarriers carrying the uplink data, and the remaining subcarriers are the subcarriers other than the subcarriers for carrying the uplink data, and the station 2 is configured to carry the uplink data according to the uplink data modulation.
  • the subcarriers are modulated according to 0 to subcarriers other than the subcarriers carrying the uplink data, thereby obtaining an uplink symbol.
  • the station 2 fills in the uplink data to be transmitted on one unit width channel in the multiplexed channel, complements the data on the other unit width channel in the multiplexed channel, and adds 40 to the entire multiplexed channel.
  • the data on the IFFT is IFFT with an IFFT point of 128.
  • the station sends the upstream symbol.
  • the bandwidth of the idle channel between multiple sites is different, the same IFFT point can be used, and a larger idle channel can be selected as a multiplex channel between multiple sites as much as possible to ensure correct decoding. Avoid wasting bandwidth and increase system throughput.
  • the AP After receiving the uplink symbols sent by multiple stations through the multiplex channel, the AP demodulates the uplink symbols, and the FFT is used for demodulating the subcarriers, where the FFT points of the FFT for the uplink symbols and the IFFT when the station generates the uplink symbols are used. The points are the same.
  • the access point determines the multiplexed channel for the multiple sites that request uplink transmission, where the multiplexed channel is the idle channel monitored by the first reference station, and the first reference The station is a station with the largest unit-width channel included in the idle channel monitored by the multiple stations, and then the access point determines the occupancy rule of the multiplex channel for each station, and sends an indication to each station. And the multiplex channel and the notification of the occupation rule of the multiplex channel by the station, to notify the station to perform uplink transmission by using the multiplex channel according to the occupancy rule.
  • the access point determines the multiple channel multiplexing channel and the occupation rule according to the site with the largest unit width channel included in the idle bandwidth requested in the multiple sites, which can avoid more
  • the idle bandwidth of the sites is different, part of the idle bandwidth of the site with a large idle bandwidth is wasted, and the bandwidth of the multiplex channel is consistent due to multiple sites, thereby avoiding the impact on decoding and ensuring correct decoding.
  • it can provide an uplink transmission mechanism when multi-user unbalanced bandwidth access, and can avoid waves while ensuring correct decoding.
  • Bandwidth is used to increase system throughput.
  • An embodiment of the present invention further provides an access point 01, as shown in FIG. 9, including:
  • the channel management unit 011 is configured to determine, by the multiple stations that request uplink transmission, the multiplexed channel, where the multiplexed channel is an idle channel that is monitored by the first reference station, where the first reference site is the multiple sites. The station with the most unit wide channel included in the idle channel monitored;
  • a policy management unit 012 configured to determine an occupation rule of the multiplex channel by each station
  • the notifying unit 013 is configured to send, to each station, a notification indicating that the multiplex channel and the station occupy the multiplex channel, to notify the station to perform uplink transmission by using the multiplex channel according to the occupancy rule.
  • the first reference station is a site where the idle channel monitored by the multiple sites includes a channel with the largest unitwidth channel and the monitored idle channel includes a unit width channel that does not exceed a threshold number of channels.
  • the threshold number of channels is a maximum number of unit-wide channels supported by the second reference station, wherein the second reference station is a station with a minimum number of unit-width channels supported by the plurality of stations.
  • the channel management unit 011 is further configured to:
  • the uplink transmission request includes a request sending request sent by the station on each unit width channel included in the idle channel.
  • the access point 01 may further include:
  • the sending unit 014 is configured to send a clear sending request on the unit-width channel occupied by the request sending request after receiving a request sending request, and issue a clear sending request on the idle channel monitored by the access point. .
  • An embodiment of the present invention provides an access point, where the access point determines a multiplexed channel for a plurality of sites that request uplink transmission, where the multiplexed channel is a vacant channel that is monitored by the first reference station, where the first The reference station is a unit included in the idle channel monitored in the plurality of stations a station with the largest number of channels, and then the access point determines the occupancy rule of the multiplex channel for each station, and sends a notification to each station indicating that the multiplex channel and the station occupy the multiplex channel Instructing the station to perform uplink transmission through the multiplex channel according to the occupancy rule.
  • the access point determines the multiple channel multiplexing channel and the occupation rule according to the site with the largest unit width channel included in the idle bandwidth requested in the multiple sites, which can avoid more
  • the idle bandwidth of the sites is different, part of the idle bandwidth of the site with a large idle bandwidth is wasted, and the bandwidth of the multiplex channel is consistent due to multiple sites, thereby avoiding the impact on decoding and ensuring correct decoding.
  • an uplink transmission mechanism for multi-user unbalanced bandwidth access can be provided, which can ensure the decoding is correct while avoiding wasting bandwidth, thereby improving the throughput of the system.
  • the embodiment of the present invention further provides a site 02, as shown in FIG. 11, comprising:
  • the reporting unit 021 is configured to report the monitored idle channel to the access point.
  • the receiving unit 022 is configured to receive, by the access point, a notification indicating that the multiplexed channel and the station occupy an occupation rule of the multiplexed channel;
  • the transmitting unit 023 is configured to perform uplink transmission by using the multiplexed channel according to the occupancy rule.
  • the transmission unit 023 can be specifically configured to:
  • An embodiment of the present invention provides a station, after the access point determines a multiplexed channel for multiple sites requesting uplink transmission, the receiving access point sends an indication to the multiplex channel and the site to the complex Notifying the occupancy rule of the channel, wherein the multiplex channel is a vacant channel monitored by the first reference station, the first reference site being idle monitored in the multiple sites
  • the station includes the station with the largest unit width channel, and the notification is used to know that the station performs uplink transmission through the multiplex channel according to the occupancy rule, and finally the station performs uplink transmission through the multiplex channel according to the occupation rule.
  • the access point determines the multiple channel multiplexing channel and the occupation rule according to the site with the largest unit width channel included in the idle bandwidth requested in the multiple sites, which can avoid more
  • the idle bandwidth of the sites is different, part of the idle bandwidth of the site with a large idle bandwidth is wasted, and the bandwidth of the multiplex channel is consistent due to multiple sites, thereby avoiding the impact on decoding and ensuring correct decoding.
  • an uplink transmission mechanism for multi-user unbalanced bandwidth access can be provided, which can ensure the decoding is correct while avoiding wasting bandwidth, thereby improving the throughput of the system.
  • the embodiment of the present invention further provides another access point 03, as shown in FIG. 12, comprising: a processor 031, a memory 032; the processor 031, the memory 032 is connected by a bus 033, and the memory 032 is used for A computer program 0321 is stored, the processor 031 for executing the computer program 0321 for:
  • the multiplexed channel is an idle channel monitored by the first reference station, and the first reference station is an idle channel monitored by the multiple sites The site containing the most channel width channels;
  • the first reference station is a site where the idle channel monitored by the multiple sites includes a channel with the largest unitwidth channel and the monitored idle channel includes a unit width channel that does not exceed a threshold number of channels.
  • the threshold number of channels is a maximum number of unit-wide channels supported by the second reference station, wherein the second reference station is a station with a minimum number of unit-width channels supported by the plurality of stations.
  • the executing, by the processor 031, the computer program 021 may be further configured to: receive, for each station, an uplink transmission sent by the station before determining the multiplexed channel for the multiple stations that request uplink transmission.
  • the request determines the channel occupied by the uplink transmission request as the idle channel monitored by the station.
  • the uplink transmission request includes each of the stations included in the idle channel.
  • the executing, by the processor 031, the computer program 021 may be further configured to: after receiving a request sending request, issue a clear sending request on a unit width channel occupied by the request sending request, and in the A clear send request is issued on the idle channel monitored by the access point.
  • the access point 03 may include a processor 034, a transceiver 035, and the processor 034 through the transceiver 035 and other network elements.
  • the function of the processor 034 can refer to the steps when the processor 031 executes the computer program 0321 in the first embodiment of the embodiment, and details are not described herein.
  • An embodiment of the present invention provides an access point, where the access point determines a multiplexed channel for a plurality of sites that request uplink transmission, where the multiplexed channel is a vacant channel that is monitored by the first reference station, where the first The reference station is a station having the most unit wide channel included in the idle channel monitored by the multiple sites, and then the access point determines an occupation rule of the multiplex channel by each station, and sends an indication to each station. And the multiplex channel and the notification of the occupation rule of the multiplex channel by the station, to notify the station to perform uplink transmission by using the multiplex channel according to the occupancy rule.
  • the access point determines the multiple channel multiplexing channel and the occupation rule according to the site with the largest unit width channel included in the idle bandwidth requested in the multiple sites, which can avoid more
  • the idle bandwidth of the sites is different, part of the idle bandwidth of the site with a large idle bandwidth is wasted, and the bandwidth of the multiplex channel is consistent due to multiple sites, thereby avoiding the impact on decoding and ensuring correct decoding.
  • an uplink transmission mechanism for multi-user unbalanced bandwidth access can be provided, which can ensure the decoding is correct while avoiding wasting bandwidth, thereby improving the throughput of the system.
  • the embodiment of the present invention further provides another station 04, as shown in FIG. 13, comprising: a processor 041, a memory 042; the processor 041, the memory 042 is connected by a bus 043, and the memory 042 is used for storing a computer.
  • the program 0421 is configured to execute the computer program 0421 for:
  • Uplink transmission is performed through the multiplex channel according to the occupancy rule.
  • the executing the computer program 0421 by the processor 041 may be specifically used to:
  • the station 04 may include a processor 044, a transceiver 045, and the processor 044 interacts with other network elements through the transceiver 045.
  • the function of the processor 044 can refer to the steps when the processor 041 executes the computer program 0421 in the first embodiment of the embodiment, and details are not described herein.
  • An embodiment of the present invention provides a station, after the access point determines a multiplexed channel for multiple sites requesting uplink transmission, the receiving access point sends an indication to the multiplex channel and the site to the complex Notifying the occupancy rule of the channel, wherein the multiplexed channel is an idle channel monitored by the first reference station, where the first reference station is the unit wide channel included in the idle channel monitored by the multiple sites
  • the station is configured to know that the station performs uplink transmission by using the multiplexed channel according to the occupation rule, and finally the station performs uplink transmission by using the multiplexed channel according to the occupation rule.
  • the access point determines the multiple channel multiplexing channel and the occupation rule according to the site with the largest unit width channel included in the idle bandwidth requested in the multiple sites, which can avoid more
  • the idle bandwidth of the sites is different, part of the idle bandwidth of the site with a large idle bandwidth is wasted, and the bandwidth of the multiplex channel is consistent due to multiple sites, thereby avoiding the impact on decoding and ensuring correct decoding.
  • an uplink transmission mechanism for multi-user unbalanced bandwidth access can be provided, which can ensure the decoding is correct while avoiding wasting bandwidth, thereby improving the throughput of the system.
  • an embodiment of the present invention further provides a communication system, as shown in FIG. 14, which may include at least One BSS, each BSS may include one access point 01 (or access point 03, not shown) provided by the foregoing embodiment, and at least one site 02 (or station 04) accessing the access point 01. , not shown in the figure).
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (English: Read-Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM for short), a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种数据传输方法、接入点和站点,包括:接入点为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点,而后接入点确定每一站点对复用信道的占用规则,并向每一站点发送指示复用信道以及该站点对复用信道的占用规则的通知,以通知该站点根据该占用规则通过复用信道进行上行传输,能够提供一种多用户非平衡带宽接入时的上行传输机制,能够在保证解码正确的同时避免浪费带宽,从而提高系统的吞吐量。

Description

数据传输方法、接入点和站点 技术领域
本发明实施例涉及通信技术,尤其涉及一种数据传输方法、接入点和站点。
背景技术
多输入多输出(英文:Multiple Input Multiple Output,简称:MIMO)技术能够提供发射(接收)波束成形从而有效地提高发射(接收)功率,有效地提高了通信系统的可靠性。另一方面,MIMO技术能够产生额外的空间自由度从而成倍地提高系统的吞吐量,有效地提高了通信系统的速率。正因为MIMO技术的这些优点,MIMO技术已经成为802.11n标准协议的关键技术之一。继802.11n之后,为了进一步提高系统吞吐量,电气与电子工程师协会(英文:Institute of Electrical and Electronic Engineers,简称:IEEE)提出了新的802.11ac标准,该标准专门针对5GHz频段,带宽从原来802.11n的40Mbit/s提升至80Mbit/s,甚至是160Mbit/s,并且802.11ac支持更高阶的调制方式——256QAM调制;为了进一步提高MIMO自由度,802.11ac最大支持8个流同时传输;考虑到链路天线数目的不对称,802.11ac引入了下行多用户-MIMO(英文:Multi user-Multiple Input Multiple Output,简称:MU-MIMO)技术,达到有效利用MIMO自由度的目的。
在现有的无线局域网(英文:Wireless Local Area Network,简称:WLAN)系统中,节点(如用户设备)竞争接入信道遵循载波侦听多路访问/碰撞检测(英文:Carrier Sense Multiple Access With Collision Avoidance,简称:CSMA/CA)方式。首先,节点监听信道是否空闲,如果信道空闲,节点退避一段时间,如果信道依然空闲,节点竞争接入信道,向另外一个节点接入点(英文:Access Point,简称:AP)发送数据;如果监听到信道繁忙,节点需要进行退避,以避免干扰当前传输的节点数据。而在802.11ac中,系统引入了动态带宽协商策略,例如图1所示,发射节点(如站点)监听到80M(4个20M,其中每个20M为一个单位宽度信道)的信道是空闲,它就在每个 20M上分别复制发送相同的请求发送(英文:Request to Send,简称:RTS),接收节点(如AP)在短帧间间隔(英文:Short Interframe Space,简称:SIFS)后检测哪些信道是空间,例子中可见,接收节点发现上述80M中的40M的信道是受到干扰的,只有剩下的40M是空闲的,那么接收节点就在空闲的40M上回复清除发送(英文:Clear to Send,简称:CTS),这CTS包分别在每个20M上进行复制后发送,其目的预约该空闲的40M信道进行数据包接收。发射节点收到CTS包后,发现接收节点只能接收40M的数据,那么发射节点就在该空闲的40M上进行数据发送。使用上述动态的带宽协商机制能够有效地提高频谱的使用效率,避免带宽浪费,不需要等待80M完全空闲后才能进行数据发送。
但是,在MU-MIMO技术中,由于WLAN使用的是免费频谱,极有可能出现两个基本服务集合系统(英文:Basic Service Set,简称:BSS)所使用的频谱发生重叠。这种情况下,站点可能面临不同干扰或者部分可用信道被其他站点占用而使得站点之间可使用信道的带宽不同,这种情况称为用户之间非平衡带宽接入情况。
例如图2所示,站点1、站点2、站点3以及站点4使用上行MU技术与AP1同时通信,站点1、站点2和站点3在发起通信时,首先进行CSMA检测,发现整个80M的信道是空闲的,那么站点1、站点2和站点3可以使用80M的带宽与AP1进行通信;另一方面,站点4在发起通信时,也首先进行CSMA检测,发现AP2与站点5通信时占用了60M带宽,因此站点4只能使用信道中剩下的20M带宽与AP1进行通信。此时,站点1、站点2以及站点3可使用的带宽不同于站点4可使用的带宽,如果这四个站点同时以自身能够使用的带宽与AP1进行通信,在AP1接收时,由于用户带宽不同可能造成子载波之间发生干扰,从而造成解码错误。如果选择这四个站点中可使用的最小带宽与AP1进行通信,即四个站点使用20M与AP1进行通信,虽然AP1能够正确解码,但是会造成带宽上的浪费,从而降低系统的吞吐量。
发明内容
本发明实施例提供一种数据传输方法、接入点和站点,提供一种多用户非平衡带宽接入时的传输数据机制,能够在保证解码正确的同时避免浪费带 宽,从而提高系统的吞吐量。
第一方面,提供一种数据传输方法,包括:
为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点;
确定每一站点对所述复用信道的占用规则;
向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
结合第一方面,在第一种可能的实现方式中,所述第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,所述信道数量门限为第二参考站点所支持的单位宽度信道的最大数量,其中,该第二参考站点为所述多个站点中所支持的单位宽度信道的最大数量最小的站点。
结合第一方面,在第二种可能的实现方式中,在所述为请求进行上行传输的多个站点确定复用信道之前,所述方法还包括,对于每一站点,接收该站点发送的上行传输请求,将该上行传输请求所占用的信道确定为该站点所监听到的空闲信道。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述上行传输请求包括所述站点在所述空闲信道所包含的每个单位宽度信道上发送的请求发送请求(Request To Send)。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述方法由接入点执行,所述方法还包括,在收到一请求发送请求之后,在该请求发送请求所占用的单位宽度信道上发出清除发送请求(Clear To Send),以及在所述接入点所监听到的空闲信道上发出清除发送请求(Clear To Send)。
第二方面,提供一种数据传输方法,由站点执行,包括:
向接入点上报监听到的空闲信道;
接收接入点返回的指示复用信道以及所述站点对所述复用信道的占用规则的通知;
根据所述占用规则通过所述复用信道进行上行传输。
结合第二方面,在第一种可能的实现方式中,所述根据所述占用规则通过所述复用信道进行上行传输具体包括:
依据所述复用信道确定用于生成上行符号的子载波的数量;
依据所述占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波;
依据所述上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号;
发送所述上行符号。
第三方面,提供一种接入点,包括:
信道管理单元,用于为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点;
策略管理单元,用于确定每一站点对所述复用信道的占用规则;
通知单元,用于向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
结合第三方面,在第一种可能的实现方式中,所述第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,所述信道数量门限为第二参考站点所支持的单位宽度信道的最大数量,其中,该第二参考站点为所述多个站点中所支持的单位宽度信道的最大数量最小的站点。
结合第三方面,在第二种可能的实现方式中,所述信道管理单元还用于:
在所述为请求进行上行传输的多个站点确定复用信道之前,对于每一站点,接收该站点发送的上行传输请求,将该上行传输请求所占用的信道确定为该站点所监听到的空闲信道。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述上行传输请求包括所述站点在所述空闲信道所包含的每个单位宽度信道上发送的请求发送请求。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中, 所述接入点还包括:
发送单元,用于在收到一请求发送请求之后,在该请求发送请求所占用的单位宽度信道上发出清除发送请求,以及在所述接入点所监听到的空闲信道上发出清除发送请求。
第四方面,提供一种站点,包括:
上报单元,用于向接入点上报监听到的空闲信道;
接收单元,用于接收接入点返回的指示复用信道以及所述站点对所述复用信道的占用规则的通知;
传输单元,用于根据所述占用规则通过所述复用信道进行上行传输。
结合第四方面,所述传输单元具体用于:
依据所述复用信道确定用于生成上行符号的子载波的数量;
依据所述占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波;
依据所述上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号;
发送所述上行符号。
第五方面,提供一种接入点,包括:处理器和存储器;所述处理器、所述存储器通过总线连接,所述存储器用于存储计算机程序,所述处理器用于执行所述计算机程序用于:
为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点;
确定每一站点对所述复用信道的占用规则;
向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
结合第五方面,在第一种可能的实现方式中,所述第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,所述信道数量门限为第二参考站点所支持的单位宽度信道的最大数量,其中,该第二参考站 点为所述多个站点中所支持的单位宽度信道的最大数量最小的站点。
结合第五方面,在第二种可能的实现方式中,述处理器执行所述计算机程序还用于:在所述为请求进行上行传输的多个站点确定复用信道之前,对于每一站点,接收该站点发送的上行传输请求,将该上行传输请求所占用的信道确定为该站点所监听到的空闲信道。
结合第五方面的第二种可能的实现方式,在第三种可能的实现方式中,所述上行传输请求包括所述站点在所述空闲信道所包含的每个单位宽度信道上发送的请求发送请求。
结合第五方面的第三种可能的实现方式,在第四种可能的实现方式中,所述处理器执行所述计算机程序还用于:在收到一请求发送请求之后,在该请求发送请求所占用的单位宽度信道上发出清除发送请求,以及在所述接入点所监听到的空闲信道上发出清除发送请求。
第六方面,提供一种站点,包括:处理器和存储器;所述处理器、所述存储器通过总线连接,所述存储器用于存储计算机程序,所述处理器用于执行所述计算机程序用于:
向接入点上报监听到的空闲信道;
接收接入点返回的指示复用信道以及所述站点对所述复用信道的占用规则的通知;
根据所述占用规则通过所述复用信道进行上行传输。
结合第六方面,在第一种可能的实现方式中,所述处理器执行所述计算机程序具体用于:
依据所述复用信道确定用于生成上行符号的子载波的数量;
依据所述占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波;
依据所述上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号;
发送所述上行符号。
本发明实施例提供一种数据传输方法、接入点和站点,其中接入点为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站 点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点,而后接入点确定每一站点对所述复用信道的占用规则,并向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。相比现有技术而言,本发明实施例中接入点根据多个站点中请求的空闲带宽包含的单位宽度信道最多的站点来确定这多个站点复用信道及占用规则,能够避免在多个站点的空闲带宽不同时,空闲带宽较大的站点的部分空闲带宽被浪费,并且由于多个站点的该复用信道是一致的,从而避免了对解码的影响,保证解码正确。可见能够提供一种多用户非平衡带宽接入时的上行传输机制,能够在保证解码正确的同时避免浪费带宽,从而提高系统的吞吐量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的上行传输的流程示意图;
图2为现有技术中的多用户非平衡带宽上行传输的示意图;
图3为本发明实施例提供的数据传输方法的流程示意图;
图4为本发明实施例提供的另一种数据传输方法的流程示意图;
图5为本发明实施例提供的又一种数据传输方法的流程示意图;
图6为本发明实施例提供的站点发送上行传输请求的流程示意图;
图7为本发明实施例提供的站点根据占用规则通过复用信道进行上行传输的方法示意图;
图8为本发明实施例提供的站点根据占用规则通过复用信道进行上行传输的另一方法的示意图;
图9为本发明实施例提供的接入点的结构示意图;
图10为本发明实施例提供的另一接入点的结构示意图;
图11为本发明实施例提供的站点的结构示意图;
图12为本发明实施例提供的又一接入点的结构示意图;
图13为本发明实施例提供的又一站点的结构示意图;
图14为本发明实施例提供的通信系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本领域技术人员能够更清楚地理解本发明实施例提供的技术方案,首先对本发明实施例所涉及的系统进行简单地介绍,本发明实施例可以应用于WLAN系统,特别是引入了上行MU-MIMO技术和正交频分多址(Orthogonal Frequency Division Multiple Access,简称OFDMA)技术的WLAN系统。该WLAN系统中可以包括多个BSS,其中,每个BSS包括一个AP以及与该AP进行通信的多个站点。
本实施例提供的一种数据传输方法,可应用于接入点,如图3所示,该方法包括:
步骤101、为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点。
步骤102、确定每一站点对所述复用信道的占用规则。
步骤103、向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
对应的,本实施例还提供的另一种数据传输方法,可应用于站点,如图4所示,该方法包括:
步骤201、向接入点上报监听到的空闲信道。
步骤202、接收接入点返回的指示复用信道以及所述站点对所述复用信道的占用规则的通知。
步骤203、根据所述占用规则通过所述复用信道进行上行传输。
本发明实施例提供的数据传输方法中,接入点为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点,而后接入点确定每一站点对所述复用信道的占用规则,并向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。相比现有技术而言,本发明实施例中接入点根据多个站点中请求的空闲带宽包含的单位宽度信道最多的站点来确定这多个站点复用信道及占用规则,能够避免在多个站点的空闲带宽不同时,空闲带宽较大的站点的部分空闲带宽被浪费,并且由于多个站点对该复用信道的占用规则是一致的,从而避免了对解码的影响,保证解码正确。可见能够提供一种多用户非平衡带宽接入时的上行传输机制,能够在保证解码正确的同时避免浪费带宽,从而提高系统的吞吐量。
为了使本领域技术人员能够更清楚地理解本发明实施例提供的技术方案,下面通过具体的实施例,对本发明的实施例提供的数据传输方法进行详细说明,为了方便说明,本实施例中将接入点简称为AP,如图5所示,该方法包括:
步骤301、站点通过监听信道获取该站点的空闲带宽。
示例性的,站点可以通过CSMA/CA来获取信道中未被占用的,可用于该用户设备进行上行传输的信道,作为该用户设备的空闲信道(或者可以称为该站点的可传输信道)。具体的,站点通过CSMA/CA发现了D个单位宽度信道未被占用的,则该D个单位宽度信道就是该站点的空闲信道。其中,每个单位宽度信道的带宽为预设大小的带宽,D为正整数。例如,在WLAN系统中单位宽度信道的带宽可以为20M带宽,用户设备通过CSMA/CA发现了2个20M的单位宽度信道未被占用,则这2个20M的单位宽度信道共40M就是该站点的空闲信道。
步骤302、站点向AP发送上行传输请求,该上行传输请求用于向AP请求该站点的空闲信道。
示例性的,若该站点的空闲信道包含D个单位宽度信道,则在该D个单 位宽度信道上发送RTS至AP。例如,假设在当前的WLAN系统中单位宽度信道的带宽为20M,WLAN系统能够支持的最大带宽为80M,由4个单位宽度信道组成。站点通过CSMA/CA发现了2个单位宽度信道带宽可用于上行传输,则这2个单位宽度信道共40M带宽就是该站点的空闲信道。
而后,该站点在这2个单位宽度信道上同时向AP发送RTS。
步骤303、AP响应站点的上行传输请求。
示例性的,AP也会通过进行CSMA/CA来获取信道中未被占用的,可用于该站点进行上行传输的信道,若AP获取Q个单位宽度信道,则在接收到RTS后,经过一个SIFS,AP在这Q个单位宽度信道中上发送用于响应RTS的CTS至该站点。例如,S302中该站点在这2个单位宽度信道上同时向AP发送RTS,假设AP通过CSMA/CA获取的空闲信道为4个单位宽度信道(包括该站点请求的2个单位宽度信道),也就是说AP发现带宽为80M的信道都是空闲信道,则AP在这4个单位宽度信道上同时向该站点回复CTS,其过程可以如图6所示。这样AP能够预约比2个单位宽度信道更大的一段带宽,可以在AP后续接收站点的上行传输请求时,以及AP后续向站点发送通知时避免干扰。
上述示例是AP检测到的Q个单位宽度信道包括站点检测到的D个单位宽度信道时站点和AP进行交互的流程,实际情况中也可能出现,站点检测到的D个单位宽度信道包括AP检测到的Q个单位宽度信道,此时站点在检测到的D个单位宽度信道向AP发送RTS后,AP只在检测到的Q个单位宽度信道上向该站点回复CTS,其具体过程与上述示例相同不再赘述。
当站点接收到AP发送的CTS后并不能发送上行数据,还需要等待AP后续发送的通知,该通知可以以触发帧的形式发送。
上述的站点可以是AP所在的BSS中的任意一个站点,该站点可以是一种用户设备,BSS中的各个站点都会与AP进行交互以请求该站点的空闲信道,其交互过程与上述步骤301~步骤303完全相同。当向AP发送上行传输请求的用户设备的个数达到N个时(N为正整数),或者AP根据预设策略判定满足预设条件时,触发AP执行下列步骤:
步骤304、AP为请求进行上行传输的多个站点确定复用信道,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为多个站点中所监 听到的空闲信道所包含的单位宽度信道最多的站点。
具体的,例如,AP可以根据任意一站点发送的RTS来确定该站点的空闲信道,例如AP接收站点通过2个单位宽度信道发送过来的2个RTS消息,该AP就将该站点的空闲带宽信道登记为这2个单位宽度信道(共40M)。同理的,AP可以得到发送上行传输请求的多个站点的空闲信道。
例如,假设有五个站点向AP发送上行传输请求,这五个站点可以分别记为站点1~5。假设站点1~5的空闲信道分别登记为1个单位宽度信道(共20M)、2个单位宽度信道(共40M)、3个单位宽度信道(共60M)、3个单位宽度信道(共60M)、4个单位宽度信道(80M),可以看出站点5的空闲信道中所包含的单位宽度信道最多,因此站点5即为上述第一参考站点,AP将该站点5的空闲信道,即4个单位宽度信道(80M)为确定站点1~5的复用信道。
另外,考虑实际系统中,用户受到自身的射频限制,只能支持有限带宽的数据传输,因此除了考虑这多个站点的空闲信道外,还需要考虑各站点实际的射频带宽支持能力,例如站点能够支持的单位宽度信道的最大数量,以防止所确定的复用信道的带宽超出了某些站点的所能支持的射频带宽能力。
因此,优选的,在另一种实施方式中,执行步骤305:
步骤305、AP为请求进行上行传输的多个站点确定复用信道,该复用信道为第一参考站点所监听到的空闲信道,第一参考站点为多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,信道数量门限为第二参考站点所支持的单位宽度信道的最大数量。其中,该第二参考站点为多个站点中所支持的单位宽度信道的最大数量最小的站点。
一般情况下,站点实际的射频带宽支持能力以及对应的调制能力,例如能够支持的快速傅里叶变换(英文:Fast Fourier Transformation,简称FFT)/快速傅里叶逆变换(英文:Inverse Fast Fourier Transform,简称:FFT)点数,在站点与AP关联时已经告知给AP,也可以理解为,各个站点的射频带宽支持能力以及对应的调制能力对于AP是已知的。
具体的,例如,依然假设有五个站点向AP发送上行传输请求,这五个 站点可以分别记为站点1~5。假设站点1~5的空闲信道分别登记为1个单位宽度信道(共20M)、2个单位宽度信道(共40M)、3个单位宽度信道(共60M)、3个单位宽度信道(共60M)、4个单位宽度信道(80M);同时,AP已知的站点1~5的所支持的单位宽度信道的最大数量分别为2个单位宽度信道、3个单位宽度信道、3个单位宽度信道、4个单位宽度信道、4个单位宽度信道,由此可知,站点1为上述的第二参考站点,信道数量门限为:2个单位宽度信道。因此,AP能够确定站点2为上述的第一参考站点,故AP确定的站点1~5的复用信道为站点2的空闲信道,即2个单位宽度信道(40M)为确定站点1~5的复用信道。
或者,还有另一种方式:首先,AP根据这多个站点的空闲信道,确定这多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点,获取该站点的空闲信道的带宽,记为P。
其次,根据这多个站点所支持的单位宽度信道的最大数量,确定这多个站点中所支持的单位宽度信道的最大数量最小的站点,并获取将该站点的所支持的总带宽,记为P1。
而后,将带宽P1与带宽P进行比较,若带宽P1大于带宽P,则将带宽P对应的信道确定为这多个站点的复用信道;若带宽P1小于带宽P,则将带宽P1对应的信道作为这多个站点的复用信道。
例如,依然假设有五个站点向AP发送上行传输请求,这五个站点可以分别记为站点1~5。假设站点1~5的空闲信道分别登记为1个单位宽度信道(共20M)、2个单位宽度信道(共40M)、3个单位宽度信道(共60M)、3个单位宽度信道(共60M)、4个单位宽度信道(80M);同时,AP已知的站点1~5的所支持的单位宽度信道的最大数量分别为2个单位宽度信道、3个单位宽度信道、3个单位宽度信道、4个单位宽度信道、4个单位宽度信道,由此可知,P=80M,P1=40M,因此P1对应的信道,即2个单位宽度信道(40M)为确定站点1~5的复用信道。
另外,步骤304和步骤305可择一执行,图5中步骤305用虚线框表示。
步骤306、AP确定每一站点对复用信道的占用规则。
步骤307、AP向每一站点发送指示复用信道以及该站点对复用信道的占用规则的通知。
具体的,该通知可以以触发帧的形式发送,该触发帧可以是AP广播给该AP所在的BSS内的所有站点的,该触发帧中包括复用信道以及该站点对复用信道的占用规则。广播触发帧的作用为,指示这多个个发送上行传输请求的站点根据触发帧的指示调制上行数据并发送,并且使BSS内的除了这多个站点外的其他站点在收到触发帧后进行相应的进行退避,不能再竞争信道,也就是不可再发送上行传输请求。在上行的MU-MIMO系统、OFDMA系统,或者MU-MIMO-OFDMA系统中,AP会对站点进行调度,即AP通过资源调度信息为各个站点分配资源,防止资源被浪费,此时除了考虑这多个站点的空闲信道,还需要考虑AP的资源调度信息。
因此,AP下发的占用规则中还可以包括资源调度信息。
步骤308、站点根据接收到的占用规则通过复用信道进行上行传输。该站点可以为发送上行传输请求的多个站点中的任意一个。
具体的,首先,站点依据复用信道确定用于生成上行符号的子载波的数量。
其中,该上行符号可以是上行OFDM符号,由于子载波调制可采用IFFT,所以用于生成上行符号的子载波的数量可以根据IFFT点数来确定,可以理解为IFFT点数相当于上述子载波的数量,而该IFFT点数可以根据复用信道的带宽确定,不同带宽对应的不同的IFFT点数,带宽与IFFT点数的对应关系可以预先设置在AP和站点上,例如,20M带宽对应的IFFT点数为64,40M带宽对应的IFFT点数为128(IFFT点数与带宽的对应关系,和FFT与带宽的对应关系相同)。
其次,站点依据占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波。占用规则可以包括:
复用信道中与站点的空闲信道相同的信道所对应的子载波作为用于承载上行数据的子载波,复用信道中除站点的空闲信道之外的信道所对应的子载波作为承载上行数据的子载波以外的子载波。
当然,若站点的空闲信道与复用信道完全相同,则依据复用信道确定的所有用于生成上行符号的子载波都可以作为用于承载上行数据的子载波。
再次,站点依据上行数据调制用于承载上行数据的子载波,使用0调 制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号。
例如,如图7所示,假设站点1的空闲信道包含1个单位宽度信道(20M),站点2的空闲信道包含2个单位宽度信道(40M)。AP指示的复用信道包含2个单位宽度信道(40M),对应的IFFT点数为128,复用信道包含的2个单位宽度信道与站点2的空闲信道包含2个单位宽度信道相同,站点1的空闲信道包含1个单位宽度信道为复用信道包含的2个单位宽度信道中的其中一个,为了方便说明,将站点1的空闲信道的这1个单位宽度信道记为信道1,将复用信道中的另一个单位宽度信道记为信道2。
若通过IFFT进行调制,则可以根据IFFT点数首先确定用于生成上行符号的子载波为128个,对于站点1而言,这128个子载波中与信道1对应的子载波为用于承载上行数据的子载波,这128个子载波中与信道2对应的子载波为承载上行数据的子载波以外的子载波,则站点1通过根据上行数据调制用于承载上行数据的子载波,根据0调制承载上行数据的子载波以外的子载波,从而得到上行符号。可以理解为,站点1在信道1上填入自己要发送的上行数据,在信道2上补数据0,并对信道1与信道2上,即整个复用带宽40M上的数据进行了IFFT点数为128的IFFT。
对于站点2而言,这128个子载波都可作为用于承载上行数据的子载波,则站点2通过根据上行数据调制用于这些承载上行数据的子载波,从而得到上行符号。可以理解为,站点2在整个复用信道40M带宽上填入自己要发送的上行数据,并对整个复用信道40M上的数据进行了IFFT点数为128的IFFT。
最后,站点发送所述上行符号。
在另一种实现方式中,占用规则中还可以包括上述资源调度信息,该资源调度信息用于指示站点分配得到的实际可传输信道,实际可传输信道的带宽不大于该站点的空闲信道带宽以及AP指示的复用信道的带宽。可以理解为,实际可传输信道所包含的单位宽度信道包含在该站点的空闲信道和复用信道中。
同样的,首先,站点依据复用信道确定用于生成上行符号的子载波的 数量。此处的方法和前述的依据复用信道确定用于生成上行符号的子载波的数量的方法相同,不再赘述。
其次,站点依据占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波。占用规则可以包括:
复用信道中与站点的实际可传输信道相同的信道所对应的子载波作为用于承载上行数据的子载波,复用信道中除站点的实际可传输信道之外的信道所对应的子载波作为承载上行数据的子载波以外的子载波。
当然,站点的实际可传输信道等于站点的空闲信道并等于复用信道,则依据复用信道确定的所有用于生成上行符号的子载波都可以作为用于承载上行数据的子载波。
再次,站点依据上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号。
例如,如图8所示,假设站点1的空闲信道包含1个单位宽度信道(20M),站点2的空闲信道包含2个单位宽度信道(40M)。AP指示的复用信道包含2个单位宽度信道(40M),对应的IFFT点数为128,复用信道包含的2个单位宽度信道与站点2的空闲信道包含2个单位宽度信道相同,站点1的空闲信道包含1个单位宽度信道为复用信道包含的2个单位宽度信道中的其中一个,给站点1和站点2资源调度信息均指示的实际可传输信道为1个单位宽度信道(20M),为了方便说明,将站点1的空闲信道的这1个单位宽度信道记为信道1,将复用信道中的另一个单位宽度信道记为信道2。
同样的,可以根据IFFT点数首先确定用于生成上行符号的子载波为128个,对于站点1而言,这128个子载波中与信道1对应的子载波为用于承载上行数据的子载波,这128个子载波中与信道2对应的子载波为承载上行数据的子载波以外的子载波,则站点1通过根据上行数据调制用于承载上行数据的子载波,根据0调制承载上行数据的子载波以外的子载波,从而得到上行符号。可以理解为,站点1在信道1上填入自己要发送的上行数据,在信道2上补数据0,并对信道1与信道2上,即整个复用带宽40M上的数据进行了IFFT点数为128的IFFT。
对于站点2而言,虽然站点2的空闲信道与复用信道相同,但由于资源调度信息指示为实际可传输信道为1个单位宽度信道(20M),所以这128个子载波中与复用信道中一个单位宽度信道对应的子载波为用于这些承载上行数据的子载波,其余的子载波为用于承载上行数据的子载波以外的子载波,则站点2通过根据上行数据调制用于承载上行数据的子载波,根据0调制承载上行数据的子载波以外的子载波,从而得到上行符号。可以理解为,站点2在复用信道中的一个单位宽度信道上填入自己要发送的上行数据,在在复用信道中的另一个单位宽度信道上补数据0,并对整个复用信道40M上的数据进行了IFFT点数为128的IFFT。
最后,站点发送所述上行符号。
由此可见,多个站点之间的空闲信道的带宽虽然不同,但是能够使用相同的IFFT点数,能够尽可能的选择较大的空闲信道作为多个站点之间的复用信道,在保证解码正确的同时避免浪费带宽,从而提高系统的吞吐量。
AP通过复用信道收到多个站点发送的上行符号后,对上行符号进行解调,对子载波的解调可以采用FFT,其中对上行符号进行FFT的FFT点数与站点生成上行符号时的IFFT点数相同。
这样就能够在多用户非平衡带宽接入时实现上行传输。
本发明实施例提供的数据传输方法中,接入点为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点,而后接入点确定每一站点对所述复用信道的占用规则,并向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。相比现有技术而言,本发明实施例中接入点根据多个站点中请求的空闲带宽包含的单位宽度信道最多的站点来确定这多个站点复用信道及占用规则,能够避免在多个站点的空闲带宽不同时,空闲带宽较大的站点的部分空闲带宽被浪费,并且由于多个站点对该复用信道的带宽是一致的,从而避免了对解码的影响,保证解码正确。可见能够提供一种多用户非平衡带宽接入时的上行传输机制,能够在保证解码正确的同时避免浪 费带宽,从而提高系统的吞吐量。
本发明实施例还提供一种接入点01,如图9所示,包括:
信道管理单元011,用于为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点;
策略管理单元012,用于确定每一站点对所述复用信道的占用规则;
通知单元013,用于向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
可选的,所述第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,所述信道数量门限为第二参考站点所支持的单位宽度信道的最大数量,其中,该第二参考站点为所述多个站点中所支持的单位宽度信道的最大数量最小的站点。
可选的,所述信道管理单元011还可以用于:
在所述为请求进行上行传输的多个站点确定复用信道之前,对于每一站点,接收该站点发送的上行传输请求,将该上行传输请求所占用的信道确定为该站点所监听到的空闲信道。
可选的,所述上行传输请求包括所述站点在所述空闲信道所包含的每个单位宽度信道上发送的请求发送请求。
可选的,如图10所示,所述接入点01还可以包括:
发送单元014,用于在收到一请求发送请求之后,在该请求发送请求所占用的单位宽度信道上发出清除发送请求,以及在所述接入点所监听到的空闲信道上发出清除发送请求。
本实施例用于实现上述各方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各方法实施例中的描述,在此不再赘述。
本发明实施例提供一种接入点,该接入点为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位 宽度信道最多的站点,而后接入点确定每一站点对所述复用信道的占用规则,并向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。相比现有技术而言,本发明实施例中接入点根据多个站点中请求的空闲带宽包含的单位宽度信道最多的站点来确定这多个站点复用信道及占用规则,能够避免在多个站点的空闲带宽不同时,空闲带宽较大的站点的部分空闲带宽被浪费,并且由于多个站点对该复用信道的带宽是一致的,从而避免了对解码的影响,保证解码正确。可见能够提供一种多用户非平衡带宽接入时的上行传输机制,能够在保证解码正确的同时避免浪费带宽,从而提高系统的吞吐量。
本发明实施例还提供一种站点02,如图11所示,包括:
上报单元021,用于向接入点上报监听到的空闲信道;
接收单元022,用于接收接入点返回的指示复用信道以及所述站点对所述复用信道的占用规则的通知;
传输单元023,用于根据所述占用规则通过所述复用信道进行上行传输。
可选的,所述传输单元023可以具体用于:
依据所述复用信道确定用于生成上行符号的子载波的数量;
依据所述占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波;
依据所述上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号
发送所述上行符号。
本实施例用于实现上述各方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各方法实施例中的描述,在此不再赘述。
本发明实施例提供一种站点,在接入点为请求进行上行传输的多个站点确定复用信道后,接收接入点向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,其中该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲 信道所包含的单位宽度信道最多的站点,该通知用以知该站点根据该占用规则通过所述复用信道进行上行传输,最后该站点根据该占用规则通过复用信道进行上行传输。相比现有技术而言,本发明实施例中接入点根据多个站点中请求的空闲带宽包含的单位宽度信道最多的站点来确定这多个站点复用信道及占用规则,能够避免在多个站点的空闲带宽不同时,空闲带宽较大的站点的部分空闲带宽被浪费,并且由于多个站点对该复用信道的带宽是一致的,从而避免了对解码的影响,保证解码正确。可见能够提供一种多用户非平衡带宽接入时的上行传输机制,能够在保证解码正确的同时避免浪费带宽,从而提高系统的吞吐量。
本发明实施例还提供另一种接入点03,如图12所示,包括:处理器031、存储器032;所述处理器031、所述存储器032通过总线连接033,所述存储器032用于存储计算机程序0321,所述处理器031用于执行所述计算机程序0321用于:
为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点;
确定每一站点对所述复用信道的占用规则;
向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
可选的,所述第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,所述信道数量门限为第二参考站点所支持的单位宽度信道的最大数量,其中,该第二参考站点为所述多个站点中所支持的单位宽度信道的最大数量最小的站点。
可选的,所述处理器031执行所述计算机程序0321还可以用于:在所述为请求进行上行传输的多个站点确定复用信道之前,对于每一站点,接收该站点发送的上行传输请求,将该上行传输请求所占用的信道确定为该站点所监听到的空闲信道。
可选的,所述上行传输请求包括所述站点在所述空闲信道所包含的每 个单位宽度信道上发送的请求发送请求。
可选的,所述处理器031执行所述计算机程序0321还可以用于:在收到一请求发送请求之后,在该请求发送请求所占用的单位宽度信道上发出清除发送请求,以及在所述接入点所监听到的空闲信道上发出清除发送请求。
或者,可选的,在另一种实现方式中(图中未示出),接入点03可以包括处理器034、收发器035,所述处理器034通过所述收发器035与其他网元交互,所述处理器034的作用可参照本实施例的第一种实施方式中所述处理器031执行所述计算机程序0321时的步骤,不再赘述。
本实施例用于实现上述各方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各方法实施例中的描述,在此不再赘述。
本发明实施例提供一种接入点,该接入点为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点,而后接入点确定每一站点对所述复用信道的占用规则,并向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。相比现有技术而言,本发明实施例中接入点根据多个站点中请求的空闲带宽包含的单位宽度信道最多的站点来确定这多个站点复用信道及占用规则,能够避免在多个站点的空闲带宽不同时,空闲带宽较大的站点的部分空闲带宽被浪费,并且由于多个站点对该复用信道的带宽是一致的,从而避免了对解码的影响,保证解码正确。可见能够提供一种多用户非平衡带宽接入时的上行传输机制,能够在保证解码正确的同时避免浪费带宽,从而提高系统的吞吐量。
本发明实施例还提供另一种站点04,如图13所示,包括:处理器041、存储器042;所述处理器041、所述存储器042通过总线043连接,所述存储器042用于存储计算机程序0421,所述处理器041用于执行所述计算机程序0421用于:
向接入点上报监听到的空闲信道;
接收接入点返回的指示复用信道以及所述站点对所述复用信道的占 用规则的通知;
根据所述占用规则通过所述复用信道进行上行传输。
可选的,所述处理器041执行所述计算机程序0421可以具体用于:
依据所述复用信道确定用于生成上行符号的子载波的数量;
依据所述占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波;
依据所述上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号
发送所述上行符号。
或者,可选的,在另一种实现方式中(图中未示出),站点04可以包括处理器044、收发器045,所述处理器044通过所述收发器045与其他网元交互,所述处理器044的作用可参照本实施例的第一种实施方式中所述处理器041执行所述计算机程序0421时的步骤,不再赘述。
本实施例用于实现上述各方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各方法实施例中的描述,在此不再赘述。
本发明实施例提供一种站点,在接入点为请求进行上行传输的多个站点确定复用信道后,接收接入点向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,其中该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点,该通知用以知该站点根据该占用规则通过所述复用信道进行上行传输,最后该站点根据该占用规则通过复用信道进行上行传输。相比现有技术而言,本发明实施例中接入点根据多个站点中请求的空闲带宽包含的单位宽度信道最多的站点来确定这多个站点复用信道及占用规则,能够避免在多个站点的空闲带宽不同时,空闲带宽较大的站点的部分空闲带宽被浪费,并且由于多个站点对该复用信道的带宽是一致的,从而避免了对解码的影响,保证解码正确。可见能够提供一种多用户非平衡带宽接入时的上行传输机制,能够在保证解码正确的同时避免浪费带宽,从而提高系统的吞吐量。
另外,本发明实施例还提供一种通信系统,如图14所示,可以包括至少 一个BSS,每个BSS中可以包括前述实施例提供的一个接入点01(或者接入点03,图中未示出),以及接入该接入点01的至少一个站点02(或者站点04,图中未示出)。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (21)

  1. 一种数据传输方法,其特征在于,包括:
    为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点;
    确定每一站点对所述复用信道的占用规则;
    向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,所述信道数量门限为第二参考站点所支持的单位宽度信道的最大数量,其中,该第二参考站点为所述多个站点中所支持的单位宽度信道的最大数量最小的站点。
  3. 根据权利要求1所述的方法,其特征在于,在所述为请求进行上行传输的多个站点确定复用信道之前,所述方法还包括,对于每一站点,接收该站点发送的上行传输请求,将该上行传输请求所占用的信道确定为该站点所监听到的空闲信道。
  4. 根据权利要求3所述的方法,其特征在于,所述上行传输请求包括所述站点在所述空闲信道所包含的每个单位宽度信道上发送的请求发送请求。
  5. 根据权利要求4所述的方法,其特征在于,所述方法由接入点执行,所述方法还包括,在收到一请求发送请求之后,在该请求发送请求所占用的单位宽度信道上发出清除发送请求,以及在所述接入点所监听到的空闲信道上发出清除发送请求。
  6. 一种数据传输方法,由站点执行,其特征在于,包括:
    向接入点上报监听到的空闲信道;
    接收接入点返回的指示复用信道以及所述站点对所述复用信道的占用规则的通知;
    根据所述占用规则通过所述复用信道进行上行传输。
  7. 根据权利要求6所述的数据传输方法,其特征在于,所述根据所述占用规则通过所述复用信道进行上行传输具体包括:
    依据所述复用信道确定用于生成上行符号的子载波的数量;
    依据所述占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波;
    依据所述上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号;
    发送所述上行符号。
  8. 一种接入点,其特征在于,包括:
    信道管理单元,用于为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点;
    策略管理单元,用于确定每一站点对所述复用信道的占用规则;
    通知单元,用于向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
  9. 根据权利要求8所述的接入点,其特征在于,所述第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,所述信道数量门限为第二参考站点所支持的单位宽度信道的最大数量,其中,该第二参考站点为所述多个站点中所支持的单位宽度信道的最大数量最小的站点。
  10. 根据权利要求8所述的接入点,其特征在于,所述信道管理单元还用于:
    在所述为请求进行上行传输的多个站点确定复用信道之前,对于每一站点,接收该站点发送的上行传输请求,将该上行传输请求所占用的信道确定为该站点所监听到的空闲信道。
  11. 根据权利要求10所述的接入点,其特征在于,所述上行传输请求包括所述站点在所述空闲信道所包含的每个单位宽度信道上发送的请求发送请求。
  12. 根据权利要求11所述的接入点,其特征在于,所述接入点还包括:
    发送单元,用于在收到一请求发送请求之后,在该请求发送请求所占用 的单位宽度信道上发出清除发送请求,以及在所述接入点所监听到的空闲信道上发出清除发送请求。
  13. 一种站点,其特征在于,包括:
    上报单元,用于向接入点上报监听到的空闲信道;
    接收单元,用于接收接入点返回的指示复用信道以及所述站点对所述复用信道的占用规则的通知;
    传输单元,用于根据所述占用规则通过所述复用信道进行上行传输。
  14. 根据权利要求13所述的站点,其特征在于,所述传输单元具体用于:
    依据所述复用信道确定用于生成上行符号的子载波的数量;
    依据所述占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波;
    依据所述上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号;
    发送所述上行符号。
  15. 一种接入点,其特征在于,包括:处理器和存储器;所述处理器、所述存储器通过总线连接,所述存储器用于存储计算机程序,所述处理器用于执行所述计算机程序用于:
    为请求进行上行传输的多个站点确定复用信道,其中,该复用信道为第一参考站点所监听到的空闲信道,该第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多的站点;
    确定每一站点对所述复用信道的占用规则;
    向每一站点发送指示所述复用信道以及该站点对所述复用信道的占用规则的通知,以通知该站点根据该占用规则通过所述复用信道进行上行传输。
  16. 根据权利要求15所述的接入点,其特征在于,所述第一参考站点为所述多个站点中所监听到的空闲信道所包含的单位宽度信道最多且所监听到的空闲信道所包含的单位宽度信道不超过信道数量门限的站点,所述信道数量门限为第二参考站点所支持的单位宽度信道的最大数量,其中,该第二参考站点为所述多个站点中所支持的单位宽度信道的最大数量最小的站点。
  17. 根据权利要求15所述的接入点,其特征在于,所述处理器执行所述 计算机程序还用于:在所述为请求进行上行传输的多个站点确定复用信道之前,对于每一站点,接收该站点发送的上行传输请求,将该上行传输请求所占用的信道确定为该站点所监听到的空闲信道。
  18. 根据权利要求17所述的接入点,其特征在于,所述上行传输请求包括所述站点在所述空闲信道所包含的每个单位宽度信道上发送的请求发送请求。
  19. 根据权利要求18所述的接入点,其特征在于,所述处理器执行所述计算机程序还用于:在收到一请求发送请求之后,在该请求发送请求所占用的单位宽度信道上发出清除发送请求,以及在所述接入点所监听到的空闲信道上发出清除发送请求。
  20. 一种站点,其特征在于,包括:处理器和存储器;所述处理器、所述存储器通过总线连接,所述存储器用于存储计算机程序,所述处理器用于执行所述计算机程序用于:
    向接入点上报监听到的空闲信道;
    接收接入点返回的指示复用信道以及所述站点对所述复用信道的占用规则的通知;
    根据所述占用规则通过所述复用信道进行上行传输。
  21. 根据权利要求20所述的站点,其特征在于,所述处理器执行所述计算机程序具体用于:
    依据所述复用信道确定用于生成上行符号的子载波的数量;
    依据所述占用规则在用于生成上行符号的子载波中确定用于承载上行数据的子载波;
    依据所述上行数据调制用于承载上行数据的子载波,使用0调制用于生成上行符号的子载波中用于承载上行数据的子载波以外的子载波,以生成所述上行符号;
    发送所述上行符号。
PCT/CN2014/091697 2014-11-19 2014-11-19 数据传输方法、接入点和站点 WO2016078041A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091697 WO2016078041A1 (zh) 2014-11-19 2014-11-19 数据传输方法、接入点和站点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091697 WO2016078041A1 (zh) 2014-11-19 2014-11-19 数据传输方法、接入点和站点

Publications (1)

Publication Number Publication Date
WO2016078041A1 true WO2016078041A1 (zh) 2016-05-26

Family

ID=56013075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091697 WO2016078041A1 (zh) 2014-11-19 2014-11-19 数据传输方法、接入点和站点

Country Status (1)

Country Link
WO (1) WO2016078041A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933755A (zh) * 2019-11-20 2020-03-27 深圳市思为无线科技有限公司 一种基于频分复用的无线组网并发算法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457942A (zh) * 2010-10-29 2012-05-16 中兴通讯股份有限公司 一种无线网络中信道扫描的方法和系统
US20120257609A1 (en) * 2004-01-05 2012-10-11 Broadcom Corporation Multi-mode wlan/pan mac
CN103067985A (zh) * 2011-10-21 2013-04-24 上海无线通信研究中心 基于信道质量的超高速无线局域网信道绑定与分配方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120257609A1 (en) * 2004-01-05 2012-10-11 Broadcom Corporation Multi-mode wlan/pan mac
CN102457942A (zh) * 2010-10-29 2012-05-16 中兴通讯股份有限公司 一种无线网络中信道扫描的方法和系统
CN103067985A (zh) * 2011-10-21 2013-04-24 上海无线通信研究中心 基于信道质量的超高速无线局域网信道绑定与分配方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933755A (zh) * 2019-11-20 2020-03-27 深圳市思为无线科技有限公司 一种基于频分复用的无线组网并发算法
CN110933755B (zh) * 2019-11-20 2023-04-07 深圳市思为无线科技有限公司 一种基于频分复用的无线组网并发算法

Similar Documents

Publication Publication Date Title
JP6775546B2 (ja) アップリンクおよびダウンリンク伝送のwlan・ofdma設計のためのシステムおよび方法
JP6907382B2 (ja) データ伝送方法および装置
EP3952355A1 (en) Communication method and device
US10979194B2 (en) Resource indication method, user equipment, and network device
KR101452504B1 (ko) Vht 무선랜 시스템에서의 채널 접속 방법 및 이를지원하는 스테이션
US11930535B2 (en) Trigger-based random access for wireless device
US11457504B2 (en) Data transmission method, access point and station
KR20190020058A (ko) 채널 결합 설계 및 무선 통신에서의 시그널링
CN110581754B (zh) 一种请求信号的发送、接收方法及设备、装置
JP6440126B2 (ja) データ送信方法、装置、及びシステム
US10153857B1 (en) Orthogonal frequency division multiple access protection
CN113455071B (zh) 控制信道的传输方法、装置及存储介质
CN112217759B (zh) 发送关于缓冲状态信息的无线通信方法和无线通信终端
WO2017084582A1 (zh) 一种信道资源指示方法及装置
US20220248466A1 (en) Resource configuration method and device
KR102104274B1 (ko) 다중 사용자 상향 전송을 위한 무선 통신 방법 및 무선 통신 단말
CN106658725B (zh) 一种数据传输方法及装置
CN111865537B (zh) 通信方法和通信装置
WO2020030152A1 (zh) 系统信息传输方法、相关设备及系统
KR20190058499A (ko) 네트워크 얼로케이션 벡터를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2015014125A1 (zh) 接入信道的方法和设备
EP2820901A1 (en) Base station and method for determining a spectrum allocation in a wireless network
EP3496352B1 (en) Method and apparatus for symbol setting
WO2016078041A1 (zh) 数据传输方法、接入点和站点
CN107509251B (zh) 一种退避方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906574

Country of ref document: EP

Kind code of ref document: A1