WO2016077936A1 - Método para la formación de nano-partículas de un metal, no-metal y/o un organo-metal; nanoparticulas derivadas del proceso; y su uso industrial - Google Patents

Método para la formación de nano-partículas de un metal, no-metal y/o un organo-metal; nanoparticulas derivadas del proceso; y su uso industrial Download PDF

Info

Publication number
WO2016077936A1
WO2016077936A1 PCT/CL2014/000061 CL2014000061W WO2016077936A1 WO 2016077936 A1 WO2016077936 A1 WO 2016077936A1 CL 2014000061 W CL2014000061 W CL 2014000061W WO 2016077936 A1 WO2016077936 A1 WO 2016077936A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
organ
nano
particles
preparation
Prior art date
Application number
PCT/CL2014/000061
Other languages
English (en)
French (fr)
Inventor
Pedro Alejandro Aylwin Gomez
Raúl NOGUERA CORREA
Original Assignee
Nano Innova Spa.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Innova Spa. filed Critical Nano Innova Spa.
Priority to PCT/CL2014/000061 priority Critical patent/WO2016077936A1/es
Publication of WO2016077936A1 publication Critical patent/WO2016077936A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • This invention is related to the chemical field, specifically within the processes of production of materials, more specifically within the sub-field of nanostructures, their polymers and their obtaining from metals such as copper, non-metals and materials organ-metallic.
  • nano-materials from metals, crystalline structures and amorphous materials is of great interest for its application in the electronics, biomedicine and chemical industries in general (by way of example: Cosmetic technologies, pharmaceuticals, surface materials of aseptic work, catalysts, among others) for their attributes to cover an enlarged surface with a small volume of material
  • Another of the capabilities offered by the nano-structures in metals lies in the fact that, at a smaller particle size, the melting point of the metal falls. This feature can be widely used in the miniaturization of circuits or printing them (by way of example: Radio frequency identification technologies, microcircuits, metallic inks, among others).
  • copper is a transition metal with various applications depending on what is sought from it. If one of the objectives sought is to obtain copper particles at the manometric level, it can be mentioned that the state of the art on these matters has a varied bibliography. It can be mentioned that there are already some copper nano-particle production processes, such as presented in the document presented at the SAM / CONAMET 2007, DE D ⁇ az-Droguett, and colleagues' synthesis of nanoparticles of copper and molybdenum trioxide obtained by condensation in a carrier gas ", where copper nanoparticles and molybdenum oxide are synthesized from an inert gas and hydrogen.
  • a third document of interest is a thesis of the National Polytechnic Institute (Mexico), MC Telléz, entitled "synthesis of micro / nanostructures of copper oxides I and II in colloidal dispersion", where they report the synthesis of copper nanoparticles, iron and silver, using cassava and malanga starch.
  • Procedurally soluble starch extracted from the aforementioned plants was taken, mixed with de-ionized water and heated. Then to this solution is added nitrate of the metal dissolved in water, then the mixture was autoclaved at 15 psi and 121 ° C obtaining nanoparticles of the order of 287 at 400 nm. It can be seen in this document the large size of the nanoparticles that can be obtained, on the other hand, the yields are low and limited.
  • US patents 2006/0053972 can be mentioned, which describes a process to create copper nanoparticles in a solid powder form, which operates through a solvent extraction process, managing to extract the nanoparticles, in small quantities. and in wide ranges, and US 2004/0089101, which also describes a method of manufacturing mono-dispersible nano-crystals, which include metals such as copper through the use of nitrogen or gaseous oxygen.
  • the present invention provides a method of producing copper nanoparticles, among other metals, which includes a single stabilizing and dispensing compound of the nanoparticles at the same time.
  • the method consists of a series of stages that go from providing copper, silver among other metals, dissolving them in an alkaline or acidic medium and then stabilizing them and reacting them with a compound derived from 4 to 1 carbons.
  • the present invention also seeks to protect the composition of nanoparticles dispersed in the compound derived from 4 to 1 carbons.
  • the advantages of the present invention lie in the first place in the high performance of the method that allows production levels of nanoparticles in the order of kilos to tons, with an efficiency of production time much higher than that which are known by known techniques. in the state of the art, thereby influencing variables such as the speed in the availability of high volumes of nano particles at a lower production cost than the processes taught by the prior art.
  • the proposed invention breaks the current paradigm regarding the production and performance in nano-particle production of the aforementioned materials.
  • Another advantage used is that with a single compound it is possible to disperse and stabilize physically and Chemically (oxidation stability) nanoparticles.
  • This method does not essentially require strict atmospheric control, although a control can be applied when specific characteristics of the nanoparticles are sought.
  • composition achieved has a low toxicity and can be used directly in food or drugs, in appropriate proportions.
  • the present specification intends to present a method of production of metal nanoparticles (non-metallic and organ-metallic) and the composition in which they are dissolved.
  • the application of these dispersed nanoparticles has preferential application in the energy, electronics, cosmetics, food industry (both its packaging and directly in its contents), catalysts, tinctures, medicines for human or veterinary use, biotechnology, among other fields .
  • metal nanoparticles those particles whose sizes range from lxlO -9 mt to lxlO -6 mt, although it is desirable that the nanoparticles are in the range between 1 to 10 nm. It is part of the present invention that the nanoparticles have an average particle size between 1000 to lnm, such as 300 to lnm, such as 100 to lnm, such as 50 to lnm, such as 40 to lmn, such as 30 to lnm, such as 25 to lnm, such as 15 to lnm, such as 10 to lnm.
  • diameter D50 the diameter in which 50% of the sample by weight is composed of smaller particles, for this case with a certain size range.
  • the diameter D50 can be measured with an LVEM5 (Delong America) low voltage electron microscope, with an average resolution between 2 and 1.2 nm
  • LVEM5 Long America low voltage electron microscope
  • the compound derived from 4 and / or 3 and / or 2 and / or 1 carbon atoms which is defined according to the following formulas (component B): R1-R2-R3-R4;
  • R 1, R 2, R 3 and R 4 together are a hydrocarbon chain that is substituted by -OH, -OR- where R is a Ci-C 4 alkyl; -CN, -NH 2 , -NR5, where R5 is a Ci-C 4 alkyl and / or a phenyl substituted with -OH, -NH 2 , -SH; -SH, -S03H and -S04; -COOH; I
  • R 1, R 2 and R 3 together are a hydrocarbon chain that is substituted by -OH, -OR- where R is a Ci-C 4 alkyl; -CN, -NH 2 , -NR5, where R5 is a Ci-C 4 alkyl and / or a phenyl substituted with -OH, -NH 2 , -SH, -COOH; -SH, -S03H and -S04; -COOH; I
  • Rl-R2 Where R1 and R2 together are a hydrocarbon chain is substituted with -OH, -OR- wherein R is a Ci-C 4 alkyl; -CN, -NH 2 , -NR5, where R5 is a C1-C4 alkyl and / or a phenyl substituted with -OH, -NH 2 , -SH, -COOH; -SH, -S03H and -S04; -COOH; I
  • Rl is a hydrocarbon that is substituted by
  • R is a Ci-C 4 alkyl; -CN, -NH 2 , -NR5, where a C 1 -C 4 alkyl and / or a phenyl substituted with -OH, -NH 2 , COOH; -SH, -S03H and -S04; -COOH.
  • the solvent medium is the same derivative compound, soluble in water or other water-soluble media.
  • different metals can be used within which we mention copper, silver, gold, platinum, iridium, cadmium, nickel, iron, molybdenum, cobalt, zirconium, aluminum, lithium, rare earth, among others with similar chemical characteristics.
  • copper and silver are used.
  • the metal can also be in salt form and react with a reducing agent such as potassium hydroxide or sodium hydroxide or reagents with similar characteristics (in a previous step) or an oxidizing agent (different types of organic or inorganic acids), to form the hydroxides or reactive metal species that will operate as Component A.
  • a reducing agent such as potassium hydroxide or sodium hydroxide or reagents with similar characteristics (in a previous step) or an oxidizing agent (different types of organic or inorganic acids), to form the hydroxides or reactive metal species that will operate as Component A.
  • Copper can be presented as Copper hydroxide, Copper oxychloride or as metallic copper, among other derivatives, to be treated with an alkali or an acid.
  • Silver can be presented as Silver Hydroxide, Silver Oxalate, Silver Nitrate or as metallic silver, among other derivatives, to be treated with an alkali or an acid.
  • the technique can be applied in any oxidation state.
  • composition of the derived compound and copper may require additional additives.
  • additives may include co-solvents, waxes, antioxidants, gelling agents, polymerization initiators, humectants, preservatives, among others.
  • This method provides the production of metal nanoparticles, preferably copper with a range between 99.0% and 99.9997% purity.
  • the method can start directly with Copper Oxychloride and / or with Copper hydroxide and / or with metallic copper or with a previous stage where copper oxychloride or copper hydroxide or other derivatives are prepared.
  • This method provides the production of metal nanoparticles, preferably silver with a purity greater than 99.6%.
  • the method can start directly with silver nitrate and / or silver oxide and / or metallic silver and / or silver oxalate and / or in a previous step where silver nitrate, the oxide 'Silver is prepared and / or silver oxalate, among other derivatives.
  • a homogeneous solution or dispersion is prepared comprising component A (As an example: copper oxychloride and / or copper hydroxide and / or silver nitrate) and (c) is reacted with the derivative compound B, in a ratio in a range between 1 is 100, preferably 1:20, preferably 1: 6; (d) After this action, the components are stirred in a range between 90 and 180 rpm, preferably 110 rpm ((e) optionally the stirring can be stopped if necessary) and these elements are reacted for a period of time of reaction that varies depending on the nature of the metal to generate its nano-particles, reagent B, the size of the tank and the heating method of the same tank, with a reaction term characterized by the characteristic color change associated with the type of nanoparticle, with
  • the homogenization of the mixture of components A and B is due to the induction of nucleation and core growth through the control of the physical parameters of the reaction, amount of free metal ions during the reaction of production of the nano-particles and the wrapping (capping) through organic molecules which provide oxidative chemical stability by the formation of a dispersing layer around the copper nano-particles.
  • FIG. 1/5 This figure represents the size distribution of the copper nanoparticles in a first sample analyzed with a LVE 5 low voltage electron microscope. Clearly this sample represents a D50 of 20 nm. It is also indicated that the sample is presented as a homogeneous population of stable particles.
  • This figure represents the size distribution of the copper nanoparticles in a second sample analyzed with a LVEM5 low voltage electron microscope. This sample clearly represents a D50 of 15 nm. It is also indicated that the sample is presented as a homogeneous population of stable particles presented in the form of vesicles.
  • FIG. 3/5 This figure represents the size distribution of the copper nanoparticles in a third sample analyzed with a LVE 5 low voltage electron microscope. Clearly this sample represents a D50 of 15 nm. It is also indicated that the sample is presented as a population of finer and more stable particles.
  • FIG. 4/5 This figure represents the size distribution of the copper nanoparticles in a fourth sample analyzed with a LVEM5 low voltage electron microscope. This sample clearly represents a D50 of 20 nm. It is also indicated that the sample is presented as a homogeneous population of stable particles.
  • This figure represents the size distribution of the silver nano-particles in a sample analyzed with a LVEM5 low voltage transmission electron microscope. This sample clearly represents a D50 of 25 nm. It is also indicated that the sample is presented as a homogeneous population of stable particles.
  • the material is then allowed to cool to room temperature at 25 ° C and the nanoparticles are separated from the liquid solvent by simple decantation in 9 hours.
  • the separated nano-particles are washed with 10% methanol and dried at room temperature at 25 ° C.
  • Samples 1 and 4 were taken from the base of the container instead samples 2 and 3 were extracted from the center of the solution.
  • Application Example 2 As an industrial example, 848 kg of component A, anhydrous copper hydroxide (Cu (OH) 2 were taken in a 21000 liter stainless steel container and mixed with 5089 liters of component B, C3H8O3 (1, 2, 3 -propanotriol.) These components were stirred for 4 minutes at 8 ° C. After this the temperature was increased to 48 ° C. continuously stirring another 3 extra minutes, after 7 minutes the continuous stirring was stopped and the temperature was increased to 82 ° C. Then, for 10 minutes, timely agitation is applied and the temperature is increased to 170 ° C. Then, the solution changes color depending on the type of nanoparticle.
  • Cu (OH) 2 anhydrous copper hydroxide
  • the material is then allowed to cool to room temperature at 25 ° C and the nanoparticles are separated from the liquid solvent by simple decantation in 9 hours.
  • component A As an example, in a 25 liter stainless steel container, 1000 g of component A, anhydrous silver nitrate (AgNC) were taken and mixed with 6 liters of component B, C3H8O3 (1, 2, 3-propanotriol). These components were shaken manually for 4 minutes at 16 ° C. After this the temperature was increased to 68 ° C (Measured with an infrared thermometer) continuously stirring another 6 extra minutes. After 10 minutes, continuous stirring stops and the temperature is increased to 103 ° C. Then, the temperature is increased to 180 ° C. Then, the solution changes color depending on the type of nanoparticle. The material is then allowed to cool to room temperature at 25 ° C and the nanoparticles are separated from the liquid solvent by centrifugation. The separated nano-particles are washed with methanol at

Abstract

La presente invención provee un método de producción de nanopartículas de cobre, entre otros metales, que incluye un solo compuesto estabilizador y dispensador de las nanopartículas al mismo tiempo. El método consiste de una serie de etapas que van desde proveer el cobre, plata entre otros metales, disolverlos en un medio alcalino o ácido para luego estabilizarlos y hacerlos reaccionar con un compuesto derivado de 4 a 1 carbonos.

Description

MÉTODO PARA LA FORMACIÓN DE NANO-PAR ÍCULAS DE UN METAL, NO- METAL Y/0 UN ORGANO-METAL; NANOPARTICULAS DERIVADAS DEL PROCESO; Y SU USO INDUSTRIAL.
CAMPO DE LA INVENCIÓN
Esta invención está relacionada con el campo químico, específicamente dentro de los procesos de producción de materiales, más específicamente dentro del sub-campo de las nano-estructuras, sus polímeros y su obtención a partir de metales como el cobre, no-metales y materiales órgano- metálicos . ANTECEDENTES
Desde hace algún tiempo a la fecha, el trabajo de producción de nano-materiales o materiales en la escala de 1 x 10~9 metros, ha presentado un sin número de problemas en relación con la estabilidad de calibre de las partículas que se producen, su estabilidad química, así como también en cuanto a la posibilidad de producirlas en grandes volúmenes y en las formas de aplicación en productos de uso cotidiano de las más diversas índoles.
La obtención de nano-materiales a partir de metales, estructuras cristalinas y materiales amorfos, resulta de gran interés por su aplicación en las industrias de electrónica, biomedicina y química en general (a modo de ejemplo: Tecnologías cosméticas, farmacéutica, materiales de superficie de trabajo asépticas, catalizadores, entre otras) por sus atributos para abarcar una superficie aumentada con un pequeño volumen de material, Otra de las capacidades que brindan las nano-estructuras en metales, radica en el hecho que, a menor tamaño de partícula, baja el punto de fusión del metal. Esta característica puede ser ampliamente utilizada en la miniaturización de circuitos o la impresión de los mismos (a modo de ejemplo: Tecnologías de identificación por radiofrecuencia, microcircuitos, tintas metálicas, entre otros) .
Todas estas características antes mencionadas permiten a su vez transmitir todas las propiedades de la materia nano- particulada (propiedades ópticas, magnéticas y mecánicas) a los objetos o superficies a las cuales son aplicadas.
El proceso de producción que será presentado posteriormente puede ser desarrollado para la obtención de cualquier nano metal pero los ejemplos de aplicación y proceso que se describen se han basado principalmente en la obtención de nano partículas de cobre y plata , por las diversas aplicaciones que permiten los atributos de dicho metal pero no excluye su aplicación para la obtención de nano estructuras en otros metales con características químicas similares u otros materiales inorgánicos u órgano-metálicos, según los propósitos y propiedades de los mismos, en cuanto sean útiles para los fines del producto final. Finalmente, la producción en grandes volúmenes o altos rendimientos de nano- estructuras bajo parámetros de estabilidad química y física, se hacen indispensables para los requerimientos de la industria en una sociedad con necesidades diversas en virtud de la multiplicidad de usos que las nano-partículas puedan llegar a tener. DESCRIPCIÓN DEL ESTADO DEL ARTE Y REFERENCIAS
Es conocido que el cobre es un metal de transición con diversas aplicaciones dependiendo de lo que se busque de él. Si uno de los objetivos buscados es obtener partículas de cobre a nivel manométrico se puede mencionar que el estado del arte sobre estas materias presenta una variada bibliografía . Se puede mencionar que ya existen algunos procesos de producción de nano-partículas de cobre, tales como se presenta en el documento expuesto en el congreso SAM/CONAMET 2007, D. E. Díaz-Droguett , y colegas "síntesis de nanopartículas de cobre y trióxido de molibdeno obtenidas por condensación en un gas portador", donde se sintetizan nanopartículas de cobre y oxido de molibdeno a partir de un gas inerte e hidrógeno. Específicamente este documento menciona la evaporación del cobre en presencia de helio, nitrógeno e hidrógeno y la formación de nanopartículas con respecto al tipo de refrigerante utilizado en la etapa de condensación. También menciona que el problema de esta técnica es la baja eficiencia de la misma, generando 500 mgr de nanopartículas en rangos que van desde 7 a 60 nm, por cada evaporación. Otro documento interesante de analizar es el documento de la revista sociedad catalana de Química, núm. 10 (2011), p.7- 14 titulado "nanopartículas de metales de transición en síntesis orgánica", donde se presenta un proceso a través de la reducción de cloruro de níquel (II) dihidratado con litio y una cantidad catalítica de naftaleno o DTBB ( 4 , 4 ' -di-terc- butilbifenilo) , los cuales conducen a la formación de nanopartículas de níquel metálico altamente reactivas, entre 1 a 100 nm. Esta misma reacción fue probada con cobre y hierro. Así mismo, esta tecnología fue diseñada para generar reacciones organometálicas, tales como la reducción de distintas funcionalidades orgánicas o la creación de enlaces carbono-carbono (tipo Wittig) , entre otras, de manera sencilla. Por otro lado, al ser estas nanopartículas altamente reactivas, su estabilidad y cantidad en el tiempo son reducidas .
Un tercer documento de interés es una tesis de grado del Instituto politécnico nacional (México), M. C. Telléz, titulado como "síntesis de micro/nanoestructuras de óxidos de cobre I y II en dispersión coloidal", donde reportan la síntesis de nanopartículas de cobre, fierro y plata, utilizando almidón de yuca y malanga. Procedimentalmente, se tomó almidón soluble extraído de las plantas antes mencionadas, se mezcla con agua des-ionizada y se calienta. Luego a esta solución se le agrega nitrato del metal disuelta en agua, luego la mezcla se autoclavo a 15 psi y 121°C obteniéndose nanopartículas del orden de los 287 a 400 nm. Se puede apreciar e este documento el gran tamaño de las nanopartículas que pueden ser obtenidas, por otro lado, los rendimientos son bajos y limitados.
Otro documento cercano a la presente invención es la patente americana US 2009/0142481 Al. Esta patente presenta un proceso de producción de una tinta con nanopartículas de cobre utilizando como estabilizador un ditiocarbonato sustituido de formulas R-O-C (=S) S"M+ y R!-X-R2-C (=S) S"M+ , un solvente de arrastre, un alquil-xantano para estabilizar la nanopartícula de cobre, cobre como nitrato en medio alcalino y no requiere una atmosfera controlada para su producción. Este proceso crea nanopartículas de cobre con un rango que va entre 1 a 500 nm. Al igual que los métodos anteriores, este método está limitado en las cantidades de producción con pobres rendimientos entre 55 y 65%.
Dentro del mismo campo se pueden mencionar las patentes US 2006/0053972, la cual describe un proceso para crear nanoparticulas de cobre en una forma de polvo sólido, que opera a través de un proceso de extracción por solventes logrando extraer las nanoparticulas, en pequeñas cantidades y en rangos de tamaño amplios, y la patente US 2004/0089101, la cual también describe un método para fabricar nano-cristales mono-dispersables, que incluyen metales como el cobre a través de la utilización de nitrógeno u oxigeno gaseoso.
Otras patentes de interés en la misma área son:
US 2007/70180954 publicado en octubre de 2007 US 2004/0112175 publicado en junio de 2004 US2013/0324391 publicado en diciembre de 2013 US2013/0316168 publicado en noviembre de 2013 US2013/0316089 publicado en noviembre de 2013
US2013/0315972 publicado en noviembre de 2013 US2013/172949 publicado en noviembre de 2013 US2013/171542 publicado en noviembre de 2013
US2013/176702 publicado en noviembre de 2013 US2013/174502 publicado en noviembre de 2013 US 8,592,339
US 6,156, 094
RESUMEN DE LA INVENCIÓN
La presente invención provee un método de producción de nanoparticulas de cobre, entre otros metales, que incluye un solo compuesto estabilizador y dispensador dé las nanoparticulas al mismo tiempo. El método consiste dé una serie de etapas que van désde proveer el cobre, plata entre otros metales, disolverlos en un medio alcalino o ácido para luego estabilizarlos y hacerlos reaccionar con un compuesto derivado de 4 a 1 carbonos.
Por otro lado, la presente invención busca también proteger la composición de nanoparticulas dispersas en el compuesto derivado de 4 a 1 carbonos.
Las ventajas de la presente invención radican en primer lugar en el alto rendimiento del método que permite niveles de producción de nanoparticulas en el orden de los kilos a las toneladas, con una eficiencia de tiempo de producción muy superior al que permiten las técnicas que se conocen en el estado del arte, incidiendo con ello en variables como la rapidez en la disponibilidad de altos volúmenes de nano partícula a un costo de producción inferior al de los procesos que enseña el arte previo.
En consecuencia, el invento que se propone rompe el paradigma actual respecto de la producción y el rendimiento en la producción de nano-partículas de los materiales antes mencionados .
Otra de las ventajas utilizadas radica en que con un solo compuesto se logra dispersar y estabilizar física y químicamente (estabilidad frente a la oxidación) las nanopartículas .
Este método no requiere esencialmente de un control atmosférico estricto, aunque puede aplicarse un control cuando se buscan características específicas dé las nanopartículas.
Finalmente, la composición lograda posee una baja toxicidad y puede ser usada directamente en alimentos o fármacos, en las proporciones adecuadas.
MODALIDADES DE LA INVENCIÓN
Esta descripción no está restringida a ninguna modalidad descrita en el estado de la técnica y algunos compuestos y procesos pueden ser modificados en virtud de los conocimientos medios de un técnico en la materia. La terminología que se utilizará no pretende limitar la invención en ninguno de sus alcances .
En esta memoria descriptiva los términos singulares "a" y "él" aplicados, pueden corresponder también a formas plurales cuando se leen en un apropiado contexto, por lo tanto, no están restringidos a solo formas singulares.
Las frases "por lo menos", "una o más", "y/o", como están usadas, son expresiones amplias que son tanto conjuntivas como disyuntivas .
En general la presente memoria descriptiva pretende presentar un método de producción de nanopartículas de metal (no-metálicos y órgano-metálicos) y la composición en donde están disueltas las mismas. La aplicación de estas nanoparticulas dispersas tiene aplicación preferente en la industria energética, electrónica, cosmética, de alimentos (tanto sus envases como directamente en su contenido) , de catalizadores, de tinturas, de medicamentos para uso humano o veterinario, biotecnología, entre otros campos.
Nos referiremos conceptualmente como nanoparticulas de metal, a aquellas partículas cuyos tamaños van desde lxlO-9 mt a lxlO-6 mt, aunque es deseable que las nanoparticulas estén en el rango entre 1 a 10 nm. Es parte de la presente invención que las nanoparticulas posean un promedio de tamaño de las partículas entre 1000 a lnm, tal como 300 a lnm, tal como 100 a lnm, tal como 50 a lnm, tal como 40 a lmn, tal como 30 a lnm, tal como 25 a lnm, tal como 15 a lnm, tal como 10 a lnm.
Nos referimos a altos rendimientos a la relación porcentual entre el peso seco de nanoparticulas producidas de un metal, no-metal o compuesto órgano-metálico versus la cantidad de metal, no-metal o compuesto órgano-metálico original descontando el peso de los contra-iones salinos que conforman la sal metálica, sal-no metálica o los compuestos orgánicos que formar el órgano-metal.
Se define como diámetro D50, al diámetro en el cual el 50% de la muestra en peso está compuesta por partículas menores, para este caso con un determinado rango de tamaño. El D50 de diámetro puede ser medido con un microscopio electrónico de bajo voltaje LVEM5 (Delong America), con una resolución promedio de entre 2 y 1,2 nm El compuesto derivado de 4 y/o 3 y/o 2 y/o 1 átomos de carbono que se define según las siguientes fórmulas (componente B) : R1-R2-R3-R4;
Donde Rl, R2, R3 y R4 juntos son una cadena hidrocarbonada que está sustituida por -OH, -OR- donde R es un alquilo Ci-C4; -CN, -NH2, -NR5, donde R5 es un alquilo Ci-C4 y/o un fenilo sustituido con -OH, -NH2, -SH; -SH, -S03H y -S04; -COOH; y/o
R1-R2-R3;
Donde Rl, R2 y R3 juntos son una cadena hidrocarbonada que está sustituida por -OH, -OR- donde R es un alquilo Ci~C4; -CN, -NH2, -NR5, donde R5 es un alquilo Ci-C4 y/o un fenilo sustituido con -OH, -NH2, -SH, -COOH; -SH, -S03H y -S04; -COOH; y/o
R1-R2 Donde Rl y R2 juntos son una cadena hidrocarbonada que está sustituida por -OH, -OR- donde R es un alquilo Ci-C4; -CN, -NH2, -NR5, donde R5 es un alquilo C1-C4 y/o un fenilo sustituido con -OH, -NH2, -SH,-COOH; -SH, -S03H y -S04; -COOH; y/o
Rl Donde Rl es un hidrocarburo que está sustituido por
OR- donde R es un alquilo Ci-C4; -CN, -NH2, -NR5, donde un alquilo C1-C4 y/o un fenilo sustituido con -OH, -NH2, COOH; -SH, -S03H y -S04; -COOH.
Algunos ejemplos simples, sin excluir otras formulaciones, de referencia del compuesto hidrocarbonado son:
CH2-tjH2 CH2-SH CH2-
Figure imgf000012_0001
CH-OH I CH-NH2 CH-SH CH-NH2 CH2 LOH
CH2-OH; CH2-NH2; CH2-SH; CH2-
OH; CH2-NH2;
Figure imgf000012_0002
El medio solvente es el mismo compuesto derivado, soluble en agua o en otros medios hidrosolubles .
Para este método pueden utilizarse diferentes metales dentro de los cuales mencionamos al cobre, plata, oro, platino, iridio, cadmio, níquel, fierro, molibdeno, cobalto, zirconio, aluminio, litio, tierras raras, entre otros con características químicas similares. De preferencia se utiliza el cobre y la plata.
También el metal puede presentarse en forma de sal y reaccionar con un agente reductor como el hidróxido de potasio o hidróxido de sodio o reactivos con características similares (en un paso previo) o un agente oxidante (diferentes tipos de ácidos orgánicos o inorgánicos) , para formar los hidróxidos o especies reactivas de metal que operarán como el Componente A.
Para el caso del cobre, nos referiremos al mismo como Cu0, Cu1+ y Cu2+. El cobre puede presentarse como hidróxido de Cobre, oxicloruro de Cobre o como cobre metálico, entre otros derivados, para ser tratado con un álcali o un ácido.
Para el caso de la plata, nos referiremos al mismo como Ag° y Ag1+. La plata puede presentarse como Hidróxido de Plata, Oxalato de Plata, Nitrato de plata o como plata metálica, entre otros derivados, para ser tratado con un álcali o un ácido .
Con respecto a los otros metales se puede aplicar la técnica en cualquier estado de oxidación.
Para aplicaciones futuras, la composición del compuesto derivado y el cobre, pueden requerir aditivos adicionales. Estos aditivos pueden incluir co-solventes, ceras, antioxidantes, gelidificantes , iniciadores de polimerización, humectantes, preservantes, entre otros.
Este método provee la producción de nanopartículas de metal, de preferencia cobre con un rango de entre 99,0% y 99,9997% de pureza. El método puede comenzar directamente con Oxicloruro de Cobre y/o con hidróxido de Cobre y/o con cobre metálico o con una etapa previa donde se prepara el oxicloruro de cobre o hidróxido de cobre u otros derivados. Este método provee la producción de nanoparticulas de metal, de preferencia plata con una pureza superior al 99,6%. El método puede comenzar directamente con Nitrato de Plata y/o con Oxido de Plata y/o con plata metálica y/o oxalato de plata y/o en una etapa previa donde se prepare el Nitrato de Plata, el Oxido' de Plata y/o el oxalato de plata, entre otros derivados .
En un tanque químicamente inerte con calefacción inferior (a) , del tipo recubierto con teflón, cerámica, acero, acero inoxidable, entre otros, de preferencia acero inoxidable, que resista altas temperaturas, (b) se prepara una solución o dispersión homogénea que comprende el componente A (A modo de ejemplo: oxicloruro de cobre y/o hidróxido de cobre y/o nitrato de plata) y (c) se hace reaccionar con el compuesto derivado B, en una relación en un rango entre 1 es a 100, de preferencia 1:20, de preferencia 1:6; (d) Luego de esta acción, se agitan los componentes en un rango entre 90 y 180 rpm, de preferencia 110 rpm ( (e) opcionalmente se puede detener la agitación si es necesario) y se hacen reaccionar estos elementos durante un rango de tiempo de reacción que varía dependiendo de la naturaleza del metal para generar sus nano-partículas , el reactivo B, el tamaño del tanque y la forma de calefacción del mismo tanque, con un término de reacción caracterizado por el cambio de color característico asociado al tipo de nanopartícula, con un tiempo de la reacción de preferencia en el rango de entre los 30 y 60 minutos, de preferencia 50 minutos, de preferencia 36 minutos, hasta una (f) temperatura entre 100 y 200°C de preferencia entre 135 y 190°C, de preferencia entre 130 y 155°C; (h) Luego, la composición es enfriada, de preferencia a temperatura ambiente (entre 20 y 25°C) ; (i) se separa el sólido del líquido por simple decantación gravitatoria del contenido de nanoparticulas, o se realiza una separación mecánica física a través de centrífugas, o con control de gradiente en centrifuga, o por spray dry, o cualquier técnica que logre separar el sólido del líquido; (j) las nano- partículas (fracción sólida) son lavadas (con cualquier alternativa de método de lavado) con un solvente adecuado, de preferencia metanol, etanol, agua destilada, entre otros; y (k) se deja evaporar (con cualquier alternativa de sistema de secado) el solvente secando las nano-partículas (de preferencia pero no excluyente a 25°C) . (Las medidas de temperatura fueron realizadas con un termómetro infrarrojo) .
Las cantidades utilizadas en esta patente están restringidas no por la naturaleza química de sus componentes, sino que por los volúmenes que pueda manejar el tanque químicamente inerte, como consecuencia este proceso de formación de nanoparticulas es extrapolable sin limitaciones químicas con un rendimiento químico entre el 80 al 95%, de preferencia entre el 85 al 97%, de preferencia 87 al 97%, en una relación porcentual entre el peso seco de nanoparticulas producidas de un metal, no-metal o compuesto órgano-metálico versus la cantidad de metal, no-metal o compuesto órgano- metálico original descontando el peso de los contra-iones salinos que conforman la sal metálica, sal-no metálica o los compuestos orgánicos que formar el órgano-metal.
Para el control del tamaño de la nanopartícula se ha procedido a manejar la homogenización de la mezcla de los componentes A y B, los tiempos de homogenización de la mezcla, la aplicación de temperatura, la separación de la fase sólida de la líquida, lavado y secado de la muestra. Mecanísticamente, la preparación de nano-particulas de cobre entre los componentes A y B , se debe a la inducción de nucleación y crecimiento de núcleo a través del control de los parámetros físicos de la reacción, cantidad de iones de metal libres durante la reacción de producción de las nano- partículas y el envolvimiento (capping) a través de moléculas orgánicas las cuales proveen de estabilidad química oxidativa por la formación de una capa dispersante alrededor de las nano-particulas de cobre.
DESCRIPCIÓN DE FIGURAS
Figura 1/5 Esta figura representa la distribución de tamaño de las nano- particulas de cobre en una primera muestra analizada con un microscopio electrónico de bajo voltaje LVE 5. Claramente esta muestra representa un D50 de 20 nm. También se indica que la muestra se presenta como una población homogénea de partículas estables.
Figura 2/5
Esta figura representa la distribución de tamaño de las nano- partículas de cobre en una segunda muestra analizada con un microscopio electrónico de bajo voltaje LVEM5. Claramente esta muestra representa un D50 de 15 nm. También se indica que la muestra se presenta como una población homogénea de partículas estables presentadas en forma de vesículas.
Figura 3/5 Esta figura representa la distribución de tamaño de las nano- particulas de cobre en una tercera muestra analizada con un microscopio electrónico de bajo voltaje LVE 5. Claramente esta muestra representa un D50 de 15 nm. También se indica que la muestra se presenta como una población de partículas más finas y estables.
Figura 4/5 Esta figura representa la distribución de tamaño de las nano- partículas de cobre en una cuarta muestra analizada con un microscopio electrónico de bajo voltaje LVEM5. Claramente esta muestra representa un D50 de 20 nm. También se indica que la muestra se presenta como una población homogénea de partículas estables.
Figura 5/5
Esta figura representa la distribución de tamaño de las nano- partículas de plata en una muestra analizada con un microscopio electrónico de transmisión de- bajo voltaje LVEM5. Claramente esta muestra representa un D50 de 25 nm. También se indica que la muestra se presenta como una población homogénea de partículas estables.
EJEMPLOS DE APLICACIÓN
Ejemplo de aplicación 1
A modo de ejemplo, en un contenedor de 25 litros de acero inoxidable se tomaron 1000 gr del componente A, hidróxido de cobre anhidro (Cu(OH)2 y se mezclaron con 6 litros del componente B, C3H803 ( 1 , 2 , 3-propanotriol ) . Estos componentes se agitaron manualmente durante 4 minutos a 8°C. Luego de esto se aumento la temperatura a 48 °C (Medido con un termómetro infrarrojo) agitando continuamente otros 3 minutos extras. A los 7 minutos se detiene la agitación continua y se aumenta la temperatura a 82°C. Luego, durante 10 minutos se aplica agitación puntual y se aumenta la temperatura hasta los 170°C. Después, la solución cambia de color dependiendo del tipo de nanoparticula .
Luego el material es dejado enfriar a temperatura ambiente a 25°C y se separan las nano-particulas del solvente liquido por decantación simple en 9 horas.
Las nano-particulas separadas son lavadas con metanol al 10% y son secadas a temperatura ambiente a 25°C.
Antes de centrifugar y lavar se tomaron muestras para el análisis del tamaño de las nano-particulas producidas. Con esto se generaron 4 muestras las cuales son descritas en sus correspondientes figuras 1/5, 2/5, 3/5 y 4/5.
Las muestras 1 y 4 fueron sacadas de la base del contenedor en cambio las muestras 2 y 3 fueron extraídas desde el centro de la solución.
Por otro lado, los rendimientos químicos de producción para esta prueba estuvieron en los rangos de los 90,8% y 87,4%; con una pureza promedio de 99.91% de cobre.
Ejemplo de aplicación 2 A modo de ejemplo industrial, en un contenedor de 21000 litros de acero inoxidable se tomaron 848 Kg del componente A, hidróxido de cobre anhidro (Cu(OH)2 y se mezclaron con 5089 litros del componente B, C3H8O3 (1, 2, 3-propanotriol) . Estos componentes se agitaron durante 4 minutos a 8°C. Luego de esto se aumento la temperatura a 48°C agitando continuamente otros 3 minutos extras. A los 7 minutos se detiene la agitación continua y se aumenta la temperatura a 82 °C. Luego, durante 10 minutos se aplica agitación puntual y se aumenta la temperatura hasta los 170°C. Después, la solución cambia de color dependiendo del tipo de nanoparticula . .
Luego el material es dejado enfriar a temperatura ambiente a 25°C y se separan las nano-part iculas del solvente liquido por decantación simple en 9 horas.
Las nano-particulas separadas son lavadas con metanol al 10% y son secadas a temperatura ambiente a 25°C. Ejemplo de aplicación 3
A modo de ejemplo, en un contenedor de 25 litros de acero inoxidable se tomaron 1000 gr del componente A, nitrato de plata anhidro (AgNC ) y se mezclaron con 6 litros del componente B, C3H8O3 ( 1 , 2 , 3-propanotriol ) . Estos componentes se agitaron manualmente durante 4 minutos a 16°C. Luego de esto se aumento la temperatura a 68 °C (Medido con un termómetro infrarrojo) agitando continuamente otros 6 minutos extras. A los 10 minutos se detiene la agitación continua y se aumenta la temperatura a 103°C. Luego, se aumenta la temperatura hasta los 180°C. Después, la solución cambia de color dependiendo del tipo de nanoparticula. Luego el material es dejado enfriar a temperatura ambiente a 25°C y se separan las nano-particulas del solvente liquido por centrifugación. Las nano-particulas separadas son lavadas con metanol al
10% y son secadas a temperatura ambiente a 25°C.
Antes de centrifugar y lavar se tomó una muestra para el análisis del tamaño de las nano-particulas producidas. Con esto se generó una muestra la cual es descrita en la figura 5/5.
Fue sacada una muestra homogénea del contenedor. Por otro lado, los rendimientos químicos de producción para esta prueba estuvieron en el rango de 79,5% y 87%; con una pureza promedio de 99,6% de plata.

Claims

REIVINDICACIONES
Método para la preparación de nano-particulas de metal, no- metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, CARACTERIZADO porque comprende las etapas, de:
(a) Utilizar un tanque químicamente inerte, que resista altas temperaturas ;
(b) Preparación del componente A
(c) Hacer reaccionar el componente A con el componente B que comprende un compuesto derivado de 4 y/o 3 y/o 2 y/o 1 carbonos que se define según las siguientes fórmulas:
R1-R2-R3-R4;
Donde Rl, R2, R3 y R4 juntos son una cadena hidrocarbonada que está sustituida por -OH, -OR- donde R es un alquilo Ci-C4; -CN, -NH2, -NR5, donde R5 es un alquilo Ci~C4 y/o un fenilo sustituido con -OH, -NH2, -SH; -SH, -S03H y -S04; -COOH; y/o
R1-R2-R3;
Donde Rl, R2 y R3 juntos son una cadena hidrocarbonada que está sustituida por -OH, -OR- donde R es un alquilo Ci~C4; -CN, -NH2, -NR5, donde R5 es un alquilo C 1-C4 y/o un fenilo sustituido con -OH, -NH2, -SH, -COOH; -SH, -S03H y -S04; -COOH; y/o
R1-R2 Donde Rl y R2 juntos son una cadena hidrocarbonada que está sustituida por -OH, -OR- donde R es un alquilo Ci-C4; -CN, -NH2, -NR5, donde R5 es un alquilo C1-C4 y/o un fenilo sustituido con -OH, -NH2, -SH,-COOH; -SH, -S03H y -S04; -COOH; y/o
Rl
Donde Rl es un hidrocarburo que está sustituido por -OH, -OR- donde R es un alquilo Ci~C4; -CN, -NH2, -NR5, donde R5 es un alquilo C1-C4 y/o un fenilo sustituido con -OH, -NH2, -SH,-COOH; -SH, -S03H y -S04; -COOH;
(d) Agitar la mezcla por un rango de tiempo dependiente del tamaño del reactor, su sistema de calefacción y la naturaleza de los componentes A y B, en un rango de temperatura en aumento de entre los 5°C y 60°C;
(e) Detener la agitación opcionalmente y aumentar de la temperatura por bajo de los 90°C;
(f) Agitar y aumentar la temperatura hasta un rango de entre los 130°C a 180°C durante un rango de tiempo dependiente del tamaño del reactor, su sistema de calefacción y la naturaleza de los componentes A y B.
(g) Aumento de temperatura sin agitación hasta un rango de entre los 170 a 200°C, hasta observar un cambio sugerente de color de la solución;
(h) Enfriamiento de la solución hasta temperatura ambiente, por medios inducidos de frío o naturalmente;
(i) Separación de nano-particulas sólidas de la fase liquida por un medio de separación físico;
(j) Lavado de la fracción solida con un solvente adecuado; y (k) Secado de nano-partículas, de preferencia a 25°C.
2. - Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque el tanque de la etapa (a) es de un material inerte y/o está recubierto con un material inerte como teflón, cerámica, acero y acero inoxidable, que puedan soportar altas temperaturas.
3. - Método para la preparación de nano-partículas de metal, no-metal y órgano^metal , con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque la preparación del componente A en la etapa (b) consiste de hacer reaccionar un agente reductor del tipo hidróxido de sodio o potasio y/o un agente oxidante con una sal del metal, no-metal y órgano-metal a producir.
4.- Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque la reacción del componente A con el componente B en la etapa (c) consiste en hacer reaccionar directamente el metal, no-metal y órgano-metal, y/o hacer reaccionar el componente A preparado in situ por un agente reductor y/u oxidante.
5.- Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicaciones 3 y 4, CARACTERIZADO porque los metales, no-metales y órgano-metal a utilizar son cobre, aluminio, hierro, oro, plata, platino, iridio, molibdeno, cobalto, zirconio, níquel, litio y tierras raras.
6.- Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 5, CARACTERIZADO porque el metal, no-metal y órgano-metal a utilizar es el cobre.
7.- Método para la preparación de nano-particulas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 5, CARACTERIZADO porque el metal, no-metal y órgano-metal a utilizar es la plata.
8. - Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 4, CARACTERIZADO porque la relación del componente A con el componente B en la etapa (c) comprende un rango entre 1 a 100 peso/peso respectivamente.
9. - Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 8, CARACTERIZADO porque la relación del componente A con el componente B en la etapa (c) comprende un rango entre 1 a 20 peso/peso respectivamente.
10.- Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 9, CARACTERIZADO porque la relación del componente A con el componente B en la etapa (c) comprende un rango entre 1 a 6 peso/peso respectivamente.
11. - Método para la preparación de nano-particulas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque la agitación continúa en la etapa (d) comprende un rango entre los 90 y 180 RPM, de preferencia 110 RPM, durante 5 a 10 minutos de tiempo.
12. - Método para la preparación de nano-particulas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque el componente B es 1,2,3- propano triamina, 1, 2, 3-propanotriol, 1,2,3- propano tritiol y cianometilo, sin restringir a otros compuestos derivados de la fórmula del componente B.
13. - Método para la preparación de nano-particulas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque en la etapa (d) la agitación es continúa.
14. - Método para la preparación de nano-particulas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque en la detención de la agitación continúa en la etapa (e) , es opcional .
15. - Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque en la etapa (f) la agitación puntual se lleva a cabo a 110 RPM y el aumento de la temperatura es hasta los 160°C.
16. - Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque en la etapa
(h) el enfriamiento de la solución se hace hasta temperatura ambiente.
17. - Método para la preparación de nano-particulas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto al metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque en la etapa (i) la separación de nano-partículas se realiza por decantación simple y/o por centrifugación y/o spray dry, entre otros .
18. - Método para la preparación de nano-partículas de metal, no-metal y órgano-metal, con rendimientos de producción sobre el 87% respecto ál metal, no-metal y órgano-metal del insumo utilizado, según la reivindicación 1, CARACTERIZADO porque en la etapa (j) del lavado, se realiza con agua destilada, etanol y/o metanol, y/o un solvente adecuado.
19. -Nanoparticulas de cobre, CARACTERIZADAS, porque son producidas a través del método descrito previamente.
20.- Uso de las nanopartículas elaborado de acuerdo con las reivindicaciones 1 a 18, CARACTERIZADO, porque son útiles en su aplicación en productos cosméticos, farmacéuticos, veterinarios, alimentos, complementos alimenticios, reactivos, fibras naturales o sintéticas, artículos de vestir, artículos de seguridad, tintas, catalizadores.
PCT/CL2014/000061 2014-11-18 2014-11-18 Método para la formación de nano-partículas de un metal, no-metal y/o un organo-metal; nanoparticulas derivadas del proceso; y su uso industrial WO2016077936A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2014/000061 WO2016077936A1 (es) 2014-11-18 2014-11-18 Método para la formación de nano-partículas de un metal, no-metal y/o un organo-metal; nanoparticulas derivadas del proceso; y su uso industrial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2014/000061 WO2016077936A1 (es) 2014-11-18 2014-11-18 Método para la formación de nano-partículas de un metal, no-metal y/o un organo-metal; nanoparticulas derivadas del proceso; y su uso industrial

Publications (1)

Publication Number Publication Date
WO2016077936A1 true WO2016077936A1 (es) 2016-05-26

Family

ID=56013002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000061 WO2016077936A1 (es) 2014-11-18 2014-11-18 Método para la formación de nano-partículas de un metal, no-metal y/o un organo-metal; nanoparticulas derivadas del proceso; y su uso industrial

Country Status (1)

Country Link
WO (1) WO2016077936A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539041A (en) * 1982-12-21 1985-09-03 Universite Paris Vii Process for the reduction of metallic compounds by polyols, and metallic powders obtained by this process
EP2030706A1 (fr) * 2007-08-31 2009-03-04 Metalor Technologies International S.A. Procédé de préparation de nanoparticules d'argent
US20120247275A1 (en) * 2011-03-31 2012-10-04 The Hong Kong University Of Science And Technology Method of producing silver nanowires in large quantities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539041A (en) * 1982-12-21 1985-09-03 Universite Paris Vii Process for the reduction of metallic compounds by polyols, and metallic powders obtained by this process
EP2030706A1 (fr) * 2007-08-31 2009-03-04 Metalor Technologies International S.A. Procédé de préparation de nanoparticules d'argent
US20120247275A1 (en) * 2011-03-31 2012-10-04 The Hong Kong University Of Science And Technology Method of producing silver nanowires in large quantities

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FIEVET, F. ET AL.: "The polyol process.", NANOMATERIALS: A DANGER OR A PROMISE?, 2013, pages 1 - 25 *
SINHA, A. ET AL.: "Preparation of copper powder by glycerol process.", MATERIALS RESEARCH BULLETIN, vol. 37, no. issue 3, 2002, pages 407 - 416, XP004344053, DOI: doi:10.1016/S0025-5408(01)00819-4 *
SUN, J. ET AL.: "Mechanism of preparing ultrafine copper powder by polyol process.", MATERIALS LETTERS, vol. 59, no. Issues 29-30, 2005, pages 3933 - 3936, XP025257465, DOI: doi:10.1016/j.matlet.2005.07.036 *

Similar Documents

Publication Publication Date Title
Han et al. In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method
Yen et al. Crystallite size variations of nanosized Fe2O3 powders during γ-to α-phase transformation
Benhammada et al. Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior
Sun et al. Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles
KR101235873B1 (ko) 은 나노입자의 제조방법
Slostowski et al. CeO2 nanocrystals from supercritical alcohols: new opportunities for versatile functionalizations?
He et al. Phase‐and Size‐Controllable Synthesis of Hexagonal Upconversion Rare‐Earth Fluoride Nanocrystals through an Oleic Acid/Ionic Liquid Two‐Phase System
Escobedo-Morales et al. Structural and vibrational properties of hydrothermally grown ZnO2 nanoparticles
Wei et al. Characteristics of nano zinc oxide synthesized under ultrasonic condition
Hu et al. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications
Gröger et al. Nanoscale hollow spheres: microemulsion-based synthesis, structural characterization and container-type functionality
Wang et al. High-energy Al/graphene oxide/CuFe2O4 nanocomposite fabricated by self-assembly: Evaluation of heat release, ignition behavior, and catalytic performance
Soleimani et al. A new and simple method for sulfur nanoparticles synthesis
Ge et al. Preparation and characterization of ultrafine Fe-O compound/ammonium perchlorate nanocomposites via in-suit growth method
Ahmed et al. Shape controlled synthesis and characterization of Cu2O nanostructures assisted by composite surfactants system
Zhang et al. Preparation of ZnS/CdS composite nanoparticles by coprecipitation from reverse micelles using CO2 as antisolvent
Jiang et al. Microemulsion template synthesis of copper sulfide hollow spheres at room temperature
Ádám et al. Ultrasound-assisted hydrazine reduction method for the preparation of nickel nanoparticles, physicochemical characterization and catalytic application in Suzuki-Miyaura cross-coupling reaction
Fan et al. Blue-and green-emitting hydrophobic carbon dots: preparation, optical transition, and carbon dot-loading
Das et al. Mechanistic investigations of growth of anisotropic nanostructures in reverse micelles
Rodríguez‐Cabo et al. Direct preparation of sulfide semiconductor nanoparticles from the corresponding bulk powders in an ionic liquid
Wang et al. A kinetic investigation on the thermal decomposition of propellants catalyzed by rGO/MFe2O4 (M= Cu, Co, Ni, Zn) nanohybrids
Iacob et al. Amorphous iron–chromium oxide nanoparticles with long-term stability
Pramanik et al. Size tunable synthesis and characterization of cerium tungstate nanoparticles via H2O/AOT/heptane microemulsion
Bashiri et al. Nanopowders of 3D AgI coordination polymer: A new precursor for preparation of silver nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906321

Country of ref document: EP

Kind code of ref document: A1