WO2016076559A1 - Continuous recovery method and apparatus of (meth)acrylic acid - Google Patents

Continuous recovery method and apparatus of (meth)acrylic acid Download PDF

Info

Publication number
WO2016076559A1
WO2016076559A1 PCT/KR2015/011597 KR2015011597W WO2016076559A1 WO 2016076559 A1 WO2016076559 A1 WO 2016076559A1 KR 2015011597 W KR2015011597 W KR 2015011597W WO 2016076559 A1 WO2016076559 A1 WO 2016076559A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic acid
extraction
phase
organic phase
Prior art date
Application number
PCT/KR2015/011597
Other languages
French (fr)
Korean (ko)
Inventor
민윤재
백세원
송종훈
유설희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2016076559A1 publication Critical patent/WO2016076559A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/10Succinic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method and apparatus for continuous recovery of (meth) acrylic acid. [Background]-
  • (Meth) acrylic acid is generally produced by a method of reacting gas phase oxidation in the presence of a catalyst with a compound such as propane, propylene, (meth) acrelane and the like.
  • propane, propylene and the like are converted to (meth) acrylic acid via (meth) acrolein by gas phase oxidation reaction, and (meth) acrylic acid, Mibanung propane or propylene,
  • a reaction product mixed gas is obtained that includes meth) arklane, an inert gas, carbon dioxide, water vapor, and various organic by-products such as acetic acid, low-boiling by-product, high-boiling by-product, and the like.
  • the said (meth) acrylic acid containing mixed gas is contacted with absorption solvents, such as process water, in a (meth) acrylic acid absorption tower, and is collect
  • absorption solvents such as process water
  • the (meth) acrylic acid aqueous solution is distilled and purified to obtain (meth) acrylic acid.
  • various methods for controlling the process conditions or the process order have been proposed.
  • a method of azeotropic distillation using a hydrophobic solvent in a distillation column is known as a method for separating water and acetic acid from an aqueous (meth) acrylic acid solution obtained in a (meth) acrylic acid absorption tower.
  • a method of supplying an aqueous (meth) acrylic acid solution to an extraction column to obtain a (meth) acrylic acid extract with reduced water content and a balance thereof and distilling the extract to obtain (meth) acrylic acid is known.
  • the present invention is to provide a continuous recovery method of (meth) acrylic acid to increase the efficiency of the extraction process with respect to the aqueous (meth) acrylic acid solution to enable a stable operation and energy saving.
  • this invention is providing the apparatus which can be used for the continuous rare water method of the said (meth) acrylic acid.
  • a mixed gas inlet supplied with a mixed gas containing (meth) acrylic acid, organic by-products and water vapor generated by the synthesis reaction of (meth) acrylic acid, and an aqueous (meth) acrylic acid solution obtained by contacting the mixed gas with water is discharged.
  • (Meth) acrylic acid absorption tower 100 is provided with an aqueous solution outlet;
  • (Meth) acrylic acid aqueous solution inlet connected to the aqueous solution outlet of the absorption tower 100 and the aqueous solution transfer line (1 15), the extract of the extraction column 200 to be described later
  • the (meth) acrylic acid extract inlet connected through the outlet and the extract liquid conveying line 215, the organic phase outlet through which the introduced (meth) acrylic acid aqueous solution and the extract phase are discharged, and the aqueous phase obtained by the phase separation A decanter 150 having a water discharge port discharged therefrom;
  • a continuous recovery apparatus for (meth) acrylic acid Provided is a continuous recovery apparatus for (meth) acrylic acid.
  • a method and a recovery apparatus for the continuous recovery of (meth) acrylic acid according to embodiments of the present invention will be described.
  • Acrylic acid' may be used to mean acrylic acid, methacrylic acid, or a combination thereof.
  • (meth) acrylic acid-containing mixed gas refers to a mixed gas that can be produced when synthesizing (meth) acrylic acid by vapor phase oxidation reaction.
  • Non-limiting examples include propane, propylene, butane, isobutylene, and
  • the (meth) acrylic acid-containing mixed gas can be obtained by a gas phase oxidation reaction of at least one compound ('raw compound') selected from the group consisting of (meth) arklane in the presence of a catalyst.
  • the (meth) acrylic acid-containing mixed gas includes (meth) acrylic acid, a raw material compound, a (meth) acrylic acid inert gas, carbon monoxide, carbon dioxide, water vapor, and various organic by-products (acetic acid, low boiling point by-products (light ends)). High boiling by-products, etc.).
  • the term 'low ends' or 'heavies' is a kind of by-product that can be produced in the process of preparing and recovering the desired (meth) acrylic acid, and the molecular weight is higher than that of (meth) acrylic acid.
  • the term 'low ends' or 'heavies' is a kind of by-product that can be produced in the process of preparing and recovering the desired (meth) acrylic acid, and the molecular weight is higher than that of (meth) acrylic acid.
  • '(Meth) acrylic acid aqueous solution' is an aqueous solution containing (meth) acrylic acid, and may be obtained by, for example, contacting the (meth) acrylic acid-containing mixed gas with an absorption solvent including water.
  • feed in the extraction process refers to a liquid mixture containing the solute to be extracted, and a solute that is soluble in the extraction solvent ⁇ and other components that are not soluble. may be a mixture of inert materials.
  • the solute is dissolved from the feed into the extraction solvent by mass transfer.
  • the extraction solvent in which the solute is dissolved to form an extract solution and the feed having lost a considerable amount of solute to form a traffic solution.
  • the present inventors have conducted a study on a method of improving the treatment efficiency of an extraction process without changing the existing extraction column design in a method of recovering (meth) acrylic acid including an absorption process, an extraction process, and a distillation process. It was.
  • the aqueous (meth) acrylic acid solution obtained in the absorption step and the (meth) acrylic acid extract obtained in the extraction step are left in a decanter to obtain an aqueous phase and an organic phase by phase separation.
  • a method of feeding an aqueous phase to an extraction process and feeding the organic phase to a distillation process is provided. This method can lower the concentration of (meth) acrylic acid by phase separation in a decanter before feeding the aqueous (meth) acrylic acid solution to the extraction process, thereby reducing the load on the extraction process.
  • the recovery method of (meth) acrylic acid provided through the present invention is (meth)
  • the stream mixed with the aqueous acrylic acid solution and its extract is left in a decanter to induce phase separation, and then the aqueous phase recovered therefrom is fed to the extraction process and the remaining organic phase is fed to the distillation process.
  • this method enables the extraction efficiency to be stably maintained even when the solvent / feed ratio is reduced during the operation of the extraction process, thereby reducing the amount of extraction solvent used. And this method enables energy savings in the distillation process following the extraction process.
  • (Meth) was produced by the synthesis banung of acrylic acid (meth) acrylic acid, heunhap gas containing the organic by-products and water vapor (meth) acrylic acid in the absorber in contact with water "(meth) acrylic acid aqueous solution to obtain the absorption process;
  • a phase separation process in which a part of the aqueous (meth) acrylic acid solution obtained through the absorption process and the (meth) acrylic acid extract obtained through the extraction process are separated in a decanter to obtain an organic phase and an aqueous phase;
  • FIGS. 1 and 2 each process that may be included in an embodiment of the present invention will be described in detail.
  • the absorption step is a step for obtaining an aqueous (meth) acrylic acid solution.
  • the (meth) acrylic acid-containing mixed gas obtained through the synthesis reaction of (meth) acrylic acid can be carried out by contacting with an absorption solvent including water.
  • the synthesis of (meth) acrylic acid may be carried out by oxidizing at least one compound selected from the group consisting of propane, propylene, butane, isobutylene, and (meth) acrolein under a gas phase catalyst.
  • a gas phase catalyst may be used.
  • the gas phase oxidation reaction may proceed under a gas phase oxidation reaction and reaction conditions of a conventional structure.
  • Conventional catalysts in the gas phase oxidation reaction may also be used, for example, the catalysts disclosed in Korean Patent Nos. 0349602 and 037818 may be used.
  • the (meth) acrylic acid-containing mixed gas produced by the gas phase oxidation reaction includes, in addition to (meth) acrylic acid as a target product, unreacted raw compound, intermediate (meth) acrolein, inert gas, carbon dioxide, water vapor, and various organic by-products (acetic acid). , Low boiling by-products, high boiling by-products, etc.) may be included.
  • the (meth) acrylic acid aqueous solution can be obtained by supplying a (meth) acrylic acid-containing mixed gas (1) to the (meth) acrylic acid absorption tower 100 and contacting with an absorption solvent containing water.
  • the type of the (meth) acrylic acid absorption tower 100 may be determined in consideration of the contact efficiency of the mixed gas 1 and the absorption solvent.
  • the contact efficiency of the mixed gas 1 and the absorption solvent may be determined in consideration of the contact efficiency of the mixed gas 1 and the absorption solvent.
  • the (meth) acrylic acid absorption tower 100 may be an absorption tower of a packed column type or an absorption tower of a multistage tray type.
  • the packed column type absorption tower may include a layering agent such as a rashing ring, a pall ring, a saddle, a gauze, and a structured packing.
  • the mixed gas 1 may be supplied to the lower portion of the absorption tower 100, and the absorption solvent including water may be supplied to the upper portion of the absorption tower 100.
  • the absorption solvent may include water such as scum water, deionized water and the like, and may include circulating process water introduced from another process (eg, an aqueous phase recycled from an extraction process and / or a distillation process).
  • the absorption solvent may contain a small amount of organic by-products introduced from other processes (for example Acetic acid).
  • the absorption solvent (particularly the circulation process water) supplied to the absorption tower 100 is preferably such that the organic by-products are included in an amount of 15% by weight or less.
  • the (meth) acrylic acid absorption tower 100 may have an internal pressure of 1 to 1.5 bar or 1.3 to 1.3 bar in consideration of condensation conditions of the (meth) acrylic acid and water content according to the saturated water vapor pressure. It can be operated under an internal temperature of 100 ° C or 50 to 80 ° C.
  • the (meth) acrylic acid aqueous solution is discharged to the lower portion of the (meth) acrylic acid absorption tower 100, the non-condensable gas from which (meth) acrylic acid is degassed is discharged.
  • the (meth) to that aqueous acrylic acid solution contains a concentration of 40 wt. 0 /. Or more, or 40 to 90 weight 0/0, or 50 to 90 weight 0 /.
  • (meth) acrylic acid in the efficiency aspects of the overall process May be advantageous.
  • the obtained (meth) acrylic acid aqueous solution is supplied to the decanter 150 via the aqueous solution transfer line 1 15, as shown in FIG. 1.
  • the obtained ' (meth) acrylic acid aqueous solution may be supplied to the decanter 150 and the distillation column 300 through the aqueous solution transfer lines 1 15 and 130 as shown in FIG. 2. That is, according to the embodiment of the invention shown in Figures 1 and 2, the (meth) acrylic acid aqueous solution obtained in the (meth) acrylic acid absorption tower 100 is not directly supplied to the extraction column 200, decanter 150 Via the (meth) acrylic acid concentration is supplied to the extraction column 200 in a low state.
  • the (meth) acrylic acid extract obtained in the extraction column 200 is not directly supplied to the distillation column 300, but is supplied to the distillation column 300 as a phase separated organic phase via the decanter 150.
  • the flow in the decanter 150 and the extraction column 200 will be described separately.
  • the ratio of dividing the (meth) acrylic acid aqueous solution to the decanter 150 and the distillation column 300 may be based on a comprehensive consideration of the capacity, treatment performance, and energy efficiency of each column. Can be determined. According to an embodiment of the invention, 5 to 70 weight 0 /., Or 10 to 60 weight 0 /., Or 10 to 50 weight 0 /. Of the (meth) acrylic acid aqueous solution is used as the decanter 150. Feeding the remainder to the distillation column 300 may be advantageous in minimizing the loss of (meth) acrylic acid and reducing overall energy consumption.
  • the non-uniform gas discharged to the upper portion of the (meth) acrylic acid absorption tower 100 may be supplied to a process of recovering organic by-products (particularly acetic acid) included in the non-condensable gas, and the rest of the waste gas incinerator. Can be disposed of and discarded. That is, according to the exemplary embodiment of the present invention, the non-condensable gas may be contacted with an absorption solvent to recover the acetic acid contained in the non-condensable gas. The process of contacting the non-uniform gas with the absorption solvent may be performed in the acetic acid absorption tower 50.
  • an absorption solvent (process water) for absorbing acetic acid may be supplied to the upper portion of the acetic acid absorption tower 50, and an aqueous solution containing acetic acid may be discharged to the lower portion of the acetic acid absorption tower 50.
  • the acetic acid-containing aqueous solution may be supplied to the upper portion of the (meth) acrylic acid absorption tower 100 to be used as an absorption solvent.
  • the non-condensable gas from which acetic acid is degassed may be circulated to the synthesis reaction process of (meth) acrylic acid and reused.
  • the acetic acid absorption tower 50 is operated under an internal pressure of 1 to 1.5 bar or 1 to 1.3 bar, and an internal temperature of 50 to 100 ° C or 50 to 80 ° C. Can be.
  • an internal pressure of 1 to 1.5 bar or 1 to 1.3 bar and an internal temperature of 50 to 100 ° C or 50 to 80 ° C. Can be.
  • the specific operating conditions of the acetic acid absorption tower (50) It may be according to the contents disclosed in Republic of Korea Patent Publication No. 2009-0041355.
  • the (meth) acrylic acid aqueous solution obtained through the absorption process and the (meth) acrylic acid extract obtained through the extraction process to be described later in the decanter 150 is subjected to a phase separation process of obtaining an organic phase and an aqueous phase.
  • the decanter 150 is supplied with an aqueous (meth) acrylic acid solution from the absorption tower 100 through an aqueous solution transfer line 1 15, and at the same time, an extract liquid transfer line 215 from the extraction column 200.
  • the (meth) acrylic acid extract is supplied via.
  • the decanter 150 is a device for separating liquid phases that are not mixed with each other by gravity or centrifugal force, and the like, and a relatively light phase (for example, an organic phase)
  • a relatively heavy phase eg water phase
  • the organic phase includes the extraction solvent used in the extraction process and (meth) acrylic acid dissolved therein
  • the water phase includes the absorption solvent used in the absorption process and (meth) acrylic acid dissolved therein.
  • the organic phase which is a relatively light phase
  • the aqueous phase which is a relatively heavy phase
  • the organic phase is supplied to the distillation column 300 through the organic phase transfer line 153 to separate the solvent
  • the aqueous phase is supplied to the extraction column 200 through the aqueous phase transfer line 152 to provide water (absorbent solvent). Separation takes place.
  • the aqueous phase supplied to the extraction column 200 has a (meth) acrylic acid concentration of significantly lower than the (meth) acrylic acid aqueous solution obtained through the absorption process. That is, at least 40%, preferably 40 to 95%, or 40 to 90%, or 50 to 40% of the (meth) acrylic acid aqueous solution supplied to the decanter 150 and the (meth) acrylic acid contained in the (meth) acrylic acid extract are 90%, or 60 to 85 0 /. Of (meth) acrylic acid can be recovered through the organic phase.
  • the water phase obtained through phase separation in the decanter 150 may exhibit a lower level of (meth) acrylic acid.
  • the absorption process yields an aqueous (meth) acrylic acid solution having a concentration of (meth) acrylic acid at a concentration of about 65% by weight 0 /.
  • At least 40 0 / of the (meth) acrylic acid contained in the (meth) acrylic acid aqueous solution Can be recovered to the organic phase through phase separation in the decanter 150.
  • water is obtained through the phase separation in the decanter 150 may indicate a much lower (meth) acrylic acid concentration (e.g., (meth) acrylic acid concentration of about 39 weight 0 /. Or less).
  • the high concentration of the (meth) acrylic acid ' aqueous solution and the extract are phase separated in the decanter 150, through which the water phase having a lower concentration of (meth) acrylic acid is applied to the extraction column 200, thereby effectively reducing the load of the extraction process.
  • the load of the distillation process can be reduced by supplying the organic phase containing the high concentration of (meth) acrylic acid obtained through the phase separation to the distillation column 300.
  • the stream in which the aqueous (meth) acrylic acid solution and the extract solution are mixed After standing in the decanter 150 to induce phase separation, the aqueous phase recovered therefrom is supplied to the extraction process, and the remaining organic phase is supplied to the distillation process.
  • the water phase having lowered the (meth) acrylic acid concentration is supplied to the extraction process, thereby effectively reducing the load of the extraction process.
  • the aqueous phase supplied from the decanter 150 to the extraction column 200 via the aqueous phase transfer line 152 is in contact with an extraction solvent, whereby an extract liquid in which a significant amount of (meth) acrylic acid is dissolved in the extraction solvent. It is discharged as a traffic solution which has lost a significant amount of extract solution and (meth) acrylic acid, respectively.
  • the relatively light phase of the extract is obtained through the upper outlet of the extraction column 200
  • the relatively heavy phase of the extract is obtained through the lower outlet of the extraction column.
  • a certain amount is left in a fixed state in the lower stationary section of the extraction column, some of which is discharged to the lower outlet of the extraction column.
  • the balance is supplied to the decanter 350 through the balance transfer line 235, and the aqueous phase together with the upper discharge of the distillation column 300. Phase separation into the organic phase.
  • the balance may be circulated in the absorption process and used as an absorption solvent of (meth) acrylic acid.
  • the extraction solvent supplied to the extraction column 200 may have solubility and hydrophobicity for (meth) acrylic acid.
  • the extraction solvent preferably has a lower boiling point than (meth) acrylic acid.
  • the extraction solvent may be daily for a hydrophobic having a boiling point of 120 ° C or less, or from 10 to 120 ° C, or from 50 to 120 ° C.
  • the extraction solvent is benzene, toluene, xylene, n-heptane, n-heptane, cycloheptane, cycloheptene, 1-heptene (1 -heptene, ethyl-benzene, methyl-cyclohexane, n-butyl acetate, isobutyl acetate, isobutyl acrylate , n-propyl acetate, isopropyl acetate, methyl isobutyl ketone, 2-methyl-1 -heptene, 2-methyl-1 -heptene, 6-methyl -1 -heptene (6-methyl-1 -heptene), 4-methyl-1 -heptene (4-methyl-1 -heptene), 2-ethyl-1 -nuxene (2-ethyl-1 -hexene), ethylcyclo Pentane (ethylcydopentane
  • the supply amount of the extraction solvent, the solvent / feed ratio (solvent / feed ratio) to the water phase supplied to the extraction column 200 is 0.8: 1 to 0.8: 2, or 0.8: 1 to 0.8: 1 .8, Or 0.8: 1 to 0.8: 1 .5, or 0.8: 1 to 0.8: 1 .3. That is, since the aqueous phase contains relatively low concentration of (meth) acrylic acid, the extraction load can be lowered, and the extraction efficiency is reduced even when the solvent / feed ratio is reduced during the operation of the extraction process. It can be kept stable.
  • the concentration of (meth) acrylic acid is lowered by phase separation in a decanter before supplying the aqueous (meth) acrylic acid solution to the extraction process, the load of the extraction process can be reduced.
  • a weight ratio (weight ratio of extraction solvent: aqueous phase) of 1: 1 or more should be maintained with respect to the aqueous phase to which the extraction solvent is supplied to the extraction column in order to ensure proper extraction efficiency.
  • the extraction efficiency may be improved, but when an excess amount of the extraction solvent is used, the amount of loss of (meth) acrylic acid in the distillation column 300 may increase, preventing it.
  • the reflux flow of the azeotropic solvent for this can be excessively high, which is undesirable.
  • the temperature of the water phase supplied to the extraction column 200 is 10 to 7 (C is advantageous in terms of ensuring extraction efficiency.
  • the extraction column 200 in the extraction process a conventional extraction column according to the liquid-liquid contacting method may be used without particular limitation.
  • the extraction column 200 may be a Karr type reciprocating plate column, a rotary-disk contactor, a Scheibel column, a Kuhni column, a spray extraction tower. tower, packed extraction tower, pulse packed column, and the like.
  • the (meth) acrylic acid extract is discharged to the upper portion of the extraction column 200, the discharged extract is supplied to the decanter 150 through the transfer line (215). That is, the (meth) acrylic acid extract obtained in the extraction column 200 is not directly supplied to the distillation column 300, but through the decanter 150. The phase separated organic phase is fed to distillation column 300. Then, the remaining balance is discharged to the lower portion of the extraction column 200, the discharged balance is supplied to the decanter 350 through the transfer line (235).
  • the extract in addition to (meth) acrylic acid as the target compound, may include an extraction solvent, water, and an organic by-product.
  • the extract in the normal state and a stable operation is performed, the extract has a (meth) acrylate, 30 to 40 parts by weight 0/0, the extraction solvent 55 to 65 parts by weight 0/0, water, 1 to 5 parts by weight 0/0, and the remaining May include organic by-products. That is, most of the water (eg, 85% by weight or more of the water contained in the aqueous solution) contained in the (meth) acrylic acid aqueous solution may be recovered through the extraction process.
  • the balance obtained from the extraction column 200 may be made of mostly water, it may contain (meth) acrylic acid not extracted.
  • the weight balance may contain (meth) acrylic acid having a concentration of 15% by weight or less or 3 to 15% by weight 0 /. Loss of acrylic acid can be minimized.
  • the feed is an organic phase separated in the decanter 150, which is fed from the decanter 150 to the distillation column 300 through the organic phase transfer line 153.
  • the feed may be a mixture of the organic phase supplied from the above-described phase separation process with the remainder of the aqueous (meth) acrylic acid solution supplied from the above-described absorption process.
  • the feed may be fed together to a feed point of the distillation column 300 through the (meth) acrylic acid aqueous solution transfer line 130 and the organic phase transfer line 153.
  • the feed point to which the feed is supplied is advantageously the center of the distillation column 300, preferably, 40 to 60% of the entire stage from the top of the distillation column 300 on It may be any one point.
  • the feed supplied to the distillation column 300 is brought into contact with the azeotropic solvent introduced into the upper portion of the distillation column 300, and is heated to an appropriate temperature to allow distillation by evaporation and expansion.
  • the distillation is preferably carried out by azeotropic distillation.
  • the solvent applied to the azeotropic distillation method can be azeotropic with water and acetic acid, preferably a hydrophobic azeotropic solvent that does not azeotropic with (meth) acrylic acid.
  • the hydrophobic azeotropic solvent preferably has a lower boiling point (for example, 120 or less, or 10 to 120 ° C., or 50 to 120 ° C.).
  • the hydrophobic azeotropic solvent is benzene, toluene, xylene, n-heptane, n-heptane, cycloheptane, cycloheptene, 1-heptene ( 1-heptene), ethyl-benzene (ethyl-benzene), methyl-cyclopentane nucleic acid (me thyl-cyclc) hexane) , n- butyl acetate (n-butyl acetate), isobutyl acetate (isobutyl acetate), isobutyl acrylate (isobutyl acrylate), n-propyl acetate, isopropyl acetate, methyl isobutyl ketone, 2-methyl-1 -heptene , 6-methyl-1 -heptene (6-methyl-1 -heptene),
  • the hydrophobic azeotropic solvent is preferably the same as the extraction solvent of the extraction process.
  • the same kind of solvent is used in the extraction process and the distillation process as described above, at least a part of the solvent distilled from the distillation column 300 and recovered through the phase separation tank 350 is supplied to the (meth) acrylic acid extraction column 200.
  • the upper discharge liquid of the distillation column 300 may be supplied to the decanter 350 to be reused after a predetermined treatment.
  • the top discharge of the distillation column 300 may be separated into an organic phase including an azeotropic solvent and an aqueous phase including water in the decanter 350.
  • the separated organic phase can be fed to the top of the distillation column 300 and used as an azeotropic solvent.
  • at least a portion of the organic phase may be supplied to the extraction column 200 to be used as the extraction solvent.
  • At least a portion of the aqueous phase separated from the decanter 350 may be supplied to the (meth) acrylic acid absorption tower 100 to be used as an absorption solvent, and some may be treated with wastewater.
  • the acetic acid may be partially contained in the aqueous phase, and the concentration of acetic acid included in the aqueous phase may vary depending on the type of azeotropic solvent and the reflux ratio.
  • the concentration of acetic acid contained in the water phase may be 1 to 50 parts by weight 0/0, or 2 to 40 parts by weight 0/0, or from 3 to 30 wt. 0/0.
  • the (meth) acrylic acid aqueous solution passes through the (meth) acrylic acid absorption tower 100, the decanter 150, the extraction column 200, and the distillation column 300, and the like. At least a portion of may form a dimer or oligomer.
  • a conventional polymerization inhibitor may be added to the distillation column 300.
  • the bottom discharge liquid of the distillation column 300 may include a high boiling point byproduct polymerization inhibitor such as a polymer of (meth) acrylic acid in addition to (meth) acrylic acid. Therefore, if necessary, the step of separating the high boiling by-products included in the bottom discharge liquid by supplying the bottom discharge liquid of the distillation column 300 to the high boiling point by-product separation tower 400 may be performed. And, crude (meth) acrylic acid (CAA) recovered through the above process may be obtained as a higher purity (meth) acrylic acid (HPAA) through an additional crystallization process. At this time, the high boiling point by-product separation process and crystallization process may be performed under conventional conditions. As such, the process conditions and the like are not particularly limited.
  • each of the above-described steps can be performed organically and continuously.
  • processes that may be normally performed before, after, or simultaneously with each step may be further included and operated.
  • each of the above-described processes may be performed organically and continuously.
  • processes that may be normally performed before or after each process may be further performed.
  • the (meth) acrylic acid aqueous solution obtained in the (meth) acrylic acid absorption tower (100) is fed to a separate degassing column before feeding to the (meth) acrylic acid extraction column (200) to produce low boiling point by-products (acrolein, propionaldehyde).
  • Acetaldehyde, formaldehyde, isopropyl acetate, etc. may be further performed.
  • (Meth) acrylic acid absorption tower 100 is provided with an aqueous solution outlet;
  • the continuous recovery apparatus of (meth) acrylic acid according to the embodiment may be operated according to the above-described continuous recovery method of (meth) acrylic acid.
  • the decanter 150 is connected through the solution outlet and the solution transfer line 130 of the absorber 100
  • An organic phase inlet connected via line 153 and a (meth) acrylic acid outlet through which (meth) acrylic acid obtained by distillation of a mixture of the introduced aqueous solution and the organic phase is discharged;
  • a portion of the (meth) acrylic acid aqueous solution discharged from the absorption tower 100 may be supplied to the decanter 150, and the remainder of the (meth) acrylic acid aqueous solution may be supplied to the distillation column 300.
  • the (meth) acrylic acid recovery device includes a (meth) acrylic acid absorption tower 100, a (meth) acrylic acid extraction column 200, and a distillation column 300.
  • the aqueous (meth) acrylic acid solution discharged from the absorption tower 100 and the (meth) acrylic acid extract discharged from the extraction column 200 are supplied to the decanter 150.
  • the organic phase recovered through phase separation in the decanter 150 is supplied to the distillation column 300 through the transfer line 153, and the aqueous phase is supplied to the extraction column 200 through the transfer line 152. That is, in the (meth) acrylic acid recovery apparatus, the absorption tower 100 and the extraction column 200 are connected via a decanter 150. Similarly, the extraction column 200 and the distillation column 300 are connected via a decanter 150.
  • the absorption tower 100 and the distillation column 300 may be directly connected through the (meth) acrylic acid aqueous solution transfer line 130.
  • the (meth) acrylic acid absorption tower 100 may be a packed tower for improving the contact efficiency between the (meth) acrylic acid-containing mixed gas 1 and the absorption solvent. It may be a multistage tray tower.
  • the laminar tower may have a filler such as a rashing ring, a pall ring, a saddle, a gauze, a structured packing, or the like.
  • the (meth) acrylic acid extraction column 200 a conventional extraction column according to a liquid-liquid contacting method may be applied without particular limitation.
  • the extraction column 200 may be a Karr type reciprocating plate column, a rotary-disk contactor, a Scheibel column, a Kuhni column, a spray extraction column. column, packed extraction column, pulse packed column, and the like.
  • the distillation column 300 may be a pack column or a multi-stage column, preferably a sieve tray column and a dual flow tray column containing the above-described layering agent therein. .
  • acetic acid absorption tower 50 decanters (150 and 350), various transfer lines, high boiling point by-product separation tower 400 and the like may have a conventional configuration in the art.
  • the continuous recovery method of (meth) acrylic acid according to the present invention enables more stable operation and energy saving, and in particular, lowers the load of the extraction process for the (meth) acrylic acid aqueous solution, and increases feed throughput in the extraction process. It is possible to reduce the amount of extraction solvent used.
  • 1 and 2 schematically show a method and apparatus for continuously recovering (meth) acrylic acid according to embodiments of the present invention, respectively.
  • Example 1
  • a Reciprocating plate column equipped with a decanter 150 was prepared as an extraction column 200.
  • the extraction column 200 has a total of 50 stages, a total height of 3 m, and an inner diameter of the column corresponding to the first to sixth stages (that is, the top six stages including the top stage) is 45 mm, and the remaining seventh stages to the third stage.
  • the inner diameter of the column corresponding to 50 stages was the same as 22 mm.
  • the free area ratio of the porous plates placed in the first to sixth stages is about 50% among the ' perforated plates ' which are placed at each stage of the extraction column 200 and repeat the vertical movement.
  • the aperture ratios of the porous plates in the remaining seventh to fifty stages are about 28.3%, respectively.
  • an aqueous acrylic acid solution (concentration of acrylic acid about 64 weight 0 /.) was prepared as a feed, and toluene was prepared as an extraction solvent.
  • the aqueous acrylic acid solution was fed to the decanter 150 together with the extract of the extraction column 200 and phase separated.
  • the water phase separated in the decanter 150 (acrylic acid concentration of about 5 weight 0 /.) was fed to the extraction column 200, the remaining organic phase was fed to the distillation column (300).
  • the Solvent / Feed ratio in the extraction column 200 was maintained at about 1.3.
  • Example 1 Except that the decanter 150 was not provided, a column having the same specifications as the Reciprocating plate cc) lumn used in Example 1 was prepared as an extraction column.
  • an acrylic acid aqueous solution (concentration of acrylic acid about 64 weight 0 /.) was prepared as a feed, and toluene was prepared as an extraction solvent.
  • the aqueous acrylic acid solution and toluene were supplied to the feed inlet (corresponding to the aqueous inlet of Example 1) and the solvent inlet of the extraction column. Then, the extract obtained in the extraction column was fed to the distillation column. At this time, the S vent / Feed ratio was maintained at about 1.3 in the extraction column.
  • Comparative Example 1 exhibited a maximum extraction rate of 99.46 0 /.
  • the linear velocity of the organic phase in the extraction column was operated at a low 0.4 cm / s.
  • the maximum operable rpm of the porous plate was decreased. That is, in Comparative Example 1, as the feed throughput per unit time increased, flooding occurred at a relatively low rpm, and the extraction rate of acrylic acid was also decreased.
  • Example 1 was able to set the linear velocity of the organic phase in a higher range compared to Comparative Example 1 by using an extraction column equipped with a decanter.
  • the linear velocity of the organic phase in Example 1 is 0.8 cm / s
  • the feed throughput per unit time is twice as high as in the comparative example 1 when the linear velocity of the organic phase is 0.4 cm / s.
  • Mechanical agitation was possible, indicating an acrylic acid extraction rate of at least equal.
  • Example 1 was able to operate even under the condition of up to 165 rpm, it was possible to exhibit the highest acrylic acid extraction rate.
  • Example 1 Except that the decanter 150 was not provided, a column of the same size as the Reciprocating plate ⁇ lumn used in Example 1 was prepared as an extraction column.
  • Example 3 in case of lowering the Sc) lvent / Feed ratio in Example 2 can be operated at the same rpm as Comparative Example 2, while the extraction rate of acrylic acid is almost . It has been shown that it can be maintained without falling off.
  • it in order to increase the processing capacity of the feed to increase the production of acrylic acid, using an extraction column equipped with a decanter as in the above embodiments, it has been found that by adjusting the flow, it is possible to increase the flexibility of the process operation without changing the volume of the extraction column.
  • it can be operated by reducing the Solvent / Feed ratio, it is possible to reduce the amount of solvent used, and to reduce the energy consumption in the distillation process.

Abstract

The present invention relates to a continuous recovery method of (meth)acrylic acid and an apparatus used in the recovery method. According to the present invention, provided are a continuous recovery method of (meth)acrylic acid which enables a more stable process operation and energy saving, and particularly enables reduction of the load on an extraction process for the aqueous (meth)acrylic acid solution, and at the same time, enables an increase in feed throughput in the extraction process and a reduction in extraction solution usage; and an apparatus which can be used suitably in the method.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
(메트)아크릴산의 연속 회수 방법 및 장치  Continuous recovery method and apparatus of (meth) acrylic acid
【관련 출원 (들)과의 상호 인용】  [Cross Citation with Related Application (s)]
본 출원은 2014년 1 1월 14일자 한국 특허 출원 제 10-2014-0159168 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0159168 of January 14, 2014, and all contents disclosed in the literature of that Korean patent application are incorporated as part of this specification.
【기술분야】  Technical Field
본 발명은 (메트)아크릴산의 연속 회수 방법 및 장치에 관한 것이다. [배경기술] - The present invention relates to a method and apparatus for continuous recovery of (meth) acrylic acid. [Background]-
(메트)아크릴산은 일반적으로 프로판, 프로필렌, (메트)아크를레인 등의 화합물을 촉매 존재 하에서 기상 산화 반웅시키는 방법으로 제조된다. 예를 들어, 반응기 내에 적절한 촉매의 존재 하에 프로판, 프로필렌 등은 기상 산화 반응에 의해 (메트)아크롤레인을 거쳐 (메트)아크릴산으로 전환되고, 반응기 후단에서 (메트)아크릴산, 미반웅 프로판 또는 프로필렌, (메트)아크를레인, 불활성 가스, 이산화탄소, 수증기, 및 상기 반웅에 의한 각종 유기 부산물 (초산, 저비점 부산물, 고비점 부산물 등)을 포함하는 반응 생성물 흔합 가스가 얻어진다. 상기 (메트)아크릴산 함유 흔합 가스는 (메트)아크릴산 흡수탑에서 공정수 등의 흡수 용제와 접촉되어 (메트)아크릴산 수용액으로 회수된다. 그리고, 통상적으로 상기 (메트)아크릴산 수용액은 증류 및 정제되어 (메트)아크릴산으로 수득된다. 이러한 (메트)아크릴산의 회수 효율을 향상시키기 위하여, 공정 조건 또는 공정 순서 등을 조절하는 다양한 방법들이 제안되고 있다. 그 중 (메트)아크릴산 흡수탑에서 얻어진 (메트)아크릴산 수용액으로부터 물과 초산을 분리하기 위한 방법으로, 증류 컬럼에서 소수성 용매를 사용하여 공비 증류하는 방법이 알려져 있다. 다른 방법으로, (메트)아크릴산 수용액을 추출 컬럼에 공급하여 물의 함량이 감소된 (메트)아크릴산 추출액과 그 추잔액을 얻고, 상기 추출액을 증류하여 (메트)아크릴산을 얻는 방법이 알려져 있다. (Meth) acrylic acid is generally produced by a method of reacting gas phase oxidation in the presence of a catalyst with a compound such as propane, propylene, (meth) acrelane and the like. For example, in the presence of a suitable catalyst in the reactor, propane, propylene and the like are converted to (meth) acrylic acid via (meth) acrolein by gas phase oxidation reaction, and (meth) acrylic acid, Mibanung propane or propylene, ( A reaction product mixed gas is obtained that includes meth) arklane, an inert gas, carbon dioxide, water vapor, and various organic by-products such as acetic acid, low-boiling by-product, high-boiling by-product, and the like. The said (meth) acrylic acid containing mixed gas is contacted with absorption solvents, such as process water, in a (meth) acrylic acid absorption tower, and is collect | recovered by the (meth) acrylic-acid aqueous solution. In general, the (meth) acrylic acid aqueous solution is distilled and purified to obtain (meth) acrylic acid. In order to improve the recovery efficiency of such (meth) acrylic acid, various methods for controlling the process conditions or the process order have been proposed. Among them, a method of azeotropic distillation using a hydrophobic solvent in a distillation column is known as a method for separating water and acetic acid from an aqueous (meth) acrylic acid solution obtained in a (meth) acrylic acid absorption tower. Alternatively, a method of supplying an aqueous (meth) acrylic acid solution to an extraction column to obtain a (meth) acrylic acid extract with reduced water content and a balance thereof and distilling the extract to obtain (meth) acrylic acid is known.
그러나, 이러한 공지의 공정에 따르면, 추출 공정 및 증류 공정에서 (메트)아크릴산의 손실율이 높을 뿐만 아니라, 추출 공정의 처리 부담이 높아 플러딩이 발생하거나, 증류 컬럼 내부의 온도 프로파일이 불안정하게 나타나는 등 공정 운전의 안정성이 떨어지는 문제점이 있다. However, according to this known process, in the extraction process and the distillation process Not only is the loss rate of (meth) acrylic acid high but also the processing burden of the extraction process is high, causing flooding or unstable temperature profile inside the distillation column.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
- 본 발명은 (메트)아크릴산 수용액에 대한 추출 공정의 효율을 높여 안정적인 공정의 운용과 에너지 절감을 가능케 하는 (메트)아크릴산의 연속 회수 방법을 제공하기 위한 것이다.  The present invention is to provide a continuous recovery method of (meth) acrylic acid to increase the efficiency of the extraction process with respect to the aqueous (meth) acrylic acid solution to enable a stable operation and energy saving.
또한, 본 발명은 상기 (메트)아크릴산의 연속 희수 방법에 이용 가능한 장치를 제공하기 위한 것이다.  Moreover, this invention is providing the apparatus which can be used for the continuous rare water method of the said (meth) acrylic acid.
【과제의 해결 수단】  [Measures of problem]
본 발명에 따르면,  According to the invention,
(메트)아크릴산의 합성반웅에 의해 생성된 (메트)아크릴산, 유기 부산물 및 수증기를 포함하는 흔합 가스를 (메트)아크릴산 흡수탑에서 물과 접촉시켜 (메트)아크릴산 수용액을 얻는 흡수 공정;  An absorption process of bringing a mixed gas containing (meth) acrylic acid, organic by-products and water vapor generated by the synthesis reaction of (meth) acrylic acid into water in a (meth) acrylic acid absorption tower to obtain an aqueous (meth) acrylic acid solution;
상기 흡수 공정을 통해 수득된 (메트)아크릴산 수용액과 후술할 추출 공정을 통해 수득된 (메트)아크릴산 추출액을 디캔터에서 상 분리하여 유기상과 수상을 얻는 상 분리 공정;  A phase separation step of phase-separating the (meth) acrylic acid aqueous solution obtained through the absorption process and the (meth) acrylic acid extract obtained through the extraction process to be described later in a decanter to obtain an organic phase and an aqueous phase;
상기 상 분리 공정을 통해 수득된 수상을 추출 컬럼에서 추출 용매와 접촉시켜 (메트)아크릴산 추출액과 추잔액을 얻는 추출 공정; 및  An extraction step of contacting the aqueous phase obtained through the phase separation process with an extraction solvent in an extraction column to obtain a (meth) acrylic acid extract and an extract; And
상기 상 분리 공정을 통해 수득된 유기상을 포함한 피드 (feed)를 증류하여 (메트)아크릴산을 얻는 증류 공정  Distillation process of distilling a feed containing the organic phase obtained through the phase separation process to obtain (meth) acrylic acid
을 포함하는 (메트)아크릴산의 연속 회수 방법이 제공된다.  Provided is a continuous recovery method of (meth) acrylic acid comprising a.
또한, 본 발명에 따르면,  In addition, according to the present invention,
(메트)아크릴산의 합성반웅에 의해 생성된 (메트)아크릴산, 유기 부산물 및 수증기를 포함하는 흔합 가스가 공급되는 흔합 가스 유입구와, 상기 흔합 가스와 물의 접촉에 의해 수득되는 (메트)아크릴산 수용액이 배출되는 수용액 배출구가 구비된 (메트)아크릴산 흡수탑 (100);  A mixed gas inlet supplied with a mixed gas containing (meth) acrylic acid, organic by-products and water vapor generated by the synthesis reaction of (meth) acrylic acid, and an aqueous (meth) acrylic acid solution obtained by contacting the mixed gas with water is discharged. (Meth) acrylic acid absorption tower 100 is provided with an aqueous solution outlet;
상기 흡수탑 (100)의 수용액 배출구와 수용액 이송 라인 (1 15)을 통해 연결된 (메트)아크릴산 수용액 유입구, 후술할 추출 컬럼 (200)의 추출액 배출구와 추출액 이송 라인 (215)을 통해 연결된 (메트)아크릴산 추출액 유입구, 유입된 (메트)아크릴산수용액 및 추출액의 상 분리에 의해 수득되는 유기상이 배출되는 유기상 배출구, 상기 상 분리에 의해 수득되는 수상이 배출되는 수상 배출구가 구비된 디캔터 (150); (Meth) acrylic acid aqueous solution inlet connected to the aqueous solution outlet of the absorption tower 100 and the aqueous solution transfer line (1 15), the extract of the extraction column 200 to be described later The (meth) acrylic acid extract inlet connected through the outlet and the extract liquid conveying line 215, the organic phase outlet through which the introduced (meth) acrylic acid aqueous solution and the extract phase are discharged, and the aqueous phase obtained by the phase separation A decanter 150 having a water discharge port discharged therefrom;
상기 디캔터 (150)의 수상 배출구와 수상 이송 라인 (152)을 통해 연결된 수상 유입구, 유입된 수상과 추출 용매의 접촉에 의해 수득되는 (메트)아크릴산 추출액이 배출되는 추출액 배출구, 및 그 추잔액이 배출되는 추잔액 배출구가 구비된 (메트)아크릴산 추출 컬럼 (200); 및  The water inlet of the decanter 150 and the water inlet connected through the water transfer line 152, the extraction liquid outlet through which the (meth) acrylic acid extract obtained by contacting the introduced water and the extraction solvent is discharged, and the balance thereof is discharged. A (meth) acrylic acid extraction column (200) equipped with a drainage liquid outlet; And
상기 디캔터 (150)의 유기상 배출구와 유기상 이송 라인 (153)을 통해 연결된 유기상 유입구, 유입된 유기상을 포함한 피드의 증류에 의해 수득되는 (메트)아크릴산이 배출되는 (메트)아크릴산 배출구가 구비된 증류 컬럼 (300)  A distillation column with an (meth) acrylic acid outlet through which an organic phase inlet of the decanter 150 and an organic phase inlet connected through an organic phase transfer line 153 and a (meth) acrylic acid obtained by distillation of a feed including the introduced organic phase are discharged. (300)
을 포함하는, (메트)아크릴산의 연속 회수 장치가 제공된다. 이하, 본 발명의 구현 예들에 따른 (메트)아크릴산의 연속 회수 방법 및 회수 장치에 대하여 설명하기로 한다.  Provided is a continuous recovery apparatus for (meth) acrylic acid. Hereinafter, a method and a recovery apparatus for the continuous recovery of (meth) acrylic acid according to embodiments of the present invention will be described.
그에 앞서, 본 명세서에 사용되는 전문 용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 또한, 명세서에서 사용되는 '포함 '의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다.  Prior to this, the terminology used herein is for reference only to specific embodiments and is not intended to limit the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. In addition, the meaning of "included" as used in the specification specifies a specific characteristic, region, integer, step, operation, element or component, excluding the addition of other specific characteristic, region, integer, step, operation, element, or component. It is not meant to be.
그리고, 본 명세서 전체에서 명시적인 언급이 없는 한, 몇 가지 용어들은 다음과 같은 의미로 정의된다.  And, unless explicitly stated throughout the present specification, some terms are defined as follows.
'(메트)아크릴산'이라 함은 아크릴산 (acrylic acid), 메타크릴산 (methacrylic acid) 또는 이들의 흔합물을 통칭하는 의미로 사용될 수 있다.  '(Meth) acrylic acid' may be used to mean acrylic acid, methacrylic acid, or a combination thereof.
'(메트)아크릴산 함유 흔합 가스'라 함은 기상 산화 반웅에 의해 (메트)아크릴산을 합성할 때 생성될 수 있는 흔합 가스를 통칭한다. 비제한적인 예로, 프로판, 프로필렌, 부탄, 아이소부틸렌, 및The term "(meth) acrylic acid-containing mixed gas" refers to a mixed gas that can be produced when synthesizing (meth) acrylic acid by vapor phase oxidation reaction. Non-limiting examples include propane, propylene, butane, isobutylene, and
(메트)아크를레인으로 이루어진 군에서 선택되는 1종 이상의 화합물 ('원료 화합물')을 촉매 존재 하에서 기상 산화 반응시키는 방법으로 상기 (메트)아크릴산 함유 흔합 가스를 얻을 수 있다. 이때, 상기 (메트)아크릴산 함유 흔합 가스에는 (메트)아크릴산, 미반웅 원료 화합물, (메트)아크를레인ᅳ 불활성 가스, 일산화탄소, 이산화탄소, 수증기, 및 각종 유기 부산물 (초산, 저비점 부산물 (light ends), 고비점 부산물 (heavies) 등) 등이 포함될 수 있다. 여기서, '저비점 부산물 '(light ends) 또는 '고비점 부산물 '(heavies)이라 함은 목적하는 (메트)아크릴산의 제조 및 회수 공정에서 생성될 수 있는 부산물의 일종으로서, 분자량이 (메트)아크릴산 보다 작거나 큰 화합물들을 통칭한다. 그리고, 상기 유기 부산물에 의해 형성되는 난수용성 부유물을The (meth) acrylic acid-containing mixed gas can be obtained by a gas phase oxidation reaction of at least one compound ('raw compound') selected from the group consisting of (meth) arklane in the presence of a catalyst. In this case, the (meth) acrylic acid-containing mixed gas includes (meth) acrylic acid, a raw material compound, a (meth) acrylic acid inert gas, carbon monoxide, carbon dioxide, water vapor, and various organic by-products (acetic acid, low boiling point by-products (light ends)). High boiling by-products, etc.). Herein, the term 'low ends' or 'heavies' is a kind of by-product that can be produced in the process of preparing and recovering the desired (meth) acrylic acid, and the molecular weight is higher than that of (meth) acrylic acid. Collectively, small or large compounds. And, the poorly water-soluble suspended solids formed by the organic by-products
'스컴 '(scum)이라 한다. It is called 'scum'.
'(메트)아크릴산 수용액 '은 (메트)아크릴산을 함유한 수용액으로서, 예를 들면 상기 (메트)아크릴산 함유 흔합 가스를 물을 포함한 흡수 용제와 접촉시키는 방법으로 수득될 수 밌다.  '(Meth) acrylic acid aqueous solution' is an aqueous solution containing (meth) acrylic acid, and may be obtained by, for example, contacting the (meth) acrylic acid-containing mixed gas with an absorption solvent including water.
추출 공정에서의 '피드 '(feed)라 함은 추출하고자 하는 용질 (solute)을 함유한 액체 흔합물을 의미하는 것으로서, 추출 용매 (extraction solvent)^ 대하여 가용성을 갖는 용질과 가용성을 갖지 않는 기타 성분 (inert material)의 흔합물일 수 있다. 여기서, 상기 피드에 상기 추출 용매를 가하면 물질 전달 현상에 의해 상기 용질이 피드로부터 추출 용매로 용해된다. 그에 따라, 상당량워 용질이 용해된 추출 용매는 추출액 (extract solution)을 형성하고, 용질의 상당량을 잃은 피드는 추잔액 (raffinate solution)을 형성한다.  The term "feed" in the extraction process refers to a liquid mixture containing the solute to be extracted, and a solute that is soluble in the extraction solvent ^ and other components that are not soluble. may be a mixture of inert materials. Here, when the extraction solvent is added to the feed, the solute is dissolved from the feed into the extraction solvent by mass transfer. As a result, the extraction solvent in which the solute is dissolved to form an extract solution, and the feed having lost a considerable amount of solute to form a traffic solution.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있도록, 첨부한 도면을 참조하여 본 발명의 구현 예들에 대하여 상세히 설명한다. 다만, 본 발명은 여러 가지 상이한 형태들로 구현될 수 있으며 여기에서 설명하는 구현 예들만으로 한정되지 않는다.  DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. However, the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
한편, (메트)아크릴산 함유 흔합 가스에 대한 흡수 공정, 추출 공정 및 증류 공정 등을 포함하는 공지의 (메트)아크릴산 회수 방법에서 , 특히 (메트)아크릴산의 회수량 증대를 위하여 추출 공정의 처리량을 증가시킬 경우, 추출 컬럼 상부에서의 풀러딩 (flooding) 발생 확률이 높아진다. 이를 방지하기 위해서는 추출 컬럼의 용량을 늘리거나 또는 추출 컬럼의 내부 교반 수단 (여 1를 들어, Reciprocating plate column의 plate free area, 혹은 Scheibel column의 blade 등)을 바꾸는 방법이 적용될 수 있다. 하지만, 이처럼 추출 컬럼의 용량을 늘리거나 교반 수단을 바꾸기 위해서는 막대한 비용이 소요된다. 이에 본 발명자들은, 흡수 공정, 추출 공정 및 증류 공정을 포함하는 (메트)아크릴산의 회수 방법에서, 기존의 추출 컬럼 디자인을 변경하지 않고 추출 공정의 처리 효율을 향상시킬 수 있는 방법에 대한 연구를 진행하였다. On the other hand, in the well-known (meth) acrylic acid recovery method including the absorption process, extraction process, distillation process, etc. with respect to a (meth) acrylic acid containing mixed gas, Increasing the throughput of the extraction process to increase the recovery of (meth) acrylic acid increases the probability of occurrence of fulling on the top of the extraction column. To prevent this, a method of increasing the capacity of the extraction column or changing the internal stirring means of the extraction column (for example, plate free area of the Reciprocating plate column or the blade of the Scheibel column) may be applied. However, in order to increase the capacity of the extraction column or to change the stirring means, such a huge cost is required. Accordingly, the present inventors have conducted a study on a method of improving the treatment efficiency of an extraction process without changing the existing extraction column design in a method of recovering (meth) acrylic acid including an absorption process, an extraction process, and a distillation process. It was.
그 일환으로, 본 발명에 따르면, 흡수 공정에서 수득된 (메트)아크릴산 수용액과 추출 공정에서 수득된 (메트)아크릴산 추출액을 디캔터 (decanter)에 정치시켜 상 분리에 의해 수상과 유기상을 얻은 후, 상기 수상을 추출 공정으로 공급하고, 상기 유기상을 증류 공정으로 공급하는 방법이 제공된다. 이러한 방법은 (메트)아크릴산 수용액을 추출 공정으로 공급하기 전에 디캔터에서의 상 분리에 의해 (메트)아크릴산의 농도를 낮출 수 있어, 추출 공정의 부하를 줄일 수 있게 된다. 즉, 흡수 공정에서 수득된 (메트)아크릴산 수용액을 추출 공정으로 공급하고 그 추출액을 증류 공정으로 공급하는 일반적인 회수 방법과 달리, 본 발명을 통해 제공되는 (메트)아크릴산의 회수 방법은, (메트)아크릴산 수용액과 그 추출액이 흔합된 스트림을 디캔터에 정치시켜 상 분리를 유도한 후, 그로부터 회수된 수상을 추출 공정에 공급하고, 나머지 유기상을 증류 공정에 공급한다. 이를 통해, 상기 추출 공정에서는 액-액 추출시 보다 격렬한 교반 조건 하에서도 플러딩 현상의 억제가 가능하고, 유사 규모의 추출 컬럼에 비하여 단위 시간당 보다 많은 양의 피드 처리가 가능하다. 또한, 이러한 방법은 추출 공정의 운전시 용매 /피드 비 (solvent/feed ratio)를 줄여도 추출 효율이 안정적으로 유지될 수 있어 추출 용매의 사용량 절감을 가능케 한다. 그리고, 이러한 방법은 추출 공정에 후속되는 증류 공정에서의 에너지 절감을 가능케 한다. I. (메트ᅵ아크릴산의 연속회수 방법 이러한 발명의 일 구현 예에 따르면, „ As a part thereof, according to the present invention, the aqueous (meth) acrylic acid solution obtained in the absorption step and the (meth) acrylic acid extract obtained in the extraction step are left in a decanter to obtain an aqueous phase and an organic phase by phase separation. A method of feeding an aqueous phase to an extraction process and feeding the organic phase to a distillation process is provided. This method can lower the concentration of (meth) acrylic acid by phase separation in a decanter before feeding the aqueous (meth) acrylic acid solution to the extraction process, thereby reducing the load on the extraction process. That is, unlike the general recovery method in which the (meth) acrylic acid aqueous solution obtained in the absorption step is supplied to the extraction step and the extract is supplied to the distillation step, the recovery method of (meth) acrylic acid provided through the present invention is (meth) The stream mixed with the aqueous acrylic acid solution and its extract is left in a decanter to induce phase separation, and then the aqueous phase recovered therefrom is fed to the extraction process and the remaining organic phase is fed to the distillation process. As a result, in the extraction process, it is possible to suppress the flooding phenomenon under more vigorous stirring conditions during the liquid-liquid extraction, and to process a larger amount of feed per unit time than the extraction column of a similar scale. In addition, this method enables the extraction efficiency to be stably maintained even when the solvent / feed ratio is reduced during the operation of the extraction process, thereby reducing the amount of extraction solvent used. And this method enables energy savings in the distillation process following the extraction process. I. (Method of acrylic acid recovery) According to one embodiment of this invention,
(메트)아크릴산의 합성반웅에 의해 생성된 (메트)아크릴산, 유기 부산물 및 수증기를 포함하는 흔합 가스를 (메트)아크릴산 흡수탑에서 물과 ' 접촉시켜 (메트)아크릴산 수용액을 얻는 흡수 공정; (Meth) was produced by the synthesis banung of acrylic acid (meth) acrylic acid, heunhap gas containing the organic by-products and water vapor (meth) acrylic acid in the absorber in contact with water "(meth) acrylic acid aqueous solution to obtain the absorption process;
■ 상기 흡수 공정을 통해 수득된 (메트)아크릴산 수용액과 후술할 추출 공정을 통해 수득된 (메트)아크릴산 추출액을 디캔터에서 상 분리하여 유기상과 수상을 얻는 상 분리 공정;  ■ A phase separation process of separating the (meth) acrylic acid aqueous solution obtained through the absorption process and the (meth) acrylic acid extract obtained through the extraction process described later in a decanter to obtain an organic phase and an aqueous phase;
상기 상 분리 공정을 통해 수득된 수상을 추출 컬럼에서 추출 용매와 접촉시켜 (메트)아크릴산 추출액과 추잔액을 얻는 추출 공정; 및  An extraction step of contacting the aqueous phase obtained through the phase separation process with an extraction solvent in an extraction column to obtain a (meth) acrylic acid extract and an extract; And
상기 상 분리 공정을 통해 수득된 유기상을 포함한 피드 (feed)를 증류하여 (메트)아크릴산을 얻는 증류 공정  Distillation process of distilling a feed containing the organic phase obtained through the phase separation process to obtain (meth) acrylic acid
을 포함하는 (메트)아크릴산의 연속 회수 방법이 제공된다.  Provided is a continuous recovery method of (meth) acrylic acid comprising a.
또한, 발명의 일 구현 예에 따르면,  In addition, according to one embodiment of the invention,
(메트)아크릴산의 합성반응에 의해 생성된 (메트)아크릴산, 유기 부산물 및 수증기를 포함하는 흔합 가스를 (메트)아크릴산 흡수탑에서 물과 접촉시켜 (메트)아크릴산 수용액을 얻는 흡수 공정;  An absorption step of obtaining a (meth) acrylic acid aqueous solution by contacting a mixed gas containing (meth) acrylic acid, organic by-products and water vapor produced by the synthesis reaction of (meth) acrylic acid with water in a (meth) acrylic acid absorption tower;
상기 흡수 공정을 통해 수득된 (메트)아크릴산 수용액의 일부와 상기 추출 공정을 통해 수득된 (메트)아크릴산 추출액을 디캔터에서 상 분리하여 유기상과 수상을 얻는 상 분라공정;  A phase separation process in which a part of the aqueous (meth) acrylic acid solution obtained through the absorption process and the (meth) acrylic acid extract obtained through the extraction process are separated in a decanter to obtain an organic phase and an aqueous phase;
상기 상 분리 공정을 통해 수득된 수상을 추출 컬럼에서 추출 용매와 접촉시켜 (메트)아크릴산 추출액과 추잔액을 얻는 추출 공정; 및  An extraction step of contacting the aqueous phase obtained through the phase separation process with an extraction solvent in an extraction column to obtain a (meth) acrylic acid extract and an extract; And
상기 흡수 공정을 통해 얻은 (메트)아크릴산 수용액의 나머지와 상기 상 분리 공정을 통해 수득된 유기상을 포함한 피드 (feed)를 증류하여 (메트)아크릴산을 얻는 증류 공정  Distillation process of distilling a feed including the remainder of the aqueous solution of (meth) acrylic acid obtained through the absorption process and the organic phase obtained through the phase separation process to obtain (meth) acrylic acid
을 포함하는 (메트)아크릴산의 연속 회수 방법이 제공된다.  Provided is a continuous recovery method of (meth) acrylic acid comprising a.
이하, 도 1 및 도 2를 참고하여, 발명의 구현 예에 포함될 수 있는 각 공정에 대하여 자세히 설명한다.  Hereinafter, referring to FIGS. 1 and 2, each process that may be included in an embodiment of the present invention will be described in detail.
(흡수공정) (Absorption process)
흡수 공정은 (메트)아크릴산 수용액을 얻기 위한 공정으로서, (메트)아크릴산의 합성반응을 통해 얻은 (메트)아크릴산 함유 혼합 가스를 물을 포함한 흡수 용제와 접촉시키는 방법으로 수행될 수 있다. The absorption step is a step for obtaining an aqueous (meth) acrylic acid solution. The (meth) acrylic acid-containing mixed gas obtained through the synthesis reaction of (meth) acrylic acid can be carried out by contacting with an absorption solvent including water.
비제한적인 예로, 상기 (메트)아크릴산의 합성반응은 프로판, 프로필렌, 부탄, 아이소부틸렌, 및 (메트)아크롤레인으로 이루어진 군에서 선택되는 1종 이상의 화합물을 기상 촉매 하에서 산화 반웅시키는 방법으로 수행될 수 있다. 이때, 상기 기상 산화 반응은 통상적인 구조의 기상 산화 반웅기 및 반응 조건 하에서 진행될 수 있다. 상기 기상 산화 반웅에서의 촉매 또한 통상적인 것이 사용될 수 있으며, 예를 들어 대한민국 등록특허 제 0349602 호 및 제 037818 호에 개시된 촉매 등이 사용될 수 있다. 상기 기상 산화 반응에 의해 생성되는 (메트)아크릴산 함유 흔합 가스에는 목적 생성물인 (메트)아크릴산 이외에, 미반응 원료 화합물, 중간체인 (메트)아크롤레인, 불활성 가스, 이산화탄소, 수증기, 및 각종 유기 부산물 (초산, 저비점 부산물, 고비점 부산물 등)이 포함되어 있을 수 있다.  As a non-limiting example, the synthesis of (meth) acrylic acid may be carried out by oxidizing at least one compound selected from the group consisting of propane, propylene, butane, isobutylene, and (meth) acrolein under a gas phase catalyst. Can be. In this case, the gas phase oxidation reaction may proceed under a gas phase oxidation reaction and reaction conditions of a conventional structure. Conventional catalysts in the gas phase oxidation reaction may also be used, for example, the catalysts disclosed in Korean Patent Nos. 0349602 and 037818 may be used. The (meth) acrylic acid-containing mixed gas produced by the gas phase oxidation reaction includes, in addition to (meth) acrylic acid as a target product, unreacted raw compound, intermediate (meth) acrolein, inert gas, carbon dioxide, water vapor, and various organic by-products (acetic acid). , Low boiling by-products, high boiling by-products, etc.) may be included.
그리고, 도 1을 참조하면, . 상기 (메트)아크릴산 수용액은 (메트)아크릴산 함유 흔합 가스 (1 )를 (메트)아크릴산 흡수탑 (100)에 공급하여, 물을 포함한 흡수 용제와 접촉시키는 방법으로 얻어질 수 있다.  And, referring to Figure 1,. The (meth) acrylic acid aqueous solution can be obtained by supplying a (meth) acrylic acid-containing mixed gas (1) to the (meth) acrylic acid absorption tower 100 and contacting with an absorption solvent containing water.
여기서, (메트)아크릴산 흡수탑 (100)의 종류는 상기 흔합 가스 (1 )와 흡수 용제의 접촉 효율 등을 감안하여 결정될 수 있다. 비제한적인 예로, Here, the type of the (meth) acrylic acid absorption tower 100 may be determined in consideration of the contact efficiency of the mixed gas 1 and the absorption solvent. As a non-limiting example,
(메트)아크릴산 흡수탑 (100)은 층진 컬럼 타입 (packed column type)의 흡수탑, 멀티스테이지 트레이 타입 (multistage tray type)의 흡수탑일 수 있다. 상기 충진 컬럼 타입의 흡수탑은 내부에 래싱 링 (rashing ring), 폴 링 (pall ring), 새들 (saddle), 거즈 (gauze), 스트럭쳐 패킹 (structured packing) 등의 층진제가 적용된 것일 수 있다. The (meth) acrylic acid absorption tower 100 may be an absorption tower of a packed column type or an absorption tower of a multistage tray type. The packed column type absorption tower may include a layering agent such as a rashing ring, a pall ring, a saddle, a gauze, and a structured packing.
그리고, 상기 흡수 공정의 효율을 고려하여, 상기 흔합 가스 (1 )는 흡수탑 (100)의 하부로 공급될 수 있고, 물을 포함한 흡수 용제는 흡수탑 (100)의 상부로 공급될 수 있다.  In addition, in consideration of the efficiency of the absorption process, the mixed gas 1 may be supplied to the lower portion of the absorption tower 100, and the absorption solvent including water may be supplied to the upper portion of the absorption tower 100.
상기 흡수 용제는 수듯물, 탈이온수 등의 물을 포함할 수 있으며, 다른 공정으로부터 도입되는 순환 공정수 (예를 들어, 추출 공정 및 /또는 증류 공정으로부터 재순환되는 수상)를 포함할 수 있다. 그리고, 상기 흡수 용제에는 다른 공정으로부터 도입되는 미량의 유기 부산물 (예를 들어 초산)이 포함되어 있을 수 있다. 다만, (메트)아크릴산의 흡수 효율을 고려하여, 상기 흡수탑 (100)에 공급되는 흡수 용제 (특히 상기 순환 공정수)에는 유기 부산물이 15 중량 % 이하로 포함되도록 하는 것이 바람직하다. The absorption solvent may include water such as scum water, deionized water and the like, and may include circulating process water introduced from another process (eg, an aqueous phase recycled from an extraction process and / or a distillation process). In addition, the absorption solvent may contain a small amount of organic by-products introduced from other processes (for example Acetic acid). However, in consideration of the absorption efficiency of (meth) acrylic acid, the absorption solvent (particularly the circulation process water) supplied to the absorption tower 100 is preferably such that the organic by-products are included in an amount of 15% by weight or less.
그리고, (메트)아크릴산 흡수탑 (100)은 (메트)아크릴산의 응축 조건 및 포화 수증기압에 따른 수분 함유량 등을 고려하여, 1 내지 1 .5 bar 또는 1 내지 1 .3 bar의 내부 압력, 50 내지 100 °C 또는 50 내지 80 °C의 내부 온도 하에서 운전될 수 있다. In addition, the (meth) acrylic acid absorption tower 100 may have an internal pressure of 1 to 1.5 bar or 1.3 to 1.3 bar in consideration of condensation conditions of the (meth) acrylic acid and water content according to the saturated water vapor pressure. It can be operated under an internal temperature of 100 ° C or 50 to 80 ° C.
한편, 상기 흡수 공정에서, (메트)아크릴산 흡수탑 (100)의 하부로는 (메트)아크릴산 수용액이 배출되고, 그 상부로는 (메트)아크릴산이 탈기된 비응축성 가스가 배출된다. 이때, 상기 (메트)아크릴산 수용액에는 농도 40 중량0 /。 이상, 또는 40 내지 90 중량0 /0, 또는 50 내지 90 중량0 /。의 (메트)아크릴산이 포함되도록 하는 것이 전체 공정의 효율 측면에서 유리할 수 있다. On the other hand, in the absorption step, the (meth) acrylic acid aqueous solution is discharged to the lower portion of the (meth) acrylic acid absorption tower 100, the non-condensable gas from which (meth) acrylic acid is degassed is discharged. In this case, the (meth) to that aqueous acrylic acid solution contains a concentration of 40 wt. 0 /. Or more, or 40 to 90 weight 0/0, or 50 to 90 weight 0 /. Of (meth) acrylic acid in the efficiency aspects of the overall process May be advantageous.
수득된 (메트)아크릴산 수용액은, 도 1과 같이, 수용액 이송 라인 (1 15)을 통해 디캔터 (150)로 공급된다. 또는, 수득된 '(메트)아크릴산 수용액은, 도 2와 같이, 수용액 이송 라인 (1 15 및 130)을 통해 디캔터 (150)와 증류 컬럼 (300)으로 나누어 공급될 수 있다. 즉, 도 1 및 도 2에 나타낸 발명의 구현 예에 따르면, (메트)아크릴산 흡수탑 (100)에서 수득된 (메트)아크릴산 수용액은 추출 컬럼 (200)에 직접적으로 공급되지 않고, 디캔터 (150)를 거쳐 (메트)아크릴산의 농도가 낮아진 상태로 추출 컬럼 (200)에 공급된다. 또한, 추출 컬럼 (200)에서 수득된 (메트)아크릴산 추출액은 증류 컬럼 (300)에 직접적으로 공급되지 않고, 디캔터 (150)를 거쳐 상 분리된 유기상으로 증류 컬럼 (300)에 공급된다. 여기서, 디캔터 (150)와 추출 컬럼 (200)에서의 흐름에 대해서는 별도로 설명한다. The obtained (meth) acrylic acid aqueous solution is supplied to the decanter 150 via the aqueous solution transfer line 1 15, as shown in FIG. 1. Alternatively, the obtained ' (meth) acrylic acid aqueous solution may be supplied to the decanter 150 and the distillation column 300 through the aqueous solution transfer lines 1 15 and 130 as shown in FIG. 2. That is, according to the embodiment of the invention shown in Figures 1 and 2, the (meth) acrylic acid aqueous solution obtained in the (meth) acrylic acid absorption tower 100 is not directly supplied to the extraction column 200, decanter 150 Via the (meth) acrylic acid concentration is supplied to the extraction column 200 in a low state. In addition, the (meth) acrylic acid extract obtained in the extraction column 200 is not directly supplied to the distillation column 300, but is supplied to the distillation column 300 as a phase separated organic phase via the decanter 150. Here, the flow in the decanter 150 and the extraction column 200 will be described separately.
도 2와 같은 구현 예에서, 상기 (메트)아크릴산 수용액을 디캔터 (150)와 증류 컬럼 (300)에 나누어 공급하는 비율은 각 컬럼의 용량, 처리 성능, 에너지 효율의 향상 효과 등을 종합적으로 고려하여 결정될 수 있다. 발명의 구현 예에 따르면, 상기 (메트)아크릴산 수용액의 5 내지 70 중량0 /。, 또는 10 내지 60 중량0 /。, 또는 10 내지 50 중량 0/。를 디캔터 (150)로 공급하고, 그 나머지는 증류 컬럼 (300)으로 공급하는 것이 (메트)아크릴산의 손실을 최소화하고 전체적인 에너지 소비량을 절감하는데 유리할 수 있다. 한편, (메트)아크릴산 흡수탑 (100)의 상부로 배출되는 비웅축성 가스 중 적어도 일부는 비응축성 가스에 포함된 유기 부산물 (특히 초산)을 회수하는 공정으로 공급될 수 있고, 그 나머지는 폐가스 소각로로 공급되어 폐기될 수 있다. 즉, 발명의 일 구현 예에 따르면, 상기 비웅축성 가스를 흡수 용제와 접촉시켜, 상기 비응축성 가스에 포함된 초산을 회수하는 공정이 수행될 수 있다. 상기 비웅축성 가스를 흡수 용제와 접촉시키는 공정은 초산 흡수탑 (50)에서 수행될 수 있다. 비제한적인 예로, 초산 흡수탑 (50)의 상부로는 초산을 흡수하기 위한 흡수 용제 (공정수)가 공급되고, 초산 흡수탑 (50)의 하부로는 초산을 함유한 수용액이 배출될 수 있다. 그리고, 상기 초산 함유 수용액은 (메트)아크릴산 흡수탑 (100)의 상부로 공급되어 흡수 용제로써 사용될 수 있다. 또한, 상기 초산이 탈기된 비응축성 가스는 (메트)아크릴산의 합성반응 공정으로 순환되어 재사용될 수 있다. 이때, 초산의 효과적인 흡수를 위하여, 초산 흡수탑 (50)은 1 내지 1 .5 bar 또는 1 내지 1 .3 bar의 내부 압력, 및 50 내지 100 °C 또는 50 내지 80 °C의 내부 온도 하에서 운전될 수 있다. 이 밖에도 초산 흡수탑 (50)의 구체적인 운전 조건은. 대한민국 공개특허 제 2009-0041355호에 개시된 내용에 따를 수 있다. In the embodiment as shown in FIG. 2, the ratio of dividing the (meth) acrylic acid aqueous solution to the decanter 150 and the distillation column 300 may be based on a comprehensive consideration of the capacity, treatment performance, and energy efficiency of each column. Can be determined. According to an embodiment of the invention, 5 to 70 weight 0 /., Or 10 to 60 weight 0 /., Or 10 to 50 weight 0 /. Of the (meth) acrylic acid aqueous solution is used as the decanter 150. Feeding the remainder to the distillation column 300 may be advantageous in minimizing the loss of (meth) acrylic acid and reducing overall energy consumption. Meanwhile, at least some of the non-uniform gas discharged to the upper portion of the (meth) acrylic acid absorption tower 100 may be supplied to a process of recovering organic by-products (particularly acetic acid) included in the non-condensable gas, and the rest of the waste gas incinerator. Can be disposed of and discarded. That is, according to the exemplary embodiment of the present invention, the non-condensable gas may be contacted with an absorption solvent to recover the acetic acid contained in the non-condensable gas. The process of contacting the non-uniform gas with the absorption solvent may be performed in the acetic acid absorption tower 50. As a non-limiting example, an absorption solvent (process water) for absorbing acetic acid may be supplied to the upper portion of the acetic acid absorption tower 50, and an aqueous solution containing acetic acid may be discharged to the lower portion of the acetic acid absorption tower 50. . In addition, the acetic acid-containing aqueous solution may be supplied to the upper portion of the (meth) acrylic acid absorption tower 100 to be used as an absorption solvent. In addition, the non-condensable gas from which acetic acid is degassed may be circulated to the synthesis reaction process of (meth) acrylic acid and reused. At this time, for the effective absorption of acetic acid, the acetic acid absorption tower 50 is operated under an internal pressure of 1 to 1.5 bar or 1 to 1.3 bar, and an internal temperature of 50 to 100 ° C or 50 to 80 ° C. Can be. In addition to the specific operating conditions of the acetic acid absorption tower (50). It may be according to the contents disclosed in Republic of Korea Patent Publication No. 2009-0041355.
(상분리 공정) (Phase Separation Process)
한편, 상기 흡수 공정을 통해 수득된 (메트)아크릴산수용액 및 후술할 추출 공정을 통해 수득된 (메트)아크릴산 추출액을 디캔터 (150)에서 상 분리하여 유기상과 수상을 얻는 상 분리 공정이 수행된다.  On the other hand, the (meth) acrylic acid aqueous solution obtained through the absorption process and the (meth) acrylic acid extract obtained through the extraction process to be described later in the decanter 150 is subjected to a phase separation process of obtaining an organic phase and an aqueous phase.
도 1을 참고하면, 디캔터 (150)에는 흡수탑 (100)으로부터 수용액 이송 라인 (1 15)을 통해 (메트)아크릴산 수용액이 공급되고, 이와 동시에, 추출 컬럼 (200)으로부터 추출액 이송 라인 (215)을 통해 (메트)아크릴산 추출액이 공급된다. 여기서, 디캔터 (150)는 서로 섞이지 않는 액상을 중력 또는 원심력 등에 의해 분리하는 장치로서, 상대적으로 가벼운 상 (예를 들어, 유기상)은 디캔터 (350)의 상부로, 상대적으로 무거운 상 (예를 들어, 수상)은 디캔터 (350)의 하부로 회수된다. 여기서, 상기 유기상에는 추출 공정에서 사용된 추출 용매와 그에 용해된 (메트)아크릴산이 포함되고, 상기 수상에는 흡수 공정에서 사용된 흡수 용제와 그에 용해된 (메트)아크릴산이 포함된다. 그리고, 상대적으로 가벼운 상인 상기 유기상은 디캔터 (150)의 상부 배출구를 통해 수득되고, 상대적으로 무거운 상인 상기 수상은 디캔터 (150)의 하부 배출구를 통해 수득된다. 상기 유기상은 유기상 이송 라인 (153)을 통해 증류 컬럼 (300)에 공급되어 용매의 분리가 이루어지고, 상기 수상은 수상 이송 라인 (152)을 통해 추출 컬럼 (200)에 공급되어 물 (흡수 용제)의 분리가 이루어진다. Referring to FIG. 1, the decanter 150 is supplied with an aqueous (meth) acrylic acid solution from the absorption tower 100 through an aqueous solution transfer line 1 15, and at the same time, an extract liquid transfer line 215 from the extraction column 200. The (meth) acrylic acid extract is supplied via. Here, the decanter 150 is a device for separating liquid phases that are not mixed with each other by gravity or centrifugal force, and the like, and a relatively light phase (for example, an organic phase) At the top of the decanter 350, a relatively heavy phase (eg water phase) is withdrawn to the bottom of the decanter 350. Here, the organic phase includes the extraction solvent used in the extraction process and (meth) acrylic acid dissolved therein, and the water phase includes the absorption solvent used in the absorption process and (meth) acrylic acid dissolved therein. And, the organic phase, which is a relatively light phase, is obtained through the upper outlet of the decanter 150, and the aqueous phase, which is a relatively heavy phase, is obtained through the lower outlet of the decanter 150. The organic phase is supplied to the distillation column 300 through the organic phase transfer line 153 to separate the solvent, and the aqueous phase is supplied to the extraction column 200 through the aqueous phase transfer line 152 to provide water (absorbent solvent). Separation takes place.
이때, 상기 추출 컬럼 (200)에 공급되는 수상은 상기 흡수 공정을 통해 수득된 (메트)아크릴산 수용액보다 현저히 낮은 수준의 (메트)아크릴산 농도를 갖는다. 즉, 상기 디캔터 (150)에 공급되는 (메트)아크릴산 수용액과 (메트)아크릴산 추출액에 포함된 (메트)아크릴산 중 적어도 40 %, 바람직하게는 40 내지 95 %, 또는 40 내지 90 %, 또는 50 내지 90 %, 또는 60 내지 85 0/。의 (메트)아크릴산은 상기 유기상을 통해 회수될 수 있다. 따라서, 상기 디캔터 (150)에서 상 분리를 통해 얻어진 수상은 그만큼 낮아진 수준의 (메트)아크릴산 농도를 나타낼 수 있다. At this time, the aqueous phase supplied to the extraction column 200 has a (meth) acrylic acid concentration of significantly lower than the (meth) acrylic acid aqueous solution obtained through the absorption process. That is, at least 40%, preferably 40 to 95%, or 40 to 90%, or 50 to 40% of the (meth) acrylic acid aqueous solution supplied to the decanter 150 and the (meth) acrylic acid contained in the (meth) acrylic acid extract are 90%, or 60 to 85 0 /. Of (meth) acrylic acid can be recovered through the organic phase. Thus, the water phase obtained through phase separation in the decanter 150 may exhibit a lower level of (meth) acrylic acid.
비제한적인 예로, 상기 흡수 공정을 통해 (메트)아크릴산의 농도 약 65 중량0 /。인 (메트)아크릴산 수용액이 얻어진 경우, 상기 (메트)아크릴산 수용액에 포함된 (메트)아크릴산의 적어도 40 0/。는 상기 디캔터 (150)에서의 상 분리를 통해 유기상으로 회수될 수 있다. 그리고, 상기 디캔터 (150)에서의 상 분리를 통해 얻어지는 수상은 그만큼 낮아진 (메트)아크릴산 농도 (예를 들어, (메트)아크릴산 농도 약.39 중량0 /。 이하)를 나타낼 수 있다. 이와 같이, 고농도의 (메트)아크릴산 '수용액 및 추출액을 디캔터 (150)에서 상 분리하고, 이를 통해 (메트)아크릴산 농도가 낮아진 수상을 추출 컬럼 (200)에 도압함으로써, 추출 공정의 부하를 효과적으로 낮출 수 있다. 나아가, 상기 상 분리를 통해 얻어진 고농도의 (메트)아크릴산을 함유한 유기상을 증류 컬럼 (300)에 공급함으로써 증류 공정의 부하를 낮출 수 있다. (추출공정) As a non-limiting example, when the absorption process yields an aqueous (meth) acrylic acid solution having a concentration of (meth) acrylic acid at a concentration of about 65% by weight 0 /., At least 40 0 / of the (meth) acrylic acid contained in the (meth) acrylic acid aqueous solution Can be recovered to the organic phase through phase separation in the decanter 150. And, water is obtained through the phase separation in the decanter 150 may indicate a much lower (meth) acrylic acid concentration (e.g., (meth) acrylic acid concentration of about 39 weight 0 /. Or less). As such, the high concentration of the (meth) acrylic acid ' aqueous solution and the extract are phase separated in the decanter 150, through which the water phase having a lower concentration of (meth) acrylic acid is applied to the extraction column 200, thereby effectively reducing the load of the extraction process. Can be. Furthermore, the load of the distillation process can be reduced by supplying the organic phase containing the high concentration of (meth) acrylic acid obtained through the phase separation to the distillation column 300. Extraction process
한편, 상기 상 분리 공정을 통해 수득된 수상을 추출 컬럼에서 추출 용매와 접촉시켜 (메트)아크릴산 추출액과 그 추잔액을 얻는 추출 공정이 수행된다.  On the other hand, the extraction process of obtaining the (meth) acrylic acid extract and its balance by contacting the aqueous phase obtained through the phase separation process with the extraction solvent in the extraction column.
발명의 구현 예에 따르면, 흡수 공정에서 수득된 (메트)아크릴산 수용액을 추출 공정으로 공급하고 그 추출액을 증류 공정으로 공급하는 일반적인 회수 방법과 달리, 상기 (메트)아크릴산 수용액과 그 추출액이 흔합된 스트림을 디캔터 (150)에 정치시켜 상 분리를 유도한 후, 그로부터 회수된 수상을 추출 공정에 공급하고, 나머지 유기상을 증류 공정에 공급한다. 이를 통해 (메트)아크릴산 농도를 낮춘 수상이 추출 공정에 공급됨에 따라, 추출 공정의 부하를 효과적으로 낮출 수 있다. 즉, 상기 추출 공정에서는 액-액 추출시 보다 격렬한 교반 조건 하에서도 플러딩 현상의 억제가 가능하고, 유사 규모의 추출 컬럼 하에서 처리할 수 있는 피드 처리량 (feed throughput)이 증대될 수 있다. 나아가, 이러한 방법은 추출 공정의 운전시 용매 /피드 비 (solvent/feed ratio)를 줄여도 추출 효율이 안정적으로 유지되어 추출 용매의 사용량 절감을 가능케 한다. 또한, 이러한 효과로 인해 추출 공정에 후속되는 증류 공정에서의 에너지 절감이 가능해진다.  According to an embodiment of the present invention, unlike the general recovery method of supplying the aqueous (meth) acrylic acid solution obtained in the absorption process to the extraction process and the extract to the distillation process, the stream in which the aqueous (meth) acrylic acid solution and the extract solution are mixed After standing in the decanter 150 to induce phase separation, the aqueous phase recovered therefrom is supplied to the extraction process, and the remaining organic phase is supplied to the distillation process. As a result, the water phase having lowered the (meth) acrylic acid concentration is supplied to the extraction process, thereby effectively reducing the load of the extraction process. That is, in the extraction process, it is possible to suppress the flooding phenomenon under more vigorous stirring conditions during liquid-liquid extraction, and increase the feed throughput that can be processed under a similarly scaled extraction column. Furthermore, this method enables the extraction efficiency to be stably maintained even though the solvent / feed ratio is reduced during the operation of the extraction process, thereby reducing the amount of extraction solvent used. This effect also enables energy savings in the distillation process following the extraction process.
발명의 구현 예에 따르면, 디캔터 (150)로부터 수상 이송 라인 (152)을 통해 추출 컬럼 (200)에 공급된 상기 수상은 추출 용매와 접촉하여, 상당량의 (메트)아크릴산이 추출 용매에 용해된 추출액 (extract solution)과 (메트)아크릴산의 상당량을 잃은 추잔액 (raffinate solution)으로 각각 배출된다. 이때, 상대적으로 가벼운 상인 상기 추출액은 추출 컬럼 (200)의 상부 배출구를 통해 수득되고, 상대적으로 무거운 상인 상기 추잔액은 추출 컬럼의 하부 배출구를 통해 수득된다. 상기 추잔액은 추출 컬럼 (200)으로부터 배출되기 전에, 추출 컬럼의 하부 정치 구간에 일정 수준의 양이 정치된 상태로 존재하며, 그 중 일부가 추출 컬럼의 하부 배출구로 배출된다.  According to an embodiment of the invention, the aqueous phase supplied from the decanter 150 to the extraction column 200 via the aqueous phase transfer line 152 is in contact with an extraction solvent, whereby an extract liquid in which a significant amount of (meth) acrylic acid is dissolved in the extraction solvent. It is discharged as a traffic solution which has lost a significant amount of extract solution and (meth) acrylic acid, respectively. At this time, the relatively light phase of the extract is obtained through the upper outlet of the extraction column 200, the relatively heavy phase of the extract is obtained through the lower outlet of the extraction column. Before the extraction liquid is discharged from the extraction column 200, a certain amount is left in a fixed state in the lower stationary section of the extraction column, some of which is discharged to the lower outlet of the extraction column.
그리고, 상기 추출 공정에서 상기 추잔액은 추잔액 이송 라인 (235)을 통해 디캔터 (350)에 공급되어 증류 컬럼 (300)의 상부 배출액과 함께 수상과 유기상으로 상 분리 처리될 수 있다. 그런데, 상기 추잔액에는 스컴 (scum)이 포함되어 있을 수 있으므로, 상기 추잔액을 여과하여 스컴을 제거 ;한 후, 그 여액을 디캔터 (350)로 공급하는 것이 운전 안정성의 확보 측면에서 바람직할 수 있다. 또한 선택적으로, 상기 추잔액은 상기 흡수 공정으로 순환되어 (메트)아크릴산의 흡수 용제로도 사용될 수 있다. In the extraction process, the balance is supplied to the decanter 350 through the balance transfer line 235, and the aqueous phase together with the upper discharge of the distillation column 300. Phase separation into the organic phase. By the way, since the scum may contain scum, the scum is filtered to remove scum ; After that, supplying the filtrate to the decanter 350 may be preferable in terms of securing operational stability. Also optionally, the balance may be circulated in the absorption process and used as an absorption solvent of (meth) acrylic acid.
한편, 상기 추출 컬럼 (200)에 공급되는 추출 용매는 (메트)아크릴산에 대한 가용성과 소수성을 갖는 것일 수 있다. 다만, 후속 공정인 증류 컬럼 (300)에서 요구되는 공비 용매의 물성을 감안하여, 상기 추출 용매는 (메트)아크릴산 보다 낮은 끓는 점을 갖는 것이 바람직하다. 예를 들어, 상기 추출 용매는 120 °C 이하, 또는 10 내지 120 °C , 또는 50 내지 120 °C의 끓는 점을 갖는 소수성 용매일 수 있다. Meanwhile, the extraction solvent supplied to the extraction column 200 may have solubility and hydrophobicity for (meth) acrylic acid. However, in view of the physical properties of the azeotropic solvent required in the subsequent distillation column 300, the extraction solvent preferably has a lower boiling point than (meth) acrylic acid. For example, the extraction solvent may be daily for a hydrophobic having a boiling point of 120 ° C or less, or from 10 to 120 ° C, or from 50 to 120 ° C.
구체적으로, 상기 추출 용매는 벤젠 (benzene), 를루엔 (toluene), 자일렌 (xylene), n-헵탄 (n-heptane), 사이클로헵탄 (cycloheptane), 사이클로헵텐 (cycloheptene), 1-헵텐 (1-heptene), 에틸 -벤젠 (ethyl-benzene), 메틸-사이클로핵산 (methyl-cyclohexane), n-부틸 아세테이트 (n-butyl acetate), 이소부틸 아세테이트 (isobutyl acetate), 이소부틸 아크릴레이트 (isobutyl acrylate), n-프로필 아세테이트 (n-propyl acetate), 이소프로필 아세테이트 (isopropyl acetate), 메틸 이소부틸 케톤 (methyl isobutyl ketone), 2-메틸 -1 -헵텐 (2-methyl-1 -heptene), 6-메틸 -1 -헵텐 (6-methyl-1 -heptene), 4-메틸 -1 -헵텐 (4-methyl-1 -heptene), 2-에틸 -1 -핵센 (2-ethyl-1 -hexene), 에틸사이클로펜탄 (ethylcydopentane), 2-메틸 -1 -핵센 (2-methyl-1 -hexene), 2,3-디메틸펜탄 (2,3-dimethylpentane), 5-메틸 -1 -핵센 (5-methyl-1 -hexene), 및 이소프로필-부틸-에테르 (isopropyl-butyl-ether)로 이루어진 군에서 선택된 1종 이상의 용매일 수 있다.  Specifically, the extraction solvent is benzene, toluene, xylene, n-heptane, n-heptane, cycloheptane, cycloheptene, 1-heptene (1 -heptene, ethyl-benzene, methyl-cyclohexane, n-butyl acetate, isobutyl acetate, isobutyl acrylate , n-propyl acetate, isopropyl acetate, methyl isobutyl ketone, 2-methyl-1 -heptene, 2-methyl-1 -heptene, 6-methyl -1 -heptene (6-methyl-1 -heptene), 4-methyl-1 -heptene (4-methyl-1 -heptene), 2-ethyl-1 -nuxene (2-ethyl-1 -hexene), ethylcyclo Pentane (ethylcydopentane), 2-methyl-1 -nuxene (2-methyl-1 -hexene), 2,3-dimethylpentane (2,3-dimethylpentane), 5-methyl-1 -nuxene (5-methyl-1- hexene), and isopropyl-butyl-ether It may be one or more solvents selected from the group consisting of.
그리고, 상기 추출 용매의 공급량은, 추출 컬럼 (200)에 공급되는 수상에 대한 추출 용매 증량비 (solvent/feed ratio)가 0.8:1 내지 0.8:2, 또는 0.8:1 내지 0.8:1 .8, 또는 0.8:1 내지 0.8:1 .5, 또는 0.8:1 내지 0.8:1 .3인 범위에서 조절될 수 있다. 즉, 상기 수상에는 상대적으로 낮은 농도의 (메트)아크릴산이 포함되어 있기 때문에 추출 부하를 낮출 수 있고, 추출 공정의 운전시 용매 /피드 비 (solvent/feed ratio)를 줄여도 추출 효율이 안정적으로 유지될 수 있다. 특히, (메트)아크릴산 수용액을 추출 공정으로 공급하기 전에 디캔터에서 상 분리에 의해 (메트)아크릴산의 농도를 낮추기 때문에 추출 공정의 부하를 줄일 수 있다. 참고적으로, 디캔터가 구비되지 않은 추출 공정에서는 적절한 추출 효율의 확보를 위해 추출 용매가 추출 컬럼으로 공급되는 수상에 대하여 1 :1 이상의 중량비 (추출 용매: 수상의 중량비)를 유지해야 한다. 하지만, 발명의 구현 예와 같이, 디캔터가 구비된 추출 공정에서는 추출 용매가 추출 컬럼으로 공급되는 수상에 대하여 1 :1 이하 (예를 들어 0.8:1 )의 중량비로 유지되어도 우수한 추출 효율을 얻을 수 있다. 바꾸어 말하면, 동량의 추출 용매를 사용하여 더 많은 양의 피드에 대한 추출의 수행이 가능하다. 이처럼 추출 공정에 투입되는 추출 용매의 사용량을 줄일 수 있어, 후속되는 증류 컬럼 (300)에서 회수해야 하는 공비 용매의 양이 줄어들고, 이를 위한 에너지 소모를 절감할 수 있다. In addition, the supply amount of the extraction solvent, the solvent / feed ratio (solvent / feed ratio) to the water phase supplied to the extraction column 200 is 0.8: 1 to 0.8: 2, or 0.8: 1 to 0.8: 1 .8, Or 0.8: 1 to 0.8: 1 .5, or 0.8: 1 to 0.8: 1 .3. That is, since the aqueous phase contains relatively low concentration of (meth) acrylic acid, the extraction load can be lowered, and the extraction efficiency is reduced even when the solvent / feed ratio is reduced during the operation of the extraction process. It can be kept stable. In particular, since the concentration of (meth) acrylic acid is lowered by phase separation in a decanter before supplying the aqueous (meth) acrylic acid solution to the extraction process, the load of the extraction process can be reduced. For reference, in an extraction process without a decanter, a weight ratio (weight ratio of extraction solvent: aqueous phase) of 1: 1 or more should be maintained with respect to the aqueous phase to which the extraction solvent is supplied to the extraction column in order to ensure proper extraction efficiency. However, as in the embodiment of the present invention, in the extraction process with a decanter, excellent extraction efficiency can be obtained even if the extraction solvent is maintained at a weight ratio of 1: 1 or less (for example, 0.8: 1) with respect to the aqueous phase supplied to the extraction column. have. In other words, it is possible to perform extraction for larger amounts of feed using the same amount of extraction solvent. As such, the amount of the extraction solvent introduced into the extraction process can be reduced, thereby reducing the amount of azeotropic solvent to be recovered in the subsequent distillation column 300, thereby reducing energy consumption.
다만, 상기 추출 용매의 중량비가 0.8:2 를 초과하는 경우에도 추출 효율은 좋아질 수 있지만, 과량의 추출 용매가 사용될 경우 증류 컬럼 (300)에서 (메트)아크릴산의 손실량이 증가할 수 있으며, 이를 막기 위한 공비 용매의 환류 흐름이 과도하게 높아질 수 있어 바람직하지 않다.  However, even if the weight ratio of the extraction solvent exceeds 0.8: 2, the extraction efficiency may be improved, but when an excess amount of the extraction solvent is used, the amount of loss of (meth) acrylic acid in the distillation column 300 may increase, preventing it. The reflux flow of the azeotropic solvent for this can be excessively high, which is undesirable.
그리고, 발명의 일 구현 예에 따르면, 상기 추출 컬럼 (200)으로 공급되는 수상의 온도는 10 내지 7( C인 것이 추출 효율의 확보 측면에서 유리하다.  And, according to one embodiment of the invention, the temperature of the water phase supplied to the extraction column 200 is 10 to 7 (C is advantageous in terms of ensuring extraction efficiency.
상기 추출 공정에서 추출 컬럼 (200)으로는 액-액 접촉 방식에 따른 통상의 추출 컬럼이 특별한 제한 없이 이용될 수 있다. 비제한적인 예로, 상기 추출 컬럼 (200)은 Karr type의 왕복 플레이트 컬럼 (Karr type reciprocating plate column), 회전-원판형 컬럼 (rotary-disk contactor), Scheibel 컬럼, Kuhni 컬럼, 분무 추출 타워 (spray extraction tower), 충진 추출 타워 (packed extraction tower), 펄스 충진 컬럼 (pulsed packed column) 등일 수 있다.  As the extraction column 200 in the extraction process, a conventional extraction column according to the liquid-liquid contacting method may be used without particular limitation. As a non-limiting example, the extraction column 200 may be a Karr type reciprocating plate column, a rotary-disk contactor, a Scheibel column, a Kuhni column, a spray extraction tower. tower, packed extraction tower, pulse packed column, and the like.
이와 같은 추출 공정을 통해, 추출 컬럼 (200)의 상부로는 (메트)아크릴산 추출액이 배출되고, 배출된 추출액은 이송 라인 (215)을 통해 디캔터 (150)로 공급된다. 즉, 추출 컬럼 (200)에서 수득된 (메트)아크릴산 추출액은 증류 컬럼 (300)에 직접적으로 공급되지 않고, 디캔터 (150)를 거쳐 상 분리된 유기상으로 증류 컬럼 (300)에 공급된다. 그리고, 추출 컬럼 (200)의 하부로는 추잔액이 배출되고, 배출된 추잔액은 이송 라인 (235)을 통해 디캔터 (350)로 공급된다. Through this extraction process, the (meth) acrylic acid extract is discharged to the upper portion of the extraction column 200, the discharged extract is supplied to the decanter 150 through the transfer line (215). That is, the (meth) acrylic acid extract obtained in the extraction column 200 is not directly supplied to the distillation column 300, but through the decanter 150. The phase separated organic phase is fed to distillation column 300. Then, the remaining balance is discharged to the lower portion of the extraction column 200, the discharged balance is supplied to the decanter 350 through the transfer line (235).
이때, 상기 추출액에는 목적 화합물인 (메트)아크릴산 이외에, 추출 용매, 물 및 유기 부산물이 포함되어 있을 수 있다. 비제한적인 예로, 안정적인 운전이 수행된 정상 상태에서, 상기 추출액에는 (메트)아크릴산 30 내지 40 중량0 /0, 추출 용매 55 내지 65 중량0 /0, 물 1 내지 5 중량0 /0, 및 잔량의 유기 부산물이 포함될 수 있다. 즉, 상기 추출 공정을 통해 (메트)아크릴산 수용액에 포함되어 있는 대부분의 물 (예를 들어 상기 수용액에 포함된 물의 85 중량 % 이상)은 추잔액으로 회수될 수 있다. In this case, in addition to (meth) acrylic acid as the target compound, the extract may include an extraction solvent, water, and an organic by-product. Non-limiting examples, in the normal state and a stable operation is performed, the extract has a (meth) acrylate, 30 to 40 parts by weight 0/0, the extraction solvent 55 to 65 parts by weight 0/0, water, 1 to 5 parts by weight 0/0, and the remaining May include organic by-products. That is, most of the water (eg, 85% by weight or more of the water contained in the aqueous solution) contained in the (meth) acrylic acid aqueous solution may be recovered through the extraction process.
그리고, 상기 추출 컬럼 (200)으로부터 수득되는 추잔액은 대부분 물로 이루어질 수 있으며, 추출되지 못한 (메트)아크릴산이 포함되어 있을 수 있다. 다만, 발명의 일 구현 예에 따르면, 상기 추잔액에는 농도 15 중량% 이하 또는 3 내지 15 중량 0/。의 (메트)아크릴산이 포함되어 있을 수 있어, 상기 흡수 공정과 추출 공정에서의 (메트)아크릴산의 손실이 최소화될 수 있다. ' And, the balance obtained from the extraction column 200 may be made of mostly water, it may contain (meth) acrylic acid not extracted. However, according to one embodiment of the invention, the weight balance may contain (meth) acrylic acid having a concentration of 15% by weight or less or 3 to 15% by weight 0 /. Loss of acrylic acid can be minimized. '
(증류공정) Distillation process
한편, 상기 상 분리 공정을 통해 수득된 유기상을 포함한 피드 (feed)를 증류하여 (메트)아크릴산을 얻는 증류 공정이 수행된다.  Meanwhile, a distillation process of distilling a feed including the organic phase obtained through the phase separation process to obtain (meth) acrylic acid is performed.
도 1과 같은 구현 예에서, 상기 피드는 디캔터 (150)에서 상 분리된 유기상으로서, 상기 유기상은 디캔터 (150)로부터 유기상 이송 라인 (153)을 통해 증류 컬럼 (300)으로 공급된다.  In the embodiment as shown in FIG. 1, the feed is an organic phase separated in the decanter 150, which is fed from the decanter 150 to the distillation column 300 through the organic phase transfer line 153.
그리고, 도 2와 같은 구현 예에서, 상기 피드는 전술한 흡수 공정으로부터 공급되는 (메트)아크릴산 수용액의 나머지와 전술한 상 분리 공정으로부터 공급되는 유기상의 흔합물일 수 있다. 이 경우, 상기 피드는 (메트)아크릴산 수용액 이송 라인 (130)과 유기상 이송 라인 (153)을 통해 증류 컬럼 (300)의 피드 포인트 (feed point)로 함께 공급될 수 있다.  And, in the embodiment as shown in Figure 2, the feed may be a mixture of the organic phase supplied from the above-described phase separation process with the remainder of the aqueous (meth) acrylic acid solution supplied from the above-described absorption process. In this case, the feed may be fed together to a feed point of the distillation column 300 through the (meth) acrylic acid aqueous solution transfer line 130 and the organic phase transfer line 153.
이때, 효율적인 증류가 이루어질 수 있도록 하기 위하여, 상기 피드가 공급되는 피드 포인트는 증류 컬럼 (300)의 중앙부인 것이 유리하며, 바람직하게는, 증류 컬럼 (300)의 최상단으로부터 전체 단의 40 내지 60%에 해당하는 어느 한 지점일 수 있다. At this time, in order to enable efficient distillation, the feed point to which the feed is supplied is advantageously the center of the distillation column 300, preferably, 40 to 60% of the entire stage from the top of the distillation column 300 on It may be any one point.
증류 컬럼 (300)으로 공급된 피드는, 증류 컬럼 (300)의 상부로 도입된 공비 용매와 접촉하게 되고, 적정 온도로 가열되면서 증발과 웅축에 의한 증류가 이루어진다.  The feed supplied to the distillation column 300 is brought into contact with the azeotropic solvent introduced into the upper portion of the distillation column 300, and is heated to an appropriate temperature to allow distillation by evaporation and expansion.
이때, 상기 피드에 포함된 (메트)아크릴산을 그 나머지 성분들 (예를 들어, 물, 초산, 추출 용매 등)로부터 효율적으로 분리하기 위하여, 상기 증류는 공비 증류 방식으로 수행되는 것이 바람직하다.  At this time, in order to efficiently separate (meth) acrylic acid included in the feed from the remaining components (eg, water, acetic acid, extraction solvent, etc.), the distillation is preferably carried out by azeotropic distillation.
상기 공비 증류 방식에 적용되는 용매는 물 및 초산과 공비를 이롤 수 있고, (메트)아크릴산과는 공비를 이루지 않는 소수성 공비 용매인 것이 바람직하다. 그리고, 상기 소수성 공비 용매는 (메트)아크릴산 보다 낮은 끓는 점 (예를 들어 120 이하, 또는 10 내지 120 °C , 또는 50 내지 120 °C의 끓는 점)을 갖는 것이 바람직하다. The solvent applied to the azeotropic distillation method can be azeotropic with water and acetic acid, preferably a hydrophobic azeotropic solvent that does not azeotropic with (meth) acrylic acid. In addition, the hydrophobic azeotropic solvent preferably has a lower boiling point (for example, 120 or less, or 10 to 120 ° C., or 50 to 120 ° C.).
구체적으로, 상기 소수성 공비 용매는 벤젠 (benzene), 를루엔 (toluene), 자일렌 (xylene), n-헵탄 (n-heptane), 사이클로헵탄 (cycloheptane), 사이클로헵텐 (cycloheptene), 1-헵텐 (1-heptene), 에틸 -벤젠 (ethyl-benzene), 메틸-사이클로핵산 (methyl-cyclc)hexane), n-부틸 아세테이트 (n-butyl acetate), 이소부틸 아세테이트 (isobutyl acetate), 이소부틸 아크릴레이트 (isobutyl acrylate), n-프로필 아세테이트 (π-prapyl acetate), 이소프로필 아세테이트 (isopropyl acetate), 메틸 이소부틸 케톤 (methyl isobutyl ketone), 2-메틸 -1 -헵텐 (2-methyl-1 -heptene), 6-메틸 -1 -헵텐 (6-methyl-1 -heptene),Specifically, the hydrophobic azeotropic solvent is benzene, toluene, xylene, n-heptane, n-heptane, cycloheptane, cycloheptene, 1-heptene ( 1-heptene), ethyl-benzene (ethyl-benzene), methyl-cyclopentane nucleic acid (me thyl-cyclc) hexane) , n- butyl acetate (n-butyl acetate), isobutyl acetate (isobutyl acetate), isobutyl acrylate (isobutyl acrylate), n-propyl acetate, isopropyl acetate, methyl isobutyl ketone, 2-methyl-1 -heptene , 6-methyl-1 -heptene (6-methyl-1 -heptene),
4-메틸 -1 -헵텐 (4-methyl-1 -heptene), 2-에틸 -1 -핵센 (2-ethy I -hexene), 에틸사이클로펜탄 (ethylcydopentane), 2-메틸 -1 -핵센 (2-methyl-1 -hexene), 2,3-디메틸펜탄 (2,3-dimethylpentane), 5-메틸 -1 -핵센 (5-methyl-1 -hexene) 및 이소프로필-부틸-에테르 (isoprapyl-butyl-ether)로 이루어진 군에서 선택되는 1종 이상의 용매일 수 있다. 4-methyl-1 -heptene (4-methyl-1 -heptene), 2-ethyl-1 -nuxene (2-ethy I -hexene), ethylcyclopentane (ethylcydopentane), 2-methyl-1 -nuxene (2- methyl-1 -hexene), 2,3-dimethylpentane, 5-methyl-1 -nuxene (5-methyl-1 -hexene), and isoprapyl-butyl-ether It may be one or more solvents selected from the group consisting of
그리고, 연속 공정에 따른 생산 효율 등을 감안하여, 상기 소수성 공비 용매는 상기 추출 공정의 추출 용매와 동일한 것이 바람직하다. 이와 같이 추출 공정과 증류 공정에 같은 종류의 용매가 사용될 경우, 증류 컬럼 (300)에서 증류되어 상 분리조 (350)를 통해 회수된 용매의 적어도 일부는 (메트)아크릴산 추출 컬럼 (200)으로 공급되어 추출 용매로 재사용될 수 있다. In view of the production efficiency according to the continuous process, the hydrophobic azeotropic solvent is preferably the same as the extraction solvent of the extraction process. When the same kind of solvent is used in the extraction process and the distillation process as described above, at least a part of the solvent distilled from the distillation column 300 and recovered through the phase separation tank 350 is supplied to the (meth) acrylic acid extraction column 200. Can be reused as extraction solvent Can be.
이와 같은 증류 공정을 통해, 상기 피드 중 (메트)아크릴산을 제외한 나머지 성분들은 공비 용매와 함께 증류 컬럼 (300)의 상부로 배출되고, (메트)아크릴산은 증류 컬럼 (300)의 하부로 배출된다.  Through such a distillation process, the remaining components except for (meth) acrylic acid in the feed are discharged to the top of the distillation column 300 with the azeotropic solvent, and (meth) acrylic acid is discharged to the bottom of the distillation column (300).
이때, 증류 컬럼 (300)의 상부 배출액은 디캔터 (350)에 공급되어 소정의 처리 후 재사용될 수 있다. 일 예로, 증류 컬럼 (300)의 상부 배출액은 디캔터 (350)에서 공비 용매를 포함하는 유기상과 물을 포함하는 수상으로 분리될 수 있다. 여기서, 분리된 유기상은 증류 컬럼 (300)의 상단부로 공급되어 공비 용매로써 사용될 수 있다. 그리고, 필요에 따라, 상기 유기상의 적어도 일부는 추출 컬럼 (200)으로 공급되어 추출 용매로써 사용될 수 있다. 그리고, 디캔터 (350)에서 분리된 수상의 적어도 일부는 (메트)아크릴산 흡수탑 (100)으로 공급되어 흡수 용제로써 사용될 수 있고ᅳ 일부는 폐수로 처리될 수 있다. 그리고, 상기 수상에는 초산이 일부 포함되어 있을 수 있는데, 상기 수상에 포함된 초산의 농도는 공비 용매의 종류 및 환류비 등에 따라 달라질 수 있다. 비제한적인 예로, 상기 수상에 포함되는 초산의 농도는 1 내지 50 중량0 /0, 또는 2 내지 40 중량0 /0, 또는 3 내지 30 중량0 /0일 수 있다. In this case, the upper discharge liquid of the distillation column 300 may be supplied to the decanter 350 to be reused after a predetermined treatment. As an example, the top discharge of the distillation column 300 may be separated into an organic phase including an azeotropic solvent and an aqueous phase including water in the decanter 350. Here, the separated organic phase can be fed to the top of the distillation column 300 and used as an azeotropic solvent. And, if necessary, at least a portion of the organic phase may be supplied to the extraction column 200 to be used as the extraction solvent. At least a portion of the aqueous phase separated from the decanter 350 may be supplied to the (meth) acrylic acid absorption tower 100 to be used as an absorption solvent, and some may be treated with wastewater. The acetic acid may be partially contained in the aqueous phase, and the concentration of acetic acid included in the aqueous phase may vary depending on the type of azeotropic solvent and the reflux ratio. Non-limiting examples, the concentration of acetic acid contained in the water phase may be 1 to 50 parts by weight 0/0, or 2 to 40 parts by weight 0/0, or from 3 to 30 wt. 0/0.
한편, 상기 (메트)아크릴산 수용액은 (메트)아크릴산 흡수탑 (100), 디캔터 (150), 추출 컬럼 (200), 및 증류 컬럼 (300) 등을 거치면서, 상기 수용액에 포함된 (메트)아크릴산의 적어도 일부가 이량체 또는 올리고머를 형성할 수 있다. 이와 같은 (메트)아크릴산의 중합을 최소화하기 위하여, 증류 컬럼 (300)에는 통상적인 중합 방지제가 첨가될 수 있다.  Meanwhile, the (meth) acrylic acid aqueous solution passes through the (meth) acrylic acid absorption tower 100, the decanter 150, the extraction column 200, and the distillation column 300, and the like. At least a portion of may form a dimer or oligomer. In order to minimize such polymerization of (meth) acrylic acid, a conventional polymerization inhibitor may be added to the distillation column 300.
그리고, 증류 컬럼 (300)의 하부 배출액에는 (메트)아크릴산 이외에 (메트)아크릴산의 중합체와 같은 고비점 부산물 중합 방지제 등이 포함되어 있을 수 있다. 따라서, 필요에 따라, 증류 컬럼 (300)의 하부 배출액을 고비점 부산물 분리탑 (400)에 공급하여 상기 하부 배출액에 포함된 고비점 부산물을 분리하는 단계가 추가로 수행될 수 있다. 그리고, 상기 과정을 통해 회수된 크루드 (메트)아크릴산 (CAA)은 추가적인 결정화 공정을 거쳐 보다 높은 순도의 (메트)아크릴산 (HPAA)으로 수득될 수 있다. 이때, 상기 고비점 부산물 분리 공정과 결정화 공정 등은 통상적인 조건 하에서 수행될 수 있으므로, 공정 조건 등은 구체적으로 한정하지 않는다. In addition, the bottom discharge liquid of the distillation column 300 may include a high boiling point byproduct polymerization inhibitor such as a polymer of (meth) acrylic acid in addition to (meth) acrylic acid. Therefore, if necessary, the step of separating the high boiling by-products included in the bottom discharge liquid by supplying the bottom discharge liquid of the distillation column 300 to the high boiling point by-product separation tower 400 may be performed. And, crude (meth) acrylic acid (CAA) recovered through the above process may be obtained as a higher purity (meth) acrylic acid (HPAA) through an additional crystallization process. At this time, the high boiling point by-product separation process and crystallization process may be performed under conventional conditions. As such, the process conditions and the like are not particularly limited.
한편, 이와 같은 (메트)아크릴산의 회수 방법에서, 전술한 각 단계들은 유기적이고 연속적으로 수행될 수 있다. 그리고, 전술한 단계들 이외에 각 단계의 이전 또는 이후 또는 동시에 통상적으로 수행될 수 있는 공정들이 더욱 포함되어 운용될 수 있다.  On the other hand, in such a method for recovering (meth) acrylic acid, each of the above-described steps can be performed organically and continuously. In addition to the above-described steps, processes that may be normally performed before, after, or simultaneously with each step may be further included and operated.
발명의 구현 예에 따른 (메트)아크릴산의 회수 방법에서 , 전술한 각 공정들은 유기적이고 연속적으로 수행될 수 있다. 그리고, 전술한 공정들 이외에 각 공정의 이전 또는 이후에 통상적으로 수행될 수 있는 공정들이 더욱 수행될 수 있다. 예를 들면, (메트)아크릴산 흡수탑 (100)에서 수득된 (메트)아크릴산 수용액을 (메트)아크릴산 추출 컬럼 (200)으로 공급하기 전에 별도의 탈기탑에 공급하여 저비점 부산물 (아크롤레인, 프로피온알데하드, 아세트알데히드, 포름알데히드, 아이소프로필 아세테이트 등)을 제거하는 공정 등이 추가로 수행될 수 있다. II. (메트ᅵ아크릴산의 연속회수 장치  In the method for recovering (meth) acrylic acid according to the embodiment of the present invention, each of the above-described processes may be performed organically and continuously. In addition to the above-described processes, processes that may be normally performed before or after each process may be further performed. For example, the (meth) acrylic acid aqueous solution obtained in the (meth) acrylic acid absorption tower (100) is fed to a separate degassing column before feeding to the (meth) acrylic acid extraction column (200) to produce low boiling point by-products (acrolein, propionaldehyde). , Acetaldehyde, formaldehyde, isopropyl acetate, etc.) may be further performed. II. (Metro acrylic continuous recovery device
한편, 본 발명의 다른 구현 예에 따르면,  Meanwhile, according to another embodiment of the present invention,
(메트)아크릴산의 합성반응에 의해 생성된 (메트)아크릴산, 유기 부산물 및 수증기를 포함하는 흔합 가스가 공급되는 흔합 가스 유입구와ᅳ 상기 흔합 가스와 물의 접촉에 의해 수득되는 (메트)아크릴산 수용액이 배출되는 수용액 배출구가 구비된 (메트)아크릴산 흡수탑 (100);  A mixed gas inlet to which a mixed gas containing (meth) acrylic acid, organic by-products and water vapor produced by the synthesis reaction of (meth) acrylic acid is supplied, and 수용액 an aqueous (meth) acrylic acid solution obtained by contacting the mixed gas with water is discharged. (Meth) acrylic acid absorption tower 100 is provided with an aqueous solution outlet;
상기 흡수탑 (100)의 수용액 배출구와 수용액 이송 라인 (1 15)을 통해 연결된 (메트)아크릴산 수용액 유입구, 후술할 추출 컬럼 (200)의 추출액 배출구와 추출액 이송 라인 (215)을 통해 연결된 (메트)아크릴산 추출액 유입구, 유입된 (메트)아크릴산 수용액 및 추출액의 상 분리에 의해 수득되는 유기상이 배출되는 유기상 배출구, 상기 상 분리에 의해 수득되는 수상이 배출되는 수상 배출구가 구비된 디캔터 (150);  (Meth) acrylic acid aqueous solution inlet connected to the aqueous solution outlet of the absorption tower 100 and the aqueous solution transfer line (1 15), the extract liquid outlet of the extraction column 200 to be described later and (meth) connected through the extract liquid transfer line (215) A decanter (150) provided with an acrylic acid extract inlet, an introduced (meth) acrylic acid aqueous solution and an organic phase outlet through which an organic phase obtained by phase separation of the extract is discharged, and an aqueous phase outlet through which the aqueous phase obtained by phase separation is discharged;
상기 디캔터 (150)의 수상 배출구와 수상 이송 라인 (152)을 통해 연결된 수상 유입구, 유입된 수상과 추출 용매의 접촉에 의해 수득되는 (메트)아크릴산 추출액이 배출되는 추출액 배출구, 및 그 추잔액이 배출되는 추잔액 배출구가 구비된 (메트)아크릴산 추출 컬럼 (200); 및 상기 디캔터 (150)의 유기상 배출구와 유기상 이송 라인 (153)을 통해 연결된 유기상 유입구, 유입된 유기상을 포함한 피드의 증류에 의해 수득되는 (메트)아크릴산이 배출되는 (메트)아크릴산 배출구가 구비된 증류 컬럼 (300) The water outlet of the decanter 150 and the water inlet connected through the water transfer line 152, the extraction liquid outlet through which the (meth) acrylic acid extract obtained by contacting the introduced water phase and the extraction solvent is discharged, and the balance thereof is discharged. A (meth) acrylic acid extraction column (200) equipped with a drainage liquid outlet; And A distillation column with an (meth) acrylic acid outlet through which an organic phase inlet of the decanter 150 and an organic phase inlet connected through an organic phase transfer line 153 and a (meth) acrylic acid obtained by distillation of a feed including the introduced organic phase are discharged. (300)
을 포함하는, (메트)아크릴산의 연속 회수 장치가 제공된다.  Provided is a continuous recovery apparatus for (meth) acrylic acid.
상기 구현 예에 따른 (메트)아크릴산의 연속 회수 장치는 전술한 (메트)아크릴산의 연속 회수 방법에 따라 작동될 수 있다.  The continuous recovery apparatus of (meth) acrylic acid according to the embodiment may be operated according to the above-described continuous recovery method of (meth) acrylic acid.
그리고, 발명의 구현, 예에 따르면, 상기 증류 컬럼 (300)에는 상기 흡수탑 (100)의 수용액 배출구와 수용액 이송 라인 (130)을 통해 연결된 수용액 유입구, 상기 디캔터 (150)의 유기상 배출구와 유기상 이송 라인 (153)을 통해 연결된 유기상 유입구, 및 유입된 수용액과 유기상의 흔합물에 대한 증류에 의해 수득되는 (메트)아크릴산이 배출되는 (메트)아크릴산 배출구가 구비되어 있고; 상기 흡수탑 (100)으로부터 배출되는 (메트)아크릴산 수용액의 일부는 상기 디캔터 (150)로 공급되고, 상기 (메트)아크릴산 수용액의 나머지는 상기 증류 컬럼 (300)으로 공급되도록 운전될 수 있다. And, according to the embodiment, the example of the invention, the distillation column 300, and the organic phase was transferred organic phase outlet of the aqueous solution inlet, the decanter 150 is connected through the solution outlet and the solution transfer line 130 of the absorber 100 An organic phase inlet connected via line 153 and a (meth) acrylic acid outlet through which (meth) acrylic acid obtained by distillation of a mixture of the introduced aqueous solution and the organic phase is discharged; A portion of the (meth) acrylic acid aqueous solution discharged from the absorption tower 100 may be supplied to the decanter 150, and the remainder of the (meth) acrylic acid aqueous solution may be supplied to the distillation column 300.
기본적으로, 상기 (메트)아크릴산 회수 장치는, (메트)아크릴산 흡수탑 (100), (메트)아크릴산 추출 컬럼 (200) 및 증류 컬럼 (300)을 포함한다. 특히, 발명의 구현 예에 따른 장치에서, 상기 흡수탑 (100)으로부터 배출되는 (메트)아크릴산 수용액과 상기 추출 컬럼 (200)으로부터 배출되는 (메트)아크릴산 추출액은 디캔터 (150)로 공급된다. 그리고, 디캔터 (150)에서 상 분리를 통해 회수된 유기상은 이송 라인 (153)을 통해 증류 컬럼 (300)으로 공급되고, 수상은 이송 라인 (152)을 통해 추출 컬럼 (200)으로 공급된다. 즉, 상기 (메트)아크릴산 회수 장치에서, 상기 흡수탑 (100)과 추출 컬럼 (200)은 디캔터 (150)를 매개로 연결되어 있다. 마찬가지로, 상기 추출 컬럼 (200)과 증류 컬럼 (300)은 디캔터 (150)를 매개로 연결되어 있다. 다만, 도 2에서와 같이, 상기 흡수탑 (100)과 증류 컬럼 (300)은 (메트)아크릴산 수용액 이송 라인 (130)을 통해 직접 연결되어 있을 수 있다.  Basically, the (meth) acrylic acid recovery device includes a (meth) acrylic acid absorption tower 100, a (meth) acrylic acid extraction column 200, and a distillation column 300. In particular, in the apparatus according to the embodiment of the present invention, the aqueous (meth) acrylic acid solution discharged from the absorption tower 100 and the (meth) acrylic acid extract discharged from the extraction column 200 are supplied to the decanter 150. The organic phase recovered through phase separation in the decanter 150 is supplied to the distillation column 300 through the transfer line 153, and the aqueous phase is supplied to the extraction column 200 through the transfer line 152. That is, in the (meth) acrylic acid recovery apparatus, the absorption tower 100 and the extraction column 200 are connected via a decanter 150. Similarly, the extraction column 200 and the distillation column 300 are connected via a decanter 150. However, as shown in FIG. 2, the absorption tower 100 and the distillation column 300 may be directly connected through the (meth) acrylic acid aqueous solution transfer line 130.
한편, (메트)아크릴산 흡수탑 (100)은 (메트)아크릴산 함유 흔합 가스 (1 )와 흡수 용제의 접촉 효율 향상을 위한 층진탑 (packed tower) 또는 다단식 트레이 탑 (multistage tray tower)일 수 있다. 여기서, 상기 층진탑은 내부에 래싱 링 (rashing ring), 폴 링 (pall ring), 새들 (saddle), 거즈 (gauze), 스트럭쳐 패킹 (structured packing) 등의 충진제가 적용된 것일 수 있다. Meanwhile, the (meth) acrylic acid absorption tower 100 may be a packed tower for improving the contact efficiency between the (meth) acrylic acid-containing mixed gas 1 and the absorption solvent. It may be a multistage tray tower. Here, the laminar tower may have a filler such as a rashing ring, a pall ring, a saddle, a gauze, a structured packing, or the like.
그리고, (메트)아크릴산 추출 컬럼 (200)으로는 액-액 접촉 방식에 따른 통상의 추출 컬럼이 특별한 제한 없이 적용될 수 있다. 비제한적인 예로, 상기 추출 컬럼 (200)은 Karr type의 왕복 플레이트 컬럼 (Karr type reciprocating plate column), 회전-원판형 컬럼 (rotary-disk contactor), Scheibel 컬럼, Kuhni 컬럼, 분무 추출 컬럼 (spray extraction column), 충진 추출 컬럼 (packed extraction column), 펄스 충진 컬럼 (pulsed packed column) 등일 수 있다  As the (meth) acrylic acid extraction column 200, a conventional extraction column according to a liquid-liquid contacting method may be applied without particular limitation. As a non-limiting example, the extraction column 200 may be a Karr type reciprocating plate column, a rotary-disk contactor, a Scheibel column, a Kuhni column, a spray extraction column. column, packed extraction column, pulse packed column, and the like.
증류 컬럼 (300)은 내부에 전술한 층전제가 포함된 팩 컬럼 또는 다단 컬럼, 바람직하게는 시브 트레이 컬럼 (sieve tray column), 듀얼플로우 트레이 컬럼 (dual flow tray c umn)이 구비된 것일 수 있다.  The distillation column 300 may be a pack column or a multi-stage column, preferably a sieve tray column and a dual flow tray column containing the above-described layering agent therein. .
이 밖에, 초산 흡수탑 (50), 디캔터 (150 및 350), 각종 이송 라인, 고비점 부산물 분리탑 (400) 등은 본 발명이 속하는 가술분야에서 통상적인 구성을 갖는 것일 수 있다.  In addition, the acetic acid absorption tower 50, decanters (150 and 350), various transfer lines, high boiling point by-product separation tower 400 and the like may have a conventional configuration in the art.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 (메트)아크릴산의 연속 회수 방법은 보다 안정적인 공정의 운용과 에너지 절감을 가능케 하고, 특히 (메트)아크릴산 수용액에 대한 추출 공정의 부하를 낮춤과 동시에, 추출 공정에서의 피드 처리량 증대와 추출 용매의 사용량 절감을 가능케 한다.  The continuous recovery method of (meth) acrylic acid according to the present invention enables more stable operation and energy saving, and in particular, lowers the load of the extraction process for the (meth) acrylic acid aqueous solution, and increases feed throughput in the extraction process. It is possible to reduce the amount of extraction solvent used.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 및 도 2는 각각 본 발명의 구현 예들에 따른 (메트)아크릴산의 연속 회수 방법 및 장치를 모식적으로 나타낸 것이다.  1 and 2 schematically show a method and apparatus for continuously recovering (meth) acrylic acid according to embodiments of the present invention, respectively.
【부호의 설명】  [Explanation of code]
1 : (메트)아크릴산 함유 흔합 가스  1: (meth) acrylic acid-containing mixed gas
50: 초산 흡수탑 · 100: (메트)아크릴산 흡수탑  50: acetic acid absorption tower100: (meth) acrylic acid absorption tower
115, 130: (메트)아크릴산 수용액 이송 라인  115, 130: (meth) acrylic acid aqueous solution transfer line
150, 350: 디캔터 (decanter) 152: 디캔터의 수상 이송 라인 150, 350: decanter 152: decanter water transfer line
153: 디캔터의 유기상 이송 라인  153: Organic Phase Transfer Line of Decanter
200: (메트)아크릴산 추출 컬럼  200: (meth) acrylic acid extraction column
215: 추출액 이송 라인  215: extract feed line
235: 추잔액 이송 라인  235: balance transfer line
300: 증류 컬럼  300: distillation column
400: 고비점 부산물 분리탑  400: high boiling point by-product separation tower
CAA: 크루드 (메트)아크릴산  CAA: Crude (meth) acrylic acid
HPAA: 고순도 (메트)아크릴산  HPAA: High Purity (meth) acrylic Acid
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. 실시예 1  Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto. Example 1
도 1과 같이, 디캔터 (150)가 구비된 Reciprocating plate column을 추출 컬럼 (200)으로 준비하였다. 추출 컬럼 (200)은 전체 50 단, 전체 높이 3 m이고 그 증 제 1 단 내지 제 6 단 (즉, 최상단을 포함한 상부 6 개 단)에 해당하는 컬럼의 내경은 45mm, 나머지 제 7 단 내지 제 50 단에 해당하는 컬럼의 내경은 22mm로 동일하였다. 그리고, 추출 컬럼 (200)의 각 단에 놓여 상하 반복 운동을 하는'다공판 (perforated plate) 중, 제 1 단 내지 제 6 단에 놓인 다공판의 개구율 (free area ratio)은 약 50%이고, 나머지 제 7 단 내지 제 50 단에 놓인 다공판의 개구율은 각각 약 28.3%이다. As shown in FIG. 1, a Reciprocating plate column equipped with a decanter 150 was prepared as an extraction column 200. The extraction column 200 has a total of 50 stages, a total height of 3 m, and an inner diameter of the column corresponding to the first to sixth stages (that is, the top six stages including the top stage) is 45 mm, and the remaining seventh stages to the third stage. The inner diameter of the column corresponding to 50 stages was the same as 22 mm. The free area ratio of the porous plates placed in the first to sixth stages is about 50% among the ' perforated plates ' which are placed at each stage of the extraction column 200 and repeat the vertical movement. The aperture ratios of the porous plates in the remaining seventh to fifty stages are about 28.3%, respectively.
그리고, 피드로 아크릴산 수용액 (아크릴산의 농도 약 64 중량0 /。)을 준비하였고, 추출 용매로 를루엔을 준비하였다. 아크릴산 수용액은 추출 컬럼 (200)의 추출액과 함께 디캔터 (150)에 공급되어 상 분리되었다. 그리고, 디캔터 (150)에서 상 분리된 수상 (아크릴산 농도 약 5 중량0 /。)은 추출 컬럼 (200)으로 공급되었고, 나머지 유기상은 증류 컬럼 (300)으로 공급되었다. 이때, 추출 컬럼 (200)에서 Solvent/Feed ratio는 약 1 .3으로 유지되었다. Then, an aqueous acrylic acid solution (concentration of acrylic acid about 64 weight 0 /.) Was prepared as a feed, and toluene was prepared as an extraction solvent. The aqueous acrylic acid solution was fed to the decanter 150 together with the extract of the extraction column 200 and phase separated. And, the water phase separated in the decanter 150 (acrylic acid concentration of about 5 weight 0 /.) Was fed to the extraction column 200, the remaining organic phase was fed to the distillation column (300). At this time, the Solvent / Feed ratio in the extraction column 200 was maintained at about 1.3.
그리고, 추출 컬럼 (200)의 피드 처리량과 연관되는 연속상 (유기상)의 선속도를 0.4 cm/s, 0.5 cm/s, 0.6 cm/s, 0.8 cm/s, 및 1.0 cm/s 로 각각 늘려주면서 아크릴산의 최대 추출율 ([추출액에 포함된 아크릴산의 질량] / [피드에 포함된 아크릴산의 질량] *100)을 측정하였다. 이때, 각 선속도에서의 최대 추출율은, 다공성 플레이트의 최대 기계적 반복 속도 (rpm; 즉, 플러딩 현상이 발생하기 직전의 최대 rpm) 조건 하에서 측정되었고, 그 결과를 하기 표 1에 나타내었다. 비교예 1 And the continuous phase (organic phase) associated with the feed throughput of the extraction column 200. Increase the linear velocity to 0.4 cm / s, 0.5 cm / s, 0.6 cm / s, 0.8 cm / s, and 1.0 cm / s, respectively, with the maximum extraction rate of acrylic acid ([mass of acrylic acid in the extract] / [ Mass of acrylic acid included] * 100). At this time, the maximum extraction rate at each linear velocity was measured under the conditions of the maximum mechanical repetition rate (rpm; that is, the maximum rpm immediately before the flooding phenomenon) of the porous plate, and the results are shown in Table 1 below. Comparative Example 1
디캔터 (150)가 구비되지 않은 것을 제외하고, 실시예 1에 이용된 Reciprocating plate cc)lumn과 동일한 규격의 컬럼을 추출 컬럼으로 준비하였다.  Except that the decanter 150 was not provided, a column having the same specifications as the Reciprocating plate cc) lumn used in Example 1 was prepared as an extraction column.
그리고, 피드로 아크릴산 수용액 (아크릴산의 농도 약 64 중량0 /。)을 준비하였고, 추출 용매로 를루엔을 준비하였다. 아크릴산 수용액과 를루엔은 추출 컬럼의 피드 투입구 (실시예 1의 수상 투입구에 대응) 및 용매 투입구에 공급되었다. 그리고, 추출 컬럼에서 수득된 추출액은 증류 컬럼으로 공급되었다. 이때, 추출 컬럼에서 S vent/Feed ratio는 약 1.3으로 유지되었다. And an acrylic acid aqueous solution (concentration of acrylic acid about 64 weight 0 /.) Was prepared as a feed, and toluene was prepared as an extraction solvent. The aqueous acrylic acid solution and toluene were supplied to the feed inlet (corresponding to the aqueous inlet of Example 1) and the solvent inlet of the extraction column. Then, the extract obtained in the extraction column was fed to the distillation column. At this time, the S vent / Feed ratio was maintained at about 1.3 in the extraction column.
그리고, 추출 컬럼의 피드 처리량과 연관되는 연속상 (유기상)의 선속도를 0.2 cm/s, 0.4 cm/s, 0.6 cm/s, 0.7 cm/s, 및 0.8 cm/s 로 각각 늘려주면서, 실시예 1과 동일한 방법으로 아크릴산의 최대 추출율을 측정하였다. 그리고, 그 결과를 하기 표 2에 나타내었다.  And increasing the linear velocity of the continuous phase (organic phase) associated with the feed throughput of the extraction column to 0.2 cm / s, 0.4 cm / s, 0.6 cm / s, 0.7 cm / s and 0.8 cm / s, respectively. The maximum extraction rate of acrylic acid was measured in the same manner as in Example 1. The results are shown in Table 2 below.
【표 1 1 Table 1 1
Figure imgf000023_0001
【표 2】
Figure imgf000023_0001
Table 2
Figure imgf000024_0001
표 2를 참고하면, 비교예 1은 추출 컬럼에서 유기상의 선속도가 0.4 cm/s로 낮게 운전될 때 아크릴산의 추출율이 99.46 0/。로 최대치를 나타내었다. 하지만, 비교예 1은 유기상의 선속도를 0.8 cm/s로 높일 경우 다공판의 운전 가능한 최대 rpm이 떨어지는 것으로 나타났다. 즉, 비교예 1의 경우 단위 시간당 피드 처리량이 증가할수록 상대적으로 낮은 rpm에서도 플러딩 (flooding) 현상이 발생하여 아크릴산의 추출율도 감소하는 것으로 나타났다.
Figure imgf000024_0001
Referring to Table 2, Comparative Example 1 exhibited a maximum extraction rate of 99.46 0 /. When the linear velocity of the organic phase in the extraction column was operated at a low 0.4 cm / s. However, in Comparative Example 1, when the linear velocity of the organic phase was increased to 0.8 cm / s, the maximum operable rpm of the porous plate was decreased. That is, in Comparative Example 1, as the feed throughput per unit time increased, flooding occurred at a relatively low rpm, and the extraction rate of acrylic acid was also decreased.
한편, 표 1을 참고하면, 실시예 1은 디캔터가 구비된 추출 컬럼을 이용함에 따라, 유기상의 선속도를 비교예 1에 비하여 높은 범위로 설정할 수 있었다. 특히, 실시예 1에서 유기상의 선속도가 0.8 cm/s인 경우, 비교예 1에서 유기상의 선속도가 0.4 cm/s인 경우에 비하여, 단위 시간당 피드 처리량이 2 배 가량 높^ 조건에서도 보다 격렬한 기계적 교반이 가능하여 동등 이상의 아크릴산 추출율을 나타내었다. 또한, 유기상의 선속도가 0.6 cm/s인 경우를 비교할 때, 실시예 1은 최대 165 rpm의 조건 하에서도 운전이 가능하였고, 가능 높은 아크릴산 추출율을 나타낼 수 있는 것으로 확인되었다. 실시예 2  On the other hand, referring to Table 1, Example 1 was able to set the linear velocity of the organic phase in a higher range compared to Comparative Example 1 by using an extraction column equipped with a decanter. In particular, when the linear velocity of the organic phase in Example 1 is 0.8 cm / s, the feed throughput per unit time is twice as high as in the comparative example 1 when the linear velocity of the organic phase is 0.4 cm / s. Mechanical agitation was possible, indicating an acrylic acid extraction rate of at least equal. In addition, when comparing the case where the linear velocity of the organic phase is 0.6 cm / s, it was confirmed that Example 1 was able to operate even under the condition of up to 165 rpm, it was possible to exhibit the highest acrylic acid extraction rate. Example 2
추출 컬럼 (200)에서 S이 vent/Feed ratio를 1 또는 1.3으로 조절하고, 추출 컬럼 (200)의 피드 처리량과 연관되는 연속상 (유기상)의 선속도를 0.5 cm/s로 고정한 것을 제외하고, 실시예 1과 동일한 방법으로 아크릴산의 최대 추출율을 측정하였다. 그리고, 그 결과를 하기 표 3에 나타내었다. 비교예 2 In the extraction column 200, except that S adjusts the vent / Feed ratio to 1 or 1.3 and the linear velocity of the continuous phase (organic phase) associated with the feed throughput of the extraction column 200 is fixed at 0.5 cm / s, In the same manner as in Example 1, the maximum extraction rate of acrylic acid was measured. The results are shown in Table 3 below. Comparative Example 2
디캔터 (150)가 구비되지 않은 것을 제외하고, 실시예 1에 이용된 Reciprocating plate ∞lumn과 동일한 규격의 컬럼을 추출 컬럼으로 준비하였다.  Except that the decanter 150 was not provided, a column of the same size as the Reciprocating plate ∞lumn used in Example 1 was prepared as an extraction column.
그리고, 추출 컬럼에서 Solvent/Feed ratio를 1 또는 1 .3으로 조절하고, 추출 컬럼의 피드 처리량과 연관되는 연속상 (유기상)의 선속도를 0.5 cm/s로 고정한 것을 제외하고, 실시예 1과 동일한 방법으로 아크릴산의 최대 추출율을 측정하였다. 그리고, 그 결과를 하기 표 4에 나타내었다.  And adjusting the solvent / feed ratio in the extraction column to 1 or 1.3 and fixing the linear velocity of the continuous phase (organic phase) associated with the feed throughput of the extraction column to 0.5 cm / s. In the same way, the maximum extraction rate of acrylic acid was measured. The results are shown in Table 4 below.
【표 3】 Table 3
Figure imgf000025_0001
Figure imgf000025_0001
Solvent/Feed ratio를 낮출 경우 운전 가능한 최대 rpm이 상승하였으나, 추잔액 내 아크릴산 농도가 높아져 아크릴산의 추출율이 1 % 이상 떨어지는 것으로 나타났다.  When the solvent / Feed ratio was lowered, the maximum rpm that could be operated increased, but the extraction rate of acrylic acid decreased by more than 1% due to the increase of the acrylic acid concentration in the balance.
한편, 표 3을 참고하면, 실시예 2의 경우 Sc)lvent/Feed ratio를 낮출 경우 비교예 2와 동등한 정도의 rpm으로 운전 가능하면서도 아크릴산의 추출율이 거의.떨어지지 않고 유지될 수 있는 것으로 나타났다. 요컨대, 아크릴산의 생산량 증대를 위해 피드의 처리 용량을 늘리고자 할 경우, 상기 실시예들과 같이 디캔터가 구비된 추출 컬럼을 이용하고 그 흐름을 조절함으로써, 추출 컬럼의 용량을 변경하지 않고도 공정 운용의 유연성을 증진시킬 수 있음이 확인되었다. 나아가, 상기 실시예들의 방법에 따르면, Solvent/Feed ratio를 감소시켜 운전할 수 있어, 용매의 사용량을 줄일 수 있고, 증류 공정에서의 에너지 소비량을 줄일 수 있다. On the other hand, referring to Table 3, in case of lowering the Sc) lvent / Feed ratio in Example 2 can be operated at the same rpm as Comparative Example 2, while the extraction rate of acrylic acid is almost . It has been shown that it can be maintained without falling off. In other words, in order to increase the processing capacity of the feed to increase the production of acrylic acid, using an extraction column equipped with a decanter as in the above embodiments, It has been found that by adjusting the flow, it is possible to increase the flexibility of the process operation without changing the volume of the extraction column. Furthermore, according to the method of the embodiments, it can be operated by reducing the Solvent / Feed ratio, it is possible to reduce the amount of solvent used, and to reduce the energy consumption in the distillation process.

Claims

【청구범위】 [Claim]
【청구항 1】 [Claim 1]
(메트)아크릴산의 합성반웅에 의해 생성된 (메트)아크릴산, 유기 부산물 및 수증기를 포함하는 흔합 가스를 (메트)아크릴산 흡수탑에서 물과 접촉시켜 (메트)아크릴산 수용액을 얻는 흡수 공정;  An absorption step of bringing a mixed gas comprising (meth) acrylic acid, organic by-products and water vapor generated by the synthesis reaction of (meth) acrylic acid into water in a (meth) acrylic acid absorption tower to obtain an aqueous (meth) acrylic acid solution;
상기 흡수 공정을 통해 수득된 (메트)아크릴산 수용액과 후술할 추출 공정을 통해 수득된 (메트)아크릴산 추출액을 디캔터에서 상 분리하여 유기상과 수상을 얻는 상 분리 공정;  A phase separation step of phase-separating the (meth) acrylic acid aqueous solution obtained through the absorption process and the (meth) acrylic acid extract obtained through the extraction process to be described later in a decanter to obtain an organic phase and an aqueous phase;
상기 상 분리 공정을 통해 수득된 수상을 추출 컬럼에서 추출 용매와 접촉시켜 (메트)아크릴산 추출액과 추잔액을 얻는 추출 공정 ; 및  An extraction step of contacting the aqueous phase obtained through the phase separation step with an extraction solvent in an extraction column to obtain a (meth) acrylic acid extract and an extract; And
상기 상 분리 공정을 통해 수득된 유기상을 포함한 피드 (feed)를 증류하여 (메트)아크릴산을 얻는 증류 공정  Distillation process of distilling a feed containing the organic phase obtained through the phase separation process to obtain (meth) acrylic acid
을 포함하는 (메트)아크릴산의 연속 회수 방법.  Continuous recovery method of (meth) acrylic acid containing a.
【청구항 2】 [Claim 2]
제 1 항에 있어서,  The method of claim 1,
(메트)아크릴산의 합성반웅에 의해 생성된 (메트)아크릴산, 유기 부산물 및 수증기를 포함하는 흔합 가스를 (메트)아크릴산 흡수탑에서 물과 접촉시켜 (메트)아크릴산 수용액을 얻는 흡수 공정;  An absorption step of bringing a mixed gas comprising (meth) acrylic acid, organic by-products and water vapor generated by the synthesis reaction of (meth) acrylic acid into water in a (meth) acrylic acid absorption tower to obtain an aqueous (meth) acrylic acid solution;
상기 흡수 공정을 통해 수득된 (메트)아크릴산 수용액의 일부와 상기 추출 공정을 통해 수득된 (메트)아크릴산 추출액을 디캔터에서 상 분리하여 유기상과 수상을 얻는 상 분리 공정;  A phase separation process in which a part of the aqueous (meth) acrylic acid solution obtained through the absorption process and the (meth) acrylic acid extract obtained through the extraction process are separated in a decanter to obtain an organic phase and an aqueous phase;
상기 상 분리 공정을 통해 수득된 수상을 추출 컬럼에서 추출 용매와 접촉시켜 (메트)아크릴산 추출액과 추잔액을 얻는 추출 공정; 및  An extraction step of contacting the aqueous phase obtained through the phase separation process with an extraction solvent in an extraction column to obtain a (meth) acrylic acid extract and an extract; And
상기 흡수 공정을 통해 얻은 (메트)아 3릴산 수용액의 나머지와 상기 상 분리 공정을 통해 수득된 유기상을 포함한 피드 (feed)를 증류하여 (메트)아크릴산을 얻는 증류 공정  A distillation process of distilling a feed including the remainder of the aqueous (meth) acrylic acid solution obtained through the absorption process and the organic phase obtained through the phase separation process to obtain (meth) acrylic acid.
을 포함하는 (메트)아크릴산의 연속 회수 방법. Continuous recovery method of (meth) acrylic acid containing a.
【청구항 3】 [Claim 3]
게 1 항에 있어서,  According to claim 1,
상기 디캔터에서 상 분리하여 얻어진 유기상은 상기 (메트)아크릴산 수용액 및 상기 (메트)아크릴산 추출액에 포함된 (메트)아크릴산 중 적어도 40 %의 (메트)아크릴산을 함유하는, (메트)아크릴산의 연속 회수 방법.  The organic phase obtained by phase-separation in the said decanter is a method for continuous recovery of (meth) acrylic acid, containing (meth) acrylic acid of at least 40% of (meth) acrylic acid contained in the (meth) acrylic acid aqueous solution and the (meth) acrylic acid extract .
【청구항 4】 [Claim 4]
(메트)아크릴산의 합성반응에 의해 생성된 (메트)아크릴산, 유기 부산물 및 수증기를 포함하는 흔합 가스가 공급되는 흔합 가스 유입구와, 상기 흔합 가스와 물의 접촉에 의해 수득되는 (메트)아크릴산 수용액이 배출되는 수용액 배출구가 구비된 (메트)아크릴산 흡수탑 (100);  A mixed gas inlet supplied with a mixed gas containing (meth) acrylic acid, organic by-products and water vapor produced by the synthesis reaction of (meth) acrylic acid, and an aqueous (meth) acrylic acid solution obtained by contacting the mixed gas with water is discharged. (Meth) acrylic acid absorption tower 100 is provided with an aqueous solution outlet;
상기 흡수탑 (100)의 수용액 배출구와 수용액 이송 라인 (1 15)을 통해 연결된 (메트)아크릴산 수용액 유입구, 후술할 추출 컬럼 (200)의 추출액 배출구와 추출액 이송 라인 (215)을 통해 연결된 (메트)아크릴산 추출액 유입구, 유입된 (메트)아크릴산 수용액 및 추출액의 상 분리에 의해 수득되는 유기상이 배출되는 유기상 배출구, 상기 상 분리에 의해 수득되는 수상이 배출되는 수상 배출구가 구비된 디캔터 (150);  (Meth) acrylic acid aqueous solution inlet connected to the aqueous solution outlet of the absorption tower 100 and the aqueous solution transfer line (1 15), the extract liquid outlet of the extraction column 200 to be described later and (meth) connected through the extract liquid transfer line (215) A decanter (150) provided with an acrylic acid extract inlet, an introduced (meth) acrylic acid aqueous solution and an organic phase outlet through which an organic phase obtained by phase separation of the extract is discharged, and an aqueous phase outlet through which the aqueous phase obtained by phase separation is discharged;
상기 디캔터 (150)의 수상 배출구와 수상 이송 라인 (152)을 통해 연결된 수상 유입구, 유입된 수상과 추출 용매의 접촉에 의해 수득되는 (메트)아크릴산 추출액이 배출되는 추출액 배출구, 및 그 추잔액이 배출되는 추잔액 배출구가 구비된 (메트)아크릴산 추출 컬럼 (200); 및  The water outlet of the decanter 150 and the water inlet connected through the water transfer line 152, the extraction liquid outlet through which the (meth) acrylic acid extract obtained by contacting the introduced water phase and the extraction solvent is discharged, and the balance thereof is discharged. A (meth) acrylic acid extraction column (200) equipped with a drainage liquid outlet; And
상기 디캔터 (150)의 유기상 배출구와 유기상 이송 라인 (153)을 통해 연결된 유기상 유입구, 유입된 유기상을 포함한 피드의 증류에 의해 수득되는 (메트)아크릴산이 배출되는 (메트)아크릴산 배출구가 구비된 증류 컬럼 (300)  A distillation column having an organic phase inlet connected to the organic phase outlet of the decanter 150 and an organic phase inlet connected through the organic phase transfer line 153 and a (meth) acrylic acid outlet through which (meth) acrylic acid obtained by distillation of a feed including the introduced organic phase is discharged. (300)
을 포함하는, (메트)아크릴산의 연속 회수 장치.  A continuous recovery apparatus of (meth) acrylic acid, including.
[청구항 5】 [Claim 5]
제 4 항에 있어서,  The method of claim 4,
상기 증류 컬럼 (300)에는 상기 흡수탑 (100)의 수용액 배출구와 수용액 이송 라인 (130)을 통해 연결된 수용액 유입구, 상기 디캔터 (150)의 유기상 배출구와 유기상 이송 라인 (153)을 통해 연결된 유기상 유입구, 및 유입된 수용액과 유기상의 흔합물에 대한 증류에 의해 수득되는 (메트)아크릴산이 배출되는 (메트)아크릴산 배출구가 구비되어 있고; The distillation column 300 has an aqueous solution outlet and an aqueous solution of the absorption tower 100 Obtained by distillation of the aqueous solution inlet connected via transfer line 130, the organic phase outlet of the decanter 150 and the organic phase inlet connected via organic phase transfer line 153, and the mixture of the introduced aqueous solution and organic phase (meth) A (meth) acrylic acid outlet through which acrylic acid is discharged;
상기 흡수탑 (100)으로부터 배출되는 (메트)아크릴산 수용액의 일부는 상기 디캔터 (150)로 공급되고, 상기 (메트)아크릴산 수용액의 나머지는 상기 증류 컬럼 (300)으로 공급되도록 운전되는, (메트)아크릴산의 연속 회수 장치.  A part of the (meth) acrylic acid aqueous solution discharged from the absorption tower 100 is supplied to the decanter 150, and the remainder of the (meth) acrylic acid aqueous solution is operated to be supplied to the distillation column 300, (meth) Continuous recovery device of acrylic acid.
PCT/KR2015/011597 2014-11-14 2015-10-30 Continuous recovery method and apparatus of (meth)acrylic acid WO2016076559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0159168 2014-11-14
KR1020140159168A KR20160057928A (en) 2014-11-14 2014-11-14 Process for continuous recovering (meth)acrylic acid and apparatus for the process

Publications (1)

Publication Number Publication Date
WO2016076559A1 true WO2016076559A1 (en) 2016-05-19

Family

ID=55954597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011597 WO2016076559A1 (en) 2014-11-14 2015-10-30 Continuous recovery method and apparatus of (meth)acrylic acid

Country Status (2)

Country Link
KR (1) KR20160057928A (en)
WO (1) WO2016076559A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102080287B1 (en) 2016-12-06 2020-02-21 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid
KR102613321B1 (en) * 2021-08-30 2023-12-12 정철 F0rmaldehyde absorbing apparatus of formalin manufacturing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533750A (en) * 1979-07-19 1985-08-06 Mitsubishi Rayon Co. Ltd. Process for isolating methacrylic acid by extraction
JP2009242285A (en) * 2008-03-31 2009-10-22 Mitsubishi Chemicals Corp Method for producing acrylic acid
KR20140018791A (en) * 2012-08-03 2014-02-13 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid and apparatus for the process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533750A (en) * 1979-07-19 1985-08-06 Mitsubishi Rayon Co. Ltd. Process for isolating methacrylic acid by extraction
JP2009242285A (en) * 2008-03-31 2009-10-22 Mitsubishi Chemicals Corp Method for producing acrylic acid
KR20140018791A (en) * 2012-08-03 2014-02-13 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid and apparatus for the process

Also Published As

Publication number Publication date
KR20160057928A (en) 2016-05-24

Similar Documents

Publication Publication Date Title
US11033834B2 (en) Method of continuous recovery of (meth)acrylic acid and apparatus for the method
US11034642B2 (en) Method and apparatus for continuously recovering (meth)acrylic acid
WO2015012537A1 (en) Method and apparatus for continuously recovering (meth)acrylic acid
WO2016076559A1 (en) Continuous recovery method and apparatus of (meth)acrylic acid
KR101616553B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR101659541B1 (en) Process for continuous recovering (meth)acrylic acid
CN109071401B (en) Method for recovering (meth) acrylic acid
KR101601938B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR101628287B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR101642504B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR102251790B1 (en) Process for continuous recovering (meth)acrylic acid
WO2015012551A1 (en) Method and apparatus for continuously recovering (meth)acrylic acid
WO2015030470A1 (en) Method and device for continuously recovering (meth)acrylic acid
WO2018105993A1 (en) Recovery method for (meth)acrylic acid
WO2014021560A1 (en) Method for continuously recovering (meth)acrylate, and recovery apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859573

Country of ref document: EP

Kind code of ref document: A1