WO2016076547A1 - Multi-purpose nano-bubble mixing dissolver using gas-liquid - Google Patents
Multi-purpose nano-bubble mixing dissolver using gas-liquid Download PDFInfo
- Publication number
- WO2016076547A1 WO2016076547A1 PCT/KR2015/011094 KR2015011094W WO2016076547A1 WO 2016076547 A1 WO2016076547 A1 WO 2016076547A1 KR 2015011094 W KR2015011094 W KR 2015011094W WO 2016076547 A1 WO2016076547 A1 WO 2016076547A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- flow
- oxygen
- mixture
- circumferential surface
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/80—Falling particle mixers, e.g. with repeated agitation along a vertical axis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/74—Treatment of water, waste water, or sewage by oxidation with air
Definitions
- the present invention relates to a nano-bubble multi-purpose mixed dissolver using gas liquid, and more particularly, to a nano-bubble multi-purpose mixed dissolver using gas liquid capable of producing dissolved oxygen-rich oxygen dissolved water by determining the contact time of water with oxygen. will be.
- Oxygen dissolving device is used to dissolve oxygen or ozone in liquid such as waste water or water in waste water treatment plant, water treatment plant, water purifier, hydroponics for cultivation, farm, etc., or in bath system that improves skin disease such as atopy.
- a device used to produce oxygen water provided, it is mainly used for the purpose of increasing the gas dissolution rate of oxygen or ozone in a liquid such as water or waste water.
- the oxygen dissolving apparatus used in the related art has a problem in that the oxygen dissolution rate is low because the contact time through which water and oxygen flow together is short and oxygen is not sufficiently secured.
- the present applicant has been registered for the oxygen dissolving device in advance registration No. 10-1005103. Applicant has tried to develop an oxygen dissolving device that is easier to manufacture, and can further increase the oxygen dissolution rate by applying a pre-application method excellent in oxygen dissolution rate as described above.
- the present invention has been made to solve the above-mentioned problems, the gas-liquid to expand the flow path for oxygen and water flow, and to generate a vortex by interfering with the oxygen and water flowing through the flow path to improve the dissolved rate of oxygen
- the purpose is to provide a nano-bubble multi-purpose mixed dissolver using.
- Nano-bubble multi-purpose mixed dissolver using gas-liquid according to the present invention for achieving the above object is a first flow space therein so that the mixture of oxygen and water supplied through the water supply and the oxygen supply flows into the flow Is provided
- the inner container is formed with a first discharge port to discharge the mixture introduced into the first flow space to the outside on one side, the inner space is formed inside to accommodate the inner container, on one side
- An outer container having a second discharge port formed to discharge the mixture introduced into the inner space to the outside, and a flow passage of the mixture introduced into the inner space through the first discharge port and discharged into the second discharge port;
- the flow path expansion part is formed in the inner container and the outer container between the first and second outlets.
- the flow path expansion part protrudes in the direction of the inner circumferential surface of the outer container on the outer circumferential surface of the inner container, and a plurality of first guide members extending along the circumferential direction of the inner container, and the outer circumferential surface of the inner container on the inner circumferential surface of the outer container. Protruding to a plurality of second guide members extending along the circumferential direction of the outer container.
- the first guide member is formed in an annular shape along the circumferential direction of the inner container, and protrudes from the outer circumferential surface of the inner container so that a first gap is formed between an edge and an inner circumferential surface of the outer container. It is formed shorter than the width between the inner surface of the inner container and the inner peripheral surface of the outer container, the second guide member is formed in an annular shape along the circumferential direction of the outer container, the mixture between the edge and the inner peripheral surface of the inner container.
- the protruding length from the inner circumferential surface of the outer container is formed to be shorter than the width between the inner circumferential surface of the outer container and the outer circumferential surface of the inner container so that the second gap therebetween can be provided.
- the first and second guide members are alternately arranged along the longitudinal direction of the inner container.
- the first guide member protrudes toward the inner circumferential surface side of the outer container at a position spaced apart from each other along an edge to interfere with the mixture passing through the gap between the inner circumferential surface of the outer container and generate a vortex in the flow of the mixture.
- a plurality of first interference protrusions are formed, and the second guide member is spaced apart from each other along an edge to interfere with the mixture passing through a gap between the inner circumferential surface of the inner container and generate a vortex in the flow of the mixture.
- a plurality of second interference protrusions protruding toward the outer circumferential surface side of the inner container may be formed.
- the first and second guide members may be formed with a plurality of through holes penetrated in the vertical direction so as to generate a vortex in the flow of the mixture passing between the outer peripheral surface of the inner container and the inner peripheral surface of the outer container.
- the nano-bubble multi-purpose mixed dissolver using the gas liquid according to the present invention is installed in the first flow space, is connected to the water supply and the oxygen supply, and accommodates the mixture supplied through the water supply and the oxygen supply And dissolving the oxygen in the water and discharging the oxygen into the first flow space, wherein the auxiliary dissolving part is connected to the water supply part and the oxygen supply part, and is supplied from the water supply part and the oxygen supply part.
- a first auxiliary container having a second flow space provided therein to allow the mixture to flow therein, and having a third outlet for discharging the mixture mixed through the second flow space to one side to the outside;
- a plurality of partition walls extending toward the center of the first auxiliary container on the inner wall surface of the auxiliary container, and accommodates the first auxiliary container therein,
- a third flow space for accommodating the mixture discharged through the third discharge port is provided, and the mixture introduced into the third flow space at a position spaced upwardly or downwardly with respect to the third discharge port may be provided in the first flow path.
- a second auxiliary container having a fourth outlet for discharging into the space.
- Nano-bubble multi-purpose mixed dissolver using the gas liquid according to the present invention expands the flow path of oxygen and water flow, and interferes with the flow of oxygen and water flowing through the flow path to generate a vortex to improve the dissolved rate of oxygen There is an advantage that can produce oxygen dissolved water in which oxygen is dissolved.
- FIG. 1 is a partial cutaway perspective view of a nano-bubble multipurpose mixed dissolver using a gas liquid according to the present invention
- Figure 2 is a cross-sectional view of the nano-bubble multipurpose mixed dissolver using the gas liquid of Figure 1,
- FIG. 3 is a cross-sectional view of a first auxiliary container of the nano-bubble multipurpose mixed dissolver using a gas liquid according to another embodiment of the present invention
- Figure 4 is a partial cutaway perspective view of the nano-bubble multi-purpose mixed dissolver using a gas solution according to another embodiment of the present invention
- FIG. 5 is a cross-sectional view of a nano-bubble multipurpose mixed dissolver using a gas liquid according to another embodiment of the present invention.
- 1 to 2 show a nano-bubble multipurpose mixed dissolver 100 using a gas liquid according to the present invention.
- the nano-bubble multi-purpose mixed dissolver 100 using the gas solution is provided so that the mixture of oxygen and water supplied through the water supply unit 150 and the oxygen supply unit 160 flows in and flows therein.
- a first flow space 111 is provided, and an inner container 110 having a first discharge port 112 formed at one side to discharge the mixture introduced into the first flow space 111 to the outside, and the inside
- An inner space 121 is formed inside the container 110 so that the container 110 can be accommodated therein, and an outer container having a second discharge hole 122 formed at one side thereof to discharge the mixture introduced into the inner space 121 to the outside.
- the first and second outlets 120 and the first outlet 112 may extend the flow passage of the mixture introduced into the internal space 121 and discharged to the second outlet 122.
- the inner container 110 is formed in a cylindrical shape provided with a first flow space 111 therein to allow the mixture supplied through the auxiliary melting part 140 to flow therein, and a first outlet 112 is provided below.
- the lower surface is formed to be open.
- the first flow space 111 of the inner container 110 is formed in a size sufficient to accommodate the auxiliary melting portion 140, the inner container 110 is preferably extended in a vertical length.
- the undissolved oxygen discharged from the auxiliary dissolving unit 140 moves downward along the first flow space 111 with water and is dissolved in water.
- the outer container 120 is formed in a cylindrical shape provided with an inner space 121 to accommodate the inner container 110. At this time, the outer container 120 has a second discharge port 122 is formed on the upper surface, the discharge pipe 123 is installed to communicate with the second discharge port 122. Since the second outlet 122 is located above the first outlet 112, the undissolved oxygen passing through the inner container 110 flows upward with water and is dissolved in the water again.
- the flow path expansion unit 130 includes a plurality of first guide members 131 formed on the outer circumferential surface of the inner container 110 and a plurality of second guide members 132 formed on the inner circumferential surface of the outer container 120.
- the first guide member 131 protrudes toward the inner circumferential surface of the outer container 120 on the outer circumferential surface of the inner container 110 between the first and second discharge ports 112 and 122, and annularly along the circumferential direction of the inner container 110. Is extended. At this time, the first guide member 131 has a protruding length from the outer circumferential surface of the inner container 110 so that the space between the edge and the inner circumferential surface of the outer container 120 passes through the inner surface of the inner container 110. It is preferably formed shorter than the width between the inner circumferential surface of the outer container (120).
- the second guide member 132 protrudes toward the outer circumferential surface of the inner container 110 on the inner circumferential surface of the outer container 120 between the first and second outlets 112 and 122, and is annular along the circumferential direction of the outer container 120. Extends.
- the second guide member 132 has a protruding length from the inner circumferential surface of the outer container 120 so that a space through which the mixture passes between the edge and the outer circumferential surface of the inner container 110 has an inner surface of the inner container 110. It is preferably formed shorter than the width between the inner circumferential surface of the outer container (120).
- the first and second guide members 131 and 132 are alternately arranged along the longitudinal direction of the inner container 110.
- a flow passage through which the mixture between the first and second outlets 112 and 122 flows is zigzag along the vertical direction. Therefore, there is an advantage that the flow path through which the mixture flows is extended to increase the contact time of water and oxygen, thereby increasing the dissolution rate of oxygen in water.
- the flow path expansion unit 130 is not limited to the example shown in the drawing, but may also partition the mixture flow path between the first and second outlets 112 and 122 helically along the outer peripheral surface of the inner container (110).
- the auxiliary dissolving unit 140 includes a first auxiliary container 141, a plurality of first and second partitions 142 and 143 formed on an inner wall of the first auxiliary container 141, and a first auxiliary container 141. And a second auxiliary container 144 accommodated therein.
- the first auxiliary container 141 is installed in the third flow space 147 of the second auxiliary container 144, which will be described later, and has a second flow space therein to allow the mixture of water and oxygen to flow thereinto (flow). 145 is formed.
- the oxygen supply pipe 161 of the oxygen supply unit 160 and the water supply pipe 151 of the water supply unit 150 are connected to the upper end of the first auxiliary container 141.
- a third discharge port 146 is formed on the lower surface of the first auxiliary container 141 so that the mixture passing through the second flow space 145 can be discharged to the second auxiliary container 144.
- the first and second partitions 142 and 143 are formed in a plate shape having a predetermined thickness and protrude toward the center of the second flow space 145 on the inner wall surface of the first auxiliary container 141.
- the first and second partitions 142 and 143 are respectively installed on the inner side surfaces of the first auxiliary container 141 at positions opposite to each other with respect to the center line in the longitudinal direction of the first auxiliary container 141.
- the first and second partitions 142 and 143 may be alternately arranged in the vertical direction so as to extend the flow path of water.
- the first and second partitions 142 and 143 interfere with the flow of water flowing into the first auxiliary container 141 to generate vortices in the water flow, and the dissolution rate of oxygen to water is increased by the vortices.
- FIG. 3 Another embodiment of the first and second partitions 241 and 242 is illustrated in FIG. 3.
- first and second partitions 241 and 242 are respectively installed at positions spaced apart from each other along an up and down direction on the inner wall surface of the first auxiliary container 141, and on the inner wall surface of the first auxiliary container 141.
- the fixed one end is formed to be inclined so as to be located above the other end.
- the first and second partitions 241 and 242 are formed to be inclined at a predetermined angle with respect to the inner wall surface of the first auxiliary container 141, the mixture introduced into the first auxiliary container 141 is first and second. Even if it collides with the two partition walls 241 and 242, it may easily flow downward along the inclined surfaces of the first and second partition walls 241 and 242.
- the second auxiliary container 144 accommodates the first auxiliary container 141 therein, and allows the mixture discharged through the third outlet 146 of the first auxiliary container 141 to accommodate the third flow space ( 147 is formed into a cylindrical shape provided.
- the fourth discharge port communicated with the first flow space 111 so that the undissolved oxygen and water can be discharged into the first flow space 111 of the inner container 110 at the upper side of the second auxiliary container 144. 148 is formed.
- the outer surface of the first auxiliary container 141 and the connecting portion of the second auxiliary container 144 is packed to prevent leakage of oxygen contained in the third flow space 147 to the outside. It is preferable that a member is provided.
- the oxygen supply unit 160 is connected to the oxygen supply pipe 161 and the oxygen supply pipe 161 connected to the oxygen supply pipe 161 so that the end is connected to the first auxiliary container 141 to supply oxygen to the first auxiliary container 141.
- Oxygen generating member 162 is provided.
- the oxygen supply pipe 161 is provided with an oxygen control valve 163 to control the supply of oxygen and the amount of oxygen supply to the first auxiliary container 141.
- Oxygen control valve 163 is preferably composed of a solenoid valve so that the operator can easily operate.
- Oxygen generating member 162 is composed of an oxygen tank or a high-pressure oxygen or liquefied oxygen injecting oxygen generally used in order to supply oxygen to the first auxiliary container 141 through the oxygen supply pipe 161.
- the water supply unit 150 is connected between a water storage tank (not shown) in which water is accommodated, the water storage tank and the first auxiliary container 141, and a water supply pipe 151 having a flow path through which water is transferred;
- the pump 152 is installed in the water supply pipe 151 and pumps water contained in the water storage tank to supply the first auxiliary container 141.
- the oxygen supply unit 160 and the water supply unit 150 supply oxygen and water to the first auxiliary container 141 through the oxygen supply pipe 161 and the water supply pipe 151.
- the mixture of water and oxygen supplied to the first auxiliary container 141 flows from the upper side to the lower side in the second flow space 145 of the first auxiliary container 141 so that a part of the oxygen is dissolved in water.
- Water passing through the second flow space 145 and undissolved oxygen are discharged to the second auxiliary container 144 through the third outlet 146 provided on the lower surface of the first auxiliary container 141.
- Water and oxygen discharged through the first auxiliary container 141 are accommodated in the third flow space 147 of the second auxiliary container 144.
- oxygen introduced into the third flow space 147 rises upward and comes into contact with water to partially Is dissolved in water.
- Water and oxygen introduced into the first flow space 111 is discharged to the bottom surface of the outer container 120 by the inner container (110). Water and oxygen discharged to the bottom surface of the outer container 120 is moved to the second discharge port 122 side, it is transported along the flow path formed in a zigzag by the first and second guide members (131,132). At this time, the undissolved oxygen is dissolved in contact with water again.
- Nano-bubble multi-purpose mixed dissolver 100 using the gas solution according to the present invention configured as described above is to pass water and oxygen through the secondary dissolution unit 140, the inner container 110 and the passage expansion unit 130 Since the contact time with and to increase the dissolution rate of oxygen has the advantage.
- FIG. 4 illustrates first and second guide members 210 and 220 according to another embodiment of the present invention.
- the first guide member 210 is spaced apart from each other along the edge to interfere with the mixture passing through the gap between the inner circumferential surface of the outer container 120 to generate a vortex in the flow of the mixture
- a plurality of first interference protrusions 211 protruding toward the inner circumferential surface side of the outer container 120 are formed therein.
- the first interference protrusion 211 may be formed in a dovetail shape in which the width increases as it protrudes from the edge of the first guide member 210.
- the second guide member 220 is located in the inner container spaced apart from each other along the edge to interfere with the mixture passing through the gap between the outer circumferential surface of the inner container 110 to generate a vortex in the flow of the mixture, A plurality of second interference protrusions 221 protruding toward the outer circumferential surface side of 110 are formed.
- the second interference protrusion 221 may be formed in a dovetail shape in which a width thereof increases as it protrudes from an edge of the second guide member 220.
- the mixture flowing between the first and second outlets 112 and 122 is interrupted by the first and second interfering protrusions 211 and 221 to generate vortices in the flow, and the dissolution rate of oxygen to water is increased by the vortices. There is this.
- FIG. 5 illustrates first and second guide members 310 and 320 according to another embodiment of the present invention.
- the first and second guide members 310 and 320 are vertically oriented to generate a vortex in the flow of the mixture passing between the outer peripheral surface of the inner container 110 and the inner peripheral surface of the outer container 120.
- a plurality of through holes 311 are formed through.
- Some of the mixture passing through the first and second guide members 310 and 320 is moved upward through the through hole 311.
- the flow of the mixture passing through the through hole flows in a direction intersecting the flow of the mixture bypassing the first and second guide members 310 and 320, thereby generating a vortex in the flow of the mixture.
- the vortex increases the dissolution rate of oxygen in water.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
Abstract
The present invention relates to a multi-purpose nano-bubble mixing dissolver using gas-liquid, comprising: an inner vessel having a first flow space formed therein into which a mixture of oxygen and water flow and a first discharge hole formed on a side thereof through which the mixture introduced into the first flow space is discharged to the outside, the oxygen and water being supplied through a water supply unit and an oxygen supply unit, respectively; an outer vessel having an internal space formed therein in which the inner vessel is accommodated and a second discharge hole formed on a side thereof through which the mixture introduced into the internal space is discharged to the outside; and a flow passage extension part formed on the inner and outer vessels between the first and second discharge holes to extend the flow passage of the mixture that is introduced into the internal space through the first discharge hole and discharged through the second discharge hole. The multi-purpose nano-bubble mixing dissolver using gas-liquid, according to the present invention, has the extended flow passage through which oxygen and water flow and generates vortices by causing a disturbance in the flow of the oxygen and water that flow through the flow passage, thereby increasing the amount of dissolved oxygen so that it is possible to produce oxygen-dissolved water in which a large amount of oxygen is dissolved.
Description
본 발명은 기액을 이용한 나노기포 다용도 혼합 용해기에 관한 것으로, 더욱 상세하게는 물의 산소와의 접촉시간을 확정하여 용존산소가 풍부한 산소용해수를 제조할 수 있는 기액을 이용한 나노기포 다용도 혼합 용해기에 관한 것이다. The present invention relates to a nano-bubble multi-purpose mixed dissolver using gas liquid, and more particularly, to a nano-bubble multi-purpose mixed dissolver using gas liquid capable of producing dissolved oxygen-rich oxygen dissolved water by determining the contact time of water with oxygen. will be.
산소용해장치는 폐수처리장, 정수처리장, 정수기, 수경재배를 위한 양액, 양식장 등에서 산소나 오존 등의 기체를 폐수나 물과 같은 액체에 용해시키는데 이용되거나, 아토피와 같은 피부질환을 호전시키는 목욕시스템에 제공되는 산소수를 생산하는데 이용되는 장치로서, 이는 물이나 폐수 등과 같은 액체 내 산소나 오존 등의 기체 용존률을 높일 목적으로 주로 이용된다.Oxygen dissolving device is used to dissolve oxygen or ozone in liquid such as waste water or water in waste water treatment plant, water treatment plant, water purifier, hydroponics for cultivation, farm, etc., or in bath system that improves skin disease such as atopy. As a device used to produce oxygen water provided, it is mainly used for the purpose of increasing the gas dissolution rate of oxygen or ozone in a liquid such as water or waste water.
그러나 종래에 일반적으로 사용하는 산소용해장치는 물과 산소가 함께 유동하는 유로가 짧아 산소가 충분히 용해될 수 있는 접촉시간이 확보되지 않아 산소의 용존률이 낮은 문제점이 있다. However, the oxygen dissolving apparatus used in the related art has a problem in that the oxygen dissolution rate is low because the contact time through which water and oxygen flow together is short and oxygen is not sufficiently secured.
한편, 본 출원인은 등록특허공보 제10-1005103호에 산소용해장치를 선 출원하여 등록받은 바 있다. 본 출원인은 상기한 바와 같이 산소 용해율이 우수한 선 출원 방식을 응용하여 보다 제작이 용이하며, 보다 더 산소용해율을 높일 수 있는 산소용해장치를 개발하고자 노력하였다. On the other hand, the present applicant has been registered for the oxygen dissolving device in advance registration No. 10-1005103. Applicant has tried to develop an oxygen dissolving device that is easier to manufacture, and can further increase the oxygen dissolution rate by applying a pre-application method excellent in oxygen dissolution rate as described above.
본 발명은 상기한 언급된 문제점을 해결하고자 창안된 것으로서, 산소와 물이 유동하는 유로를 확장하고, 상기 유로를 통해 유동하는 산소와 물을 간섭하여 와류를 발생시켜 산소의 용존율을 향상시키는 기액을 이용한 나노기포 다용도 혼합 용해기를 제공하는 데 그 목적이 있다. The present invention has been made to solve the above-mentioned problems, the gas-liquid to expand the flow path for oxygen and water flow, and to generate a vortex by interfering with the oxygen and water flowing through the flow path to improve the dissolved rate of oxygen The purpose is to provide a nano-bubble multi-purpose mixed dissolver using.
상기의 목적을 달성하기 위한 본 발명에 따른 기액을 이용한 나노기포 다용도 혼합 용해기는 물공급부와 산소공급부를 통해 각각 공급된 산소와 물을 혼합한 혼합물이 유입되어 유동할 수 있도록 내부에 제1유동공간이 마련되고, 일측에 상기 제1유동공간에 유입된 상기 혼합물을 외부로 배출할 수 있도록 제1배출구가 형성된 내측용기와, 상기 내측용기가 수용될 수 있도록 내부에 내부공간이 형성되며, 일측에 상기 내부공간에 유입된 상기 혼합물을 외부로 배출할 수 있도록 제2배출구가 형성된 외측용기와, 상기 제1배출구를 통해 상기 내부공간에 유입되어 상기 제2배출구로 배출되는 상기 혼합물의 유동유로를 확장시킬 수 있도록 상기 제1 및 제2배출구 사이의 상기 내측용기 및 외측용기에 형성되는 유로확장부를 구비한다. Nano-bubble multi-purpose mixed dissolver using gas-liquid according to the present invention for achieving the above object is a first flow space therein so that the mixture of oxygen and water supplied through the water supply and the oxygen supply flows into the flow Is provided, the inner container is formed with a first discharge port to discharge the mixture introduced into the first flow space to the outside on one side, the inner space is formed inside to accommodate the inner container, on one side An outer container having a second discharge port formed to discharge the mixture introduced into the inner space to the outside, and a flow passage of the mixture introduced into the inner space through the first discharge port and discharged into the second discharge port; The flow path expansion part is formed in the inner container and the outer container between the first and second outlets.
상기 유로확장부는 상기 내측용기의 외주면에 상기 외측용기의 내주면 방향으로 돌출되며, 상기 내측용기의 원주방향을 따라 연장된 다수의 제1가이드부재와, 상기 외측용기의 내주면에 상기 내측용기의 외주면 방향으로 돌출되며, 상기 외측용기의 원주방향을 따라 연장된 다수의 제2가이드부재를 구비한다. The flow path expansion part protrudes in the direction of the inner circumferential surface of the outer container on the outer circumferential surface of the inner container, and a plurality of first guide members extending along the circumferential direction of the inner container, and the outer circumferential surface of the inner container on the inner circumferential surface of the outer container. Protruding to a plurality of second guide members extending along the circumferential direction of the outer container.
상기 제1가이드부재는 상기 내측용기의 원주방향을 따라 환형으로 형성되고, 가장자리와 상기 외측용기의 내주면 사이에 상기 혼합물이 통과되는 제1간극이 마련될 수 있도록 상기 내측용기의 외주면으로부터 돌출길이가 상기 내측용기의 내측면과 상기 외측용기의 내주면 사이의 폭보다 짧게 형성되고, 상기 제2가이드부재는 상기 외측용기의 원주방향을 따라 환형으로 형성되고, 가장자리와 상기 내측용기의 내주면 사이에 상기 혼합물이 통과되는 제2간극이 마련될 수 있도록 상기 외측용기의 내주면으로부터 돌출길이가 상기 외측용기의 내주면과 상기 내측용기의 외주면 사이의 폭보다 짧게 형성된다. The first guide member is formed in an annular shape along the circumferential direction of the inner container, and protrudes from the outer circumferential surface of the inner container so that a first gap is formed between an edge and an inner circumferential surface of the outer container. It is formed shorter than the width between the inner surface of the inner container and the inner peripheral surface of the outer container, the second guide member is formed in an annular shape along the circumferential direction of the outer container, the mixture between the edge and the inner peripheral surface of the inner container The protruding length from the inner circumferential surface of the outer container is formed to be shorter than the width between the inner circumferential surface of the outer container and the outer circumferential surface of the inner container so that the second gap therebetween can be provided.
상기 제1 및 제2가이드부재는 상기 내측용기의 길이방향을 따라 상호 교호적으로 배열되는 것이 바람직하다. Preferably, the first and second guide members are alternately arranged along the longitudinal direction of the inner container.
상기 제1가이드부재는 상기 외측용기 내주면과의 사이 간격을 통과하는 상기 혼합물을 간섭하여 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 가장자리를 따라 상호 이격된 위치에, 상기 외측용기의 내주면 측으로 돌출된 다수의 제1간섭돌기가 형성되고, 상기 제2가이드부재는 상기 내측용기 외주면과의 사이 간격을 통과하는 상기 혼합물을 간섭하여 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 가장자리를 따라 상호 이격된 위치에, 상기 내측용기의 외주면 측으로 돌출된 다수의 제2간섭돌기가 형성될 수도 있다. The first guide member protrudes toward the inner circumferential surface side of the outer container at a position spaced apart from each other along an edge to interfere with the mixture passing through the gap between the inner circumferential surface of the outer container and generate a vortex in the flow of the mixture. A plurality of first interference protrusions are formed, and the second guide member is spaced apart from each other along an edge to interfere with the mixture passing through a gap between the inner circumferential surface of the inner container and generate a vortex in the flow of the mixture. In, a plurality of second interference protrusions protruding toward the outer circumferential surface side of the inner container may be formed.
상기 제1 및 제2가이드부재는 상기 내측용기의 외주면과 외측용기의 내주면 사이를 통과하는 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 상하방향으로 관통된 다수의 관통공이 형성될 수도 있다. The first and second guide members may be formed with a plurality of through holes penetrated in the vertical direction so as to generate a vortex in the flow of the mixture passing between the outer peripheral surface of the inner container and the inner peripheral surface of the outer container.
한편, 본 발명에 따른 기액을 이용한 나노기포 다용도 혼합 용해기는 상기 제1유동공간 내에 설치되며, 상기 물공급부 및 상기 산소공급부에 연결되며, 상기 물공급부 및 상기 산소공급부를 통해 공급된 상기 혼합물을 수용하고, 상기 물에 상기 산소를 용해시켜 상기 제1유동공간으로 배출하는 보조용해부를 더 구비하고, 상기 보조용해부는 상기 물공급부 및 상기 산소공급부에 연결되며, 상기 물공급부 및 산소공급부로부터 공급되는 상기 혼합물이 유입되어 유동할 수 있도록 내부에 제2유동공간이 마련되며, 일측에 상기 제2유동공간을 통해 혼합된 상기 혼합물을 외부로 배출하는 제3배출구가 형성된 제1보조용기와, 상기 제1보조용기의 내벽면에 상기 제1보조용기의 중앙을 향하여 연장형성된 다수의 격벽과, 상기 제1보조용기를 내부에 수용하고, 상기 제3배출구를 통해 배출된 상기 혼합물이 수용되는 제3유동공간이 마련되며, 상기 제3배출구에 대해 상측 또는 하측으로 이격된 위치에 상기 제3유동공간으로 유입된 상기 혼합물을 상기 제1유동공간으로 배출하는 제4배출구가 형성된 제2보조용기를 구비한다. On the other hand, the nano-bubble multi-purpose mixed dissolver using the gas liquid according to the present invention is installed in the first flow space, is connected to the water supply and the oxygen supply, and accommodates the mixture supplied through the water supply and the oxygen supply And dissolving the oxygen in the water and discharging the oxygen into the first flow space, wherein the auxiliary dissolving part is connected to the water supply part and the oxygen supply part, and is supplied from the water supply part and the oxygen supply part. A first auxiliary container having a second flow space provided therein to allow the mixture to flow therein, and having a third outlet for discharging the mixture mixed through the second flow space to one side to the outside; A plurality of partition walls extending toward the center of the first auxiliary container on the inner wall surface of the auxiliary container, and accommodates the first auxiliary container therein, A third flow space for accommodating the mixture discharged through the third discharge port is provided, and the mixture introduced into the third flow space at a position spaced upwardly or downwardly with respect to the third discharge port may be provided in the first flow path. And a second auxiliary container having a fourth outlet for discharging into the space.
본 발명에 따른 기액을 이용한 나노기포 다용도 혼합 용해기는 산소와 물이 유동하는 유로를 확장하고, 상기 유로를 통해 유동하는 산소와 물의 흐름을 간섭하여 와류를 발생시켜 산소의 용존율을 향상시키므로 다량의 산소가 용해되어 있는 산소용해수를 제조할 수 있는 장점이 있다. Nano-bubble multi-purpose mixed dissolver using the gas liquid according to the present invention expands the flow path of oxygen and water flow, and interferes with the flow of oxygen and water flowing through the flow path to generate a vortex to improve the dissolved rate of oxygen There is an advantage that can produce oxygen dissolved water in which oxygen is dissolved.
도 1은 본 발명에 따른 기액을 이용한 나노기포 다용도 혼합 용해기에 대한 부분 절개 사시도이고, 1 is a partial cutaway perspective view of a nano-bubble multipurpose mixed dissolver using a gas liquid according to the present invention,
도 2는 도 1의 기액을 이용한 나노기포 다용도 혼합 용해기에 대한 단면도이고, Figure 2 is a cross-sectional view of the nano-bubble multipurpose mixed dissolver using the gas liquid of Figure 1,
도 3은 본 발명의 또 다른 실시 예에 따른 기액을 이용한 나노기포 다용도 혼합 용해기의 제1보조용기에 대한 단면도이고, 3 is a cross-sectional view of a first auxiliary container of the nano-bubble multipurpose mixed dissolver using a gas liquid according to another embodiment of the present invention,
도 4는 본 발명의 또 다른 실시 예에 따른 기액을 이용한 나노기포 다용도 혼합 용해기에 대한 부분 절개 사시도이고, Figure 4 is a partial cutaway perspective view of the nano-bubble multi-purpose mixed dissolver using a gas solution according to another embodiment of the present invention,
도 5는 본 발명의 또 다른 실시 예에 따른 기액을 이용한 나노기포 다용도 혼합 용해기에 대한 단면도이다. 5 is a cross-sectional view of a nano-bubble multipurpose mixed dissolver using a gas liquid according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 기액을 이용한 나노기포 다용도 혼합 용해기를 더욱 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in more detail a nano-bubble multi-use mixed dissolver using a gas liquid according to a preferred embodiment of the present invention.
도 1 내지 도 2에는 본 발명에 따른 기액을 이용한 나노기포 다용도 혼합 용해기(100)가 도시되어 있다. 1 to 2 show a nano-bubble multipurpose mixed dissolver 100 using a gas liquid according to the present invention.
도면을 참조하면, 기액을 이용한 나노기포 다용도 혼합 용해기(100)는 물공급부(150)와 산소공급부(160)를 통해 각각 공급된 산소와 물을 혼합한 혼합물이 유입되어 유동할 수 있도록 내부에 제1유동공간(111)이 마련되고, 일측에 상기 제1유동공간(111)에 유입된 상기 혼합물을 외부로 배출할 수 있도록 제1배출구(112)가 형성된 내측용기(110)와, 상기 내측용기(110)가 수용될 수 있도록 내부에 내부공간(121)이 형성되며, 일측에 상기 내부공간(121)에 유입된 상기 혼합물을 외부로 배출할 수 있도록 제2배출구(122)가 형성된 외측용기(120)와, 상기 제1배출구(112)를 통해 상기 내부공간(121)에 유입되어 상기 제2배출구(122)로 배출되는 상기 혼합물의 유동유로를 확장시킬 수 있도록 상기 제1 및 제2배출구(112,122) 사이의 상기 내측용기(110) 및 외측용기(120)에 형성되는 유로확장부(130)와, 상기 제1유동공간(111) 내에 설치되며, 상기 물공급부(150) 및 상기 산소공급부(160)에 연결되며, 상기 물공급부(150) 및 상기 산소공급부(160)를 통해 공급된 상기 혼합물을 수용하고, 상기 물에 상기 산소를 용해시켜 상기 제1유동공간(111)으로 배출하는 보조용해부(140)를 구비한다. Referring to the drawings, the nano-bubble multi-purpose mixed dissolver 100 using the gas solution is provided so that the mixture of oxygen and water supplied through the water supply unit 150 and the oxygen supply unit 160 flows in and flows therein. A first flow space 111 is provided, and an inner container 110 having a first discharge port 112 formed at one side to discharge the mixture introduced into the first flow space 111 to the outside, and the inside An inner space 121 is formed inside the container 110 so that the container 110 can be accommodated therein, and an outer container having a second discharge hole 122 formed at one side thereof to discharge the mixture introduced into the inner space 121 to the outside. The first and second outlets 120 and the first outlet 112 may extend the flow passage of the mixture introduced into the internal space 121 and discharged to the second outlet 122. Flow paths formed in the inner container 110 and the outer container 120 between (112, 122) It is installed in the expansion unit 130 and the first flow space 111, and is connected to the water supply unit 150 and the oxygen supply unit 160, the water supply unit 150 and the oxygen supply unit 160 It is provided with a secondary dissolution unit 140 for receiving the mixture supplied through, dissolving the oxygen in the water to discharge to the first flow space (111).
내측용기(110)는 보조용해부(140)를 통해 공급된 혼합물이 유입되어 유동할 수 있도록 내부에 제1유동공간(111)이 마련된 원통형으로 형성되며, 하부에 제1배출구(112)가 마련될 수 있도록 하면이 개방되게 형성되어 있다. 내측용기(110)의 제1유동공간(111)은 보조용해부(140)가 수용되기에 충분한 크기로 형성되며, 내측용기(110)는 상하방향으로 소정길이 연장되는 것이 바람직하다. 보조용해부(140)로부터 배출된 미용해된 산소는 물과 함께 제1유동공간(111)을 따라 하방으로 이동하며 물에 용해된다. The inner container 110 is formed in a cylindrical shape provided with a first flow space 111 therein to allow the mixture supplied through the auxiliary melting part 140 to flow therein, and a first outlet 112 is provided below. The lower surface is formed to be open. The first flow space 111 of the inner container 110 is formed in a size sufficient to accommodate the auxiliary melting portion 140, the inner container 110 is preferably extended in a vertical length. The undissolved oxygen discharged from the auxiliary dissolving unit 140 moves downward along the first flow space 111 with water and is dissolved in water.
외측용기(120)는 내측용기(110)가 수용될 수 있도록 내부공간(121)이 마련된 원통형으로 형성된다. 이때, 외측용기(120)는 제2배출구(122)가 상면에 형성되어 있으며, 제2배출구(122)에 연통되게 배출관(123)이 설치되어 있다. 제2배출구(122)가 제1배출구(112)보다 상측에 위치하므로 내측용기(110)를 통과한 미용해된 산소는 물과 함께 상방으로 유동하며 물에 재차 용해된다. The outer container 120 is formed in a cylindrical shape provided with an inner space 121 to accommodate the inner container 110. At this time, the outer container 120 has a second discharge port 122 is formed on the upper surface, the discharge pipe 123 is installed to communicate with the second discharge port 122. Since the second outlet 122 is located above the first outlet 112, the undissolved oxygen passing through the inner container 110 flows upward with water and is dissolved in the water again.
유로확장부(130)는 내측용기(110)의 외주면에 형성된 다수의 제1가이드부재(131)와, 외측용기(120)의 내주면에 형성된 다수의 제2가이드부재(132)를 구비한다. The flow path expansion unit 130 includes a plurality of first guide members 131 formed on the outer circumferential surface of the inner container 110 and a plurality of second guide members 132 formed on the inner circumferential surface of the outer container 120.
제1가이드부재(131)는 제1 및 제2배출구(112,122) 사이의 내측용기(110) 외주면에 외측용기(120)의 내주면 방향으로 돌출되며, 내측용기(110)의 원주방향을 따라 환형으로 연장된다. 이때, 제1가이드부재(131)는 가장자리와 외측용기(120)의 내주면 사이에 혼합물이 통과되는 공간이 마련될 수 있도록 내측용기(110)의 외주면으로부터 돌출길이가 내측용기(110)의 내측면과 외측용기(120)의 내주면 사이의 폭보다 짧게 형성되는 것이 바람직하다. The first guide member 131 protrudes toward the inner circumferential surface of the outer container 120 on the outer circumferential surface of the inner container 110 between the first and second discharge ports 112 and 122, and annularly along the circumferential direction of the inner container 110. Is extended. At this time, the first guide member 131 has a protruding length from the outer circumferential surface of the inner container 110 so that the space between the edge and the inner circumferential surface of the outer container 120 passes through the inner surface of the inner container 110. It is preferably formed shorter than the width between the inner circumferential surface of the outer container (120).
제2가이드부재(132)는 제1 및 제2배출구(112,122) 사이의 외측용기(120) 내주면에, 내측용기(110)의 외주면 방향으로 돌출되며, 외측용기(120)의 원주방향을 따라 환형으로 연장된다. 이때, 제2가이드부재(132)는 가장자리와 내측용기(110)의 외주면 사이에 혼합물이 통과되는 공간이 마련될 수 있도록 외측용기(120)의 내주면으로부터 돌출길이가 내측용기(110)의 내측면과 외측용기(120)의 내주면 사이의 폭보다 짧게 형성되는 것이 바람직하다. The second guide member 132 protrudes toward the outer circumferential surface of the inner container 110 on the inner circumferential surface of the outer container 120 between the first and second outlets 112 and 122, and is annular along the circumferential direction of the outer container 120. Extends. In this case, the second guide member 132 has a protruding length from the inner circumferential surface of the outer container 120 so that a space through which the mixture passes between the edge and the outer circumferential surface of the inner container 110 has an inner surface of the inner container 110. It is preferably formed shorter than the width between the inner circumferential surface of the outer container (120).
이때, 제1 및 제2가이드부재(131,132)는 내측용기(110)의 길이방향을 따라 상호 교호적으로 배열되는 것이 바람직하다. 상기 언급된 바와 같이 제1 및 제2가이드부재(131,132)가 상호 교호적으로 배열되어 있으므로 제1 및 제2배출구(112,122) 사이의 혼합물이 유동하는 유동유로가 상하방향을 따라 지그재그로 형성된다. 따라서, 혼합물이 유동하는 유동유로가 확장되어 물과 산소의 접촉시간이 늘어나 물에 대한 산소의 용해율이 증가하는 장점이 있다. At this time, it is preferable that the first and second guide members 131 and 132 are alternately arranged along the longitudinal direction of the inner container 110. As mentioned above, since the first and second guide members 131 and 132 are alternately arranged, a flow passage through which the mixture between the first and second outlets 112 and 122 flows is zigzag along the vertical direction. Therefore, there is an advantage that the flow path through which the mixture flows is extended to increase the contact time of water and oxygen, thereby increasing the dissolution rate of oxygen in water.
한편, 유로확장부(130)는 도면에 도시된 예에 한정하는 것이 아니라 제1 및 제2배출구(112,122) 사이의 혼합물 유동유로를 내측용기(110)의 외주면을 따라 나선형으로 구획할 수도 있다. On the other hand, the flow path expansion unit 130 is not limited to the example shown in the drawing, but may also partition the mixture flow path between the first and second outlets 112 and 122 helically along the outer peripheral surface of the inner container (110).
보조용해부(140)는 제1보조용기(141)와, 상기 제1보조용기(141)의 내벽에 형성된 다수의 제1 및 제2격벽(142,143)과, 제1보조용기(141)를 내부에 수용하는 제2보조용기(144)를 구비한다. The auxiliary dissolving unit 140 includes a first auxiliary container 141, a plurality of first and second partitions 142 and 143 formed on an inner wall of the first auxiliary container 141, and a first auxiliary container 141. And a second auxiliary container 144 accommodated therein.
제1보조용기(141)는 후술되는 제2보조용기(144)의 제3유동공간(147) 내에 설치되며, 물과 산소가 혼합된 혼합물이 유입되어 유동할 수 있도록 내부에 제2유동공간(145)이 형성되어 있다. 제1보조용기(141)의 상단에는 후술되는 산소공급부(160)의 산소공급관(161)과 물공급부(150)의 물공급관(151)이 연결되어 있다. 제1보조용기(141)의 하면에는 제2유동공간(145)을 통과한 혼합물이 제2보조용기(144)로 배출될 수 있도록 제3배출구(146)가 형성되어 있다. The first auxiliary container 141 is installed in the third flow space 147 of the second auxiliary container 144, which will be described later, and has a second flow space therein to allow the mixture of water and oxygen to flow thereinto (flow). 145 is formed. The oxygen supply pipe 161 of the oxygen supply unit 160 and the water supply pipe 151 of the water supply unit 150 are connected to the upper end of the first auxiliary container 141. A third discharge port 146 is formed on the lower surface of the first auxiliary container 141 so that the mixture passing through the second flow space 145 can be discharged to the second auxiliary container 144.
제1 및 제2격벽(142,143)은 소정의 두께를 갖는 판형으로 형성되며, 제1보조용기(141)의 내벽면에 제2유동공간(145)의 중심을 향하여 돌출형성되어 있다. 이때, 제1 및 제2격벽(142,143)은 제1보조용기(141)의 길이방향을 중심선을 기준으로 상호 대향되는 위치의 제1보조용기(141) 내측면에 각각 설치된다. 또한, 제1 및 제2격벽(142,143)은 물의 흐름 유로를 연장시킬 수 있도록 상하방향으로 따라 상호 교호적으로 배열되는 것이 바람직하다. The first and second partitions 142 and 143 are formed in a plate shape having a predetermined thickness and protrude toward the center of the second flow space 145 on the inner wall surface of the first auxiliary container 141. In this case, the first and second partitions 142 and 143 are respectively installed on the inner side surfaces of the first auxiliary container 141 at positions opposite to each other with respect to the center line in the longitudinal direction of the first auxiliary container 141. In addition, the first and second partitions 142 and 143 may be alternately arranged in the vertical direction so as to extend the flow path of water.
제1 및 제2격벽(142,143)은 제1보조용기(141)의 내부로 흐르는 물의 유동을 간섭하여 물의 흐름에 와류를 발생시키며, 상기 와류에 의해 물에 대한 산소의 용해율은 증가한다. The first and second partitions 142 and 143 interfere with the flow of water flowing into the first auxiliary container 141 to generate vortices in the water flow, and the dissolution rate of oxygen to water is increased by the vortices.
한편, 도 3에는 제1 및 제2격벽(241,242)의 또 다른 실시 예가 도시되어 있다. Meanwhile, another embodiment of the first and second partitions 241 and 242 is illustrated in FIG. 3.
앞서 도시된 도면에서와 동일한 기능을 하는 요소는 동일 참조 부호로 표기한다. Elements having the same function as in the above-described drawings are denoted by the same reference numerals.
도면을 참조하면, 제1 및 제2격벽(241,242)들은 제1보조용기(141)의 내벽면에 상하방향을 따라 상호 이격된 위치에 각각 설치되되, 제1보조용기(141)의 내벽면에 고정된 일단부가 타단부보다 상측에 위치하도록 경사지게 형성되어 있다. Referring to the drawings, the first and second partitions 241 and 242 are respectively installed at positions spaced apart from each other along an up and down direction on the inner wall surface of the first auxiliary container 141, and on the inner wall surface of the first auxiliary container 141. The fixed one end is formed to be inclined so as to be located above the other end.
상기 언급된 바와 같이 제1 및 제2격벽(241,242)이 제1보조용기(141)의 내벽면에 대해 소정각도 경사지게 형성되어 있으므로 제1보조용기(141) 내부로 유입된 혼합물이 제1 및 제2격벽(241,242)에 충돌하더라도 제1 및 제2격벽(241,242)의 경사면을 따라 용이하게 하부로 흐를 수 있다. As mentioned above, since the first and second partitions 241 and 242 are formed to be inclined at a predetermined angle with respect to the inner wall surface of the first auxiliary container 141, the mixture introduced into the first auxiliary container 141 is first and second. Even if it collides with the two partition walls 241 and 242, it may easily flow downward along the inclined surfaces of the first and second partition walls 241 and 242.
제2보조용기(144)는 제1보조용기(141)를 내부에 수용하고, 제1보조용기(141)의 제3배출구(146)를 통해 배출된 혼합물이 수용될 수 있도록 제3유동공간(147)이 마련된 원통형으로 형성된다. 제2보조용기(144)의 상단 측면에는 미용해된 산소와 물이 내측용기(110)의 제1유동공간(111)으로 배출될 수 있도록 제1유동공간(111)에 연통되는 제4배출구(148)가 형성되어 있다. The second auxiliary container 144 accommodates the first auxiliary container 141 therein, and allows the mixture discharged through the third outlet 146 of the first auxiliary container 141 to accommodate the third flow space ( 147 is formed into a cylindrical shape provided. The fourth discharge port communicated with the first flow space 111 so that the undissolved oxygen and water can be discharged into the first flow space 111 of the inner container 110 at the upper side of the second auxiliary container 144. 148 is formed.
한편, 도면에 도시되진 않았지만, 제1보조용기(141)의 외면과 제2보조용기(144)의 연결부분은 제3유동공간(147)에 수용된 산소가 외부로 누출되는 것을 방지할 수 있도록 패킹부재가 설치되는 것이 바람직하다. On the other hand, although not shown in the drawings, the outer surface of the first auxiliary container 141 and the connecting portion of the second auxiliary container 144 is packed to prevent leakage of oxygen contained in the third flow space 147 to the outside. It is preferable that a member is provided.
산소공급부(160)는 제1보조용기(141)로 산소를 공급할 수 있게 단부가 제1보조용기(141)에 연통되도록 연결된 산소공급관(161)과, 산소공급관(161)에 연결되어 산소를 공급하는 산소발생부재(162)를 구비한다. The oxygen supply unit 160 is connected to the oxygen supply pipe 161 and the oxygen supply pipe 161 connected to the oxygen supply pipe 161 so that the end is connected to the first auxiliary container 141 to supply oxygen to the first auxiliary container 141. Oxygen generating member 162 is provided.
산소공급관(161)에는 제1보조용기(141)로 산소의 공급유무 및 산소 공급량을 조절할 수 있도록 산소조절밸브(163)가 설치되어 있다. 산소조절밸브(163)는 작업자가 용이하게 조작할 수 있도록 솔레노이드 밸브로 구성되는 것이 바람직하다. The oxygen supply pipe 161 is provided with an oxygen control valve 163 to control the supply of oxygen and the amount of oxygen supply to the first auxiliary container 141. Oxygen control valve 163 is preferably composed of a solenoid valve so that the operator can easily operate.
산소발생부재(162)는 산소공급관(161)을 통해 제1보조용기(141)에 산소를 공급할 수 있도록 종래에 일반적으로 사용하는 산소발생기나 고압산소 또는 액화산소가 주입된 산소탱크로 구성된다. Oxygen generating member 162 is composed of an oxygen tank or a high-pressure oxygen or liquefied oxygen injecting oxygen generally used in order to supply oxygen to the first auxiliary container 141 through the oxygen supply pipe 161.
물공급부(150)는 물이 수용된 물저장탱크(미도시)와, 물저장탱크 및 제1보조용기(141) 사이에 연결되며, 내부에 물이 이송되는 유로가 형성된 물공급관(151)과, 물공급관(151)에 설치되어 물저장탱크에 수용된 물을 펌핑하여 제1보조용기(141)에 공급하는 펌프(152)를 구비한다. The water supply unit 150 is connected between a water storage tank (not shown) in which water is accommodated, the water storage tank and the first auxiliary container 141, and a water supply pipe 151 having a flow path through which water is transferred; The pump 152 is installed in the water supply pipe 151 and pumps water contained in the water storage tank to supply the first auxiliary container 141.
상기 언급된 바와 같이 구성된 본 발명의 실시 예에 따른 기액을 이용한 나노기포 다용도 혼합 용해기(100)의 작동을 상세히 설명하면 다음과 같다. Referring to the operation of the nano-bubble multipurpose mixed dissolver 100 using a gas liquid according to an embodiment of the present invention configured as described above in detail as follows.
산소공급부(160)와 물공급부(150)는 산소공급관(161) 및 물공급관(151)을 통해 산소와 물을 제1보조용기(141)에 공급한다. 제1보조용기(141)에 공급된 물과 산소가 혼합된 혼합물은 제1보조용기(141)의 제2유동공간(145) 내에서 상측에서 하측으로 유동하면서 산소의 일부가 물에 용해된다. The oxygen supply unit 160 and the water supply unit 150 supply oxygen and water to the first auxiliary container 141 through the oxygen supply pipe 161 and the water supply pipe 151. The mixture of water and oxygen supplied to the first auxiliary container 141 flows from the upper side to the lower side in the second flow space 145 of the first auxiliary container 141 so that a part of the oxygen is dissolved in water.
이때, 제1보조용기(141) 내벽면에 형성된 다수의 제1 및 제2격벽(142,143)에 의해 제2유동공간(145) 내에 흐르는 물에 와류가 발생되고, 상기 와류에 의해 물에 대한 산소의 용해률이 향상된다. At this time, vortices are generated in the water flowing in the second flow space 145 by the plurality of first and second partitions 142 and 143 formed on the inner wall surface of the first auxiliary container 141, and oxygen to the water is generated by the vortices. Dissolution rate is improved.
제2유동공간(145)을 통과한 물과 미용해된 산소는 제1보조용기(141)의 하면에 마련된 제3배출구(146)를 통해 제2보조용기(144)로 배출된다. 제1보조용기(141)를 통해 배출된 물과 산소는 제2보조용기(144)의 제3유동공간(147)에 수용된다. 이때, 제1보조용기(141)의 제3배출구(146)는 제3유동공간(147)의 하측에 위치하므로 제3유동공간(147)으로 유입된 산소는 상측으로 상승하면서 물과 접촉하여 일부가 물에 용해된다. Water passing through the second flow space 145 and undissolved oxygen are discharged to the second auxiliary container 144 through the third outlet 146 provided on the lower surface of the first auxiliary container 141. Water and oxygen discharged through the first auxiliary container 141 are accommodated in the third flow space 147 of the second auxiliary container 144. At this time, since the third outlet 146 of the first auxiliary container 141 is located below the third flow space 147, oxygen introduced into the third flow space 147 rises upward and comes into contact with water to partially Is dissolved in water.
제3유동공간(147)에 수용된 물의 수위가 제4배출구(148)에 대응되는 위치까지 높아지면 제4배출구(148)를 통해 물과 미용해된 산소가 내측용기(110)로 배출된다. 내측용기(110)로 유입된 미용해된 산소는 제1유동공간(111)에서 물에 재차 용해된다. When the water level of the water contained in the third flow space 147 rises to a position corresponding to the fourth outlet 148, the water and the oxygen dissolved in the third outlet 148 are discharged to the inner container 110. Undissolved oxygen introduced into the inner container 110 is dissolved in water in the first flow space 111 again.
제1유동공간(111)으로 유입된 물과 산소는 내측용기(110)에 의해 외측용기(120)의 바닥면으로 배출된다. 외측용기(120)의 바닥면으로 배출된 물과 산소는 제2배출구(122) 측으로 이동하는 데, 제1 및 제2가이드부재(131,132)에 의해 지그재그로 형성된 유로를 따라 이송된다. 이때, 미용해된 산소는 물과 접촉하여 재차 용해된다. Water and oxygen introduced into the first flow space 111 is discharged to the bottom surface of the outer container 120 by the inner container (110). Water and oxygen discharged to the bottom surface of the outer container 120 is moved to the second discharge port 122 side, it is transported along the flow path formed in a zigzag by the first and second guide members (131,132). At this time, the undissolved oxygen is dissolved in contact with water again.
상기와 같이 구성된 본 발명에 따른 기액을 이용한 나노기포 다용도 혼합 용해기(100)는 물과 산소를 보조용해부(140), 내측용기(110) 및 유로확장부(130)를 통과시켜 물과 산소와의 접촉시간을 장시키므로 산소의 용해율을 증가시키는 장점이 있다. Nano-bubble multi-purpose mixed dissolver 100 using the gas solution according to the present invention configured as described above is to pass water and oxygen through the secondary dissolution unit 140, the inner container 110 and the passage expansion unit 130 Since the contact time with and to increase the dissolution rate of oxygen has the advantage.
한편, 도 4에는 본 발명의 또 다른 실시 예에 따른 제1 및 제2가이드부재(210,220)가 도시되어 있다. Meanwhile, FIG. 4 illustrates first and second guide members 210 and 220 according to another embodiment of the present invention.
도면을 참조하면, 제1가이드부재(210)는 상기 외측용기(120) 내주면과의 사이 간격을 통과하는 상기 혼합물을 간섭하여 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 가장자리를 따라 상호 이격된 위치에, 상기 외측용기(120)의 내주면 측으로 돌출된 다수의 제1간섭돌기(211)가 형성되어 있다. 제1간섭돌기(211)는 제1가이드부재(210)의 가장자리로부터 돌출될수록 폭이 증가하는 더브테일 형상으로 형성되는 것이 바람직하다. Referring to the drawings, the first guide member 210 is spaced apart from each other along the edge to interfere with the mixture passing through the gap between the inner circumferential surface of the outer container 120 to generate a vortex in the flow of the mixture A plurality of first interference protrusions 211 protruding toward the inner circumferential surface side of the outer container 120 are formed therein. The first interference protrusion 211 may be formed in a dovetail shape in which the width increases as it protrudes from the edge of the first guide member 210.
제2가이드부재(220)는 상기 내측용기(110) 외주면과의 사이 간격을 통과하는 상기 혼합물을 간섭하여 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 가장자리를 따라 상호 이격된 위치에, 상기 내측용기(110)의 외주면 측으로 돌출된 다수의 제2간섭돌기(221)가 형성되어 있다. 제2간섭돌기(221)는 제2가이드부재(220)의 가장자리로부터 돌출될수록 폭이 증가하는 더브테일 형상으로 형성되는 것이 바람직하다. The second guide member 220 is located in the inner container spaced apart from each other along the edge to interfere with the mixture passing through the gap between the outer circumferential surface of the inner container 110 to generate a vortex in the flow of the mixture, A plurality of second interference protrusions 221 protruding toward the outer circumferential surface side of 110 are formed. The second interference protrusion 221 may be formed in a dovetail shape in which a width thereof increases as it protrudes from an edge of the second guide member 220.
제1 및 제2배출구(112,122) 사이를 유동하는 혼합물은 제1 및 제2간섭돌기(211,221)에 의해 간섭되어 흐름에 와류가 발생되며, 상기 와류에 의해 물에 대한 산소의 용해율이 증가하는 장점이 있다. The mixture flowing between the first and second outlets 112 and 122 is interrupted by the first and second interfering protrusions 211 and 221 to generate vortices in the flow, and the dissolution rate of oxygen to water is increased by the vortices. There is this.
한편, 도 5에는 본 발명의 또 다른 실시 예에 따른 제1 및 제2가이드부재(310,320)가 도시되어 있다. Meanwhile, FIG. 5 illustrates first and second guide members 310 and 320 according to another embodiment of the present invention.
도면을 참조하면, 상기 제1 및 제2가이드부재(310,320)는 상기 내측용기(110)의 외주면과 외측용기(120)의 내주면 사이를 통과하는 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 상하방향으로 관통된 다수의 관통공(311)이 형성되어 있다. Referring to the drawings, the first and second guide members 310 and 320 are vertically oriented to generate a vortex in the flow of the mixture passing between the outer peripheral surface of the inner container 110 and the inner peripheral surface of the outer container 120. A plurality of through holes 311 are formed through.
제1 및 제2가이드부재(310,320)들을 통과하는 혼합물 중 일부는 상기 관통공(311)을 통해 상방으로 이동된다. 상기 관통구를 통과하는 혼합물의 흐름은 제1 및 제2가이드부재(310,320)를 우회하는 혼합물의 흐름에 교차되는 방향으로 흐르므로 혼합물의 흐름에 와류를 발생시킨다. 상기 와류에 의해 물에 대한 산소의 용해율이 증가한다. Some of the mixture passing through the first and second guide members 310 and 320 is moved upward through the through hole 311. The flow of the mixture passing through the through hole flows in a direction intersecting the flow of the mixture bypassing the first and second guide members 310 and 320, thereby generating a vortex in the flow of the mixture. The vortex increases the dissolution rate of oxygen in water.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다. Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary and will be understood by those skilled in the art that various modifications and equivalent embodiments are possible.
따라서 본 발명의 진정한 보호 범위는 첨부된 청구범위에 의해서만 정해져야 할 것이다. Therefore, the true scope of protection of the present invention should be defined only by the appended claims.
Claims (7)
- 물공급부와 산소공급부를 통해 각각 공급된 산소와 물을 혼합한 혼합물이 유입되어 유동할 수 있도록 내부에 제1유동공간이 마련되고, 일측에 상기 제1유동공간에 유입된 상기 혼합물을 외부로 배출할 수 있도록 제1배출구가 형성된 내측용기와;A first flow space is provided therein to allow the mixture of oxygen and water supplied through the water supply unit and the oxygen supply unit to flow therein, and discharge the mixture introduced into the first flow space to one side to the outside. An inner container having a first discharge opening formed therein;상기 내측용기가 수용될 수 있도록 내부에 내부공간이 형성되며, 일측에 상기 내부공간에 유입된 상기 혼합물을 외부로 배출할 수 있도록 제2배출구가 형성된 외측용기와;An outer space having an inner space formed therein to accommodate the inner container, and an outer container having a second discharge port formed at one side thereof to discharge the mixture introduced into the inner space to the outside;상기 제1배출구를 통해 상기 내부공간에 유입되어 상기 제2배출구로 배출되는 상기 혼합물의 유동유로를 확장시킬 수 있도록 상기 제1 및 제2배출구 사이의 상기 내측용기 및 외측용기에 형성되는 유로확장부;를 구비하는 것을 특징으로 하는 기액을 이용한 나노기포 다용도 혼합 용해기. A flow path expansion part formed in the inner container and the outer container between the first and second outlets to expand the flow passage of the mixture introduced into the inner space through the first outlet and discharged to the second outlet. Nano-bubble multi-purpose mixed dissolver using a gas liquid, characterized by including;
- 제1항에 있어서, The method of claim 1,상기 유로확장부는The passage expansion unit상기 내측용기의 외주면에 상기 외측용기의 내주면 방향으로 돌출되며, 상기 내측용기의 원주방향을 따라 연장된 다수의 제1가이드부재와, A plurality of first guide members protruding in the direction of the inner circumferential surface of the outer container and extending along the circumferential direction of the inner container on the outer circumferential surface of the inner container;상기 외측용기의 내주면에 상기 내측용기의 외주면 방향으로 돌출되며, 상기 외측용기의 원주방향을 따라 연장된 다수의 제2가이드부재를 구비하는 것을 특징으로 하는 기액을 이용한 나노기포 다용도 혼합 용해기. Nano-bubble multipurpose mixed dissolvers using a gas-liquid protruding in the inner circumferential surface of the outer container in the direction of the outer circumferential surface of the inner container, a plurality of second guide members extending along the circumferential direction of the outer container.
- 제2항에 있어서, The method of claim 2,상기 제1가이드부재는 상기 내측용기의 원주방향을 따라 환형으로 형성되고, 가장자리와 상기 외측용기의 내주면 사이에 상기 혼합물이 통과되는 공간이 마련될 수 있도록 상기 내측용기의 외주면으로부터 돌출길이가 상기 내측용기의 내측면과 상기 외측용기의 내주면 사이의 폭보다 짧게 형성되고, The first guide member is formed in an annular shape along the circumferential direction of the inner container, and the protruding length from the outer circumferential surface of the inner container is provided so that a space is provided between the edge and the inner circumferential surface of the outer container. It is formed shorter than the width between the inner surface of the container and the inner peripheral surface of the outer container,상기 제2가이드부재는 상기 외측용기의 원주방향을 따라 환형으로 형성되고, 가장자리와 상기 내측용기의 내주면 사이에 상기 혼합물이 통과되는 공간이 마련될 수 있도록 상기 외측용기의 내주면으로부터 돌출길이가 상기 외측용기의 내주면과 상기 내측용기의 외주면 사이의 폭보다 짧게 형성된 것을 특징으로 하는 기액을 이용한 나노기포 다용도 혼합 용해기. The second guide member is formed in an annular shape along the circumferential direction of the outer container, the protruding length from the inner circumferential surface of the outer container is provided so that the space between the edge and the inner circumferential surface of the inner container can be provided Nano-bubble multi-purpose mixed dissolver using a gas liquid, characterized in that formed shorter than the width between the inner peripheral surface of the container and the outer peripheral surface of the inner container.
- 제3항에 있어서, The method of claim 3,상기 제1 및 제2가이드부재는 상기 내측용기의 길이방향을 따라 상호 교호적으로 배열된 것을 특징으로 하는 기액을 이용한 나노기포 다용도 혼합 용해기. The first and the second guide member is a nano-bubble multipurpose mixed dissolver using a gas liquid, characterized in that arranged alternately along the longitudinal direction of the inner container.
- 제2항 내지 제4항 중 어느 한 항에 있어서, The method according to any one of claims 2 to 4,상기 제1가이드부재는 상기 외측용기 내주면과의 사이 간격을 통과하는 상기 혼합물을 간섭하여 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 가장자리를 따라 상호 이격된 위치에, 상기 외측용기의 내주면 측으로 돌출된 다수의 제1간섭돌기가 형성되고, The first guide member protrudes toward the inner circumferential surface side of the outer container at a position spaced apart from each other along an edge to interfere with the mixture passing through the gap between the inner circumferential surface of the outer container and generate a vortex in the flow of the mixture. A plurality of first interference protrusions are formed,상기 제2가이드부재는 상기 내측용기 외주면과의 사이 간격을 통과하는 상기 혼합물을 간섭하여 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 가장자리를 따라 상호 이격된 위치에, 상기 내측용기의 외주면 측으로 돌출된 다수의 제2간섭돌기가 형성된 것을 특징으로 하는 기액을 이용한 나노기포 다용도 혼합 용해기. The second guide member protrudes toward the outer circumferential surface side of the inner container at positions spaced apart from each other along an edge to interfere with the mixture passing through the gap between the inner circumferential surface of the inner container and generate a vortex in the flow of the mixture. Nanobubble multi-purpose mixed dissolver using a gas liquid, characterized in that a plurality of second interfering protrusions are formed.
- 제2항 내지 제4항 중 어느 한 항에 있어서, The method according to any one of claims 2 to 4,상기 제1 및 제2가이드부재는 상기 내측용기의 외주면과 외측용기의 내주면 사이를 통과하는 상기 혼합물의 흐름에 와류를 발생시킬 수 있도록 상하방향으로 관통된 다수의 관통공이 형성된 것을 특징으로 하는 기액을 이용한 나노기포 다용도 혼합 용해기. The first and second guide members are formed of a plurality of through-holes penetrating in the vertical direction to generate a vortex in the flow of the mixture passing between the outer circumferential surface of the inner container and the inner circumferential surface of the outer container. Nano-bubble multipurpose mixed dissolver used.
- 제2항 내지 제4항 중 어느 한 항에 있어서, The method according to any one of claims 2 to 4,상기 제1유동공간 내에 설치되며, 상기 물공급부 및 상기 산소공급부에 연결되며, 상기 물공급부 및 상기 산소공급부를 통해 공급된 상기 혼합물을 수용하고, 상기 물에 상기 산소를 용해시켜 상기 제1유동공간으로 배출하는 보조용해부;를 더 구비하고, It is installed in the first flow space, connected to the water supply and the oxygen supply, and accommodates the mixture supplied through the water supply and the oxygen supply, dissolve the oxygen in the water to the first flow space Further dissolving portion discharged to;상기 보조용해부는The secondary melting portion상기 물공급부 및 상기 산소공급부에 연결되며, 상기 물공급부 및 산소공급부로부터 공급되는 상기 혼합물이 유입되어 유동할 수 있도록 내부에 제2유동공간이 마련되며, 일측에 상기 제2유동공간을 통해 혼합된 상기 혼합물을 외부로 배출하는 제3배출구가 형성된 제1보조용기와, A second flow space is connected to the water supply unit and the oxygen supply unit, and a second flow space is provided therein to allow the mixture supplied from the water supply unit and the oxygen supply unit to flow therein, and is mixed through the second flow space on one side. A first auxiliary container having a third outlet for discharging the mixture to the outside;상기 제1보조용기의 내벽면에 상기 제1보조용기의 중앙을 향하여 연장형성된 다수의 격벽과, A plurality of partition walls extending toward the center of the first auxiliary container on an inner wall surface of the first auxiliary container;상기 제1보조용기를 내부에 수용하고, 상기 제3배출구를 통해 배출된 상기 혼합물이 수용되는 제3유동공간이 마련되며, 상기 제3배출구에 대해 상측 또는 하측으로 이격된 위치에 상기 제3유동공간으로 유입된 상기 혼합물을 상기 제1유동공간으로 배출하는 제4배출구가 형성된 제2보조용기를 구비하는 것을 특징으로 하는 기액을 이용한 나노기포 다용도 혼합 용해기. A third flow space is provided for accommodating the first auxiliary container therein and accommodates the mixture discharged through the third outlet, and the third flow is located at a position spaced upwardly or downwardly with respect to the third outlet. And a second auxiliary container having a fourth outlet formed therein for discharging the mixture introduced into the space into the first flow space.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0157440 | 2014-11-12 | ||
KR1020140157440A KR101522021B1 (en) | 2014-11-12 | 2014-11-12 | Apparatus for dissolving oxygen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076547A1 true WO2016076547A1 (en) | 2016-05-19 |
Family
ID=53395199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/011094 WO2016076547A1 (en) | 2014-11-12 | 2015-10-20 | Multi-purpose nano-bubble mixing dissolver using gas-liquid |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101522021B1 (en) |
WO (1) | WO2016076547A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112121656A (en) * | 2020-08-31 | 2020-12-25 | 江苏创程环境科技有限公司 | Generation equipment for generating oxygen bubble water capable of dissolving multiple gases into nanoscale |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101597311B1 (en) * | 2015-09-07 | 2016-03-07 | 제이케이이앤씨 주식회사 | Dissolved air circulation water generator for dissolved air injection type flotation tank |
KR101660186B1 (en) * | 2015-12-11 | 2016-09-27 | 에이티이 주식회사 | Apparatus for increasing dissolved oxygen without power supply |
KR102098902B1 (en) * | 2018-02-22 | 2020-05-11 | 주식회사 뉴먼테크 | A fine bubble water generator |
KR101954170B1 (en) * | 2018-12-14 | 2019-03-05 | 주식회사 하이프렌드 | Apparatus of dissolving gas into liquid and Apparatus for supplying water containing gas |
KR102216334B1 (en) * | 2020-09-08 | 2021-02-18 | 정석엔지니어링 주식회사 | Ultrasonic generation device with pall ring |
KR102534708B1 (en) * | 2021-01-19 | 2023-05-19 | 김홍철 | A fine bubble generator using perforated plate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09299930A (en) * | 1996-05-13 | 1997-11-25 | Maezawa Ind Inc | Gas-liquid contacting device |
KR100759200B1 (en) * | 2007-03-21 | 2007-09-14 | 박현린 | Oxygen dissolving apparatus |
KR101005103B1 (en) * | 2010-09-17 | 2010-12-30 | 황석희 | Apparatus for dissolving oxygen |
KR200458752Y1 (en) * | 2009-06-24 | 2012-02-24 | 한국에너지기술(주) | An Apparatus for Producing Water having High Density of Oxygen |
KR101128006B1 (en) * | 2011-12-02 | 2012-03-29 | 김동욱 | Device dissolving oxygen |
-
2014
- 2014-11-12 KR KR1020140157440A patent/KR101522021B1/en active IP Right Grant
-
2015
- 2015-10-20 WO PCT/KR2015/011094 patent/WO2016076547A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09299930A (en) * | 1996-05-13 | 1997-11-25 | Maezawa Ind Inc | Gas-liquid contacting device |
KR100759200B1 (en) * | 2007-03-21 | 2007-09-14 | 박현린 | Oxygen dissolving apparatus |
KR200458752Y1 (en) * | 2009-06-24 | 2012-02-24 | 한국에너지기술(주) | An Apparatus for Producing Water having High Density of Oxygen |
KR101005103B1 (en) * | 2010-09-17 | 2010-12-30 | 황석희 | Apparatus for dissolving oxygen |
KR101128006B1 (en) * | 2011-12-02 | 2012-03-29 | 김동욱 | Device dissolving oxygen |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112121656A (en) * | 2020-08-31 | 2020-12-25 | 江苏创程环境科技有限公司 | Generation equipment for generating oxygen bubble water capable of dissolving multiple gases into nanoscale |
CN112121656B (en) * | 2020-08-31 | 2021-06-11 | 江苏创程环境科技有限公司 | Generation equipment for generating oxygen bubble water capable of dissolving multiple gases into nanoscale |
Also Published As
Publication number | Publication date |
---|---|
KR101522021B1 (en) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016076547A1 (en) | Multi-purpose nano-bubble mixing dissolver using gas-liquid | |
WO2011016638A2 (en) | Apparatus for oxygen dissolution | |
KR830008534A (en) | Gas-liquid mixture treatment device | |
US11441255B2 (en) | Detergent additive box and mounting structure thereof, and distribution box | |
DE3264188D1 (en) | Apparatus for raising the homogeneity of a mixture of fluids flowing together in a canalization | |
KR100881868B1 (en) | Device for desolving fluid | |
KR20090019386A (en) | Powerless mixing apparatus within pipe | |
KR840008592A (en) | Equipment for processing liquids and gas mixtures | |
ES2049058T3 (en) | DEVICE FOR MIXING A FLUID AND A LIQUID, ESPECIALLY FOR THE INTRODUCTION OF CARBON DIOXIDE IN A BEVERAGE CONTAINING WATER. | |
BRPI0912146B1 (en) | fluid treatment apparatus, and method for treating a fluid | |
CN104136107B (en) | multi-stage aeration device | |
CN213314371U (en) | Water mixing tank and water purification system | |
KR20120067394A (en) | A device for dissolving gas and a apparatus for dissolving oxygen which used it | |
KR101718898B1 (en) | Water storage tank of rectangular type having increased durability due to training wall provided with manhole being coupled to side walls integrally | |
JP2009255039A (en) | Gas dissolving vessel | |
KR20150060180A (en) | Apparatus for dissolving oxygen for sedimentation prevention and Apparatus for wastewater treatment using thereof | |
WO2012036536A2 (en) | Oxygen dissolving apparatus | |
WO2012099140A1 (en) | Membrane separation equipment and membrane separation device and operating method for membrane separation equipment | |
SE512746C2 (en) | Method and apparatus for treating black liquor | |
WO2022158835A2 (en) | Microbubble water generating apparatus using perforated plate | |
JP4793167B2 (en) | Pressure floating separator | |
JP4958577B2 (en) | Wastewater PH neutralization treatment equipment | |
KR100592120B1 (en) | Aeration device that can easily dissolve oxygen | |
WO2013024957A1 (en) | Underwater micro-bubble generating device | |
CN110548431A (en) | Liquid stirring device and liquid stirring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15859959 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15859959 Country of ref document: EP Kind code of ref document: A1 |