WO2016076454A1 - Method for culturing microorganisms and method for separating and purifying 9-cis β-carotene from cultured microorganisms - Google Patents

Method for culturing microorganisms and method for separating and purifying 9-cis β-carotene from cultured microorganisms Download PDF

Info

Publication number
WO2016076454A1
WO2016076454A1 PCT/KR2014/010853 KR2014010853W WO2016076454A1 WO 2016076454 A1 WO2016076454 A1 WO 2016076454A1 KR 2014010853 W KR2014010853 W KR 2014010853W WO 2016076454 A1 WO2016076454 A1 WO 2016076454A1
Authority
WO
WIPO (PCT)
Prior art keywords
carotene
cis
microorganisms
cis beta
beta
Prior art date
Application number
PCT/KR2014/010853
Other languages
French (fr)
Korean (ko)
Inventor
윤태성
신병철
Original Assignee
한국생명공학연구원
(주)아크에이르
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원, (주)아크에이르 filed Critical 한국생명공학연구원
Publication of WO2016076454A1 publication Critical patent/WO2016076454A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/24Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by six-membered non-aromatic rings, e.g. beta-carotene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes

Definitions

  • the present invention includes a method of culturing a microorganism using a photochemical gas generated by gas injection and light source control, and a method for separating and purifying 9-cis beta carotene (9-cis ⁇ -carotene) from the culture microorganism. , And a method for producing 9-cis beta-carotene from microorganisms.
  • Carotenoids are pigments that represent an orange-based (yellow to bright red) color that is primarily present in the peels of green and yellow vegetables such as carrots, old pumpkins, bell peppers, sesame leaves, lettuce, leeks, and spinach.
  • beta-carotene ⁇ -carotene
  • Beta-carotene is a precursor of almost all carotenoids, which are converted into vitamin A, an essential nutrient in the body. Beta-carotene is widely used as a food additive due to its antioxidant effect, high nutritional value, and unique color to prevent oxidation damage in animal tissues, and is also useful as an anticancer agent, vascular disease agent, and antioxidant related to skin aging. Is being used.
  • 9-cis beta-carotene (9-cis ⁇ -carotene) is known to have an excellent effect as a drug among the isomers of beta-carotene.
  • the amount of beta-carotene present in green yellow vegetables and fruits is not so high that its production does not meet the demand, and the purification of beta-carotene from natural products is a mixture of all-trans beta-carotene and 9-cis beta-carotene. Isomers do not separate the situation.
  • Dunaliella a natural microalgae, is a eukaryotes belonging to photosynthetic green algae, which can survive in salt concentrations ranging from about one tenth of seawater to 5M near salts. Exhibits high properties. Microalgae of the genus Dunaliella are found in places with low nitrogen content, strong sunlight and high salt concentrations, which can accumulate beta-carotene in the cells and become yellow-green to orange when exposed to such strong environmental stress conditions. Is found. These beta-carotenes have been reported to accumulate with oily granulocytes in the thylakoid interstitial spaces in the chloroplasts (Ben-Amotz et al., J. Phycol. 18: 529-537), and these accumulated beta-carotenes protect the photosynthetic system from strong light. We assume that it is for.
  • a series of processes in which microorganisms, animals, and plant cells are inoculated in proper breeding and propagated under appropriate conditions such as temperature and oxygen are called cultures, and the type of culture is classified into liquid culture and solid culture.
  • Important external conditions in culture include temperature, humidity, light gas phase composition (partial pressure of carbon dioxide and oxygen), and the most important direct influence on the cultured organisms is the medium.
  • the medium is also known as an incubator and is a direct environment for the organism, and is also a source of various nutrients necessary for survival and proliferation.
  • the liquid culture phase using the liquid medium cultures algae and microorganisms by controlling the temperature, roughness, gas and saturation amount of organic and inorganic matters contained in the medium, that is, nutrition culture method, and in general, the incubation time of algae and microorganisms
  • a method of adjusting the nutrient content of the medium is mainly used.
  • the aggregation of the culture cells occurs in proportion to the growth of the culture. This agglomeration phenomenon can be found in most algae and microorganisms and is a cause of inhibiting the speed of cell culture.
  • Patent Publication No. KR10-2014-0046132 discloses a method of preventing agglomeration of a culture through microspray of air on a liquid medium, and generating a photochemical gas by controlling light sources, thereby accelerating the growth rate of algae and microorganisms. It is adopted.
  • 9-cis beta-carotene is isolated and purified from the culture microorganisms. Research on how to produce is urgently needed.
  • the inventors of the present invention while searching for the production method of 9-cis beta-carotene (9-cis ⁇ -carotene), after culturing the microorganisms using the photochemical gas generated by gas injection and light source control, the culture When separating and purifying 9-cis beta-carotene from the microorganism, it is confirmed that the production of 9-cis beta-carotene is easy, and eco-friendly mass production, 9-cis beta-carotene shows excellent purity, the present invention was completed.
  • the present invention provides a method for improving the cultivation rate of microorganisms using photochemical gas generated by microspray of gas, and light source control, and a method for separating and purifying 9-cis beta-carotene from the culture microorganism. It is intended to provide a method for producing 9-cis beta-carotene.
  • the present invention comprises the steps of culturing the microorganisms using the photochemical gas generated by the gas injection and light source control; And separating and purifying 9-cis beta-carotene (9-cis ⁇ -carotene) from the cultured microorganisms, which provides a method for producing 9-cis beta-carotene from microorganisms.
  • the present invention comprises the steps of culturing the microorganisms using the photochemical gas generated by the gas injection and light source control; And separating and purifying 9-cis beta-carotene (9-cis ⁇ -carotene) from the cultured microorganisms, which provides a method for producing 9-cis beta-carotene from microorganisms.
  • the present invention can facilitate production of 9-cis beta-carotene by varying the composition and culture conditions of the medium, such as salt concentration, concentration of nitrogen source, or pressure, light source control, in order to maximize growth of the strain.
  • the micro-injection of the gas according to the present invention is controlled by a sensor unit for detecting the index of the aggregation point of the microbial mycelium, using a low pressure mist spray nozzle discharged in the incubator at the time of aggregation is formed as the culture of the microorganism in the medium is grown. By diffusing and spraying gas into the medium, the aggregated culture is pulverized.
  • the gas injected through the nozzle may be air, oxygen, nitrogen, nitrogen dioxide, carbon dioxide, or the like, and is preferably air.
  • the gas is microsprayed through a nozzle of 0.1 to 0.5 mm under low pressure to pulverize the agglomeration of the culture, resulting in a coagulation resolution index of 0 to 1%.
  • a certain amount of dissolved acid tank (DO), dissolved carbon dioxide (DCO 2 ), and ozone are required.
  • DO dissolved acid tank
  • DCO 2 dissolved carbon dioxide
  • ozone a method of generating a required gas by adjusting the light intensity and illuminance of a light source is adopted. Doing.
  • the light source adjustment may be performed at an illuminance range of 1000 to 7000 Lux, and a luminance range of 4000 to 12000K, and a required photochemical gas may be ozone or carbon dioxide. That is, by installing a sensor to detect the residual amount of dissolved oxygen, dissolved carbon dioxide and ozone in the incubator, when the ozone content is insufficient, nitrogen dioxide is introduced and in the oxidation process of nitrogen gas, the luminance range is 4000 to 5000K and the illuminance range is 6000 ⁇ 500Lux. Providing a light source produces ozone.
  • the infrared light source in the luminous intensity range of 10000 to 12000K and the illuminance range of 3000 ⁇ 500 Lux is irradiated to increase the dissolved carbon dioxide in the medium.
  • the microorganism is a microorganism of 0.1 mm or less including 9-cis beta-carotene, and is not particularly limited in the present invention, and includes microalgae, protozoa, filamentous fungi, yeasts, viruses, and the like.
  • the microalgae may be Dunaliella, Spirrolina, Chlamydomonas, Simbella, Chlorella, etc., which are cultured in a liquid medium, but Dunaliellane is preferable.
  • Dunaliella contains natural beta-carotene, and beta-carotene beneath the cell wall by synthesizing beta-carotene under the cell wall to protect chlorophyll a, a chlorophyll important for photosynthesis when the culture environment deteriorates, such as strong light irradiation. It is known to form a film.
  • the culture medium is a supply medium of nutrients necessary for the survival and proliferation of microorganisms, but may be a liquid medium or a solid medium, but is preferably a liquid medium.
  • it may include NaNO 3 , NaCl, NaH 2 PO 4 H 2 O, Na 2 SiO 3 9H 2 O, trace metals and vitamins.
  • the trace metals are FeCl 3 6H 2 O, Na 2 EDTA 4H 2 O, CuSO 4 5H 2 O, Na 2 MoO 4 2H 2 O, ZnSO 4 7H 2 O, MnCl 2 4H 2 O and Co (Cl) 2 ⁇ 6H 2 O and the like
  • the vitamin is cyanocobalamin (bioano), biotin (biotin), thiamine HCl, vitamin C, vitamin E, vitamin B12, calcium pantothenate (calcium pantothenate) , Folic acid, nicotinamide, and the like.
  • the cultured microorganisms can recover the cells by spontaneous precipitation of the culture or centrifugation.
  • Step (1) and (2) is a step of extracting beta carotene from the culture microorganism, according to an embodiment of the present invention, after washing the dry powder of the culture duraellia salina strain with ethanol, the carotenoid component Cyclo-nuxanon is added to separate and the hexane layer is evaporated, followed by addition of hexane and stirring and evaporation at -5 to 5 ° C. for 0.8 to 1.2 hours to obtain a dark brown semisolid. After adding the cyclo-nucleanone to the obtained semi-solid, it is maintained for 11 to 13 hours at -25 ⁇ -15 °C to obtain a beta carotene extract.
  • Step (3) is a step of purifying beta carotene, and may be performed using silica gel column chromatography, ODS column chromatography, or a combination thereof.
  • the beta carotene extract obtained above was purified by silica gel column chromatography using cyclohexane-ethyl and acetate (50: 1, v / v) as eluent to remove impurities and reddish brown foam.
  • a solid was obtained, which was ultrasonically pulverized to obtain an orange powder, which was then purified by ODS column chromatography using methanol and tetrahydrofuran (1: 0.2-1: 1, v / v) as eluent to give all trans beta.
  • An orange powder obtained by mixing carotene and 9-cis beta carotene was obtained. The powder thus obtained can be measured for absorbance at 450 nm or 475 nm using HPLC to determine the content of beta-carotene.
  • Step (4) is a step of separating and crystallizing 9-cis beta-carotene from the purified beta-carotene powder, an orange powder containing all-trans beta-carotene and 9-cis beta-carotene obtained according to an embodiment of the present invention.
  • methanol and tetrahydrofuran can be added at 1: 0.2 to 1: 1 (v / v) and rotovap to separate 9-cis beta-carotene from all trans beta-carotene.
  • the isolated 9-cis beta-carotene may be crystallized at -25 ⁇ -15 °C, preferably -20 °C.
  • the present invention also provides 9-cis beta-carotene produced by the above production method.
  • 9-cis beta-carotene produced according to the present invention has an average diameter of 0.1 ⁇ 0.4 ⁇ m, and has the advantage of showing excellent purity.
  • 9-cis beta-carotene according to the present invention is separated and purified from the cultured microorganisms by the micro-injection and light source control of the gas, it is easy to produce, eco-friendly mass production is possible, there is an effect showing excellent purity.
  • 1 is a diagram showing a 9-cis beta carotene according to the present invention.
  • Figure 2 (a, b, c, d, e, f) shows the UV-B measurements of HPLC for carotenoids and tocopherols of the Dunaliella salina strain according to the present invention It is a graph.
  • Figure 3a Figure 3b is a graph of the component analysis at 450 nm absorption band using a sample containing 9-cis beta-carotene purified according to Example 2-2 using HPLC.
  • Figure 4 is a graph of the component analysis at 470 nm absorption band using a sample containing 9-cis beta carotene purified according to Example 2-3.
  • 5A and 5B are graphs showing 1 H-NMR and 13 C-NMR spectra for 9-cis beta-carotene cultured, isolated and purified from Dunaliella salinaro strain according to the present invention.
  • Microalgae Dunaliella salina (KMMCC-1064) strains were cultured using an optical biocultivator (see KR10-2014-0046132).
  • the Dunaliella salina strain is inoculated in an f / 2 culture medium, pressure control and air injection of the optical bio-incubator is performed using a nozzle having a diameter in the range of 0.1 to 0.5mm under low pressure, the illumination range of the light source is 1000 To 7000Lux, the brightness range was performed by adjusting to 4000 to 12000K.
  • the strain had a size of 13.0 ⁇ 1.6 ⁇ m and was cultured for 15 days using the f / 2 culture medium of Tables 1 to 3 below.
  • Tables 1-3 Various media for culturing Dunaliella salina are shown in Tables 1-3 (Table 1: culture medium, Table 2: trace metal solution medium, Table 3: vitamin solution medium).
  • the cultured strain was filtered using a hollow fiber membrane of 0.05 ⁇ m size, and the carotenoid content of the strain was analyzed using HPLC (Tosoh, MCPD-3600).
  • Example 2-1 The extract according to Example 2-1 was subjected to silica gel column chromatography (silica gel: 900 ml, column: 5.5 cm ⁇ ⁇ 38 cm, eluent: cyclohexane and ethyl acetate (50: 1, v / v)). Purification removed impurities to obtain 16.6 g of a reddish brown foamy solid. 1660 mL of ethanol was added to the solid, which was then pulverized by ultrasonication. The solid was filtered, washed with ethanol and dried to obtain an orange powder (12 g,> 80%). The ultrasonic mill used (VCX750, Sonic & Materials Inc., USA) was operated for 6 minutes at a speed of 3000 rpm. The obtained powder was subjected to component analysis at 450 nm absorption band using HPLC, and the results are shown in FIGS. 3A and 3B.
  • the orange powder can be seen that isomers, such as all-trans beta carotene, 9-cis beta carotene are mixed.
  • the orange powder may be mixed with all-trans beta-carotene and 9-cis beta-carotene.
  • the orange powder containing all trans beta-carotene and 9-cis beta-carotene according to Example 2-3 was placed in a double jacketed reactor maintained at a temperature of 20 ° C. in a bath and 1 ° C. This was evaporated to a decrease of 1/5 to give an orange crystal. Methanol and tetrahydrofuran were added (5: 1-1: 1, v / v) to the crystals, and evaporated to give 75 mg of 9-cis beta-carotene per fraction, which was crystallized by maintaining at about -20 ° C. As a result, the total extraction rate of 7.5g of 9-cis beta-carotene was compared to 1kg of dry Dunalella salina dry powder, and it was confirmed that dark storage was possible at about -20 ° C for 2 weeks.
  • Example 2 Dunaliella salina strain cultured according to Example 1 was filtered using a 0.05 micron hollow fiber membrane (hollow fiber membrane), using high performance liquid chromatography (HPLC, Tosoh Co. MCPD-3600) The carotenoid content was analyzed.
  • HPLC comprises Nucleosil 5 ⁇ m C18 (250 ⁇ 4.6 mm id) (Macherey-Nagel) as the Guard column, Bondaclone 10 ⁇ m C18 (3.9 ⁇ 150 mm id) as the Analytical column, and Capillary column (15 mm ⁇ 0.53 mm id).
  • total carotenoid content was analyzed using ⁇ -carotene, zeaxanthin, lutein, astaxanthin and cryptoxanthin, tocopherol, ascorbic acid (Vitamin C), catalase, peroxidase, and superocide dismutase as a standard for comparison.
  • the list of standards includes ( ⁇ ) cis-trans abscisic acid, ( ⁇ ) cis-trans ABA, trans-ABA, all-trans-l3-carotene, ABA-Methyl ester, formaldehyde, polychlorinated f1occulant, 2,6-Di-terr -butyl-p-cresol, aqueous scintillant, and N-methyl-N'-nitro-nitrosoguanidine were used.
  • the membrane filter of ⁇ -carotene content of The United States Pharmacopeial Convention (USP) was 0.45 ⁇ m pore size, but the membrane tester was confirmed by passing the 0.4 ⁇ m pore size.
  • the membrane filter is made of PTFE and manufactured in the form of hollow fiber. Thereafter, 1 H-NMR and 13 C-NMR spectra were measured for 9-cis beta-carotene filtered through the membrane filter, and the results are shown in FIGS. 5A and 5B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Analytical Chemistry (AREA)
  • Birds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)

Abstract

The present invention relates to a method for producing 9-cis β-carotene from microorganisms, comprising a method for improving the culture rate of microorganisms using a photochemical gas generated by the micro-spray of gas and the control of a light source and a method for separating and purifying 9-cis β-carotene from the cultured microorganisms. The 9-cis β-carotene according to the present invention is separated and purified from the microorganisms cultured by the micro-spray of gas and the control of the light source, thereby facilitating production, enabling eco-friendly mass production, and exhibiting excellent purity.

Description

미생물의 배양방법 및 그 배양미생물로부터 9-시스 베타카로틴의 분리 및 정제방법Method of culturing microorganisms and separating and purifying 9-cis beta-carotene from the culture microorganism
본 발명은 기체의 미세분사 및 광원 조절에 의해 생성된 광화학적 기체를 이용한 미생물의 배양방법 및 그 배양미생물로부터 9-시스 베타카로틴(9-cis β-카로틴)을 분리 및 정제하는 방법을 포함하는, 미생물로부터 9-시스 베타카로틴의 생산방법에 관한 것이다.The present invention includes a method of culturing a microorganism using a photochemical gas generated by gas injection and light source control, and a method for separating and purifying 9-cis beta carotene (9-cis β-carotene) from the culture microorganism. , And a method for producing 9-cis beta-carotene from microorganisms.
카로티노이드(carotenoid)는 당근, 늙은 호박, 피망, 깻잎, 상추, 부추, 시금치와 같은 녹황색 채소와 과일의 껍질에 주로 존재하는 오랜지색 계열(황색부터 밝은 적색)을 나타내는 색소이다. 그 중 베타카로틴(β-카로틴)은 거의 모든 카로티노이드들의 전구체로서, 체내에서 필수영양소인 비타민 A로 전환된다. 베타카로틴은 동물조직에서 산화로 인한 손상을 방지할 수 있는 항산화 효과, 높은 영양가 및 특유의 색으로 인해 식품 첨가제로 널리 사용되고 있을 뿐만 아니라 항암제, 혈관 질환제, 피부 노화와 관련된 산화 방지제 등으로도 유용하게 사용되고 있다. 특히, 9-시스 베타카로틴(9-cis β-카로틴)은 베타카로틴의 이성질체 중에서 의약품으로서 우수한 효과를 가진 것으로 알려져 있다. 그러나 녹황색 채소나 과일에 존재하는 베타카로틴의 양은 그리 많지 않아 그 생산이 수요를 충족시키지 못하고 있을 뿐 아니라, 천연물로부터 베타카로틴의 정제는 올 트랜스(all trans) 베타카로틴 및 9-시스 베타카로틴의 혼합 이성질체를 분리하지 못하고 있는 실정이다.Carotenoids are pigments that represent an orange-based (yellow to bright red) color that is primarily present in the peels of green and yellow vegetables such as carrots, old pumpkins, bell peppers, sesame leaves, lettuce, leeks, and spinach. Among them, beta-carotene (β-carotene) is a precursor of almost all carotenoids, which are converted into vitamin A, an essential nutrient in the body. Beta-carotene is widely used as a food additive due to its antioxidant effect, high nutritional value, and unique color to prevent oxidation damage in animal tissues, and is also useful as an anticancer agent, vascular disease agent, and antioxidant related to skin aging. Is being used. In particular, 9-cis beta-carotene (9-cis β-carotene) is known to have an excellent effect as a drug among the isomers of beta-carotene. However, the amount of beta-carotene present in green yellow vegetables and fruits is not so high that its production does not meet the demand, and the purification of beta-carotene from natural products is a mixture of all-trans beta-carotene and 9-cis beta-carotene. Isomers do not separate the situation.
천연 미세조류인 두날리엘라(dunaliella)는 광합성을 하는 녹조류에 속하는 진핵생물로서, 해수의 1/10 정도에 해당하는 염농도로부터 포화용액에 가까운 5M에 이르는 범위의 염농도에서도 생존할 수 있는 염 적응 범위가 높은 특성을 나타낸다. 두날리엘라 속들의 미세조류들은 질소 함량이 낮고, 햇빛이 강하고, 염농도가 높은 곳에서 발견되며, 이들은 이런 강한 환경적 스트레스 조건에 노출되는 경우, 세포 내에 베타카로틴을 축적하여 황록색에서 오랜지색을 띠는 것이 발견된다. 이들 베타카로틴은 엽록체 내의 틸라코이드 막간 공간에 유성 과립구와 함께 축적되는 것으로 보고되었으며(Ben-Amotz 등, J. Phycol. 18: 529-537), 이렇게 축적된 베타카로틴은 강 한 빛으로부터 광합성계를 보호하기 위한 것으로 추측하고 있다.Dunaliella, a natural microalgae, is a eukaryotes belonging to photosynthetic green algae, which can survive in salt concentrations ranging from about one tenth of seawater to 5M near salts. Exhibits high properties. Microalgae of the genus Dunaliella are found in places with low nitrogen content, strong sunlight and high salt concentrations, which can accumulate beta-carotene in the cells and become yellow-green to orange when exposed to such strong environmental stress conditions. Is found. These beta-carotenes have been reported to accumulate with oily granulocytes in the thylakoid interstitial spaces in the chloroplasts (Ben-Amotz et al., J. Phycol. 18: 529-537), and these accumulated beta-carotenes protect the photosynthetic system from strong light. We assume that it is for.
미생물, 동물 및 식물세포 등을 적당한 배식에 식균하여 온도, 산소 등의 적당한 조건에서 증식시키는 일련의 과정을 배양(培養)이라고 하고 배양의 형식은 액체 배양과 고체배양으로 구분된다. 배양에 있어 중요한 외적조건으로는 온도, 습도, 빛 기체상의 조성(이산화탄소와 산소의 분압)등이 있으며 그 밖에 배양되는 생물체에 가장 중요한 직접적인 영향을 주는 것이 배지(培地)이다. 배지는 배양기라고도 하며 그 생물체에 직접적인 환경인 동시에 생존과 증식에 필요한 각종 영양소의 공급장이다. 일반적으로 액체배지를 이용한 액체배양 상에서는 온도, 조도, 기체 그리고 배지에 포함된 유기물 및 무기물의 포화량 조절을 통한 배양, 즉 영양배양법으로 조류 및 미생물을 배양하고 있으며 일반적으로 조류 및 미생물들의 배양시간이 정해져 있어 이들의 배양속도를 향상시키기 위해 배지의 영양성분을 조절하는 방법이 주로 사용되고 있다. 그런데, 이와 같은 액체배양의 경우 배양체의 성장에 비례하여 배양체 세포의 응집현상이 일어나는 문제점이 있다. 이러한 응집현상은 대부분의 조류 및 미생물에서 확인할 수 있으며 세포배양의 속도를 저해하는 원인이 되고 있다. 또한, 배양기 내에서 배양을 촉진하는데 필요한 환경 조건인 수소이온지수와 용존산소, 용존이산화탄소를 적정하게 유지시키기 위해 산소와 이산화탄소 등과 같은 가스를 지속적으로 공급해 주어야 한다. 그러나, 단순히 외부에서 이들 가스를 주입하는 것만으로는 특정 미생물의 성장에 필요한 용존 오존을 충분히 생성하기 어렵고 일정하게 유지하는 것 또한 어려운 문제점이 존재한다. 이에, 특허공개공보 KR10-2014-0046132에서는 액체배지 상에 공기의 미세분사를 통해 배양체의 응집을 방지하고, 및 광원조절에 의해 광화학적 기체를 생성함으로써, 조류 및 미생물의 배양속도를 촉진시키는 방법을 채용하고 있다.A series of processes in which microorganisms, animals, and plant cells are inoculated in proper breeding and propagated under appropriate conditions such as temperature and oxygen are called cultures, and the type of culture is classified into liquid culture and solid culture. Important external conditions in culture include temperature, humidity, light gas phase composition (partial pressure of carbon dioxide and oxygen), and the most important direct influence on the cultured organisms is the medium. The medium is also known as an incubator and is a direct environment for the organism, and is also a source of various nutrients necessary for survival and proliferation. In general, the liquid culture phase using the liquid medium cultures algae and microorganisms by controlling the temperature, roughness, gas and saturation amount of organic and inorganic matters contained in the medium, that is, nutrition culture method, and in general, the incubation time of algae and microorganisms In order to improve their culture rate, a method of adjusting the nutrient content of the medium is mainly used. However, in the case of such liquid culture, there is a problem in that the aggregation of the culture cells occurs in proportion to the growth of the culture. This agglomeration phenomenon can be found in most algae and microorganisms and is a cause of inhibiting the speed of cell culture. In addition, gas, such as oxygen and carbon dioxide, must be continuously supplied to properly maintain the hydrogen ion index, dissolved oxygen, and dissolved carbon dioxide, which are environmental conditions necessary to promote culture in the incubator. However, simply injecting these gases from the outside does not produce enough dissolved ozone necessary for the growth of certain microorganisms, and it is also difficult to keep constant. Accordingly, Patent Publication No. KR10-2014-0046132 discloses a method of preventing agglomeration of a culture through microspray of air on a liquid medium, and generating a photochemical gas by controlling light sources, thereby accelerating the growth rate of algae and microorganisms. It is adopted.
상기한 바와 같이, 공기의 미세분사 및 광원 조절에 의해 생성된 광화학적 기체를 이용하여 조류 및 미생물을 배양한 후, 그 배양미생물로부터 9-시스 베타카로틴을 분리 및 정제함으로써, 9-시스 베타카로틴을 생산하는 방법에 대한 연구가 절실히 요구되고 있다.As described above, by culturing algae and microorganisms using photochemical gas generated by air injection and light source control, 9-cis beta-carotene is isolated and purified from the culture microorganisms. Research on how to produce is urgently needed.
본 발명자들은 9-시스 베타카로틴(9-cis β-카로틴)의 생산방법에 대해 탐색하던 중, 기체의 미세분사 및 광원 조절에 의해 생성된 광화학적 기체를 이용하여 미생물을 배양한 후, 그 배양미생물로부터 9-시스 베타카로틴을 분리 및 정제할 경우, 9-시스 베타카로틴의 생산이 용이하고, 또한 친환경적으로 대량생산이 가능하고, 9-시스 베타카로틴이 우수한 순도를 나타내는 것을 확인하고, 본 발명을 완성하였다.The inventors of the present invention, while searching for the production method of 9-cis beta-carotene (9-cis β-carotene), after culturing the microorganisms using the photochemical gas generated by gas injection and light source control, the culture When separating and purifying 9-cis beta-carotene from the microorganism, it is confirmed that the production of 9-cis beta-carotene is easy, and eco-friendly mass production, 9-cis beta-carotene shows excellent purity, the present invention Was completed.
따라서, 본 발명은 기체의 미세분사, 및 광원 조절에 의해 생성된 광화학적 기체를 이용한 미생물의 배양속도 향상방법 및 그 배양미생물로부터 9-시스 베타카로틴을 분리 및 정제하는 방법을 포함하는, 미생물로부터 9-시스 베타카로틴의 생산방법을 제공하고자 한다.Accordingly, the present invention provides a method for improving the cultivation rate of microorganisms using photochemical gas generated by microspray of gas, and light source control, and a method for separating and purifying 9-cis beta-carotene from the culture microorganism. It is intended to provide a method for producing 9-cis beta-carotene.
상기와 같은 목적을 달성하기 위해서,In order to achieve the above object,
본 발명은 기체의 미세분사 및 광원 조절에 의해 생성된 광화학적 기체를 이용하여 미생물을 배양하는 단계; 및 상기 배양된 미생물로부터 9-시스 베타카로틴(9-cis β-카로틴)을 분리 및 정제하는 단계;를 포함하는, 미생물로부터 9-시스 베타카로틴의 생산방법을 제공한다.The present invention comprises the steps of culturing the microorganisms using the photochemical gas generated by the gas injection and light source control; And separating and purifying 9-cis beta-carotene (9-cis β-carotene) from the cultured microorganisms, which provides a method for producing 9-cis beta-carotene from microorganisms.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 기체의 미세분사 및 광원 조절에 의해 생성된 광화학적 기체를 이용하여 미생물을 배양하는 단계; 및 상기 배양된 미생물로부터 9-시스 베타카로틴(9-cis β-카로틴)을 분리 및 정제하는 단계;를 포함하는, 미생물로부터 9-시스 베타카로틴의 생산방법을 제공한다. The present invention comprises the steps of culturing the microorganisms using the photochemical gas generated by the gas injection and light source control; And separating and purifying 9-cis beta-carotene (9-cis β-carotene) from the cultured microorganisms, which provides a method for producing 9-cis beta-carotene from microorganisms.
본 발명은 균주의 생장을 최대화하기 위하여, 배지의 조성 및 배양 조건 예를 들어, 염농도, 질소원의 농도, 또는 압력, 광원 조절을 변화시켜 9-시스 베타카로틴을 생산을 촉진시킬 수 있다.The present invention can facilitate production of 9-cis beta-carotene by varying the composition and culture conditions of the medium, such as salt concentration, concentration of nitrogen source, or pressure, light source control, in order to maximize growth of the strain.
본 발명에 따른 기체의 미세분사는 미생물 균사의 응집시점 지수를 감지하는 센서부에 의해 조절되며, 배지내 미생물의 배양체 성장에 따라 응집이 형성되는 시점에서 배양기내 배설된 저압 안개분사용 노즐을 이용하여 기체를 배지에 확산 분사시킴으로써 응집된 배양체를 분쇄해준다.The micro-injection of the gas according to the present invention is controlled by a sensor unit for detecting the index of the aggregation point of the microbial mycelium, using a low pressure mist spray nozzle discharged in the incubator at the time of aggregation is formed as the culture of the microorganism in the medium is grown. By diffusing and spraying gas into the medium, the aggregated culture is pulverized.
상기 노즐을 통해 분사되는 기체는 공기, 산소, 질소, 이산화질소, 이산화탄소 등일 수 있고, 공기인 것이 바람직하다. 상기 기체는 저압하에서 0.1 내지 0.5mm의 노즐을 통하여 미세분사되어, 배양체의 응집을 분쇄하고, 그 결과 응집 해결지수가 0 내지 1%가 된다.The gas injected through the nozzle may be air, oxygen, nitrogen, nitrogen dioxide, carbon dioxide, or the like, and is preferably air. The gas is microsprayed through a nozzle of 0.1 to 0.5 mm under low pressure to pulverize the agglomeration of the culture, resulting in a coagulation resolution index of 0 to 1%.
또한, 액체배지 내에서 미생물을 잘 배양하기 위해서는 일정량의 용존 산조(DO), 용존이산화탄소(DCO2) 및 오존이 필요한데, 본 발명에서는 광원의 광도와 조도를 조절함으로써 필요한 기체를 생성하는 방법을 채택하고 있다.In addition, in order to cultivate microorganisms well in a liquid medium, a certain amount of dissolved acid tank (DO), dissolved carbon dioxide (DCO 2 ), and ozone are required. In the present invention, a method of generating a required gas by adjusting the light intensity and illuminance of a light source is adopted. Doing.
상기 광원 조절은 조도범위는 1000 내지 7000Lux, 및 광도범위는 4000 내지 12000K에서 수행될 수 있고, 필요한 광화학적 기체는 오존 또는 이산화탄소일 수 있다. 즉, 배양기내에 용존산소, 용존이산화탄소 및 오존의 잔존량을 감지하는 센서부를 설치하여 오존함량이 부족한 경우 이산화질소가 투입되게 되고, 질소기체의 산화과정에 광도 범위 4000 내지 5000K, 조도범위 6000 ± 500Lux의 광원을 제공하면 오존이 생성되게 된다. 또한, 용존 이산화탄소가 부족한 경우에는 광도범위 10000 내지 12000K, 조도범위 3000± 500Lux의 적외선 광원이 조사되어 배지내에 용존 이산화탄소가 증가하게 된다.The light source adjustment may be performed at an illuminance range of 1000 to 7000 Lux, and a luminance range of 4000 to 12000K, and a required photochemical gas may be ozone or carbon dioxide. That is, by installing a sensor to detect the residual amount of dissolved oxygen, dissolved carbon dioxide and ozone in the incubator, when the ozone content is insufficient, nitrogen dioxide is introduced and in the oxidation process of nitrogen gas, the luminance range is 4000 to 5000K and the illuminance range is 6000 ± 500Lux. Providing a light source produces ozone. In addition, when the dissolved carbon dioxide is insufficient, the infrared light source in the luminous intensity range of 10000 to 12000K and the illuminance range of 3000 ± 500 Lux is irradiated to increase the dissolved carbon dioxide in the medium.
상기 미생물은 9-시스 베타카로틴을 포함하는 0.1mm 이하의 미세한 생물로서, 본 발명에서는 특별히 한정되지 않으며, 미세조류, 원생동물류, 사상균류, 효모류, 및 바이러스 등을 포함한다. 상기 미세조류는 액체배지 내에서 배양되는 두날리엘라, 스피롤리나, 클라미도모나스, 심벨라, 클로렐라 등일 수 있으나, 두날리엘라인 것이 바람직하다. 두날리엘라는 천연의 베타카로틴을 함유하고 있는데, 강한 빛의 조사와 같이 배양 환경이 악화되면 광합성에 중요한 엽록소인 엽록소 a(chlorophyll a)를 보호하기 위하여 베타카로틴을 대량 합성하여 세포벽 아래에 베타카로틴 막을 형성하는 것으로 알려져 있다.The microorganism is a microorganism of 0.1 mm or less including 9-cis beta-carotene, and is not particularly limited in the present invention, and includes microalgae, protozoa, filamentous fungi, yeasts, viruses, and the like. The microalgae may be Dunaliella, Spirrolina, Chlamydomonas, Simbella, Chlorella, etc., which are cultured in a liquid medium, but Dunaliellane is preferable. Dunaliella contains natural beta-carotene, and beta-carotene beneath the cell wall by synthesizing beta-carotene under the cell wall to protect chlorophyll a, a chlorophyll important for photosynthesis when the culture environment deteriorates, such as strong light irradiation. It is known to form a film.
상기 배양 배지는 미생물의 생존과 증식에 필요한 영양소의 공급장으로서, 액체배지 또는 고체배지일 수 있으나, 액체배지인 것이 바람직하다. 또한, 미생물의 배양속도를 향상시키기 위하여, NaNO3, NaCl, NaH2PO4ㆍH2O, Na2SiO3ㆍ9H2O, 미량금속 및 비타민 등을 포함할 수 있다. 상기 미량금속은 FeCl3ㆍ6H2O, Na2EDTAㆍ4H2O, CuSO4ㆍ5H2O, Na2MoO4ㆍ2H2O, ZnSO4ㆍ7H2O, MnCl2ㆍ4H2O 및 Co(Cl)2ㆍ6H2O 등 일 수 있고, 상기 비타민은 시아노코발라민(cyanocobalamin),비오틴(biotin), 티아민 염산(thiamine HCl), 비타민C, 비타민E, 비타민B12, 판토텐산 칼슘(calcium pantothenate), 엽산(folic acid), 니코틴산 아미드(nicotinamide) 등일 수 있다.The culture medium is a supply medium of nutrients necessary for the survival and proliferation of microorganisms, but may be a liquid medium or a solid medium, but is preferably a liquid medium. In addition, in order to improve the culture rate of the microorganism, it may include NaNO 3 , NaCl, NaH 2 PO 4 H 2 O, Na 2 SiO 3 9H 2 O, trace metals and vitamins. The trace metals are FeCl 3 6H 2 O, Na 2 EDTA 4H 2 O, CuSO 4 5H 2 O, Na 2 MoO 4 2H 2 O, ZnSO 4 7H 2 O, MnCl 2 4H 2 O and Co (Cl) 2 · 6H 2 O and the like, the vitamin is cyanocobalamin (bioano), biotin (biotin), thiamine HCl, vitamin C, vitamin E, vitamin B12, calcium pantothenate (calcium pantothenate) , Folic acid, nicotinamide, and the like.
배양이 종료된 후에는, 배양미생물은 배양액을 자연 침전시키거나 원심분리를 통하여 세포를 회수할 수 있다.After the incubation is finished, the cultured microorganisms can recover the cells by spontaneous precipitation of the culture or centrifugation.
상기 배양미생물내 생산된 9-시스 베타카로틴의 분리 및 정제는, (1) 배양미생물 분말에 헥산을 가하고 교반 및 증발시켜 반고체를 얻는 단계; (2) 상기 반고체로부터 베타카로틴 추출물을 얻는 단계; (3) 상기 베타카로틴 추출물을 크로마토그래피로 정제한 후, 용출물을 초음파 분쇄하여 올 트랜스- 및 9-시스 베타카로틴을 포함하는 분말을 얻는 단계: (4) 상기 분말을 증발중탕하여 결정체를 얻은 후, 메탄올 및 테트라하이드로퓨란을 가하고 회전증발시켜 올 트랜스- 및 9-시스 베타카로틴을 분리하는 단계; 및 (5) 상기 분리된 9-시스 베타카로틴을 결정화시키는 단계;를 포함할 수 있다.Separation and purification of 9-cis beta-carotene produced in the cultured microorganisms, (1) adding hexane to the cultured microbial powder, stirring and evaporating to obtain a semi-solid; (2) obtaining beta carotene extract from the semisolid; (3) purifying the beta carotene extract by chromatography, and then ultrasonically pulverizing the eluate to obtain a powder containing all trans- and 9-cis beta carotene: (4) obtaining a crystal by evaporating the powder. Then, methanol and tetrahydrofuran were added and rotovap to separate all trans- and 9-cis beta carotene; And (5) crystallizing the isolated 9-cis beta-carotene.
상기 (1) 및 (2)단계는 배양미생물로부터 베타카로틴을 추출하는 단계로, 본 발명의 일 실시예에 따르면, 배양된 듀나리엘라 살리나 균주의 건조분말을 에탄올로 세척한 후, 카로티노이드 성분을 분리하기 위해 시클로-핵사논을 가하고 헥산 층을 증발시킨 후, 다시 헥산을 가하고 -5 ~ 5℃에서 0.8 ~ 1.2시간 동안 교반 및 증발시켜 진한 갈색의 반고체를 얻을 수 있다. 상기 얻어진 반고체에 시클로-핵사논을 가한 후, -25 ~ -15℃에서 11 ~ 13시간 동안 유지하여 베타카로틴 추출물을 얻을 수 있다.Step (1) and (2) is a step of extracting beta carotene from the culture microorganism, according to an embodiment of the present invention, after washing the dry powder of the culture duraellia salina strain with ethanol, the carotenoid component Cyclo-nuxanon is added to separate and the hexane layer is evaporated, followed by addition of hexane and stirring and evaporation at -5 to 5 ° C. for 0.8 to 1.2 hours to obtain a dark brown semisolid. After adding the cyclo-nucleanone to the obtained semi-solid, it is maintained for 11 to 13 hours at -25 ~ -15 ℃ to obtain a beta carotene extract.
상기 (3)단계는 베타카로틴을 정제하는 단계로, 실리카 겔 컬럼 크로마토그래피, ODS 컬럼 크로마토그래피 또는 이들의 조합을 이용하여 수행될 수 있다. 본 발명의 일 실시예에 따르면, 상기 얻어진 베타카로틴 추출물을 시클로헥산-에틸 및 아세테이트 (50:1, v/v)를 용리액으로 사용하여 실리카 겔 컬럼 크로마토그래피로 정제하여 불순물을 제거하고 적갈색의 거품형 고체를 얻고, 이를 초음파 분쇄하여 오렌지색 분말을 얻은 후, 또 다시 메탄올 및 테트라하이드로퓨란 (1:0.2~1:1, v/v)을 용리액으로 사용하여 ODS 컬럼 크로마토그래피로 정제하여 올 트랜스 베타카로틴 및 9-시스 베타카로틴이 혼합된 오렌지색 분말을 얻었다. 이렇게 얻어진 분말을 HPLC를 이용하여 450nm 또는 475nm에서 흡수도를 측정하여 베타-카로틴의 함량을 측정할 수 있다.Step (3) is a step of purifying beta carotene, and may be performed using silica gel column chromatography, ODS column chromatography, or a combination thereof. According to an embodiment of the present invention, the beta carotene extract obtained above was purified by silica gel column chromatography using cyclohexane-ethyl and acetate (50: 1, v / v) as eluent to remove impurities and reddish brown foam. A solid was obtained, which was ultrasonically pulverized to obtain an orange powder, which was then purified by ODS column chromatography using methanol and tetrahydrofuran (1: 0.2-1: 1, v / v) as eluent to give all trans beta. An orange powder obtained by mixing carotene and 9-cis beta carotene was obtained. The powder thus obtained can be measured for absorbance at 450 nm or 475 nm using HPLC to determine the content of beta-carotene.
상기 (4)단계는 정제된 베타카로틴 분말에서 9-시스 베타카로틴을 분리하고, 결정화하는 단계로, 본 발명의 일 실시예에 따라 얻어진 올 트랜스 베타카로틴 및 9-시스 베타카로틴을 포함하는 오렌지색 분말을 증발중탕 후, 메탄올 및 테트라하이드로퓨란을 1:0.2 ~ 1:1 (v/v)로 가하고 회전증발시켜 올 트랜스 베타카로틴으로부터 및 9-시스 베타카로틴을 분리할 수 있다.Step (4) is a step of separating and crystallizing 9-cis beta-carotene from the purified beta-carotene powder, an orange powder containing all-trans beta-carotene and 9-cis beta-carotene obtained according to an embodiment of the present invention. After evaporation, methanol and tetrahydrofuran can be added at 1: 0.2 to 1: 1 (v / v) and rotovap to separate 9-cis beta-carotene from all trans beta-carotene.
상기 분리된 9-시스 베타카로틴은 -25 ~ -15℃, 바람직하게는 -20℃에서 결정화될 수 있다.The isolated 9-cis beta-carotene may be crystallized at -25 ~ -15 ℃, preferably -20 ℃.
또한, 본 발명은 상기 생산방법에 의해 생산된, 9-시스 베타카로틴을 제공한다. 본 발명에 따라 생산된 9-시스 베타카로틴는 0.1 ~ 0.4㎛의 평균 지름을 갖으며, 우수한 순도를 나타내는 장점이 있다.The present invention also provides 9-cis beta-carotene produced by the above production method. 9-cis beta-carotene produced according to the present invention has an average diameter of 0.1 ~ 0.4㎛, and has the advantage of showing excellent purity.
본 발명에 따른 9-시스 베타카로틴은 기체의 미세분사 및 광원 조절에 의해 배양된 미생물로부터 분리 및 정제됨으로써, 생산이 용이하고, 또한 친환경적으로 대량생산이 가능하고, 우수한 순도를 나타내는 효과가 있다.9-cis beta-carotene according to the present invention is separated and purified from the cultured microorganisms by the micro-injection and light source control of the gas, it is easy to produce, eco-friendly mass production is possible, there is an effect showing excellent purity.
도 1은 본 발명에 따른 9-시스 베타카로틴을 나타내는 그림이다.1 is a diagram showing a 9-cis beta carotene according to the present invention.
도 2(a, b, c, d, e, f)는 본 발명에 따른 두날리엘라 살리나(dunaliella salina) 균주의 카로티노이드(carotenoid) 및 토코페롤(tocopherol)에 대한 HPLC의 UV-B 측정값을 나타내는 그래프이다.Figure 2 (a, b, c, d, e, f) shows the UV-B measurements of HPLC for carotenoids and tocopherols of the Dunaliella salina strain according to the present invention It is a graph.
도 3a, 도 3b은 실시예 2-2에 따라 정제된 9-시스 베타카로틴을 포함하는 시료를 HPLC을 이용하여 450 nm 흡수대에서 성분분석한 그래프이다.Figure 3a, Figure 3b is a graph of the component analysis at 450 nm absorption band using a sample containing 9-cis beta-carotene purified according to Example 2-2 using HPLC.
도 4는 실시예 2-3에 따라 정제된 9-시스 베타카로틴을 포함하는 시료를 HPLC을 이용하여 470 nm 흡수대에서 성분분석한 그래프이다.Figure 4 is a graph of the component analysis at 470 nm absorption band using a sample containing 9-cis beta carotene purified according to Example 2-3.
도 5a, 도 5b는 본 발명에 따른 두날리엘라 살리나로 균주로부터 배양, 분리 및 정제된 9-시스 베타카로틴에 대해 1H-NMR 및 13C-NMR 스펙트럼을 나타내는 그래프이다.5A and 5B are graphs showing 1 H-NMR and 13 C-NMR spectra for 9-cis beta-carotene cultured, isolated and purified from Dunaliella salinaro strain according to the present invention.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the examples.
실시예 1. 광 바이오배양기를 이용한 미생물의 배양Example 1 Cultivation of Microorganisms Using an Optical Biocultivator
광 바이오배양기(KR10-2014-0046132 참조)를 이용하여 미세조류인 두날리엘라 살리나(Dunaliella salina, KMMCC-1064) 균주를 배양하였다. 상기 두날리엘라 살리나 균주를 f/2 배양배지에 접종하고, 광 바이오배양기의 압력 조절과 공기 분사는 저압하에서 0.1 내지 0.5mm 범위의 직경을 가지는 노즐을 이용하여 수행하고, 광원의 조도범위는 1000 내지 7000Lux, 광도범위는 4000 내지 12000K로 조절하여 수행하였다. 상기 균주는 13.0±1.6㎛의 크기를 가졌으며, 하기 표 1 내지 3의 f/2 배양 배지를 사용하여 15일 동안 배양하였다.Microalgae Dunaliella salina (KMMCC-1064) strains were cultured using an optical biocultivator (see KR10-2014-0046132). The Dunaliella salina strain is inoculated in an f / 2 culture medium, pressure control and air injection of the optical bio-incubator is performed using a nozzle having a diameter in the range of 0.1 to 0.5mm under low pressure, the illumination range of the light source is 1000 To 7000Lux, the brightness range was performed by adjusting to 4000 to 12000K. The strain had a size of 13.0 ± 1.6 μm and was cultured for 15 days using the f / 2 culture medium of Tables 1 to 3 below.
두날리엘라 살리나를 배양하기 위한 다양한 배지를 표 1 내지 3(표 1: 배양배지, 표 2: 미량금속 용액(trace metal solution) 배지, 표 3: 비타민 용액(vitamin solution) 배지)에 나타내었다.Various media for culturing Dunaliella salina are shown in Tables 1-3 (Table 1: culture medium, Table 2: trace metal solution medium, Table 3: vitamin solution medium).
표 1
양(quantity) 화합물(compound) 저장액(stock solution) 최종 배지에서의 몰(molar) 농도
1mL NaNO3 75 g/L dH2O 8.83 × 10-4 M
1mL NaH2PO4·H2O 5 g/L dH2O 3.63 × 10-5 M
1mL Na2SiO3·9H2O 30 g/L dH2O 1.07 × 10-4 M
1mL f/2 미량금속 용액 표 2 참조
0.5mL f/2 비타민 용액 표 3 참조
Table 1
Quantity Compound Stock solution Molar concentration in the final medium
1 mL NaNO 3 75 g / L dH 2 O 8.83 × 10 -4 M
1 mL NaH 2 PO 4 · H 2 O 5 g / L dH 2 O 3.63 × 10 -5 M
1 mL Na 2 SiO 3 · 9H 2 O 30 g / L dH 2 O 1.07 × 10 -4 M
1 mL f / 2 trace metal solution See Table 2
0.5 mL f / 2 vitamin solution See Table 3
표 2
양(quantity) 화합물(compound) 저장액(stock solution) 최종 배지에서의 몰(molar) 농도
3.15 g FeCl3·6H2O - 1 × 10-5 M
4.36 g Na2EDTA ·2H2O - 1 × 10-5 M
1 mL CuSO4·5H2O 9.8 g/L dH2O 4 × 10-8 M
1 mL Na2MoO4·2H2O 6.3 g/L dH2O 3 × 10-8 M
1 mL ZnSO4·7H2O 22.0 g/L dH2O 8 × 10-8 M
1 mL CoCl2·6H2O 10.0 g/L dH2O 5 × 10-8 M
1 mL MnCl2·4H2O 180.0 g/L dH2O 9 x 10-7 M
TABLE 2
Quantity Compound Stock solution Molar concentration in the final medium
3.15 g FeCl 3 · 6H 2 O - 1 × 10 -5 M
4.36 g Na 2 EDTA2H 2 O - 1 × 10 -5 M
1 mL CuSO 4 · 5H 2 O 9.8 g / L dH 2 O 4 × 10 -8 M
1 mL Na 2 MoO 4 2H 2 O 6.3 g / L dH 2 O 3 × 10 -8 M
1 mL ZnSO 4 · 7H 2 O 22.0 g / L dH 2 O 8 × 10 -8 M
1 mL CoCl 2 · 6H 2 O 10.0 g / L dH 2 O 5 × 10 -8 M
1 mL MnCl 2 4H 2 O 180.0 g / L dH 2 O 9 x 10 -7 M
표 3
양(quantity) 화합물(compound) 저장액(stock solution) 최종 배지에서의 몰(molar) 농도
1mL Cyanocobalamin 1.0 g/L dH2O 1 × 10-10 M
10mL Biotin 0.1 g/L dH2O 2 × 10-9 M
200mg Thiamine·HCl 3 × 10-7 M
TABLE 3
Quantity Compound Stock solution Molar concentration in the final medium
1 mL Cyanocobalamin 1.0 g / L dH 2 O 1 × 10 -10 M
10 mL Biotin 0.1 g / L dH 2 O 2 × 10 -9 M
200 mg ThiamineHCl 3 × 10 -7 M
상기 배양이 완료된 이후, 0.05㎛ 크기의 중공사막(hollow fiber membrane)을 이용하여 배양된 균주를 여과하였고, HPLC(토소(Tosoh) 사, MCPD-3600)을 이용하여 균주의 카로티노이드 함량을 분석하였다.After the incubation was completed, the cultured strain was filtered using a hollow fiber membrane of 0.05 μm size, and the carotenoid content of the strain was analyzed using HPLC (Tosoh, MCPD-3600).
실시예 2. 배양미생물로부터 9-시스 베타카로틴을 분리 및 정제Example 2 Isolation and Purification of 9-cis Beta Carotene from Cultured Microorganisms
상기 실시예 1에 따라 배양된 두날리엘라 살리나 균주로부터 9-시스 베타카로틴(도 1 참조)의 분리 및 정제를 수행하였다.Separation and purification of 9-cis beta-carotene (see FIG. 1) from Dunaliella salina strain cultured according to Example 1 was performed.
2-1. 배양미생물의 초기정제2-1. Initial purification of cultured microorganisms
먼저, 상기 실시예 1에 따라 배양된 두날리엘라 살리나 균주(KMMCC-1064)의 건조 분말 (1kg)을 식물성 오일성분을 제거하기 위해 에탄올 (5L)로 2회 세척 하였다. 카로티노이드를 분리하기 위해 시클로-핵사논(cyclo-hexanone, 9L)를 가하고, 헥산 층을 증발시켜 진한 갈색 반고체 및 고체 (53g)을 얻은 후, 얻어진 시료에, 다시 헥산 (1L)을 가하고 0℃에서 1시간 동안 교반한 후, 헥산 층을 증발시켜 올 트랜스 베타카로틴 14.8g을 포함하는 진한 갈색의 반고체 38g을 얻었다. 그 후, 이 반고체에 시클로-핵사논(185mL)를 가하고, 혼합물을 -20℃에서 약 12시간 동안 유지하였다. 그 후, 침전된 고체를 여과하여 제거하였고, 올 트랜스 베타카로틴 4g 및 많은 양의 9-시스 베타카로틴 이성질체를 포함하는 추출물을 얻었다.First, the dry powder (1 kg) of Dunaliella salina strain (KMMCC-1064) cultured according to Example 1 was washed twice with ethanol (5L) to remove the vegetable oil component. To separate the carotenoids, cyclo-hexanone (9 L) was added, the hexane layer was evaporated to give a dark brown semisolid and solid (53 g), and then to the obtained sample, hexane (1 L) was added again at 0 ° C. After stirring for 1 hour, the hexane layer was evaporated to give 38 g of a dark brown semisolid containing 14.8 g of all trans beta carotene. Thereafter, cyclo-nuxanone (185 mL) was added to this semisolid, and the mixture was maintained at -20 ° C for about 12 hours. Thereafter, the precipitated solid was removed by filtration, and an extract containing 4 g of all-trans beta-carotene and a large amount of 9-cis beta-carotene isomer was obtained.
2-2. 오픈칼럼 크로마토그래피를 이용한 9-시스 베타카로틴의 분리2-2. Separation of 9-cis Beta-carotene by Open Column Chromatography
상기 실시예 2-1에 따른 추출물을 실리카 겔 컬럼 크로마토그래피(실리카 겔: 900 ml, 컬럼: 5.5cm ¢ × 38cm, 용리액: 시클로헥산 및 에틸 아세테이트 (50:1, v/v))을 이용하여 정제하여 불순물을 제거하고, 적갈색의 거품형 고체 16.6g을 얻었다. 이 고체에 에탄올 1660 mL을 가한 후, 초음파로 분쇄하였고, 이를 여과하여 에탄올로 세척 및 건조함으로써 오렌지색 분말(12g, >80%)을 얻었다. 이때 사용된 초음파 분쇄기(VCX750, Sonic & Materials Inc., USA)는 3000 rpm의 속도로 6분동안 작동하였다. 상기 얻어진 분말을 HPLC을 이용하여 450nm 흡수대에서 성분분석하였고, 그 결과를 도 3a 및 도 3b에 나타내었다.The extract according to Example 2-1 was subjected to silica gel column chromatography (silica gel: 900 ml, column: 5.5 cm × × 38 cm, eluent: cyclohexane and ethyl acetate (50: 1, v / v)). Purification removed impurities to obtain 16.6 g of a reddish brown foamy solid. 1660 mL of ethanol was added to the solid, which was then pulverized by ultrasonication. The solid was filtered, washed with ethanol and dried to obtain an orange powder (12 g,> 80%). The ultrasonic mill used (VCX750, Sonic & Materials Inc., USA) was operated for 6 minutes at a speed of 3000 rpm. The obtained powder was subjected to component analysis at 450 nm absorption band using HPLC, and the results are shown in FIGS. 3A and 3B.
도 3a 및 도 3b에 나타난 바와 같이, 상기 오렌지색 분말은 올 트랜스 베타카로틴, 9-시스 베타카로틴 등의 이성질체들이 혼합되어 있는 것을 확인할 수 있다.As shown in Figure 3a and 3b, the orange powder can be seen that isomers, such as all-trans beta carotene, 9-cis beta carotene are mixed.
2-3. ODS 오픈칼럼 크로마토그래피를 이용한 9-시스 베타카로틴의 분리2-3. Separation of 9-cis Beta-carotene by ODS Open Column Chromatography
상기 실시예 2-2에 따른 오렌지색 분말 11.2g을 클로로포름 30mL와 혼합한 후, ODS 오픈컬럼 크로마토그래피(Chromatorex DM1020T: 1.2 L, 컬럼: 8cm ¢ × 24cm, 용리액: 메탄올-테트라하이드로퓨란 (5:1 - 1:1, v/v))을 이용하여 정제함으로써, 컬럼에 옅은 녹색밴드가 형성되면서 용출된 농축물을 얻었다. 이 농축물에 에탄올 1660mL을 가한 후, 초음파로 분쇄하여 오렌지색의 분말 10.1g을 얻었다. 상기 얻어진 분말을 HPLC을 이용하여 475nm 흡수대에서 성분분석하였고, 그 결과를 도 4에 나타내었다.11.2 g of the orange powder according to Example 2-2 was mixed with 30 mL of chloroform, followed by ODS open column chromatography (Chromatorex DM1020T: 1.2 L, column: 8 cm ¢ × 24 cm, eluent: methanol-tetrahydrofuran (5: 1). 1: 1, v / v)) to obtain a concentrate eluted with the formation of a pale green band in the column. 1660 mL of ethanol was added to the concentrate, followed by ultrasonication to obtain 10.1 g of an orange powder. The obtained powder was subjected to component analysis at 475 nm absorption band using HPLC, and the results are shown in FIG. 4.
도 4에 나타난 바와 같이 상기 오렌지색 분말은 올 트랜스 베타카로틴 및 9-시스 베타카로틴이 혼합되어 있는 것을 확인할 수 있다.As shown in FIG. 4, the orange powder may be mixed with all-trans beta-carotene and 9-cis beta-carotene.
2-4. 9-시스 베타카로틴의 결정화2-4. Crystallization of 9-cis Beta-carotene
상기 실시예 2-3에 따른 올 트랜스 베타카로틴 및 9-시스 베타카로틴을 포함하는 오렌지색 분말을 20℃의 중탕조 내부온도 및 1℃의 반응조 온도로 유지되는 2중자켓 반응조에 넣은 후, 중탕액이 1/5로 줄어들 때까지 증발중탕하여 오랜지색 결정을 얻었다. 상기 결정에 메탄올 및 테트라하이드로퓨란을 (5:1 - 1:1, v/v)로 가하고, 회전증발시켜 분획당 75mg의 9-시스 베타카로틴을 얻었고, 이를 약 -20℃로 유지해 결정화시켰다. 이에 따른 총 추출율은 초기 두날리엘라 살리나 건조분말 1kg 대비 7.5g의 9-시스 베타카로틴을 얻었고, 약 -20℃에서 2주동안 암실 보관이 가능함을 확인하였다. The orange powder containing all trans beta-carotene and 9-cis beta-carotene according to Example 2-3 was placed in a double jacketed reactor maintained at a temperature of 20 ° C. in a bath and 1 ° C. This was evaporated to a decrease of 1/5 to give an orange crystal. Methanol and tetrahydrofuran were added (5: 1-1: 1, v / v) to the crystals, and evaporated to give 75 mg of 9-cis beta-carotene per fraction, which was crystallized by maintaining at about -20 ° C. As a result, the total extraction rate of 7.5g of 9-cis beta-carotene was compared to 1kg of dry Dunalella salina dry powder, and it was confirmed that dark storage was possible at about -20 ° C for 2 weeks.
실험예 1. 배지 및 배양환경에 따른 카로티노이드의 함량변화Experimental Example 1. Changes in the content of carotenoids according to the medium and culture environment
상기 실시예 1에 따라 배양된 두날리엘라 살리나 균주를 0.05㎛ 크기의 중공사막(hollow fiber membrane)을 이용하여 여과하였고, 고성능 액체크로마토그래피(HPLC, 토소(Tosoh) 사의 MCPD-3600)을 이용하여 카로티노이드 함량을 분석하였다. 상기 HPLC는 Guard column으로 Nucleosil 5㎛ C18(250 × 4.6 mm i.d.) (Macherey-Nagel), Analytical column으로 Bondaclone 10㎛ C18 (3.9 × 150mm i.d.), 및 Capillary column (15mm × 0.53mm i.d.)을 포함한다. 또한, 비교를 위한 표준품으로 β-카로틴, zeaxanthin, lutein, astaxanthin 및 cryptoxanthin, tocopherol, ascorbic acid(Vitamin C), catalase, peroxidase, superocide dismutase를 이용하여 총 카로티노이드의 함량을 분석하였다. 표준품 목록으로는 (±) cis-trans abscisic acid, (±) cis-trans ABA, trans-ABA, 올 트랜스-l3-카로틴, ABA-Methyl ester, formaldehyde, 폴리염화 f1occulant, 2,6-Di-terr-butyl-p-cresol, aqueous scintillant, 및 N-methyl-N'-nitro-nitrosoguanidine을 사용하였다.Dunaliella salina strain cultured according to Example 1 was filtered using a 0.05 micron hollow fiber membrane (hollow fiber membrane), using high performance liquid chromatography (HPLC, Tosoh Co. MCPD-3600) The carotenoid content was analyzed. The HPLC comprises Nucleosil 5 μm C18 (250 × 4.6 mm id) (Macherey-Nagel) as the Guard column, Bondaclone 10 μm C18 (3.9 × 150 mm id) as the Analytical column, and Capillary column (15 mm × 0.53 mm id). . In addition, total carotenoid content was analyzed using β-carotene, zeaxanthin, lutein, astaxanthin and cryptoxanthin, tocopherol, ascorbic acid (Vitamin C), catalase, peroxidase, and superocide dismutase as a standard for comparison. The list of standards includes (±) cis-trans abscisic acid, (±) cis-trans ABA, trans-ABA, all-trans-l3-carotene, ABA-Methyl ester, formaldehyde, polychlorinated f1occulant, 2,6-Di-terr -butyl-p-cresol, aqueous scintillant, and N-methyl-N'-nitro-nitrosoguanidine were used.
배양배지 및 배양조건에 따른 카로티노이드(carotenoid)의 함량변화를 표 4에 나타내었고, 보다 구체적인 결과를 표 5 내지 표 7에 나타내었다.The change in the content of carotenoids according to the culture medium and the culture conditions is shown in Table 4, and more specific results are shown in Tables 5 to 7.
표 4
배양배지 및 배양조건 mg g-1 퍼센트(%) 비율(ratio)
1. 상기 미량금속 용액이 없는 F/2 배지 9.2 0.92 1.0
2. F/2배지 + UV(290-320 nm, 2,000Lux) 14.5 1.45 1.58
3. 질소 + 8% NaCl, l2.5 mM 질소 + 8 % NaCl 31.1 3.11 3.38
4. 질소 공급없는 8% NaCl 45.5 4.55 4.94
5. 12% NaCl 추가 + 5 mM/L 질소 54.1 5.41 5.88
6. 12% NaCl 추가 + 2.5 mM/L 질소 105.1 10.5 11.42
7. 16% NaCl 추가 + 5 mM/L 질소 72.9 7.29 8.05
8. 16% NaCl 추가 + 2.5 mM/L 질소 115.2 11.5 12.6
Table 4
Culture medium and culture conditions mg g-1 percent(%) Ratio
1. F / 2 medium without the trace metal solution 9.2 0.92 1.0
2.F / 2 medium + UV (290-320 nm, 2,000 Lux) 14.5 1.45 1.58
3. Nitrogen + 8% NaCl, l2.5 mM Nitrogen + 8% NaCl 31.1 3.11 3.38
4. 8% NaCl without nitrogen supply 45.5 4.55 4.94
5. Add 12% NaCl + 5 mM / L Nitrogen 54.1 5.41 5.88
6. Add 12% NaCl + 2.5 mM / L Nitrogen 105.1 10.5 11.42
7. Add 16% NaCl + 5 mM / L Nitrogen 72.9 7.29 8.05
8. Add 16% NaCl + 2.5 mM / L Nitrogen 115.2 11.5 12.6
[규칙 제26조에 의한 보정 20.11.2014] 
표 5
Figure WO-DOC-TABLE-5
[Revision 20.11.2014 under Rule 26]
Table 5
Figure WO-DOC-TABLE-5
[규칙 제26조에 의한 보정 20.11.2014] 
표 6
Figure WO-DOC-TABLE-6
[Revision 20.11.2014 under Rule 26]
Table 6
Figure WO-DOC-TABLE-6
[규칙 제26조에 의한 보정 20.11.2014] 
표 7
Figure WO-DOC-TABLE-7
[Revision 20.11.2014 under Rule 26]
TABLE 7
Figure WO-DOC-TABLE-7
상기 표 4 내지 7에 나타난 바와 같이, 배양배지에 16% NaCl을 추가하고, 2.5mM/L 질소를 가한 후 두날리엘라 살리나 균주를 배양한 경우, 카로티노이드 생산량이 다른 실험군보다 약 10~70% 증가하였음을 확인할 수 있다. 또한, 이에 대한 두날리엘라 살리나의 카로티노이드와 토코페롤(tocopherol)의 HPLC의 UV-B 측정값을 검사하여 9-시스 베타카로틴의 UV-B 값 산출을 위한 기준값으로 활용하였다 (도 2(a, b, c, d, e, f) 참조).As shown in Tables 4 to 7, when 16% NaCl was added to the culture medium and 2.5mM / L nitrogen was added, the culture of Dunaliella salina was increased, and the carotenoid production was increased by about 10 to 70%. It can be confirmed that. In addition, UV-B measurements of HPLC of carotenoids and tocopherol of Dunaliella Salina were examined and used as reference values for calculating UV-B values of 9-cis beta-carotene (FIG. 2 (a, b)). , c, d, e, f)).
실험예 2. 9-시스 베타카로틴의 순도 측정Experimental Example 2. Determination of Purity of 9-cis Beta-carotene
상기 실시예 2에 따라 얻어진 9-시스 베타카로틴의 순도를 핵자기공명(NMR) 스펙트럼을 이용하여 분석하였다.The purity of 9-cis beta-carotene obtained according to Example 2 was analyzed using nuclear magnetic resonance (NMR) spectra.
먼저, 얻어진 9-시스 베타카로틴의 막 테스트(membrane test)를 수행하였다. 미국 약국협회(The United States Pharmacopeial Convention, USP)의 β-카로틴의 Content의 막 필터(membrane filter)는 0.45㎛ 기공 크기이나, 본 막 테스테에서는 0.4㎛ 기공 크기를 통과시켜 확인하였다. 막 필터는 PTFE 재질로, 중공섬유(hollow fiber) 형태로 제작되었다. 그 후, 상기 막 필터를 여과한 9-시스 베타카로틴에 대해 1H-NMR 및 13C-NMR 스펙트럼을 측정하였고, 그 결과를 도 5a 및 도 5b에 나타내었다.First, a membrane test of the obtained 9-cis beta carotene was performed. The membrane filter of β-carotene content of The United States Pharmacopeial Convention (USP) was 0.45 μm pore size, but the membrane tester was confirmed by passing the 0.4 μm pore size. The membrane filter is made of PTFE and manufactured in the form of hollow fiber. Thereafter, 1 H-NMR and 13 C-NMR spectra were measured for 9-cis beta-carotene filtered through the membrane filter, and the results are shown in FIGS. 5A and 5B.
도 5a 및 도 5b 나타난 바와 같이, 얻어진 9-시스 베타카로틴은 불순물이 없고, 우수한 순도를 나타내는 것을 확인할 수 있다.As shown in Figures 5a and 5b, it can be seen that the obtained 9-cis beta carotene is free from impurities and exhibits excellent purity.
1H-NMR : δ ppm (CDCI3): 1.03 (C1,-CH3), 1.04 (C1-CH3), 1.48 (C2-H2 및 C2'-H2), 1.62 (C3-H2 및 C3'-H2), 1.72 (C5'-CH3), 1.76 (C5-CH3), 1.97 (C9-CH3, C9'-CH3, C13-CH3, 및 C13.-CH3), 2.03 (C4-H2 및 C4'-H2), 6.04 (C10-H), 6.12 (Cs'-H), 6.15 (C10'-H), 6.18 (C7-H 및 C7'-H), 6.23 (C14-H 및 C14'- H), 6.28 (C12-H), 6.34 (C12'-H), 6.62 (C15-H 및 C15'-H), 6.64 (C1F-H), 6.66 (Cs-H), 6.75 (C11-H). 1 H-NMR: δ ppm (CDCI 3 ): 1.03 (C1, -CH 3 ), 1.04 (C1-CH 3 ), 1.48 (C2-H 2 and C2′-H 2 ), 1.62 (C3-H 2 and C3'-H 2 ), 1.72 (C5'-CH 3 ), 1.76 (C5-CH 3 ), 1.97 (C9-CH 3 , C9'-CH 3 , C13-CH 3 , and C13.-CH 3 ), 2.03 (C4-H 2 and C4'-H 2 ), 6.04 (C10-H), 6.12 (Cs'-H), 6.15 (C10'-H), 6.18 (C7-H and C7'-H), 6.23 (C14-H and C14'-H), 6.28 (C12-H), 6.34 (C12'-H), 6.62 (C15-H and C15'-H), 6.64 (C1F-H), 6.66 (Cs-H ), 6.75 (C11-H).
13C-NMR : (C9'-Me), 12.81 (Cly-Me), 12.87 (C13-Me),19.28 (C3 및 C3'), 20.77 (C9-Me), 21.76 (Cs'-Me), 21.89 (Cs-Me), 28.98 (CI'-Me ×2), 29.02 (C1-Me × 2), 33.10 (C4 및 C4'), 34.25 (C1), 34.29 (C£), 39.59 (C2), 39.68 (C2'), 123.86 (Cll), 124.99 (CII'), 126.63 (C7'), 128.43 (C7), 129.38 (C10 및 C5'), 129.50 (C5), 129.86 (C15), 130.01 (C8 및 C15'), 130.87 (C]0'), 132.31 (C14), 132.41 (C14'), 134.59 (C9), 135.95 (C9'), 136.35 및 136.39 (C13 및 C13'), 136.51 (Cl2), 137.25 (C12'), 137.79 (C8'), 137.93 (C6'), 138.24 (C6). 13 C-NMR: (C9'-Me), 12.81 (Cly-Me), 12.87 (C13-Me), 19.28 (C3 and C3 '), 20.77 (C9-Me), 21.76 (Cs'-Me), 21.89 (Cs-Me), 28.98 (CI'-Me × 2), 29.02 (C1-Me × 2), 33.10 (C4 and C4 '), 34.25 (C1), 34.29 (C £), 39.59 (C2), 39.68 (C2 '), 123.86 (Cll), 124.99 (CII'), 126.63 (C7 '), 128.43 (C7), 129.38 (C10 and C5'), 129.50 (C5), 129.86 (C15), 130.01 (C8 and C15 '), 130.87 (C) 0'), 132.31 (C14), 132.41 (C14 '), 134.59 (C9), 135.95 (C9'), 136.35 and 136.39 (C13 and C13 '), 136.51 (Cl2), 137.25 ( C12 '), 137.79 (C8'), 137.93 (C6 '), 138.24 (C6).

Claims (19)

  1. 기체의 미세분사 및 광원 조절에 의해 생성된 광화학적 기체를 이용하여 미생물을 배양하는 단계; 및 상기 배양된 미생물로부터 9-시스 베타카로틴(9-cis β-카로틴)을 분리 및 정제하는 단계;를 포함하는, 미생물로부터 9-시스 베타카로틴의 생산방법.Culturing the microorganism using the photochemical gas generated by gas injection and light source control; And separating and purifying 9-cis beta-carotene (9-cis β-carotene) from the cultured microorganisms.
  2. 제 1항에 있어서,The method of claim 1,
    상기 기체는 공기, 산소, 질소, 이산화질소, 및 이산화탄소로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The gas is air, oxygen, nitrogen, nitrogen dioxide, and carbon dioxide, characterized in that at least one member selected from the group consisting of, 9-cis beta carotene production method.
  3. 제 1항에 있어서,The method of claim 1,
    상기 미세분사는 0.1 내지 0.5mm의 노즐을 통하여 이루어지는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The fine spray is characterized in that through a nozzle of 0.1 to 0.5mm, 9-cis beta carotene production method from the microorganism.
  4. 제 1항에 있어서,The method of claim 1,
    상기 광원 조절은 조도범위는 1000 내지 7000Lux, 및 광도범위는 4000 내지 12000K에서 수행되는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The light source is characterized in that the illuminance range is performed at 1000 to 7000 Lux, and the luminance range is 4000 to 12000K, 9-cis beta carotene production method from microorganisms.
  5. 제 1항에 있어서,The method of claim 1,
    상기 광화학적 기체는 오존 또는 이산화탄소인 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The photochemical gas is ozone or carbon dioxide, characterized in that the production of 9-cis beta carotene from microorganisms.
  6. 제 5항에 있어서,The method of claim 5,
    상기 광화학적 기체가 오존인 경우는 광도범위 4000 내지 5000K 및 조도범위 6000± 500Lux로 조사하여 생성되고, 상기 광화학적 기체가 이산화탄소인 경우는 광도범위 10000 내지 12000K, 조도범위 3000± 500Lux에서 용존 이산화탄소량을 조절하여 생성되는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.When the photochemical gas is ozone, it is produced by irradiation in the light intensity range 4000 to 5000K and the illuminance range 6000 ± 500Lux, and when the photochemical gas is carbon dioxide, the amount of dissolved carbon dioxide in the light intensity range 10000 to 12000K and the illuminance range 3000 ± 500Lux Characterized in that it is produced by adjusting, 9-cis beta carotene production method from microorganisms.
  7. 제 1항에 있어서,The method of claim 1,
    상기 미생물은 미세조류, 원생동물류, 사상균류, 효모류, 및 바이러스로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The microorganism is at least one selected from the group consisting of microalgae, protozoa, filamentous fungi, yeast, and viruses, 9-cis beta carotene production method from the microorganism.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 미세조류는 두날리엘라, 스피롤리나, 클라미도모나스, 심벨라, 및 클로렐라로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The microalgae are one or more selected from the group consisting of Dunaliella, spirolina, chlamidomonas, simbella, and chlorella, the method of producing 9-cis beta-carotene from microorganisms.
  9. 제 1항에 있어서,The method of claim 1,
    상기 배양 배지는 NaNO3, NaCl, NaH2PO4ㆍH2O, Na2SiO3ㆍ9H2O, 미량금속 및 비타민으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The culture medium comprises at least one member selected from the group consisting of NaNO 3 , NaCl, NaH 2 PO 4 H 2 O, Na 2 SiO 3 .9H 2 O, trace metals and vitamins. A method of producing cis beta-carotene.
  10. 제 9항에 있어서, The method of claim 9,
    상기 미량금속은 FeCl3ㆍ6H2O, Na2EDTAㆍ4H2O, CuSO4ㆍ5H2O, Na2MoO4ㆍ2H2O, ZnSO4ㆍ7H2O, MnCl2ㆍ4H2O 및 Co(Cl)2ㆍ6H2O로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The trace metals are FeCl 3 6H 2 O, Na 2 EDTA 4H 2 O, CuSO 4 5H 2 O, Na 2 MoO 4 2H 2 O, ZnSO 4 7H 2 O, MnCl 2 4H 2 O and Co (Cl) A method for producing 9-cis beta-carotene from microorganisms, characterized in that it comprises one or more selected from the group consisting of 2 · 6H 2 O.
  11. 제 9항에 있어서,The method of claim 9,
    상기 비타민은 시아노코발라민(cyanocobalamin), 비오틴(biotin), 티아민 염산(thiamine HCl), 비타민C, 비타민E, 비타민B12, 판토텐산 칼슘(calcium pantothenate), 엽산(folic acid), 및 니코틴산 아미드(nicotinamide)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The vitamins are cyanocobalamin, biotin, biotin, thiamine HCl, vitamin C, vitamin E, vitamin B12, calcium pantothenate, folic acid, and nicotinamide. Method for producing 9-cis beta-carotene from microorganisms, characterized in that it comprises one or more selected from the group consisting of.
  12. 제 1항에 있어서,The method of claim 1,
    상기 9-시스 베타카로틴의 분리 및 정제는,Separation and purification of the 9-cis beta-carotene,
    (1) 배양미생물 분말에 헥산을 가하고 교반 및 증발시켜 반고체를 얻는 단계;(1) adding hexane to the cultured microbial powder, stirring and evaporating to obtain a semisolid;
    (2) 상기 반고체로부터 베타카로틴 추출물을 얻는 단계;(2) obtaining beta carotene extract from the semisolid;
    (3) 상기 베타카로틴 추출물을 크로마토그래피로 정제한 후, 용출물을 초음파 분쇄하여 올 트랜스- 및 9-시스 베타카로틴을 포함하는 분말을 얻는 단계:(3) purifying the beta carotene extract by chromatography, and then ultrasonically grinding the eluate to obtain a powder comprising all trans- and 9-cis beta carotene:
    (4) 상기 분말을 증발중탕하여 결정체를 얻은 후, 메탄올 및 테트라하이드로퓨란을 가하고 회전증발시켜 올 트랜스- 및 9-시스 베타카로틴을 분리하는 단계; 및(4) evaporating the powder to obtain crystals, and then adding methanol and tetrahydrofuran and rotating evaporation to separate all trans- and 9-cis beta carotene; And
    (5) 상기 분리된 9-시스 베타카로틴을 결정화시키는 단계;를 포함하는, 미생물로부터 9-시스 베타카로틴의 생산방법.(5) crystallizing the isolated 9-cis beta-carotene; a method of producing 9-cis beta-carotene from microorganisms.
  13. 제 12항에 있어서, The method of claim 12,
    상기 (1)단계에서, 교반은 -5 ~ 5℃에서 0.8 ~ 1.2시간 동안 수행되는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.In the step (1), the stirring is characterized in that it is carried out for 0.8 to 1.2 hours at -5 ~ 5 ℃, 9-cis beta carotene production method.
  14. 제 12항에 있어서,The method of claim 12,
    상기 (2)단계에서, 베타카로틴의 추출은 시클로-핵사논을 가한 후, -25 ~ -15℃에서 11 ~ 13시간 동안 유지하여 수행되는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.In the step (2), the extraction of the beta carotene is added to the cyclo-nucleanone, it is carried out by maintaining for 11 to 13 hours at -25 ~ -15 ℃, production of 9-cis beta carotene from microorganisms Way.
  15. 제 12항에 있어서,The method of claim 12,
    상기 (3)단계에서, 크로마토그래피는 실리카 겔 컬럼 크로마토그래피, ODS 컬럼 크로마토그래피 또는 이들의 조합인 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.In the step (3), the chromatography is silica gel column chromatography, ODS column chromatography, or a combination thereof, 9-cis beta carotene production method from microorganisms.
  16. 제 15항에 있어서,The method of claim 15,
    상기 실리카 겔 컬럼 크로마토그래피는 시클로헥산-에틸 및 아세테이트를 용리액으로 사용하여 수행되는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The silica gel column chromatography is performed using cyclohexane-ethyl and acetate as eluent, 9-cis beta carotene production method from the microorganism.
  17. 제 15항에 있어서,The method of claim 15,
    상기 ODS 컬럼 크로마토그래피는 메탄올 및 테트라하이드로퓨란을 용리액으로 사용하여 수행되는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.The ODS column chromatography is performed using methanol and tetrahydrofuran as eluent, 9-cis beta carotene production method from the microorganism.
  18. 제 12항에 있어서, The method of claim 12,
    상기 (4)단계에서, 메탄올 및 테트라하이드로퓨란은 1:0.2 ~ 1:1 (v/v)로 가해지는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.In the step (4), methanol and tetrahydrofuran are 1: 0.2 ~ 1: 1 (v / v), characterized in that the production of 9-cis beta carotene from microorganisms.
  19. 제 12항에 있어서, The method of claim 12,
    상기 (5)단계에서, 결정화는 -25 ~ -15℃에서 수행되는 것을 특징으로 하는, 미생물로부터 9-시스 베타카로틴의 생산방법.In the step (5), crystallization is characterized in that carried out at -25 ~ -15 ℃, 9-cis beta carotene production method from the microorganism.
PCT/KR2014/010853 2014-11-10 2014-11-12 Method for culturing microorganisms and method for separating and purifying 9-cis β-carotene from cultured microorganisms WO2016076454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0155657 2014-11-10
KR20140155657 2014-11-10

Publications (1)

Publication Number Publication Date
WO2016076454A1 true WO2016076454A1 (en) 2016-05-19

Family

ID=55954526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010853 WO2016076454A1 (en) 2014-11-10 2014-11-12 Method for culturing microorganisms and method for separating and purifying 9-cis β-carotene from cultured microorganisms

Country Status (2)

Country Link
KR (1) KR101907994B1 (en)
WO (1) WO2016076454A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888798B1 (en) * 2017-12-27 2018-08-14 원종범 Nano silica solution for culture diatoms and manufacturing method thereof
KR20200013364A (en) 2018-07-30 2020-02-07 주식회사 오비텍 Method for cultivating a microalgae based on the Internet of Things technology
KR102198159B1 (en) 2018-07-30 2021-01-15 김유성 Microalgae growth promoting liquid
KR102130160B1 (en) * 2019-02-22 2020-08-05 주식회사 오션허브 A culture composition of Dunaliella and a method culturing Dunaliella by using the culture composition, and a low-salt having Dunaliella prepared therefrom
KR102289190B1 (en) 2019-10-31 2021-08-12 (주)아크에이르 A synthesis method of 9-cis Beta-carotene
KR102107989B1 (en) 2019-12-20 2020-05-07 한국해양바이오클러스터 주식회사 Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners
KR102271364B1 (en) 2020-12-28 2021-06-30 (주)아크에이르 Synthesis method of new compounds Potassium all-trans retinoate and Potassium 9-cis retinoate.
KR102311539B1 (en) 2020-12-28 2021-10-12 (주)아크에이르 A pharmaceutical composition for cardiovascular treatment comprising the novel compounds Potassium all-trans retinoate and Potassium 9-cis retinoate.
KR102633825B1 (en) * 2021-10-18 2024-02-02 연세대학교 산학협력단 Method and System for Reducing Nitrogen Oxides from Gas by Using Bacteria

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310554A (en) * 1992-10-27 1994-05-10 Natural Carotene Corporation High purity beta-carotene
US20110207820A1 (en) * 2008-03-21 2011-08-25 University Of Washington Novel chrysochromulina species, methods and media therefor, and products derived therefrom
KR20120114577A (en) * 2011-04-07 2012-10-17 강원대학교산학협력단 Cultivation method of chlorella and extraction method of beta carotene from chlorella
KR20140046132A (en) * 2012-10-10 2014-04-18 신병철 Method of promoting the culture of algae and microorganism by regulating on pneumatic air and a luminous source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187894A (en) * 1997-12-26 1999-07-13 Oyo Seikagaku Kenkyusho Composition containing highly pure 9-cis-beta-carotene and its production
JP2010105959A (en) * 2008-10-30 2010-05-13 Nikken Sohonsha Corp Composition containing highly pure 9-cis-beta carotene and method for preparing the same
JP2012139164A (en) 2010-12-28 2012-07-26 Tosoh Corp Method for producing carotenoid by using microorganism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310554A (en) * 1992-10-27 1994-05-10 Natural Carotene Corporation High purity beta-carotene
US20110207820A1 (en) * 2008-03-21 2011-08-25 University Of Washington Novel chrysochromulina species, methods and media therefor, and products derived therefrom
KR20120114577A (en) * 2011-04-07 2012-10-17 강원대학교산학협력단 Cultivation method of chlorella and extraction method of beta carotene from chlorella
KR20140046132A (en) * 2012-10-10 2014-04-18 신병철 Method of promoting the culture of algae and microorganism by regulating on pneumatic air and a luminous source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUZUKI, TAKEHIKO ET AL.: "A simple procedure for large-scale purification of 9-cis beta-carotene from Dunaliella bardawil", BIOCHEMISTRY AND MOLECULAR BIOLOGY INTERNATIONAL, vol. 39, no. 6, August 1996 (1996-08-01), pages 1077 - 1084 *

Also Published As

Publication number Publication date
KR101907994B1 (en) 2018-10-15
KR20160055714A (en) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2016076454A1 (en) Method for culturing microorganisms and method for separating and purifying 9-cis β-carotene from cultured microorganisms
Kobayashi et al. Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media
Imamoglu et al. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis
US8357510B2 (en) Process for obtaining lutein from algae
Liu et al. Secondary carotenoids formation by the green alga Chlorococcum sp.
Xia et al. Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita
KR101745589B1 (en) Method for Preparing Astaxanthin by Induction Germination of Haematococcus pluvialis
CN109609382A (en) A kind of method that phycomycete co-cultures promotion chlorella growth and oil and fat accumulation
US20170107554A1 (en) Method for producing astaxanthin
KR102167513B1 (en) Method for increasing astaxanthin production of Haematococcus pluvialis by drying culture
Chaumont et al. Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle
US20080293097A1 (en) Biological Production of Zeaxanthin and Carotenoid Biosynthesis Control
Doria et al. Influence of light stress on the accumulation of xanthophylls and lipids in Haematococcus pluvialis CCALA 1081 grown under autotrophic or mixotrophic conditions
Nutakor et al. Enhancing astaxanthin yield in Phaffia rhodozyma: current trends and potential of phytohormones
Parasar et al. Characterization of β‐cryptoxanthin and other carotenoid derivatives from Rhodotorula taiwanensis, A novel yeast isolated from traditional starter culture of Assam
KR20150028613A (en) Method for producing microalgae with increased astaxanthin content using LED irradiation and the microalgae thereof
Farahin et al. Phenolic content and antioxidant activity of Tetraselmis tetrathele (West) Butcher 1959 cultured in annular photobioreactor
RU2541455C1 (en) Method for culturing onecellular green algae haematococcus pluvialis for astaxanthin production
CN110699272A (en) Bacillus subtilis natto and method for producing MK-7
US20070190595A1 (en) Process for obtaining zeaxanthin from algae
Cai et al. Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis
WO2013058432A1 (en) Method for manufacturing a culture medium of algae using natural seawater
Gulyamova et al. Effect of epigenetic modifiers on fermentation parameters of endophytic fungi from plants growing in Uzbekistan
US20210010049A1 (en) Method for producing astaxanthin
CN105462844A (en) Regulating method of cell cycle synchronization of haematococcus pluvialis and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906094

Country of ref document: EP

Kind code of ref document: A1