KR102107989B1 - Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners - Google Patents

Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners Download PDF

Info

Publication number
KR102107989B1
KR102107989B1 KR1020190171371A KR20190171371A KR102107989B1 KR 102107989 B1 KR102107989 B1 KR 102107989B1 KR 1020190171371 A KR1020190171371 A KR 1020190171371A KR 20190171371 A KR20190171371 A KR 20190171371A KR 102107989 B1 KR102107989 B1 KR 102107989B1
Authority
KR
South Korea
Prior art keywords
selection step
nitrogen source
filter network
cluster
methylobacterium
Prior art date
Application number
KR1020190171371A
Other languages
Korean (ko)
Inventor
김현모
이정엽
김호준
Original Assignee
한국해양바이오클러스터 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양바이오클러스터 주식회사 filed Critical 한국해양바이오클러스터 주식회사
Priority to KR1020190171371A priority Critical patent/KR102107989B1/en
Application granted granted Critical
Publication of KR102107989B1 publication Critical patent/KR102107989B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a mass production method by medium optimization of deodorizing microorganisms for reducing odors in industrial or commercial air conditioners. The deodorizing microorganisms include Herbaspirillum huttiense Korea Ocean Bio Cluster 180411, Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, Bacillus subtilis Korea Ocean Bio Cluster 180524, Methylobacterium aquaticum, Methylobacterium fujisawaense, Methylobacterium radiotolerans, Methylobacterium extorquens, Methylobacterium brachiatum, Arthrobacter atrocyaneus, Deinococcus apachensis and Deinococcus koreensis strains.

Description

산업용 또는 상업용 공조기 악취 저감을 위한 탈취 미생물의 배지 최적화에 의한 대량생산방법{Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners}Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners}

본 발명은 산업용 또는 상업용 공조기 악취 저감을 위한 탈취 미생물의 배지 최적화에 의한 대량생산방법에 관한 것으로 탄소원, 질소원, 무기염류와 같이 배지 성분의 최적화 과정과 배양조건에 해당하는 온도와 pH수치를 결정하여 탈취 미생물의 생산량 증가, 생산 비용 절감 및 종래 화학물질을 사용한 탈취제를 대체할 수 있는 친환경적인 탈취 미생물을 대량 생산하기 위한 것이다.The present invention relates to a mass production method by optimizing the medium of deodorized microorganisms for reducing odor of industrial or commercial air conditioners, and determining temperature and pH values corresponding to the optimization process and culture conditions of the medium components such as carbon source, nitrogen source, and inorganic salt. It is intended to mass-produce eco-friendly deodorizing microorganisms that can increase the production of deodorizing microorganisms, reduce production costs, and replace deodorants using conventional chemicals.

현대에는 대기오염과 같은 공기질의 악화로 인한 호흡기 질환 등 각종 질병의 발병이 문제되고 있다. 특히 현대인의 실내 생활시간이 하루 시간의 약 80%를 차지하며 자연스럽게 실내 환경에 쾌적성에 관심이 대두되었고 이것을 실현시켜 주는 것이 냉난방 공조기이다. In modern times, the development of various diseases such as respiratory diseases caused by deterioration of air quality, such as air pollution, is a problem. In particular, the indoor living time of modern people occupies about 80% of the day time, and naturally the interest in comfort in the indoor environment has emerged.

공조기란 공기를 정화, 냉각·감습, 가열·가습 따위의 공기 상태를 보건에 알맞게 조절하는 기구로서 송풍기를 설치하여 각 실내로 송풍하기 위한 기능을 갖추고 있는 것을 공기조화기라고 한다. An air conditioner is a device that purifies, cools, reduces moisture, and controls the air condition, such as heating and humidification, for health, and is equipped with a function to install a blower and blow air to each room.

가장 간단하게 접할 수 있는 공조기로는 가정용 에어컨이 있다. 에어컨은 압축기, 응축기, 팽창기, 증발기(냉각핀)로 이루어지며 냉매의 냉동사이클을 이용하여 실내를 냉난방 혹은 정화시키는 것이다. 여름철의 경우 장마와 더불어 태양열과 가정용품들의 엔진과열로 인해 쉽게 실내 온도가 상승하게 되며 이 때 실내의 온도를 낮추기 위해 에어컨을 사용하게 된다. The simplest air conditioner is a home air conditioner. The air conditioner is composed of a compressor, a condenser, an expander, and an evaporator (cooling fin) and is used to cool or purify a room using a refrigerant refrigeration cycle. In the summer, the indoor temperature rises easily due to the sun and the engine overheating of household appliances along with the rainy season. At this time, an air conditioner is used to lower the indoor temperature.

에어컨을 오래 사용하게 되면 저온의 냉매와 이보다 높은 온도의 공기가 열 교환을 하게 되어 냉각핀의 표면에 결로현상을 일으키고 물방울이 맺히게 된다. 이에 따라 외부로부터 유입되는 세균이나 곰팡이가 증식하기 좋은 환경이 만들어지고, 공기필터를 통과한 공기가 실내로 유입될 때 미생물에 의해 만들어진 휘발성유기화합물(VOCs)에 의해서 악취가 발생하게 된다. When the air conditioner is used for a long time, the low-temperature refrigerant and air of a higher temperature exchange heat, causing condensation on the surface of the cooling fin and condensation. Accordingly, an environment in which bacteria or fungi from the outside are proliferated is created, and when air passing through the air filter enters the room, odor is generated by volatile organic compounds (VOCs) produced by microorganisms.

본 실험에 사용되는 헐바스피릴룸 허티엔스 코리아 오션 바이오 클러스터 180411(Herbaspirillum huttiense Korea Ocean Bio Cluster 180411)(미생물 기탁번호:KCTC18691P), 올레오모나스 사가라넨시스 코리아 오션 바이오 클러스터 180716(Oleomonas sagaranensis Korea Ocean Bio Cluster 180716)(미생물 기탁번호: KCTC18693P), 바실러스 서브틸리스 코리아 오션 바이오 클러스터 180524(Bacillus subtilis Korea Ocean Bio Cluster 180524)(미생물 기탁번호: KCTC18692P),메틸로박테리움 아쿠아티쿰(Methylobacterium aquaticum), 메틸로박테리움 푸지사와엔제(Methylobacterium fujisawaense), 메틸로박테리움 라디오톨레란스(Methylobacterium radiotolerans), 메틸로박테리움 엑스토쿠엔스(Methylobacterium extorquens), 메틸로박테리움 브라키아툼(Methylobacterium brachiatum), 아르트로박터 아트로사이아네우스(Arthrobacter atrocyaneus), 데이노코쿠스 아파켄시스(Deinococcus apachensis), 데이노코쿠스 코렌시스(Deinococcus koreensis) 균주들은 흡착 미생물로서 기존 공조기의 악취 탈취제로 사용된 화학 탈취제를 대체하는 친환경적인 천연물 기반 소재이다.Hull baseupi rilrum allowed tienseu Korea Ocean Bio Cluster 180411 (Herbaspirillum huttiense Korea Ocean Bio Cluster 180411) used in this experiment (Microbiological Accession Number: KCTC18691P), Oleo Monastir Sagara linen sheath Korea Ocean Bio Cluster 180716 (Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 ) (Microorganism Accession No .: KCTC18693P), Bacillus subtilis Korea Ocean Bio Cluster 180524 (Microorganism Accession No .: KCTC18692P), Methylobacterium aquaticum , Methylobacterium Methylobacterium fujisawaense , Methylobacterium radiotolerans, Methylobacterium extorquens, Methylobacterium brachiatum, Arttrobacter art Oh rosayi Neuss (Arthrobacter atrocyaneus), Day-no Cocu Apa Ken System (Deinococcus apachensis), Day Noko kusu Koren sheath (Deinococcus koreensis) strains are environmentally friendly natural-based materials to replace a chemical odor control agent used as the odor deodorant of the existing air conditioner as the microorganism adsorption.

따라서 본 발명은 상기 균주들의 생산을 증가시키기 위해 탄소원, 질소원, 무기염류으로 나눈 배지 최적화이며 이들 성분으로 생산량을 증가시키는 방법을 제공한다. Therefore, the present invention is an optimization of the medium divided into a carbon source, a nitrogen source, and an inorganic salt to increase the production of the strains, and provides a method of increasing the production amount with these components.

한국등록특허공보 제10-1935688호 (2018.12.28)Korean Registered Patent Publication No. 10-1935688 (Dec. 28, 2018) 한국등록특허공보 제10-1907994호 (2018.10.08)Korean Registered Patent Publication No. 10-1907994 (2018.10.08)

본 발명의 목적은 헐바스피릴룸 허티엔스 코리아 오션 바이오 클러스터 180411(Herbaspirillum huttiense Korea Ocean Bio Cluster 180411)(미생물 기탁번호:KCTC18691P), 올레오모나스 사가라넨시스 코리아 오션 바이오 클러스터 180716(Oleomonas sagaranensis Korea Ocean Bio Cluster 180716)(미생물 기탁번호: KCTC18693P), 바실러스 서브틸리스 코리아 오션 바이오 클러스터 180524(Bacillus subtilis Korea Ocean Bio Cluster 180524)(미생물 기탁번호: KCTC18692P),메틸로박테리움 아쿠아티쿰(Methylobacterium aquaticum), 메틸로박테리움 푸지사와엔제(Methylobacterium fujisawaense), 메틸로박테리움 라디오톨레란스(Methylobacterium radiotolerans), 메틸로박테리움 엑스토쿠엔스(Methylobacterium extorquens), 메틸로박테리움 브라키아툼(Methylobacterium brachiatum), 아르트로박터 아트로사이아네우스(Arthrobacter atrocyaneus), 데이노코쿠스 아파켄시스(Deinococcus apachensis), 데이노코쿠스 코렌시스(Deinococcus koreensis) 각각의 균주들의 최적화된 배양배지를 결정하여 대량새안할 수 있는 방법을 제공하는 것이다.The object of the present invention is the Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 (Microorganism Accession Number: KCTC18691P), Oleomonas sagaranensis Korea Ocean Biocluster 180716 ( Oleomonas sagaranensis Korea Ocean Bio Cluster) 180716 ) (Microorganism Accession No .: KCTC18693P), Bacillus subtilis Korea Ocean Bio Cluster 180524 (Microorganism Accession No .: KCTC18692P), Methylobacterium aquaticum , Methylobacterium Methylobacterium fujisawaense , Methylobacterium radiotolerans, Methylobacterium extorquens, Methylobacterium brachiatum, Arttrobacter art Arthrobacter atrocyaneus , Deinococcus It is to provide a method for determining the optimized culture medium of each strain of Deinococcus apachensis and Deinococcus koreensis to provide a method for large-scale analysis.

상기와 같은 문제를 해결하기 위해, 본 발명은 배양배지, 탄소원, 질소원 및 무기염류를 준비한 후 미세입자선별기(100)에 상기 성분들을 통과시키어 미세한 입자로 만드는 미세입자선별단계(S1); 상기 미세입자선별단계(S1)에서 미세입자로 형성된 배양배지로 보존된 탈취미생물 균주를 준비하는 균주준비단계(S2); 최소배지(minimal broth)를 준비하는 실험최소배지준비단계(S3); 상기 실험최소배지준비단계(S3)를 통해 준비된 최소배지에 당류(sugars) 또는 탄수화물(carbohydrates) 성분 중 어느 하나를 소정의 농도로 추가한 후 소정의 온도를 가진 진탕배양기(shaking incubator)에서 소정의 시간 동안 배양한 후 균체를 회수하고 동결건조하여 생산량을 확인하는 탄소원선별단계(S4); 상기 탄소원선별단계(S4)를 통해 확인된 탄소원에서 소정 농도의 유기 질소원을 첨가하여 소정 온도의 진탕배양기로 소정 시간 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하고, 상기 탄소원과 유기질소원에서 소정 농도의 무기질소원을 첨가하여 소정 온도의 진탕배양기로 소정 시간동안 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하는 질소원선별단계(S5); 상기 탄소원선별단계(S4)를 통해 확인된 탄소원과 상기 질소원 선별단계를 통해 확인된 질소원에서 소정 농도의 무기염류를 첨가하여 소정 온도의 진탕배양기로 소정 시간 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하는 무기염류선별단계(S6); 상기 탄소원선별단계(S4)를 통해 정해진 탄소원과 질소원선별단계(S5)를 통해 정해진 질소원과 무기염류선별단계(S6)를 통해 정해진 무기염류를 포함한 배지를 이용하여 소정 범위 내의 배양온도를 소정 구간으로 나누어 배양온도의 각 구간별 균체 생산량을 확인하여 최적의 배양온도를 결정하는 배양온도결정단계(S7); 상기 배양온도결정단계(S7) 이후, 상기 탄소원선별단계(S4)를 통해 정해진 탄소원과 질소원선별단계(S5)를 통해 정해진 질소원과 무기염류선별단계(S6)를 통해 정해진 무기염류를 포함한 배지를 이용하여 소정 범위 내의 pH수치를 소정 구간으로 나누어 pH수치의 각 구간별 균체 생산량을 확인하여 최적의 pH수치를 결정하는 pH수치결정단계(S8)를 포함하고, 상기 미세입자선별단계(S1)의 배양배지는 LB배지로서 분말화된 형태로 형성되며, 상기 질소원선별단계(S5)는 상기 탄소원선별단계(S4)를 통해 확인된 탄소원에서 유기질소원을 소정 농도 첨가하여 소정 온도의 진탕배양기에서 소정 시간 동안 배양한 후 원심분리하는 유기질소원선별단계(S5-1); 상기 유기질소원선별단계(S5-1)를 통해 확인된 유기질소원과 탄소원선별단계(S4)를 통해 확인된 탄소원이 혼합된 상태에서 무기질소원을 소정 농도로 첨가하여 소정 온도의 진탕배양기에서 소정 시간 동안 배양한 후 원심분리하는 무기질소원선별단계(S5-2);를 포함하는 것을 특징으로 하고, 상기 미세입자선별단계(S1)의 미세입자선별기(100)는 지면에 지지되기 위한 것으로 텅 빈 내부를 가지도록 형성되는 베이스부(110)와, 상기 베이스부(110)의 내부에 위치하는 것으로 미세입자선별기(100)가 진동동작하는 진동부(120)와, 상기 베이스부(110)의 상부 일측에 다수개가 형성되되 제1입자선별부(140)의 바닥면을 지지하는 완충부재(130)와, 상기 베이스부(110)의 상부에 위치하되, 필터망에 의해 필터링된 분말이 배출되도록 일측이 개방되어 형성되되 타측은 제1배출구(141)가 형성되는 제1입자선별부(140)와, 상기 제1입자선별부(140)의 상부에 위치하되, 일측이 개방되어 형성되되 타측은 제1필터망(151)이 형성되고 상기 제1필터망(151)의 상부 일측에 제2배출구(152)가 형성되는 제2입자선별부(150)와, 상기 제2입자선별부(150)의 상부에 위치하되, 일측이 개방되어 형성되되 타측은 제2필터망(161)이 형성되고 상기 제2필터망(161)의 상부 일측에 제3배출구(162)가 형성되는 제3입자선별부(160)와, 상기 제3입자선별부(160)의 상부에 위치하고 일측이 개방되어 형성되되 타측은 제3필터망(171)이 형성되고 상기 제3필터망(171)의 상부 일측에 제4배출구(172)가 형성되는 제4입자선별부(170)를 포함하되, 상기 제1필터망(151)과 제2필터망(161)과 제3필터망(171)의 구멍 크기는 제1필터망(151), 제2필터망(161), 제3필터망(171) 순으로 커지도록 형성되되 제4입자선별부(170)의 제3필터망(171), 제3입자선별부(160)의 제2필터망(161), 제2입자선별부(150)의 제1필터망(151)을 순차적으로 통과시킴으로써 미세한 입자가 되도록 하는 것을 특징으로 하고, 상기 균주준비단계(S2)의 탈취미생물 균주는 헐바스피릴룸 허티엔스 코리아 오션 바이오 클러스터 180411(Herbaspirillum huttiense Korea Ocean Bio Cluster 180411)(미생물 기탁번호:KCTC18691P), 올레오모나스 사가라넨시스 코리아 오션 바이오 클러스터 180716(Oleomonas sagaranensis Korea Ocean Bio Cluster 180716)(미생물 기탁번호: KCTC18693P), 바실러스 서브틸리스 코리아 오션 바이오 클러스터 180524(Bacillus subtilis Korea Ocean Bio Cluster 180524)(미생물 기탁번호: KCTC18692P),메틸로박테리움 아쿠아티쿰(Methylobacterium aquaticum), 메틸로박테리움 푸지사와엔제(Methylobacterium fujisawaense), 메틸로박테리움 라디오톨레란스(Methylobacterium radiotolerans), 메틸로박테리움 엑스토쿠엔스(Methylobacterium extorquens), 메틸로박테리움 브라키아툼(Methylobacterium brachiatum), 아르트로박터 아트로사이아네우스(Arthrobacter atrocyaneus), 데이노코쿠스 아파켄시스(Deinococcus apachensis), 데이노코쿠스 코렌시스(Deinococcus koreensis) 중에 어느 하나인 것을 특징으로 하는 탈취미생물 균주의 배지 최적화에 의한 대량생산방법을 제공한다.In order to solve the above problems, the present invention is to prepare a culture medium, a carbon source, a nitrogen source and inorganic salts, and then pass the components through the fine particle sorter 100 to make fine particles into fine particles (S1); A strain preparation step (S2) of preparing a deodorized microorganism strain preserved as a culture medium formed of microparticles in the fine particle selection step (S1); Experimental minimum medium preparation step (S3) for preparing a minimal broth; After adding any one of sugars or carbohydrates to a minimum medium prepared through the experiment minimum medium preparation step (S3) at a predetermined concentration, a predetermined in a shaking incubator with a predetermined temperature. After incubation for a period of time, the carbon source selection step (S4) for recovering the bacterial cells and lyophilizing them to confirm the production amount; From the carbon source identified through the carbon source selection step (S4), an organic nitrogen source of a predetermined concentration is added, incubated for a predetermined time with a shaking incubator at a predetermined temperature, and then centrifuged to recover the cells and lyophilized to confirm the production amount. A nitrogen source selection step (S5) of adding an inorganic nitrogen source of a predetermined concentration from the organic nitrogen source and incubating it with a shaking incubator at a predetermined temperature for a period of time to recover the cells by centrifugation and freeze-drying; After adding the inorganic salt at a predetermined concentration from the carbon source identified through the carbon source selection step (S4) and the nitrogen source identified through the nitrogen source selection step, incubate for a predetermined time with a shaking incubator at a predetermined temperature, centrifugation to recover the cells and freeze Inorganic salt selection step to check the production amount by drying (S6); Using the medium containing the carbon source determined through the carbon source selection step (S4) and the nitrogen source determined through the nitrogen source selection step (S5) and the inorganic salt selected through the inorganic salt selection step (S6), the culture temperature within a predetermined range is set to a predetermined section. The culture temperature determination step (S7) of determining the optimum culture temperature by dividing and checking the cell production amount for each section of the culture temperature; After the culture temperature determination step (S7), a medium containing a carbon source determined through the carbon source selection step (S4) and a nitrogen source determined through the nitrogen source selection step (S5) and inorganic salts determined through the inorganic salt selection step (S6) are used. And a pH value determination step (S8) for determining an optimal pH value by dividing the pH value within a predetermined range into predetermined sections and checking the cell production amount of each section of the pH value, and culturing the fine particle selection step (S1). The medium is formed in a powdered form as an LB medium, and the nitrogen source selection step (S5) is performed by adding an organic nitrogen source at a predetermined concentration from the carbon source identified through the carbon source selection step (S4) for a predetermined time in a shaking incubator at a predetermined temperature. Organic nitrogen source selection step of culturing and centrifugation (S5-1); In the state in which the organic nitrogen source identified through the organic nitrogen source selection step (S5-1) and the carbon source identified through the carbon source selection step (S4) are mixed, an inorganic nitrogen source is added at a predetermined concentration for a predetermined time in a shaking incubator at a predetermined temperature. It characterized in that it comprises a; inorganic nitrogen source selection step (S5-2) for centrifugation after cultivation, the fine particle sorter 100 of the fine particle selection step (S1) is to be supported on the ground to the empty interior It is formed to have a base portion 110, the inside of the base portion 110, the fine particle sorter 100 is a vibration unit 120 that vibrates, and the upper side of the base portion 110 A plurality of formed but the buffer member 130 supporting the bottom surface of the first particle selection unit 140, and located on the upper portion of the base portion 110, one side is opened so that the powder filtered by the filter net is discharged Is formed, but the other side is first The first particle selection unit 140 is formed with a sphere 141, and is located on the upper portion of the first particle selection unit 140, but one side is formed open and the other side is formed with a first filter network 151. Located on the upper side of the first filter network 151, the second particle selection unit 150 is formed on the second discharge port 152, and the second particle selection unit 150, but one side is open The third particle selection unit 160 is formed on the other side of the second filter network 161 and the third discharge port 162 is formed on the upper side of the second filter network 161. Located on the upper portion of the portion 160 is formed on one side is opened, the other side is a third filter network 171 is formed and the fourth filter outlet 172 is formed on the upper one side of the third filter network 171 Including the sorting unit 170, the first filter network 151, the second filter network 161 and the third filter network 171, the hole size of the first filter network 151, the second filter network ( 161), the third filter network 171 is formed to increase in order The third filter network 171 of the fourth particle selection unit 170, the second filter network 161 of the third particle selection unit 160, and the first filter network 151 of the second particle selection unit 150 It characterized in that through the sequential passage to be fine particles, the deodorant microorganism strain of the strain preparation step (S2) is Hulvaspirilum Hertience Korea Ocean Bio Cluster 180411 ( Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 ) (microbial deposit number) : KCTC18691P), Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 (microbial accession number: KCTC18693P), Bacillus subtilis Korea Ocean Bio Cluster 180524 ( Bacillus subtilis Korea Ocean Bio Cluster 180524 ) (Microbiology Accession No: KCTC18692P), a bacterium tumefaciens aqua tikum (Methylobacterium aquaticum) methyl, methyl Solarium Fu yen branch and the (Methylobacterium fujisawaense), Solarium bacterium methyl radical Toledo lance (Methylobacterium radiotolerans), tumefaciens X Toku Enschede (Methylobacterium extorquens), tumefaciens beuraki Atum (Methylobacterium brachiatum), are Trojan ah Neuss (Arthrobacter atrocyaneus) between a bakteo art as methyl, Day Noko kusu Apa Ken System ( Deinococcus apachensis ), Deinococcus koreensis ( Deinococcus koreensis ) provides a mass production method by optimizing the medium of a deodorizing microorganism strain, characterized in that any one.

삭제delete

삭제delete

삭제delete

본 발명은 탈취 미생물인 헐바스피릴룸 허티엔스 코리아 오션 바이오 클러스터 180411(Herbaspirillum huttiense Korea Ocean Bio Cluster 180411)(미생물 기탁번호:KCTC18691P), 올레오모나스 사가라넨시스 코리아 오션 바이오 클러스터 180716(Oleomonas sagaranensis Korea Ocean Bio Cluster 180716)(미생물 기탁번호: KCTC18693P), 바실러스 서브틸리스 코리아 오션 바이오 클러스터 180524(Bacillus subtilis Korea Ocean Bio Cluster 180524)(미생물 기탁번호: KCTC18692P),메틸로박테리움 아쿠아티쿰(Methylobacterium aquaticum), 메틸로박테리움 푸지사와엔제(Methylobacterium fujisawaense), 메틸로박테리움 라디오톨레란스(Methylobacterium radiotolerans), 메틸로박테리움 엑스토쿠엔스(Methylobacterium extorquens), 메틸로박테리움 브라키아툼(Methylobacterium brachiatum), 아르트로박터 아트로사이아네우스(Arthrobacter atrocyaneus), 데이노코쿠스 아파켄시스(Deinococcus apachensis), 데이노코쿠스 코렌시스(Deinococcus koreensis) 균주들의 생산 최적 배지를 제공하며 화학 탈취제를 대체하는 친환경적인 천연물 기반 소재로서 매우 유용한 발명인 것이다.The present invention is a deodorant microorganism Hulbarspyrilum Hertience Korea Ocean Bio Cluster 180411 ( Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 ) (microbial accession number: KCTC18691P), Oleomonas sagaranensis Korea Ocean Biocluster 180716 ( Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 ) (Microorganism Accession No .: KCTC18693P), Bacillus subtilis Korea Ocean Bio Cluster 180524 (Microorganism Accession No .: KCTC18692P), Methylobacterium aquaticum , methylo Methylobacterium fujisawaense , Methylobacterium radiotolerans, Methylobacterium extorquens, Methylobacterium brachiatum, Arttrobacterium Arthrobacter atrocyaneus , Dino Deinococcus apachensis ( Deinococcus apachensis ), Deinococcus koensis ( Deinococcus koreensis ) provides an optimal medium for production of strains and is a very useful invention as an eco-friendly natural product-based material that replaces chemical deodorants.

도 1은 본 발명의 순서도이다.
도 2 내지 도 5는 본 발명의 미세입자선별단계(S1)에 관한 도면이다.
도 6 내지 도 8은 본 발명의 실험예에 관한 도면이다.
1 is a flow chart of the present invention.
2 to 5 are views related to the fine particle selection step (S1) of the present invention.
6 to 8 are diagrams related to experimental examples of the present invention.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be interpreted as being limited to ordinary or lexical meanings, and the inventor can appropriately define the concept of terms in order to best describe his or her invention. Based on the principles, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에서 사용되는 탈취미생물 균주들은 헐바스피릴룸 허티엔스 코리아 오션 바이오 클러스터 180411(Herbaspirillum huttiense Korea Ocean Bio Cluster 180411)(미생물 기탁번호:KCTC18691P), 올레오모나스 사가라넨시스 코리아 오션 바이오 클러스터 180716(Oleomonas sagaranensis Korea Ocean Bio Cluster 180716)(미생물 기탁번호: KCTC18693P), 바실러스 서브틸리스 코리아 오션 바이오 클러스터 180524(Bacillus subtilis Korea Ocean Bio Cluster 180524)(미생물 기탁번호: KCTC18692P),메틸로박테리움 아쿠아티쿰(Methylobacterium aquaticum), 메틸로박테리움 푸지사와엔제(Methylobacterium fujisawaense), 메틸로박테리움 라디오톨레란스(Methylobacterium radiotolerans), 메틸로박테리움 엑스토쿠엔스(Methylobacterium extorquens), 메틸로박테리움 브라키아툼(Methylobacterium brachiatum), 아르트로박터 아트로사이아네우스(Arthrobacter atrocyaneus), 데이노코쿠스 아파켄시스(Deinococcus apachensis), 데이노코쿠스 코렌시스(Deinococcus koreensis)로써 기존 공조기의 악취 탈취제로 사용된 화학 탈취제를 대체하는 친환경적인 천연물 기반의 소재이다.The deodorant microbial strains used in the present invention are Hulvaspirilum Hertiens Korea Ocean Bio Cluster 180411 ( Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 ) (microorganism accession number: KCTC18691P), Oleomonas sagaranensis Korea Ocean Biocluster 180716 ( Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 ) (Microorganism Accession No .: KCTC18693P), Bacillus subtilis Korea Ocean Bio Cluster 180524 (Microorganism Accession No .: KCTC18692P), Methylobacterium aquaticum , Methylobacterium fujisawaense , Methylobacterium radiotolerans, Methylobacterium extorquens, Methylobacterium brachiatum, Methylobacterium brachiatum, Arthrobacter atrocyaneus ), Deinococcus apachensis , and Deinococcus koreensis are eco-friendly natural materials based materials that replace chemical deodorants used as odor deodorants in existing air conditioners.

본 발명은 탈취미생물 균주의 배지 최적화에 의한 대량생산방법에 관한 것으로, 위에서 언급된 균주들의 생산을 증가시키기 위해 배지,탄소원, 질소원, 무기염류으로 나눈 배지를 최적화하여 이들 성분으로 생산량을 증가시키는 방법을 제공하는 것이다.The present invention relates to a mass production method by optimizing the medium of a deodorizing microorganism strain, and a method of optimizing the medium divided into a medium, a carbon source, a nitrogen source, and an inorganic salt to increase the production of the above-mentioned strains to increase the production amount with these components Is to provide

도 1을 참고하면 본 발명의 탈취미생물 균주의 배지 최척화에 의한 대량생산방법은 미세입자선별단계(S1), 균주준비단계(S2), 실험최소배지준비단계(S3), 탄소원설별단계(S4), 질소원선별단계(S5), 무기염류선별단계(S6), 배양온도결정단계(S7), pH수치결정단계(S8)를 포함하여 진행된다.Referring to Figure 1, the mass production method by maximizing the medium of the deodorizing microorganism strain of the present invention is a fine particle selection step (S1), a strain preparation step (S2), an experiment minimum medium preparation step (S3), and a carbon origination step (S4). ), Nitrogen source selection step (S5), inorganic salt selection step (S6), culture temperature determination step (S7), pH value determination step (S8).

S1) 미세입자선별단계S1) Fine particle selection step

미세입자선별단계(S1)는 본 발명에서 사용되는 배양배지, 탄소원, 질소원, 무기염류들을 준비한 후 미세입자선별기(100)에 상기 성분들을 통과시키어 미세한 입자로 만드는 단계이다.The fine particle selection step (S1) is a step of preparing the culture medium, carbon source, nitrogen source, and inorganic salts used in the present invention and passing the components through the fine particle separator 100 to make fine particles.

도 2 내지 도 5를 참고하면 상기 미세입자선별기(100)는 분말형태의 물질을 투입하여 미세한 입자만 걸러내기 위한 것으로, 베이스부(110), 진동부(120), 완충부재(130), 제1선별부재(140), 제2선별부재(150), 제3선별부재(160), 제4선별부재(170), 덮개부(180)를 포함하여 구성된다. 2 to 5, the fine particle sorter 100 is for filtering only fine particles by injecting a powdery substance, the base part 110, the vibration part 120, the buffer member 130, the agent It comprises a first selection member 140, a second selection member 150, a third selection member 160, a fourth selection member 170, and a cover portion 180.

베이스부(110)는 지면에 지지되기 위한 것으로 텅 빈 내부를 가지도록 형성된다.The base 110 is intended to be supported on the ground and is formed to have an empty interior.

진동부(120)는 상기 베이스부(110)의 내부에 위치하는 것으로 미세입자선별기(100)가 진동동작함으로써 투입되는 성분이 순차적으로 걸러지도록 할 수 있다.The vibrating unit 120 is located inside the base unit 110 so that the inputted components are sequentially filtered by the fine particle sorter 100 vibrating.

완충부재(130)는 상기 베이스부(110)의 상부 일측에 다수개가 형성되되 제1입자선별부(140)의 바닥면을 지지하는 것이다.A plurality of buffer members 130 are formed on one side of the upper portion of the base portion 110 to support the bottom surface of the first particle selection unit 140.

상기 완충부재(130)는 스프링으로 형성되는것이 바람직하나 이외에 다양한 형태로 형성될 수 있다.The buffer member 130 is preferably formed of a spring, but may be formed in various forms in addition.

제1입자선별부(140)는 상기 베이스부(110)의 상부에 위치하되, 필터망에 의해 필터링된 분말이 배출되도록 일측이 개방되어 형성되되 타측은 제1배출구(141)가 형성된다.The first particle selection unit 140 is located on the upper portion of the base unit 110, but one side is opened so that the powder filtered by the filter net is discharged, and the other side is formed with a first outlet 141.

제2입자선별부(150)는 상기 제1입자선별부(140)의 상부에 위치하되, 일측이 개방되어 형성되되 타측은 제1필터망(151)이 형성되고 상기 제1필터망(151)의 상부 일측에 제2배출구(152)가 형성된다.The second particle selection unit 150 is located on the upper portion of the first particle selection unit 140, but one side is formed open, and the other side is formed with a first filter network 151 and the first filter network 151. A second discharge port 152 is formed on one side of the upper portion.

제3입자선별부(160)는 상기 제2입자선별부(150)의 상부에 위치하되, 일측이 개방되어 형성되되 타측은 제2필터망(161)이 형성되고 상기 제2필터망(161)의 상부 일측에 제3배출구(162)가 형성된다.The third particle selection unit 160 is located on the upper portion of the second particle selection unit 150, but one side is formed open, and the other side is formed with a second filter network 161 and the second filter network 161. A third discharge port 162 is formed on the upper side of the.

제4입자선별부(170)는 상기 제3입자선별부(160)의 상부에 위치하고 일측이 개방되어 형성되되 타측은 제3필터망(171)이 형성되고 상기 제3필터망(171)의 상부 일측에 제4배출구(172)가 형성된다.The fourth particle sorting unit 170 is located on the upper portion of the third particle sorting unit 160, and one side is opened and formed, while the other side is formed with a third filter network 171 and an upper portion of the third filter network 171. A fourth discharge port 172 is formed on one side.

도 3은 덮개부(180)가 제거된 것으로 제4입자선별부(170)의 내부가 보이는 모습을 나타낸 도면이다. 이를 참고하면 제3필터망(171)의 하단 일측에 지지부(173)가 추가로 형성되며, 지지부(173)는 제3필터망(171)을 지지하여 견고함을 유지하도록 할 수 있다.3 is a view showing a state in which the inside of the fourth particle sorting unit 170 is visible as the cover portion 180 is removed. Referring to this, a support portion 173 is additionally formed on one lower side of the third filter network 171, and the support portion 173 can support the third filter network 171 to maintain robustness.

도면에는 도시되지 않았지만 제1필터망(151)과 제2필터망(161) 각각을 지지하기 위해 지지부가 추가로 형성될 수 있다.Although not shown in the drawing, a support part may be additionally formed to support each of the first filter network 151 and the second filter network 161.

덮개부(180)는 상기 제4입자선별부(180)의 개방된 부분을 덮도록 형성되되 일측에 투입구(181)가 형성된다.The cover portion 180 is formed to cover the open portion of the fourth particle selection portion 180, but an inlet 181 is formed on one side.

도 4를 참고하면 상기 제1필터망(151)과 제2필터망(161)과 제3필터망(171)의 구멍 크기는 제1필터망(151), 제2필터망(161), 제3필터망(171) 순으로 커지도록 형성된다(제1필터망(151)의 구멍크기<제2필터망(161)의 구멍크기<제3필터망(171)의 구멍크기).Referring to FIG. 4, the hole sizes of the first filter network 151, the second filter network 161, and the third filter network 171 are the first filter network 151, the second filter network 161, and It is formed so as to increase in order of the three filter networks 171 (hole size of the first filter network 151 <hole size of the second filter network 161 <hole size of the third filter network 171).

이와 같이 상단에 위치한 투입구(181)로 투입된 특정성분이 상단에서 하단으로 갈수록 필터망의 구멍크기가 좁아지게 함으로써 각 구간마다 입자를 걸러내리어 가장 마자막 구간에 가장 미세한 입자가 배출되도록 할 수 있다.In this way, as the specific component injected into the inlet 181 located at the top goes from the top to the bottom, the hole size of the filter network is narrowed to filter out the particles in each section so that the finest particles are discharged in the last sub-section. .

도 5를 참고하여 구체적으로 설명하면 덮개부(180)의 투입구(181)를 통해 a1 방향으로 투입된 특정 성분은 제4선별부재(170)의 제3필터망(171)을 통해 1차적으로 입자가 걸러지며 제3필터망(171)으로 걸러진 입자는 a2 방향으로 이동하고 걸러지지 않은 입자는 제4배출구(172)를 따라 a3 방향으로 배출된다.Referring to FIG. 5 in detail, specific components introduced in the a1 direction through the inlet 181 of the cover 180 are primarily particles through the third filter network 171 of the fourth sorting member 170. The filtered and filtered particles of the third filter network 171 move in the a2 direction, and the unfiltered particles are discharged in the a3 direction along the fourth discharge port 172.

a2방향으로 이동된 입자는 제3선별부재(160)의 제2필터망(161)을 통해 2차적으로 입자가 걸러지며 제2필터망(161)으로 걸러진 입자는 a4 방향으로 이동하고 걸러지지 않은 입자는 제3배출구(162)를 따라 a5 방향으로 배출된다.The particles moved in the a2 direction are secondarily filtered through the second filter network 161 of the third selection member 160, and the particles filtered by the second filter network 161 are moved in the a4 direction and are not filtered. Particles are discharged in the a5 direction along the third discharge port 162.

a4 방향으로 이동된 입자는 제3필터망(171)을 통해 3차적으로 입자가 걸러지며 걸러진 입자는 a6 방향으로 이동하고 걸러지지 않은 입자는 제2배출구(152)를 따라 a7 방향으로 배출된다.Particles moved in the a4 direction are thirdly filtered through the third filter network 171, filtered particles are moved in the a6 direction, and unfiltered particles are discharged in the a7 direction along the second outlet 152.

a6방향으로 걸러진 입자는 최종적으로 제1배출구(141)로 배출되어 나오게 된다.Particles filtered in the a6 direction are finally discharged to the first outlet 141.

이와 같은 과정을 통해 탄소원, 질소원, 무기염류 각각을 미세한 입자가 되도록 함으로써 배양배지 안의 성분 밸런스를 효율적으로 만들어주어 균의 영양흡수를 최대한으로 이끌어 낼 수 있는 장점이 있다.Through such a process, the carbon source, the nitrogen source, and the inorganic salts are each made into fine particles, thereby effectively creating a component balance in the culture medium, and thus having the advantage of maximizing the nutritional absorption of bacteria.

S2) 균주준비단계S2) Strain preparation stage

균주준비단계(S2)는 상기 미세입자선별단계(S1)에서 미세입자로 형성된 배양배지로 보존된 탈취미생물 균주를 준비하는 단계이다.The strain preparation step (S2) is a step of preparing a deodorized microorganism strain preserved as a culture medium formed of fine particles in the fine particle selection step (S1).

균주로 준비되는 탈취미생물 균주는 헐바스피릴룸 허티엔스 코리아 오션 바이오 클러스터 180411(Herbaspirillum huttiense Korea Ocean Bio Cluster 180411)(미생물 기탁번호:KCTC18691P), 올레오모나스 사가라넨시스 코리아 오션 바이오 클러스터 180716(Oleomonas sagaranensis Korea Ocean Bio Cluster 180716)(미생물 기탁번호: KCTC18693P), 바실러스 서브틸리스 코리아 오션 바이오 클러스터 180524(Bacillus subtilis Korea Ocean Bio Cluster 180524)(미생물 기탁번호: KCTC18692P),메틸로박테리움 아쿠아티쿰(Methylobacterium aquaticum), 메틸로박테리움 푸지사와엔제(Methylobacterium fujisawaense), 메틸로박테리움 라디오톨레란스(Methylobacterium radiotolerans), 메틸로박테리움 엑스토쿠엔스(Methylobacterium extorquens), 메틸로박테리움 브라키아툼(Methylobacterium brachiatum), 아르트로박터 아트로사이아네우스(Arthrobacter atrocyaneus), 데이노코쿠스 아파켄시스(Deinococcus apachensis), 데이노코쿠스 코렌시스(Deinococcus koreensis) 등을 포함하며, 본 발명의 방법을 통해 위의 탈취미생물 균주를 각각 배양하는 것이 바람직하나, 설명의 편의상 탈취 미생물 균주로 통틀어서 설명한다.The deodorant microbial strain prepared as a strain is Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 (microbial accession number: KCTC18691P), Oleomonas sagaranensis Korea Ocean Biocluster 180716 ( Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 ) (Microorganism Accession No .: KCTC18693P), Bacillus subtilis Korea Ocean Bio Cluster 180524 (Microbial Accession No .: KCTC18692P), Methylobacterium aquaticum , Methylobacterium fujisawaense , Methylobacterium radiotolerans, Methylobacterium extorquens, Methylobacterium brachiatum, Archiobacterium brachiatum, Arthrobacter atrocyane us ), Deinococcus apachensis , Deinococcus koreensis , and the like, and it is preferable to cultivate each of the above deodorant microorganism strains through the method of the present invention. It will be described collectively as a deodorizing microorganism strain.

상기 균주들은 글리세롤 스탁(glycerol stock)법으로 -70도에서 보존한 균주들로써, 배양배지로는 LB배지(Tryptone 1%, Yeast Extract 0.5%, NaCl 1%)를 사용하였다.The strains were strains preserved at -70 ° C using a glycerol stock method, and LB medium (Tryptone 1%, Yeast Extract 0.5%, NaCl 1%) was used as the culture medium.

S3)실험최소배지준비단계S3) Minimum medium preparation stage

실험최소배지준비단계(S3)는 최소배지(minimal broth)를 준비하는 단계이다.The minimum medium preparation step (S3) of the experiment is a step of preparing a minimal broth.

상기 최소배지는 0.5% peptone, 0.3% beef extract를 기본으로 하는 배지이다.The minimum medium is a medium based on 0.5% peptone and 0.3% beef extract.

S4) 탄소원선별단계S4) Carbon source selection step

탄소원선별단계(S4)는 상기 실험최소배지준비단계(S3)를 통해 준비된 최소배지에 당류(sugars) 또는 탄수화물(carbohydrates) 성분 중 어느 하나를 소정의 농도로 추가한 후 소정의 온도를 가진 진탕배양기(shaking incubator)에서 소정의 시간 동안 배양한 후 균체를 회수하고 동결건조하여 생산량을 확인하는 단계이다.The carbon source selection step (S4) adds any one of sugars or carbohydrates to the minimum medium prepared through the experiment minimum medium preparation step (S3) to a predetermined concentration, and then shakes the incubator with a predetermined temperature. After incubation for a predetermined period of time in (shaking incubator), the cells are recovered and lyophilized to check the production.

상기 당류는 덱스트로오스(dextrose), 프룩토오스(fructose), 갈락토오스(galactose), 글루코오스(glucose), 글라이세롤(glycerol), 락토오즈(lactose), 말토오즈(maltose), 만니톨(mannitol), 가용성전분(soluble starch), 슈크로즈(sucrose), 자일로즈(xylose)를 포함하며 이 중 하나를 선택하여 사용할 수 있다.The saccharides are dextrose, fructose, galactose, glucose, glycerol, lactose, maltose, mannitol , Soluble starch, sucrose, and xylose, which can be selected and used.

상기 탄소원선별단계(S4)는 당류 또는 탄수화물 성분 중 선택된 성분을 각 0.1~10% 농도로 하여 15~50℃(도)의 진탕배양기(shaking incubator)에서 1~10일동안 배양한 후 원심분리하며, 바람직하게는 각 1% 농도로 하여 30℃(도)의 진탕배양기(shaking incubator)에서 5일동안 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하며 최적의 조건을 가진 1% 탄소원을 결정할 수 있다.In the carbon source selection step (S4), a selected component among sugars or carbohydrate components is each 0.1 to 10% in concentration, incubated in a shaking incubator at 15 to 50 ° C (degree) for 1 to 10 days, and centrifuged. , Preferably incubated for 5 days in a shaking incubator at 30 ° C (degree) at a concentration of 1% each, and then centrifuged to recover the cells and freeze-dried to check the production amount and 1% with optimal conditions The carbon source can be determined.

즉 상기에 언급된 당류의 종류 각각의 생산량을 확인하기 위해 탄소원선별단계(S4)를 반복함으로써 최적의 탄소원을 찾을 수 있는 것이다.That is, it is possible to find the optimal carbon source by repeating the carbon source selection step (S4) to confirm the production amount of each of the above-mentioned types of sugars.

S5) 질소원선별단계S5) Nitrogen source selection step

질소원선별단계(S5)는 상기 탄소원선별단계(S4)를 통해 확인된 탄소원에서 소정 농도의 유기 질소원을 첨가하여 소정 온도의 진탕배양기로 소정 시간 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하고, 상기 탄소원과 유기질소원에서 소정 농도의 무기질소원을 첨가하여 소정 온도의 진탕배양기로 소정 시간동안 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하는 단계이다.In the nitrogen source selection step (S5), an organic nitrogen source of a predetermined concentration is added from the carbon source identified through the carbon source selection step (S4), incubated for a predetermined time with a shaking incubator at a predetermined temperature, and then centrifuged to recover the cells and lyophilized to produce It is a step of confirming the production amount by confirming, culturing for a predetermined time with a shaking incubator at a predetermined temperature by adding an inorganic nitrogen source at a predetermined concentration from the carbon source and the organic nitrogen source, and then centrifuging to recover the cells and freeze-drying.

상기 질소원선별단계(S5)는 유기질소원선별단계(S5-1)와 무기질소원선별단계(S5-2)로 나뉠 수 있다.The nitrogen source selection step (S5) may be divided into an organic nitrogen source selection step (S5-1) and an inorganic nitrogen source selection step (S5-2).

유기질소원선별단계(S5-1)는 상기 탄소원선별단계(S4)를 통해 확인된 탄소원, 즉 최적의 조건을 가진 1% 탄소원에서 유기질소원을 0.1~3% 첨가하여 15~50℃(도)의 진탕배양기에서 1~10일 동안 배양한 후 원심분리하며, 바람직하게는 1% 탄소원에서 질소원을 결정하기 위해 각종 유기 질소원을 각 0.5% 씩 첨가하여 30℃ 진탕배양기에서 5일 동안 배양한 후 원심분리하여 균체를 회수하고 동결건조 하여 생산량을 확인하는 단계로 이를 통하여 최적의 유기질소원을 찾을 수 있다. The organic nitrogen source selection step (S5-1) of the carbon source identified through the carbon source selection step (S4), that is, from 1% carbon source with optimum conditions, 0.1 to 3% of organic nitrogen source is added to 15 to 50 ℃ (degrees) After incubating for 1 to 10 days in a shake incubator, centrifugation is performed. Preferably, 0.5% of each organic nitrogen source is added in order to determine a nitrogen source from a 1% carbon source, followed by incubation for 5 days in a 30 ° C shake incubator, followed by centrifugation. By recovering the cells and lyophilizing them, it is possible to find the optimum organic nitrogen source through this.

상기 유기질소원은 비프 익스트랙트(beef extract), 카제인(casein), 말트 익스트랙트(malt extract), 펩톤(peptone), 스킴 밀크(skim milk), 소이톤(soytone), 트립톤(tryptone), 이스트 익스트랙트(yeast extract) 등이 있으며 유기질소원선별단계(S5-1)를 반복함으로써 이러한 유기질소원 각각의 생산량을 확인함으로써 최적의 유기질소원을 찾을 수 있다.The organic nitrogen source is beef extract, casein, malt extract, peptone, skim milk, soytone, tryptone, yeast There is a extract (yeast extract) and the like, and by repeating the organic nitrogen source selection step (S5-1), it is possible to find the optimum organic nitrogen source by checking the production amount of each of these organic nitrogen sources.

무기질소원선별단계(S5-2)는 상기 유기질소원선별단계(S5-1)를 통해 확인된 유기질소원, 즉 최적의 조건을 가진 0.5% 유기질소원과 탄소원선별단계(S4)를 통해 확인된 1%탄소원이 혼합된 상태에서 무기질소원을 0.1~3% 농도로 첨가하여 15~50℃(도)의 진탕배양기에서 1~10일 동안 배양한 후 원심분리하며, 바람직하게는 1% 탄소원과 0.5% 유기질소원에서 각종 무기 질소원을 각 0.5% 씩 첨가하여 30℃ 진탕배양기에서 5일 동안 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하는 단계로 이를 통하여 최적의 무기질소원을 찾을 수 있다.Inorganic nitrogen source selection step (S5-2) is the organic nitrogen source identified through the organic nitrogen source selection step (S5-1), that is, 0.5% organic nitrogen source with optimum conditions and 1% confirmed through the carbon source selection step (S4) In a state where the carbon source is mixed, the inorganic nitrogen source is added at a concentration of 0.1 to 3%, incubated for 1 to 10 days in a shaking incubator at 15 to 50 ° C (degree), and then centrifuged, preferably 1% carbon source and 0.5% organic matter Various inorganic nitrogen sources are added to each wish by adding 0.5% of each, followed by incubation for 5 days in a 30 ° C shake incubator, followed by centrifugation to recover the cells and freeze-drying to check the production amount. Through this, the optimal inorganic nitrogen source can be found.

상기 무기질소원은 인산일암모늄((NH4)H2PO4), 염화암모늄(NH4Cl), 질산암모늄(NH4NO3), 황산암모늄((NH4)O2SO4), 질산칼륨(KNO3), 질산나트륨(NaNO3) 등이 있으며 무기질소원선별단계(S5-2)를 반복함으로써 이러한 무기질소원 각각의 생산량을 확인함으로써 최적의 무기질소원을 찾을 수 있다.The inorganic nitrogen source is monoammonium phosphate ((NH 4 ) H 2 PO 4 ), ammonium chloride (NH 4 Cl), ammonium nitrate (NH 4 NO 3 ), ammonium sulfate ((NH 4 ) O 2 SO 4 ), potassium nitrate There are (KNO 3 ), sodium nitrate (NaNO 3 ), etc., and by repeating the inorganic nitrogen source selection step (S5-2), it is possible to find the optimal inorganic nitrogen source by confirming the production of each of these inorganic nitrogen sources.

S6) 무기염류선별단계S6) Inorganic salt selection step

무기염류선별단계(S6)는 상기 탄소원선별단계(S4)를 통해 확인된 탄소원과 상기 질소원 선별단계를 통해 확인된 질소원에서 소정 농도의 무기염류를 첨가하여 소정 온도의 진탕배양기로 소정 시간 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하는 단계이다.In the inorganic salt selection step (S6), a predetermined concentration of inorganic salts are added from the carbon source identified through the carbon source selection step (S4) and the nitrogen source identified through the nitrogen source selection step, followed by incubation for a predetermined time with a shaking incubator at a predetermined temperature. This is a step to collect the cells by centrifugation and lyophilize to check the production.

상기 무기염류선별단계(S6)는 상기 탄소원선별단계(S4)를 통해 확인된 탄소원과 상기 질소원 선별단계를 통해 확인된 질소원이 혼합된 상태에서 무기염류를 0.1~3% 농도로 첨가하여 15~50℃(도)의 진탕배양기에서 1~10일 동안 배양한 후 원심분리하며, 바람직하게는 1% 탄소원과 0.5% 질소원에서 각종 무기염류를 각 0.5% 씩 첨가하여 30℃ 진탕배양기에서 5일 동안 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하는 단계로 이를 통하여 최적의 무기질소원을 찾을 수 있다.In the inorganic salt selection step (S6), when the carbon source identified through the carbon source selection step (S4) and the nitrogen source identified through the nitrogen source selection step are mixed, inorganic salts are added at a concentration of 0.1 to 3% to 15 to 50%. After incubation for 1 to 10 days in a shaking incubator at ℃ (degrees), centrifugation is performed. Preferably, 0.5% each of various inorganic salts is added from a 1% carbon source and a 0.5% nitrogen source, and cultured for 5 days in a shaking incubator at 30 ° C. After that, the cells are recovered by centrifugation and lyophilized to check the production amount. Through this, the optimal inorganic nitrogen source can be found.

상기 무기염류는 염화칼슘(CaCl2), 디포타슘 포스페이트(K2HPO4), 염화칼륨(KCl), 모노포타슘 포스페이트(KH2PO4), 황산마그네슘(MgSO4), 마그네슘(2)설페이트(MnSO4), 염화나트륨(NaCl), 질산칼륨(KNO3), 디소듐 포스페이트(Na2HPO4), 황산제일철(FeSO4) 등이 있으며 무기염류선별단계(S6)를 반복함으로써 이러한 무기질소원 각각의 생산량을 확인함으로써 최적의 무기염류를 찾을 수 있다.The inorganic salts include calcium chloride (CaCl 2 ), dipotassium phosphate (K 2 HPO 4) , potassium chloride (KCl), monopotassium phosphate (KH 2 PO 4 ), magnesium sulfate (MgSO 4 ), magnesium (2) sulfate (MnSO 4) ), Sodium chloride (NaCl), potassium nitrate (KNO 3 ), disodium phosphate (Na 2 HPO 4 ), ferrous sulfate (FeSO 4 ), etc., and repeat the inorganic salt selection step (S6) to increase the production of each of these inorganic nitrogen sources. By checking, the optimum inorganic salt can be found.

S7) 배양온도결정단계S7) Culture temperature determination step

배양온도결정단계(S7)는 상기 탄소원선별단계(S4)를 통해 정해진 탄소원과 질소원선별단계(S5)를 통해 정해진 질소원과 무기염류선별단계(S6)를 통해 정해진 무기염류를 포함한 배지를 이용하여 소정 범위 내의 배양온도를 소정 구간으로 나누어 배양온도의 각 구간별 균체 생산량을 확인하여 최적의 배양온도를 결정하는 단계이다.The culture temperature determination step (S7) is determined by using a medium containing a carbon source determined through the carbon source selection step (S4) and a nitrogen source determined through the nitrogen source selection step (S5) and inorganic salts determined through the inorganic salt selection step (S6). This step is to determine the optimum culture temperature by dividing the culture temperature within the range into predetermined sections and checking the cell production amount for each section of the culture temperature.

바람직하게는 배양온도결정단계(S7)는 20℃, 25℃, 30℃, 35℃, 40℃에서 각각의 생산량을 확인하고, 생산량이 많은 구간에서 1℃ 단위로 배양온도를 세분화하여 생산량을 재확인함으로써 최적의 배양온도를 결정한다.Preferably, in the culture temperature determination step (S7), each production amount is checked at 20 ° C, 25 ° C, 30 ° C, 35 ° C, and 40 ° C, and the production temperature is re-confirmed by subdividing the culture temperature in units of 1 ° C in a section with high production volume. By doing so, the optimum culture temperature is determined.

S8) pH수치결정단계S8) pH value determination step

pH수치결정단계(S8)는 상기 배양온도결정단계(S7) 이후, 상기 탄소원선별단계(S4)를 통해 정해진 탄소원과 질소원선별단계(S5)를 통해 정해진 질소원과 무기염류선별단계(S6)를 통해 정해진 무기염류를 포함한 배지를 이용하여 소정 범위 내의 pH수치를 소정 구간으로 나누어 pH수치의 각 구간별 균체 생산량을 확인하여 최적의 pH수치를 결정하는 단계이다.The pH value determination step (S8) is performed through the nitrogen source and inorganic salt selection step (S6) determined through the carbon source and nitrogen source selection step (S5) determined through the carbon source selection step (S4) after the culture temperature determination step (S7). This is the step of determining the optimum pH value by checking the cell production amount for each section of the pH value by dividing the pH value within a predetermined range using a medium containing a specified inorganic salt.

바람직하게는 pH수치결정단계(S8)는 상기 배양온도결정단계(S7)를 통해 정해진 배양온도에서 pH6, pH6.5, pH7, pH7.5, pH8로 배지의 pH를 각각 맞춘 후 5일 동안 배양한 후 원심분리하여 균체를 회수하고 동결건조 하여 생산량을 확인함으로써 최적의 pH수치를 확인할 수 있다.Preferably, the pH value determination step (S8) is adjusted to the pH of the medium to pH6, pH6.5, pH7, pH7.5, pH8 at the culture temperature determined through the culture temperature determination step (S7), and cultured for 5 days. After that, the cells can be recovered by centrifugation and freeze-dried to check the production amount, so that the optimum pH value can be confirmed.

이를 통해 본 발명의 균체를 대량생산할 수 있는 최적화된 성분들, 온도, pH값을 확인하여 탈취 미생물을 배양시킬 수 있다.Through this, it is possible to cultivate deodorizing microorganisms by checking optimized components, temperature, and pH values for mass production of the cells of the present invention.

[실험예][Experimental Example]

아래는 위의 방법에 관한 실험예이다.Below is an example of an experiment on the above method.

1. 균주 및 배지1. Strains and media

본 발명에서 사용한 헐바스피릴룸 허티엔스 코리아 오션 바이오 클러스터 180411(Herbaspirillum huttiense Korea Ocean Bio Cluster 180411)(미생물 기탁번호:KCTC18691P), 올레오모나스 사가라넨시스 코리아 오션 바이오 클러스터 180716(Oleomonas sagaranensis Korea Ocean Bio Cluster 180716)(미생물 기탁번호: KCTC18693P), 바실러스 서브틸리스 코리아 오션 바이오 클러스터 180524(Bacillus subtilis Korea Ocean Bio Cluster 180524)(미생물 기탁번호: KCTC18692P),메틸로박테리움 아쿠아티쿰(Methylobacterium aquaticum), 메틸로박테리움 푸지사와엔제(Methylobacterium fujisawaense), 메틸로박테리움 라디오톨레란스(Methylobacterium radiotolerans), 메틸로박테리움 엑스토쿠엔스(Methylobacterium extorquens), 메틸로박테리움 브라키아툼(Methylobacterium brachiatum), 아르트로박터 아트로사이아네우스(Arthrobacter atrocyaneus), 데이노코쿠스 아파켄시스(Deinococcus apachensis), 데이노코쿠스 코렌시스(Deinococcus koreensis) 균주들은 글리세롤 스탁(glycerol stock)법으로 -70℃에서 보존하였고, 배양배지는 LB배지(Luria-Bertani broth medium, Tryptone 1%, Yeast Extract 0.5%, NaCl 1%)를 사용하였다.Hull baseupi rilrum allowed tienseu Korea Ocean Bio cluster 180411 (Herbaspirillum huttiense Korea Ocean Bio Cluster 180411) used in the present invention (microorganism accession number: KCTC18691P), Oleo Pseudomonas Sagara norbornene cis Korea Ocean Bio cluster 180716 (Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 ) (Microorganism accession number: KCTC18693P), Bacillus subtilis Korea Ocean Bio Cluster 180524 (Microorganism accession number: KCTC18692P), Methylobacterium aquaticum , Methylobacterium Methylobacterium fujisawaense , Methylobacterium radiotolerans, Methylobacterium extorquens, Methylobacterium brachiatum, Arttrobacter atrobacterium Ah between Neuss (Arthrobacter atrocyaneus), Day-no Cocu Apa Ken System (Deinococcus apachensis), Day Noko kusu Koren sheath (Deinococcus koreensis) strains were stored at -70 as glycerol ℃ Stark (glycerol stock) method, a culture medium is an LB medium (Luria-Bertani broth medium, 1% Tryptone, Yeast Extract 0.5%, NaCl 1%) was used.

2. 배지성분 최적화2. Medium component optimization

본 발명에서는 각각 균주들의 생산량 증가를 위한 배지조성의 최적조건을 규명하기 위하여 NB 배지(nutrient broth, 0.5% peptone, 0.3% beef extract)를 기본 배지로 하여 각각의 조성을 달리 첨가하여 사용하였다. In the present invention, NB medium (nutrient broth, 0.5% peptone, 0.3% beef extract) was used as a basic medium to determine the optimum conditions of medium composition for increasing the production of each strain, and each composition was added and used differently.

생산배지의 탄소원을 결정하기 위해 NB 배지에 탄소원으로 당류(sugars) 또는 탄수화물(carbohydrates)인 덱스트로오스(dextrose), 프룩토오스(fructose), 갈락토오스(galactose), 글루코오스(glucose), 글라이세롤(glycerol), 락토오즈(lactose), 말토오즈(maltose), 만니톨(mannitol), 가용성전분(soluble starch), 슈크로즈(sucrose), 자일로즈(xylose)을 각 1% 농도로 하여 30℃ shaking incubator에서 5일 동안 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하였다. To determine the carbon source of the production medium, dextrose, fructose, galactose, glucose, glycerol, which are sugars or carbohydrates as carbon source in NB medium (glycerol), lactose, maltose, mannitol, soluble starch, sucrose, xylose at a concentration of 1% for 30 ° C shaking incubator After incubation for 5 days, the cells were collected by centrifugation and lyophilized to confirm the production.

Table 1. Determine Carbon SourcesTable 1. Determine Carbon Sources ComponentComponent AA BB CC DD EE FF GG HH II JJ KK Control(NB)Control (NB) 8.48.4 8.88.8 7.37.3 10.810.8 9.79.7 5.75.7 9.59.5 7.57.5 8.38.3 9.39.3 7.97.9 탄소원(Carbon source) (1%, w/v)Carbon source (1%, w / v) DextroseDextrose 18.618.6 10.610.6 21.721.7 26.526.5 10.410.4 20.920.9 15.715.7 18.118.1 9.59.5 21.621.6 15.815.8 FructoseFructose 10.810.8 15.715.7 18.418.4 15.115.1 11.211.2 18.518.5 10.810.8 8.58.5 11.211.2 14.214.2 9.09.0 GalactoseGalactose 15.815.8 14.714.7 15.715.7 11.611.6 15.415.4 11.211.2 17.417.4 16.516.5 15.715.7 19.619.6 16.416.4 GlucoseGlucose 22.922.9 16.216.2 10.910.9 11.111.1 13.713.7 7.57.5 12.812.8 10.910.9 18.118.1 11.211.2 22.822.8 GlycerolGlycerol 10.710.7 15.115.1 18.518.5 10.010.0 13.513.5 18.418.4 15.315.3 14.214.2 15.315.3 13.713.7 10.710.7 LactoseLactose 9.59.5 20.520.5 13.813.8 16.316.3 11.811.8 10.410.4 17.417.4 8.38.3 9.29.2 14.314.3 10.210.2 MaltoseMaltose 15.515.5 18.918.9 10.110.1 13.913.9 16.616.6 15.815.8 18.418.4 15.515.5 15.515.5 17.617.6 11.711.7 MannitolMannitol 11.611.6 15.915.9 14.814.8 17.517.5 15.715.7 8.48.4 12.112.1 16.916.9 11.211.2 15.115.1 17.517.5 Soluble starchSoluble starch 13.413.4 19.419.4 15.915.9 25.425.4 13.413.4 18.218.2 16.316.3 19.319.3 13.113.1 20.120.1 11.411.4 SucroseSucrose 12.712.7 24.624.6 18.318.3 19.619.6 18.818.8 10.510.5 19.219.2 9.99.9 10.810.8 15.615.6 9.59.5 XyloseXylose 13.813.8 10.810.8 10.810.8 13.613.6 11.511.5 15.415.4 15.515.5 10.310.3 11.411.4 16.716.7 15.515.5

(Counting units : mg/100 ml) (Counting units: mg / 100 ml)

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716

C: Bacillus subtilis Korea Ocean Bio Cluster 180524C: Bacillus subtilis Korea Ocean Bio Cluster 180524

D: Methylobacterium aquaticum D: Methylobacterium aquaticum

E: Methylobacterium fujisawaense E: Methylobacterium fujisawaense

F: Methylobacterium radiotolerans F: Methylobacterium radiotolerans

G: Methylobacterium extorquens G: Methylobacterium extorquens

H: Methylobacterium brachiatum H: Methylobacterium brachiatum

I: Arthrobacter atorocyaneus I: Arthrobacter atorocyaneus

J: Deinococcus apachensis J: Deinococcus apachensis

K: Deinococcus koreensis K: Deinococcus koreensis

위 정해진 1% 탄소원에서 질소원을 결정하기 위해 각종 유기 질소원 비프 익스트랙트(beef extract), 카제인(casein), 말트 익스트랙트(malt extract), 펩톤(peptone), 스킴 밀크(skim milk), 소이톤(soytone), 트립톤(tryptone), 이스트 익스트랙트(yeast extract)를 각 0.5% 씩 첨가하여 30℃ shaking incubator에서 5일 동안 배양한 후 원심분리 하여 균체를 회수하고 동결건조하여 생산량을 확인하였다. To determine the nitrogen source from the 1% carbon source specified above, various organic nitrogen sources beef extract, casein, malt extract, peptone, skim milk, and soyton ( Soytone), tryptone, and yeast extract were added in 0.5% increments, incubated for 5 days in a 30 ° C shaking incubator, and centrifuged to recover the cells and lyophilized to confirm the production.

정해진 1% 탄소원과 0.5% 유기 질소원에서 무기 질소원 인산일암모늄((NH4)H2PO4), 염화암모늄(NH4Cl), 질산암모늄(NH4NO3), 황산암모늄((NH4)O2SO4), 질산칼륨(KNO3), 질산나트륨(NaNO3)을 각 0.5% 씩 첨가하여 30℃ 진탕배양기(shaking incubator)에서 5일 동안 배양한 후 원심분리하여 균체를 회수하고 동결건조 하여 생산량을 확인하였다.From the specified 1% carbon source and 0.5% organic nitrogen source, the inorganic nitrogen source is monoammonium phosphate ((NH 4 ) H 2 PO 4 ), ammonium chloride (NH 4 Cl), ammonium nitrate (NH 4 NO 3 ), ammonium sulfate ((NH 4 ) O 2 SO 4 ), potassium nitrate (KNO 3 ), and sodium nitrate (NaNO 3 ) were added in 0.5% increments, incubated for 5 days in a shaking incubator at 30 ℃, and centrifuged to recover the cells and lyophilized. To confirm production.

Table 2. Determine Nitrogen SourcesTable 2. Determine Nitrogen Sources ComponentComponent AA BB CC DD EE FF GG HH II JJ KK ControlControl 22.922.9 24.624.6 21.721.7 26.526.5 18.818.8 20.920.9 19.219.2 19.319.3 18.118.1 21.621.6 22.822.8 유기질소원(Organic nitrogen source) (0.5%, w/v)Organic nitrogen source (0.5%, w / v) Beef extractBeef extract 46.146.1 27.327.3 53.953.9 44.944.9 38.438.4 49.149.1 38.738.7 30.930.9 25.825.8 36.836.8 32.332.3 CaseinCasein 18.718.7 56.156.1 50.250.2 50.150.1 34.534.5 32.432.4 33.133.1 45.345.3 33.833.8 49.749.7 34.334.3 Malt extractMalt extract 19.819.8 27.227.2 47.647.6 40.740.7 25.825.8 44.744.7 45.145.1 33.933.9 34.134.1 36.436.4 27.427.4 PeptonePeptone 37.937.9 33.233.2 50.750.7 59.659.6 45.545.5 45.245.2 20.520.5 44.944.9 26.726.7 50.750.7 25.825.8 Skim milkSkim milk 47.947.9 45.345.3 56.656.6 35.435.4 22.022.0 30.830.8 36.236.2 23.723.7 36.436.4 26.726.7 33.733.7 SoytoneSoytone 54.554.5 55.755.7 52.252.2 30.630.6 20.020.0 22.322.3 28.328.3 29.729.7 22.122.1 28.128.1 37.937.9 TryptoneTryptone 49.649.6 52.352.3 35.435.4 28.628.6 30.830.8 33.833.8 33.333.3 39.739.7 34.234.2 39.439.4 25.525.5 Yeast extractYeast extract 59.759.7 41.641.6 39.739.7 61.661.6 19.719.7 45.345.3 44.644.6 50.850.8 31.031.0 57.957.9 34.734.7 무기질소원(Inorganic nitrogen source) (0.5%, w/v)Inorganic nitrogen source (0.5%, w / v) (NH4)H2PO4 (NH 4 ) H 2 PO 4 74.774.7 69.669.6 58.658.6 62.862.8 52.652.6 58.658.6 51.351.3 51.451.4 40.540.5 60.360.3 46.246.2 NH4ClNH 4 Cl 62.662.6 62.562.5 60.860.8 75.675.6 56.856.8 56.656.6 53.253.2 51.951.9 53.153.1 61.861.8 38.738.7 NH4NO3 NH 4 NO 3 61.261.2 56.456.4 77.677.6 66.466.4 54.554.5 50.750.7 58.958.9 53.653.6 59.459.4 66.766.7 44.844.8 (NH4)O2SO4 (NH 4 ) O 2 SO 4 65.765.7 71.871.8 57.657.6 69.269.2 51.851.8 53.953.9 56.356.3 56.856.8 46.846.8 63.963.9 43.243.2 KNO3 KNO 3 61.861.8 56.956.9 64.164.1 63.763.7 61.661.6 62.362.3 51.551.5 54.354.3 38.238.2 59.159.1 42.342.3 NaNO3 NaNO 3 64.164.1 61.161.1 59.159.1 65.165.1 57.957.9 51.851.8 52.452.4 52.852.8 55.355.3 64.664.6 41.641.6

(Counting units : mg/100 ml)(Counting units: mg / 100 ml)

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716

C: Bacillus subtilis Korea Ocean Bio Cluster 180524C: Bacillus subtilis Korea Ocean Bio Cluster 180524

D: Methylobacterium aquaticum D: Methylobacterium aquaticum

E: Methylobacterium fujisawaense E: Methylobacterium fujisawaense

F: Methylobacterium radiotolerans F: Methylobacterium radiotolerans

G: Methylobacterium extorquens G: Methylobacterium extorquens

H: Methylobacterium brachiatum H: Methylobacterium brachiatum

I: Arthrobacter atorocyaneus I: Arthrobacter atorocyaneus

J: Deinococcus apachensis J: Deinococcus apachensis

K: Deinococcus koreensis K: Deinococcus koreensis

위 정해진 1% 탄소원과 0.5% 질소원에서 각종 무기염류염화칼슘(CaCl2), 디포타슘 포스페이트(K2HPO4), 염화칼륨(KCl), 모노포타슘 포스페이트(KH2PO4), 황산마그네슘(MgSO4), 마그네슘(2)설페이트(MnSO4), 염화나트륨(NaCl), 질산칼륨(KNO3), 디소듐 포스페이트(Na2HPO4), 황산제일철(FeSO4)을 각 0.1%를 첨가하여 30℃ shaking incubator에서 5일 동안 배양한 후 원심분리 하여 균체를 회수하고 동결건조 하여 생산량을 확인하였다.Various inorganic salts of calcium chloride (CaCl 2 ), dipotassium phosphate (K 2 HPO 4) , potassium chloride (KCl), monopotassium phosphate (KH 2 PO 4 ), magnesium sulfate (MgSO 4 ) at 1% carbon source and 0.5% nitrogen source specified above , Magnesium (2) sulfate (MnSO 4 ), sodium chloride (NaCl), potassium nitrate (KNO 3 ), disodium phosphate (Na 2 HPO 4 ), ferrous sulfate (FeSO 4 ), 0.1% each, and shaking at 30 ℃ After incubation for 5 days, the cells were collected by centrifugation and lyophilized to confirm the production.

Table 3. Determine Mineral SourcesTable 3. Determine Mineral Sources ComponentComponent AA BB CC DD EE FF GG HH II JJ KK ControlControl 74.774.7 71.871.8 77.677.6 75.675.6 61.661.6 62.362.3 58.958.9 56.856.8 59.459.4 66.766.7 46.246.2 무기염류(Mineral source) (0.1%, w/v)Mineral Source (0.1%, w / v) CaCl2 CaCl 2 78.678.6 78.478.4 81.781.7 76.976.9 73.673.6 65.665.6 61.461.4 60.960.9 69.469.4 70.370.3 49.549.5 K2HPO4 K 2 HPO 4 94.794.7 75.775.7 89.289.2 91.591.5 67.167.1 68.468.4 66.866.8 63.163.1 64.864.8 88.988.9 54.554.5 KClKCl 76.776.7 81.781.7 90.690.6 80.380.3 75.575.5 75.675.6 72.372.3 58.458.4 63.163.1 75.575.5 63.363.3 KH2PO4 KH 2 PO 4 75.675.6 73.473.4 81.181.1 77.577.5 69.769.7 65.265.2 60.360.3 61.161.1 62.762.7 68.168.1 61.461.4 MgSO4 MgSO 4 78.178.1 71.871.8 94.894.8 98.398.3 71.171.1 78.378.3 75.175.1 66.766.7 65.365.3 83.383.3 48.248.2 MnSO4 MnSO 4 78.778.7 87.387.3 81.181.1 78.078.0 76.676.6 68.468.4 74.274.2 60.360.3 64.164.1 77.577.5 50.450.4 NaClNaCl 83.283.2 93.693.6 85.685.6 75.975.9 65.865.8 71.271.2 75.175.1 57.357.3 59.859.8 71.171.1 53.953.9 KNO3 KNO 3 89.589.5 89.189.1 88.588.5 79.179.1 67.367.3 68.268.2 64.164.1 57.257.2 66.466.4 69.869.8 47.947.9 Na2HPO4 Na 2 HPO 4 83.683.6 74.374.3 85.685.6 76.576.5 64.264.2 71.671.6 60.260.2 58.958.9 63.163.1 71.971.9 57.957.9 FeSO4 FeSO 4 81.881.8 81.881.8 83.583.5 73.273.2 68.968.9 65.865.8 79.879.8 58.858.8 62.762.7 75.375.3 52.752.7

(Counting units : mg/100 ml) (Counting units: mg / 100 ml)

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716

C: Bacillus subtilis Korea Ocean Bio Cluster 180524C: Bacillus subtilis Korea Ocean Bio Cluster 180524

D: Methylobacterium aquaticum D: Methylobacterium aquaticum

E: Methylobacterium fujisawaense E: Methylobacterium fujisawaense

F: Methylobacterium radiotolerans F: Methylobacterium radiotolerans

G: Methylobacterium extorquens G: Methylobacterium extorquens

H: Methylobacterium brachiatum H: Methylobacterium brachiatum

I: Arthrobacter atorocyaneus I: Arthrobacter atorocyaneus

J: Deinococcus apachensis J: Deinococcus apachensis

K: Deinococcus koreensis K: Deinococcus koreensis

3. 배양조건 최적화3. Optimization of culture conditions

정해진 탄소원, 질소원, 무기염류를 포함한 배지를 이용하여 배양온도와 pH를 최적화 하였다.The culture temperature and pH were optimized using a medium containing a defined carbon source, nitrogen source, and inorganic salt.

배양온도의 경우 20℃, 25℃, 30℃, 35℃, 40℃의 shaking incubator에서 5일 동안 배양한 후 원심분리 하여 균체를 회수하고 동결건조하여 생산량을 확인하였다. In the case of culture temperature, after incubation for 5 days in shaking incubator at 20 ℃, 25 ℃, 30 ℃, 35 ℃, and 40 ℃, the cells were collected by centrifugation and lyophilized to confirm the production.

Table 4. Determination of incubation temperature of individual microorganismsTable 4. Determination of incubation temperature of individual microorganisms ComponentComponent AA BB CC DD EE FF GG HH II JJ KK 20℃20 ℃ 50.850.8 61.361.3 55.355.3 51.951.9 42.642.6 39.539.5 41.841.8 37.937.9 38.438.4 43.843.8 30.130.1 25℃25 ℃ 90.590.5 89.889.8 91.391.3 89.189.1 70.870.8 74.674.6 80.880.8 65.465.4 68.268.2 83.483.4 57.457.4 30℃30 ℃ 94.794.7 93.693.6 94.894.8 98.398.3 76.676.6 78.378.3 79.879.8 66.766.7 69.469.4 88.988.9 63.363.3 35℃35 ℃ 85.785.7 86.686.6 87.187.1 84.684.6 67.367.3 69.269.2 75.175.1 60.160.1 64.864.8 80.880.8 55.355.3 40℃40 ℃ 77.577.5 74.674.6 69.269.2 71.971.9 52.952.9 54.254.2 59.259.2 47.347.3 50.750.7 53.953.9 45.845.8

(Counting units : mg/100 ml)   (Counting units: mg / 100 ml)

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716

C: Bacillus subtilis Korea Ocean Bio Cluster 180524C: Bacillus subtilis Korea Ocean Bio Cluster 180524

D: Methylobacterium aquaticum D: Methylobacterium aquaticum

E: Methylobacterium fujisawaense E: Methylobacterium fujisawaense

F: Methylobacterium radiotolerans F: Methylobacterium radiotolerans

G: Methylobacterium extorquens G: Methylobacterium extorquens

H: Methylobacterium brachiatum H: Methylobacterium brachiatum

I: Arthrobacter atorocyaneus I: Arthrobacter atorocyaneus

J: Deinococcus apachensis J: Deinococcus apachensis

K: Deinococcus koreensis K: Deinococcus koreensis

그 후 가장 생산량이 많은 구간에서 1℃ 단위로 배양온도를 확인하였다.After that, the culture temperature was checked in units of 1 ℃ in the section with the most production.

Table 5. Determination of incubation temperature of individual microorganismsTable 5. Determination of incubation temperature of individual microorganisms ComponentComponent AA BB CC DD EE FF GG HH II JJ KK 25℃25 ℃ 90.590.5 89.889.8 91.391.3 89.189.1 70.870.8 74.674.6 80.880.8 65.465.4 68.268.2 83.483.4 57.457.4 26℃26 ℃ 91.691.6 89.989.9 91.591.5 93.893.8 72.772.7 75.175.1 81.581.5 66.066.0 68.368.3 84.984.9 58.958.9 27℃27 ℃ 91.991.9 90.390.3 92.692.6 95.195.1 74.974.9 75.575.5 82.682.6 66.766.7 69.169.1 85.685.6 59.759.7 28℃28 ℃ 92.592.5 91.891.8 93.793.7 101.8101.8 77.577.5 76.976.9 78.578.5 69.169.1 69.169.1 86.186.1 60.560.5 29℃29 ℃ 93.893.8 92.492.4 94.194.1 99.399.3 79.579.5 77.577.5 79.179.1 68.068.0 69.269.2 87.587.5 62.162.1 30℃30 ℃ 94.794.7 93.693.6 94.894.8 98.398.3 76.676.6 78.378.3 79.879.8 66.766.7 69.469.4 88.988.9 63.363.3

(Counting units : mg/100 ml) (Counting units: mg / 100 ml)

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716

C: Bacillus subtilis Korea Ocean Bio Cluster 180524C: Bacillus subtilis Korea Ocean Bio Cluster 180524

D: Methylobacterium aquaticum D: Methylobacterium aquaticum

E: Methylobacterium fujisawaense E: Methylobacterium fujisawaense

F: Methylobacterium radiotolerans F: Methylobacterium radiotolerans

G: Methylobacterium extorquens G: Methylobacterium extorquens

H: Methylobacterium brachiatum H: Methylobacterium brachiatum

I: Arthrobacter atorocyaneus I: Arthrobacter atorocyaneus

J: Deinococcus apachensis J: Deinococcus apachensis

K: Deinococcus koreensis K: Deinococcus koreensis

pH의 경우 pH6, pH6.5, pH7, pH7.5, pH8로 배지의 pH를 맞춘 후 정해진 배양온도의 5일 동안 배양한 후 원심분리 하여 균체를 회수하고 동결건조하여 생산량을 확인하였다.In the case of pH, after adjusting the pH of the medium to pH6, pH6.5, pH7, pH7.5, pH8 and incubating for 5 days at the specified culture temperature, the cells were collected by centrifugation and lyophilized to confirm the production.

Table 6. Determination of incubation temperature of individual microorganismsTable 6. Determination of incubation temperature of individual microorganisms ComponentComponent AA BB CC DD EE FF GG HH II JJ KK pH6pH6 83.883.8 81.681.6 88.788.7 94.694.6 62.862.8 67.567.5 61.961.9 43.843.8 41.741.7 68.668.6 45.245.2 pH6.5pH6.5 92.492.4 93.693.6 94.894.8 100.9100.9 78.778.7 77.477.4 81.381.3 68.268.2 67.867.8 87.687.6 61.561.5 pH7pH7 94.794.7 92.792.7 93.493.4 101.8101.8 76.176.1 76.876.8 79.779.7 69.169.1 69.469.4 88.988.9 63.363.3 pH7.5pH7.5 90.190.1 90.590.5 92.692.6 100.3100.3 79.579.5 78.378.3 82.682.6 65.965.9 66.166.1 87.487.4 60.860.8 pH8pH8 87.587.5 84.684.6 82.982.9 97.597.5 71.971.9 72.772.7 73.573.5 61.961.9 64.264.2 85.385.3 57.657.6

(Counting units : mg/100 ml)(Counting units: mg / 100 ml)

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716

C: Bacillus subtilis Korea Ocean Bio Cluster 180524C: Bacillus subtilis Korea Ocean Bio Cluster 180524

D: Methylobacterium aquaticum D: Methylobacterium aquaticum

E: Methylobacterium fujisawaense E: Methylobacterium fujisawaense

F: Methylobacterium radiotolerans F: Methylobacterium radiotolerans

G: Methylobacterium extorquens G: Methylobacterium extorquens

H: Methylobacterium brachiatum H: Methylobacterium brachiatum

I: Arthrobacter atorocyaneus I: Arthrobacter atorocyaneus

J: Deinococcus apachensis J: Deinococcus apachensis

K: Deinococcus koreensis K: Deinococcus koreensis

3-1) 위의 방법을 통해 도출된 각 균주별 배지 조성과 배양 조건3-1) Medium composition and culture conditions for each strain derived through the above method

A: A: Herbaspirillum huttienseHerbaspirillum huttiense Korea Ocean Bio Cluster 180411 Korea Ocean Bio Cluster 180411

-최적 배지 성분: 1.4% Glucose, 0.8% Yeast extract, 1% (NH4)H2PO4, 0.1% K2HPO4-Optimal medium composition: 1.4% Glucose, 0.8% Yeast extract, 1% (NH 4 ) H 2 PO 4 , 0.1% K2HPO4

-배양 조건: 30℃, pH7-Cultivation conditions: 30 ℃, pH7

B:B: Oleomonas sagaranensis Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 Korea Ocean Bio Cluster 180716

-최적 배지 성분 : 1.3% Sucrose, 0.5% Casein, 0.5% (NH4)O2SO4, 0.2% NaCl-Optimal medium composition: 1.3% Sucrose, 0.5% Casein, 0.5% (NH 4 ) O 2 SO 4 , 0.2% NaCl

-배양 조건 : 30℃, pH6.5-Cultivation conditions: 30 ℃, pH6.5

C: C: Bacillus subtilis Bacillus subtilis Korea Ocean Bio Cluster 180524Korea Ocean Bio Cluster 180524

-최적 배지 성분: 1.7% Dextrose, 0.6% Skim milk, 0.4% NH4NO3, 0.1% MgSO4 -Optimal medium composition: 1.7% Dextrose, 0.6% Skim milk, 0.4% NH 4 NO 3 , 0.1% MgSO 4

-배양 조건: 30℃, pH6.5-Cultivation conditions: 30 ℃, pH6.5

D: D: Methylobacterium aquaticumMethylobacterium aquaticum

-최적 배지 성분: 1% Dextrose, 0.5% Yeast extract, 0.5% NH4Cl, 0.1% MgSO4-Optimal medium composition: 1% Dextrose, 0.5% Yeast extract, 0.5% NH 4 Cl, 0.1% MgSO4

-배양 조건: 28℃, pH7-Cultivation conditions: 28 ℃, pH7

E: E: Methylobacterium fujisawaenseMethylobacterium fujisawaense

-최적 배지 성분: 1% Sucrose, 0.5% Peptone, 0.5% KNO3, 0.1% MnSO4 -Optimal medium composition: 1% Sucrose, 0.5% Peptone, 0.5% KNO 3 , 0.1% MnSO 4

-배양 조건: 29℃, pH7.5-Cultivation conditions: 29 ℃, pH7.5

F: F: Methylobacterium radiotoleransMethylobacterium radiotolerans

-최적 배지 성분: 1% Dextrose, 0.5% Beef extract, 0.5% KNO3, 0.1% MgSO4 -Optimal medium composition: 1% Dextrose, 0.5% Beef extract, 0.5% KNO 3 , 0.1% MgSO 4

-배양 조건: 30℃, pH7.5-Cultivation conditions: 30 ℃, pH7.5

G:G: Methylobacterium extorquens Methylobacterium extorquens

-최적 배지 성분: 1% Sucrose, 0.5% Malt extract, 0.5% NH4NO3, 0.1% FeSO4 -Optimal medium composition: 1% Sucrose, 0.5% Malt extract, 0.5% NH 4 NO 3 , 0.1% FeSO 4

-배양 조건: 27℃, pH7.5-Cultivation conditions: 27 ℃, pH7.5

H: H: Methylobacterium brachiatumMethylobacterium brachiatum

-최적 배지 성분: 1% Soluble starch, 0.5% Yeast extract, 0.5% (NH4)O2SO4, 0.1% MgSO4-Optimal medium composition: 1% Soluble starch, 0.5% Yeast extract, 0.5% (NH4) O2SO4, 0.1% MgSO4

-배양 조건: 28℃, pH7-Cultivation conditions: 28 ℃, pH7

I:I: Arthrobacter atorocyaneus Arthrobacter atorocyaneus

-최적 배지 성분: 1% Glucose, 0.5% Skim milk, 0.5% NH4NO3, 0.1% CaCl2-Optimal medium composition: 1% Glucose, 0.5% Skim milk, 0.5% NH 4 NO 3 , 0.1% CaCl2

-배양 조건: 30℃, pH7-Cultivation conditions: 30 ℃, pH7

J: J: Deinococcus apachensisDeinococcus apachensis

-최적 배지 성분: 1% Dextrose, 0.5% Yeast extract, 0.5% NH4NO3, 0.1% K2HPO4-Optimal medium composition: 1% Dextrose, 0.5% Yeast extract, 0.5% NH 4 NO 3 , 0.1% K2HPO4

-배양 조건: 30℃, pH7-Cultivation conditions: 30 ℃, pH7

K: K: Deinococcus koreensisDeinococcus koreensis

-최적 배지 성분: 1% Glucose, 0.5% Soytone, 0.5% (NH4)H2PO4, 0.1% KCl-Optimal medium composition: 1% Glucose, 0.5% Soytone, 0.5% (NH 4 ) H 2 PO 4 , 0.1% KCl

-배양 조건: 30℃, pH7-Cultivation conditions: 30 ℃, pH7

4. 시중에 판매되는 배지들과 생산량 비교4. Comparison of commercially available media and production volume

위 실험으로 Herbaspirillum huttiense Korea Ocean Bio Cluster 180411, Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, Bacillus subtilis Korea Ocean Bio Cluster 180524 . Methylobacterium aquaticum, Methylobacterium fujisawaense, Methylobacterium radiotolerans, Methylobacterium extorquens, Methylobacterium brachiatum, Arthrobacter atorocyaneus, Deinococcus apachensis, Deinococcus koreensis 균들에 최적화된 배지들과 시중에 판매되는 일반세균 배지들의 생산량을 비교함으로서 본 발명의 유의성을 판단할 수 있다. Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 , Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 , Bacillus subtilis Korea Ocean Bio Cluster 180524 . Compared to mediums used for the determination of mediums for the production of mediums that are optimized for the production of mediums for comparison with the medium of the invention, the culture medium optimized for production You can.

배양 조건은 위 실험 결과와 동일하게 진행되며 시중에 판매되는 일반 세균용 배지는 LB(Luria-Bertani broth)배지, R2A(Reasoner's 2A agar) 배지를 사용하였다.The culture conditions were the same as those of the above experiment, and commercially available medium for bacterial culture was LB (Luria-Bertani broth) medium and R2A (Reasoner's 2A agar) medium.

비교 방법은 위 실험들과 동일하게 배양 조건을 맞춰서 배양 후 동결건조 하여 생산량을 확인하였다. In the comparison method, the culture conditions were set in the same manner as in the above experiments, and the production was confirmed by lyophilization after culture.

Table 7. Production Comparison with Commercial Microbial MediumTable 7. Production Comparison with Commercial Microbial Medium ComponentComponent AA BB CC DD EE FF GG HH II JJ KK Optimized mediumOptimized medium 94.794.7 93.693.6 94.894.8 101.8101.8 79.579.5 78.378.3 82.682.6 69.169.1 69.469.4 88.988.9 63.363.3 LBLB 71.671.6 75.675.6 69.669.6 94.694.6 71.871.8 68.468.4 71.771.7 54.854.8 48.648.6 62.562.5 58.458.4 R2AR2A 84.584.5 79.479.4 78.178.1 102.6102.6 79.879.8 74.574.5 85.985.9 73.473.4 71.571.5 89.689.6 65.865.8

(Counting units : mg/100 ml) (Counting units: mg / 100 ml)

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716

C: Bacillus subtilis Korea Ocean Bio Cluster 180524C: Bacillus subtilis Korea Ocean Bio Cluster 180524

D: Methylobacterium aquaticum D: Methylobacterium aquaticum

E: Methylobacterium fujisawaense E: Methylobacterium fujisawaense

F: Methylobacterium radiotolerans F: Methylobacterium radiotolerans

G: Methylobacterium extorquens G: Methylobacterium extorquens

H: Methylobacterium brachiatum H: Methylobacterium brachiatum

I: Arthrobacter atorocyaneus I: Arthrobacter atorocyaneus

J: Deinococcus apachensis J: Deinococcus apachensis

K: Deinococcus koreensis K: Deinococcus koreensis

5. 중심합성계획에 따른 반응표면 분석5. Response surface analysis according to the central synthesis plan

시중에 판매되는 배지와 비교하였을 때 더 나은 결과를 낸 Herbaspirillum huttiense Korea Ocean Bio Cluster 180411, Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, Bacillus subtilis Korea Ocean Bio Cluster 180524 균들로 반응표면분석법을 시행하였다. Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 , Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, Bacillus subtilis Korea Ocean Bio Cluster 180524 for better results compared to commercially available media Response surface analysis was performed with bacteria.

앞서 선별된 배지성분의 최적 농도를 결정하기 위해 배지 성분의 각각의 농도 변화가 균체 생산에 미치는 영향을 중심합성계획법(CCD, Central composite design)을 이용하여 분석하였다. 앞의 결과로 선별된 독립변수는 각 균마다 탄소원(g/l, X1), 유기질소원(g/l, X2), 무기질소원(g/l, X3), 무기염류(g/l, X4)로 설정하였으며, PBD 실험계획을 기반으로 중심값과 실험범위를 각각 -2, -1, 0, 1, 2로 설정하여 5단계로 부호화였다. 독립변수에 영향을 받는 종속변수(Y)로는 생산량을 3회 반복 측정하여 평균값을 희귀분석에 사용하였으며, 중심점 4회를 포함한 16개의 실험구를 실시하였다. 각각의 독립변수에 대한 종속변수(Y, 건조 균체량)의 반응값은 [표8]에 나타내었다.In order to determine the optimum concentration of the previously selected medium components, the effect of each concentration change of the medium components on the production of cells was analyzed using the Central Composite Design (CCD) method. The independent variables selected as a result of the above are carbon sources (g / l, X 1 ), organic nitrogen sources (g / l, X 2 ), inorganic nitrogen sources (g / l, X 3 ), inorganic salts (g / l) , X 4 ), and based on the PBD experiment plan, the center value and the experiment range were set to -2, -1, 0, 1, 2, respectively, and encoded in 5 steps. As the dependent variable (Y), which is influenced by the independent variable, the output was measured 3 times and the average value was used for the rare analysis, and 16 experiments including 4 center points were conducted. The response value of the dependent variable (Y, dry cell mass) for each independent variable is shown in [Table 8].

Table 8. Range of different variables for the central composite design and results for dried cell weight using factorsTable 8. Range of different variables for the central composite design and results for dried cell weight using factors FactorFactor Symbol (unit)Symbol (unit) Coded valuesCoded values -2-2 -1-One 00 +1+1 +2+2 GlucoseGlucose

Figure 112019131894336-pat00001
(g/l)
Figure 112019131894336-pat00001
(g / l) 55 12.512.5 2020 27.527.5 3535 Yeast extractYeast extract
Figure 112019131894336-pat00002
(g/l)
Figure 112019131894336-pat00002
(g / l)
2.52.5 7.57.5 12.512.5 17.517.5 22.522.5
(NH4)H2PO4 (NH 4 ) H 2 PO 4
Figure 112019131894336-pat00003
(g/l)
Figure 112019131894336-pat00003
(g / l)
2.52.5 7.57.5 12.512.5 17.517.5 22.522.5
K2HPO4 K 2 HPO 4
Figure 112019131894336-pat00004
(g/l)
Figure 112019131894336-pat00004
(g / l)
0.50.5 1.51.5 2.52.5 3.53.5 4.54.5
RunsRuns
Figure 112019131894336-pat00005
Figure 112019131894336-pat00005
Figure 112019131894336-pat00006
Figure 112019131894336-pat00006
Figure 112019131894336-pat00007
Figure 112019131894336-pat00007
Figure 112019131894336-pat00008
Figure 112019131894336-pat00008
Response , Y (g/l)Response, Y (g / l)
1One -2-2 1 One 1 One 0 0 1.323331.32333 22 -1-One -1-One 1 One -1-One 2.216672.21667 33 1 One 0 0 -1-One -1-One 2.480012.48001 44 1 One 0 0 0 0 1 One 1.073331.07333 55 2 2 -1-One -1-One 0 0 1.400121.40012 66 -1-One 0 0 1 One -1-One 2.063332.06333 77 0 0 -1-One 0 0 -2-2 1.266791.26679 88 1 One 0 0 0 0 -1-One 1.270881.27088 99 0 0 0 0 1 One 0 0 1.550541.55054 1010 0 0 2 2 1 One 0 0 1.403331.40333 1111 0 0 1 One -1-One 0 0 1.075031.07503 1212 -1-One -1-One -1-One 1 One 1.416671.41667 1313 -1-One 0 0 0 0 1 One 1.235031.23503 1414 0 0 -2-2 2 2 2 2 1.333331.33333 1515 1 One -1-One 1 One 1 One 2.263332.26333

Dried cell weight by Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 cultivated at 30℃. The experiments were carried out in triplicate. Dried cell weight by Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 cultivated at 30 ℃. The experiments were carried out in triplicate.

Response were dried cell weight from Herbaspirillum huttiense Korea Ocean Bio Cluster 180411Response were dried cell weight from Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

FactorFactor Symbol (unit)Symbol (unit) Coded valuesCoded values -2-2 -1-One 00 +1+1 +2+2 SucroseSucrose

Figure 112019131894336-pat00009
(g/l)
Figure 112019131894336-pat00009
(g / l) 0.50.5 1.01.0 1.51.5 22 2.52.5 CaseinCasein
Figure 112019131894336-pat00010
(g/l)
Figure 112019131894336-pat00010
(g / l)
0.60.6 1.01.0 1.41.4 1.81.8 2.22.2
(NH4)O2SO4 (NH 4) O 2 SO 4
Figure 112019131894336-pat00011
(g/l)
Figure 112019131894336-pat00011
(g / l)
0.60.6 1.01.0 1.41.4 1.81.8 2.22.2
NaClNaCl
Figure 112019131894336-pat00012
(g/l)
Figure 112019131894336-pat00012
(g / l)
0.10.1 0.20.2 0.30.3 0.40.4 0.50.5
RunsRuns
Figure 112019131894336-pat00013
Figure 112019131894336-pat00013
Figure 112019131894336-pat00014
Figure 112019131894336-pat00014
Figure 112019131894336-pat00015
Figure 112019131894336-pat00015
Figure 112019131894336-pat00016
Figure 112019131894336-pat00016
Response , Y (g/l)Response, Y (g / l)
1One -1-One 1 One -1-One -1-One 1.304881.30488 22 -1-One 1 One -1-One 1 One 1.426431.42643 33 -1-One -1-One 1 One -1-One 1.348001.34800 44 -1-One 0 0 1 One 1 One 1.472361.47236 55 0 0 0 0 0 0 0 0 1.366251.36625 66 0 0 1 One 0 0 0 0 1.514721.51472 77 -2-2 1 One 0 0 0 0 1.392291.39229 88 2 2 -1-One 0 0 0 0 1.151231.15123 99 0 0 -1-One 2 2 -1-One 2.234062.23406 1010 0 0 1 One -1-One -2-2 1.595361.59536 1111 1 One 0 0 0 0 2 2 2.225422.22542 1212 1 One 0 0 0 0 -1-One 1.446141.44614 1313 2 2 0 0 -1-One 1 One 1.057541.05754 1414 -1-One 1 One -1-One -1-One 1.328531.32853 1515 1 One 1 One 1 One 1 One 2.237052.23705

Dried cell weight by Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 cultivated at 30℃. The experiments were carried out in triplicate. Dried cell weight by Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 cultivated at 30 ℃. The experiments were carried out in triplicate.

Response were dried cell weight from Oleomonas sagaranensis Korea Ocean Bio Cluster 180716.Response were dried cell weight from Oleomonas sagaranensis Korea Ocean Bio Cluster 180716.

FactorFactor Symbol (unit)Symbol (unit) Coded valuesCoded values -2-2 -1-One 00 +1+1 +2+2 DextroseDextrose

Figure 112019131894336-pat00017
(g/l)
Figure 112019131894336-pat00017
(g / l) 1.01.0 1.51.5 1.81.8 22 2.52.5 Skim milkSkim milk
Figure 112019131894336-pat00018
(g/l)
Figure 112019131894336-pat00018
(g / l)
0.50.5 1.01.0 1.41.4 1.81.8 2.02.0
NH4NO3 NH 4 NO 3
Figure 112019131894336-pat00019
(g/l)
Figure 112019131894336-pat00019
(g / l)
0.50.5 1.01.0 1.41.4 1.81.8 2.02.0
MgSO4 MgSO 4
Figure 112019131894336-pat00020
(g/l)
Figure 112019131894336-pat00020
(g / l)
00 0.10.1 0.20.2 0.30.3 0.40.4
RunsRuns
Figure 112019131894336-pat00021
Figure 112019131894336-pat00021
Figure 112019131894336-pat00022
Figure 112019131894336-pat00022
Figure 112019131894336-pat00023
Figure 112019131894336-pat00023
Figure 112019131894336-pat00024
Figure 112019131894336-pat00024
Response , Y (g/l)Response, Y (g / l)
1One -1-One 1 One -1-One -1-One 2.276962.27696 22 -1-One 1 One -1-One 1 One 2.274202.27420 33 -1-One 1 One 1 One -1-One 1.831901.83190 44 -1-One -1-One 1 One 1 One 1.106461.10646 55 0 0 -1-One 0 0 0 0 2.061302.06130 66 0 0 -1-One 0 0 0 0 1.444921.44492 77 -2-2 0 0 0 0 0 0 1.193151.19315 88 2 2 0 0 0 0 0 0 2.268342.26834 99 0 0 0 0 2 2 0 0 1.319441.31944 1010 0 0 0 0 -1-One -2-2 1.373681.37368 1111 0 0 2 2 0 0 2 2 1.665201.66520 1212 0 0 1 One 0 0 -1-One 1.782351.78235 1313 1 One 2 2 -1-One 1 One 1.617591.61759 1414 1 One -2-2 -1-One -1-One 1.925871.92587 1515 1 One 1 One 1 One 1 One 2.109792.10979

Dried cell weight by Bacillus subtilis Korea Ocean Bio Cluster 180524 cultivated at 30℃. The experiments were carried out in triplicate. Dried cell weight by Bacillus subtilis Korea Ocean Bio Cluster 180524 cultivated at 30 ℃. The experiments were carried out in triplicate.

Response were dried cell weight from Bacillus subtilis Korea Ocean Bio Cluster 180524.Response were dried cell weight from Bacillus subtilis Korea Ocean Bio Cluster 180524.

반응값에 대한 모델식의 예측은 Design expert 프로그램을 사용하여 분석하였으며, 건조 균체량에 대한 회귀 방정식은 아래와 같다.The prediction of the model equation for the response value was analyzed using the Design expert program, and the regression equation for the dry cell mass is as follows.

T=βT = β 00 + β 1One XX 1One + β 22 XX 22 + β 33 XX 33 + β 44 XX 44 + β 1111 XX 1One XX 1One + β 2121 XX 22 XX 1One + β 2222 XX 22 XX 22 + β 3131 XX 33 XX 1One + β 3232 XX 33 XX 22 + β 3333 XX 33 XX 33 + β 4141 XX 44 XX 1One + β 4242 XX 44 XX 22 6+β6 + β 4343 XX 44 XX 33 + β 4444 XX 44 XX 44

분산 분석을 실시한 결과 R-square (결정계수)는 0.9156으로 1에 가까운 값을 나타내어 매우 높은 유의성을 보였으며, 전체 모델에 대한 유의확률이 0.0067로 0.05보다 작아 가정된 실험 모형이 결과에 적합함을 확인하였다. 또한 변동계수(CV, Coffecient of variation)는 13.45로 균체량 생산에 변수들의 독립적인 영향뿐만 아니라 변수들 간의 상호작용도 매우 높음을 확인할 수 있었다.As a result of variance analysis, the R-square (decision coefficient) was 0.9156, showing a value close to 1, showing a very high significance. Confirmed. In addition, the coefficient of variation (CV) was 13.45, indicating that the interaction between variables as well as the independent influence of variables on the production of cell mass was very high.

반응표면분석법을 통해 예측된 결과값과 실험값이 어느 정도 유의성을 보이는지를 나타내는 plot를 도 5에 나타내었으며 두 값의 차이는 매우 유사하여 실험계획을 통한 반응 값과 실제 실험 결과 값이 유사함을 확인할 수 있다.A plot showing the significance of the predicted and experimental values through the response surface analysis method is shown in FIG. 5, and the difference between the two values is very similar. You can.

도 5(a)는 Herbaspirillum huttiense Korea Ocean Bio Cluster 180411에 관한 것이며, 도 5(b)는 Oleomonas sagaranensis Korea Ocean Bio Cluster 180716에 관한 것이며, 도 5(c)는 Bacillus subtilis Korea Ocean Bio Cluster 180524에 관한 것이다.5 (a) relates to Herbaspirillum huttiense Korea Ocean Bio Cluster 180411, FIG. 5 (b) relates to Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, and FIG. 5 (c) relates to Bacillus subtilis Korea Ocean Bio Cluster 180524 .

도 6은 각 변수가 각 균들의 생산량을 하나의 독립 변수를 최적점에 고정하여 등고선을 이용하여 확인하였다. 도 7은 각 변수가 미치는 영향을 쉽게 확인하기 위하여 3개의 변수 중 하나의 독립변수를 최적점에 고정한 후 나머지 2개의 변수를 이용하여 3차원의 형태로 교호작용을 확인한 결과이다. 6, each variable was confirmed by using a contour line to fix the production of each bacterium at one optimum. 7 is a result of confirming the interaction in a three-dimensional form using two remaining variables after fixing one independent variable among three variables to an optimal point to easily check the effect of each variable.

도 6(a)는 Herbaspirillum huttiense Korea Ocean Bio Cluster 180411에 관한 것이며, 도 6(b)는 Oleomonas sagaranensis Korea Ocean Bio Cluster 180716에 관한 것이며, 도 6(c)는 Bacillus subtilis Korea Ocean Bio Cluster 180524에 관한 것이다.FIG. 6 (a) relates to Herbaspirillum huttiense Korea Ocean Bio Cluster 180411, FIG. 6 (b) relates to Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, and FIG. 6 (c) relates to Bacillus subtilis Korea Ocean Bio Cluster 180524 .

도 7(a)는 Herbaspirillum huttiense Korea Ocean Bio Cluster 180411에 관한 것이며, 도 7(b)는 Oleomonas sagaranensis Korea Ocean Bio Cluster 180716에 관한 것이며, 도 7(c)는 Bacillus subtilis Korea Ocean Bio Cluster 180524에 관한 것이다.7 (a) relates to Herbaspirillum huttiense Korea Ocean Bio Cluster 180411, FIG. 7 (b) relates to Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, and FIG. 7 (c) relates to Bacillus subtilis Korea Ocean Bio Cluster 180524 .

최종적으로 중심합성계획법을 통하여 생산량에 가장 영향을 주는 독립변수의 농도를 예측할 수 있다. 중심합성계획법을 통하여 예측된 최대 건조 균체량은 Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 : 2.03704±0.210283 g/l, Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 : 2.00564±0.154973 g/l, Bacillus subtilis Korea Ocean Bio Cluster 180524 : 2.0815±0.145756 g/l로 예측되었다.Finally, the central synthesis planning method can be used to predict the concentration of independent variables that most affect production. The maximum dry cell mass predicted through the central synthesis planning method is Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 : 2.03704 ± 0.210283 g / l, Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 : 2.00564 ± 0.154973 g / l, Bacillus subtilis Korea Ocean Bio Cluster 180524 : It was predicted to be 2.0815 ± 0.145756 g / l.

이때의 각 변수의 농도는The concentration of each variable at this time

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 : A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411:

1.4% Glucose, 0.8% Yeast extract, 1% (NH4)H2PO4, 0.1% K2HPO4 1.4% Glucose, 0.8% Yeast extract, 1% (NH 4 ) H 2 PO 4 , 0.1% K 2 HPO 4

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 : B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716:

1.3% Sucrose, 0.5% Casein, 0.5% (NH4)O2SO4, 0.2% NaCl1.3% Sucrose, 0.5% Casein, 0.5% (NH 4 ) O 2 SO 4 , 0.2% NaCl

C: Bacillus subtilis Korea Ocean Bio Cluster 180524 :C: Bacillus subtilis Korea Ocean Bio Cluster 180524:

1.7% Dextrose, 0.6% Skim milk, 0.4% NH4NO3, 0.1% MgSO4 1.7% Dextrose, 0.6% Skim milk, 0.4% NH 4 NO 3 , 0.1% MgSO 4

이였다.It was.

최종적으로 농도 최적화 까지 마친 세 가지 균주 Herbaspirillum huttiense Korea Ocean Bio Cluster 180411, Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, Bacillus subtilis Korea Ocean Bio Cluster 180524 에 대하여 시중 일반세균 배지들과 생산량 비교를 하였다.Three strains that have finally been optimized for concentration: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 , Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 , Bacillus subtilis Korea Ocean Bio Cluster 180524 The comparison was made with the general bacterial media on the market.

Table 11. Final Production Verification ExperimentTable 11. Final Production Verification Experiment ComponentComponent AA BB CC Optimized mediumOptimized medium 106.7106.7 100.8100.8 103.7103.7 LBLB 71.671.6 75.675.6 69.669.6 R2AR2A 84.584.5 79.479.4 78.178.1

(Counting units : mg/100ml) (Counting units: mg / 100ml)

A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411A: Herbaspirillum huttiense Korea Ocean Bio Cluster 180411

B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716B: Oleomonas sagaranensis Korea Ocean Bio Cluster 180716

C: Bacillus subtilis Korea Ocean Bio Cluster 180524C: Bacillus subtilis Korea Ocean Bio Cluster 180524

실험 결과, 배지 성분 최적화 단계에서 탄소원, 질소원, 무기염류를 선별하여 일반 세균 배지들과 비교 시 Herbaspirillum huttiense Korea Ocean Bio Cluster 180411, Oleomonas sagaranensis Korea Ocean Bio Cluster 180716, Bacillus subtilis Korea Ocean Bio Cluster 180524 균주들을 제외한 균주들은 생산량이 크게 차이나지 않았다. 하지만 비용적인 측면에서 고려해 보았을 때 최적화된 성분들을 사용하였을 때 더 저렴한 비용으로 같은 생산량을 생산해 낼 수 있다.As a result of the experiment, Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 , Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 , Bacillus subtilis Korea Ocean Bio Cluster 180524 The strains except the strains did not differ significantly in production. However, considering the cost, it is possible to produce the same production at a lower cost when using optimized ingredients.

그리고 상기 3개의 균주들은 일반 세균 배지의 생산량에 비교해 보았을 때 더 많은 생산량을 보이는 것을 확인할 수 있다.And it can be seen that the three strains show more production compared to the production of the general bacterial medium.

이러한 결과들을 미루어 보았을 때 본 발명의 최적화 실험이 바람직하게 수행되었음이 확인되었다. In view of these results, it was confirmed that the optimization experiment of the present invention was preferably performed.

이상과 같은 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Configurations shown in the embodiments and drawings described above are only the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, and various equivalents and modifications that can replace them It should be understood that there may be examples.

100 미세입자선별기
110 베이스부
120 진동부
130 완충부재
140 제1선별부재
141제1배출구
150 제2선별부재
151 제1필터망
152 제2배출구
160 제3선별부재
161 제2필터망
162 제3배출구
170 제4선별부재
171 제3필터망
172 제4배출구
180 덮개부
181 투입구
100 fine particle sorter
110 base
120 Vibration unit
130 Buffer member
140 First sorting member
141 First outlet
150 Second sorting member
151 First filter network
152 Second outlet
160 Third screening member
161 Second filter network
162 Outlet 3
170 Fourth sorting member
171 3rd filter network
172 4th outlet
180 cover
181 slot

Claims (3)

배양배지, 탄소원, 질소원 및 무기염류를 준비한 후 미세입자선별기(100)에 상기 성분들을 통과시키어 미세한 입자로 만드는 미세입자선별단계(S1);
상기 미세입자선별단계(S1)에서 미세입자로 형성된 배양배지로 보존된 탈취미생물 균주를 준비하는 균주준비단계(S2);
최소배지(minimal broth)를 준비하는 실험최소배지준비단계(S3);
상기 실험최소배지준비단계(S3)를 통해 준비된 최소배지에 당류(sugars) 또는 탄수화물(carbohydrates) 성분 중 어느 하나를 소정의 농도로 추가한 후 소정의 온도를 가진 진탕배양기(shaking incubator)에서 소정의 시간 동안 배양한 후 균체를 회수하고 동결건조하여 생산량을 확인하는 탄소원선별단계(S4);
상기 탄소원선별단계(S4)를 통해 확인된 탄소원에서 소정 농도의 유기 질소원을 첨가하여 소정 온도의 진탕배양기로 소정 시간 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하고, 상기 탄소원과 유기질소원에서 소정 농도의 무기질소원을 첨가하여 소정 온도의 진탕배양기로 소정 시간동안 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하는 질소원선별단계(S5);
상기 탄소원선별단계(S4)를 통해 확인된 탄소원과 상기 질소원 선별단계를 통해 확인된 질소원에서 소정 농도의 무기염류를 첨가하여 소정 온도의 진탕배양기로 소정 시간 배양한 후 원심분리하여 균체를 회수하고 동결건조하여 생산량을 확인하는 무기염류선별단계(S6);
상기 탄소원선별단계(S4)를 통해 정해진 탄소원과 질소원선별단계(S5)를 통해 정해진 질소원과 무기염류선별단계(S6)를 통해 정해진 무기염류를 포함한 배지를 이용하여 소정 범위 내의 배양온도를 소정 구간으로 나누어 배양온도의 각 구간별 균체 생산량을 확인하여 최적의 배양온도를 결정하는 배양온도결정단계(S7);
상기 배양온도결정단계(S7) 이후, 상기 탄소원선별단계(S4)를 통해 정해진 탄소원과 질소원선별단계(S5)를 통해 정해진 질소원과 무기염류선별단계(S6)를 통해 정해진 무기염류를 포함한 배지를 이용하여 소정 범위 내의 pH수치를 소정 구간으로 나누어 pH수치의 각 구간별 균체 생산량을 확인하여 최적의 pH수치를 결정하는 pH수치결정단계(S8)를 포함하고,

상기 미세입자선별단계(S1)의 배양배지는 LB배지로서 분말화된 형태로 형성되며,

상기 질소원선별단계(S5)는
상기 탄소원선별단계(S4)를 통해 확인된 탄소원에서 유기질소원을 소정 농도 첨가하여 소정 온도의 진탕배양기에서 소정 시간 동안 배양한 후 원심분리하는 유기질소원선별단계(S5-1);
상기 유기질소원선별단계(S5-1)를 통해 확인된 유기질소원과 탄소원선별단계(S4)를 통해 확인된 탄소원이 혼합된 상태에서 무기질소원을 소정 농도로 첨가하여 소정 온도의 진탕배양기에서 소정 시간 동안 배양한 후 원심분리하는 무기질소원선별단계(S5-2);를 포함하는 것을 특징으로 하고,

상기 미세입자선별단계(S1)의 미세입자선별기(100)는
지면에 지지되기 위한 것으로 텅 빈 내부를 가지도록 형성되는 베이스부(110)와,
상기 베이스부(110)의 내부에 위치하는 것으로 미세입자선별기(100)가 진동동작하는 진동부(120)와,
상기 베이스부(110)의 상부 일측에 다수개가 형성되되 제1입자선별부(140)의 바닥면을 지지하는 완충부재(130)와,
상기 베이스부(110)의 상부에 위치하되, 필터망에 의해 필터링된 분말이 배출되도록 일측이 개방되어 형성되되 타측은 제1배출구(141)가 형성되는 제1입자선별부(140)와,
상기 제1입자선별부(140)의 상부에 위치하되, 일측이 개방되어 형성되되 타측은 제1필터망(151)이 형성되고 상기 제1필터망(151)의 상부 일측에 제2배출구(152)가 형성되는 제2입자선별부(150)와,
상기 제2입자선별부(150)의 상부에 위치하되, 일측이 개방되어 형성되되 타측은 제2필터망(161)이 형성되고 상기 제2필터망(161)의 상부 일측에 제3배출구(162)가 형성되는 제3입자선별부(160)와,
상기 제3입자선별부(160)의 상부에 위치하고 일측이 개방되어 형성되되 타측은 제3필터망(171)이 형성되고 상기 제3필터망(171)의 상부 일측에 제4배출구(172)가 형성되는 제4입자선별부(170)를 포함하되,
상기 제1필터망(151)과 제2필터망(161)과 제3필터망(171)의 구멍 크기는 제1필터망(151), 제2필터망(161), 제3필터망(171) 순으로 커지도록 형성되되 제4입자선별부(170)의 제3필터망(171), 제3입자선별부(160)의 제2필터망(161), 제2입자선별부(150)의 제1필터망(151)을 순차적으로 통과시킴으로써 미세한 입자가 되도록 하는 것을 특징으로 하고,

상기 균주준비단계(S2)의 탈취미생물 균주는 헐바스피릴룸 허티엔스 코리아 오션 바이오 클러스터 180411(Herbaspirillum huttiense Korea Ocean Bio Cluster 180411)(미생물 기탁번호:KCTC18691P), 올레오모나스 사가라넨시스 코리아 오션 바이오 클러스터 180716(Oleomonas sagaranensis Korea Ocean Bio Cluster 180716)(미생물 기탁번호: KCTC18693P), 바실러스 서브틸리스 코리아 오션 바이오 클러스터 180524(Bacillus subtilis Korea Ocean Bio Cluster 180524)(미생물 기탁번호: KCTC18692P),메틸로박테리움 아쿠아티쿰(Methylobacterium aquaticum), 메틸로박테리움 푸지사와엔제(Methylobacterium fujisawaense), 메틸로박테리움 라디오톨레란스(Methylobacterium radiotolerans), 메틸로박테리움 엑스토쿠엔스(Methylobacterium extorquens), 메틸로박테리움 브라키아툼(Methylobacterium brachiatum), 아르트로박터 아트로사이아네우스(Arthrobacter atrocyaneus), 데이노코쿠스 아파켄시스(Deinococcus apachensis), 데이노코쿠스 코렌시스(Deinococcus koreensis) 중에 어느 하나인 것을 특징으로 하는 탈취미생물 균주의 배지 최적화에 의한 대량생산방법.
After preparing the culture medium, the carbon source, the nitrogen source and the inorganic salt, the microparticle sorting step (S1) to pass the components through the fine particle separator 100 into fine particles;
A strain preparation step (S2) of preparing a deodorized microorganism strain preserved as a culture medium formed of microparticles in the fine particle selection step (S1);
Experimental minimum medium preparation step (S3) for preparing a minimal broth;
After adding any one of sugars or carbohydrates to a minimum medium prepared through the experiment minimum medium preparation step (S3) at a predetermined concentration, a predetermined in a shaking incubator with a predetermined temperature. After incubation for a period of time, the carbon source selection step (S4) for recovering the bacterial cells and lyophilizing them to confirm the production amount;
From the carbon source identified through the carbon source selection step (S4), an organic nitrogen source of a predetermined concentration is added, incubated for a predetermined time with a shaking incubator at a predetermined temperature, and then centrifuged to recover the cells and lyophilized to confirm the production amount. A nitrogen source selection step (S5) of adding an inorganic nitrogen source of a predetermined concentration from the organic nitrogen source and incubating it with a shaking incubator at a predetermined temperature for a period of time to recover the cells by centrifugation and freeze-drying;
After adding the inorganic salt at a predetermined concentration from the carbon source identified through the carbon source selection step (S4) and the nitrogen source identified through the nitrogen source selection step, incubate for a predetermined time with a shaking incubator at a predetermined temperature, centrifugation to recover the cells and freeze Inorganic salt selection step to check the production amount by drying (S6);
Using the medium containing the carbon source determined through the carbon source selection step (S4) and the nitrogen source determined through the nitrogen source selection step (S5) and the inorganic salt selected through the inorganic salt selection step (S6), the culture temperature within a predetermined range is set to a predetermined section. The culture temperature determination step (S7) of determining the optimum culture temperature by dividing and checking the cell production amount for each section of the culture temperature;
After the culture temperature determination step (S7), a medium containing a carbon source determined through the carbon source selection step (S4) and a nitrogen source determined through the nitrogen source selection step (S5) and inorganic salts determined through the inorganic salt selection step (S6) are used. It includes a pH value determination step (S8) to determine the optimal pH value by checking the cell production amount of each section of the pH value by dividing the pH value within a predetermined range into a predetermined section,

The culture medium of the fine particle selection step (S1) is formed in a powdered form as LB medium,

The nitrogen source selection step (S5)
An organic nitrogen source selection step (S5-1) of adding a predetermined concentration of an organic nitrogen source from the carbon source identified through the carbon source selection step (S4) and incubating it for a predetermined time in a shaking incubator at a predetermined temperature;
In the state in which the organic nitrogen source identified through the organic nitrogen source selection step (S5-1) and the carbon source identified through the carbon source selection step (S4) are mixed, an inorganic nitrogen source is added at a predetermined concentration for a predetermined time in a shaking incubator at a predetermined temperature. Inorganic nitrogen source selection step of centrifugation after culturing (S5-2); characterized in that it comprises,

The fine particle sorter 100 of the fine particle selection step (S1) is
The base portion 110 is formed to have an empty interior to be supported on the ground,
It is located inside the base portion 110, the fine particle sorter 100, the vibration unit 120 and the vibration operation,
A plurality of buffer member 130 is formed on the upper side of the base portion 110 to support the bottom surface of the first particle selection unit 140,
Located on the upper portion of the base portion 110, the first particle selection unit 140 is formed on one side is opened so that the powder filtered by the filter net is discharged, the other side is a first outlet 141 is formed,
Located on the upper portion of the first particle selection unit 140, one side is formed open, but the other side is the first filter network 151 is formed and the second outlet (152) on the upper one side of the first filter network (151) ) Is formed second particle selection unit 150,
Located on the upper side of the second particle selection unit 150, one side is formed open, but the other side is formed with a second filter network 161 and a third outlet 162 on the upper one side of the second filter network 161 ) Is formed a third particle selection unit 160,
Located on the upper portion of the third particle selection unit 160, one side is open and formed, while the other side is formed with a third filter network 171 and a fourth outlet 172 is provided on the upper one side of the third filter network 171. Including the fourth particle selection unit 170 is formed,
The hole sizes of the first filter network 151, the second filter network 161, and the third filter network 171 are the first filter network 151, the second filter network 161, and the third filter network 171. ) Is formed so as to increase in order, but the third filter network 171 of the fourth particle selection unit 170, the second filter network 161 of the third particle selection unit 160, the second particle selection unit 150 Characterized in that to pass through the first filter network 151 in order to be fine particles,

The deodorant microbial strain in the step of preparing the strain (S2) is Herbaspirillum huttiense Korea Ocean Bio Cluster 180411 (microbial accession number: KCTC18691P), Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 ( Oleomonas sagaranensis Korea Ocean Bio Cluster 180716 ) (Microorganism accession number: KCTC18693P), Bacillus subtilis Korea Ocean Bio Cluster 180524 ( Microbacteria accession number: KCTC18692P), Methylobacterium Aquaticum ( Methylobacterium aquaticum ), Methylobacterium fujisawaense , Methylobacterium radiotolerans , Methylobacterium extorquens , Methylobacterium extorquens , Methylobacterium extorquens brachiatum, Arthrobacter Atrocyaneus ), Deinococcus apachensis ( Deinococcus apachensis ), Denococcus korensis ( Deinococcus koreensis ), mass production method by media optimization of a deodorizing microorganism strain, characterized in that any one.
삭제delete 삭제delete
KR1020190171371A 2019-12-20 2019-12-20 Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners KR102107989B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190171371A KR102107989B1 (en) 2019-12-20 2019-12-20 Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190171371A KR102107989B1 (en) 2019-12-20 2019-12-20 Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners

Publications (1)

Publication Number Publication Date
KR102107989B1 true KR102107989B1 (en) 2020-05-07

Family

ID=70733548

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190171371A KR102107989B1 (en) 2019-12-20 2019-12-20 Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners

Country Status (1)

Country Link
KR (1) KR102107989B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960041355A (en) * 1995-05-09 1996-12-19 강병준 Novel microorganisms having sewage treatment and deodorizing ability, media composition and culture method thereof
KR20000012286A (en) * 1999-11-18 2000-03-06 박인순 Multi-stage separator
JP2014188452A (en) * 2013-03-27 2014-10-06 National Institute Of Advanced Industrial & Technology Sorter
KR20180015417A (en) * 2016-08-03 2018-02-13 민병규 Method for producing vitamin K2 from bacillus subtilis using pH-stat fed-batch culture
KR101839732B1 (en) * 2017-09-29 2018-04-27 현대자동차주식회사 A method for producing odorless microbial powders for reducing the odor-inducing substances generated in the EVA core for vehicles
KR101907994B1 (en) 2014-11-10 2018-10-15 한국생명공학연구원 A method of cultivating a microorganism and method of separating and purificating 9-cis beta-carotene from the cultivated microorganism
KR101935688B1 (en) 2017-09-04 2019-04-03 정준성 Effective Microorgani in the culture device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960041355A (en) * 1995-05-09 1996-12-19 강병준 Novel microorganisms having sewage treatment and deodorizing ability, media composition and culture method thereof
KR20000012286A (en) * 1999-11-18 2000-03-06 박인순 Multi-stage separator
JP2014188452A (en) * 2013-03-27 2014-10-06 National Institute Of Advanced Industrial & Technology Sorter
KR101907994B1 (en) 2014-11-10 2018-10-15 한국생명공학연구원 A method of cultivating a microorganism and method of separating and purificating 9-cis beta-carotene from the cultivated microorganism
KR20180015417A (en) * 2016-08-03 2018-02-13 민병규 Method for producing vitamin K2 from bacillus subtilis using pH-stat fed-batch culture
KR101935688B1 (en) 2017-09-04 2019-04-03 정준성 Effective Microorgani in the culture device
KR101839732B1 (en) * 2017-09-29 2018-04-27 현대자동차주식회사 A method for producing odorless microbial powders for reducing the odor-inducing substances generated in the EVA core for vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
https://www.youtube.com/watch?v=QHbzZWm_Tds(2015.01.23.)* *

Similar Documents

Publication Publication Date Title
Xiong et al. Medium optimization by response surface methodology for poly-γ-glutamic acid production using dairy manure as the basis of a solid substrate
Boersma et al. Selection of Variovorax paradoxus-like bacteria in the mycosphere and the role of fungal-released compounds
CN107475154B (en) SMXP-03 strain for degrading proteins in tobacco leaves and application thereof
Mamo et al. Optimization of media composition and growth conditions for production of milk-clotting protease (MCP) from Aspergillus oryzae DRDFS13 under solid-state fermentation
KR102107989B1 (en) Mass production method by medium optimization of deodorized microorganisms for reducing odor in industrial or commercial air conditioners
AU2018402480A1 (en) Endogenous bacillus megaterium BM18-2 with cadmium enrichment for promoting growth of hybrid pennisetum and application thereof
Sanginga et al. Arbuscular mycorrhizal fungi respond to rhizobial inoculation and cropping systems in farmers' fields in the Guinea savanna
Swetha et al. Statistical evaluation of the medium components for the production of high biomass, α-amylase and protease enzymes by Piriformospora indica using Plackett–Burman experimental design
Adamu‐Governor et al. Screening for gum‐producing Lactic acid bacteria in Oil palm (Elaeis guineensis) and raphia palm (Raphia regalis) sap from South‐West Nigeria
CN108753641A (en) A kind of bacterium of efficient degradation suppression harmful bacteria P-hydroxybenzoic acid and its application
CN109315829B (en) Fermented carbonized tobacco leaf particles and preparation method and application thereof
Mishustin Microbial associations of soil types
Babana et al. Characterization of some agricultural soils: presence and activity of Tilemsi rock phosphate-solubilizing thiobacilli
KR101839731B1 (en) A method for producing an odor reducing agent for domestic air conditioners using adsorbent microorganisms
CN109288124B (en) Fermented carbonized walnut shell particles and preparation method and application thereof
CN104560815B (en) Bacillus licheniformis with azo compound degradation activity and application thereof
Estrella et al. Cheese whey: an alternative growth and protective medium for Rhizobium loti cells
CN108850267A (en) A kind of fermentation carbonization Pu&#39;er tea granule and its preparation method and application
CN109288126B (en) Fermented carbonized tree moss particles and preparation method and application thereof
CN116396879A (en) Slender lysine bacillus and application thereof
CN113957019A (en) Nocardia-like bacteria, and separation method and application thereof
CN207543850U (en) A kind of glossy ganoderma cultivation box
CN110408567A (en) One plant of saline-alkali tolerant Methylotrophic bacillus and its active bacteria formulation and application
CN110272931A (en) A kind of culture medium and its cultural method promoting the synthesis of antibacterial polypeptide gramicidins
Anbu et al. Optimization of alkaline protease production from Shewanella oneidensis MR‐1 by response surface methodology

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction