WO2016074643A1 - 无线电资源管理系统和无线电资源管理方法 - Google Patents

无线电资源管理系统和无线电资源管理方法 Download PDF

Info

Publication number
WO2016074643A1
WO2016074643A1 PCT/CN2015/094566 CN2015094566W WO2016074643A1 WO 2016074643 A1 WO2016074643 A1 WO 2016074643A1 CN 2015094566 W CN2015094566 W CN 2015094566W WO 2016074643 A1 WO2016074643 A1 WO 2016074643A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority system
priority
low
low priority
radio resource
Prior art date
Application number
PCT/CN2015/094566
Other languages
English (en)
French (fr)
Inventor
赵友平
孙晨
李松朋
郭欣
Original Assignee
索尼公司
赵友平
孙晨
李松朋
郭欣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 赵友平, 孙晨, 李松朋, 郭欣 filed Critical 索尼公司
Priority to US15/525,861 priority Critical patent/US10743327B2/en
Priority to KR1020177009805A priority patent/KR20170084022A/ko
Priority to EP15858537.2A priority patent/EP3220682B1/en
Publication of WO2016074643A1 publication Critical patent/WO2016074643A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present disclosure relates to management of radio resources in wireless communication, and more particularly to managing low priority with relatively low priority in a communication system without causing interference to a high priority system having a higher priority in the communication system.
  • Radio resource management systems and methods for the use of radio resources of the system are provided.
  • radio resources are becoming more and more tense.
  • radio resources that have been allocated to certain services but are not fully utilized can be dynamically utilized. More specifically, for a primary system that has the right to use radio resources, the radio resources that are not fully utilized are allocated to unauthorized high-priority subsystems and low-priority subsystems without affecting their use.
  • the secondary system is made to use the authorized radio resources of the primary system appropriately without affecting the use of the primary system's radio resources.
  • one of the objects of the present disclosure is to provide a radio resource management system including: acquisition means for determining location information of at least one high priority system managed by the radio resource management system and at least Position information of a low priority system, obtaining a to-be-protected range of the at least one high-priority system, and acquiring a positioning range of the at least one low-priority system, wherein the high-priority system uses the spectrum resource Having a higher priority than the low priority system, the low priority system opportunistically utilizing the spectral resources; selecting means for each of the at least one high priority system And selecting, according to the to-be-protected range of the high-priority system, a location in which the low-priority system meets a predetermined condition that the interference generated by the high-priority system satisfies a predetermined condition as a reference position of the low-priority system. And parameter determining means for determining an operating parameter
  • a radio resource management system comprising: communication means for transmitting location information of a low priority system it manages to a neighboring radio resource management system and from a neighboring radio a resource management system receives operating parameters of a low priority system for management by the radio resource management system, and parameter configuration means for configuring current operating parameters of respective low priority systems managed by the radio resource management system And the working parameters, wherein the neighboring radio resource management system is based on the received location information of the low priority system managed by the radio resource management system, and for each high priority system, each low priority The system selects a reference location within its uncertainty range and determines an adjustment to the operating parameters of the low priority system based on the reference location of each low priority system such that the use of the spectrum resource by the low priority system satisfies Interference requirements for high priority systems.
  • a radio resource management method for a radio resource management system comprising: at least one high priority system location information and at least one low priority managed based on the radio resource management system Position information of the system, obtaining a to-be-protected range of the at least one high-priority system, and acquiring a positioning range of the at least one low-priority system, wherein the high-priority system has a lower usage rate for the spectrum resource a priority system having a high priority, the low priority system opportunistically utilizing the spectrum resource; and for each of the at least one high priority system, based on the high priority system a range of protection for each low-priority system to select, within its location range, a location that satisfies a predetermined condition for interference generated by the high-priority system as a reference location for the low-priority system; and based on each low-priority system a reference location for determining the operating parameters of the low priority system for
  • an electronic device comprising a processing circuit or one or more processors configured to: based on at least one high priority managed by the radio resource management system Position information of the level system and location information of the at least one low priority system, obtaining a to-be-protected range of the at least one high-priority system, and acquiring a positioning range of the at least one low-priority system, wherein the high priority System for The use of spectral resources has a higher priority than the low priority system, the low priority system opportunistically utilizing the spectral resources; for each of the at least one high priority system, Determining, according to the to-be-protected range of the high-priority system, a location in which the low-priority system selects the interference generated by the high-priority system to meet a predetermined condition in a location of the low-priority system as a reference location of the low-priority system; And determining a working parameter of the
  • embodiments of the present disclosure also provide a computer program for implementing the above-described radio resource management method.
  • embodiments of the present disclosure also provide a corresponding computer readable storage medium having stored thereon computer program code for implementing the above described radio resource management method.
  • the above-described radio resource management system and method according to an embodiment of the present disclosure can at least achieve the following advantageous effects: the amount of calculation when determining the operating parameters for each low priority system can be greatly reduced.
  • FIG. 1 is a block diagram schematically showing an exemplary structure of a radio resource management system according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram schematically showing another exemplary structure of a radio resource management system according to the present disclosure.
  • FIG. 3 is a block diagram schematically showing one possible example structure of the selection device shown in FIG. 1.
  • 4(a) and 4(b) are diagrams showing examples of application scenarios of a high priority system and a low priority system.
  • FIG. 5 is a block diagram schematically showing one possible example structure of the parameter determining device shown in FIG. 1.
  • FIG. 6 is a schematic diagram showing an example of an application scenario for selecting an interference location for a high priority secondary system.
  • FIG. 7 illustrates a block diagram of another exemplary structure of a radio resource management system in accordance with an embodiment of the present disclosure.
  • FIG. 8 shows a block diagram of still another exemplary structure of a radio resource management system in accordance with an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing an example of a plurality of low priority secondary system aggregations and a plurality of high priority secondary system aggregations.
  • FIG. 10 is a block diagram showing an exemplary structure of a radio resource management system according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram showing information interaction between a radio resource management system and its neighboring radio resource management system, according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart schematically illustrating a radio resource management method according to an embodiment of the present disclosure.
  • FIG. 13 is a block diagram showing a hardware configuration of one possible information processing device that can be used to implement a radio resource management system and a radio resource management method according to an embodiment of the present disclosure.
  • the present disclosure proposes a radio resource management system and method for allocating spectrum resources to low priority users in the case of ensuring that low priority users do not interfere with the communication quality of high priority users.
  • FIG. 1 is a block diagram schematically showing an exemplary structure of a radio resource management system according to an embodiment of the present disclosure.
  • the radio resource management system 1 includes: an obtaining device 10, configured to acquire the location based on at least one high priority system location information managed by the radio resource management system and location information of at least one low priority system a range to be protected of at least one high priority system and a location range of the at least one low priority system, wherein the high priority system has a higher priority for use of the spectrum resource than the low priority system,
  • the low priority system opportunistically utilizes the spectrum resource
  • the selecting means 20 is configured to, for each of the at least one high priority system, a range to be protected based on the high priority system Providing, for each low-priority system, a location within the range of its location that the interference generated by the high-priority system satisfies a predetermined condition as a reference location of the low-priority system; and parameter determining means 30 for each A reference location of the low priority system for determining the operating parameters of the low priority system for the high priority system.
  • the high priority system managed by the radio resource management system 1 may be a primary system having normal usage rights for spectrum resources, usually including a primary base station and a primary user; and the low priority system may be an unlicensed spectrum
  • the secondary system of opportunistic use of the spectrum resources typically including secondary base stations and secondary users.
  • the high priority system of the Radio Resource Management System Management 1 may be, for example, a terrestrial television broadcasting system, a radar system, and the low priority system may be, for example, a resource reconfigurable system (RRS) proposed by the ETSI organization, such as using a television or radar band.
  • WiFi communication system for example, the high priority system is a WiFi communication system, and the low priority system is a cellular mobile communication system adopting the Licensed Assisted Access (LAA) technology proposed in the 3GPP LTE evolution standard, thereby Use WiFi band resources.
  • LAA Licensed Assisted Access
  • the high priority system may also be a high priority subsystem that opportunistic use of spectrum resources under the spectrum usage of the primary system; the low priority system may It is a secondary system with a lower priority than the high priority system for the use of this spectrum resource.
  • the high priority system may be, for example, a radio communication system applied in a scenario such as a hospital or an emergency center, and the low priority system may be a radio communication system applied in a general scenario.
  • the high priority secondary system and the low priority secondary system may include, for example, secondary users and secondary base stations, or may include only secondary users (eg, no secondary base stations are set, but are directly managed by the radio resource management system).
  • the secondary user is generally referred to as a secondary system to cover the above case.
  • specific implementation forms of the high priority system and the low priority system may be, for example, a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/ A dongle type mobile router and a digital camera device) or an in-vehicle terminal (such as a car navigation device), or a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication, or an execution device A terminal to device (D2D) communication.
  • a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/ A dongle type mobile router and a digital camera device
  • MTC machine type communication
  • M2M machine-to-machine
  • D2D execution device A terminal to device
  • the basic principle for allocating spectrum resources for use by low priority systems is to first ensure that the use of spectrum resources by low priority systems does not interfere with the use of spectrum resources by high priority systems.
  • the radio resource management system 1 may be, for example, a geographic location information database (GLDB) in an RRS for managing information of a communication system (including a high priority system and a low priority system) within a specific range, or may be An advanced positioning engine (AGE) covering a communication system in a specific range may also be, for example, an eNodeB or a network side device such as a baseband cloud in a C-RAN architecture.
  • the radio resource management system 1 may be a single entity independent of the high priority system and the low priority system, or may be a combination of a plurality of entities distributed on each of the high priority system and the low priority system.
  • the radio resource management system 1 is for managing a low priority system within its management range such that the low priority system opportunistically utilizes spectrum resources under the premise that interference to a high priority system meets predetermined conditions For example, the licensed spectrum resources of the primary system.
  • the opportunistic use of spectrum resources refers to the case where the interference of the spectrum resources of the primary system or the primary system and the high priority subsystem is not affected (including interference to the spectrum resource usage of the primary system in the range allowed by the primary system) Internally, enabling high-priority sub-systems and low-priority sub-systems or low-priority systems to use spectrum resources; if high-priority sub-systems and low-priority sub-systems or low-priority systems use spectrum resources If the impact on the primary system is outside the allowable range of the primary system, then both the high priority secondary system and the lower priority secondary system are prohibited or Low priority systems use spectrum resources.
  • FIG. 2 is a block diagram schematically showing another exemplary structure of a radio resource management system according to the present disclosure.
  • the radio resource management device 2 further includes: a storage device 40 for storing Geographical location information of at least one high priority system and at least one low priority system, wherein the obtaining device 10 is further configured to access the storage device 40 to acquire the at least one secondary system and the at least one primary system Geographic location information.
  • location information and service boundary information of the primary system may be stored in the storage device 40 of the radio resource management system, and a positioning device such as a GPS (Global Positioning System) may report location information and positioning parameters (positioning error) to the secondary system.
  • a positioning device such as a GPS (Global Positioning System)
  • the radio resource management system can acquire its location information and location parameters from the respective secondary systems and store them in the storage device 40.
  • the location range is a collection of locations that may include high priority secondary systems and low priority secondary systems.
  • the range of locations where high priority secondary systems may occur is referred to as the range to be protected of the high priority secondary system (or high priority system), and the range of locations where low priority systems may occur It is called the positioning range of this low priority system.
  • the primary system has a certain service area, and the interference to the primary system generally refers to interference to the primary system service area, which is hereinafter referred to as the primary system (or high priority system) to be protected.
  • the obtaining device 10 may acquire the to-be-protected range of the high-priority system and the positioning range of the low-priority system based on the location information of each of the high-priority system and the low-priority system.
  • the acquiring device may acquire the position information reported by the positioning device and the positioning parameter (for example, the positioning error) of the positioning device from each subsystem, so as to acquire the position reported by the positioning device as a center point and the radius is the positioning parameter (for example, 50 meters).
  • the circular range is used as a set of locations that may occur in the high-priority system and the low-priority system, that is, the range to be protected of the high-priority system and the positioning range of the low-priority system.
  • the selecting means 20 may be based on the range to be protected of the high priority system acquired by the obtaining means, for each low priority system within its positioning range Select interference to this high priority system A position that satisfies a predetermined condition is used as a reference position of the low priority system.
  • the selection device 20 may select at least one location where the interference generated by the high priority system is the largest as the reference position of the low priority system within the positioning range of the low priority system, That is, as the location of the low priority system to calculate the operating parameters when the low priority system uses the spectrum resource.
  • selection device 20 may be configured for each high priority system based on the distance between each low priority system and the high priority system, path loss, and the high priority At least one of environmental factors related to the environment in which the low priority system is located determines a reference location for each low priority system.
  • a location with a minimum path loss between a low priority system and a high priority system can be considered a location that causes the greatest interference to the high priority system. Therefore, the selecting means 20 can select the position with the smallest path loss between the high priority system as the reference position of the low priority system within the positioning range of the low priority system. For another example, within the location range of the low priority system, the location with the smallest distance from the high priority system is generally considered to be the location that causes the greatest interference to the high priority system, and thus, the selection device 20 can be, for example, low. The location with the smallest distance between the high priority system is selected within the location range of the priority system as the reference location of the low priority system.
  • selection device 20 may also determine a reference location for each low priority system based on the environment in which at least one high priority system and at least one low priority system are located.
  • the environment in which at least one high priority system and at least one low priority system are located includes, for example, environmental factors such as an application scenario, a topography, and the like.
  • FIG. 3 is a block diagram schematically showing one possible example structure of the selection device shown in FIG. 1.
  • the selecting device 20 includes: a determining unit 201, configured to determine, for each high-priority system, whether there is an obstacle between the positioning range of each low-priority system and the to-be-protected range of the high-priority system. And a selecting unit 202, configured to select a reference position of the low priority system based on whether there is an obstacle between the positioning range of each low priority system and the to-be-protected range of the high priority system, and whether there is an overlap .
  • environmental information of at least one high priority system and at least one low priority system may be acquired by, for example, a geographic location information system (GIS) by the acquisition device 10.
  • the geographic location information system may be located within the radio resource management system 1, or it may be a single device independent of the radio resource management system 1.
  • the determining unit 201 may determine, according to the environment information acquired by the acquiring device, whether there is an obstacle obstructing the line of sight between the positioning range of each low priority system and the to-be-protected range of the high priority system for each high priority system ( In this context, an obstacle does not refer to all objects located between high and low priority systems, but to objects that obstruct the line of sight, such as buildings.
  • the judging unit may judge the low priority based on whether there is an eye-through between the antenna of the low-priority system and the antenna of the high-priority system (for example, between the antenna of the low-priority system base station and the antenna of the high-priority system base station) Whether there is an obstacle between the positioning range of the system and the range to be protected of the high priority system.
  • the determining unit 201 can determine whether the positioning range of the low priority system and the to-be-protected range of the high priority system are determined based on the height between the antenna height of the high priority system and the low priority system and the building. There are obstacles. For example, the judging unit 201 can judge whether the gap between the antenna apex of the high priority system and the antenna apex of the low priority system and the object between the high and low priority systems crosses, for example, the Fernier region. Whether the object constitutes an obstacle between the positioning range of the low priority system and the range to be protected of the high priority system.
  • the selecting unit 202 selects the reference position of the low priority system within the positioning range of the low priority system according to the obstacle and the overlapping condition between the positioning range of the low priority system and the to-be-protected range of the high priority system.
  • the selection unit 202 selects a reference location for each low priority system for each high priority system based on one of the following ways:
  • the process by which the selection unit 202 selects a reference position for a low priority system under various application scenarios will be described in detail below with reference to FIGS. 4(a) and 4(b).
  • the determination unit 201 determines the environment information of the high-priority system and the low-priority system acquired by the acquisition device 10, it is determined. If the positioning range of the low priority system is unobstructed and does not overlap with the to-be-protected range of the high priority system (as shown in scenario a in FIG. 4(a)), the selection unit 202 may be low. Within the positioning range of the priority system, the position closest to the boundary of the to-be-protected range of the high priority system on its boundary is selected as the reference position of the low priority system.
  • the selection unit 202 may also select, as a low priority system, a point with a minimum path loss between the high priority system within the positioning range of the low priority system. Reference location.
  • the determining unit 201 determines, based on the environment information of the high-priority system and the low-priority system acquired by the obtaining device 10, it is determined that the positioning range of the low-priority system and the to-be-protected range of the high-priority system are unobstructed
  • this generally indicates that the location of the low priority system is highly likely to overlap with the location of the high priority system, so the selection unit 202 can The reference position of the low priority system is determined to overlap with the location of the high priority system.
  • the selection unit 202 can select any position within the range to be protected of the high priority system within the positioning range of the low priority system.
  • the closest location is the reference location for the low priority system.
  • the present disclosure is not limited thereto, and according to another embodiment of the present disclosure, a selection list
  • the element 202 can also select, within the positioning range of the low priority system, a point that can be seen and the path loss is minimized at any position within the range to be protected of the high priority system as the reference position of the low priority system.
  • the determining unit 201 can determine whether each position in the positioning range of the low priority system and any position in the range to be protected of the high priority system are viewed based on the antenna heights of the high priority system and the low priority system.
  • Line-of-Sight (LOS) that is, whether there is occlusion between the high-priority antenna vertices and the low-priority antenna vertices.
  • the determining unit 201 determines that the positioning range of the low priority system and the to-be-protected range of the high priority system are partially occluded based on the environment information of the high priority system and the low priority system acquired by the obtaining device 10, When there is overlap:
  • the selection unit 202 can be at a low priority.
  • the position within the positioning range of the level system and the position within the range to be protected of the high priority system can be regarded as the reference position of the low priority system. Similar to the scenario c in FIG. 4( a ), according to another embodiment of the present disclosure, the selection unit 202 may also select any location within the range to be protected of the high priority system within the positioning range of the low priority system. Point of view and minimum path loss as the reference position of the low priority system;
  • the selection unit 202 can determine the reference position of the low priority system to overlap with the position of the high priority system, so that the parameter adjustment device 30 can be based on This determines the transmit power of the low priority system to be zero, ie, the low priority system is determined to be inhibited from transmitting.
  • the determining unit 201 determines, based on the environment information of the high priority system and the low priority system acquired by the obtaining device 10, it is determined that the positioning range of the low priority system and the to-protected range of the high priority system are completely obstructed
  • the occlusion (as shown by the scene e in FIG. 4(b)) is similar to the scene a in FIG. 4(a), and the selection unit 202 can select the distance above the boundary within the positioning range of the low priority system.
  • the closest position of the boundary of the priority system to be protected is the reference position of the low priority system.
  • the selection unit 202 can also select a point with the smallest path loss between the high priority system within the positioning range of the low priority system as The reference position of this low priority system.
  • the parameter determining means 30 determines the operating parameters of the low priority system for the high priority system based on the reference position of each low priority system.
  • the operating parameters of the low priority system determined by the parameter determining means 30 may be the maximum transmit power, the working channel, etc. of the low priority system.
  • the parameter adjustment device 30 may transmit the transmission power of the low priority system. Determined to be 0, the low priority system is determined to be inhibited from transmitting.
  • the present disclosure is not limited thereto, and those skilled in the art can understand that when the radio resource management system 1 can acquire or perceive information about a spectrum use period of a high priority system, the low priority system can also be set to a high priority.
  • the spectrum system uses spectrum resources when the spectrum system does not use spectrum resources.
  • the parameter determining means 30 is configured to determine an operating parameter of each low priority system based on a reference position of each low priority system for each of the at least one high priority system And selecting, among the at least one operating parameter determined for each low priority system for the at least one high priority system, the lowest transmit power as the transmit power of the low priority system.
  • the parameter determining means 30 can determine the operating parameters for each low priority system for each high priority system, thereby A low priority system determines a set of operating parameters (each of the set of operating parameters corresponds to a high priority system, for example, when the high priority system managed by the radio resource management system is 2, each low The working parameters of the priority system include two operating parameters).
  • the parameter determining means 30 may, for example, select, among the set of operating parameters determined for each low priority system, the operating parameter having the least interference to each high priority system as the operating parameter of the low priority system, such that each A low-priority system does not interfere with each high-priority system when using spectrum resources with this operating parameter (or the resulting interference is within the tolerance of the high-priority system).
  • the parameter determining means 30 can calculate, for example, the aggregate interference of all low priority systems for the high priority system according to the reference position of the low priority system, thereby determining the interference of each low priority system to ensure the high priority system based on the aggregated interference. Operating parameters that can be used within its tolerance.
  • a primary system having a normal usage right for the spectrum resource, and a low priority system is a secondary system for opportunistic use of the spectrum resource
  • the parameter determining device may determine the aggregate interference received by the primary system based on the reference position of the secondary system, and determine each low priority according to the difference between the aggregated interference and the interference threshold of the primary system (ie, the maximum interference that the primary system can tolerate) The operating parameters of the system.
  • a high priority system, a low priority system for opportunistic use of a spectrum resource of a primary system for a high priority system is an opportunistic use of spectrum resources of the primary system and for use of the spectrum resources
  • the parameter determining means 30 may determine a high priority based on the aggregated interference experienced by the high priority system at various locations within its range to be protected. The location of the interference of the system, based on which the operating parameters of the low priority system are determined.
  • FIG. 5 is a block diagram schematically showing one possible example structure of the parameter determining device shown in FIG. 1.
  • the parameter determining apparatus 30 includes: an aggregate interference calculating unit 301, configured to calculate, for each high priority secondary system, the high priority based on the reference positions of the respective low priority secondary systems determined by the selecting unit 202.
  • the aggregate interference calculation unit 301 calculates the aggregated interference received at each position within the to-be-protected range of the high priority secondary system based on the reference position determined by the selection unit 202 for each low priority secondary system. For each location selected within the range to be protected of the high priority system (eg, within the range to be protected centered on the GPS location of the high priority system, with a predetermined radius of, for example, 50 m, the The protection range is divided into a rectangular area of 10m ⁇ 10m and the position at the intersection of the grid is used as the position selected in the high priority sub-system to be protected. The high priority system is calculated based on the position of each low priority system. The method of calculating the interference of the location is well known in the art and will not be described in detail herein.
  • the interference location determining unit 302 can select the location with the largest aggregated interference as the interference of the high priority system within the to-be-protected range of the high priority secondary system according to the aggregated interference calculated by the aggregated interference calculation unit 301. Positioning such that when each low priority system operates under operating parameters determined based on the interference location, the interference effects on the high priority subsystem (in the range to be protected including all of its potential locations) are Within the allowable range of high priority systems.
  • the respective locations within the range to be protected for the high priority system B (including b1, b2, b3) And b4) calculate the aggregate interference of the low priority systems A1, A2 and A3, and when the location b1 in the to-protected range of the high priority system B is subjected to the maximum aggregate interference, the position b1 can be determined as a high priority.
  • the interference position of the system B is the same as a high priority.
  • the parameter determining device 30 may be low priority based on the interference location (eg, the interference location b1 determined for the high priority system B in FIG. 6) The system determines the operating parameters.
  • the parameter adjustment device 30 may uniformly adjust predetermined parameter values for all low priority systems (eg, reduce the current transmit power of all low priority systems by a first predetermined parameter value ⁇ 1 as a low priority)
  • the new transmit power of the level system may be based, for example, on the difference D between the aggregated interference experienced by the high priority system at the interference location and the interference threshold of the high priority system (ie, the maximum interference value that the high priority system can tolerate) and
  • the processing of determining the operating parameters for the low priority system for the case where the high priority system is the high priority system and the low priority system is the low priority system, those skilled in the art can understand that the priority can also be high.
  • the case where the system is the primary system and the low priority system is the secondary system is similarly processed to determine the operating parameters of the secondary systems as the low priority system, so that the low priority system does not work with the operating parameters. It affects the spectrum usage of the primary system.
  • the high priority system may include both a primary system and a high priority secondary system
  • the low priority system may be a low priority secondary system.
  • the parameters are indeed The determining device 30 is configured to determine an operating parameter of the low priority secondary system based on a reference location of each low priority secondary system such that use of the spectral resource by the low priority system satisfies the primary system and The interference requirements of both high priority sub-systems.
  • the parameter determining means 30 may determine its transmit power based on the reference position of each low priority system for the primary system and each of the high priority secondary systems, and select, for example, the interference requirements of the primary system and all high priority secondary systems. Transmit power as the transmit power of the low priority system, for example, the parameter determining means 30 may select the smallest transmit power among the set of transmit powers of the low priority system determined for the primary system and each of the high priority secondary systems as the The transmit power of a low priority system.
  • the high priority system managed by the radio resource management device 1 is not only interfered by the low priority system managed by the radio resource management device 1, but also by the low priority system managed by the adjacent radio resource management system. interference.
  • the low priority system managed by the adjacent radio resource management system should also be considered.
  • FIG. 7 illustrates a block diagram of another exemplary structure of a radio resource management system in accordance with an embodiment of the present disclosure.
  • the radio resource management system 3 further includes a communication device 50 for from adjacent Receiving, by the radio resource management system, location information of an adjacent low priority system managed by the neighboring radio resource management system, and transmitting the determined work to the low priority system managed by the radio resource management system and the neighboring radio resource management system parameter.
  • the radio resource management system 3 can store location information of adjacent low priority systems managed by the adjacent radio resource management system received by the communication device 50 in a storage device (e.g., the storage device 40 shown in FIG. 2).
  • the acquisition device 10 of the radio resource management system 3 can acquire the location information of the adjacent low priority system and its location range from the storage device, so that the selection device 20 can be for each high priority system managed by the radio resource management device 3,
  • Each adjacent low priority system selects a reference location within its location range and is determined by the parameter determining means 30 based on each of the low priority subsystems managed by the radio resource management system 3 and the neighbors managed by the neighboring radio resource management system
  • the reference location of the low priority system determines the operating parameters of the low priority system.
  • Processing device for selecting a reference position for an adjacent low priority system and parameter determining device The process of determining the operating parameters for the low priority system including the adjacent low priority system is similar to the processing of the selecting device 20 and the parameter determining device 30 described with reference to FIGS. 1-6, and details are not described herein again.
  • FIG. 8 shows a block diagram of still another exemplary structure of a radio resource management system in accordance with an embodiment of the present disclosure.
  • the radio resource management system 4 further includes an aggregation device 60 configured to radio At least two high-priority sub-systems whose geographical locations managed by the resource management system are close to each other are aggregated into one high-priority sub-system, and at least two low-priority sub-systems whose geographical locations managed by the radio resource management system are close to each other are aggregated into one a low priority sub-system, and superimposing the to-be-protected range of the at least two high-priority sub-systems as the aggregated high-priority sub-system (hereinafter, the aggregated high-priority sub-system is called equivalent)
  • the to-be-protected range of the high-priority sub-system, the superposition of the positioning ranges of the at least two low-priority sub-systems is used as the low-priority sub-system after the aggregation (
  • FIG. 9 shows an example of aggregating a plurality of low priority secondary system aggregates and a plurality of high priority secondary systems, respectively.
  • the plurality of high priority sub-systems X1, X2, X3, X4, and X5 are geographically close to each other, and the plurality of low-priority sub-systems Y1, Y2, Y3, Y4, Y5, Y6, and Y7 are geographically located to each other.
  • FIG. 9 illustrates a case where a plurality of high priority sub-systems are aggregated into one equivalent high-priority sub-system, and a plurality of low-priority sub-systems are aggregated into one equivalent low-priority sub-system
  • the high/low priority sub-system can be aggregated into multiple equivalent high/low priority systems according to the geographic location of the high/low priority system, for example, when two high /
  • the geographical position of the low priority sub-system is not close enough, for example, when the distance between the two is greater than a certain threshold, the two high/low priority systems can be aggregated to different equivalent high/low priority respectively.
  • the level system In the level system.
  • At least one equivalent high priority sub-system and its to-be-protected range and at least one equivalent low-priority sub-system and its positioning range are obtained by aggregation of a plurality of high-priority sub-systems and low-priority sub-systems by the aggregation device 60
  • the selection device 20 can select a reference position within its localization range for each low priority system including an equivalent low priority system for each equivalent high priority system; and the parameter determining means 30 can be based on including the equivalent a reference position of each low priority system of the low priority system, determining an operating parameter of the equivalent low priority system for the equivalent high priority system to determine an aggregation based on the operating parameters of the equivalent low priority secondary system The operating parameters of each low priority sub-system of the equivalent low priority sub-system.
  • the determined transmit powers PE of the equivalent low priority sub-systems may be equally distributed to the respective low-priority sub-systems that are aggregated into the equivalent low-priority sub-system, ie, each of the low-priority sub-systems
  • N is the number of low priority secondary systems that are aggregated into the equivalent low priority secondary system.
  • the present disclosure is not limited thereto, and the transmission power of each equivalent low priority secondary system may also be allocated according to the contribution ratio of the transmission power of each low priority secondary system to the transmission power of the equivalent low priority secondary system. .
  • the present disclosure is not limited thereto, and those skilled in the art can understand that the high-priority system is the main In the case of a system in which the low priority system is a secondary system, it is also possible to aggregate only a plurality of low priority systems whose geographical locations are close to each other.
  • the storage device 40, the communication device 50, and the present disclosure are separately included in the radio resource management system of FIG. 1
  • the storage device 40, the communication device 50, and the present disclosure are described above with reference to FIGS. 2, 7, and 8, respectively
  • the storage device 40, the communication device 50, and the present disclosure may be arbitrarily combined and included in the radio resource management system shown in FIG. 1.
  • the acquisition device 10, the selection device 20, the parameter determination device 30, the storage device 40, and the aggregation device 50 may be included in the radio resource management device according to the present disclosure.
  • the configuration of the adjacent radio resource management system in the case where the low priority system managed by the adjacent radio management system interferes with the high priority system managed by the radio resource management system 1 is described below.
  • FIG. 10 is a block diagram showing an exemplary structure of a radio resource management system according to another embodiment of the present disclosure.
  • the radio resource management system 5 includes: a communication device 70 for transmitting location information of a low priority system it manages to and receiving from a neighboring radio resource management system.
  • Low management of the radio resource management system An operating parameter of the priority system
  • a parameter configuration device 80 configured to configure a current operating parameter of a corresponding low priority system managed by the radio resource management system as the operating parameter, wherein the neighboring radio resource
  • the management system is based on the received location information of the low priority system managed by the radio resource management system, for each high priority system managed by the neighboring radio resource management system, for each low priority system Determining a range of reference locations within a range and determining an adjustment to an operating parameter of the low priority system based on a reference location of each low priority system such that use of the spectrum resources by the low priority system satisfies the high priority system Interference requirements.
  • the neighboring radio resource management system may be the radio resource management system 1-4 as described in FIGS. 1-9.
  • the radio resource management system 5 can manage low priority system location information located within its management range, and can exchange managed low priority with each other through another communication resource device 70 with its neighboring radio resource management system. Location information for the system.
  • communication device 70 may also receive operational parameters for a low priority system managed by the radio resource management system from a neighboring radio resource management system. This operational parameter can be determined, for example, by the processing of the parameter determining device 30 described in Figures 1-9.
  • FIG. 11 is a schematic diagram showing information interaction between a radio resource management system and its neighboring radio resource management system, according to an embodiment of the present disclosure.
  • the first radio resource management system 1101 receives location information of a low priority system managed by the second radio resource management system 1102 from the second radio resource management system 1012, and the first radio resource management system 1101 sets it
  • the operating parameters determined for each low priority system managed by the second radio resource management system 1102 are transmitted to the second radio resource management system 1102; the second radio resource management system 1102 receives the second radio from the first radio resource management system 1101.
  • the resource management system 1102 manages the operating parameters of the low priority system and configures the low priority system it manages with the operating parameters.
  • the process by which the first radio resource management system 1101 determines the operating parameters of the low priority system can be referred to, for example, the operations of the obtaining device 10, the selecting device 20, and the parameter determining device 30 described in conjunction with FIGS. 1-9, and a detailed description thereof is omitted herein.
  • a radio resource management method is also provided. An exemplary process of the radio resource management method is described below in conjunction with FIG.
  • Process flow 1200 begins at S1210 and then performs the processing of S1220.
  • S1220 acquiring, according to at least one high-priority system location information managed by the radio resource management system and location information of the at least one low-priority system, a to-be-protected range of the at least one high-priority system, and acquiring the at least A location range of a low priority system, wherein the high priority system has a higher priority for the use of spectrum resources than the low priority system, the low priority system opportunistically utilizing the spectrum resources.
  • S1220 may refer to, for example, the operation of the acquisition device 10 described in connection with FIG. 1, and a detailed description thereof is omitted herein. Then execute S1230.
  • step S1330 for each high-priority system in the at least one high-priority system, based on the to-be-protected range of the high-priority system, each low-priority system selects a location within its positioning range. The position where the interference generated by the high priority system satisfies the predetermined condition is used as the reference position of the low priority system.
  • S1230 may also refer to operations of the selection device 20, such as described in connection with Figures 1-9, and a detailed description thereof is omitted herein. Then step S1240 is performed.
  • step S1240 an operating parameter of the low priority system is determined for the high priority system based on a reference location of each low priority system.
  • S1230 may also refer to, for example, the operation of the parameter determining apparatus 30 described in connection with Figs. 1-9, and a detailed description thereof will be omitted herein. Then step S1250 is performed.
  • Process flow 1200 ends at S1250.
  • step S1230 for each high priority system, based on the distance between each low priority system and the high priority system, path loss, and the environment in which the radio resource management system is located At least one of the environmental factors determines the reference location of each low priority system.
  • step S1230 may include: determining, for each high-priority system, whether there is an obstacle between a positioning range of each low-priority system and a to-be-protected range of the high-priority system; and based on each low The reference position of the low priority system is selected whether there is an obstacle between the positioning range of the priority system and the to-be-protected range of the high priority system.
  • a reference location can be selected for each low priority system based on one of the following ways:
  • step S1230 in a case where the reference position of the low priority system is determined to overlap with the position of the high priority system, the transmission power of the low priority system is determined as 0.
  • each location in the positioning range of the low priority system and the high priority system may be determined according to the antenna heights of the high priority system and the low priority system. Whether any position within the protection range is visible.
  • step S1240 aggregated interference experienced by the high priority system may be calculated based on a reference position of each low priority system, and an operating parameter of the low priority system is determined based on the aggregated interference.
  • the high priority system is a high priority subsystem that opportunistically uses the spectrum resource, the low priority system having a lower usage than a high priority system for use of spectrum resources
  • the priority of the low priority subsystem includes: for each high-priority system, calculating aggregated interference received by each location in the to-be-protected range of the high-priority system based on the determined reference positions of the respective low-priority systems; Aggregating interference, selecting an interference location of the high priority system within a to-be-protected range of the high priority system to determine operating parameters for the each low priority system based on an interference location of the high priority system .
  • a high height can be selected The location of the priority system having the largest aggregate interference within the to-be-protected range is the interference location of the high priority system.
  • a high priority system is a primary system having conventional usage rights to the spectral resources, the low priority system being a secondary system that opportunistically uses the spectral resources.
  • the high priority system is a primary system and a high priority secondary system
  • the low priority system is a low priority secondary system
  • the parameter determining device is configured to be based on each low And determining, by the reference location of the priority system, an operating parameter of the low priority system, so that the use of the spectrum resource by the low priority system meets interference requirements of the primary system and the high priority secondary system.
  • step S1240 further includes determining, for each high-priority system of the at least one high-priority system, an operating parameter of each low-priority system based on a reference position of each low-priority system, and A high priority system selects the lowest transmit power among the at least one operational parameter determined by each low priority system as the transmit power of the low priority system.
  • the radio resource management method further includes an aggregation step of aggregating at least two high priority sub-systems that are close to each other in a geographical location managed by the radio resource management system into one high-priority sub-system, the radio resource management system At least two low priority sub-systems whose managed geographical locations are close to each other are aggregated into one low priority sub-system, and the superposition of the to-be-protected ranges of the at least two high-priority sub-systems is taken as the equivalent high priority
  • the to-be-protected range of the hierarchical system, the superposition of the positioning ranges of the at least two low-priority sub-systems is used as the positioning range of the aggregated low-priority sub-system. Thereby reducing the amount of calculation when determining the operating parameters of the low priority system.
  • an electronic device comprising a processing circuit or one or more processors, the processing circuit/processor being configured to: based on at least one high priority managed by the radio resource management system Position information of the system and location information of the at least one low priority system, obtaining a to-be-protected range of the at least one high-priority system, and acquiring a positioning range of the at least one low-priority system, wherein the high-priority system
  • the use of spectral resources has a higher priority than the low priority system, the low priority system opportunistically utilizing the spectral resources; for each of the at least one high priority system And selecting, according to the to-be-protected range of the high-priority system, a location in each of the low-priority systems that the interference generated by the high-priority system meets a predetermined condition within a range of its location As a reference location of the low priority system; and determining a working parameter of the low priority system for
  • the radio resource management system and the radio resource management method and the electronic device have at least the following advantageous effects: the amount of calculation when determining the operating parameters for each low priority system can be greatly reduced.
  • each location within the to-be-protected range of each high-priority system and each location within the positioning range of each low-priority system are required (the usual positioning range is larger, The number of each location for calculation is determined.
  • the operating parameters of each low priority system are determined, and in the radio management system and the radio management method according to the present disclosure, only the reference position of each low priority level is required (ie, The operating parameters of each low priority system are determined by one or a limited number of locations within the positioning range. Therefore, according to the present disclosure, the amount of calculation can be greatly reduced, thereby improving the operational efficiency when the radio resource management performs the operation of determining the operating parameters.
  • the radio resource management system is applicable to the main system as a terrestrial television broadcasting system, and the sub system is an application scenario of the cognitive radio communication system.
  • the respective constituent units, sub-units, and the like in the above-described radio resource management system may be configured by software, firmware, hardware, or any combination thereof.
  • a program constituting the software or firmware may be installed from a storage medium or a network to a machine having a dedicated hardware structure, and the machine can execute the above-described constituent units and sub-units when various programs are installed.
  • Various functions of the unit may be configured by software, firmware, hardware, or any combination thereof.
  • FIG. 13 is a block diagram showing a hardware configuration of one possible information processing device that can be used to implement a radio resource management system and a radio resource management method according to an embodiment of the present disclosure.
  • a central processing unit (CPU) 1301 executes various processes in accordance with a program stored in a read only memory (ROM) 1302 or a program loaded from a storage portion 1308 to a random access memory (RAM) 1303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as needed.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • Input/output interface 1305 is also coupled to bus 1304.
  • the following components are also connected to the input/output interface 1305: an input portion 1306 (including a keyboard, a mouse, etc.), an output portion 1307 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.)
  • the storage portion 1308 (including a hard disk or the like), the communication portion 1309 (including a network interface card such as a LAN card, a modem, etc.). Communication part 1309 Communication processing is performed by a network such as the Internet.
  • the driver 1310 can also be connected to the input/output interface 1305 as needed.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like can be mounted on the drive 1310 as needed, so that a computer program read therefrom can be installed into the storage portion 1308 as needed.
  • a program constituting the software can be installed from a network such as the Internet or from a storage medium such as the detachable medium 1311.
  • such a storage medium is not limited to the removable medium 1311 shown in FIG. 13 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the detachable medium 1311 include a magnetic disk (including a floppy disk), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), a magneto-optical disk (including a mini disk (MD) (registered trademark)), and a semiconductor.
  • the storage medium may be a ROM 1302, a hard disk included in the storage portion 1308, or the like, in which programs are stored, and distributed to the user together with the device containing them.
  • the present disclosure also proposes a program product that stores an instruction code readable by a machine.
  • the above instruction code is read and executed by the machine, the above-described uplink data transmission method and transmission method configuration method according to an embodiment of the present disclosure may be performed.
  • various storage media such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, and the like for carrying such program products are also included in the disclosure of the present disclosure.
  • the object of the present disclosure can also be achieved by providing a storage medium storing the above-described executable program code directly or indirectly to a system or device, and a computer or central processing unit (CPU) in the system or device Read and execute the above program code.
  • a storage medium storing the above-described executable program code directly or indirectly to a system or device
  • a computer or central processing unit (CPU) in the system or device Read and execute the above program code.
  • embodiments of the present disclosure are not limited to the program, and the program may be in any form, for example, a target program, A program executed by the interpreter or a script program provided to the operating system.
  • Such machine-readable storage media include, but are not limited to, various memories and storage units, semiconductor devices, disk units such as optical, magnetic, and magneto-optical disks, as well as other media suitable for storing information and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种无线电资源管理系统和方法。无线电资源管理系统包括:获取装置,用于基于无线电资源管理系统管理的至少一个高优先级系统以及至少一个低优先级系统的位置信息,获取高优先级系统的待保护范围以及低优先级系统的定位范围;选择装置,用于针对至少一个高优先级系统中的每个高优先级系统,基于高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对高优先级系统产生的干扰满足预定条件的位置作为该低优先级系统的参考位置;以及参数确定装置,用于基于每个低优先级系统的参考位置,为高优先级系统确定低优先级系统的工作参数。根据本公开的无线电资源管理系统和方法能够降低确定低优先级系统工作参数时的计算量。

Description

无线电资源管理系统和无线电资源管理方法 技术领域
本公开涉及无线通信中的无线电资源的管理,尤其涉及一种在不对通信系统中具有较高优先级的高优先级系统造成干扰的情况下、管理通信系统中具有相对低优先级的低优先级系统的无线电资源的使用的无线电资源管理系统和方法。
背景技术
随着无线通信技术的发展,无线电资源越来越紧张。为了充分利用有限的无线电资源,例如可以动态地利用那些已经分配给某些服务但是却没有被充分利用的无线电资源。更具体地,对于拥有无线电资源使用权的主系统,在不影响其使用的情况下,将未被其充分利用的无线电资源分配给未授权的高优先级次系统和低优先级次系统,以使得次系统在不影响主系统的无线电资源使用的情况下适当地使用主系统的授权无线电资源。
然而,如何更高效率地在不影响包括主系统的高优先级系统的频谱资源使用的情况下,为低优先级系统分配频谱资源是本领域亟需解决的技术问题。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不意图确定本公开的关键或重要部分,也不意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
鉴于现有技术的上述缺陷,本公开的目的之一是提供一种无线电资源管理系统,包括:获取装置,用于基于所述无线电资源管理系统管理的至少一个高优先级系统的位置信息以及至少一个低优先级系统的位置信息,获取所述至少一个高优先级系统的待保护范围以及获取所述至少一个低优先级系统的定位范围,其中,所述高优先级系统对于频谱资源的使用 具有比所述低优先级系统高的优先级,所述低优先级系统机会性地利用所述频谱资源;选择装置,用于针对所述至少一个高优先级系统中的每个高优先级系统,基于所述高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对所述高优先级系统产生的干扰满足预定条件的位置作为该低优先级系统的参考位置;以及参数确定装置,用于基于每个低优先级系统的参考位置,为所述高优先级系统确定所述低优先级系统的工作参数。
根据本公开的另一实施例,还提供一种无线电资源管理系统,包括:通信装置,用于将其所管理的低优先级系统的位置信息发送给相邻无线电资源管理系统以及从相邻无线电资源管理系统接收用于所述无线电资源管理系统管理的低优先级系统的工作参数,以及参数配置装置,用于将所述无线电资源管理系统所管理的相应的低优先级系统的当前工作参数配置为所述工作参数,其中,所述相邻无线电资源管理系统基于接收到的所述无线电资源管理系统管理的低优先级系统的位置信息,针对每个高优先级系统,为每个低优先级系统在其不确定范围内选择参考位置,并基于每个低优先级系统的参考位置确定对低优先级系统的工作参数的调整,以使所述低优先级系统对频谱资源的使用满足所述高优先级系统的干扰要求。
根据本公开的又一实施例,还提供一种用于无线电资源管理系统的无线电资源管理方法,包括:基于所述无线电资源管理系统管理的至少一个高优先级系统位置信息以及至少一个低优先级系统的位置信息,获取所述至少一个高优先级系统的待保护范围以及获取所述至少一个低优先级系统的定位范围,其中,所述高优先级系统对于频谱资源的使用具有比所述低优先级系统高的优先级,所述低优先级系统机会性的利用所述频谱资源;针对所述至少一个高优先级系统中的每个高优先级系统,基于所述高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对所述高优先级系统产生的干扰满足预定条件的位置作为该低优先级系统的参考位置;以及基于每个低优先级系统的参考位置,为所述高优先级系统确定所述低优先级系统的工作参数。
此外,根据本公开的实施例,还提供一种电子装置,包括处理电路或一个/多个处理器,该处理电路/处理器被配置为:基于所述无线电资源管理系统管理的至少一个高优先级系统的位置信息以及至少一个低优先级系统的位置信息,获取所述至少一个高优先级系统的待保护范围以及获取所述至少一个低优先级系统的定位范围,其中,所述高优先级系统对于 频谱资源的使用具有比所述低优先级系统高的优先级,所述低优先级系统机会性地利用所述频谱资源;针对所述至少一个高优先级系统中的每个高优先级系统,基于所述高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对所述高优先级系统产生的干扰满足预定条件的位置作为该低优先级系统的参考位置;以及基于每个低优先级系统的参考位置,为所述高优先级系统确定所述低优先级系统的工作参数。
另外,本公开的实施例还提供了用于实现上述无线电资源管理方法的计算机程序。
此外,本公开的实施例还提供了相应的计算机可读存储介质,该计算机可读存储介质上存储有用于实现所述上述无线电资源管理方法的计算机程序代码。
上述根据本公开实施例的无线电资源管理系统和方法至少能够实现以下有益效果:能够大大降低为每个低优先级系统确定工作参数时的计算量。
通过以下结合附图对本公开的最佳实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
本公开可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本公开的优选实施例和解释本公开的原理和优点。其中:
图1是示意性地示出根据本公开一个实施例的无线电资源管理系统的示例性结构框图。
图2是示意性地示出根据本公开的无线电资源管理系统的另一示例性结构框图。
图3是示意性地示出如图1所示的选择装置的一种可能的示例结构的框图。
图4(a)和图4(b)是示出高优先级系统和低优先级系统的应用场景的示例的示意图。
图5是示意性地示出如图1所示的参数确定装置的一种可能的示例结构的框图。
图6是示出为高优先级次系统选择干扰位置的应用场景的示例的示意图。
图7示出了根据本公开实施例的无线电资源管理系统的另一种示例性结构的框图。
图8示出了根据本公开实施例的无线电资源管理系统的又一种示例性结构的框图。
图9是示出多个低优先级次系统聚合以及多个高优先级次系统聚合的示例的示意图。
图10为示出根据本公开另一实施例的无线电资源管理系统的示例性结构框图。
图11为示出根据本公开实施例的无线电资源管理系统与其相邻的无线电资源管理系统之间的信息交互的示意图。
图12是示意性地示出根据本公开实施例的无线电资源管理方法的流程图。
图13是示出了可用来实现根据本公开的实施例的无线电资源管理系统和无线电资源管理方法的一种可能的信息处理设备的硬件配置的结构简图。
本领域技术人员应当理解,附图中的元件仅仅是为了简单和清楚起见而示出的,而且不一定是按配比绘制的。例如,附图中某些元件的尺寸可能相对于其他元件放大了,以便有助于提高对本公开实施例的理解。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益 于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。[29]在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的装置结构和/或处理步骤,而省略了与本公开关系不大的其他细节。
本公开提出一种用于在保障高优先级用户的通信质量下不受到低优先级用户干扰的情况下,为低优先级用户分配频谱资源的无线电资源管理系统和方法。
图1是示意性地示出根据本公开一个实施例的无线电资源管理系统的示例性结构框图。
如图1所示,无线电资源管理系统1包括:获取装置10,用于基于所述无线电资源管理系统管理的至少一个高优先级系统位置信息以及至少一个低优先级系统的位置信息,获取所述至少一个高优先级系统的待保护范围以及获取所述至少一个低优先级系统的定位范围,其中,所述高优先级系统对于频谱资源的使用具有比所述低优先级系统高的优先级,所述低优先级系统机会性地利用所述频谱资源;选择装置20,用于针对所述至少一个高优先级系统中的每个高优先级系统,基于所述高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对所述高优先级系统产生的干扰满足预定条件的位置作为该低优先级系统的参考位置;以及参数确定装置30,用于基于每个低优先级系统的参考位置,为所述高优先级系统确定所述低优先级系统的工作参数。
根据本公开的一个实施例,无线电资源管理系统1管理的高优先级系统可以是对频谱资源具有常规使用权的主系统,通常包括主基站和主用户;低优先级系统可以是没有被许可频谱资源的使用权而机会性使用所述频谱资源的次系统,通常包括次基站和次用户。例如,无线电资源管理系统管理1的高优先级系统例如可以是陆地电视广播系统、雷达系统,低优先级系统例如可以是ETSI组织提出的资源可重配置系统(RRS),比如利用电视或雷达频段的WiFi通信系统;又例如高优先级系统是WiFi通信系统,而低优先级系统是3GPP的LTE演进标准中提出的采用授权辅助接入(Licensed Assisted Access,LAA)技术的蜂窝移动通讯系统,从而利用WiFi频段资源。
根据本公开的另一个实施例,高优先级系统也可以是在保障主系统的频谱使用下、机会性使用频谱资源的高优先级次系统;低优先级系统可以 是对于该频谱资源的使用具有比高优先级系统低的优先级的次系统。例如,高优先级系统可以是例如应用于医院、急救中心等场景下的无线电通信系统,低优先级系统可以是应用于普通场景下的无线电通信系统。
根据本公开的实施例,高优先级次系统和低优先级次系统可以包括例如次用户和次基站,也可以仅包括次用户(例如,没有设置次基站,而由无线电资源管理系统直接管理的次用户的情况),因此,在本公开的描述中,将次用户泛指为次系统以涵盖上述情况。
更具体地,根据本公开的高优先级次系统和低优先级次系统的具体实现形式例如可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备),也可以是执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端),或者是执行设备到设备(D2D)通信的终端。
根据本公开,为低优先级系统分配频谱资源供其使用的基本原则是需要首先确保低优先级系统对于频谱资源的使用不会干扰高优先级系统的频谱资源使用。
根据本公开,无线电资源管理系统1可以是用于管理特定范围内的通信系统(包括高优先级系统和低优先级系统)的信息的例如RRS中的地理位置信息数据库(GLDB),也可以是覆盖特定范围内的通信系统的先进的定位引擎(AGE),还可以是例如eNodeB或是例如C-RAN架构下的基带云等网络侧设备。此外,无线电资源管理系统1可以是独立于高优先级系统和低优先级系统的一个单独的实体,也可以是分布在各个高优先级系统和低优先级系统上的多个实体的组合。
根据本公开的无线电资源管理系统1用于对其管理范围内的低优先级系统进行管理,以使得低优先级系统在对高优先级系统的干扰符合预定条件的前提下机会性地利用频谱资源,例如主系统的授权频谱资源。
根据本公开,机会性地利用频谱资源是指在不影响主系统或者主系统和高优先级次系统的频谱资源使用的情况下(包括对主系统的频谱资源使用的干扰在主系统容许的范围内),使得高优先级次系统和低优先级次系统两者或者低优先级系统使用频谱资源;如果高优先级次系统和低优先级次系统两者或者低优先级系统对频谱资源的使用对主系统产生的影响在主系统的允许范围之外,则禁止高优先级次系统和低优先级次系统两者或 者低优先级系统使用频谱资源。
图2是示意性地示出根据本公开的无线电资源管理系统的另一示例性结构框图。
如图2所示,除了与图1的无线电资源管理设备1类似地包括获取装置10、选择装置20和参数确定装置30之外,无线电资源管理设备2还包括:存储装置40,用于存储所述至少一个高优先级系统和至少一个低优先级系统的地理位置信息,其中,所述获取装置10还配置为访问所述存储装置40以获取所述至少一个次系统和所述至少一个主系统的地理位置信息。
通常,可以将主系统的位置信息和服务边界信息存储在无线电资源管理系统的存储装置40中,而例如GPS(全球定位系统)的定位装置可以向次系统上报位置信息和定位参数(定位误差),从而无线电资源管理系统可以从各个次系统获取其位置信息和定位参数并存储在存储装置40中。然而由于例如GPS等的定位装置的定位存在不确定性(例如定位装置的定位存在误差)和/或次系统由于移动而产生位置变化,因此通常需要基于定位装置上报的次系统的位置确定一定的位置范围作为包括高优先级次系统和低优先级次系统可能出现的位置的集合。在本公开的以下描述中,将高优先级次系统可能出现的位置的范围称为该高优先级次系统(或高优先级系统)的待保护范围,将低优先级系统可能出现的位置范围称为该低优先级系统的定位范围。此外,主系统具有一定的服务区域,对于主系统的干扰通常是指对主系统服务区域的干扰,在下文中将该区域称为主系统(或高优先级系统)的待保护范围。
获取装置10可以基于高优先级系统和低优先级系统中每一个的位置信息,获取该高优先级系统的待保护范围以及低优先级系统的定位范围。例如,获取装置可以从各个次系统获取定位装置上报的位置信息以及定位装置的定位参数(例如定位误差),从而获取以定位装置上报的位置为中心点、半径为该定位参数(例如50米)的圆形范围作为该高优先级系统和低优先级系统可能出现的位置集合,即高优先级系统的待保护范围和低优先级系统的定位范围。
针对无线电资源管理系统1管理的至少一个高优先级系统中的每一个,选择装置20可以基于获取装置获取的该高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对该高优先级系统产生的干扰 满足预定条件的位置作为该低优先级系统的参考位置。
由于要保护的高优先级系统不能受到低优先级系统的干扰,因此为低优先级系统确定其频谱使用的工作参数时必须考虑:使得在低优先级系统的定位范围内该低优先级系统的所有可能出现位置对要保护的高优先级系统都不会产生干扰(或者产生的干扰在该高优先级系统的干扰阈值范围之内)。根据本公开,为了减少计算量,例如,选择装置20可以在低优先级系统的定位范围内选择对于该高优先级系统产生的干扰为最大的至少一个位置作为该低优先级系统的参考位置,即作为该低优先级系统的位置以计算该低优先级系统使用频谱资源时的工作参数。
根据本公开的优选实施例,选择装置20可以被配置为针对每个高优先级系统,基于各个低优先级系统与该高优先级系统之间的距离、路径损耗、以及与所述高优先级系统和所述低优先级系统所处环境有关的环境因素至少其中之一来确定每个低优先级系统的参考位置。
例如,低优先级系统的定位范围内、与高优先级系统之间具有最小路径损耗的位置可以被认为是对该高优先级系统产生最大干扰的位置。因此,选择装置20可以在低优先级系统的定位范围内选择与该高优先级系统之间路径损耗最小的位置作为该低优先级系统的参考位置。又例如,在低优先级系统的定位范围内,与该高优先级系统之间距离最小的位置通常被认为是对该高优先级系统产生最大干扰的位置,因此,选择装置20例如可以在低优先级系统的定位范围内选择与该高优先级系统之间距离最小的位置作为该低优先级系统的参考位置。
此外,选择装置20还可以基于至少一个高优先级系统以及至少一个低优先级系统所处的环境,确定每个低优先级系统的参考位置。至少一个高优先级系统以及至少一个低优先级系统所处的环境例如包括应用场景、地形地貌等环境因素。
图3是示意性地示出如图1所示的选择装置的一种可能的示例结构的框图。
如图3所示,选择装置20包括:判定单元201,用于针对每个高优先级系统,判断各个低优先级系统的定位范围与该高优先级系统的待保护范围之间是否有障碍物;以及选择单元202,用于基于各个低优先级系统的定位范围与该高优先级系统的待保护范围之间是否有障碍物以及是否有交叠,来选择所述低优先级系统的参考位置。
根据本公开,可以通过获取装置10从例如地理位置信息系统(GIS)中获取至少一个高优先级系统和至少一个低优先级系统的环境信息。地理位置信息系统可以位于无线电资源管理系统1内,或者也可以是独立于无线电资源管理系统1的单个装置。判断单元201可以根据获取装置获取的环境信息,针对每个高优先级系统,判断各个低优先级系统的定位范围与该高优先级系统的待保护范围之间是否有阻碍视距的障碍物(在本文中,障碍物并非指位于高低优先级系统之间的所有物体,而是指阻碍视距的物体,例如建筑物)。例如,判断单元可以基于低优先级系统的天线与高优先级系统的天线之间(例如低优先级系统基站的天线与高优先级系统基站的天线之间)是否有视通来判断低优先级系统的定位范围与高优先级系统的待保护范围之间是否有障碍物。
根据本公开,判断单元201可以基于高优先级系统和低优先级系统的天线高度与建筑物之间的高度,确定该低优先级系统的定位范围与高优先级系统的待保护范围之间是否有障碍物。例如判断单元201可以基于高优先级系统的天线顶点和低优先级系统的天线顶点之间的连线与位于高低优先级系统之间的物体之间的间隙是否跨过例如菲尼尔区来判断,该物体是否构成低优先级系统的定位范围与高优先级系统的待保护范围之间是否有障碍物。
选择单元202根据低优先级系统的定位范围与高优先级系统的待保护范围之间的障碍物和交叠情况,在低优先级系统的定位范围内选择低优先级系统的参考位置。
具体地,选择单元202针对每个高优先级系统,基于如下方式之一为每个低优先级系统选择参考位置:
(i)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间无障碍物且无交叠或者当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间完全被障碍物遮挡时,选择该低优先级系统的定位范围边界上距离所述高优先级系统的待保护范围的边界最近的位置作为该低优先级系统的参考位置;
(ii)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间有部分被障碍物遮挡且无交叠时,在该低优先级系统的定位范围中选择与所述高优先级系统的待保护范围内的任意点可以视通且距离最近的位置作为该低优先级系统的参考位置;
(iii)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间有部分被障碍物遮挡且有交叠时,如果遮挡部分能够完全覆盖交叠部分,则在该低优先级系统的定位范围中选择与所述高优先级系统的待保护范围内的任意位置可以视通且距离最近的位置作为该低优先级系统的参考位置;
(iv)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间无障碍物且有交叠时或者有部分被障碍物遮挡且有交叠并且遮挡部分不能够完全覆盖交叠部分时,将该低优先级系统的参考位置确定为与该高优先级系统的位置重叠。
下面结合图4(a)和图4(b)详细描述选择单元202在各种应用场景下为低优先级系统选择参考位置的处理。
更具体地,在针对每个高优先级系统、为每个低优先级系统选择参考位置时,如果判断单元201基于获取装置10获取的高优先级系统和低优先级系统的环境信息,判断出该低优先级系统的定位范围与所述高优先级系统的待保护范围之间无障碍物且无交叠(如图4(a)中的场景a所示),则选择单元202可以在低优先级系统的定位范围内选择其边界上距离高优先级系统的待保护范围的边界最近的位置作为该低优先级系统的参考位置。本公开不限于此,根据本公开的另一实施例,选择单元202也可以在低优先级系统的定位范围内选择与高优先级系统之间的路径损耗最小的点作为该低优先级系统的参考位置。
当判断单元201基于获取装置10获取的高优先级系统和低优先级系统的环境信息,判断出该低优先级系统的定位范围与所述高优先级系统的待保护范围之间无障碍物且有交叠(如图4(a)中的场景b所示)时,这通常表明低优先级系统的位置与该高优先级系统的位置重叠的可能性很高,因此选择单元202可以将该低优先级系统的参考位置确定为与该高优先级系统的位置重叠。
当判断单元201基于获取装置10获取的高优先级系统和低优先级系统的环境信息,判断出该低优先级系统的定位范围与所述高优先级系统的待保护范围之间有部分遮挡且无交叠(如图4(a)中的场景c所示)时,选择单元202可以在低优先级系统的定位范围内选择与所述高优先级系统的待保护范围内的任意位置可以视通且距离最近的位置作为该低优先级系统的参考位置。本公开不限于此,根据本公开的另一实施例,选择单 元202也可以在低优先级系统的定位范围内选择与高优先级系统的待保护范围内的任意位置可以视通且路径损耗最小的点作为该低优先级系统的参考位置。
根据本公开,判断单元201可以基于高优先级系统和低优先级系统的天线高度,确定该低优先级系统的定位范围中的各个位置与高优先级系统的待保护范围内的任意位置是否视通(Line-of-Sight(LOS)),即高优先级的天线顶点与低优先级的天线顶点之间是否有遮挡。
当判断单元201基于获取装置10获取的高优先级系统和低优先级系统的环境信息,判断出该低优先级系统的定位范围与所述高优先级系统的待保护范围之间有部分遮挡且有交叠时:
(1)如果遮挡部分能够完全覆盖交叠部分(如图4(b)中的场景d(1)所示),则与图4(a)中的场景c类似,选择单元202可以在低优先级系统的定位范围内选择与所述高优先级系统的待保护范围内的任意位置可以视通且距离最近的位置作为该低优先级系统的参考位置。与图4(a)中的场景c类似,根据本公开的另一实施例,选择单元202也可以在低优先级系统的定位范围内选择与高优先级系统的待保护范围内的任意位置可以视通且路径损耗最小的点作为该低优先级系统的参考位置;
(2)如果遮挡部分不能够完全覆盖交叠部分(如图4(b)中的场景d(2)所示),则表明低优先级系统的位置与该高优先级系统的位置重叠的可能性很高(与图4(a)中的场景b类似),因此选择单元202可以将该低优先级系统的参考位置确定为与该高优先级系统的位置重叠,从而参数调整装置30可以基于此将该低优先级系统的发射功率确定为0,即将该低优先级系统确定为禁止发射。
当判断单元201基于获取装置10获取的高优先级系统和低优先级系统的环境信息,判断出该低优先级系统的定位范围与所述高优先级系统的待保护范围之间完全被障碍物遮挡(如图4(b)中的场景e所示),则与图4(a)中的场景a类似,选择单元202可以在低优先级系统的定位范围内选择其边界上距离所述高优先级系统的待保护范围的边界最近的位置作为该低优先级系统的参考位置。与图4(a)中的场景a类似,根据本公开的另一实施例,选择单元202也可以在低优先级系统的定位范围内选择与高优先级系统之间的路径损耗最小的点作为该低优先级系统的参考位置。
参数确定装置30基于每个低优先级系统的参考位置,为该高优先级系统确定所述低优先级系统的工作参数。
根据本公开,参数确定装置30确定的低优先级系统的工作参数可以是该低优先级系统的最大发射功率、工作频道等等。
根据本公开的一个实施例,在选择单元202将该低优先级系统的参考位置确定为与该高优先级系统的位置重叠的情况下,参数调整装置30可以将该低优先级系统的发射功率确定为0,即将该低优先级系统确定为禁止发射。但是本公开不限于此,本领域技术人员可以理解,当无线电资源管理系统1能够获取或感知高优先级系统的关于频谱使用时段的信息时,也可以将该低优先级系统设置为在高优先级系统不使用频谱资源时使用频谱资源。
根据本公开的实施例,参数确定装置30被配置为针对至少一个高优先级系统中的每个高优先级系统,基于每个低优先级系统的参考位置确定每个低优先级系统的工作参数,并在针对至少一个高优先级系统为每个低优先级系统确定的至少一个工作参数中选择最低的发射功率作为该低优先级系统的发射功率。
具体地,针对无线电资源管理系统1管理的高优先级系统有两个或两个以上的情况,参数确定装置30可以针对每个高优先级系统为各个低优先级系统确定工作参数,从而为每个低优先级系统确定了一组工作参数(该组工作参数中的每个工作参数对应于一个高优先级系统,例如在无线电资源管理系统管理的高优先级系统为2个时,每个低优先级系统的工作参数组中包括两个工作参数)。参数确定装置30例如可以在针对每个低优先级系统所确定的一组工作参数中,选择对各个高优先级系统产生的干扰最小的工作参数作为该低优先级系统的工作参数,从而使得每个低优先级系统在以该工作参数使用频谱资源时不会对各个高优先级系统产生干扰(或者产生的干扰在高优先级系统的容忍范围之内)。
参数确定装置30例如可以根据低优先级系统的参考位置计算所有低优先级系统对于该高优先级系统的聚合干扰,从而基于聚合干扰,确定各个低优先级系统为确保对高优先级系统的干扰在其容忍范围之内而可以使用的工作参数。
根据本公开的一个实施例,对于高优先级系统为对所述频谱资源具有常规使用权的主系统、低优先级系统为机会性使用所述频谱资源的次系统 的情况,参数确定装置可以基于次系统的参考位置,确定主系统受到的聚合干扰,并根据该聚合干扰与主系统的干扰阈值(即主系统能够容忍的最大干扰)之差,确定各个低优先级系统的工作参数。
根据本公开的另一个实施例,对于高优先级系统为机会性使用主系统的频谱资源的高优先级次系统、低优先级系统为机会性使用主系统的频谱资源且对于频谱资源的使用具有比所述高优先级次系统低的优先级的低优先级次系统的情况,参数确定装置30可以基于高优先级系统在其待保护范围内的各个位置受到的聚合干扰的情况,确定高优先级系统的干扰位置,从而基于该干扰位置确定低优先级系统的工作参数。
图5是示意性地示出如图1所示的参数确定装置的一种可能的示例结构的框图。
如图5所示,参数确定装置30包括:聚合干扰计算单元301,用于针对每个高优先级次系统,基于选择单元202确定的各个低优先级次系统的参考位置,计算该高优先级次系统的待保护范围内各个位置受到的聚合干扰;以及干扰位置确定单元302,用于根据所述聚合干扰计算单元301计算的聚合干扰,在所述高优先级次系统的待保护范围内选择所述高优先级次系统的干扰位置,以便基于所述高优先级次系统的干扰位置确定对所述各个低优先级次系统的工作参数调整。
根据本公开,聚合干扰计算单元301基于选择单元202为每个低优先级次系统确定的参考位置,计算在高优先级次系统的待保护范围内的各个位置受到的聚合干扰。针对高优先级系统的待保护范围内选取的每个位置(例如在以该高优先级次系统的GPS定位位置为中心、以例如50m的预定值为半径的待保护范围内,可以将该待保护范围切分为10m×10m的矩形区域内并以网格交点处的位置作为高优先级次系统待保护范围内选取的各个位置),基于各个低优先级系统的位置计算高优先级系统在该位置受到的聚合干扰的计算方法是本领域公知的,在此不做详细描述。
根据本公开,干扰位置确定单元302可以根据聚合干扰计算单元301计算的聚合干扰,在所述高优先级次系统的待保护范围内选择具有最大聚合干扰的位置作为所述高优先级系统的干扰位置,从而使得各个低优先级系统在基于该干扰位置而确定的工作参数下工作时,对(处于包括其所有潜在位置的待保护范围内的)该高优先级次系统的干扰影响均在该高优先级系统的允许范围之内。
如图6所示,在为低优先级系统A7、A8、和A9确定了参考位置a8、a9和a10之后,针对高优先级系统B的待保护范围内的各个位置(包括b1、b2、b3和b4)计算了低优先级系统A1、A2和A3对其的聚合干扰,当高优先级系统B的待保护范围内的位置b1受到的聚合干扰最大时,可以将该位置b1确定为高优先级系统B的干扰位置。
在干扰位置确定单元302为高优先级次系统确定了干扰位置之后,参数确定装置30可以基于该干扰位置(例如对于图6中的高优先级系统B确定的干扰位置b1),为低优先级系统确定工作参数。
根据本公开的一个实施例,参数调整装置30可以针对所有的低优先级系统统一调节预定参数值(例如将所有低优先级系统的当前发射功率都减小第一预定参数值△1作为低优先级系统的新发射功率),预定参数值例如可以基于高优先级系统在干扰位置受到的聚合干扰与高优先级系统的干扰阈值(即高优先级系统能够容忍的最大干扰值)之差D以及要调整的低优先级系统的数量N来确定(即△1=D/N1)。
根据本公开的另一实施例,参数调整装置30可以根据低优先级次系统的参考位置,确定各个低优先级次系统的调节量。例如,可以首先确定其参考位置与高优先级次系统的干扰位置之间的距离在预定值范围内的低优先级系统,针对这些低优先级次系统调节预定参数值△2(△2可以根据高优先级次系统在干扰位置受到的聚合干扰与高优先级次系统的干扰阈值之差D以及要调整的低优先级次系统的数量△2=D/N2)。当然,本领域技术人员可以理解,如果将与高优先级次系统之间的距离在预定范围内的所有低优先级次系统的发射功率都设置为0也不足以使得高优先级次系统受到的干扰在其干扰阈值以下时,则可以进一步调节除上述低优先级次系统之外的其他低优先级次系统的发射功率。
虽然以上针对高优先级系统为高优先级次系统、低优先级系统为低优先级次系统的情况描述对于低优先级系统确定工作参数的处理,本领域技术人员可以理解,也可以对于高优先级系统为主系统、低优先级系统为次系统的情况类似地进行处理,以确定对于作为低优先级系统的各个次系统的工作参数,使得低优先级系统以该工作参数工作时,不会对主系统的频谱使用造成影响。
根据本公开的另一实施例,高优先级系统可以包括主系统和高优先级次系统两者,低优先级系统可以是低优先级次系统。在此情况下,参数确 定装置30被配置为基于每个低优先级次系统的参考位置,确定所述低优先级次系统的工作参数,以使所述低优先级系统对频谱资源的使用满足所述主系统和所述高优先级次系统两者的干扰要求。
例如,参数确定装置30可以依次针对主系统和各个高优先级次系统,基于每个低优先级系统的参考位置确定其发射功率,并且选择例如符合主系统和所有高优先级次系统的干扰要求的发射功率作为该低优先级系统的发射功率,例如参数确定装置30可以在针对主系统和各个高优先级次系统确定的、低优先级系统的一组发射功率中选择最小的发射功率作为该低优先级系统的发射功率。
在某些场景下,无线电资源管理设备1管理的高优先级系统不仅受到该无线电资源管理设备1管理的低优先级系统的干扰,还受到相邻的无线电资源管理系统管理的低优先级系统的干扰。在此情况下,为保障高优先级系统的频谱使用,还应考虑相邻无线电资源管理系统管理的低优先级系统。
图7示出了根据本公开实施例的无线电资源管理系统的另一种示例性结构的框图。
如图7所示,除了与图1的无线电资源管理设备1类似地包括获取装置10、选择装置20和参数确定装置30之外,无线电资源管理系统3还包括通信装置50,用于从相邻无线电资源管理系统接收该相邻无线电资源管理系统所管理的相邻低优先级系统的位置信息,并且向无线电资源管理系统管理的低优先级系统以及所述相邻无线电资源管理系统发送确定的工作参数。
无线电资源管理系统3可以将通过通信装置50接收的、由相邻无线电资源管理系统管理的相邻低优先级系统的位置信息存储在存储装置(例如图2所示的存储装置40)中。
无线电资源管理系统3的获取装置10可以从存储装置获取相邻低优先级系统的位置信息及其定位范围,从而选择装置20可以针对无线电资源管理设备3管理的每个高优先级系统,为该每个相邻低优先级系统在其定位范围内选择参考位置,并由参数确定装置30基于包括无线电资源管理系统3管理的各个低优先级次系统以及相邻无线电资源管理系统管理的各个相邻低优先级系统的参考位置,确定所述低优先级系统的工作参数。选择装置为相邻低优先级系统选择参考位置的处理以及参数确定装置 为包括相邻低优先级系统的低优先级系统确定工作参数的处理例如与参照图1-6描述的选择装置20和参数确定装置30的处理类似,在此不再赘述。
图8示出了根据本公开实施例的无线电资源管理系统的又一种示例性结构的框图。
如图8所示,除了与图1的无线电资源管理设备1类似地包括获取装置10、选择装置20和参数确定装置30之外,无线电资源管理系统4还包括聚合装置60,被配置为将无线电资源管理系统管理的地理位置彼此靠近的至少两个高优先级次系统聚合为一个高优先级次系统,将无线电资源管理系统管理的地理位置彼此靠近的至少两个低优先级次系统聚合为一个低优先级次系统,并且将所述至少两个高优先级次系统的待保护范围的叠加作为该聚合后的高优先级次系统(以下,将聚合后的高优先级次系统称为等效高优先级次系统)的待保护范围,将所述至少两个低优先级次系统的定位范围的叠加作为该聚合后的低优先级次系统(以下,将聚合后的高优先级次系统称为等效高优先级次系统)的定位范围。
图9示出了将多个低优先级次系统聚合以及多个高优先级次系统分别聚合在一起的示例。
如图9所示,多个高优先级次系统X1、X2、X3、X4、X5地理位置彼此靠近,多个低优先级次系统Y1、Y2、Y3、Y4、Y5、Y6、Y7地理位置彼此靠近,因此可以通过聚合装置60将这些高优先级次系统聚合为一个等效高优先级次系统,并将这些低优先级次系统聚合为一个等效低优先级次系统,将这些高优先级次系统的待保护范围的叠加(即这些待保护范围的外延)作为该等效后的高优先级次系统的待保护范围,将这些低优先级次系统的定位范围的叠加(即这些定位范围的外延)作为该聚合后的低优先级次系统的定位范围。
虽然图9示出的是将多个高优先级次系统聚合为一个等效高优先级次系统,将多个低优先级级次系统聚合为一个等效低优先级次系统的情况,但是本公开不限于此,本领域技术人员可以理解,可以根据高/低优先级系统的地理位置将高/低优先级次系统聚合为多个等效高/低优先级系统,例如,当两个高/低优先级次系统的地理位置不足够靠近时,例如两者之间的距离大于某个阈值时,则可以将这两个高/低优先级系统分别聚合到不同的等效高/低优先级系统中。
通过聚合装置60对多个高优先级次系统和低优先级次系统的聚合获得了至少一个等效高优先级次系统及其待保护范围和至少一个等效低优先级次系统及其定位范围,从而选择装置20可以针对每个等效高优先级系统,为包括等效低优先级系统的每个低优先级系统在其定位范围内选择参考位置;以及参数确定装置30可以基于包括等效低优先级系统的每个低优先级系统的参考位置,为该等效高优先级系统确定等效低优先级系统的工作参数,以基于该等效低优先级次系统的工作参数确定聚合为该等效低优先级次系统的各个低优先级次系统的工作参数。根据本公开,例如可以将确定的等效低优先级次系统的发射功率PE平均分配给聚合为该等效低优先级次系统的各个低优先级次系统,即每个低优先级次系统的发射功率PI可以被设置为等于PI=PE/N,其中N为聚合为该等效低优先级次系统的低优先级次系统的数量。当然,本公开不限于此,也可以根据各个低优先级次系统的发射功率对于等效低优先级次系统的发射功率的贡献比例,对该各个等效低优先级次系统的发射功率进行分配。
此外,虽然以上描述的是将多个高优先级次系统和多个低优先级次系统都进行聚合的示例,但是本公开不限于此,本领域技术人员可以理解,在高优先级系统是主系统,低优先级系统是次系统的情况下,也可以仅对地理位置彼此靠近的多个低优先级系统进行聚合。
虽然以上参照图2、图7、图8描述了在图1的无线电资源管理系统中分别还包括且存储装置、通信装置和聚合装置的示例,但是根据本公开的存储装置40、通信装置50和聚合装置60中的两个或者全部也可以任意组合而包括在图1示出的无线电资源管理系统中。例如,根据本公开的无线电资源管理设备中可以包括获取装置10、选择装置20、参数确定装置30、存储装置40和聚合装置50。
下面描述在考虑相邻无线电管理系统管理的低优先级系统对由无线电资源管理系统1管理的高优先级系统造成干扰的情况下、相邻的无线电资源管理系统的配置。
图10为示出根据本公开另一实施例的无线电资源管理系统的示例性结构框图。
如图10所示,无线电资源管理系统5包括:通信装置70,用于将其所管理的低优先级系统的位置信息发送给相邻无线电资源管理系统以及从相邻无线电资源管理系统接收用于所述无线电资源管理系统管理的低 优先级系统的工作参数,以及参数配置装置80,用于将所述无线电资源管理系统所管理的相应的低优先级系统的当前工作参数配置为所述工作参数,其中,所述相邻无线电资源管理系统基于接收到的所述无线电资源管理系统管理的低优先级系统的位置信息,针对所述相邻无线电资源管理系统管理的每个高优先级系统,为每个低优先级系统在其不确定范围内选择参考位置,并基于每个低优先级系统的参考位置确定对低优先级系统的工作参数的调整,以使所述低优先级系统对频谱资源的使用满足所述高优先级系统的干扰要求。
根据本公开的实施例的相邻无线电资源管理系统可以是如图1-9所描述的无线电资源管理系统1-4。
根据本公开的实施例,无线电资源管理系统5可以管理位于其管理范围内的低优先级系统位置信息,并且可以通过通信装置70与其相邻的另一无线电资源管理系统彼此交换所管理的低优先级系统的位置信息。此外,通信装置70还可以从相邻无线电资源管理系统接收用于所述无线电资源管理系统管理的低优先级系统的工作参数。该工作参数例如可以通过图1-9描述的参数确定装置30的处理来确定。
图11为示出根据本公开实施例的无线电资源管理系统与其相邻的无线电资源管理系统之间的信息交互的示意图。
如图11所示,第一无线电资源管理系统1101从第二无线电资源管理系统1012接收第二无线电资源管理系统1102管理的低优先级系统的位置信息,并且该第一无线电资源管理系统1101将其为第二无线电资源管理系统1102管理的每个低优先级系统确定的工作参数发送给该第二无线电资源管理系统1102;第二无线电资源管理系统1102从第一无线电资源管理系统1101接收第二无线电资源管理系统1102管理的低优先级系统的工作参数,并且以该工作参数对其所管理的低优先级系统进行配置。第一无线电资源管理系统1101确定低优先级系统的工作参数的处理例如可以参考结合图1-9描述的获取装置10、选择装置20和参数确定装置30的操作,在此省略其详细描述。
根据本公开的一个实施例,还提供一种无线电资源管理方法。下面结合图12来描述无线电资源管理方法的一种示例性处理。
如图12所示,根据本公开的实施例的无线电资源管理方法中,处 理流程1200开始于S1210,然后执行S1220的处理。
在S1220中,基于所述无线电资源管理系统管理的至少一个高优先级系统位置信息以及至少一个低优先级系统的位置信息,获取所述至少一个高优先级系统的待保护范围以及获取所述至少一个低优先级系统的定位范围,其中,所述高优先级系统对于频谱资源的使用具有比所述低优先级系统高的优先级,所述低优先级系统机会性的利用所述频谱资源。S1220可以参考例如结合图1描述的获取装置10的操作,在此省略其详细描述。然后执行S1230。
在步骤S1330中,针对所述至少一个高优先级系统中的每个高优先级系统,基于所述高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对所述高优先级系统产生的干扰满足预定条件的位置作为该低优先级系统的参考位置。S1230也可以参考例如结合图1-9描述的选择装置20的操作,在此省略其详细描述。然后执行步骤S1240。
在步骤S1240中,基于每个低优先级系统的参考位置,为所述高优先级系统确定所述低优先级系统的工作参数。S1230也可以参考例如结合图1-9描述的参数确定装置30的操作,在此省略其详细描述。然后执行步骤S1250。
处理流程1200结束于S1250。
根据本公开,在步骤S1230中,可以针对每个高优先级系统,基于各个低优先级系统与该高优先级系统之间的距离、路径损耗、以及与所述无线电资源管理系统所处环境有关的环境因素至少其中之一来确定每个低优先级系统的参考位置。
根据本公开的实施例,步骤S1230可以包括:针对每个高优先级系统,判断各个低优先级系统的定位范围与该高优先级系统的待保护范围之间是否有障碍物;以及基于各个低优先级系统的定位范围与该高优先级系统的待保护范围之间是否有障碍物以及是否有交叠,来选择所述低优先级系统的参考位置。
更具体地,可以针对每个高优先级系统,基于如下方式之一为每个低优先级系统选择参考位置:
(i)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间无障碍物且无交叠或者当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间完全被障碍物遮挡时,选择该低优先级系 统的定位范围边界上距离所述高优先级系统的待保护范围的边界最近的位置作为该低优先级系统的参考位置;
(ii)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间有部分被障碍物遮挡且无交叠时,在该低优先级系统的定位范围中选择与所述高优先级系统的待保护范围内的任意点能够视通且距离最近的位置作为该低优先级系统的参考位置;
(iii)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间有部分被障碍物遮挡且有交叠时,如果遮挡部分能够完全覆盖交叠部分,则在该低优先级系统的定位范围中选择与所述高优先级系统的待保护范围内的任意位置能够视通且距离最近的位置作为该低优先级系统的参考位置;
(iv)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间无障碍物且有交叠时或者有部分被障碍物遮挡且有交叠并且遮挡部分不能够完全覆盖交叠部分时,将该低优先级系统的参考位置确定为与该高优先级系统的位置重叠。
根据本公开的优选实施例,在步骤S1230中,在将该低优先级系统的参考位置确定为与该高优先级系统的位置重叠的情况下,将所述低优先级系统的发射功率确定为0。
根据本公开,在步骤S1230中,可以根据所述高优先级系统和所述低优先级系统的天线高度,确定该低优先级系统的定位范围中的各个位置与所述高优先级系统的待保护范围内的任意位置是否视通。
根据本公开,在步骤S1240中,可以基于每个低优先级系统的参考位置计算所述高优先级系统受到的聚合干扰,并基于所述聚合干扰确定所述低优先级系统的工作参数。
根据本公开的实施例,所述高优先级系统为机会性使用所述频谱资源的高优先级次系统,所述低优先级系统为对于频谱资源的使用具有比所述高优先级次系统低的优先级的低优先级次系统。在此情况下,步骤S1240包括:针对每个高优先级系统,基于确定的各个低优先级系统的参考位置,计算该高优先级系统的待保护范围内各个位置受到的聚合干扰;以及根据所述聚合干扰,在所述高优先级系统的待保护范围内选择所述高优先级系统的干扰位置,以便基于所述高优先级系统的干扰位置确定对所述各个低优先级系统的工作参数。根据本公开的优选实施例,可以选择高 优先级系统的待保护范围内具有最大聚合干扰的位置作为所述高优先级系统的干扰位置。
根据本公开的另一个实施例,高优先级系统为对所述频谱资源具有常规使用权的主系统,所述低优先级系统为机会性使用所述频谱资源的次系统。
根据本公开的又一个实施例,所述高优先级系统为主系统和高优先级次系统,所述低优先级系统为低优先级次系统,所述参数确定装置被配置为基于每个低优先级次系统的参考位置,确定所述低优先级次系统的工作参数,以使所述低优先级系统对频谱资源的使用满足所述主系统和所述高优先级次系统的干扰要求。
根据本公开,步骤S1240还包括:针对至少一个高优先级系统中的每个高优先级系统,基于每个低优先级系统的参考位置确定每个低优先级系统的工作参数,并在针对至少一个高优先级系统为每个低优先级系统确定的至少一个工作参数中选择最低的发射功率作为该低优先级系统的发射功率。
根据本公开的无线电资源管理方法还包括:聚合步骤,用于将无线电资源管理系统管理的地理位置彼此靠近的至少两个高优先级次系统聚合为一个高优先级次系统,将无线电资源管理系统管理的地理位置彼此靠近的至少两个低优先级次系统聚合为一个低优先级次系统,并且将所述至少两个高优先级次系统的待保护范围的叠加作为该等效后的高优先级次系统的待保护范围,将所述至少两个低优先级次系统的定位范围的叠加作为该聚合后的低优先级次系统的定位范围。从而进一步降低确定低优先级系统工作参数时的计算量。
根据本公开的一个实施例,还提供一种电子装置,包括处理电路或一个/多个处理器,该处理电路/处理器被配置为:基于所述无线电资源管理系统管理的至少一个高优先级系统的位置信息以及至少一个低优先级系统的位置信息,获取所述至少一个高优先级系统的待保护范围以及获取所述至少一个低优先级系统的定位范围,其中,所述高优先级系统对于频谱资源的使用具有比所述低优先级系统高的优先级,所述低优先级系统机会性地利用所述频谱资源;针对所述至少一个高优先级系统中的每个高优先级系统,基于所述高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对所述高优先级系统产生的干扰满足预定条件的位置 作为该低优先级系统的参考位置;以及基于每个低优先级系统的参考位置,为所述高优先级系统确定所述低优先级系统的工作参数。
根据本公开的无线电资源管理系统和无线电资源管理方法以及电子装置至少具有以下有益效果:能够大大降低为每个低优先级系统确定工作参数时的计算量。具体地,在传统的频谱共享无线电算法中,需要基于每个高优先级系统的待保护范围内的各个位置以及每个低优先级系统的定位范围内的每个位置(通常定位范围越大,用于计算的各个位置的数量越多)确定每个低优先级系统的工作参数,而根据本公开的无线电管理系统和无线电管理方法中,仅需基于每个低优先级级的参考位置(即,定位范围内的一个或有限几个位置)定每个低优先级系统的工作参数,因此,根据本公开,能够大大降低计算量,从而提高无线电资源管理执行确定工作参数操作时的运行效率。
应用场景示例
根据本公开实施例的无线电资源管理系统适用于主系统为是陆地电视广播系统,次系统是认知无线电通信系统的应用场景。
上述根据本公开的实施例的无线电资源管理系统中的各个组成单元、子单元等可以通过软件、固件、硬件或其任意组合的方式进行配置。在通过软件或固件实现的情况下,可从存储介质或网络向具有专用硬件结构的机器安装构成该软件或固件的程序,该机器在安装有各种程序时,能够执行上述各组成单元、子单元的各种功能。
图13是示出了可用来实现根据本公开的实施例的无线电资源管理系统和无线电资源管理方法的一种可能的信息处理设备的硬件配置的结构简图。
在图13中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM 1303中,还根据需要存储当CPU 1301执行各种处理等等时所需的数据。CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件也连接到输入/输出接口1305:输入部分1306(包括键盘、鼠标等等)、输出部分1307(包括显示器,例如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1308(包括硬盘等)、通信部分1309(包括网络接口卡例如LAN卡、调制解调器等)。通信部分1309经 由网络例如因特网执行通信处理。根据需要,驱动器1310也可连接到输入/输出接口1305。可拆卸介质1311例如磁盘、光盘、磁光盘、半导体存储器等等可以根据需要被安装在驱动器1310上,使得从中读出的计算机程序可根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,可以从网络例如因特网或从存储介质例如可拆卸介质1311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图13所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘)、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
此外,本公开还提出了一种存储有机器可读取的指令代码的程序产品。上述指令代码由机器读取并执行时,可执行上述根据本公开的实施例的上行数据传输方法和传输方式配置方法。相应地,用于承载这种程序产品的例如磁盘、光盘、磁光盘、半导体存储器等的各种存储介质也包括在本公开的公开中。
在上面对本公开具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。[130]此外,本公开的各实施例的方法不限于按照说明书中描述的或者附图中示出的时间顺序来执行,也可以按照其他的时间顺序、并行地或独立地执行。因此,本说明书中描述的方法的执行顺序不对本公开的技术范围构成限制。
此外,显然,根据本公开的上述方法的各个操作过程也可以以存储在各种机器可读的存储介质中的计算机可执行程序的方式实现。
而且,本公开的目的也可以通过下述方式实现:将存储有上述可执行程序代码的存储介质直接或者间接地提供给系统或设备,并且该系统或设备中的计算机或者中央处理单元(CPU)读出并执行上述程序代码。
此时,只要该系统或者设备具有执行程序的功能,则本公开的实施方式不局限于程序,并且该程序也可以是任意的形式,例如,目标程序、 解释器执行的程序或者提供给操作系统的脚本程序等。
上述这些机器可读存储介质包括但不限于:各种存储器和存储单元,半导体设备,磁盘单元例如光、磁和磁光盘,以及其它适于存储信息的介质等。
最后,还需要说明的是,在本公开中,诸如左和右、第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管上面已经通过本公开的具体实施例的描述对本公开进行了披露,但是,应该理解,本领域技术人员可在所附权利要求的精神和范围内设计对本公开的各种修改、改进或者等同物。这些修改、改进或者等同物也应当被认为包括在本公开所要求保护的范围内。

Claims (18)

  1. 一种无线电资源管理系统,包括:
    获取装置,用于基于所述无线电资源管理系统管理的至少一个高优先级系统的位置信息以及至少一个低优先级系统的位置信息,获取所述至少一个高优先级系统的待保护范围以及获取所述至少一个低优先级系统的定位范围,其中,所述高优先级系统对于频谱资源的使用具有比所述低优先级系统高的优先级,所述低优先级系统机会性地利用所述频谱资源;
    选择装置,用于针对所述至少一个高优先级系统中的每个高优先级系统,基于所述高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对所述高优先级系统产生的干扰满足预定条件的位置作为该低优先级系统的参考位置;以及
    参数确定装置,用于基于每个低优先级系统的参考位置,为所述高优先级系统确定所述低优先级系统的工作参数。
  2. 根据权利要求1所述的无线电资源管理系统,其中,所述选择装置被配置为针对每个高优先级系统,基于各个低优先级系统与该高优先级系统之间的距离、路径损耗、以及与所述无线电资源管理系统所处环境有关的环境因素至少其中之一来确定每个低优先级系统的参考位置。
  3. 根据权利要求2所述的无线电资源管理系统,其中,所述选择装置包括:
    判定单元,用于针对每个高优先级系统,判断各个低优先级系统的定位范围与该高优先级系统的待保护范围之间是否有障碍物;以及
    选择单元,用于基于各个低优先级系统的定位范围与该高优先级系统的待保护范围之间是否有障碍物以及是否有交叠,来选择所述低优先级系统的参考位置。
  4. 根据权利要求3所述的无线电资源管理系统,其中,所述选择单元针对每个高优先级系统,基于如下方式之一为每个低优先级系统选择参考位置:
    (i)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间无障碍物且无交叠或者当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间完全被障碍物遮挡时,选择该低优先级系 统的定位范围边界上距离所述高优先级系统的待保护范围的边界最近的位置作为该低优先级系统的参考位置;
    (ii)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间有部分被障碍物遮挡且无交叠时,在该低优先级系统的定位范围中选择与所述高优先级系统的待保护范围内的任意点能够视通且距离最近的位置作为该低优先级系统的参考位置;
    (iii)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间有部分被障碍物遮挡且有交叠时,如果遮挡部分能够完全覆盖交叠部分,则在该低优先级系统的定位范围中选择与所述高优先级系统的待保护范围内的任意位置能够视通且距离最近的位置作为该低优先级系统的参考位置;
    (iv)当所述低优先级系统的定位范围与所述高优先级系统的待保护范围之间无障碍物且有交叠时或者有部分被障碍物遮挡且有交叠并且遮挡部分不能够完全覆盖交叠部分时,将该低优先级系统的参考位置确定为与该高优先级系统的位置重叠。
  5. 根据权利要求3所述的无线电资源管理系统,其中,在所述选择单元将该低优先级系统的参考位置确定为与该高优先级系统的位置重叠的情况下,所述参数确定装置被配置为将所述低优先级系统的发射功率确定为0。
  6. 根据权利要求3-5中任一项所述的无线电资源管理系统,其中,根据所述高优先级系统和所述低优先级系统的天线高度,确定该低优先级系统的定位范围中的各个位置与所述高优先级系统的待保护范围内的任意位置是否视通。
  7. 根据权利要求1-6中任一项所述的无线电资源管理系统,其中,所述参数确定装置被配置为基于每个低优先级系统的参考位置计算所述高优先级系统受到的聚合干扰,并基于所述聚合干扰确定所述低优先级系统的工作参数。
  8. 根据权利要求7所述的无线电资源管理系统,其中,所述高优先级系统为机会性使用所述频谱资源的高优先级次系统,所述低优先级系统为对于频谱资源的使用具有比所述高优先级次系统低的优先级的低优先级次系统。
  9. 根据权利要求8所述的无线电资源管理系统,其中,所述参数确 定装置还包括:
    聚合干扰计算单元,用于针对每个高优先级系统,基于选择单元确定的各个低优先级系统的参考位置,计算该高优先级系统的待保护范围内各个位置受到的聚合干扰;以及
    干扰位置确定单元,用于根据所述聚合干扰计算单元计算的聚合干扰,在所述高优先级系统的待保护范围内选择所述高优先级系统的干扰位置,以便基于所述高优先级系统的干扰位置确定对所述各个低优先级系统的工作参数。
  10. 根据权利要求9所述的无线电资源管理系统,其中,所述干扰位置确定单元选择待保护范围内具有最大聚合干扰的位置作为所述高优先级系统的干扰位置。
  11. 根据权利要求1-7中任一项所述的无线电资源管理系统,其中,所述高优先级系统为对所述频谱资源具有常规使用权的主系统,所述低优先级系统为机会性使用所述频谱资源的次系统。
  12. 根据权利要求1-7中任一项所述的无线电资源管理系统,其中所述高优先级系统为主系统和高优先级次系统,所述低优先级系统为低优先级次系统,所述参数确定装置被配置为基于每个低优先级次系统的参考位置,确定所述低优先级次系统的工作参数,以使所述低优先级系统对频谱资源的使用满足所述主系统和所述高优先级次系统的干扰要求。
  13. 根据权利要求1-12中任一项所述的无线电资源管理系统,其中,所述低优先级系统包括由所述无线电资源管理系统管理的低优先级系统以及由相邻无线电资源管理系统管理的低优先级系统;
    其中,所述无线电资源管理系统还包括通信装置,用于从相邻无线电资源管理系统接收该相邻无线电资源管理系统所管理的低优先级系统的位置信息,并且向所述无线电资源管理系统管理的低优先级系统以及所述相邻无线电资源管理系统发送确定的工作参数。
  14. 根据权利要求1-13中任一项所述的无线电资源管理系统,其中,所述参数确定装置被配置为针对至少一个高优先级系统中的每个高优先级系统,基于每个低优先级系统的参考位置确定每个低优先级系统的工作参数,并在针对至少一个高优先级系统为每个低优先级系统确定的至少一个工作参数中选择最低的发射功率作为该低优先级系统的发射功率。
  15. 根据权利要求1-14中任一项所述的无线电资源管理系统,还包括聚合装置,被配置为将无线电资源管理系统管理的地理位置彼此靠近的至少两个高优先级次系统聚合为一个高优先级次系统,将无线电资源管理系统管理的地理位置彼此靠近的至少两个低优先级次系统聚合为一个低优先级次系统,并且将所述至少两个高优先级次系统的待保护范围的叠加作为该聚合后的高优先级次系统的待保护范围,将所述至少两个低优先级次系统的定位范围的叠加作为该聚合后的低优先级次系统的定位范围。
  16. 根据权利要求1所述的无线电资源管理系统,其中,所述参数确定装置在所述低优先级系统的参考位置超过所述定位范围时,基于所述低优先级系统的参考位置范围确定所述低优先级系统的工作参数。
  17. 一种无线电资源管理系统,包括:
    通信装置,用于将其所管理的低优先级系统的位置信息发送给相邻无线电资源管理系统以及从相邻无线电资源管理系统接收用于所述无线电资源管理系统管理的低优先级系统的工作参数,以及
    参数配置装置,用于将所述无线电资源管理系统所管理的相应的低优先级系统的当前工作参数配置为所述工作参数,
    其中,所述相邻无线电资源管理系统基于接收到的所述无线电资源管理系统管理的低优先级系统的位置信息,针对所述相邻无线电资源管理系统管理的每个高优先级系统,为每个所述低优先级系统在其不确定范围内选择参考位置,并基于每个所述低优先级系统的参考位置确定对该低优先级系统的工作参数的调整,以使所述低优先级系统对频谱资源的使用满足所述高优先级系统的干扰要求。
  18. 一种用于无线电资源管理系统的无线电资源管理方法,包括:
    基于所述无线电资源管理系统管理的至少一个高优先级系统位置信息以及至少一个低优先级系统的位置信息,获取所述至少一个高优先级系统的待保护范围以及获取所述至少一个低优先级系统的定位范围,其中,所述高优先级系统对于频谱资源的使用具有比所述低优先级系统高的优先级,所述低优先级系统机会性的利用所述频谱资源;
    针对所述至少一个高优先级系统中的每个高优先级系统,基于所述高优先级系统的待保护范围,为每个低优先级系统在其定位范围内选择对所述高优先级系统产生的干扰满足预定条件的位置作为该低优先级系统的参考位置;以及
    基于每个低优先级系统的参考位置,为所述高优先级系统确定所述低优先级系统的工作参数。
PCT/CN2015/094566 2014-11-14 2015-11-13 无线电资源管理系统和无线电资源管理方法 WO2016074643A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/525,861 US10743327B2 (en) 2014-11-14 2015-11-13 Radio resource management system and radio resource management method
KR1020177009805A KR20170084022A (ko) 2014-11-14 2015-11-13 무선 리소스 관리 시스템 및 무선 리소스 관리 방법
EP15858537.2A EP3220682B1 (en) 2014-11-14 2015-11-13 Radio resource management system and radio resource management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410646214.6 2014-11-14
CN201410646214.6A CN105657718B (zh) 2014-11-14 2014-11-14 无线电资源管理系统和无线电资源管理方法

Publications (1)

Publication Number Publication Date
WO2016074643A1 true WO2016074643A1 (zh) 2016-05-19

Family

ID=55953757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094566 WO2016074643A1 (zh) 2014-11-14 2015-11-13 无线电资源管理系统和无线电资源管理方法

Country Status (5)

Country Link
US (1) US10743327B2 (zh)
EP (1) EP3220682B1 (zh)
KR (1) KR20170084022A (zh)
CN (1) CN105657718B (zh)
WO (1) WO2016074643A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804653A (zh) * 2017-01-13 2019-05-24 索尼公司 频谱管理装置、电子设备以及由其执行的方法
EP3493573A4 (en) * 2016-07-29 2019-06-26 Sony Corporation ELECTRONIC DEVICE AND METHOD FOR CONTROLLING THE ELECTRONIC DEVICE
US11832288B2 (en) 2019-03-29 2023-11-28 Sony Group Corporation Communication control device, communication device, and communication control method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338632B (zh) * 2014-06-20 2020-09-29 索尼公司 无线电资源管理系统和无线电资源管理方法
CN106358278B (zh) * 2016-10-28 2019-04-12 中国电子科技集团公司第五十四研究所 一种拓扑动态变化情况下的基站功率自适应方法
US10548020B2 (en) * 2016-11-14 2020-01-28 Qualcomm Incorporated Techniques for selectively adjusting wireless communication parameters based on aggregated interference from listen-before-talk wireless devices
CN109428609B (zh) * 2017-08-24 2022-04-19 西安中兴新软件有限责任公司 一种干扰处理方法和装置
CN109951851A (zh) * 2017-12-20 2019-06-28 索尼公司 无线通信方法和无线通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480692A (en) * 2010-05-28 2011-11-30 Toshiba Res Europ Ltd Radio resource management in femtocells
CN102811492A (zh) * 2011-05-30 2012-12-05 中兴通讯股份有限公司 一种频率复用的方法及通信系统
CN104105141A (zh) * 2013-04-02 2014-10-15 索尼公司 无线电资源管理设备、方法以及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343219A1 (en) * 2011-03-11 2013-12-26 Telefonaktiebolaget L M Ericsson (Publ) Method for Determining White Space Interference Margin
CN108495319B (zh) * 2012-09-07 2022-07-01 索尼公司 无线传输资源管理设备和方法
CN103024750B (zh) * 2012-12-31 2015-09-23 上海师范大学 一种共基站集中式认知无线网络频谱分配和功率控制方法
EP2949141A2 (en) * 2013-01-28 2015-12-02 Interdigital Patent Holdings, Inc. Methods and apparatus for spectrum coordination
CN103974261B (zh) * 2013-01-28 2020-02-18 索尼公司 无线通信系统中的设备和方法
CN112055361A (zh) * 2013-04-18 2020-12-08 索尼公司 频谱管理装置和方法以及通信设备
CN104113888B (zh) * 2013-04-19 2019-10-15 索尼公司 无线通信系统中的装置和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480692A (en) * 2010-05-28 2011-11-30 Toshiba Res Europ Ltd Radio resource management in femtocells
CN102811492A (zh) * 2011-05-30 2012-12-05 中兴通讯股份有限公司 一种频率复用的方法及通信系统
CN104105141A (zh) * 2013-04-02 2014-10-15 索尼公司 无线电资源管理设备、方法以及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3220682A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3493573A4 (en) * 2016-07-29 2019-06-26 Sony Corporation ELECTRONIC DEVICE AND METHOD FOR CONTROLLING THE ELECTRONIC DEVICE
US11277752B2 (en) 2016-07-29 2022-03-15 Sony Corporation Electronic device and method for the electronic device for clustering of high priority level secondary systems
EP4096266A1 (en) * 2016-07-29 2022-11-30 Sony Group Corporation Electronic device and method for the electronic device
CN109804653A (zh) * 2017-01-13 2019-05-24 索尼公司 频谱管理装置、电子设备以及由其执行的方法
EP3570580A4 (en) * 2017-01-13 2020-01-01 Sony Corporation FREQUENCY SPECTRUM MANAGEMENT DEVICE, ELECTRONIC DEVICE, AND METHOD EXECUTED THEREFROM
CN109804653B (zh) * 2017-01-13 2021-07-23 索尼公司 频谱管理装置、电子设备以及由其执行的方法
US11832288B2 (en) 2019-03-29 2023-11-28 Sony Group Corporation Communication control device, communication device, and communication control method

Also Published As

Publication number Publication date
US20170339705A1 (en) 2017-11-23
KR20170084022A (ko) 2017-07-19
EP3220682A4 (en) 2018-06-20
CN105657718B (zh) 2021-02-02
CN105657718A (zh) 2016-06-08
EP3220682A1 (en) 2017-09-20
EP3220682B1 (en) 2020-04-29
US10743327B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2016074643A1 (zh) 无线电资源管理系统和无线电资源管理方法
AU2017262114B2 (en) Frequency spectrum management apparatus and method, electronic apparatus and method, and wireless communication system
CN105208563B (zh) 频谱资源管理装置和方法
WO2017198024A1 (zh) 频谱管理装置、方法、地理位置数据库和次系统
CN105453628B (zh) 通信控制装置和无线通信装置
US9814048B2 (en) Apparatus and method in wireless communication system
US11129169B2 (en) Radio resource management system and radio resource management method
WO2016062172A1 (zh) 频谱管理装置和方法、用于无线通信的装置和方法
US9942892B2 (en) Self-optimizing mobile satellite systems
US11284273B2 (en) Access point centric connectivity map service
WO2019230156A1 (ja) 通信制御装置、通信制御方法およびコンピュータプログラム
US20210176644A1 (en) Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side
US9769672B2 (en) Anonymization of ASA/LSA repository data
CN113783833A (zh) 计算机安全知识图谱的构建方法及装置
US20220272627A1 (en) Energy Saving Management Method and Apparatus
WO2022002342A1 (en) Communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177009805

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015858537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE