WO2016074350A1 - 一种光信号丢失信号的毛刺滤除方法及装置 - Google Patents

一种光信号丢失信号的毛刺滤除方法及装置 Download PDF

Info

Publication number
WO2016074350A1
WO2016074350A1 PCT/CN2015/072257 CN2015072257W WO2016074350A1 WO 2016074350 A1 WO2016074350 A1 WO 2016074350A1 CN 2015072257 W CN2015072257 W CN 2015072257W WO 2016074350 A1 WO2016074350 A1 WO 2016074350A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical module
optical
high level
module
Prior art date
Application number
PCT/CN2015/072257
Other languages
English (en)
French (fr)
Inventor
王娟
李祥
王锐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15858578.6A priority Critical patent/EP3220557B1/en
Publication of WO2016074350A1 publication Critical patent/WO2016074350A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • H03K21/38Starting, stopping or resetting the counter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for glitch filtering of an optical signal loss signal.
  • optical transceiver module the English name transceiver, referred to as the optical module or the optical fiber module, is an important device in the optical fiber communication system.
  • the main function of the optical transceiver integrated module is to realize photoelectric/electro-optical conversion, including optical power control, modulation transmission, signal detection, IV conversion, and limiting amplification decision-making regeneration function.
  • anti-counterfeiting information query, TX-disable and other functions are common.
  • SFP optical modules namely SMALL FORM PLUGGABLE (small pluggable), SFP+, GBIC, which is the abbreviation of Gigabit Interface Converter, is an interface device for converting gigabit electrical signals into optical signals
  • XFP ie 10Gigabit Small Form Factor Pluggable, A hot-swappable, optical transceiver independent of the communication protocol.
  • the optical module can generally provide an in-position signal (online high indicates no bit, low level indicates in-position), and the optical signal loses signal (los high indicates that the optical signal is lost, low indicates that the optical signal is normal),
  • a signal such as a transmission failure signal (a high level of txfault indicates that the transmission is abnormal, and a low level indicates that the transmission is normal) is used as a decision signal for the operating state of the optical module.
  • the transmission failure signal txfault will be in an unstable state, and there are a large number of burrs and jitter.
  • the optical signal loss signal los is generally a sensitive signal for system equipment using optical modules.
  • the usual processing is to directly report the interrupt, which is provided to the central processing unit (CPU) of the device system for processing, visible, in the presence of the optical signal loss signal los In the case of glitch and jitter, a large number of interruptions will occur, causing device system interrupt handling exceptions.
  • CPU central processing unit
  • the optical signal loss signal los is directly filtered and glitched in the logic, generally adopting the increase delay module, and it is necessary to delay several clock cycles. After that, it is judged whether the signal is a glitch. If it is a glitch signal, the filtering is not reported. If it is not a glitch, the delayed signal is provided to the system device, but the optical signal loss signal provided at this time has been logically processed. The delay of the clock cycle.
  • the optical signal loss signal los itself is a sensitive signal and will participate in the processing of many related processes. Each time delay processing will bring other problems.
  • the glitch filtering method for the optical signal loss signal of the optical module in the related art has a problem of delay, and no effective solution has been proposed yet.
  • the embodiment of the invention provides a method and a device for glitch filtering of an optical signal loss signal, so as to at least solve the problem of delay in the glitch filtering method of the optical signal loss signal of the optical module in the related art.
  • a glitch filtering method for an optical signal loss signal comprising the steps of: when detecting that an in-position signal of an optical module output changes from a high level to a low level Normally, the in-position signal is set to a high level, and a timer is started; when the in-position signal outputted by the optical module is detected to change from a low level to a high level, the in-position signal is set to be high.
  • Leveling and clearing the timer setting the in-position signal to a low level when the timing of the timer reaches a preset duration; wherein, the in-position signal is set to a high level In this case, the optical signal loss signal of the optical module is invalid.
  • the optical signal loss signal of the optical module is invalid, including: when the in-position signal output by the optical module is high, indicating that the bit is not present, and When the optical module optical signal loss signal is high, the optical signal loss signal is logically ORed with the in-position signal output by the optical module.
  • the method further comprises: in the case that the in-position signal is set to a high level, the transmission failure signal output by the optical module is invalid.
  • the transmission failure signal output by the optical module is invalid, including: when the in-position signal output by the optical module is high, the position is not in place, and the light is When the module transmission failure signal is high to indicate invalid, the optical module transmission failure signal is logically ORed with the in-position signal output by the optical module.
  • the in-position signal of the optical module output changes from a high level to a low level, and includes: when the optical module is inserted, the in-position signal output by the optical module changes from a high level to a low level.
  • a glitch filtering apparatus for an optical signal loss signal, comprising the following module: a filtering module configured to change an in-position signal of the optical module output from a high level to a low level when detecting Normally, the in-position signal is set to a high level, and a timer is started; the filtering module is further configured to, when detecting that the in-position signal output by the optical module changes from a low level to a high level, The in-position signal is set to a high level, and the timer is cleared; the filtering module is further configured to: when the timing of the timer reaches a preset duration, The in-position signal is set to a low level; the logic module is configured to disable the optical signal loss signal of the optical module when the in-position signal is set to a high level.
  • the optical signal loss signal of the optical module is invalid, including: when the in-position signal output by the optical module is high, indicating that the bit is not present, and When the optical module optical signal loss signal is at a high level, indicating that the optical signal is invalid, the optical module optical signal loss signal is logically ORed with the in-position signal output by the optical module.
  • the logic module is further configured to: if the in-position signal is set to a high level, the transmission failure signal output by the optical module is invalid high level.
  • the transmission failure signal output by the optical module is invalid, including: when the in-position signal output by the optical module is high, the position is not in place, and the light is When the module transmission failure signal is high to indicate invalid, the optical module transmission failure signal is logically ORed with the in-position signal output by the optical module.
  • the in-position signal of the optical module output changes from a high level to a low level, and includes: when the optical module is inserted, the in-position signal output by the optical module changes from a high level to a low level.
  • the in-position signal of the output of the optical module when the in-position signal of the output of the optical module is detected to change from a high level to a low level, the in-position signal is set to a high level, and a timer is started; when the optical module output is detected When the in-position signal changes from low level to high level, the in-position signal is set to a high level, and the timer is cleared; when the timing of the timer reaches a preset duration, the The bit signal is set to a low level; wherein, in the case where the in-position signal is set to a high level, the optical signal loss signal of the optical module is invalid, and no additional glitch filtering process is needed, which is effective
  • the problem that the glitch filtering method of the optical signal loss signal of the optical module has a delay is solved, and the delay generated when the glitch of the optical signal loss signal of the optical module is filtered is avoided.
  • FIG. 1 is a flow chart of a method for glitch filtering of an optical signal loss signal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a burr filter device for an optical signal loss signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a burr filter device for an optical signal loss signal in accordance with a preferred embodiment of the present invention
  • FIG. 4 is a flow chart of another method of glitch filtering of an optical signal loss signal in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a timing diagram of optical signals in a glitch filtering method for an optical signal loss signal in accordance with a preferred embodiment of the present invention.
  • This embodiment provides a glitch filtering method for an optical signal loss signal.
  • 1 is a flow chart of a glitch filtering method for an optical signal loss signal according to an embodiment of the present invention. As shown in FIG. 1, the method may include the following steps:
  • Step S100 when it is detected that the in-position signal outputted by the optical module changes from a high level to a low level, the in-position signal is set to a high level, and a timer is started;
  • the optical module can generally provide, the in-position signal online, the optical signal loss signal los, and the transmission failure signal txfault, which are used as the decision signals of the working state of the optical module.
  • the mechanical contact causes jitter.
  • the in-position signal of the optical module changes from high level to low level.
  • the reported missing signal at this time is invalid and has no practical significance.
  • the optical module in-position signal is manually or mechanically and automatically set from a high level to a low level, and the timer is started. Within the set time, the optical module and its device or system using the optical module determine that the reported signal is an invalid signal.
  • Step S102 When it is detected that the in-position signal output by the optical module changes from a low level to a high level, the in-position signal is set to a high level, and the timer is cleared;
  • the optical module optical signal When the optical module optical signal is glitched, the optical module's bit signal will change level and be in an unstable state. When the optical module changes from the low level in the bit position to the high level indicating that the bit is not in the position, it is considered The glitch of the optical signal is now set to the high level of the optical module, provided to the device or system using the optical module, and the timer that has been timed is cleared.
  • Step S104 When the timing of the timer reaches a preset duration, the in-position signal is set to a low level;
  • the optical module glitch occurs in the optical module, after a period of maintenance or loading, the optical module's in-position signal will tend to be stable and there will be no glitch. After the preset duration, it is considered that the optical module has no glitch in the bit signal, and it is not necessary to filter out the glitch, and the normal in-position signal can be output to other devices, so the in-position signal is set to a low level.
  • the optical signal loss signal of the optical module is invalid.
  • the optical module in-position signal indicates whether the optical module is in position.
  • the embodiment of the present invention indicates that the optical signal loss signal of the optical module has a glitch, and the signal is used for the signal.
  • the device or system is invalid.
  • the optical signal loss signal of the optical module is invalid, and the method may include: when the in-position signal output by the optical module is high, indicating that the bit signal is not high, When the optical module optical signal loss signal is high, the optical signal loss signal is logically ORed with the in-position signal output by the optical module.
  • the optical module in-position signal online high level 1 indicates that it is not in position, and low level 0 indicates in-position.
  • the optical signal loss signal los high level 1 indicates that the optical signal is lost, and the low level 0 indicates that the optical signal is normal.
  • the optical signal loss signal los is logically ORed, and the optical signal loss signal is obtained as a high level 1, which is invalid according to the definition of the los signal high level.
  • the method provided by the embodiment of the present invention determines the in-position signal of the optical module, and sets a period of time period N for determining the time when the optical module is normally operated from the insertion to the power-on. Before the time period N arrives, the reporting optical module is still in the inactive phase, and the optical signal loss signal is invalidated. After the time period N is reached, the optical module of the optical module is normally reported in real time, and the optical signal is lost. It effectively solves the problem of signal glitch and signal instability caused by the mechanical jitter of the optical module insertion and removal stage, and does not need to add additional glitch filtering processing, effectively filtering out the glitch of the optical module optical signal loss signal, and does not generate additional Delay.
  • the optical signal transmission failure is also filtered by referring to the in-position signal.
  • the glitch of the signal for example, in the case where the in-position signal is set to a high level, it is determined that the transmission failure signal output by the optical module is invalid.
  • the optical module in-position signal indicates whether the optical module is in position.
  • the embodiment of the present invention indicates that the optical module's transmission failure signal has a glitch, and the signal is for the device using the signal. Or the system is invalid.
  • the invalidation of the transmission failure signal of the optical module may include: when the in-position signal output by the optical module is high, indicating that the bit is not present, and When the optical module transmission failure signal is high to indicate invalid, the optical module failure signal is logically ORed with the in-position signal output by the optical module.
  • the optical module in-position signal online high level 1 indicates that it is not in position, and low level 0 indicates in-position.
  • the transmission failure signal txfault high level 1 indicates a transmission exception, and a low level 0 indicates that the transmission is normal.
  • the optical signal transmission failure signal txfault is logically ORed, and the transmission failure signal is obtained as a high level 1, and the signal is invalid according to the definition of the high level of the transmission failure signal.
  • the in-position signal of the optical module output from the high level to the low level may include: when the optical module is inserted, the in-position signal output by the optical module changes from a high level to a low level. level.
  • a period of time period N is set to determine the time when the optical module is normally operated from the insertion to the power-on, and the optical module starts timing from the insertion, and reaches the time period N.
  • the reporting optical module is still in the inactive phase, and invalid judgment is made on the optical signal loss signal and the transmission failure signal.
  • the optical module of the optical module is normally reported in real time, the optical signal is lost, and the failure signal is sent.
  • This embodiment also provides a burr filtering device for an optical signal loss signal.
  • 2 is a schematic diagram of a glitch filtering apparatus for an optical signal loss signal according to an embodiment of the present invention. As shown in Figure 2, the device can include the following modules:
  • the filtering module 20 is configured to, when detecting that the in-position signal outputted by the optical module changes from a high level to a low level, set the in-position signal to a high level, and start a timer; and set to detect When the in-position signal outputted by the optical module changes from low level to high level, the in-position signal is set to a high level, the timer is cleared; and when the timing of the timer reaches a preset duration , setting the in-position signal to a low level;
  • the logic module 22 is coupled to the filtering module 20, and is configured to determine that the optical signal loss signal of the optical module is invalid if the in-position signal is set to a high level.
  • the optical signal loss signal of the optical module is invalid when the in-position signal is set to a high level, and may include: when the in-position signal output by the optical module is high Said that it is not in place, When the optical module optical signal loss signal is at a high level, indicating that the optical signal is invalid, the optical module optical signal loss signal is logically ORed with the in-position signal output by the optical module.
  • the logic module 22 may be further configured to determine that the transmission failure signal output by the optical module is set to an inactive high level if the in-position signal is set to a high level.
  • determining that the transmission failure signal output by the optical module is invalid may include: when the in-position signal output by the optical module is high When the optical module transmission failure signal is high, the optical module transmission failure signal is logically ORed with the in-position signal output by the optical module.
  • the in-position signal of the optical module output from the high level to the low level may include: when the optical module is inserted, the in-position signal output by the optical module changes from a high level to a low level. level.
  • FIG. 3 is a schematic diagram of a burr filter device for an optical signal loss signal in accordance with a preferred embodiment of the present invention.
  • optical module devices SFP, SFP+, GBIC, XFP, etc.
  • the optical module devices shown in FIG. 3 can be applied to existing optical modules. According to Figure 3, we set the following signal type and name for describing this embodiment:
  • System equipment Equipment that uses optical modules, such as switches, routers, etc.
  • a device configured to implement the method and apparatus described in the preferred embodiment of the present invention, which may be a programmable logic device such as a CPLD (Complex Programmable Logic Device) or an FPGA (Field-Programmable Gate Array) Programmable gate arrays, etc., can also be software coding, or even a combination of hardware and software.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the logic device can include at least a filtering module: logic code for implementing the method and apparatus described in the preferred embodiment of the present invention, mainly for receiving an optical signal in-position signal of the optical module, according to a method provided by a preferred embodiment of the present invention, Set the output optical module in-position signal.
  • Logic module set to process the optical module optical signal loss signal and the optical module transmission failure signal according to the optical module in-position signal.
  • the optical module entering the logic device module is in-line signal input online-in: directly generated by the optical module, and sent to the signal in the method and device described in the preferred embodiment of the present invention.
  • optical module optical signal loss signal input los-in entering the logic device module is directly generated by the optical module and sent to the signals and methods in the preferred embodiment of the present invention.
  • optical module transmission failure signal input txfault-in entering the logic device module is directly generated by the optical module and sent to the signals and methods in the preferred embodiment of the present invention.
  • the optical module output by the logic device module is in-bit signal output online-out: the processed signal within the method and apparatus described by the preferred embodiment of the invention.
  • optical module optical signal loss signal output los-out output by the logic device module the processed signal within the method and apparatus described by the preferred embodiment of the present invention.
  • optical module output failure signal output tx-fault output by the logic device module the processed signal in the method and apparatus described by the preferred embodiment of the present invention.
  • the method is illustrated and may include the following steps:
  • step one a clock signal clk is selected, and a counter count is set, which is set to determine the clock period N of the optical module from normal operation after insertion to power-on.
  • step two the optical module in-position signal is input into online-in as a judgment standard. If the logic detects that the optical module's bit signal input is high, the counter is set to 0 and the optical module is set to 1 in the bit signal output online-out.
  • Step 3 If it is detected that the optical module input signal is low level 0, the counter count starts counting, and the optical module in-line signal output online-out is set to 1.
  • the optical module in-bit signal output online-out is set to zero. If the optical module finds a high level in the bit signal input online-in during the counting process. Then stop counting and return to step two.
  • Step 4 logically or process the obtained optical module in-line signal output online-out with the optical signal loss signal input los-in and the optical module transmission failure signal input txfault-in, thereby obtaining the optical module optical signal loss signal output los-out
  • the optical module sends a failure signal output tx-fault.
  • step 5 the obtained optical module loss signal output los-out and the optical module transmission failure signal output txfault-out are used by the system device.
  • the preferred embodiment of the present invention effectively solves the problem of signal glitch and signal instability caused by mechanical jitter and optical module chip initialization process in the optical module insertion and removal stage by the above preferred embodiment.
  • the optical signal loss signal los of the optical module and the txfault of the optical module transmission failure signal can be reported in real time, which does not bring about the delay problem of the ordinary filter glitch technology.
  • FIG. 4 is a flow chart of another optical signal loss signal glitch filtering method according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of the present invention, which is described with reference to the accompanying drawings.
  • the glitch and signal instability caused by the insertion and removal of the optical module are mainly due to the mechanical jitter of the optical module itself and the signal instability during the initialization phase of the optical module chip.
  • the optical module starts at the first low level of the bit, and sets an optical module signal invalid time N.
  • the optical module in-position signal is considered online, the optical module optical signal loss signal los, and the optical module transmission failure signal txfault are both
  • the optical module outputting the logic module outputs the on-line signal online-out at a high level, the optical signal loss signal los-out at a high level, and the optical module transmission failure signal txfault-out at a high level.
  • the optical module optical signal loss signal los and the optical module transmission failure signal txfault are normally reported.
  • the optical module directly sends the optical module's optical module in-position signal input online-in, the optical module optical signal loss signal input los-in, and the optical module transmission failure signal input txfault-in.
  • the logic module obtains the deburring and delay processing of the on-line signal input of the optical module, and then obtains the optical module in-situ signal output online-out, the optical module optical signal loss signal output, and the optical module transmission failure signal.
  • Output txfault-out Used to provide for use by system equipment.
  • FIG. 4 is a flow chart showing a preferred embodiment of the present invention, as shown in FIG. 4:
  • Step 401 For the logic start phase, set the optical module output optical module output bit signal online-out to 1, and the count counter to 0.
  • Step 402 Detect whether the level of the on-line input signal of the optical module is high level, that is, whether the logic signal is 1.
  • Step 403 If the optical module inputs the online signal at the bit signal, indicating that the optical module is not in the bit position, setting the online-out to 1, and the count counter to 0.
  • Step 404 If the optical module inputs the online-in input to the bit-in, it is determined whether the timer has timed to a preset duration N.
  • Step 406 When it is detected that the optical module input bit-line is input to the 0 level and the counter counts to the preset time length N, it indicates that the optical module insertion time exceeds the set for determining that the optical module is inserted from the top.
  • the power is working normally, set count to stop counting, and set the optical module in-position signal output online-out to 0.
  • step 402 is restarted.
  • the clock clk is a system clock signal
  • the optical module inputs the on-line for the optical module to directly supply the optical module in-position signal to the logic module
  • the timer count is the counter signal of the logic module
  • the optical module is in place.
  • the signal output online-out is an optical module in-position signal that is supplied to the system device after being processed by the logic module.
  • N indicates the clock period set by the logic module for determining the normal operation of the optical module from insertion to power-on.
  • the 501 stage indicates that the optical module inputs the online-in signal to the high level before the optical module is inserted.
  • the logic module is at this stage, the counter count is 0, and the optical module in-position signal output online-out is high. .
  • the 502 stage indicates that the optical module is inserted. At this time, the optical module inputs the online-in signal to a low level, the logic module count starts counting, and the optical module outputs the online-out to a high level.
  • Stage 503 indicates that the optical module in the optical module is inserted into the online signal input line-in signal unstable phase when the optical module is inserted. At this time, the optical module has a glitch in the input signal of the bit-in signal, high and low level transition, logic The module counter count is reset to 0, and the optical module outputs a line-out at a high level.
  • Stage 504 indicates that the optical module is inserted into the stable phase.
  • the optical module inputs the online-in signal to a low level.
  • the optical module loses the signal optical signal due to the initialization of the optical module.
  • the lost signal output los-out and the optical module transmission failure signal output txfault-out are in an unstable state, the logic module counter count starts counting, and the optical module in-bit signal output online-out is high.
  • a switch device using an SFP optical module employs the method provided by the preferred embodiment of the present invention. Based on the routine maintenance experience and optical module design parameters, evaluate the time when the optical module is plugged into the switch to power on. Set the time period to 500ms.
  • the in-line signal output online-out remains at 0, normal and real-time reporting of the actual optical signal loss signal output los-out, and the transmission failure signal output txfault-out.
  • the burr filtering method and apparatus for optical signal loss signals provided by the embodiments of the present invention have the following beneficial effects: no additional glitch filtering processing is required, and the glitch of the optical signal loss signal of the optical module is effectively solved.
  • the filtering method has a problem of delay, which avoids the delay caused when the optical signal of the optical module is filtered out and the glitch of the signal is lost.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种光信号丢失信号的毛刺滤除方法及装置。通过本发明,采用当检测到光模块输出的在位信号从高电平变为低电平时,将所述在位信号设置为高电平,并启动计时器;当检测到所述光模块输出的在位信号从低电平变为高电平时,将所述在位信号设置为高电平,并清零所述计时器;当所述计时器的计时到达预设时长时,将所述在位信号设置为低电平;其中,在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效的技术方案,不需要增加额外的毛刺滤波处理,有效地解决了光模块的光信号丢失信号的毛刺滤除方法存在时延的问题,避免了在滤除光模块的光信号丢失信号的毛刺时产生的时延。

Description

一种光信号丢失信号的毛刺滤除方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种光信号丢失信号的毛刺滤除方法及装置。
背景技术
光收发一体模块,英文名称transceiver,简称光模块或者光纤模块,是光纤通信系统中重要的器件。
光收发一体化模块主要功能是实现光电/电光变换,包括光功率控制、调制发送,信号探测、IV转换以及限幅放大判决再生功能,此外还有防伪信息查询、TX-disable等功能,常见的有:SFP光模块即SMALL FORM PLUGGABLE(小型可插拔)、SFP+、GBIC即Gigabit Interface Converter的缩写,是将千兆位电信号转换为光信号的接口器件、XFP(即10Gigabit Small Form Factor Pluggable,一种可热插拔的,独立于通信协议的光学收发器)等。
光模块在一般可以通过提供在位信号(online高电平表示不在位,低电平表示在位),光信号丢失信号(los高电平表示光信号丢失,低电平表示光信号正常),发送失败信号(txfault高电平表示发送异常,低电平表示发送正常)等信号作为光模块工作状态的判决信号。但是在光模块拔插瞬间,由于机械接触带来的抖动,同时光模块本身芯片存在上电初始化过程,光信号丢失信号los,发送失败信号txfault会处于不稳定状态,存在大量的毛刺以及抖动。
光信号丢失信号los对于使用光模块的系统设备而言一般是敏感信号,通常的处理都是直接上报中断,提供给设备系统的中央处理单元(CPU)处理,可见,在光信号丢失信号los存在毛刺和抖动的情况下,将带来大量的中断,导致设备系统中断处理异常。
为了解决光信号丢失信号los上存在的毛刺干扰,按照相关技术中毛刺处理做法,是直接将光信号丢失信号los在逻辑中做过滤毛刺处理,一般采用增加延时模块,需要延时若干时钟周期后,判断该信号是否为毛刺,如果是毛刺信号,则过滤不上报,如果不是毛刺再将延时后的信号提供给系统设备,但是此时提供的光信号丢失信号经过逻辑处理后已经存在若干时钟周期的延时。而光信号丢失信号los本身是敏感信号,会参与到很多相关流程的处理中,每一次都进行延时处理会带来其他的问题。
针对相关技术中光模块的光信号丢失信号的毛刺滤除方法存在时延的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种光信号丢失信号的毛刺滤除方法及装置,以至少解决相关技术中光模块的光信号丢失信号的毛刺滤除方法存在时延的问题。
为实现发明目的,根据本发明的一个方面,提供了一种光信号丢失信号的毛刺滤除方法,该方法包括以下步骤:当检测到光模块输出的在位信号从高电平变为低电平时,将所述在位信号设置为高电平,并启动计时器;当检测到所述光模块输出的在位信号从低电平变为高电平时,将所述在位信号设置为高电平,并清零所述计时器;当所述计时器的计时到达预设时长时,将所述在位信号设置为低电平;其中,在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效。
优选地,所述的在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效包括:当光模块输出的在位信号为高电平表示不在位,且光模块光信号丢失信号为高电平表示无效时,所述光模块光信号丢失信号与所述光模块输出的在位信号进行逻辑或处理。
优选地,所述方法还包括:在所述在位信号设置为高电平的情况下,光模块输出的发送失败信号无效。
优选地,所述的在所述在位信号设置为高电平的情况下,光模块输出的发送失败信号为无效包括:当光模块输出的在位信号为高电平表示不在位,且光模块发送失败信号为高电平表示无效时,所述光模块发送失败信号与所述光模块输出的在位信号进行逻辑或处理。
优选地,所述光模块输出的在位信号从高电平变为低电平包括:当光模块插入时,所述光模块输出的在位信号从高电平变为低电平。
根据本发明的另一方面,还提供了一种光信号丢失信号的毛刺滤除装置,包括以下模块:滤波模块,设置为当检测到光模块输出的在位信号从高电平变为低电平时,将所述在位信号设置为高电平,并启动计时器;所述滤波模块,还设置为当检测到所述光模块输出的在位信号从低电平变为高电平时,将所述在位信号设置为高电平,清零所述计时器;所述滤波模块,还设置为当所述计时器的计时到达预设时长时,将所 述在位信号设置为低电平;逻辑模块,设置为在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效。
优选地,所述的在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效包括:当光模块输出的在位信号为高电平表示不在位,且光模块光信号丢失信号为高电平表示光信号无效时,所述光模块光信号丢失信号与所述光模块输出的在位信号进行逻辑或处理。
优选地,所述逻辑模块还设置为,在所述在位信号设置为高电平的情况下,光模块输出的发送失败信号无效高电平。
优选地,所述的在所述在位信号设置为高电平的情况下,光模块输出的发送失败信号为无效包括:当光模块输出的在位信号为高电平表示不在位,且光模块发送失败信号为高电平表示无效时,所述光模块发送失败信号与所述光模块输出的在位信号进行逻辑或处理。
优选地,所述光模块输出的在位信号从高电平变为低电平包括:当光模块插入时,所述光模块输出的在位信号从高电平变为低电平。
通过本发明,采用当检测到光模块输出的在位信号从高电平变为低电平时,将所述在位信号设置为高电平,并启动计时器;当检测到所述光模块输出的在位信号从低电平变为高电平时,将所述在位信号设置为高电平,并清零所述计时器;当所述计时器的计时到达预设时长时,将所述在位信号设置为低电平;其中,在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效的技术方案,不需要增加额外的毛刺滤波处理,有效地解决了光模块的光信号丢失信号的毛刺滤除方法存在时延的问题,避免了在滤除光模块的光信号丢失信号的毛刺时产生的时延。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1是根据本发明实施例的一种光信号丢失信号的毛刺滤除方法的流程图;
图2是根据本发明实施例的一种光信号丢失信号的毛刺滤除装置的示意图;
图3是根据本发明优选实施例的一种光信号丢失信号的毛刺滤除装置的示意图;
图4是根据本发明优选实施例的另一种光信号丢失信号的毛刺滤除方法的流程图;
图5是根据本发明优选实施例的一种光信号丢失信号的毛刺滤除方法中的光信号时序图。
具体实施方式
下文将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。下面将参考附图并结合实施例来详细说明本发明。
本实施例提供了一种光信号丢失信号的毛刺滤除方法。图1是根据本发明实施例的一种光信号丢失信号的毛刺滤除方法的流程图。如图1所示,该方法可以包括如下步骤:
步骤S100:当检测到光模块输出的在位信号从高电平变为低电平时,将所述在位信号设置为高电平,并启动计时器;
光模块在一般可以通过提供,在位信号online,光信号丢失信号los,发送失败信号txfault,这些信号做为光模块工作状态的判决信号。但是在光模块拔插时或者出现故障时,由于机械接触会带来抖动。光模块的在位信号从高电平变为低电平。但是,由于存在大量的毛刺,此时的上报的丢失信号是无效的、没有实际意义的。将光模块在位信号通过人为地、或者机械的、自动地从高电平设置为低电平,并启动计时器。在设定的时间之内,光模块及其使用光模块的设备或者系统认定上报的信号为无效信号。
步骤S102:当检测到所述光模块输出的在位信号从低电平变为高电平时,将所述在位信号设置为高电平,并清零所述计时器;
光模块光信号出现毛刺时,光模块在位信号会出现电平高低变换,处于不稳定的状态。光模块在在位信号从在位的低电平,变化为表示不在位的高电平时,则认为出 现了光信号的毛刺,将光模块在位信号设置为高电平,提供给使用光模块的设备或系统,并且清除已经计时的计时器。
步骤S104:当所述计时器的计时到达预设时长时,将所述在位信号设置为低电平;
光模块出现光模块信号毛刺时,经过一段时间维修或加载,光模块在位信号会趋于稳定,不会出现毛刺。经过该预先设定的时长,则认为光模块在位信号没有毛刺,不需要滤除毛刺,可以将正常的在位信号输出给其他设备,所以将在位信号设置为低电平。
其中,在上述方法中,所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效。
光模块在位信号表示光模块是否在位,当光模块在位信号设置为高电平的情况下,本发明的实施例表明光模块的光信号丢失信号出现了毛刺,该信号对于使用信号的设备或系统就是无效的。
在优选实施过程中,在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效可以包括:当光模块输出的在位信号为高电平表示不在位,且光模块光信号丢失信号为高电平表示无效时,所述光模块光信号丢失信号与所述光模块输出的在位信号进行逻辑或处理。光模块在位信号online高电平1表示不在位,低电平0表示在位。光信号丢失信号los高电平1表示光信号丢失,低电平0表示光信号正常。在光模块在位信号online是高电平1时,光信号丢失信号los与其进行逻辑或处理,得到光信号丢失信号为高电平1,根据los信号高电平的定义,该信号无效。
本发明实施例提供的方法,通过对光模块的在位信号进行判断,设置一段时间周期N用于判断光模块从插入到是否上电正常工作的时间,在光模块从插入开始计时,在到时间周期N到达之前,上报光模块仍然处于不在位阶段,同时对光信号丢失信号做无效判断。当时间周期N到达以后,正常实时上报光模块的光模块在位信号,光信号丢失信号。有效的解决了光模块插拔阶段的机械抖动带来的信号毛刺和信号不稳定问题,不需要增加额外的毛刺滤波处理,有效地滤除了光模块光信号丢失信号的毛刺,不会产生额外的时延。
参考图1所示的步骤,为了能够滤除光信号发送失败信号的毛刺并避免产生时延问题,在本实施例的一个优选实例中还通过参考在位信号的方式来滤除光信号发送失败信号的毛刺,例如,在所述在位信号设置为高电平的情况下,确定光模块输出的发送失败信号无效。
光模块在位信号表示光模块是否在位,当光模块在位信号设置为高电平的情况下,本发明的实施例表明光模块的发送失败信号出现了毛刺,该信号对于使用信号的设备或系统就是无效的。
在优选实施过程中,在所述在位信号设置为高电平的情况下,所述光模块的发送失败信号无效可以包括:当光模块输出的在位信号为高电平表示不在位,且光模块发送失败信号为高电平表示无效时,所述光模块失败信号与所述光模块输出的在位信号进行逻辑或处理。光模块在位信号online高电平1表示不在位,低电平0表示在位。发送失败信号txfault高电平1表示发送异常,低电平0表示发送正常。在光模块在位信号online是高电平1时,光信号发送失败信号txfault与其进行逻辑或处理,得到发送失败信号为高电平1,根据发送失败信号高电平的定义,该信号无效。
在优选的实施过程中,上述光模块输出的在位信号从高电平变为低电平可以包括:当光模块插入时,所述光模块输出的在位信号从高电平变为低电平。
本发明实施例,通过对光模块的在位信号进行判断,设置一段时间周期N用于判断光模块从插入到是否上电正常工作的时间,在光模块从插入开始计时,在到时间周期N到达之前,上报光模块仍然处于不在位阶段,同时对光信号丢失信号、发送失败信号做无效判断。当时间周期N到达以后,正常实时上报光模块的光模块在位信号,光信号丢失信号,发送失败信号。有效的解决了光模块插拔阶段的机械抖动带来的信号毛刺和信号不稳定问题,不需要增加额外的毛刺滤波处理,有效地滤除了光模块光信号丢失信号的毛刺,不会产生额外的时延。
本实施例还提供了一种光信号丢失信号的毛刺滤除装置。图2是根据本发明实施例的一种光信号丢失信号的毛刺滤除装置的示意图。如图2所示,该装置可以包括如下模块:
滤波模块20,设置为当检测到光模块输出的在位信号从高电平变为低电平时,将所述在位信号设置为高电平,并启动计时器;以及设置为当检测到所述光模块输出的在位信号从低电平变为高电平时,将所述在位信号设置为高电平,清零所述计时器;以及当所述计时器的计时到达预设时长时,将所述在位信号设置为低电平;
逻辑模块22耦合至滤波模块20,设置为在所述在位信号设置为高电平的情况下,确定所述光模块的光信号丢失信号无效。
在优选的实施方式中,所述的在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效可以包括:当光模块输出的在位信号为高电平表示不在位, 且光模块光信号丢失信号为高电平表示光信号无效时,所述光模块光信号丢失信号与所述光模块输出的在位信号进行逻辑或处理。
在优选的实施方式中,所述逻辑模块22还可以设置为,在所述在位信号设置为高电平的情况下,确定光模块输出的发送失败信号设置为无效高电平。
在优选的实施方式中,所述的在所述在位信号设置为高电平的情况下,确定光模块输出的发送失败信号为无效可以包括:当光模块输出的在位信号为高电平表示不在位,且光模块发送失败信号为高电平表示无效时,所述光模块发送失败信号与所述光模块输出的在位信号进行逻辑或处理。
在优选的实施方式中,上述光模块输出的在位信号从高电平变为低电平可以包括:当光模块插入时,所述光模块输出的在位信号从高电平变为低电平。
下面结合优选实施例对本发明的实施例进行描述。
图3是根据本发明优选实施例的一种光信号丢失信号的毛刺滤除装置的示意图。
常见的光模块有:SFP、SFP+、GBIC、XFP等。图3所示的光模块装置均可以适用于现有光模块。根据图3,我们设置如下信号类型和名称,用于描述本实施例:
系统设备:使用光模块的设备,如交换机,路由器等。
逻辑设备:设置为实现本发明优选实施例所描述的方法和装置的设备,可以是可编程逻辑器件,如CPLD(Complex Programmable Logic Device复杂可编程逻辑器件)或者FPGA(Field-Programmable Gate Array,现场可编程门阵列)等,也可以是软件编码,甚至是硬件和软件的结合体。
该逻辑设备至少可以包括滤波模块:是为了实现本发明优选实施例所描述的方法和装置的逻辑代码,主要用于接收光模块的光信号在位信号,根据本发明优选实施例提供的方法,设置输出的光模块在位信号。逻辑模块:设置为根据光模块在位信号处理光模块光信号丢失信号和光模块发送失败信号。
进入逻辑设备模块的光模块在位信号输入online-in:由光模块直接产生,并送入本发明优选实施例所描述的方法与装置内的信号
进入逻辑设备模块的光模块光信号丢失信号输入los-in:由光模块直接产生,并送入本发明优选实施例所描述的方法与装置内的信号。
进入逻辑设备模块的光模块发送失败信号输入txfault-in:由光模块直接产生,并送入本发明优选实施例所描述的方法与装置内的信号。
逻辑设备模块输出的光模块在位信号输出online-out:由本发明优选实施例所描述的方法与装置内的处理过后的信号。
逻辑设备模块输出的光模块光信号丢失信号输出los-out:由本发明优选实施例所描述的方法与装置内的处理过后的信号。
逻辑设备模块输出的光模块发送失败信号输出tx-fault:由本发明优选实施例所描述的方法与装置内的处理过后的信号。
结合该装置,阐述该方法,可以包括如下步骤:
步骤一,选择一个时钟信号clk,设置一个计数器count,设置为判决光模块从插入到上电正常工作的时钟周期N。
步骤二,将光模块在位信号输入online-in作为判决标准。如果逻辑检测到光模块在位信号输入为高电平,则设置计数器count清0,同时将光模块在位信号输出online-out设置为1。
步骤三,如果检测到光模块在位信号输入为低电平0,则计数器count开始计数,同时将光模块在位信号输出online-out设置为1。
如果检测到光模块在位信号输入online-in保持低电平0,并且计数器count计数到N,将光模块在位信号输出online-out设置为0。如果在计数过程中发现光模块在位信号输入online-in出现高电平。则停止计数,返回步骤二。
步骤四,将得到的光模块在位信号输出online-out与光信号丢失信号输入los-in和光模块发送失败信号输入txfault-in进行逻辑或处理,从而得到光模块光信号丢失信号输出los-out和光模块发送失败信号输出tx-fault。
步骤五,将得到的光模块丢失信号输出los-out和光模块发送失败信号输出txfault-out给系统设备使用。
与现有技术相比,本发明优选实施例通过上述的优选实施例有效地解决了光模块拔插阶段由于机械抖动及光模块芯片初始化过程带来的信号毛刺和信号不稳定情况,同时,在光模块在位的阶段,可以实时上报光模块光信号丢失信号los以及光模块发送失败信号txfault,不会带来普通滤毛刺技术的时延问题。
图4是根据本发明优选实施例的另一种光信号丢失信号毛刺滤除方法的流程图;图4所示为本发明实施的示意图,结合附图进行说明。
光模块拔插阶段所带来的毛刺以及信号不稳定问题主要是由于光模块本身拔插时候的机械抖动以及光模块芯片上电初始化阶段的信号不稳定,为了解决这个问题,我们可以从检测到光模块在位的第一个低电平开始,设置一段光模块信号无效时间N,在此段时间内认为光模块在位信号online,光模块光信号丢失信号los以及光模块发送失败信号txfault均为无效信号,即设置逻辑模块输出的光模块在位信号online-out为高电平,光信号丢失信号los-out为高电平,光模块发送失败信号txfault-out为高电平。在光模块的正常在位阶段,光模块光信号丢失信号los以及光模块发送失败信号txfault正常上报。
光模块直接送入逻辑设备的光模块在位信号输入online-in,光模块光信号丢失信号输入los-in以及光模块发送失败信号输入txfault-in。逻辑模块通过增加对光模块在位信号输入online-in的去毛刺以及延迟处理后,得到送出逻辑模块的光模块在位信号输出online-out,光模块光信号丢失信号输出以及光模块发送失败信号输出txfault-out。用于提供给系统设备使用。
根据图4所示为本发明优选实施例的流程图,如图4所示:
步骤401:为逻辑起始阶段,设置逻辑模块输出的光模块在位信号online-out为1,count计数器为0。
步骤402:检测光模块在位信号输入online-in的电平是否为高电平,即逻辑信号是否1。
步骤403:如果光模块在位信号输入online为1,表明光模块不在位,设置online-out为1,count计数器为0。
步骤404:如果光模块在位信号输入online-in为0,判断计时器是否已经计时到预先设置的时长N。
步骤405:为当检测到光模块在位信号输入online-in为0电平时,表明光模块插入,开始计数count=count+1,设置光模块在位信号输出online-out为1。
步骤406:为当检测到光模块在位信号输入online-in为0电平时并且计数器计数到预先设置的时长N时,表明光模块插入时间超过设定的用于判决光模块从插入到上 电正常工作的时间,设置count停止计数,同时设置光模块在位信号输出online-out为0。
当在计数器计数过程并且没有计数到N,再次检测到光模块在位信号输入online-in为1电平时表明存在干扰信号,前面的计数无效,重新开始步骤402。
通过上述的逻辑处理我们会得到一个稳定的没有拔插毛刺和异常信号的光模块在位信号online-out,将该信号与光模块光信号丢失信号los_in以及光模块发送失败信号txfault-in进行或处理,我们就得到了稳定的没有拔插毛刺的光模块光信号丢失信号los-out以及光模块发送失败信号txfault-out。
图5是根据本发明优选实施例的一种光信号丢失信号的毛刺滤除方法中的光信号时序图。由图5可见,时钟clk为系统时钟信号,光模块在位信号输入online-in为光模块直接提供给逻辑模块的光模块在位信号,计时器count为逻辑模块的计数器信号,光模块在位信号输出online-out为经过逻辑模块处理后提供给系统设备的光模块在位信号。N表示逻辑模块设置的用于判决光模块从插入到上电正常工作的时钟周期。
(1)501阶段表示光模块插入之前,光模块在位信号输入online-in信号为高电平,逻辑模块在此阶段,计数器count为0,光模块在位信号输出online-out为高电平。
(2)502阶段表示光模块插入,此时光模块在位信号输入online-in信号变为为低电平,逻辑模块count开始计数,,光模块在位信号输出online-out为高电平。
(3)503阶段表示光模块插入时机械抖动带来的光模块在位信号输入online-in信号不稳定阶段,此时光模块在位信号输入online-in信号存在毛刺,高低电平跳变,逻辑模块计数器count重新变为0,光模块在位信号输出online-out为高电平。
(4)504阶段表示光模块插入稳定阶段,此时光模块在位信号输入online-in信号稳定保持为低电平,但此时,光模块由于芯片上电初始化,光模块光信号丢失信号光信号丢失信号输出los-out以及光模块发送失败信号输出txfault-out为不稳定状态,逻辑模块计数器count开始计数,光模块在位信号输出online-out为高电平。
(5)505阶段表示计数器count计数到达N,光模块初始化完成,各信号均处于稳定阶段,此时光模块在位信号输入online-in信号稳定保持为低电平,计数器count保持count=N阶段,光模块在位信号输出online-out为低电平。
下面将结合一个实例进行说明。
使用SFP光模块的交换机设备,采用本发明优选实施例所提供的方法。根据日常维护经验和光模块设计参数,评估光模块从插入交换机设备到上电正常工作的时间,预先设置该段时间段为500ms。
(1)当光模块插入瞬间,检测到光模块在位信号输入online-in从1变为0,根据本发明优选实施例提供方法,在预先设置时间500ms。在此期间,我们认为光模块信号存在毛刺,需要过滤,将在位信号输出设置1,则上报在位信号输出online-out为1表示不在位,丢失信号、发送失败信号与在位信号进行逻辑处理,得到光信号丢失信号输出los-out为1表示无效,发送失败信号输出txfault-out为1表示无效。
(2)同时开始计数500ms,如果在500ms内检测到在位信号输入online-in有0->1->0的电平变化,则认为该信号存在毛刺,清零计时器,并且将在位信号输出online-out设置为1。
(3)从再次检测到在位信号输入online-in为0电平,重新开始计时。当计时检测到上报在位信号输入online-in保持为0且稳定的500ms后,设置在位信号输出online-out为0,表示在位,根据在位信号对丢失信号、发送失败信号进行逻辑处理,上报给交换机设真实的光信号丢失信号输出los-out,发送失败信号输出txfault-out。
在光模块正常在位阶段,在位信号输出online-out保持为0,正常且实时上报实际的光信号丢失信号输出los-out,发送失败信号输出txfault-out。
(4)在光模块拔出后,检测到位信号输入online-in为1,则上报在位信号online-in为1表示不在位,光信号丢失信号输入los_in为1表示无效,发送失败信号输入txfault-in为1表示无效。
显然,以上所述仅为本发明的优选实施例而已,并不用于限制本发明。本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种光信号丢失信号的毛刺滤除方法及装置具有以下有益效果:不需要增加额外的毛刺滤波处理,有效地解决了光模块的光信号丢失信号的毛刺滤除方法存在时延的问题,避免了在滤除光模块的光信号丢失信号的毛刺时产生的时延。

Claims (10)

  1. 一种光信号丢失信号毛刺滤除方法,包括:
    当检测到光模块输出的在位信号从高电平变为低电平时,将所述在位信号设置为高电平,并启动计时器;
    当检测到所述光模块输出的在位信号从低电平变为高电平时,将所述在位信号设置为高电平,并清零所述计时器;
    当所述计时器的计时到达预设时长时,将所述在位信号设置为低电平;
    其中,在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效。
  2. 根据权利要求1所述的方法,其中,所述的在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效包括:
    当光模块输出的在位信号为高电平表示不在位,且光模块光信号丢失信号为高电平表示无效时,所述光模块光信号丢失信号与所述光模块输出的在位信号进行逻辑或处理。
  3. 根据权利要求1所述的方法,其中,还包括:
    在所述在位信号设置为高电平的情况下,光模块输出的发送失败信号无效。
  4. 根据权利要求3所述的方法,其中,所述的在所述在位信号设置为高电平的情况下,光模块输出的发送失败信号为无效包括:
    当光模块输出的在位信号为高电平表示不在位,且光模块发送失败信号为高电平表示无效时,所述光模块发送失败信号与所述光模块输出的在位信号进行逻辑或处理。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述光模块输出的在位信号从高电平变为低电平包括:
    当光模块插入时,所述光模块输出的在位信号从高电平变为低电平。
  6. 一种光信号丢失信号的毛刺滤除装置,包括:
    滤波模块,设置为当检测到光模块输出的在位信号从高电平变为低电平时,将所述在位信号设置为高电平,并启动计时器;
    所述滤波模块,还设置为当检测到所述光模块输出的在位信号从低电平变为高电平时,将所述在位信号设置为高电平,,清零所述计时器;
    所述滤波模块,还设置为当所述计时器的计时到达预设时长时,将所述在位信号设置为低电平;
    逻辑模块,设置为在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效。
  7. 根据权利要求6所述的装置,其中,所述的在所述在位信号设置为高电平的情况下,所述光模块的光信号丢失信号无效包括:
    当光模块输出的在位信号为高电平表示不在位,且光模块光信号丢失信号为高电平表示光信号无效时,所述光模块光信号丢失信号与所述光模块输出的在位信号进行逻辑或处理。
  8. 根据权利要求6所述的装置,其中,所述逻辑模块还设置为:
    在所述在位信号设置为高电平的情况下,光模块输出的发送失败信号设置为无效高电平。
  9. 根据权利要求8所述的方法,其中,所述的在所述在位信号设置为高电平的情况下,光模块输出的发送失败信号为无效包括:
    当光模块输出的在位信号为高电平表示不在位,且光模块发送失败信号为高电平表示无效时,所述光模块发送失败信号与所述光模块输出的在位信号进行逻辑或处理。
  10. 根据权利要求6至9中任一项所述的装置,其中,所述光模块输出的在位信号从高电平变为低电平包括:
    当光模块插入时,所述光模块输出的在位信号从高电平变为低电平。
PCT/CN2015/072257 2014-11-13 2015-02-04 一种光信号丢失信号的毛刺滤除方法及装置 WO2016074350A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15858578.6A EP3220557B1 (en) 2014-11-13 2015-02-04 Burr removing method and apparatus for optical signal loss signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410639704.3 2014-11-13
CN201410639704.3A CN105656546B (zh) 2014-11-13 2014-11-13 一种光信号丢失信号的毛刺滤除方法及装置

Publications (1)

Publication Number Publication Date
WO2016074350A1 true WO2016074350A1 (zh) 2016-05-19

Family

ID=55953650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072257 WO2016074350A1 (zh) 2014-11-13 2015-02-04 一种光信号丢失信号的毛刺滤除方法及装置

Country Status (3)

Country Link
EP (1) EP3220557B1 (zh)
CN (1) CN105656546B (zh)
WO (1) WO2016074350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381806A (zh) * 2021-05-27 2021-09-10 深圳市极致兴通科技有限公司 一种信号监测方法、装置、光模块及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947777B (zh) * 2017-11-20 2021-06-22 青岛海信宽带多媒体技术有限公司 光模块的复位电路及光模块、光网络终端
CN109995436B (zh) * 2017-12-29 2021-08-31 北京华为数字技术有限公司 光线路终端的单板及光线路终端
CN108667515B (zh) * 2018-04-23 2020-01-14 新华三技术有限公司 端口配置方法及通信设备
CN109495163A (zh) * 2018-12-17 2019-03-19 周阳 一种多通道模块信号丢失告警处理装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076005A1 (en) * 2005-09-30 2007-04-05 Knepper Lawrence E Robust hot plug detection for analog displays using EDID
US20080116940A1 (en) * 2006-09-29 2008-05-22 Wisepal Technologies, Inc. Glitch suppressing apparatus
CN101568237A (zh) * 2009-05-19 2009-10-28 中兴通讯股份有限公司 一种消除信号毛刺的方法及装置
CN101896048A (zh) * 2010-07-06 2010-11-24 中兴通讯股份有限公司 单板插拔的保护方法和装置
CN102955733A (zh) * 2012-11-12 2013-03-06 中兴通讯股份有限公司 一种单板热插拔检测方法及装置
CN103399254A (zh) * 2013-08-21 2013-11-20 迈普通信技术股份有限公司 板卡在位的检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915459B2 (en) * 2001-03-27 2005-07-05 Texas Instruments Incorporated Active failsafe detection for differential receiver circuits
JP5399307B2 (ja) * 2010-03-29 2014-01-29 株式会社フジクラ Los信号補正装置、los信号補正方法、los信号生成装置、及び、光受信器
CN104104444B (zh) * 2013-04-09 2016-08-03 深圳新飞通光电子技术有限公司 一种los噪声滤波方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076005A1 (en) * 2005-09-30 2007-04-05 Knepper Lawrence E Robust hot plug detection for analog displays using EDID
US20080116940A1 (en) * 2006-09-29 2008-05-22 Wisepal Technologies, Inc. Glitch suppressing apparatus
CN101568237A (zh) * 2009-05-19 2009-10-28 中兴通讯股份有限公司 一种消除信号毛刺的方法及装置
CN101896048A (zh) * 2010-07-06 2010-11-24 中兴通讯股份有限公司 单板插拔的保护方法和装置
CN102955733A (zh) * 2012-11-12 2013-03-06 中兴通讯股份有限公司 一种单板热插拔检测方法及装置
CN103399254A (zh) * 2013-08-21 2013-11-20 迈普通信技术股份有限公司 板卡在位的检测方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381806A (zh) * 2021-05-27 2021-09-10 深圳市极致兴通科技有限公司 一种信号监测方法、装置、光模块及存储介质

Also Published As

Publication number Publication date
EP3220557A4 (en) 2018-08-08
EP3220557B1 (en) 2019-11-20
CN105656546A (zh) 2016-06-08
CN105656546B (zh) 2019-04-26
EP3220557A1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
WO2016074350A1 (zh) 一种光信号丢失信号的毛刺滤除方法及装置
TWI530124B (zh) 訊息事件損失後可自動回復之網路裝置與方法
CN106789386B (zh) 检测通信总线上错误的方法以及用于网络系统的检错器
WO2016086582A1 (zh) 信号检测方法及装置
WO2016150015A1 (zh) 一种掉电告警的处理方法、装置及终端
WO2016188187A1 (zh) 无源光网络告警检测方法及装置
US9059899B2 (en) Method and system for interrupt throttling and prevention of frequent toggling of protection groups in a communication network
WO2016187979A1 (zh) 双向转发检测bfd报文的发送方法及装置
CN102045204A (zh) 一种故障处理系统及方法
CN107222256B (zh) 一种基于fpga的srio光纤链路在线重链接的实现方法
US20210028856A1 (en) Autonomous failure recovery method and system for fiber-optic communication system
WO2012094951A1 (zh) 光模块访问处理方法及装置
WO2019056912A1 (zh) 一种otn支路板卡的时钟处理装置及方法
WO2014040470A1 (zh) 告警消息的处理方法及装置
CN103716305B (zh) 一种用于无源光网络系统的智能防攻击方法
CN103391488B (zh) 一种无源光网络中智能释放带宽的方法
CN108616461B (zh) 一种策略切换方法及装置
CN102684955B (zh) 1G Ethernet与OC48网络自适应接入系统和方法
CN1972167B (zh) 点对多点接入网及增强其安全性的方法和分支/耦合器
CN104283692A (zh) Ptn环断电保护系统和方法
RU2675213C2 (ru) Способ идентификации состояния оптического модуля в оптическом сетевом блоке, оптический сетевой блок и носитель данных
TW201325108A (zh) 通信障礙檢出裝置
CN116828085B (zh) 光口速率及协议的自适应配置方法及装置
CN202735949U (zh) 一种mcr控制器用双cpu稳定复位装置
CN102684956B (zh) 一种自适应10Gbps网络接入系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015858578

Country of ref document: EP