WO2016074258A1 - 集成成像显示装置及其背光模块 - Google Patents

集成成像显示装置及其背光模块 Download PDF

Info

Publication number
WO2016074258A1
WO2016074258A1 PCT/CN2014/091411 CN2014091411W WO2016074258A1 WO 2016074258 A1 WO2016074258 A1 WO 2016074258A1 CN 2014091411 W CN2014091411 W CN 2014091411W WO 2016074258 A1 WO2016074258 A1 WO 2016074258A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
pinhole
array
point
backlight module
Prior art date
Application number
PCT/CN2014/091411
Other languages
English (en)
French (fr)
Inventor
陈剑鸿
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/407,460 priority Critical patent/US9645402B2/en
Publication of WO2016074258A1 publication Critical patent/WO2016074258A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/10Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images using integral imaging methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night

Definitions

  • the present invention relates to the field of stereoscopic display technologies, and in particular, to an integrated imaging display device and a backlight module thereof.
  • stereoscopic display technology With the improvement of stereoscopic display technology, many brands of 3D displays have realized the naked-eye stereoscopic display function, that is, it is no longer necessary to wear accessories such as 3D glasses, and the effect of 3D stereo is directly observed by the human eye. But at the current stage, stereoscopic display technology needs to be improved. When the frequency of image change is large, the current 3D display is not very smooth when the 3D image is changed, which is easy to give the viewer a feeling of dizziness, and the viewer would very much like to see the 2D image. Therefore, it is necessary to design a 2D/3D switchable display.
  • 2D/3D switchable displays have been invented.
  • the invention achieves 2D/3D switching by adjusting a liquid crystal light valve inside the display.
  • a liquid crystal light valve is used in the manufacture of a display, the manufacturing cost is large, and such a display is put on the market and is unacceptable to most consumers.
  • the technical problem to be solved by the present invention is to provide an integrated imaging display device and a backlight module thereof, which can realize 2D/3D switchable and reduce the production cost of the 2D/3D switchable display.
  • an integrated imaging display device comprising a switchable backlight module and a liquid crystal display panel, wherein the switchable backlight module switches in at least a first working mode and a second working mode
  • the first working mode is a dot matrix backlight formed by the point source array, so that the display device realizes 3D display
  • the second working mode is a surface light source backlight, so that the display device realizes 2D display
  • the surface light source backlight is a side-in backlight, including the light source and
  • the light guide plate the light source is an LED, an OLED or an electroluminescence light source, placed on the side of the light guide plate, at least on one side, connecting or surrounding the light guide plate to form a surface light source backlight
  • the point light source array and the surface light source switch are separately controlled
  • the switch is external
  • the circuit control switch controls the closing of the surface light source in different regions to realize the common display of 2D and 3D.
  • the switchable backlight module comprises a point light source array, a pinhole array unit and a pinhole surface light source which are sequentially stacked, and the pinhole surface light source is disposed adjacent to the liquid crystal display panel, and is provided with a first pinhole array and a pinhole array unit.
  • Providing a second pinhole array, each point light source in the point light source array, each pin hole in the first pinhole array, and each pin hole in the second pinhole array are arranged one by one, the pinhole array unit Only the pinhole portion is transparent, and the rest is opaque.
  • the pinhole surface light source When the backlight module is switched to operate in the first working mode, the pinhole surface light source does not emit light, and the point source array emits light; when the backlight module is switched to operate in the second working mode, The pinhole surface light source emits light and the point source array emits light at the same time.
  • the point source array is an LED, an OLED or an electroluminescent point source
  • the pinhole surface source is an LED, an OLED or an electroluminescent surface source
  • the pinholeized surface light source is hollowed out corresponding to the position of the pinhole array unit pinhole, and the shape and area of the notch are similar or even equal to the shape and area of the pinhole of the pinhole array.
  • the present invention provides an integrated imaging display device, including: a switchable backlight module and a liquid crystal display panel, wherein the switchable backlight module switches in at least a first working mode and a second working mode, the first work The mode is a dot matrix backlight formed by the point source array, so that the display device realizes 3D display, and the second working mode is a surface light source backlight, so that the display device realizes 2D display.
  • the switchable backlight module comprises a point light source array, a pinhole array unit and a pinhole surface light source which are sequentially stacked, and the pinhole surface light source is disposed adjacent to the liquid crystal display panel, and is provided with a first pinhole array and a pinhole array unit.
  • Providing a second pinhole array, each point light source in the point light source array, each pin hole in the first pinhole array, and each pin hole in the second pinhole array are arranged one by one, the pinhole array unit Only the pinhole portion is transparent, and the rest is opaque.
  • the pinhole surface light source When the backlight module is switched to operate in the first working mode, the pinhole surface light source does not emit light, and the point source array emits light; when the backlight module is switched to operate in the second working mode, The pinhole surface light source emits light and the point source array emits light at the same time.
  • the point source array is an LED, an OLED or an electroluminescent point source
  • the pinhole surface source is an LED, an OLED or an electroluminescent surface source
  • the point light source array and the pinhole surface light source switch are separately controlled, and the switch is an external circuit control switch, and the closed-opening of the pinholeized surface light source in different areas is controlled to realize the common display of 2D and 3D.
  • the pinholeized surface light source is hollowed out corresponding to the position of the pinhole array unit pinhole, and the shape and area of the notch are similar or even equal to the shape and area of the pinhole of the pinhole array.
  • the switchable backlight is a side-in backlight, including a light source and a light guide plate, and the light source is an LED, an OLED or an electroluminescence light source, and is disposed on a side of the light guide plate, at least on either side, connecting or surrounding the light guide plate, and the light guide plate An array of pinholes is provided on the surface to form a pinholeized surface light source.
  • another technical solution adopted by the present invention is to provide a backlight module integrated with an imaging display device, wherein the backlight module is switched in at least a first working mode and a second working mode, and the first working mode is a point.
  • the dot matrix backlight formed by the light source array enables the display device to realize 3D display, and the second working mode is a surface light source backlight, so that the display device realizes 2D display.
  • the backlight module comprises a point light source array, a pinhole array unit and a pinhole surface light source which are sequentially stacked, a first pinhole array is arranged on the pinhole surface light source, and a second pinhole array is arranged on the pinhole array unit.
  • Each point light source on the light source array, each pin hole in the first pinhole array, and each pin hole in the second pinhole array are arranged one by one, and the pinhole array unit only transmits the pinhole portion, and the rest
  • the pinhole surface light source does not emit light
  • the point light source array emits light
  • the pinhole surface light source and the point light source array simultaneously emit light.
  • the point source array is an LED, an OLED or an electroluminescent point source
  • the pinhole surface source is an LED, an OLED or an electroluminescent surface source
  • the backlight module is a side-in backlight module, comprising a light source and a light guide plate.
  • the light source is an LED, an OLED or an electroluminescence light source, and is disposed on a side of the light guide plate, at least on one side, connecting or surrounding the light guide plate, and the light guide plate.
  • An array of pinholes is provided on the surface to form a pinholeized surface light source.
  • the invention has the beneficial effects that the integrated imaging display device and the backlight module thereof are different from the prior art, and the backlight module of the device is a switchable backlight module, and the backlight is when the display device is 2D display.
  • the module is a surface light source backlight.
  • the backlight module is a dot matrix backlight.
  • the invention realizes switching of 2D/3D by switching the backlight.
  • the two backlights in the present invention can be formed by a common point light source matrix and a surface light source. Compared with the use of the liquid crystal light valve, the display device of the present invention has a lower production cost when the effects are similar.
  • FIG. 1 is a schematic structural view of a first embodiment of an integrated imaging display device of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of the integrated imaging display device of the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of the integrated imaging display device of the present invention.
  • FIG. 4 is a schematic diagram showing circuit control of a 2D and 3D simultaneous display of a clockwise surface light source in a third embodiment of the integrated imaging display device of the present invention
  • FIG. 5 is a schematic structural view of a first embodiment of a backlight module of an integrated imaging display device according to the present invention.
  • FIG. 6 is a schematic structural view of a pinhole surface light source formed by using a light guide plate in the first embodiment of the integrated imaging display device backlight module of the present invention.
  • FIG. 1 is a schematic structural view of a first embodiment of an integrated imaging display device of the present invention.
  • the display device 100 includes a switchable backlight module 101 and a liquid crystal display panel 102.
  • the liquid crystal display panel 102 is a device for displaying an image by utilizing electro-optical characteristics of liquid crystal molecules, and is widely used in devices such as mobile phones, computers, and liquid crystal televisions.
  • An array of element images is displayed on the liquid crystal display panel 102, which contains information of a three-dimensional scene.
  • the switchable backlight module 101 includes a point source array 1011 and a surface light source 1012.
  • the point light source array 1011 and the surface light source 1012 are sequentially stacked, and the surface light source 1012 is adjacent to the liquid crystal display panel 102.
  • the point source array 1011 is formed by arranging a plurality of point sources in a certain number of rows and columns, and each point source (not shown) in the point source array 1011 emits only one direction of light.
  • the surface light source 1012 is a monolithic illuminator, and the emitted light is disorderly and has no fixed direction.
  • the switchable backlight module 101 of the present embodiment has two modes of switching between the first working mode and the second working mode, and the display device 100 will use at least one of the modes in operation.
  • the first mode of operation of the display device 100 is a dot matrix backlight (not shown) formed by the illumination of the point source array unit 1011. As described above, each point light source of the point source array unit 1011 emits only one direction of light, and the fixed direction light emitted by the point sources can pass through the surface light source 1012 and be projected onto the liquid crystal display panel 102.
  • the element image array displayed on the liquid crystal display panel 102 includes information of a three-dimensional scene, and the light of a fixed direction emitted by the point light source of the point light source array 1011 is irradiated onto the liquid crystal display panel 102 to reconstruct a three-dimensional scene on the liquid crystal display panel 102.
  • a three-dimensional picture appears above, and the display device 100 implements 3D display in the first mode of operation.
  • the second mode of operation of the display device 100 is a surface light source backlight (not shown) formed by the surface light source 1012.
  • the direction of light emitted by the surface light source 1012 is disordered, and the illumination is directed in any direction.
  • the display device 100 is equivalent to a common 2D liquid crystal display. 100 achieves 2D display.
  • the backlight module of the integrated imaging display device provided by the present invention is a switchable backlight module.
  • the backlight module is a surface light source backlight
  • the backlight module For dot matrix backlighting.
  • the invention realizes switching of 2D/3D by switching the backlight.
  • the two kinds of backlights in the present invention are formed by a common point light source matrix and a surface light source, and the display device of the present invention is similar in effect when the effect is similar to that of a 2D/3D switchable display device using a liquid crystal light valve. Production costs will be much lower.
  • FIG. 2 is a schematic structural view of a second embodiment of the integrated imaging display device of the present invention.
  • the display device 200 includes a switchable backlight 201 and a liquid crystal display panel 202.
  • the liquid crystal display panel 202 is similar or even identical to the liquid crystal display panel in the above-described first embodiment, and details are not described herein again.
  • the switchable backlight 201 includes a point source array 2011, a pinhole array unit 2012, and a pinhole surface source 2013, wherein the point source array 2011, the pinhole array unit 2012, and the pinhole surface source 2013 are sequentially stacked.
  • the pinhole surface light source 2013 is disposed adjacent to the liquid crystal display panel 202.
  • the point source array 2011 is formed by a plurality of point light sources (not labeled) arranged in a certain number of rows and columns. When each point source emits light, the light is disordered and projected in an arbitrary direction.
  • the pinhole array unit 2012 is provided with a second pinhole array 20121. On the pinhole array 2012, each pinhole (not labeled) of the second pinhole array 20121 can transmit light, and the remaining portion is an opaque substance.
  • the pinhole surface light source 2013 is provided with a first pinhole array 20131, and the remaining portion of the pinhole surface light source 2013 except for each pinhole (not shown) of the first pinhole array 20131 is an illuminant.
  • both the point source array 2011 and the pinhole surface source 2013 use LED, OLED or electroluminescent light sources.
  • Each of the point light sources in the point source array 2011, each pinhole of the first pinhole array 20131 on the pinhole surface source 2013, and each pinhole of the second pinhole array 20121 on the pinhole array unit 2012 are one A corresponding setting, the three are aligned.
  • the switchable backlight module 201 When the display device 200 of the embodiment is in operation, the switchable backlight module 201 also has two working modes: a first working mode and a second working mode. When the switchable backlight module 201 operates in the first working mode, the pinhole surface light source 2013 of the switchable backlight module 201 does not emit light, and the point light source array 2011 emits light.
  • the pinhole surface light source 2013 and the point light source array 2011 of the switchable backlight module 201 are both illuminated, and generally still the surface light source illumination mode.
  • the first pinhole array 20131 is provided on the pinhole surface light source 2013, the light transmissive pinhole area is relatively small, and the lower point light source array 2011 is emitting light.
  • the switchable backlight module 201 is equivalent to an ordinary one. In the backlight, light is projected onto the liquid crystal display panel 202, and 2D display of the display device 200 is realized. In the present embodiment, by controlling the light emission of the pinhole surface light source 2013, switching of 2D/3D of the display device 200 can be achieved.
  • the pinholeized surface light source is turned off, and the light emitted by the point source of the point source array is filtered through the pinhole array unit and the double pinhole array on the pinhole surface light source. Only a small amount of light projected directly or at a slight angle to the liquid crystal display panel can be projected onto the liquid crystal display panel.
  • the light reconstructs the three-dimensional scene according to the three-dimensional scene information on the liquid crystal display panel, and realizes 3D display; After the surface light source is turned on, the entire switchable backlight is equivalent to an ordinary backlight, realizing a 2D display.
  • 2D/3D switchable is realized.
  • FIG. 3 is a schematic structural view of a third embodiment of the integrated imaging display device of the present invention
  • FIG. 4 is a second embodiment of the integrated imaging display device of the present invention, in which the 2D and 3D simultaneously display the hourly apertured surface light source.
  • the display device 300 includes a switchable backlight 301 and a liquid crystal display panel 302.
  • the liquid crystal display panel 202 is similar or even identical to the liquid crystal display panel in the above-described first embodiment, and details are not described herein again.
  • the switchable backlight 301 includes a point light source array 3011, a pinhole array unit 3012, and a pinhole surface light source 3013, and the arrangement of the three is similar or even the same as that in the second embodiment of the present invention.
  • the point source array 3011 includes a point source array unit 30111 and a first external circuit control switch 30112.
  • the pinhole surface source 3013 includes a pinhole surface source unit 30131 and a second external control switch 30132.
  • the first external circuit control switch 30112 is in the same circuit 31 as the point source array unit 30111
  • the second external circuit control switch 30132 is in the same circuit 32 as the pinhole surface source unit 30131.
  • Both the circuit 31 and the circuit 32 have independent power sources (not shown) for supplying power to the point source array unit 30111 and the pinhole surface source unit 30131, respectively, by the first external circuit control switch 30112 and the second external circuit control switch 30132. And the circuit 32 is turned on and off.
  • the switchable backlight module 301 When the display device 300 of the embodiment operates, the switchable backlight module 301 also has two working modes: a first working mode and a second working mode.
  • the switchable backlight module 301 When the switchable backlight module 301 is operating in the first mode of operation, the first external circuit control switch 30112 is closed and the second external circuit control switch 30132 is open. At this time, the point light source array unit 30111 emits light, the pinhole surface light source unit 30131 does not emit light, and the display device 300 displays in 3D.
  • the switchable backlight module 301 When the switchable backlight module 301 is operated in the second operation mode, the second external circuit control switch 30132 is closed, at which time the pinhole surface light source unit 30131 also emits light, and the display device 300 is in 2D display.
  • the switching of the 2D/3D mode of the display device 300 can be realized only by controlling the closing of the second external circuit control switch 30132.
  • the first external circuit control switch 30112 can be selectively turned off because only the pinhole surface light source unit 30131 needs to be illuminated in the 2D mode, and the first external circuit control switch 30112 can be turned off to save power.
  • the second external circuit control switch 30132 can control the light source on the pinhole surface light source 3013 on the pinhole surface light source unit 30131, such as the pinhole surface.
  • the light source 3013 is divided into a plurality of parts a1, a2, ... an, each part is connected in series with a switch, and then the parts are connected in parallel to the circuit.
  • the pinholeized surface light source 3013 can be controlled by the switches S1, S2, ..., Sn. Part of the power-on situation.
  • the pinhole surface light source 3013 By controlling the pinhole surface light source 3013 by these switches, the pinhole surface light source 3013 of a part of the area is illuminated, and the remaining area is not illuminated, so that the 2D and 3D display modes can be simultaneously present on the liquid crystal display panel 302.
  • the 2D/3D mode of the display device can be switched as long as the illumination of the pinhole surface light source is controlled, and the display device is displayed.
  • the switch of the point source array can be disconnected to turn off the power, which saves the power.
  • the switch controls the partial area of the pinhole surface light source, and some areas do not emit light, and the point light source array emits light.
  • the same liquid crystal display panel can be realized.
  • FIG. 5 is a schematic structural view of a first embodiment of an integrated imaging display device backlight module according to the present invention
  • FIG. 6 is a pinhole formed by using a light guide plate in the first embodiment of the integrated imaging display device backlight module of the present invention.
  • the backlight module 400 includes a point light source array unit 401, a pinhole array unit 402, a pinhole surface light source unit 403, a point light source array power control switch 404, and a pinhole surface light source power control switch 405.
  • the point source array unit 401, the pinhole array unit 402, and the pinhole surface light source unit 403 are similar or even identical to the point source array, the pinhole array, and the pinhole surface light source in the second embodiment of the front display device.
  • the point source array power control switch 404 controls the on/off of the power source (not shown) of the point source array unit 401
  • the pinhole surface source power control switch 405 controls the on/off of the power source (not labeled) of the pinhole surface source unit 403.
  • the integrated imaging display device (not shown) realizes 3D display, at which time the point source array power control switch 404 is closed, and the pinhole surface light source power control switch 405 is turned off.
  • the light emitted by each point source of the light source array unit 401 passes through the pinhole array unit 402 and the pinhole array provided on the pinhole surface light source unit 403, and is projected onto a liquid crystal display panel (not shown) according to the liquid crystal display panel.
  • the 3D scene information on the 3D scene is reconstructed above the liquid crystal display panel to realize 3D display; when the switchable backlight module works in the second working mode, the integrated imaging display device realizes 2D display, and the point light source array power control switch 404 is closed, the pinhole surface light source power control switch 405 is closed, and the light emitted by the pinhole surface light source unit 403 is directly projected onto the liquid crystal display panel from any direction, and the three-dimensional scene cannot be reconstructed from the three-dimensional scene information, and is still 2D display.
  • the pinhole surface light source 403 may be configured to form a light source, such as an LED, an OLED or an electroluminescent light source, to form a strip light source 4031, to be placed on at least one side of a light guide plate 4032, and to provide a light guide plate on the light guide plate 4032.
  • the pinhole array 40321, the pinholes of the light guide pinhole array 40321 are arranged in one-to-one correspondence with each pinhole of the pinhole array 402, and the pinhole surface light source 403 thus formed and the pinholes in the foregoing and all previous embodiments are provided.
  • the surface light source has the same function.
  • the backlight module provided by the embodiment can switch the display mode of the display device through the converter, and the pinholeized surface light source formed by the light source and the light guide plate can save the use of the electroluminescence light source to a greater extent. reduce manufacturing cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种集成成像显示装置(300)及其背光模块(301),该显示装置(300)包括:可切换背光模块(301)和液晶显示面板(302),其中,可切换背光模块(301)在至少第一工作模式和第二工作模式中切换,第一工作模式是点光源阵列(3011)形成的点阵背光,使得显示装置(300)实现3D显示,第二工作模式是面光源背光(3013),使得显示装置(300)实现2D显示。通过上述方式,能够以通过切换背光模块(301)的工作模式,实现2D/3D显示方式的切换。

Description

集成成像显示装置及其背光模块
【技术领域】
本发明涉及立体显示技术领域,特别是涉及一种集成成像显示装置及其背光模块。
【背景技术】
随着立体显示技术的提升,很多品牌的3D显示器已经实现了裸眼立体显示功能,即不再需要穿戴3D眼镜之类的附属品,直接用人眼观看到3D立体的效果。但是当前阶段,立体显示技术还有待完善。当出现图像变化频率较大的情况时,现阶段的3D显示器在3D图像变换时画面切换不是很流畅,容易给观看者带来晕眩的感觉,观看者会非常希望看到2D的图像。因此需要设计2D/3D可切换的显示器。
在立体显示领域,2D/3D可切换的显示器已经被发明。该发明是通过调节显示器内部的液晶光阀实现2D/3D切换的。但是在显示器制造时,使用液晶光阀时,制造的成本会很大,这种显示器投入市场是大多消费者难以接受的。
【发明内容】
本发明主要解决的技术问题是提供一种集成成像显示装置及其背光模块,能够实现2D/3D可切换,并降低2D/3D可切换显示器的生产成本。
为解决上述技术问题,本发明采用的另一个技术方案是:一种集成成像显示装置,包括可切换背光模块和液晶显示面板,可切换背光模块在至少第一工作模式和第二工作模式中切换,第一工作模式是点光源阵列形成的点阵背光,使得显示装置实现3D显示,第二工作模式是面光源背光,使得显示装置实现2D显示,面光源背光为侧入式背光,包括光源和导光板,光源为LED、OLED或电致发光光源,放置在导光板的侧边,为至少任意一边,连接或包围导光板形成面光源背光,点光源阵列和面光源开关单独控制,开关为外部电路控制开关,控制不同区域面光源的闭启实现2D和3D共同显示。
其中,可切换背光模块包括依序层叠的点光源阵列、针孔阵列单元以及针孔化面光源,针孔化面光源邻近液晶显示面板设置,并且设有第一针孔阵列,针孔阵列单元设有第二针孔阵列,点光源阵列中的每个点光源、第一针孔阵列中的每个针孔、第二针孔阵列中的每个针孔一一对应设置,针孔阵列单元只有针孔部分透光,其余部分不透光,可切换背光模块工作在第一工作模式时,针孔化面光源不发光,点光源阵列发光;可切换背光模块工作在第二工作模式时,针孔化面光源发光和点光源阵列同时发光。
其中,点光源阵列是LED、OLED或电致发光点光源;针孔化面光源是LED、OLED或电致发光面光源。
其中,针孔化面光源对应针孔阵列单元针孔的位置挖空,缺口的形状和面积与针孔阵列的针孔的形状和面积相近甚至相等。
为了解决以上问题,本发明提出了一种集成成像显示装置,包括:可切换背光模块和液晶显示面板,其中,可切换背光模块在至少第一工作模式和第二工作模式中切换,第一工作模式是点光源阵列形成的点阵背光,使得显示装置实现3D显示,第二工作模式是面光源背光,使得显示装置实现2D显示。
其中,可切换背光模块包括依序层叠的点光源阵列、针孔阵列单元以及针孔化面光源,针孔化面光源邻近液晶显示面板设置,并且设有第一针孔阵列,针孔阵列单元设有第二针孔阵列,点光源阵列中的每个点光源、第一针孔阵列中的每个针孔、第二针孔阵列中的每个针孔一一对应设置,针孔阵列单元只有针孔部分透光,其余部分不透光,可切换背光模块工作在第一工作模式时,针孔化面光源不发光,点光源阵列发光;可切换背光模块工作在第二工作模式时,针孔化面光源发光和点光源阵列同时发光。
其中,点光源阵列是LED、OLED或电致发光点光源;针孔化面光源是LED、OLED或电致发光面光源。
其中,点光源阵列和针孔化面光源开关单独控制,开关为外部电路控制开关,控制不同区域针孔化面光源的闭启实现2D和3D共同显示。
其中,针孔化面光源对应针孔阵列单元针孔的位置挖空,缺口的形状和面积与针孔阵列的针孔的形状和面积相近甚至相等。
其中,可切换背光为侧入式背光,包括光源和导光板,光源为LED、OLED或电致发光光源,放置在导光板的侧边,为至少任意一边,连接或包围导光板,在导光板表面设置针孔阵列,形成针孔化面光源。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种集成成像显示装置的背光模块,该背光模块在至少第一工作模式和第二工作模式中切换,第一工作模式是点光源阵列形成的点阵背光,使得显示装置实现3D显示,第二工作模式是面光源背光,使得显示装置实现2D显示。
其中,背光模块包括依次层叠的点光源阵列、针孔阵列单元以及针孔化面光源,针孔化面光源上设有第一针孔阵列,针孔阵列单元设有第二针孔阵列,点光源阵列上的每个点光源、第一针孔阵列中的每个针孔、第二针孔阵列中的每个针孔一一对应设置,针孔阵列单元只有针孔部分透光,其余部分不透光,第一背光模块工作时,针孔化面光源不发光,点光源阵列发光;切换到第二背光模块工作时,针孔化面光源和点光源阵列同时发光。
其中,点光源阵列是LED、OLED或电致发光点光源;针孔化面光源是LED、OLED或电致发光面光源。
其中,背光模块为侧入式背光模块,包括光源和导光板,光源为LED、OLED或电致发光光源,放置在导光板的侧边,为至少任意一边,连接或包围导光板,在导光板表面设置针孔阵列,形成针孔化面光源。
本发明的有益效果是:区别于现有技术的情况,本发明提供了一种集成成像显示装置及其背光模块,该装置的背光模块为可切换背光模块,当显示装置为2D显示时,背光模块为面光源背光,当显示装置为3D显示时,背光模块为点阵背光。本发明通过切换背光,实现了2D/3D的切换。且本发明中的两种背光,可以由普通常见的点光源矩阵和面光源形成,相比使用液晶光阀,在效果类似的情况下,本发明的显示装置的生产成本较低。
【附图说明】
图1是本发明集成成像显示装置第一实施方式的结构示意图;
图2是本发明集成成像显示装置第二实施方式的结构示意图;
图3是本发明集成成像显示装置的第三实施方式结构示意图;
图4是本发明集成成像显示装置的第三实施方式中2D和3D同时显示时针孔化面光源的电路控制示意图;
图5是本发明集成成像显示装置背光模块第一实施方式的结构示意图;
图6是本发明集成成像显示装置背光模块第一实施方式中使用导光板形成的针孔化面光源的结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
参阅图1,图1是本发明集成成像显示装置第一实施方式的结构示意图。该显示装置100包括:可切换背光模块101和液晶显示面板102。
其中,液晶显示面板102是利用液晶分子的电光学特性来显示影像的装置,广泛的应用于移动电话、电脑、液晶电视等设备中。液晶显示面板102上显示元素图像阵列,其中包含三维场景的信息。可切换背光模块101包括点光源阵列1011和面光源1012。点光源阵列1011和面光源1012依序层叠,且面光源1012邻近液晶显示面板102。点光源阵列1011是用若干点光源以一定的行列数排列形成阵列,且点光源阵列1011中的每个点光源(未标示)均只发出固定的一个方向的光。面光源1012为一整块发光体,所发出的光线杂乱无章,没有固定的方向。
本实施例的可切换背光模块101在显示装置100工作时,存在第一工作模式和第二工作模式两种模式可切换,且该显示装置100在工作中将至少使用其中的一种模式。显示装置100的第一工作模式是采用点光源阵列单元1011发光形成的点阵背光(图未示)。如前所述,点光源阵列单元1011的每个点光源均只发出固定一个方向的光,这些点光源发出的固定方向的光能透过面光源1012,进而投射到液晶显示面板102上,而液晶显示面板102上显示的元素图像阵列中包含三维场景的信息,点光源阵列1011的点光源发出的固定方向的光线照射到液晶显示面板102上,重构了三维场景,在液晶显示面板102的上方会出现三维画面,显示装置100在第一工作模式下实现了3D显示。显示装置100的第二工作模式是采用面光源1012发光形成的面光源背光(图未示)。面光源1012发出的光方向杂乱无章,照射向任意方向,这样的光线照射到液晶显示面板102上的三维场景后,不起任何作用,此时的显示装置100相当于普通的2D液晶显示器,显示装置100实现了2D显示。
区别于现有技术的情况,本发明提供的集成成像显示装置的背光模块为可切换背光模块,当显示装置为2D显示时,背光模块为面光源背光,当显示装置为3D显示时,背光模块为点阵背光。本发明通过切换背光,实现了2D/3D的切换。且本发明中的两种背光,是普通常见的点光源矩阵和面光源形成,相比使用液晶光阀实现2D/3D可切换的显示装置,在效果类似的情况下,本发明的显示装置的生产成本会低得多。
参阅图2,图2是本发明集成成像显示装置第二实施方式的结构示意图。该显示装置200包括可切换背光201和液晶显示面板202。
其中,液晶显示面板202与上述实施方式1中的液晶显示面板相似甚至相同,这里不再赘述。可切换背光201包括点光源阵列2011、针孔阵列单元2012和针孔化面光源2013,其中点光源阵列2011、针孔阵列单元2012和针孔化面光源2013依序层叠。针孔化面光源2013邻近液晶显示面板202设置。
点光源阵列2011是用若干点光源(未标示)以一定的行列数排列形成,每个点光源发光时,光线是杂乱无章的,会投射向任意的方向。针孔阵列单元2012上设有第二针孔阵列20121,在针孔阵列2012上,第二针孔阵列20121的每一个针孔(未标示)可透光,其余部分为不透光物质。针孔化面光源2013上设置有第一针孔阵列20131,在针孔化面光源2013上除了第一针孔阵列20131的每个针孔(未标示)外其余部分为发光体。本实施例中,点光源阵列2011和针孔化面光源2013均采用LED、OLED或电致发光的光源。点光源阵列2011中的每个点光源、针孔化面光源2013上的第一针孔阵列20131的每个针孔及针孔阵列单元2012上第二针孔阵列20121的每个针孔为一一对应设置,三者对齐。
本实施例的显示装置200工作时,可切换背光模块201也存在两种工作模式:第一工作模式和第二工作模式。当可切换背光模块201工作在第一工作模式时,可切换背光模块201的针孔化面光源2013不发光,点光源阵列2011发光,此时点光源阵列2011中的每个点光源发出的光投射向针孔阵列单元2012和针孔化面光源2013,点光源阵列2011中的每个点光源发出的光穿过第二针孔阵列20121和第一针孔阵列20131,这些光线从第一针孔阵列20131穿过后,投射在液晶显示面板202上,根据液晶显示面板202上的三维场景信息,在液晶显示面板202上方重构三维场景,实现了显示装置200的3D显示。当可切换背光模块201工作在第二工作模式时,可切换背光模块201的针孔化面光源2013和点光源阵列2011都发光,总体上仍然是面光源发光方式。针孔化面光源2013上虽然设置了第一针孔阵列20131,但是透光的针孔面积都比较小,而且下方的点光源阵列2011在发光,此时的可切换背光模块201相当于普通的背光,光线投射到液晶显示面板202上,实现了显示装置200的2D显示。在本实施例中,通过控制针孔化面光源2013的发光情况,可实现显示装置200的2D/3D的切换。
区别于现有技术,本实施方式提供的显示装置中,关闭针孔化面光源,点光源阵列的点光源发出的光线通过针孔阵列单元和针孔化面光源上的双重针孔阵列的筛选,只有少数直射向或者呈微小角度投射向液晶显示面板的光线能投射到液晶显示面板上,这些光线根据液晶显示面板上的三维场景信息,重构了三维场景,实现了3D显示;打开针孔化面光源后整个可切换背光相当于普通背光,实现了2D显示。通过控制针孔化面光源的闭启,实现了2D/3D可切换。
参阅图3和图4,图3是本发明集成成像显示装置第三实施方式的结构示意图,图4是本发明集成成像显示装置第三实施方式中2D和3D同时显示时针孔化面光源的电路控制示意图。显示装置300包括:可切换背光301和液晶显示面板302。
其中,液晶显示面板202与上述实施方式1中的液晶显示面板相似甚至相同,这里不再赘述。可切换背光301包括点光源阵列3011、针孔阵列单元3012和针孔化面光源3013,三者的设置方式和本发明的第二实施方式中的设置方式相似甚至相同。
点光源阵列3011包括点光源阵列单元30111和第一外部电路控制开关30112,针孔化面光源3013包括针孔化面光源单元30131和第二外部控制开关30132。第一外部电路控制开关30112与点光源阵列单元30111处于同一电路31,第二外部电路控制开关30132与针孔化面光源单元30131处于同一电路32。电路31和电路32均有独立电源(未标示)为点光源阵列单元30111和针孔化面光源单元30131提供电量,分别由第一外部电路控制开关30112和第二外部电路控制开关30132控制电路31和电路32的通断。
本实施例的显示装置300工作时,可切换背光模块301也存在两种工作模式:第一工作模式和第二工作模式。当可切换背光模块301工作在第一工作模式时,将第一外部电路控制开关30112闭合,第二外部电路控制开关30132断开。此时点光源阵列单元30111发光,针孔化面光源单元30131不发光,显示装置300为3D显示。当可切换背光模块301工作在第二工作模式时,将第二外部电路控制开关30132闭合,此时针孔化面光源单元30131也发光,显示装置300为2D显示。本实施方式中,只需控制第二外部电路控制开关30132的闭启,即可实现显示装置300的2D/3D模式的切换。当切换到2D模式时,可以选择断开第一外部电路控制开关30112,因为2D模式下仅需针孔化面光源单元30131发光即可,断开第一外部电路控制开关30112可以节省电能。
同时,在本实施方式中,第二外部电路控制开关30132如果能够在针孔化面光源单元30131上分区域的控制针孔化面光源3013上的光源的亮与灭,如将针孔化面光源3013分成若干部分a1、a2、……an,每一部分串联一个开关后在将各部分并联接入电路中,此时通过开关S1、S2、……Sn即可控制针孔化面光源3013各个部分的通电情况。通过这些开关控制针孔化面光源3013,使一部分区域的针孔化面光源3013发光,剩余区域不发光,即可实现2D和3D显示方式在液晶显示面板302上同时存在。
区别于现有技术,本实施方式提供的显示装置,在点光源阵列发光的情况下,只要控制针孔化面光源的发光情况,即可实现显示装置的2D/3D模式的切换,同时在显示装置2D显示时,可以选择断开点光源阵列的开关使之断电,起到了节省电能的效果,同时使用开关控制针孔化面光源的部分区域发光,部分区域不发光,在点光源阵列发光的情况下可实现2D与3D共存于同一液晶显示面板。
参阅图5和图6,图5是本发明集成成像显示装置背光模块第一实施方式的结构示意图,图6是本发明集成成像显示装置背光模块第一实施方式中使用导光板形成的针孔化面光源的结构示意图。该背光模块400包括点光源阵列单元401、针孔阵列单元402、针孔化面光源单元403、点光源阵列电源控制开关404和针孔化面光源电源控制开关405。
其中,点光源阵列单元401、针孔阵列单元402和针孔化面光源单元403与前面的显示装置的第二实施方式中的点光源阵列、针孔阵列和针孔化面光源相似甚至相同。点光源阵列电源控制开关404控制点光源阵列单元401电源(未标示)的通断,针孔化面光源电源控制开关405控制针孔化面光源单元403电源(未标示)的通断。
当可切换背光模块工作在第一工作模式时,集成成像显示装置(图未示)实现3D显示,此时点光源阵列电源控制开关404闭合,针孔化面光源电源控制开关405断开,点光源阵列单元401每个点光源发出的光线穿过针孔阵列单元402、针孔化面光源单元403上设置的针孔阵列后,投射到液晶显示面板(图未示)上,根据液晶显示面板上的三维场景信息,在液晶显示面板上方重构三维场景,实现了3D显示;当可切换背光模块工作在第二工作模式时,集成成像显示装置实现2D显示,此时点光源阵列电源控制开关404闭合,针孔化面光源电源控制开关405闭合,此时针孔化面光源单元403发出的光线从任意方向直接投射到液晶显示面板上,不能由三维场景信息重构出三维场景,仍然为2D显示。
同时,针孔化面光源403可以是将发光物质,如LED、OLED或电致发光的光源设置形成条形光源4031,置于一块导光板4032的至少一边,并在导光板4032上设置导光板针孔阵列40321,导光板针孔阵列40321的针孔要与针孔阵列402的每个针孔一一对应设置,这样形成的针孔化面光源403与前述及前面所有实施方式中的针孔化面光源功能相同。
区别于现有技术,本实施方式提供的背光模块,通过转换器可切换显示装置的显示方式,通过光源与导光板形成的针孔化面光源,可以节省电致发光光源的使用,更大程度降低生产成本。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种集成成像显示装置,其中,包括可切换背光模块和液晶显示面板;
    所述可切换背光模块在至少第一工作模式和第二工作模式中切换,所述第一工作模式是点光源阵列形成的点阵背光,使得所述显示装置实现3D显示,所述第二工作模式是面光源背光,使得所述显示装置实现2D显示,所述面光源背光为侧入式背光,包括光源和导光板,所述光源为LED、OLED或电致发光光源,放置在所述导光板的侧边,为至少任意一边,连接或包围所述导光板形成面光源背光,所述点光源阵列和面光源开关单独控制,所述开关为外部电路控制开关,控制不同区域所述光源的闭启实现2D和3D共同显示。
  2. 根据权利要求1所述的装置,其中,
    所述可切换背光模块包括依序层叠的点光源阵列、针孔阵列单元以及针孔化面光源,所述针孔化面光源邻近所述液晶显示面板设置,并且设有第一针孔阵列,所述针孔阵列单元设有第二针孔阵列,所述点光源阵列中的每个点光源、第一针孔阵列中的每个针孔、第二针孔阵列中的每个针孔一一对应设置,所述针孔阵列单元只有针孔部分透光,其余部分不透光,所述可切换背光模块工作在所述第一工作模式时,所述针孔化面光源不发光,所述点光源阵列发光;所述可切换背光模块工作在所述第二工作模式时,所述针孔化面光源发光和所述点光源阵列同时发光。
  3. 根据权利要求2所述的装置,其中,
    所述点光源阵列是LED、OLED或电致发光点光源;所述针孔化面光源是LED、OLED或电致发光面光源。
  4. 根据权利要求1-3任意一项所述的装置,其中,
    所述针孔化面光源对应所述针孔阵列单元针孔的位置挖空,缺口的形状和面积与所述针孔阵列的针孔的形状和面积相近甚至相等。
  5. 一种集成成像显示装置,其中,包括可切换背光模块和液晶显示面板;
    所述可切换背光模块在至少第一工作模式和第二工作模式中切换,所述第一工作模式是点光源阵列形成的点阵背光,使得所述显示装置实现3D显示,所述第二工作模式是面光源背光,使得所述显示装置实现2D显示。
  6. 根据权利要求5所述的装置,其中,
    所述可切换背光模块包括依序层叠的点光源阵列、针孔阵列单元以及针孔化面光源,所述针孔化面光源邻近所述液晶显示面板设置,并且设有第一针孔阵列,所述针孔阵列单元设有第二针孔阵列,所述点光源阵列中的每个点光源、第一针孔阵列中的每个针孔、第二针孔阵列中的每个针孔一一对应设置,所述针孔阵列单元只有针孔部分透光,其余部分不透光,所述可切换背光模块工作在所述第一工作模式时,所述针孔化面光源不发光,所述点光源阵列发光;所述可切换背光模块工作在所述第二工作模式时,所述针孔化面光源发光和所述点光源阵列同时发光。
  7. 根据权利要求6所述的装置,其中,
    所述点光源阵列是LED、OLED或电致发光点光源;所述针孔化面光源是LED、OLED或电致发光面光源。
  8. 根据权利要求5所述的装置,其中,
    所述点光源阵列和针孔化面光源开关单独控制,所述开关为外部电路控制开关,控制不同区域所述针孔化面光源的闭启实现2D和3D共同显示。
  9. 根据权利要求5-8任意一项所述的装置,其中,
    所述针孔化面光源对应所述针孔阵列单元针孔的位置挖空,缺口的形状和面积与所述针孔阵列的针孔的形状和面积相近甚至相等。
  10. 根据权利要求5所述的装置,其中,
    所述可切换背光为侧入式背光,包括光源和导光板,所述光源为LED、OLED或电致发光光源,放置在所述导光板的侧边,为至少任意一边,连接或包围所述导光板,在所述导光板表面设置针孔阵列,形成所述针孔化面光源。
  11. 一种集成成像显示装置的背光模块,其中,
    所述背光模块在至少第一工作模式和第二工作模式中切换,所述第一工作模式是点光源阵列形成的点阵背光,使得所述显示装置实现3D显示,所述第二工作模式是面光源背光,使得所述显示装置实现2D显示。
  12. 根据权利要求11所述的背光模块,其中,
    所述背光模块包括依次层叠的点光源阵列、针孔阵列单元以及针孔化面光源,所述针孔化面光源上设有第一针孔阵列,所述针孔阵列单元设有第二针孔阵列,所述点光源阵列上的每个点光源、第一针孔阵列中的每个针孔、第二针孔阵列中的每个针孔一一对应设置,所述针孔阵列单元只有针孔部分透光,其余部分不透光,所述第一背光模块工作时,所述针孔化面光源不发光,所述点光源阵列发光;切换到所述第二背光模块工作时,所述针孔化面光源和所述点光源阵列同时发光。
  13. 根据权利要求12所述的背光模块,其中,
    所述点光源阵列是LED、OLED或电致发光点光源;所述针孔化面光源是LED、OLED或电致发光面光源。
  14. 根据权利要求11所述的背光模块,其中,
    所述背光模块为侧入式背光模块,包括光源和导光板,所述光源为LED、OLED或电致发光光源,放置在所述导光板的侧边,为至少任意一边,连接或包围所述导光板,在所述导光板表面设置针孔阵列,形成所述针孔化面光源。
PCT/CN2014/091411 2014-11-11 2014-11-18 集成成像显示装置及其背光模块 WO2016074258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/407,460 US9645402B2 (en) 2014-11-11 2014-11-18 Integrated imaging display apparatus and backlight module thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410632840.X 2014-11-11
CN201410632840.XA CN104345466B (zh) 2014-11-11 2014-11-11 集成成像显示装置及其背光模块

Publications (1)

Publication Number Publication Date
WO2016074258A1 true WO2016074258A1 (zh) 2016-05-19

Family

ID=52501426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091411 WO2016074258A1 (zh) 2014-11-11 2014-11-18 集成成像显示装置及其背光模块

Country Status (2)

Country Link
CN (1) CN104345466B (zh)
WO (1) WO2016074258A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834104B (zh) 2015-05-25 2017-05-24 京东方科技集团股份有限公司 一种2d/3d可切换显示面板及其显示方法、显示装置
CN105093547B (zh) * 2015-08-20 2019-06-07 京东方科技集团股份有限公司 3d显示装置及其驱动方法
CN105044918B (zh) * 2015-08-20 2018-03-06 中国科学技术大学 一种2d/3d可切换的集成成像立体显示装置
CN105739108A (zh) * 2016-03-23 2016-07-06 南京中电熊猫液晶显示科技有限公司 一种2d/3d可切换的液晶显示装置及其像素点亮方法
CN107102445A (zh) * 2017-04-25 2017-08-29 甘果 裸眼3d放像和摄像的一种策略和系统实现
CN108848370B (zh) * 2018-07-04 2020-01-14 深圳市华星光电半导体显示技术有限公司 全视差可切换的裸眼3d显示装置及其显示方法
CN112995644A (zh) * 2021-02-25 2021-06-18 孙彬杰 裸眼3d显示装置和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100026761A (ko) * 2008-09-01 2010-03-10 주식회사 토비스 백라이트 유닛 그리고 이를 포함하는 평면 및 입체 겸용 영상 표시 장치
KR20110107670A (ko) * 2010-03-25 2011-10-04 엘지전자 주식회사 영상표시장치
WO2011148901A1 (ja) * 2010-05-28 2011-12-01 シャープ株式会社 表示システム
CN202351569U (zh) * 2011-11-17 2012-07-25 京东方科技集团股份有限公司 显示装置
CN102692722A (zh) * 2012-05-07 2012-09-26 上海交通大学 基于视差屏障的 2d/3d可切换自动立体显示设备和方法
CN103402111A (zh) * 2013-08-13 2013-11-20 宁波维真显示科技有限公司 一种大尺寸2d-3d切换显示装置
CN203482339U (zh) * 2013-08-12 2014-03-12 兆光科技有限公司 三维显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100026761A (ko) * 2008-09-01 2010-03-10 주식회사 토비스 백라이트 유닛 그리고 이를 포함하는 평면 및 입체 겸용 영상 표시 장치
KR20110107670A (ko) * 2010-03-25 2011-10-04 엘지전자 주식회사 영상표시장치
WO2011148901A1 (ja) * 2010-05-28 2011-12-01 シャープ株式会社 表示システム
CN202351569U (zh) * 2011-11-17 2012-07-25 京东方科技集团股份有限公司 显示装置
CN102692722A (zh) * 2012-05-07 2012-09-26 上海交通大学 基于视差屏障的 2d/3d可切换自动立体显示设备和方法
CN203482339U (zh) * 2013-08-12 2014-03-12 兆光科技有限公司 三维显示设备
CN103402111A (zh) * 2013-08-13 2013-11-20 宁波维真显示科技有限公司 一种大尺寸2d-3d切换显示装置

Also Published As

Publication number Publication date
CN104345466A (zh) 2015-02-11
CN104345466B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2016074258A1 (zh) 集成成像显示装置及其背光模块
US9036099B2 (en) Liquid crystal display device and electronic device including the same
WO2017166331A1 (zh) 一种石墨烯显示模组及液晶显示装置
CN102540454B (zh) 光开关以及mems显示器
JP2012103400A (ja) 立体表示装置および立体表示装置の表示方法
US20050157223A1 (en) Display capable of selectively displaying two-dimensional and three-dimensional images
WO2017215057A1 (zh) 具有透视功能的显示面板及阵列基板
WO2014187010A1 (zh) 一种阵列基板及液晶显示面板
US10412375B2 (en) Display device, electronic apparatus, and method for controlling display device
WO2016008173A1 (zh) 2d/3d共融显示装置及广告装置
KR101202776B1 (ko) 유기 발광 다이오드 백라이팅 유닛을 구비하는 컬러 디스플레이 디바이스와 이를 구현하는 방법
CN102682674B (zh) 一种基于oled-led的高亮度裸眼3d显示屏
CN205722747U (zh) 背光模块、液晶显示模组以及移动终端
WO2013180349A1 (ko) 부분투명 디스플레이장치
WO2017206270A1 (zh) 微机电光阀、显示屏和显示装置
KR101938753B1 (ko) 투명 액정표시장치
CN202351569U (zh) 显示装置
WO2013159372A1 (zh) 立体显示装置及其驱动方法
CN101103304A (zh) 液晶显示设备、其驱动方法以及具有该液晶显示设备的移动站
CN105572890B (zh) 一种显示装置及其驱动方法
US9971145B2 (en) Mirror display and method of manufacturing the same
KR100740148B1 (ko) 입체영상 디스플레이장치
JP2006337496A5 (zh)
KR20140141877A (ko) 3차원 표시 장치 및 3차원 표시 장치용 전환부
JP5481463B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14407460

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905941

Country of ref document: EP

Kind code of ref document: A1