WO2016072453A1 - Motor with speed reducer - Google Patents

Motor with speed reducer Download PDF

Info

Publication number
WO2016072453A1
WO2016072453A1 PCT/JP2015/081174 JP2015081174W WO2016072453A1 WO 2016072453 A1 WO2016072453 A1 WO 2016072453A1 JP 2015081174 W JP2015081174 W JP 2015081174W WO 2016072453 A1 WO2016072453 A1 WO 2016072453A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
peripheral surface
motor
gear
outer peripheral
Prior art date
Application number
PCT/JP2015/081174
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 浩之
幹明 小林
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Publication of WO2016072453A1 publication Critical patent/WO2016072453A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a motor with a reduction gear.
  • a motor with a speed reducer equipped with a speed reducer that operates by a hypocycloidal speed reduction method.
  • This type of motor with a reduction gear includes a fixed shaft, a motor portion, an eccentric portion that is rotatably inserted into the fixed shaft, rotates by receiving the power of the motor portion, and rotates by the eccentric portion.
  • a ring-shaped fixed gear fixed to a housing or the like and meshed with the external teeth of the rocking gear, and an output gear meshed with the internal teeth of the rocking gear and outputting power to the outside And.
  • the eccentric portion has an eccentric outer peripheral surface centered at a position eccentric with respect to the center of the fixed shaft (rotation center of the motor portion), and a swing gear is inserted into the eccentric outer peripheral surface.
  • the output gear is configured to rotate coaxially with the fixed shaft.
  • a meshing reaction force between the oscillating gear and the fixed gear and a meshing reaction force between the oscillating gear and the output gear are applied to the eccentric portion.
  • the eccentric portion is greatly affected by the meshing reaction force between the fixed gear and the oscillating gear.
  • the eccentric part is often rotatably supported on the fixed shaft via the rolling bearing.
  • the motor with a reduction gear is enlarged by the space for arranging this rolling bearing. End up.
  • the present invention provides a motor with a speed reducer that can suppress a reduction in drive efficiency while reducing the size of the motor with a speed reducer provided with a speed reducer that operates in a hypocycloid speed reduction system.
  • the motor with a reduction gear is inserted into the motor unit, the fixed shaft provided at the rotation center of the motor unit, and the fixed shaft rotatably through the lubricant.
  • An eccentric outer surface centered on an eccentric position that is eccentric with respect to the rotation center, and an eccentric portion that rotates by receiving the power of the motor unit, and the lubricant on the eccentric outer surface.
  • the maximum position of the load applied to the fixed shaft on the inner peripheral surface, and the eccentricity To locally increase the dynamic pressure of the lubricant on the inner peripheral surface of the insertion hole and the eccentric outer peripheral surface at at least one of the maximum positions of the load applied to the rocking gear on the peripheral surface A wedge effect generator was provided.
  • an appropriate dynamic pressure of the lubricant can be generated at a desired position between the fixed shaft and the eccentric portion. For this reason, the energy loss of friction with respect to the fixed shaft of the eccentric part or the energy loss of friction with respect to the oscillating gear of the eccentric part can be reduced as much as possible without using a rolling bearing. Therefore, in a motor with a speed reducer provided with a speed reducer that operates in a hypocycloidal speed reduction method, a reduction in drive efficiency can be suppressed while downsizing the motor with a speed reducer.
  • the wedge effect generating portion is provided on the side opposite to the eccentric direction of the eccentric outer peripheral surface.
  • the wedge effect of the lubricating oil can be reliably generated at the maximum position of the load applied between the insertion hole of the eccentric portion and the fixed shaft. For this reason, the energy loss of friction with respect to the fixed shaft of an eccentric part can be reduced reliably.
  • the inner peripheral surface of the insertion hole is an inner peripheral surface of a slide bearing provided in the eccentric portion.
  • the wedge effect generating portion is provided on the inner peripheral surface.
  • the energy loss of friction with respect to the fixed shaft of the eccentric portion can be more reliably reduced.
  • the eccentric outer peripheral surface includes the rotation center and the eccentricity.
  • the wedge effect generating portion is provided on a straight line connecting the positions and on the eccentric direction side of the eccentric outer peripheral surface.
  • the wedge effect of the lubricating oil can be reliably generated at the maximum position of the load applied between the eccentric outer peripheral surface of the eccentric portion and the swing gear. For this reason, the energy loss of the friction with respect to the rocking
  • the wedge effect generating portion is formed along the axial direction. It is the projected ridge part.
  • the wedge effect of the lubricating oil can be generated over the entire axial direction of a desired location.
  • the convex strip portion has an arcuate cross-sectional shape along a direction orthogonal to the axial direction. Is formed.
  • the wedge effect of the lubricating oil can be efficiently generated by the ridges.
  • an appropriate dynamic pressure of the lubricant can be generated at a desired position between the fixed shaft and the eccentric portion. For this reason, the energy loss of friction with respect to the fixed shaft of the eccentric part or the energy loss of friction with respect to the oscillating gear of the eccentric part can be reduced as much as possible without using a rolling bearing. Therefore, in a motor with a speed reducer provided with a speed reducer that operates in a hypocycloidal speed reduction method, a reduction in drive efficiency can be suppressed while downsizing the motor with a speed reducer.
  • FIG. 1 is a cross-sectional view of a motor 1 with a speed reducer.
  • the motor 1 with a speed reducer is a flat motor unit 10 configured as a DC brush motor, and the rotational output of the motor unit 10 is decelerated and output from an output shaft (output gear) 110.
  • a reduction mechanism 100 configured as a hypocycloid reduction mechanism.
  • FIG. 2 is a perspective view of the motor unit 10
  • FIG. 3 is an exploded perspective view of the motor unit 10.
  • the motor axis L that is the rotation center of the motor unit 10 (the rotation center of an armature described later) coincides with the rotation center (axis) of the output shaft 110.
  • the side from which output is extracted from the output shaft 110 will be referred to as the upper side (upper side in FIG. 1), and the opposite side will be referred to as the lower side (lower side in FIG. 1).
  • the motor 1 with a speed reducer includes a motor housing 11 having a bottom wall 11a and a peripheral wall 11b as an outer shell, and a speed reduction mechanism unit cover 101 coupled to the motor housing 11. And almost all the mechanism elements are accommodated in the space surrounded by the motor housing 11 and the speed reduction mechanism section cover 101.
  • a cylindrical yoke 12 is disposed on the inner peripheral surface of the peripheral wall 11b of the motor housing 11, and a motor magnet (permanent magnet) 13 is disposed in a cylindrical shape on the inner peripheral surface of the yoke 12.
  • the motor magnet 13 is formed by alternately arranging a plurality (for example, six in this embodiment) of magnetic poles (N poles and S poles) formed on the inner peripheral surface in the circumferential direction.
  • a stator is constituted by the yoke 12 and the motor magnet 13, and an armature 20 that is rotatable around the motor axis L is disposed on the inner peripheral side of the motor magnet 13.
  • a power supply device 40 including a pair of brushes 45 for supplying power to the armature 20 is disposed on the upper side of the armature 20.
  • the motor magnet 13 may be formed in a cylindrical shape, or may be arranged in a tile shape along the circumferential direction.
  • the substantially cylindrical main shaft member 2 is erected on the bottom wall 11a of the motor housing 11 at the center in the radial direction.
  • the base end 2a is being fixed to the center support part 11c of the bottom wall 11a.
  • the main shaft member 2 passes through the center in the radial direction of the armature 20, and the tip 2 b projects from the opening in the center in the radial direction of the speed reduction mechanism unit cover 101. That is, the main shaft member 2 is set so that the center line is coaxial with the motor axis L.
  • various materials such as a material of the main shaft member 2, various materials such as iron, stainless steel, aluminum alloy, and resin can be selected.
  • the armature 20 that is the main element of the motor unit 10 is disposed coaxially with the main shaft member 2 and is disposed in the motor housing 11 so as to surround the main shaft member 2.
  • the armature 20 includes an armature core 21, lower and upper insulators 22 and 23, an armature coil 24, and a commutator 30.
  • the armature core 21 is configured by laminating a plurality of steel plates press-formed in the same shape in the axial direction.
  • the armature core 21 has a substantially annular core body 21a, and a plurality of teeth 21b having a substantially T-shape in a plan view in the axial direction are radially arranged at equal intervals in the circumferential direction on the radially outer side of the core body 21a.
  • the teeth 21b include a collar portion 21bt that is formed at the tip portion and extends along the circumferential direction.
  • the teeth 21b are substantially T-shaped in the plan view in the axial direction by the flange 21bt.
  • a slot 21s is formed between adjacent teeth 21b.
  • An enamel-wrapped winding W is passed through the slot 21s, and the winding W is wound around the teeth 21b in a concentrated manner from above the insulators 22 and 23 attached to the teeth 21b.
  • a plurality of armature coils 24 are formed on the outer peripheral surface of the armature core 21.
  • a circular center opening 21c is provided in the center of the core body 21a.
  • core-side concave portions 21d and core-side convex portions 21e are alternately arranged in the circumferential direction so as to penetrate in the axial direction.
  • the core-side concave portion 21d and the core-side convex portion 21e have the same pitch as the teeth 21b, the core-side concave portion 21d is aligned with the tooth 21b, and the core-side convex portion 21e is aligned with the slot 21s.
  • the core-side concave portion 21d and the core-side convex portion 21e have a function of preventing a relative position shift between the armature core 21 and the commutator 30 (details will be described later).
  • the lower insulator 22 and the upper insulator 23 are formed of an insulating resin, and are mounted from above and below the armature core 21, respectively. In a state where the insulators 22 and 23 are mounted on the armature core 21, these insulators 22 and 23 cover most portions except for the outer peripheral surface of the tip of the teeth 21 b of the armature core 21.
  • the lower insulator 22 and the upper insulator 23 have the same shape.
  • the shape of the upper insulator 23 will be briefly described, and the description of the lower insulator 22 will be omitted.
  • the axial end surface of the teeth 21b of the armature core 21 in the upper insulator 23, that is, the upper surface 23a of the upper insulator 23 in FIGS. 1 to 3 is a surface around which the winding W constituting the armature coil 24 is wound.
  • the upper surface 23a of the upper insulator 23 is formed as a flat surface throughout. In the center of the upper surface 23a, a circular central opening 23b is provided so as to correspond to the central opening 21c of the armature core 21.
  • the upper insulator 23 is formed with a hook 28 for hooking the connecting wire of the winding W spanning between the teeth 21b, thereby preventing the connecting wire from entering inward in the radial direction.
  • FIG. 4 is a perspective view of the commutator 30.
  • the commutator 30 includes a cylindrical resin boss member 31 made of an insulating resin, and a plurality of (for example, nine in this embodiment) segments attached to the resin boss member 31. And a metal piece 32.
  • the lower half (base) of the resin boss member 31 is configured as a press-fitting fitting portion 33 that is press-fitted into the circular central opening 21c of the armature core 21, and a cylindrical wall 35 is provided on the upper side thereof.
  • the outer diameter of the press-fit fitting portion 33 is set to be about twice as large as the outer diameter of the cylindrical wall 35.
  • a boss-side convex portion 33a that fits into the core-side concave portion 21d of the armature core 21 and a boss-side concave portion 33b that fits into the core-side convex portion 21e of the armature core 21 are teeth 21b. Are formed at the same pitch.
  • a flange 34 larger than the outer diameter of the press-fit fitting portion 33 is provided at the boundary between the press-fit fitting portion 33 and the cylindrical wall 35.
  • the outer diameter of the flange 34 is set to a size that fits on the inner periphery of the central opening 23 b of the upper insulator 23.
  • a straight cylindrical surface having the same diameter is formed between the inner peripheral surface 35a of the cylindrical wall 35 of the resin boss member 31 and the inner peripheral surface 31a of the press-fitting fitting portion 33. It is continuous.
  • FIG. 5 is a perspective view showing a state in which the resin boss member 31 is attached to the armature core 21.
  • the resin boss member 31 is press-fitted (internally fitted) into the center opening 21 c of the armature core 21 so that the outer peripheral surface of the press-fit fitting portion 33 is coaxial with the armature core 21. Fixed).
  • the armature core 21 and the resin boss member 31 are positioned in the radial direction by press-fitting the bottom surface 21ds of the core-side concave portion 21d and the top surface 33at of the boss-side convex portion 33a. And the shift
  • the inner peripheral surface 31 a of the resin boss member 31 is rotatably fitted to the outer peripheral surface of the main shaft member 2 via the bearing metal 3. Therefore, the armature 20 is supported so as to be rotatable around the motor axis L coaxial with the main shaft member 2. Further, when the lower press-fitting fitting portion 33 of the flange 34 is fitted into the central opening 21 c of the armature core 21, the lower surface of the flange 34 abuts on the axial end surface (upper surface) of the armature core 21. Thereby, the resin boss member 31 is positioned in the axial direction.
  • each segment metal piece 32 includes an arcuate cylindrical segment 32 a in which the brush 45 is in sliding contact with a riser 32 b formed by bending the segment 32 a into an L shape. Is formed.
  • the segment 32 a is disposed on the outer peripheral surface of the cylindrical wall 35 of the resin boss member 31 protruding in the axial direction from the armature core 21 with the brush contact surface facing radially outward. And they are arranged side by side at a constant pitch while being insulated from each other in the circumferential direction.
  • the same number of segments 32a and risers 32b as the number of teeth 21b are provided, and the segments 32a and risers 32b are arranged on the center line in the width direction of the teeth 21b.
  • the teeth 21b and the riser 32b are arranged such that the center line in the width direction of the teeth 21b and the center line in the width direction of the riser 32b are located on the same straight line along the radial direction.
  • the riser 32 b is a hooking portion that connects the lead wire (winding W) of the armature coil 24, and is mounted and fixed on the riser arrangement surface set on the upper surface 34 a of the flange 34 of the resin boss member 31.
  • the upper surface 34 a of the flange 34 on which the riser arrangement surface is set is formed as a plane orthogonal to the outer peripheral surface of the cylindrical wall 35.
  • FIG. 6A is a perspective view of the eccentric shaft 120.
  • FIG. 6B is a plan view of the eccentric shaft 120 as viewed from below.
  • FIG. 6C is a plan view of the eccentric shaft 120 as viewed from above.
  • the eccentric shaft 120 is connected to the tip of the cylindrical wall 35 of the resin boss member 31 of the commutator 30 in a relatively non-rotatable manner.
  • the eccentric shaft 120 includes an eccentric rotating part 121 and three fitting convex parts 122 for transmitting rotational force that are provided on the lower surface of the eccentric rotating part 121.
  • the eccentric shaft 120 is formed in a cylindrical shape as a whole, and the inner peripheral surface 121b of the insertion hole penetrating in the axial direction is formed as a cylindrical surface with the motor axis L as the center.
  • the outer peripheral surface of the eccentric rotating portion 121 is formed as a cylindrical outer peripheral surface 121a having a center O2 at a position eccentric with respect to the center O1 concentric with the motor axis L. Therefore, the cylindrical outer peripheral surface 121a of the eccentric rotating part 121 rotates eccentrically with respect to the motor axis L (center O1).
  • the three fitting convex portions 122 are formed by providing three notches on a cylindrical wall concentric with the motor axis L, and are arranged at intervals of 120 ° in the circumferential direction.
  • the number of fitting convex parts 122 is not restricted to three, One may be sufficient and three or more may be sufficient. Further, the arrangement interval of the fitting convex portions 122 is not limited to 120 °.
  • one fitting convex portion 122 is arranged with the center in the width direction aligned at a position diametrically opposite to the eccentric direction H, and two positions separated from each other by 120 ° in the opposite direction.
  • the remaining two fitting projections 122 are arranged.
  • These fitting projections 122 are formed by a divisor (3) of the number (9) of the segments 32a and teeth 21b.
  • the eccentric shaft 120 has an eccentric direction so that a subtle eccentric direction H can be easily seen on the surface 12 c opposite to the fitting convex portion 122 of the eccentric rotating portion 121.
  • a mark 125 indicating H is provided. Note that the mark mark 125 may not be provided.
  • the bearing metal 4 is press-fitted into the inner peripheral surface 121 b of the eccentric shaft 120.
  • the bearing metal 4 is provided over the entire axial direction of the eccentric rotating part 121 and the fitting convex part 122.
  • a part of the bearing metal 4 exposed from between the fitting protrusions 122 adjacent in the circumferential direction is press-fitted into the inner peripheral surface 31 a of the resin boss member 31.
  • the resin boss member 31 and the eccentric shaft 120 are centered.
  • the eccentric shaft 120 and the resin boss member 31 are rotatably supported by the main shaft member 2 through the bearing metal 4.
  • a lubricant (not shown) is applied between the bearing metal 4 and the main shaft member 2 so as to reduce the frictional resistance generated between the bearing metal 4 and the main shaft member 2.
  • FIG. 7A is a plan view of the bearing metal 4 as seen from the axial direction.
  • FIG. 7B is a perspective view of the bearing metal 4.
  • a convex strip 141 is integrally formed on the inner peripheral surface 4 a of the bearing metal 4 over the entire axial direction.
  • the ridge 141 is for locally increasing the dynamic pressure of the lubricant applied between the bearing metal 4 and the main shaft member 2.
  • the ridge 141 is formed so that the cross-sectional shape orthogonal to the axial direction has an arcuate surface 141a. In other words, the ridge 141 is formed in a substantially bowl shape.
  • line part 141 are mentioned later.
  • FIG. 8 is a perspective view of the power feeding device 40.
  • the power feeding device 40 has a substantially disc-shaped power feeding housing 41 formed of an insulating resin.
  • the power supply housing 41 is provided with a brush 45 and a spring 43 via a brush holder 42.
  • the brush 45 is electrically connected to a terminal of a connector 48 provided on the power supply housing 41.
  • the brush 45 is disposed on the outer peripheral side of the cylindrical wall 35 of the resin boss member 31 of the commutator 30 and at an upper position adjacent to the axial direction of the armature core 21.
  • the brush 45 is in sliding contact with the brush contact surface of the armature 20 facing the radially outward direction of the segment 32a from the radially outward direction toward the radially inward direction.
  • the spring 43 acts on the brush 45 by a biasing force toward the brush contact surface of the segment 32a.
  • FIG. 9 is an exploded perspective view of the speed reduction mechanism unit 100. As shown in FIGS. 1 and 9, the speed reduction mechanism 100 is disposed so as to surround a position corresponding to the tip 2 b of the main shaft member 2. An output shaft 110 formed in an annular shape surrounds the main shaft member 2 and is arranged coaxially with the motor axis L.
  • the speed reduction mechanism unit 100 is configured as a hypocycloid speed reduction mechanism.
  • the speed reduction mechanism unit 100 includes a ring gear 102 fixed to the inner peripheral surface of the speed reduction mechanism unit cover 101, and a swing attached to the eccentric shaft 120.
  • the moving gear 103 and the output gear 104 formed integrally with the lower end of the output shaft 110 having the cylindrical boss 111 are included.
  • the ring gear 102 has an inner tooth 102 a concentric with the motor axis L.
  • the oscillating gear 103 is formed by integrally molding a substantially disk-shaped external gear portion 203 and a ring-shaped internal gear portion 303 integrally formed on the external gear portion 203.
  • External teeth 203 a that can mesh with the internal teeth 102 a of the ring gear 102 are formed on the outer peripheral surface of the external gear portion 203.
  • the outer gear portion 203 is formed with a bearing hole 203b substantially at the center in the radial direction.
  • a cylindrical outer peripheral surface 121a of the eccentric rotating portion 121 of the eccentric shaft 120 is rotatably fitted in the bearing hole 203b via the bearing metal 6. Therefore, the oscillating gear 103 is supported so as to revolve around the motor axis L and to rotate around the center O2 (see FIG. 6B) of the cylindrical outer peripheral surface 121a of the eccentric shaft 120.
  • the output shaft 110 is rotatably supported by the main shaft member 2 and the speed reduction mechanism unit cover 101 via a bearing metal 5 provided on the inner peripheral side and a bearing metal 7 provided on the outer peripheral side.
  • a substantially disc-shaped output gear 104 is integrally formed at the lower end of such an output shaft 110.
  • the output gear 104 is provided concentrically with the motor axis L, and outer teeth 104 a that can mesh with the inner teeth 303 a of the swing gear 103 are formed on the outer peripheral surface.
  • the bearing metals 4 to 6 are each made of an iron-based material, a copper alloy, an aluminum alloy, brass, or the like. Further, lubricant is applied to the bearing metals 5 and 7 provided on the output shaft 110 and the bearing metal 6 provided on the external gear portion 203, respectively.
  • FIG. 10 is a plan view showing a meshing state of the ring gear 102, the swing gear 103, and the output gear 104.
  • the meshing point PA between the internal teeth 102a of the ring gear 102 and the external teeth 203a of the swing gear 103, and the meshing point PB of the internal teeth 303a of the swing gear 103 and the external teeth 104a of the output gear 104 are as follows.
  • the position is the opposite side across the motor axis L.
  • the meshing points PA and PB are located on both sides of the motor axis L, respectively.
  • the eccentric shaft 120 integrated with the commutator 30 rotates.
  • the oscillating gear 103 performs an oscillating motion (revolving motion) while meshing with the ring gear 102 and the output gear 104.
  • the oscillating gear 103 rotates with a rotational speed (spinning rotational speed) decelerated from the revolution rotational speed by meshing with the ring gear 102.
  • the reduced rotational motion of the swing gear 103 is transmitted to the output gear 104, and the output gear 104 rotates at a rotational speed that is decelerated from the rotational speed of the armature 20.
  • power is output to an external device (not shown) via the output shaft 110.
  • FIG. 11 is an explanatory diagram for explaining the position of the ridge portion 141.
  • the meshing point PA between the internal teeth 102 a of the ring gear 102 and the external teeth 203 a of the swing gear 103, and the meshing point PB of the internal teeth 303 a of the swing gear 103 and the external teeth 104 a of the output gear 104 are located on both sides of the motor axis L on a straight line S1 connecting the center O2 of the cylindrical outer peripheral surface 121a of the eccentric shaft 120 and the motor axis L (center O1).
  • the ridges 141 are completely crushed so that the wedge effect does not occur, or the ridges 141 are too large and the bearing metal 4 and the main shaft member 2 It is possible to prevent the proper lubricant film from being formed in the meantime.
  • the ridge 141 is 0.007 ⁇ h / W ⁇ 1.08 (3) It is formed to satisfy. Desirably, the ridge 141 is 0.007 ⁇ h / W ⁇ 0.5 (4) It is good to be formed so as to satisfy. Furthermore, desirably, the convex strip 141 is 0.015 ⁇ h / W ⁇ 0.05 (5) It is good to be formed so as to satisfy. Formula (3) to Formula (5) will be described in detail below.
  • FIG. 12 shows the bearing load capacity of the bearing metal 4 when the vertical axis is the bearing load capacity of the bearing metal 4 and the horizontal axis is the ratio (h / W) between the protruding height h and the width W of the protrusion 141. It is a graph which shows the change of. As shown in the figure, when the ridge portion 141 is formed so as to satisfy the expression (3), the ridge portion 141 is completely crushed and does not generate a wedge effect. It is possible to prevent the clearance between the bearing 2 and the bearing metal 4 from being properly maintained.
  • the bearing metal 4 can generate a good rust effect with respect to the rated load of the motor 1 with a reduction gear. Furthermore, when the convex strip 141 is formed so as to satisfy the formula (5), the bearing metal 4 can generate a good rust effect even when the motor 1 with a speed reducer is overloaded. it can.
  • the bearing metal provided between the main shaft member 2 and the eccentric shaft 120 is provided.
  • 4 is provided with a ridge 141.
  • line part 141 is arrange
  • the wedge effect by the lubricant can be efficiently generated between the main shaft member 2 and the bearing metal 4 and at the position where the dynamic pressure of the lubricant is most desired.
  • the energy loss of friction with respect to the main shaft member 2 of the eccentric shaft 120 can be reduced as much as possible without using a rolling bearing as in the prior art. Therefore, a reduction in drive efficiency can be suppressed while reducing the size of the motor 1 with a reduction gear as compared with the case where a rolling bearing is used.
  • line part 141 is formed over the whole axial direction. For this reason, the wedge effect by the lubricant can be generated over the entire axial direction of the bearing metal 4. Furthermore, the protruding portion 141 is formed so that the cross-sectional shape orthogonal to the axial direction has an arcuate surface 141a. In other words, the ridge 141 is formed in a substantially bowl shape. For this reason, the protruding portion 141 can efficiently generate the wedge effect of the lubricating oil.
  • FIG. 13 is an explanatory diagram for explaining the formation position of the ridge 141 in the second embodiment, and corresponds to FIG. 11 described above.
  • the difference between said 1st Embodiment and 2nd Embodiment exists in the point from which the formation position of the protruding item
  • the first embodiment and the second embodiment described above are the same, and therefore, the same reference numerals are given to the respective parts and the description thereof is omitted.
  • the protrusion 141 for generating the wedge effect of the lubricating oil is not provided on the bearing metal 4 and is integrally formed on the cylindrical outer peripheral surface 12 a of the eccentric shaft 120. Further, the ridge 141 is arranged on a straight line S1 connecting the center O2 of the cylindrical outer peripheral surface 121a of the eccentric shaft 120 and the motor axis L (center O1) and on the eccentric direction side of the cylindrical outer peripheral surface 121a.
  • the meshing point PB of 303a and the external gear 104a of the output gear 104 is on both sides of the motor axis L on a straight line S1 connecting the center O2 of the cylindrical outer peripheral surface 121a of the eccentric shaft 120 and the motor axis L (center O1). positioned. For this reason, a maximum load is always applied to the cylindrical outer peripheral surface 121a on the straight line S1 and in the eccentric direction of the cylindrical outer peripheral surface 121a.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
  • the ridge 141 is formed such that the cross-sectional shape orthogonal to the axial direction has the arcuate surface 141a, in other words, the ridge 141 is formed in a substantially bowl shape.
  • the shape is not limited to this, and any shape that can obtain a wedge effect by the lubricant may be used.
  • the ridge 141 is formed in a quadrangular cross section, the wedge effect by the lubricant cannot be greatly obtained as compared with the ridge-shaped ridge 141.
  • the spherical bodies may be arranged in the axial direction on the cylindrical outer peripheral surface 121a of the bearing metal 4 or the eccentric shaft 120 in place of the ridge 141. Even when configured in this manner, the same effects as those of the above-described embodiment can be obtained.
  • the convex strip 141 is integrally formed on the cylindrical outer peripheral surface 121a of the bearing metal 4 or the eccentric shaft 120.
  • You may provide the protruding item
  • line part 141 was provided in the bearing metal 4, and the case where the protruding item
  • the present invention is not limited to this, and the first embodiment and the second embodiment may be combined. That is, the ridge 141 may be provided on each of the bearing metal 4 and the cylindrical outer peripheral surface 121a of the eccentric shaft 120.
  • the case where the protruding strip 141 is provided on the bearing metal 4 provided on the eccentric shaft 120 has been described.
  • the convex strip 141 is provided directly on the inner peripheral surface 121 b of the eccentric shaft 120, and the lubricant is applied between the inner peripheral surface 121 b and the main shaft member 2. Also good.
  • the oscillating gear 103 and the output gear 104 are transmitted with the engagement between the internal teeth 303 a formed on the internal gear portion 303 of the oscillating gear 103 and the external teeth 104 a of the output gear 104.
  • the structure to be explained was explained.
  • the present invention is not limited to this.
  • a plurality of pins are concentrically arranged in the output gear 104, and a swing hole having the same number as the pins and larger in diameter than the outer diameter of the pins is provided in the swing gear 103.
  • the pin of the output gear 104 may be inserted into the swing hole of the swing gear 103.
  • an appropriate dynamic pressure of the lubricant can be generated at a desired position between the fixed shaft and the eccentric portion. For this reason, the energy loss of friction with respect to the fixed shaft of the eccentric part or the energy loss of friction with respect to the oscillating gear of the eccentric part can be reduced as much as possible without using a rolling bearing. Therefore, in a motor with a speed reducer provided with a speed reducer that operates in a hypocycloidal speed reduction method, a reduction in drive efficiency can be suppressed while downsizing the motor with a speed reducer.

Abstract

A protrusion (141) for locally increasing the dynamic pressure of a lubricant is provided at the maximum load position on the inner circumferential surface (4a) of a bearing metal (4) of an eccentric shaft, and/or on the cylindrical outer circumferential surface of the eccentric shaft.

Description

減速機付モータReducer motor
 本発明は、減速機付モータに関する。
 本願は、2014年11月6日に、日本に出願された特願2014-225992号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a motor with a reduction gear.
This application claims priority based on Japanese Patent Application No. 2014-225992 filed in Japan on November 6, 2014, the contents of which are incorporated herein by reference.
 減速機付モータとして、ハイポサイクロイド減速方式で作動する減速機を備える減速機付モータがある。この種の減速機付モータは、固定軸と、モータ部と、固定軸に回転可能に挿入され、モータ部の動力を受けて回転する偏心部と、偏心部によって回転し、内歯と外歯とを有する揺動歯車と、ハウジング等に固定され揺動歯車の外歯が噛合いされるリング状の固定歯車と、揺動歯車の内歯に噛合いされ、外部に動力を出力する出力歯車と、を備えている。偏心部は、固定軸の中心(モータ部の回転中心)に対して偏心した位置を中心とする偏心外周面を有し、この偏心外周面に揺動歯車が挿入されている。また、出力歯車は、固定軸と同軸上に回転するように構成されている。 As a motor with a speed reducer, there is a motor with a speed reducer equipped with a speed reducer that operates by a hypocycloidal speed reduction method. This type of motor with a reduction gear includes a fixed shaft, a motor portion, an eccentric portion that is rotatably inserted into the fixed shaft, rotates by receiving the power of the motor portion, and rotates by the eccentric portion. A ring-shaped fixed gear fixed to a housing or the like and meshed with the external teeth of the rocking gear, and an output gear meshed with the internal teeth of the rocking gear and outputting power to the outside And. The eccentric portion has an eccentric outer peripheral surface centered at a position eccentric with respect to the center of the fixed shaft (rotation center of the motor portion), and a swing gear is inserted into the eccentric outer peripheral surface. The output gear is configured to rotate coaxially with the fixed shaft.
 このような構成のもと、モータ部の駆動に伴い偏心部が回転すると、揺動歯車が固定歯車および出力歯車と噛合ながら揺動運動(公転運動)を行う。また、揺動歯車は、固定歯車との噛合いにより、公転回転数よりも減速された回転数(自転回転数)で自転運動を行う。そして、この揺動歯車の減速された自転運動が出力歯車に伝達され、この出力歯車が、モータ部の回転数よりも減速された回転数で回転する。 With this configuration, when the eccentric portion rotates as the motor unit is driven, the swinging gear performs a swinging motion (revolving motion) while meshing with the fixed gear and the output gear. Further, the oscillating gear performs a rotational motion at a rotational speed (spinning rotational speed) decelerated from the revolution rotational speed by meshing with the fixed gear. Then, the reduced rotational motion of the swing gear is transmitted to the output gear, and the output gear rotates at a rotational speed that is reduced more than the rotational speed of the motor unit.
 ここで、偏心部には、揺動歯車と固定歯車との噛合い反力と、揺動歯車と出力歯車との噛合い反力とがかかる。とりわけ、固定歯車は、ハウジング等に固定されているので、偏心部は、固定歯車と揺動歯車との噛合い反力の影響を大きく受ける。このため、固定軸に転がり軸受を介して偏心部を回転自在に支持する場合が多い。このように構成することで、偏心部の固定軸に対する摩擦のエネルギーロスを最小限に抑えることができ、モータ部の回転力を効率よく揺動歯車に伝達することができる。 Here, a meshing reaction force between the oscillating gear and the fixed gear and a meshing reaction force between the oscillating gear and the output gear are applied to the eccentric portion. In particular, since the fixed gear is fixed to the housing or the like, the eccentric portion is greatly affected by the meshing reaction force between the fixed gear and the oscillating gear. For this reason, the eccentric part is often rotatably supported on the fixed shaft via the rolling bearing. With this configuration, the energy loss of friction with respect to the fixed shaft of the eccentric portion can be minimized, and the rotational force of the motor portion can be efficiently transmitted to the oscillating gear.
特開2014-81068号公報JP 2014-81068 A
 ところで、偏心部の固定軸に対する摩擦のエネルギーロスを最小限に抑えるために転がり軸受を使用することは有効な手段ではあるが、この転がり軸受を配置するスペース分、減速機付モータが大型化してしまう。このため、転がり軸受に代わって滑り軸受を使用し、減速機付モータの小型化を図ることが考えられるが、単純に転がり軸受を滑り軸受に置き換えただけでは、偏心部の固定軸に対する摩擦のエネルギーロスが増大してしまう。このため、減速機付モータの駆動効率が低下してしまうという課題がある。 By the way, although it is an effective means to use a rolling bearing in order to minimize the energy loss of friction with respect to the fixed shaft of the eccentric part, the motor with a reduction gear is enlarged by the space for arranging this rolling bearing. End up. For this reason, it is conceivable to reduce the size of the motor with a reduction gear by using a sliding bearing instead of a rolling bearing, but simply replacing the rolling bearing with a sliding bearing will reduce the friction of the eccentric part against the fixed shaft. Energy loss will increase. For this reason, there exists a subject that the drive efficiency of the motor with a reduction gear will fall.
 そこで、本発明は、ハイポサイクロイド減速方式で作動する減速機を備える減速機付モータにおいて、小型化を図りつつ、駆動効率の低下を抑制することができる減速機付モータを提供する。 Therefore, the present invention provides a motor with a speed reducer that can suppress a reduction in drive efficiency while reducing the size of the motor with a speed reducer provided with a speed reducer that operates in a hypocycloid speed reduction system.
 本発明の第1の態様によれば、減速機付モータは、モータ部と、前記モータ部の回転中心に設けられた固定軸と、前記固定軸に潤滑剤を介して回転可能に挿入される挿入孔を有すると共に、前記回転中心に対して偏心した偏心位置を中心とする偏心外周面を有し、前記モータ部の動力を受けて回転する偏心部と、前記偏心外周面に前記潤滑剤を介して回転可能に挿入されると共に、第1内歯および第1外歯を有する揺動歯車と、前記揺動歯車の前記第1外歯と噛合される第2内歯を有する固定歯車と、前記揺動歯車の前記第1内歯と噛合される第2外歯を有すると共に、前記固定軸と同軸上で回転し、外部機器に動力を出力する出力歯車と、を備え、前記挿入孔の内周面における前記固定軸との間にかかる荷重の最大位置、および前記偏心外周面における前記揺動歯車との間にかかる荷重の最大位置の少なくとも何れか一方に、前記挿入孔の内周面、および前記偏心外周面に、前記潤滑剤の動圧を局所的に高めるためのくさび効果発生部を設けた。 According to the first aspect of the present invention, the motor with a reduction gear is inserted into the motor unit, the fixed shaft provided at the rotation center of the motor unit, and the fixed shaft rotatably through the lubricant. An eccentric outer surface centered on an eccentric position that is eccentric with respect to the rotation center, and an eccentric portion that rotates by receiving the power of the motor unit, and the lubricant on the eccentric outer surface. And a fixed gear having a second internal tooth engaged with the first external tooth of the swing gear, and a swing gear having a first internal tooth and a first external tooth. An output gear having a second external tooth meshed with the first internal tooth of the rocking gear, rotating coaxially with the fixed shaft, and outputting power to an external device, The maximum position of the load applied to the fixed shaft on the inner peripheral surface, and the eccentricity To locally increase the dynamic pressure of the lubricant on the inner peripheral surface of the insertion hole and the eccentric outer peripheral surface at at least one of the maximum positions of the load applied to the rocking gear on the peripheral surface A wedge effect generator was provided.
 上記のように構成することで、固定軸と偏心部との間における所望の位置に、潤滑剤の適正な動圧を発生させることができる。このため、転がり軸受を用いることなく、偏心部の固定軸に対する摩擦のエネルギーロス、または偏心部の揺動歯車に対する摩擦のエネルギーロスを極力低減することができる。よって、ハイポサイクロイド減速方式で作動する減速機を備える減速機付モータにおいて、この減速機付モータの小型化を図りつつ、駆動効率の低下を抑制することができる。 By configuring as described above, an appropriate dynamic pressure of the lubricant can be generated at a desired position between the fixed shaft and the eccentric portion. For this reason, the energy loss of friction with respect to the fixed shaft of the eccentric part or the energy loss of friction with respect to the oscillating gear of the eccentric part can be reduced as much as possible without using a rolling bearing. Therefore, in a motor with a speed reducer provided with a speed reducer that operates in a hypocycloidal speed reduction method, a reduction in drive efficiency can be suppressed while downsizing the motor with a speed reducer.
 本発明の第2の態様によれば、本発明の第1の態様に係る減速機付モータにおいて、前記挿入孔の内周面には、前記回転中心と前記偏心位置とを結ぶ直線上で、且つ前記偏心外周面の偏心方向とは反対側に、前記くさび効果発生部が設けられている。 According to the second aspect of the present invention, in the motor with a speed reducer according to the first aspect of the present invention, on the inner peripheral surface of the insertion hole, on a straight line connecting the rotation center and the eccentric position, The wedge effect generating portion is provided on the side opposite to the eccentric direction of the eccentric outer peripheral surface.
 上記のように構成することで、偏心部の挿入孔と固定軸との間にかかる荷重の最大位置に、確実に潤滑油のくさび効果を発生させることができる。このため、偏心部の固定軸に対する摩擦のエネルギーロスを確実に低減できる。 By configuring as described above, the wedge effect of the lubricating oil can be reliably generated at the maximum position of the load applied between the insertion hole of the eccentric portion and the fixed shaft. For this reason, the energy loss of friction with respect to the fixed shaft of an eccentric part can be reduced reliably.
 本発明の第3の態様によれば、本発明の第2の態様に係る減速機付モータにおいて、前記挿入孔の内周面は、前記偏心部に設けられた滑り軸受の内周面であり、該内周面に前記くさび効果発生部が設けられている。 According to a third aspect of the present invention, in the motor with a reduction gear according to the second aspect of the present invention, the inner peripheral surface of the insertion hole is an inner peripheral surface of a slide bearing provided in the eccentric portion. The wedge effect generating portion is provided on the inner peripheral surface.
 上記のように構成することで、偏心部の固定軸に対する摩擦のエネルギーロスを、より確実に低減できる。 By configuring as described above, the energy loss of friction with respect to the fixed shaft of the eccentric portion can be more reliably reduced.
 本発明の第4の態様によれば、本発明の第1の態様から第3の態様の何れか一の態様に係る減速機付モータにおいて、前記偏心外周面には、前記回転中心と前記偏心位置とを結ぶ直線上で、且つ前記偏心外周面の偏心方向側に、前記くさび効果発生部が設けられている。 According to a fourth aspect of the present invention, in the motor with a reduction gear according to any one of the first to third aspects of the present invention, the eccentric outer peripheral surface includes the rotation center and the eccentricity. The wedge effect generating portion is provided on a straight line connecting the positions and on the eccentric direction side of the eccentric outer peripheral surface.
 上記のように構成することで、偏心部の偏心外周面と揺動歯車との間にかかる荷重の最大位置に、確実に潤滑油のくさび効果を発生させることができる。このため、偏心部の揺動歯車に対する摩擦のエネルギーロスを確実に低減できる。 By configuring as described above, the wedge effect of the lubricating oil can be reliably generated at the maximum position of the load applied between the eccentric outer peripheral surface of the eccentric portion and the swing gear. For this reason, the energy loss of the friction with respect to the rocking | fluctuation gear of an eccentric part can be reduced reliably.
 本発明の第5の態様によれば、本発明の第1の態様から第4の態様の何れか一の態様に係る減速機付モータにおいて、前記くさび効果発生部は、軸方向に沿って形成された凸条部である。 According to a fifth aspect of the present invention, in the motor with a reduction gear according to any one of the first to fourth aspects of the present invention, the wedge effect generating portion is formed along the axial direction. It is the projected ridge part.
 上記のように構成することで、所望の箇所の軸方向全体に渡って潤滑油のくさび効果を発生させることができる。 By configuring as described above, the wedge effect of the lubricating oil can be generated over the entire axial direction of a desired location.
 本発明の第6の態様によれば、本発明の第5の態様に係る減速機付モータにおいて、前記凸条部は、前記軸方向に直交する方向に沿う断面形状が弧状面を有するように形成されている。 According to a sixth aspect of the present invention, in the motor with a speed reducer according to the fifth aspect of the present invention, the convex strip portion has an arcuate cross-sectional shape along a direction orthogonal to the axial direction. Is formed.
 上記のように構成することで、凸条部によって、潤滑油のくさび効果を効率よく発生させることができる。 By configuring as described above, the wedge effect of the lubricating oil can be efficiently generated by the ridges.
 上記の減速機付モータによれば、固定軸と偏心部との間における所望の位置に、潤滑剤の適正な動圧を発生させることができる。このため、転がり軸受を用いることなく、偏心部の固定軸に対する摩擦のエネルギーロス、または偏心部の揺動歯車に対する摩擦のエネルギーロスを極力低減することができる。よって、ハイポサイクロイド減速方式で作動する減速機を備える減速機付モータにおいて、この減速機付モータの小型化を図りつつ、駆動効率の低下を抑制することができる。 According to the motor with a reduction gear described above, an appropriate dynamic pressure of the lubricant can be generated at a desired position between the fixed shaft and the eccentric portion. For this reason, the energy loss of friction with respect to the fixed shaft of the eccentric part or the energy loss of friction with respect to the oscillating gear of the eccentric part can be reduced as much as possible without using a rolling bearing. Therefore, in a motor with a speed reducer provided with a speed reducer that operates in a hypocycloidal speed reduction method, a reduction in drive efficiency can be suppressed while downsizing the motor with a speed reducer.
本発明の実施形態における減速機付モータの断面図である。It is sectional drawing of the motor with a reduction gear in embodiment of this invention. 本発明の実施形態におけるモータ部の斜視図である。It is a perspective view of the motor part in the embodiment of the present invention. 本発明の実施形態におけるモータ部の分解斜視図である。It is a disassembled perspective view of the motor part in embodiment of this invention. 本発明の実施形態におけるコンミテータの斜視図である。It is a perspective view of a commutator in an embodiment of the present invention. 本発明の実施形態におけるアーマチュアコアに樹脂ボス部材を取り付けた状態を示す斜視図である。It is a perspective view which shows the state which attached the resin boss | hub member to the armature core in embodiment of this invention. 本発明の実施形態における偏心軸の斜視図である。It is a perspective view of the eccentric shaft in the embodiment of the present invention. 本発明の実施形態における偏心軸を下からみた平面図である。It is the top view which looked at the eccentric shaft in embodiment of this invention from the bottom. 本発明の実施形態における偏心軸を上からみた平面図である。It is the top view which looked at the eccentric shaft in embodiment of this invention from the top. 本発明の第1実施形態における軸受メタルを軸方向からみた平面図である。It is the top view which looked at the bearing metal in 1st Embodiment of this invention from the axial direction. 本発明の第1実施形態における軸受メタルの斜視図である。It is a perspective view of the bearing metal in 1st Embodiment of this invention. 本発明の実施形態における給電装置の斜視図である。It is a perspective view of the electric power feeder in embodiment of this invention. 本発明の実施形態における減速機構部の分解斜視図である。It is a disassembled perspective view of the deceleration mechanism part in embodiment of this invention. 本発明の実施形態におけるリングギヤ、揺動歯車、および出力歯車の噛合状態を示す平面図である。It is a top view which shows the meshing state of the ring gear in the embodiment of this invention, a rocking | fluctuation gear, and an output gear. 本発明の第1実施形態における凸条部の位置を説明するための説明図である。It is explanatory drawing for demonstrating the position of the protruding item | line part in 1st Embodiment of this invention. 本発明の第1実施形態における軸受メタルの軸受負荷容量の変化を示すグラフである。It is a graph which shows the change of the bearing load capacity of the bearing metal in 1st Embodiment of this invention. 本発明の第2実施形態における凸条部の形成位置を説明するための説明図である。It is explanatory drawing for demonstrating the formation position of the protruding item | line part in 2nd Embodiment of this invention.
 次に、本発明の実施形態を図面に基づいて説明する。 Next, an embodiment of the present invention will be described based on the drawings.
(第1実施形態)
(減速機付モータ)
 図1は、減速機付モータ1の断面図である。
 図1に示すように、この減速機付モータ1は、DCブラシ付きモータとして構成された偏平形状のモータ部10と、モータ部10の回転出力を減速して出力軸(出力歯車)110から出力するハイポサイクロイド減速機構として構成された減速機構部100と、を備えている。
(First embodiment)
(Motor with reduction gear)
FIG. 1 is a cross-sectional view of a motor 1 with a speed reducer.
As shown in FIG. 1, the motor 1 with a speed reducer is a flat motor unit 10 configured as a DC brush motor, and the rotational output of the motor unit 10 is decelerated and output from an output shaft (output gear) 110. And a reduction mechanism 100 configured as a hypocycloid reduction mechanism.
 図2は、モータ部10の斜視図、図3は、モータ部10の分解斜視図である。
 図1~図3に示すように、モータ部10の回転中心(後述するアーマチュアの回転中心)であるモータ軸線Lは、出力軸110の回転中心(軸線)と一致している。
 なお、以下の説明では、出力軸110から出力を取り出す側を上側(図1の上側)と称し、その反対側を下側(図1の下側)と称して説明する。
FIG. 2 is a perspective view of the motor unit 10, and FIG. 3 is an exploded perspective view of the motor unit 10.
As shown in FIGS. 1 to 3, the motor axis L that is the rotation center of the motor unit 10 (the rotation center of an armature described later) coincides with the rotation center (axis) of the output shaft 110.
In the following description, the side from which output is extracted from the output shaft 110 will be referred to as the upper side (upper side in FIG. 1), and the opposite side will be referred to as the lower side (lower side in FIG. 1).
 減速機付モータ1は、外殻体として、底壁11aおよび周壁11bを有するモータハウジング11と、このモータハウジング11に結合された減速機構部カバー101と、を有している。そして、モータハウジング11と減速機構部カバー101とにより囲まれた空間内部に、ほぼ全ての機構要素が収容されている。 The motor 1 with a speed reducer includes a motor housing 11 having a bottom wall 11a and a peripheral wall 11b as an outer shell, and a speed reduction mechanism unit cover 101 coupled to the motor housing 11. And almost all the mechanism elements are accommodated in the space surrounded by the motor housing 11 and the speed reduction mechanism section cover 101.
 モータハウジング11の周壁11bの内周面には、円筒形状のヨーク12が配置され、このヨーク12の内周面には、円筒状にモータマグネット(永久磁石)13が配置されている。モータマグネット13は、内周面に形成された複数(例えば、この実施形態では6個)の磁極(N極、S極)が円周方向に交互に配列されたものである。 A cylindrical yoke 12 is disposed on the inner peripheral surface of the peripheral wall 11b of the motor housing 11, and a motor magnet (permanent magnet) 13 is disposed in a cylindrical shape on the inner peripheral surface of the yoke 12. The motor magnet 13 is formed by alternately arranging a plurality (for example, six in this embodiment) of magnetic poles (N poles and S poles) formed on the inner peripheral surface in the circumferential direction.
 ここでは、ヨーク12とモータマグネット13とによりステータが構成され、モータマグネット13の内周側に、モータ軸線L回りに回転自在のアーマチュア20が配置されている。また、アーマチュア20の上側には、アーマチュア20に給電するための一対のブラシ45を備えた給電装置40が配置されている。
 なお、モータマグネット13は円筒状に形成されていてもよし、瓦状に形成されたものを周方向に沿って並べて配置してもよい。
Here, a stator is constituted by the yoke 12 and the motor magnet 13, and an armature 20 that is rotatable around the motor axis L is disposed on the inner peripheral side of the motor magnet 13. In addition, a power supply device 40 including a pair of brushes 45 for supplying power to the armature 20 is disposed on the upper side of the armature 20.
The motor magnet 13 may be formed in a cylindrical shape, or may be arranged in a tile shape along the circumferential direction.
 モータハウジング11の底壁11aには、径方向略中央に略円柱状の主軸部材2が立設されている。主軸部材2は、基端2aが底壁11aの中央支持部11cに固定されている。主軸部材2は、アーマチュア20の径方向中央を貫通して、減速機構部カバー101の径方向中央の開口から先端2bが突き出した状態になっている。すなわち、主軸部材2は、中心線がモータ軸線Lと同軸に設定されている。なお、主軸部材2の材料としては、鉄、ステンレス、アルミ合金、樹脂等、さまざまな材料を選定することが可能である。 The substantially cylindrical main shaft member 2 is erected on the bottom wall 11a of the motor housing 11 at the center in the radial direction. As for the main shaft member 2, the base end 2a is being fixed to the center support part 11c of the bottom wall 11a. The main shaft member 2 passes through the center in the radial direction of the armature 20, and the tip 2 b projects from the opening in the center in the radial direction of the speed reduction mechanism unit cover 101. That is, the main shaft member 2 is set so that the center line is coaxial with the motor axis L. In addition, as a material of the main shaft member 2, various materials such as iron, stainless steel, aluminum alloy, and resin can be selected.
(アーマチュア)
 モータ部10の主要素であるアーマチュア20は、主軸部材2と同軸に配置されており、主軸部材2を囲んだ状態でモータハウジング11内に配置されている。
 図2、図3に示すように、アーマチュア20は、アーマチュアコア21と、下側と上側のインシュレータ22,23と、アーマチュアコイル24と、コンミテータ30と、を備えている。
(Armature)
The armature 20 that is the main element of the motor unit 10 is disposed coaxially with the main shaft member 2 and is disposed in the motor housing 11 so as to surround the main shaft member 2.
As shown in FIGS. 2 and 3, the armature 20 includes an armature core 21, lower and upper insulators 22 and 23, an armature coil 24, and a commutator 30.
(アーマチュアコア)
 図3に示すように、アーマチュアコア21は、同一形状にプレス成形された複数の鋼板を軸方向に積層することで構成されている。アーマチュアコア21は、略円環状のコア本体21aを有しており、コア本体21aの径方向外側には、軸方向平面視略T字状のティース21bが周方向に等間隔で放射状に複数(例えば、この実施形態では9個)形成されている。ティース21bは、先端部に形成され、周方向に沿って延出する鍔部21btを備えている。この鍔部21btによって、ティース21bは、軸方向平面視略T字状になっている。
(Armature core)
As shown in FIG. 3, the armature core 21 is configured by laminating a plurality of steel plates press-formed in the same shape in the axial direction. The armature core 21 has a substantially annular core body 21a, and a plurality of teeth 21b having a substantially T-shape in a plan view in the axial direction are radially arranged at equal intervals in the circumferential direction on the radially outer side of the core body 21a. For example, in this embodiment, 9). The teeth 21b include a collar portion 21bt that is formed at the tip portion and extends along the circumferential direction. The teeth 21b are substantially T-shaped in the plan view in the axial direction by the flange 21bt.
 また、隣接するティース21b間には、スロット21sが形成されている。スロット21sにはエナメル被覆の巻線Wが通され、ティース21bに装着された各インシュレータ22,23の上から巻線Wがティース21bに集中巻きで巻回されている。これにより、アーマチュアコア21の外周面に複数のアーマチュアコイル24が形成されている。 Further, a slot 21s is formed between adjacent teeth 21b. An enamel-wrapped winding W is passed through the slot 21s, and the winding W is wound around the teeth 21b in a concentrated manner from above the insulators 22 and 23 attached to the teeth 21b. Thereby, a plurality of armature coils 24 are formed on the outer peripheral surface of the armature core 21.
 さらに、コア本体21aの中央には、円形の中心開口部21cが設けられている。この中心開口部21cの内周面には、軸線方向に貫通させて、コア側凹部21dとコア側凸部21eとが周方向に交互に配置されている。コア側凹部21dとコア側凸部21eは、ティース21bのピッチと同じピッチで、且つコア側凹部21dの位置をティース21bの位置に揃え、コア側凸部21eの位置をスロット21sの位置に揃えて配置されている。これらコア側凹部21dとコア側凸部21eは、アーマチュアコア21とコンミテータ30との相対位置のズレを防止する機能を有する(詳細は後述する)。 Furthermore, a circular center opening 21c is provided in the center of the core body 21a. On the inner peripheral surface of the center opening 21c, core-side concave portions 21d and core-side convex portions 21e are alternately arranged in the circumferential direction so as to penetrate in the axial direction. The core-side concave portion 21d and the core-side convex portion 21e have the same pitch as the teeth 21b, the core-side concave portion 21d is aligned with the tooth 21b, and the core-side convex portion 21e is aligned with the slot 21s. Are arranged. The core-side concave portion 21d and the core-side convex portion 21e have a function of preventing a relative position shift between the armature core 21 and the commutator 30 (details will be described later).
(インシュレータ)
 下側インシュレータ22および上側インシュレータ23は絶縁性樹脂で形成されており、それぞれアーマチュアコア21の上下から装着されている。アーマチュアコア21に各インシュレータ22,23を装着した状態では、これらインシュレータ22,23によって、アーマチュアコア21のティース21bの先端外周面を除くほとんどの部分が覆われる。
(Insulator)
The lower insulator 22 and the upper insulator 23 are formed of an insulating resin, and are mounted from above and below the armature core 21, respectively. In a state where the insulators 22 and 23 are mounted on the armature core 21, these insulators 22 and 23 cover most portions except for the outer peripheral surface of the tip of the teeth 21 b of the armature core 21.
 下側インシュレータ22と上側インシュレータ23は、同形状のものである。ここでは、上側インシュレータ23の形状について簡単に述べ、下側インシュレータ22については説明を省略する。
 上側インシュレータ23におけるアーマチュアコア21のティース21bの軸方向端面、つまり、図1~図3における上側インシュレータ23の上面23aは、アーマチュアコイル24を構成する巻線Wが巻き付けられる面である。上側インシュレータ23の上面23aは、全体にわたりフラットな面として形成されている。この上面23aの中央には、アーマチュアコア21の中心開口部21cに対応するように、円形の中央開口部23bが設けられている。また、上側インシュレータ23には、ティース21b間にまたがる巻線Wの渡り線を引っ掛けるためのフック28が形成されており、渡り線が径方向内側に入り込むことを防止している。
The lower insulator 22 and the upper insulator 23 have the same shape. Here, the shape of the upper insulator 23 will be briefly described, and the description of the lower insulator 22 will be omitted.
The axial end surface of the teeth 21b of the armature core 21 in the upper insulator 23, that is, the upper surface 23a of the upper insulator 23 in FIGS. 1 to 3 is a surface around which the winding W constituting the armature coil 24 is wound. The upper surface 23a of the upper insulator 23 is formed as a flat surface throughout. In the center of the upper surface 23a, a circular central opening 23b is provided so as to correspond to the central opening 21c of the armature core 21. Further, the upper insulator 23 is formed with a hook 28 for hooking the connecting wire of the winding W spanning between the teeth 21b, thereby preventing the connecting wire from entering inward in the radial direction.
(コンミテータ)
 図4は、コンミテータ30の斜視図である。
 図3、図4に示すように、コンミテータ30は、絶縁樹脂で構成された円筒状の樹脂ボス部材31と、樹脂ボス部材31に装着された複数(例えば、この実施形態では9枚)のセグメント金属片32と、を備えている。
(Commutator)
FIG. 4 is a perspective view of the commutator 30.
As shown in FIGS. 3 and 4, the commutator 30 includes a cylindrical resin boss member 31 made of an insulating resin, and a plurality of (for example, nine in this embodiment) segments attached to the resin boss member 31. And a metal piece 32.
 樹脂ボス部材31の下半部(基部)は、アーマチュアコア21の円形の中心開口部21cに圧入嵌合される圧入嵌合部33として構成されており、その上側に円筒壁35が設けられている。圧入嵌合部33の外径は、円筒壁35の外径よりも倍程度に大きく設定されている。
 圧入嵌合部33の外周面には、アーマチュアコア21のコア側凹部21dに嵌まるボス側凸部33aと、アーマチュアコア21のコア側凸部21eに嵌まるボス側凹部33bとが、ティース21bのピッチと同じピッチで形成されている。
The lower half (base) of the resin boss member 31 is configured as a press-fitting fitting portion 33 that is press-fitted into the circular central opening 21c of the armature core 21, and a cylindrical wall 35 is provided on the upper side thereof. Yes. The outer diameter of the press-fit fitting portion 33 is set to be about twice as large as the outer diameter of the cylindrical wall 35.
On the outer peripheral surface of the press-fit fitting portion 33, a boss-side convex portion 33a that fits into the core-side concave portion 21d of the armature core 21 and a boss-side concave portion 33b that fits into the core-side convex portion 21e of the armature core 21 are teeth 21b. Are formed at the same pitch.
 また、圧入嵌合部33と円筒壁35の境界には、圧入嵌合部33の外径よりも大きなフランジ34が設けられている。フランジ34は、外径が、上側インシュレータ23の中央開口部23bの内周に嵌まる大きさに設定されている。なお、軸方向における外径に変化はあるものの、樹脂ボス部材31の円筒壁35の内周面35aから圧入嵌合部33の内周面31aまでの間は、同径でストレートな円筒面として連続している。 Further, a flange 34 larger than the outer diameter of the press-fit fitting portion 33 is provided at the boundary between the press-fit fitting portion 33 and the cylindrical wall 35. The outer diameter of the flange 34 is set to a size that fits on the inner periphery of the central opening 23 b of the upper insulator 23. In addition, although there is a change in the outer diameter in the axial direction, a straight cylindrical surface having the same diameter is formed between the inner peripheral surface 35a of the cylindrical wall 35 of the resin boss member 31 and the inner peripheral surface 31a of the press-fitting fitting portion 33. It is continuous.
 図5は、アーマチュアコア21に樹脂ボス部材31を取り付けた状態を示す斜視図である。
 図3、図5に示すように、樹脂ボス部材31は、圧入嵌合部33の外周面がアーマチュアコア21と同軸となるように、アーマチュアコア21の中心開口部21cに圧入嵌合(内嵌固定)されている。このとき、コア側凹部21dの底面21dsとボス側凸部33aの頂面33atとを圧入嵌合することにより、アーマチュアコア21と樹脂ボス部材31とが径方向に位置決めされている。そして、アーマチュアコア21とコンミテータ30との相対位置のズレが防止される。
FIG. 5 is a perspective view showing a state in which the resin boss member 31 is attached to the armature core 21.
As shown in FIGS. 3 and 5, the resin boss member 31 is press-fitted (internally fitted) into the center opening 21 c of the armature core 21 so that the outer peripheral surface of the press-fit fitting portion 33 is coaxial with the armature core 21. Fixed). At this time, the armature core 21 and the resin boss member 31 are positioned in the radial direction by press-fitting the bottom surface 21ds of the core-side concave portion 21d and the top surface 33at of the boss-side convex portion 33a. And the shift | offset | difference of the relative position of the armature core 21 and the commutator 30 is prevented.
 また、図1に示すように、主軸部材2の外周面に、軸受メタル3を介して樹脂ボス部材31の内周面31aが回転自在に嵌合される。したがって、アーマチュア20が、主軸部材2と同軸のモータ軸線L回りに回転自在に支持されている。
 さらに、アーマチュアコア21の中心開口部21cにフランジ34の下側の圧入嵌合部33が嵌合されたとき、アーマチュアコア21の軸方向端面(上面)にフランジ34の下面が当接する。これにより、樹脂ボス部材31が軸方向に位置決めされる。
Further, as shown in FIG. 1, the inner peripheral surface 31 a of the resin boss member 31 is rotatably fitted to the outer peripheral surface of the main shaft member 2 via the bearing metal 3. Therefore, the armature 20 is supported so as to be rotatable around the motor axis L coaxial with the main shaft member 2.
Further, when the lower press-fitting fitting portion 33 of the flange 34 is fitted into the central opening 21 c of the armature core 21, the lower surface of the flange 34 abuts on the axial end surface (upper surface) of the armature core 21. Thereby, the resin boss member 31 is positioned in the axial direction.
(セグメント金属片)
 図1、図4、図5に示すように、各セグメント金属片32は、ブラシ45が摺接する円弧筒状のセグメント32aと、セグメント32aからL字状に折り曲げて形成されたライザ32bとが一体的に形成されたものである。セグメント32aは、アーマチュアコア21から軸方向に突出した樹脂ボス部材31の円筒壁35の外周面に、ブラシ当接面を径方向外方に向けて配設されている。そして、周方向に互いに絶縁された状態で、一定ピッチで並んで配列されている。
 セグメント32aおよびライザ32bは、ティース21bの数と同じ数だけ設けられており、ティース21bの幅方向の中心線上に位置を揃えて配置されている。換言すれば、ティース21bおよびライザ32bは、ティース21bの幅方向の中心線とライザ32bの幅方向の中心線とが径方向に沿う同一直線上に位置するように配置されている。
(Segment metal piece)
As shown in FIGS. 1, 4, and 5, each segment metal piece 32 includes an arcuate cylindrical segment 32 a in which the brush 45 is in sliding contact with a riser 32 b formed by bending the segment 32 a into an L shape. Is formed. The segment 32 a is disposed on the outer peripheral surface of the cylindrical wall 35 of the resin boss member 31 protruding in the axial direction from the armature core 21 with the brush contact surface facing radially outward. And they are arranged side by side at a constant pitch while being insulated from each other in the circumferential direction.
The same number of segments 32a and risers 32b as the number of teeth 21b are provided, and the segments 32a and risers 32b are arranged on the center line in the width direction of the teeth 21b. In other words, the teeth 21b and the riser 32b are arranged such that the center line in the width direction of the teeth 21b and the center line in the width direction of the riser 32b are located on the same straight line along the radial direction.
 ライザ32bは、アーマチュアコイル24の引出線(巻線W)を接続するフッキング部分であり、樹脂ボス部材31のフランジ34の上面34aに設定されたライザ配置面に載置固定されている。ライザ配置面が設定されたフランジ34の上面34aは、円筒壁35の外周面に対して直交する平面として形成されている。そして、アーマチュアコア21に樹脂ボス部材31が圧入嵌合されたとき(図5参照)、上側インシュレータ23の上面23aと同一平面(面一)となるように構成されている。
 また、ライザ32bの先端はU字状に上側に折り返されており、アーマチュアコイル24の端部(巻線Wの端部)を接続しやすくなっている。このライザ32bの折り返し部の長さは、2本以上の電線を引っ掛けられる長さに設定されている。
The riser 32 b is a hooking portion that connects the lead wire (winding W) of the armature coil 24, and is mounted and fixed on the riser arrangement surface set on the upper surface 34 a of the flange 34 of the resin boss member 31. The upper surface 34 a of the flange 34 on which the riser arrangement surface is set is formed as a plane orthogonal to the outer peripheral surface of the cylindrical wall 35. When the resin boss member 31 is press-fitted into the armature core 21 (see FIG. 5), it is configured to be flush with the upper surface 23a of the upper insulator 23.
Further, the tip of the riser 32b is folded upward in a U-shape so that the end of the armature coil 24 (end of the winding W) can be easily connected. The length of the folded portion of the riser 32b is set to a length that allows two or more electric wires to be hooked.
(偏心軸)
 次に、図2、図4、図6A~図6Cに基づいて、コンミテータ30に連結され、減速機構部100を構成する偏心軸120について説明する。
 図6Aは、偏心軸120の斜視図である。図6Bは、偏心軸120を下からみた平面図である。図6Cは、偏心軸120を上からみた平面図である。
 図2、図4、図6A~図6Cに示すように、偏心軸120は、コンミテータ30の樹脂ボス部材31における円筒壁35の先端に相対回転不能に連結されるものである。偏心軸120は、偏心回転部121と、偏心回転部121の下面に突設された3つの回転力伝達用の嵌合凸部122と、を備えている。
(Eccentric shaft)
Next, the eccentric shaft 120 connected to the commutator 30 and constituting the speed reduction mechanism 100 will be described with reference to FIGS. 2, 4, and 6A to 6C.
FIG. 6A is a perspective view of the eccentric shaft 120. FIG. 6B is a plan view of the eccentric shaft 120 as viewed from below. FIG. 6C is a plan view of the eccentric shaft 120 as viewed from above.
As shown in FIGS. 2, 4, and 6A to 6C, the eccentric shaft 120 is connected to the tip of the cylindrical wall 35 of the resin boss member 31 of the commutator 30 in a relatively non-rotatable manner. The eccentric shaft 120 includes an eccentric rotating part 121 and three fitting convex parts 122 for transmitting rotational force that are provided on the lower surface of the eccentric rotating part 121.
 偏心軸120は、全体が筒状に構成されており、軸方向に貫通する挿入孔の内周面121bは、モータ軸線Lを中心とした円筒面で形成されている。そして、偏心回転部121の外周面が、モータ軸線Lと同心の中心O1に対して偏心した位置を中心O2とする円筒外周面121aとして形成されている。したがって、偏心回転部121の円筒外周面121aが、モータ軸線L(中心O1)に対して偏心回転する。 The eccentric shaft 120 is formed in a cylindrical shape as a whole, and the inner peripheral surface 121b of the insertion hole penetrating in the axial direction is formed as a cylindrical surface with the motor axis L as the center. The outer peripheral surface of the eccentric rotating portion 121 is formed as a cylindrical outer peripheral surface 121a having a center O2 at a position eccentric with respect to the center O1 concentric with the motor axis L. Therefore, the cylindrical outer peripheral surface 121a of the eccentric rotating part 121 rotates eccentrically with respect to the motor axis L (center O1).
 3つの嵌合凸部122は、モータ軸線Lと同心の円筒壁に3つの切欠を設けることにより形成され、周方向に120°間隔で配置されている。
 なお、嵌合凸部122の数は、3つに限られるものではなく、1つであってもよいし、3つ以上であってもよい。また、嵌合凸部122の配置間隔も120°に限られるものではない。
The three fitting convex portions 122 are formed by providing three notches on a cylindrical wall concentric with the motor axis L, and are arranged at intervals of 120 ° in the circumferential direction.
In addition, the number of fitting convex parts 122 is not restricted to three, One may be sufficient and three or more may be sufficient. Further, the arrangement interval of the fitting convex portions 122 is not limited to 120 °.
 3つの嵌合凸部122のうち、1の嵌合凸部122は、偏心方向Hと正反対の位置に幅方向の中心を合わせて配置され、それに対し各々逆方向に120°離れた2つの位置に、残りの2つの嵌合凸部122が配置されている。これらの嵌合凸部122は、セグメント32aやティース21bの数(9個)の約数(3個)だけ形成されている。ここで、図4に示すように、偏心回転部121の嵌合凸部122とは反対側の面12cには、微妙な偏心方向Hが簡単に分かるように、偏心軸120には、偏心方向Hを示す目印マーク125が設けられている。なお、目印マーク125は、設けなくてもよい。 Of the three fitting convex portions 122, one fitting convex portion 122 is arranged with the center in the width direction aligned at a position diametrically opposite to the eccentric direction H, and two positions separated from each other by 120 ° in the opposite direction. In addition, the remaining two fitting projections 122 are arranged. These fitting projections 122 are formed by a divisor (3) of the number (9) of the segments 32a and teeth 21b. Here, as shown in FIG. 4, the eccentric shaft 120 has an eccentric direction so that a subtle eccentric direction H can be easily seen on the surface 12 c opposite to the fitting convex portion 122 of the eccentric rotating portion 121. A mark 125 indicating H is provided. Note that the mark mark 125 may not be provided.
 一方、樹脂ボス部材31の円筒壁35の先端には、偏心軸120の嵌合凸部122が嵌まる3つの嵌合凹部36が設けられている。これら偏心軸120側の嵌合凸部122と樹脂ボス部材31側の嵌合凹部36は、互いが相対回転してしまうことを防止し、回転力を伝達するためのものである。 On the other hand, at the tip of the cylindrical wall 35 of the resin boss member 31, three fitting recesses 36 into which the fitting projections 122 of the eccentric shaft 120 are fitted are provided. The fitting convex part 122 on the eccentric shaft 120 side and the fitting concave part 36 on the resin boss member 31 side prevent relative rotation of each other and transmit the rotational force.
(軸受メタル)
 また、図1、図4に示すように、偏心軸120の内周面121bには、軸受メタル4が圧入されている。軸受メタル4は、偏心回転部121および嵌合凸部122の軸方向全体に渡って設けられている。そして、周方向に隣り合う嵌合凸部122の間から露出する軸受メタル4の一部は、樹脂ボス部材31の内周面31aに圧入される。これにより、樹脂ボス部材31と偏心軸120の芯出しが行われている。
 また、軸受メタル4を介し、主軸部材2に偏心軸120と樹脂ボス部材31が回転自在に支持された状態になる。軸受メタル4と主軸部材2との間には、不図示の潤滑剤が塗布されており、軸受メタル4と主軸部材2との間に生じる摩擦抵抗の低減化を図っている。
(Bearing metal)
As shown in FIGS. 1 and 4, the bearing metal 4 is press-fitted into the inner peripheral surface 121 b of the eccentric shaft 120. The bearing metal 4 is provided over the entire axial direction of the eccentric rotating part 121 and the fitting convex part 122. A part of the bearing metal 4 exposed from between the fitting protrusions 122 adjacent in the circumferential direction is press-fitted into the inner peripheral surface 31 a of the resin boss member 31. Thereby, the resin boss member 31 and the eccentric shaft 120 are centered.
Further, the eccentric shaft 120 and the resin boss member 31 are rotatably supported by the main shaft member 2 through the bearing metal 4. A lubricant (not shown) is applied between the bearing metal 4 and the main shaft member 2 so as to reduce the frictional resistance generated between the bearing metal 4 and the main shaft member 2.
 図7Aは、軸受メタル4を軸方向からみた平面図である。図7Bは、軸受メタル4の斜視図である。
 図7A、図7Bに示すように、軸受メタル4の内周面4aには、凸条部141が軸方向全体に渡って一体成形されている。凸条部141は、軸受メタル4と主軸部材2との間に塗布された潤滑剤の動圧を局所的に高めるためのものである。凸条部141は、軸方向に直交する断面形状が弧状面141aを有するように形成されている。換言すれば、凸条部141は、略蒲鉾状に形成されている。なお、凸条部141の具体的な形成位置、および寸法については後述する。
FIG. 7A is a plan view of the bearing metal 4 as seen from the axial direction. FIG. 7B is a perspective view of the bearing metal 4.
As shown in FIGS. 7A and 7B, a convex strip 141 is integrally formed on the inner peripheral surface 4 a of the bearing metal 4 over the entire axial direction. The ridge 141 is for locally increasing the dynamic pressure of the lubricant applied between the bearing metal 4 and the main shaft member 2. The ridge 141 is formed so that the cross-sectional shape orthogonal to the axial direction has an arcuate surface 141a. In other words, the ridge 141 is formed in a substantially bowl shape. In addition, the specific formation position and dimension of the protruding item | line part 141 are mentioned later.
(給電装置、ブラシ)
 次に、図1、図8に基づいて、給電装置40について述べる。
 図8は、給電装置40の斜視図である。
 図1、図8に示すように、給電装置40は、絶縁樹脂により形成された略円板状の給電ハウジング41を有している。この給電ハウジング41に、ブラシホルダ42を介してブラシ45やバネ43が設けられている。ブラシ45は、給電ハウジング41に設けられたコネクタ48の端子に電気的に接続されている。
(Power supply device, brush)
Next, the power feeding device 40 will be described based on FIGS. 1 and 8.
FIG. 8 is a perspective view of the power feeding device 40.
As shown in FIGS. 1 and 8, the power feeding device 40 has a substantially disc-shaped power feeding housing 41 formed of an insulating resin. The power supply housing 41 is provided with a brush 45 and a spring 43 via a brush holder 42. The brush 45 is electrically connected to a terminal of a connector 48 provided on the power supply housing 41.
 また、ブラシ45は、コンミテータ30の樹脂ボス部材31の円筒壁35の外周側で、且つアーマチュアコア21の軸方向に隣接した上側の位置に配置されている。そして、ブラシ45は、アーマチュア20におけるセグメント32aの径方向外方を向いたブラシ当接面に、径方向外方から径方向内方に向けて摺接している。また、バネ43によって、ブラシ45は、セグメント32aのブラシ当接面に向かう付勢力が作用している。 Further, the brush 45 is disposed on the outer peripheral side of the cylindrical wall 35 of the resin boss member 31 of the commutator 30 and at an upper position adjacent to the axial direction of the armature core 21. The brush 45 is in sliding contact with the brush contact surface of the armature 20 facing the radially outward direction of the segment 32a from the radially outward direction toward the radially inward direction. Further, the spring 43 acts on the brush 45 by a biasing force toward the brush contact surface of the segment 32a.
(減速機構部)
 次に、図1、図9、図10に基づいて、減速機構部100について説明する。
 図9は、減速機構部100の分解斜視図である。
 図1、図9に示すように、減速機構部100は、主軸部材2の先端2bに対応する位置を囲むように配置されている。また、円環形状に形成された出力軸110が、主軸部材2を囲んでモータ軸線Lと同軸に配置されている。
(Deceleration mechanism)
Next, the speed reduction mechanism 100 will be described with reference to FIGS. 1, 9, and 10.
FIG. 9 is an exploded perspective view of the speed reduction mechanism unit 100.
As shown in FIGS. 1 and 9, the speed reduction mechanism 100 is disposed so as to surround a position corresponding to the tip 2 b of the main shaft member 2. An output shaft 110 formed in an annular shape surrounds the main shaft member 2 and is arranged coaxially with the motor axis L.
 減速機構部100は、ハイポサイクロイド減速機構として構成されており、上述した偏心軸120の他に、減速機構部カバー101の内周面に固定されたリングギヤ102と、偏心軸120に取り付けられた揺動歯車103と、円筒ボス111を有する出力軸110の下端に一体に形成された出力歯車104と、を有している。 The speed reduction mechanism unit 100 is configured as a hypocycloid speed reduction mechanism. In addition to the eccentric shaft 120 described above, the speed reduction mechanism unit 100 includes a ring gear 102 fixed to the inner peripheral surface of the speed reduction mechanism unit cover 101, and a swing attached to the eccentric shaft 120. The moving gear 103 and the output gear 104 formed integrally with the lower end of the output shaft 110 having the cylindrical boss 111 are included.
 リングギヤ102は、モータ軸線Lと同心の内歯102aを有している。
 揺動歯車103は、略円板状の外歯車部203と、この外歯車部203上に一体成形されたリング状の内歯車部303とが一体成形されたものである。外歯車部203の外周面には、リングギヤ102の内歯102aに噛合可能な外歯203aが形成されている。内歯車部303の内周面には、出力歯車104の後述する外歯104aと噛合可能な内歯303aが形成されている。
The ring gear 102 has an inner tooth 102 a concentric with the motor axis L.
The oscillating gear 103 is formed by integrally molding a substantially disk-shaped external gear portion 203 and a ring-shaped internal gear portion 303 integrally formed on the external gear portion 203. External teeth 203 a that can mesh with the internal teeth 102 a of the ring gear 102 are formed on the outer peripheral surface of the external gear portion 203. On the inner peripheral surface of the internal gear portion 303, internal teeth 303a that can mesh with external teeth 104a described later of the output gear 104 are formed.
 また、外歯車部203には、径方向略中央に、軸受孔203bが形成されている。この軸受孔203bに、軸受メタル6を介して偏心軸120の偏心回転部121における円筒外周面121aが回転自在に嵌合されている。したがって、揺動歯車103は、モータ軸線L回りに公転自在、且つ偏心軸120の円筒外周面121aの中心O2(図6B参照)回りに自転自在に支持されている。 Further, the outer gear portion 203 is formed with a bearing hole 203b substantially at the center in the radial direction. A cylindrical outer peripheral surface 121a of the eccentric rotating portion 121 of the eccentric shaft 120 is rotatably fitted in the bearing hole 203b via the bearing metal 6. Therefore, the oscillating gear 103 is supported so as to revolve around the motor axis L and to rotate around the center O2 (see FIG. 6B) of the cylindrical outer peripheral surface 121a of the eccentric shaft 120.
 出力軸110は、内周側に設けられた軸受メタル5と外周側に設けられた軸受メタル7を介し、主軸部材2と減速機構部カバー101とに回転自在に支持されている。
 このような出力軸110の下端に、略円板状の出力歯車104が一体成形されている。出力歯車104は、モータ軸線Lと同心円上に設けられ、外周面には、揺動歯車103の内歯303aに噛合可能な外歯104aが形成されている。
 なお、軸受メタル4~6は、それぞれ鉄系素材、銅合金、アルミ合金、真鍮等で形成されている。また、出力軸110に設けられた軸受メタル5,7や外歯車部203に設けられた軸受メタル6にも、それぞれ潤滑剤が塗布されている。
The output shaft 110 is rotatably supported by the main shaft member 2 and the speed reduction mechanism unit cover 101 via a bearing metal 5 provided on the inner peripheral side and a bearing metal 7 provided on the outer peripheral side.
A substantially disc-shaped output gear 104 is integrally formed at the lower end of such an output shaft 110. The output gear 104 is provided concentrically with the motor axis L, and outer teeth 104 a that can mesh with the inner teeth 303 a of the swing gear 103 are formed on the outer peripheral surface.
The bearing metals 4 to 6 are each made of an iron-based material, a copper alloy, an aluminum alloy, brass, or the like. Further, lubricant is applied to the bearing metals 5 and 7 provided on the output shaft 110 and the bearing metal 6 provided on the external gear portion 203, respectively.
 図10は、リングギヤ102、揺動歯車103、および出力歯車104の噛合状態を示す平面図である。
 同図に示すように、リングギヤ102の内歯102aと揺動歯車103の外歯203aとの噛合点PAと、揺動歯車103の内歯303aと出力歯車104の外歯104aの噛合点PBは、モータ軸線Lを挟んで対向する反対側の位置となる。換言すれば、揺動歯車103は、その中心が偏心軸120によって偏心した位置にあるので、偏心軸120の円筒外周面121aの中心O2とモータ軸線L(中心O1)とを結ぶ直線S1上で、モータ軸線Lを挟んだ両側に、それぞれ噛合点PA,PBが位置していることになる。
FIG. 10 is a plan view showing a meshing state of the ring gear 102, the swing gear 103, and the output gear 104. FIG.
As shown in the figure, the meshing point PA between the internal teeth 102a of the ring gear 102 and the external teeth 203a of the swing gear 103, and the meshing point PB of the internal teeth 303a of the swing gear 103 and the external teeth 104a of the output gear 104 are as follows. The position is the opposite side across the motor axis L. In other words, since the center of the oscillating gear 103 is decentered by the eccentric shaft 120, on the straight line S1 connecting the center O2 of the cylindrical outer peripheral surface 121a of the eccentric shaft 120 and the motor axis L (center O1). The meshing points PA and PB are located on both sides of the motor axis L, respectively.
 上記のような構成のもと、減速機付モータ1では、ブラシ45およびセグメント32aを介してアーマチュアコイル24に給電が行われると、アーマチュアコア21に所定の磁界が発生する。そして、この磁界と、モータマグネット13との間に磁気的な吸引力や反発力が作用し、アーマチュア20が回転する。この回転によって、ブラシ45が摺接するセグメント32aが順次変更され、アーマチュアコイル24に流れる電流の向きが切替えられる、いわゆる整流が行われ、アーマチュア20が継続的に回転する。 With the above-described configuration, in the motor 1 with a speed reducer, when power is supplied to the armature coil 24 via the brush 45 and the segment 32a, a predetermined magnetic field is generated in the armature core 21. A magnetic attractive force or a repulsive force acts between the magnetic field and the motor magnet 13 to rotate the armature 20. By this rotation, the segments 32a with which the brush 45 is in sliding contact are sequentially changed, so that the direction of the current flowing through the armature coil 24 is switched, so-called rectification is performed, and the armature 20 is continuously rotated.
 アーマチュア20が回転すると、コンミテータ30と一体化された偏心軸120が回転する。すると、揺動歯車103は、リングギヤ102および出力歯車104と噛合ながら揺動運動(公転運動)を行う。また、揺動歯車103は、リングギヤ102との噛合いにより、公転回転数よりも減速された回転数(自転回転数)で自転運動を行う。そして、この揺動歯車103の減速された自転運動が出力歯車104に伝達され、この出力歯車104が、アーマチュア20の回転数よりも減速された回転数で回転する。そして、出力軸110を介して不図示の外部機器に動力を出力する。 When the armature 20 rotates, the eccentric shaft 120 integrated with the commutator 30 rotates. Then, the oscillating gear 103 performs an oscillating motion (revolving motion) while meshing with the ring gear 102 and the output gear 104. Further, the oscillating gear 103 rotates with a rotational speed (spinning rotational speed) decelerated from the revolution rotational speed by meshing with the ring gear 102. Then, the reduced rotational motion of the swing gear 103 is transmitted to the output gear 104, and the output gear 104 rotates at a rotational speed that is decelerated from the rotational speed of the armature 20. Then, power is output to an external device (not shown) via the output shaft 110.
(軸受メタルの凸条部の位置、寸法)
 次に、図7A、図7B、図11に基づいて、主軸部材2と偏心軸120との間に設けられている軸受メタル4の凸条部141の位置と具体的な寸法について説明する。
 図11は、凸条部141の位置を説明するための説明図である。
 ここで、前述したように、リングギヤ102の内歯102aと揺動歯車103の外歯203aとの噛合点PAと、揺動歯車103の内歯303aと出力歯車104の外歯104aの噛合点PBは、それぞれ偏心軸120の円筒外周面121aの中心O2とモータ軸線L(中心O1)とを結ぶ直線S1上で、且つモータ軸線Lを挟んだ両側に位置している。
(Position and dimension of bearing metal ridges)
Next, based on FIG. 7A, FIG. 7B, and FIG. 11, the position and specific dimension of the convex strip part 141 of the bearing metal 4 provided between the main shaft member 2 and the eccentric shaft 120 will be described.
FIG. 11 is an explanatory diagram for explaining the position of the ridge portion 141.
Here, as described above, the meshing point PA between the internal teeth 102 a of the ring gear 102 and the external teeth 203 a of the swing gear 103, and the meshing point PB of the internal teeth 303 a of the swing gear 103 and the external teeth 104 a of the output gear 104. Are located on both sides of the motor axis L on a straight line S1 connecting the center O2 of the cylindrical outer peripheral surface 121a of the eccentric shaft 120 and the motor axis L (center O1).
 このため、軸受メタル4には、常に直線S1上で、且つ円筒外周面121aの偏心方向とは反対側の位置P1に、最大荷重がかかる。軸受メタル4は、偏心軸120の内周面121bに圧入されているので、軸受メタル4における最大荷重位置は、偏心軸120が回転した場合であっても変化しない。したがって、軸受メタル4の位置P1に凸条部141を設けることにより、この凸条部141の回転方向前方側における潤滑剤の動圧を局所的に高める(潤滑剤のくさび効果を発生させる)ことができる。 For this reason, a maximum load is always applied to the bearing metal 4 at the position P1 on the straight line S1 and on the opposite side to the eccentric direction of the cylindrical outer peripheral surface 121a. Since the bearing metal 4 is press-fitted into the inner peripheral surface 121b of the eccentric shaft 120, the maximum load position on the bearing metal 4 does not change even when the eccentric shaft 120 rotates. Therefore, by providing the convex portion 141 at the position P1 of the bearing metal 4, the dynamic pressure of the lubricant on the front side in the rotational direction of the convex portion 141 is locally increased (the wedge effect of the lubricant is generated). Can do.
 ここで、図7Aに示すように、凸条部141の幅をWとし、突出高さをhとし、弧状面141aの曲率半径をrとし、主軸部材2の軸径をdとしたとき、曲率半径比r’(=r/d)、幅比W’(=w/d)は、それぞれ
 0.1≦r’≦7.2・・・(1)
 0.002≦W’≦0.16・・・(2)
 を満たすように設定されている。式(1)、式(2)を満たすことにより、凸条部141が完全に潰れ切ってくさび効果を発生しなくなくなったり、凸条部141が大きすぎて軸受メタル4と主軸部材2との間に、適正な潤滑剤の膜が形成されなくなってしまったりするのを防止できる。
Here, as shown in FIG. 7A, when the width of the ridge 141 is W, the protrusion height is h, the radius of curvature of the arcuate surface 141a is r, and the shaft diameter of the main shaft member 2 is d, the curvature is The radius ratio r ′ (= r / d) and the width ratio W ′ (= w / d) are 0.1 ≦ r ′ ≦ 7.2 (1)
0.002 ≦ W ′ ≦ 0.16 (2)
It is set to satisfy. By satisfying the formulas (1) and (2), the ridges 141 are completely crushed so that the wedge effect does not occur, or the ridges 141 are too large and the bearing metal 4 and the main shaft member 2 It is possible to prevent the proper lubricant film from being formed in the meantime.
 また、凸条部141は、
 0.007≦h/W≦1.08・・・(3)
 を満たすように形成されている。
 望ましくは、凸条部141は、
 0.007≦h/W≦0.5・・・(4)
 を満たすように形成されているとよい。
 さらに、望ましくは、凸条部141は、
 0.015≦h/W≦0.05・・・(5)
 を満たすように形成されているとよい。
 式(3)~式(5)について、以下に詳述する。
In addition, the ridge 141 is
0.007 ≦ h / W ≦ 1.08 (3)
It is formed to satisfy.
Desirably, the ridge 141 is
0.007 ≦ h / W ≦ 0.5 (4)
It is good to be formed so as to satisfy.
Furthermore, desirably, the convex strip 141 is
0.015 ≦ h / W ≦ 0.05 (5)
It is good to be formed so as to satisfy.
Formula (3) to Formula (5) will be described in detail below.
 図12は、縦軸を軸受メタル4の軸受負荷容量とし、横軸を凸条部141の突出高さhと幅Wとの比(h/W)とした場合の軸受メタル4の軸受負荷容量の変化を示すグラフである。
 同図に示すように、凸条部141を、式(3)を満たすように形成すると、凸条部141が完全に潰れ切ってくさび効果を発生しなくなくなったり、凸条部141によって主軸部材2と軸受メタル4との間のクリアランスが適正に保てなくなったりしてしまうことを防止できる。
FIG. 12 shows the bearing load capacity of the bearing metal 4 when the vertical axis is the bearing load capacity of the bearing metal 4 and the horizontal axis is the ratio (h / W) between the protruding height h and the width W of the protrusion 141. It is a graph which shows the change of.
As shown in the figure, when the ridge portion 141 is formed so as to satisfy the expression (3), the ridge portion 141 is completely crushed and does not generate a wedge effect. It is possible to prevent the clearance between the bearing 2 and the bearing metal 4 from being properly maintained.
 さらに、凸条部141を、式(4)を満たすように形成すると、減速機付モータ1の定格負荷に対し、軸受メタル4は、良好なくさび効果を発生することができる。
 さらに、凸条部141を、式(5)を満たすように形成すると、減速機付モータ1に過負荷がかかった場合であっても、軸受メタル4は、良好なくさび効果を発生することができる。
Furthermore, when the protruding strip 141 is formed so as to satisfy the formula (4), the bearing metal 4 can generate a good rust effect with respect to the rated load of the motor 1 with a reduction gear.
Furthermore, when the convex strip 141 is formed so as to satisfy the formula (5), the bearing metal 4 can generate a good rust effect even when the motor 1 with a speed reducer is overloaded. it can.
 このように、上記の第1実施形態では、ハイポサイクロイド減速機構として構成された減速機構部100を備えた減速機付モータ1において、主軸部材2と偏心軸120との間に設けられた軸受メタル4に、凸条部141が設けられている。そして、この凸条部141は、軸受メタル4にかかる荷重の最大位置、つまり、図11に示す直線S1上で、且つ円筒外周面121aの偏心方向とは反対側の位置P1に配置されている。このため、主軸部材2と軸受メタル4との間で、且つ最も潤滑剤の動圧をかけたい位置に、効率よく潤滑剤によるくさび効果を発生させることができる。この結果、従来のように転がり軸受を用いることなく、偏心軸120の主軸部材2に対する摩擦のエネルギーロスを極力低減することができる。よって、転がり軸受を用いる場合と比較して減速機付モータ1の小型化を図りつつ、駆動効率の低下を抑制することができる。 Thus, in said 1st Embodiment, in the motor 1 with a reduction gear provided with the reduction mechanism part 100 comprised as a hypocycloid reduction mechanism, the bearing metal provided between the main shaft member 2 and the eccentric shaft 120 is provided. 4 is provided with a ridge 141. And this protruding item | line part 141 is arrange | positioned in the largest position of the load concerning the bearing metal 4, ie, the position P1 on the opposite side to the eccentric direction of the cylindrical outer peripheral surface 121a on the straight line S1 shown in FIG. . For this reason, the wedge effect by the lubricant can be efficiently generated between the main shaft member 2 and the bearing metal 4 and at the position where the dynamic pressure of the lubricant is most desired. As a result, the energy loss of friction with respect to the main shaft member 2 of the eccentric shaft 120 can be reduced as much as possible without using a rolling bearing as in the prior art. Therefore, a reduction in drive efficiency can be suppressed while reducing the size of the motor 1 with a reduction gear as compared with the case where a rolling bearing is used.
 また、凸条部141は、軸方向全体に渡って形成されている。このため、軸受メタル4の軸方向全体に渡って潤滑剤によるくさび効果を発生させることができる。
 さらに、凸条部141は、軸方向に直交する断面形状が弧状面141aを有するように形成されている。換言すれば、凸条部141は、略蒲鉾状に形成されている。このため、凸条部141によって、潤滑油のくさび効果を効率よく発生させることができる。
Moreover, the protruding item | line part 141 is formed over the whole axial direction. For this reason, the wedge effect by the lubricant can be generated over the entire axial direction of the bearing metal 4.
Furthermore, the protruding portion 141 is formed so that the cross-sectional shape orthogonal to the axial direction has an arcuate surface 141a. In other words, the ridge 141 is formed in a substantially bowl shape. For this reason, the protruding portion 141 can efficiently generate the wedge effect of the lubricating oil.
(第2実施形態)
 次に、図13に基づいて、第2実施形態について説明する。
 図13は、第2実施形態における凸条部141の形成位置を説明するための説明図であって、上記の図11に対応している。
 ここで、上記の第1実施形態と第2実施形態との相違点は、凸条部141の形成位置が異なる点にある。この他の態様は、前述の第1実施形態と第2実施形態は同一であるので、各部には、同一符号を付して説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described based on FIG.
FIG. 13 is an explanatory diagram for explaining the formation position of the ridge 141 in the second embodiment, and corresponds to FIG. 11 described above.
Here, the difference between said 1st Embodiment and 2nd Embodiment exists in the point from which the formation position of the protruding item | line part 141 differs. In other aspects, the first embodiment and the second embodiment described above are the same, and therefore, the same reference numerals are given to the respective parts and the description thereof is omitted.
 図13に示すように、潤滑油のくさび効果を発生させるための凸条部141は、軸受メタル4に設けられておらず、偏心軸120の円筒外周面12aに一体成形されている。また、凸条部141は、偏心軸120の円筒外周面121aの中心O2とモータ軸線L(中心O1)とを結ぶ直線S1上で、且つ円筒外周面121aの偏心方向側に配置されている。 As shown in FIG. 13, the protrusion 141 for generating the wedge effect of the lubricating oil is not provided on the bearing metal 4 and is integrally formed on the cylindrical outer peripheral surface 12 a of the eccentric shaft 120. Further, the ridge 141 is arranged on a straight line S1 connecting the center O2 of the cylindrical outer peripheral surface 121a of the eccentric shaft 120 and the motor axis L (center O1) and on the eccentric direction side of the cylindrical outer peripheral surface 121a.
 ここで、前述の第1実施形態(特に、図10)でも説明したように、リングギヤ102の内歯102aと揺動歯車103の外歯203aとの噛合点PAと、揺動歯車103の内歯303aと出力歯車104の外歯104aの噛合点PBは、偏心軸120の円筒外周面121aの中心O2とモータ軸線L(中心O1)とを結ぶ直線S1上で、モータ軸線Lを挟んだ両側に位置している。このため、円筒外周面121aには、常に直線S1上で、且つ円筒外周面121aの偏心方向に、最大荷重がかかる。よって、この最大荷重がかかる位置に凸条部141を設けることにより、偏心軸120と揺動歯車103との間の摩擦によるエネルギーロスを極力低減することができる。
 したがって、上記の第2実施形態によれば、前述の第1実施形態と同様の効果を奏することができる。
Here, as described in the first embodiment (particularly, FIG. 10), the meshing point PA between the inner teeth 102 a of the ring gear 102 and the outer teeth 203 a of the oscillating gear 103 and the inner teeth of the oscillating gear 103. The meshing point PB of 303a and the external gear 104a of the output gear 104 is on both sides of the motor axis L on a straight line S1 connecting the center O2 of the cylindrical outer peripheral surface 121a of the eccentric shaft 120 and the motor axis L (center O1). positioned. For this reason, a maximum load is always applied to the cylindrical outer peripheral surface 121a on the straight line S1 and in the eccentric direction of the cylindrical outer peripheral surface 121a. Therefore, the energy loss due to the friction between the eccentric shaft 120 and the oscillating gear 103 can be reduced as much as possible by providing the ridge 141 at the position where the maximum load is applied.
Therefore, according to said 2nd Embodiment, there can exist an effect similar to the above-mentioned 1st Embodiment.
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上記の実施形態では、凸条部141は、軸方向に直交する断面形状が弧状面141aを有するように形成、換言すれば、凸条部141は、略蒲鉾状に形成されている場合について説明した。しかしながら、これに限られるものではなく、潤滑剤によるくさび効果を得られるような形状であればよい、例えば、断面四角形状でもよい。しかしながら、凸条部141を断面四角形状で形成した場合、蒲鉾状の凸条部141と比較して潤滑剤によるくさび効果は大きく得られない。また、軸受メタル4や偏心軸120の円筒外周面121aに、凸条部141に代わって球体を軸方向に並べて配置してもよい。このように構成した場合であっても、上述の実施形態と同様の効果を奏することができる。
The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
For example, in the above-described embodiment, the ridge 141 is formed such that the cross-sectional shape orthogonal to the axial direction has the arcuate surface 141a, in other words, the ridge 141 is formed in a substantially bowl shape. Explained. However, the shape is not limited to this, and any shape that can obtain a wedge effect by the lubricant may be used. However, when the ridge 141 is formed in a quadrangular cross section, the wedge effect by the lubricant cannot be greatly obtained as compared with the ridge-shaped ridge 141. In addition, the spherical bodies may be arranged in the axial direction on the cylindrical outer peripheral surface 121a of the bearing metal 4 or the eccentric shaft 120 in place of the ridge 141. Even when configured in this manner, the same effects as those of the above-described embodiment can be obtained.
 また、上記の実施形態では、軸受メタル4や偏心軸120の円筒外周面121aに凸条部141を一体成形した場合について説明した。しかしながら、これに限られるものではなく、凸条部141を別体にして設けてもよい。
 さらに、上記の第1実施形態では、軸受メタル4に凸条部141を設け、第2実施形態では、偏心軸120の円筒外周面121aに凸条部141を設けた場合について説明した。しかしながら、これに限られるものではなく、第1実施形態と第2実施形態を組み合わせてもよい。つまり、軸受メタル4と偏心軸120の円筒外周面121aとのそれぞれに、凸条部141を設けてもよい。
Further, in the above-described embodiment, a case has been described in which the convex strip 141 is integrally formed on the cylindrical outer peripheral surface 121a of the bearing metal 4 or the eccentric shaft 120. However, it is not restricted to this, You may provide the protruding item | line part 141 separately.
Furthermore, in said 1st Embodiment, the protruding item | line part 141 was provided in the bearing metal 4, and the case where the protruding item | line part 141 was provided in the cylindrical outer peripheral surface 121a of the eccentric shaft 120 was demonstrated in 2nd Embodiment. However, the present invention is not limited to this, and the first embodiment and the second embodiment may be combined. That is, the ridge 141 may be provided on each of the bearing metal 4 and the cylindrical outer peripheral surface 121a of the eccentric shaft 120.
 また、上記の第1実施形態では、偏心軸120に設けられた軸受メタル4に凸条部141を設けた場合について説明した。しかしながら、軸受メタル4を設けずに、偏心軸120の内周面121bに、直接凸条部141を設け、内周面121bと主軸部材2との間に潤滑剤を塗布するように構成してもよい。 In the first embodiment described above, the case where the protruding strip 141 is provided on the bearing metal 4 provided on the eccentric shaft 120 has been described. However, without providing the bearing metal 4, the convex strip 141 is provided directly on the inner peripheral surface 121 b of the eccentric shaft 120, and the lubricant is applied between the inner peripheral surface 121 b and the main shaft member 2. Also good.
 また、上記の実施形態では、揺動歯車103と出力歯車104とを揺動歯車103の内歯車部303に形成された内歯303aと、出力歯車104の外歯104aとの噛合いで動力を伝達する構造について説明した。しかしながら、これに限られるものではなく、例えば、出力歯車104に複数のピンを同心円状に配置すると共に、揺動歯車103にピンと同数で、且つピンの外径よりも径大な揺動孔を同心円状に形成することで、出力歯車104のピンを揺動歯車103の揺動孔に挿入配置させる構造としても構わない。 Further, in the above-described embodiment, the oscillating gear 103 and the output gear 104 are transmitted with the engagement between the internal teeth 303 a formed on the internal gear portion 303 of the oscillating gear 103 and the external teeth 104 a of the output gear 104. The structure to be explained was explained. However, the present invention is not limited to this. For example, a plurality of pins are concentrically arranged in the output gear 104, and a swing hole having the same number as the pins and larger in diameter than the outer diameter of the pins is provided in the swing gear 103. By forming concentric circles, the pin of the output gear 104 may be inserted into the swing hole of the swing gear 103.
 上記の減速機付モータによれば、固定軸と偏心部との間における所望の位置に、潤滑剤の適正な動圧を発生させることができる。このため、転がり軸受を用いることなく、偏心部の固定軸に対する摩擦のエネルギーロス、または偏心部の揺動歯車に対する摩擦のエネルギーロスを極力低減することができる。よって、ハイポサイクロイド減速方式で作動する減速機を備える減速機付モータにおいて、この減速機付モータの小型化を図りつつ、駆動効率の低下を抑制することができる。 According to the motor with a reduction gear described above, an appropriate dynamic pressure of the lubricant can be generated at a desired position between the fixed shaft and the eccentric portion. For this reason, the energy loss of friction with respect to the fixed shaft of the eccentric part or the energy loss of friction with respect to the oscillating gear of the eccentric part can be reduced as much as possible without using a rolling bearing. Therefore, in a motor with a speed reducer provided with a speed reducer that operates in a hypocycloidal speed reduction method, a reduction in drive efficiency can be suppressed while downsizing the motor with a speed reducer.
1 減速機付モータ
2 主軸部材(固定軸)
4 軸受メタル(滑り軸受)
4a 内周面
10 モータ部
102 リングギヤ(固定歯車)
102a 内歯(第2内歯)
103 揺動歯車
104 出力歯車
104a 外歯(第2外歯)
120 偏心軸(偏心部)
121a 円筒外周面(偏心外周面)
141 凸条部
141a 弧状面
203a 外歯(第1外歯)
303a 内歯(第1内歯)
S1 直線
1 Motor with reduction gear 2 Main shaft member (fixed shaft)
4 Bearing metal (sliding bearing)
4a Inner peripheral surface 10 Motor part 102 Ring gear (fixed gear)
102a Internal teeth (second internal teeth)
103 Oscillating gear 104 Output gear 104a External teeth (second external teeth)
120 Eccentric shaft (Eccentric part)
121a Cylindrical outer peripheral surface (eccentric outer peripheral surface)
141 ridge 141a arcuate surface 203a external teeth (first external teeth)
303a Internal teeth (first internal teeth)
S1 straight line

Claims (6)

  1.  モータ部と、
     前記モータ部の回転中心に設けられた固定軸と、
     前記固定軸に潤滑剤を介して回転可能に挿入される挿入孔を有すると共に、前記回転中心に対して偏心した偏心位置を中心とする偏心外周面を有し、前記モータ部の動力を受けて回転する偏心部と、
     前記偏心外周面に前記潤滑剤を介して回転可能に挿入されると共に、第1内歯および第1外歯を有する揺動歯車と、
     前記揺動歯車の前記第1外歯と噛合される第2内歯を有する固定歯車と、
     前記揺動歯車の前記第1内歯と噛合される第2外歯を有すると共に、前記固定軸と同軸上で回転し、外部機器に動力を出力する出力歯車と、
    を備え、
     前記挿入孔の内周面における前記固定軸との間にかかる荷重の最大位置、および前記偏心外周面における前記揺動歯車との間にかかる荷重の最大位置の少なくとも何れか一方に、前記挿入孔の内周面、および前記偏心外周面に、前記潤滑剤の動圧を局所的に高めるためのくさび効果発生部を設けた減速機付モータ。
    A motor section;
    A fixed shaft provided at the rotation center of the motor unit;
    The fixed shaft has an insertion hole that is rotatably inserted through a lubricant, has an eccentric outer peripheral surface centered on an eccentric position that is eccentric with respect to the rotation center, and receives the power of the motor unit. A rotating eccentric part;
    An oscillating gear that is rotatably inserted into the eccentric outer peripheral surface via the lubricant, and has first internal teeth and first external teeth;
    A fixed gear having second internal teeth meshed with the first external teeth of the swing gear;
    An output gear having second external teeth meshed with the first internal teeth of the swing gear, rotating coaxially with the fixed shaft, and outputting power to an external device;
    With
    At least one of the maximum position of the load applied to the fixed shaft on the inner peripheral surface of the insertion hole and the maximum position of the load applied to the swing gear on the eccentric outer peripheral surface is the insertion hole. A motor with a reduction gear provided with a wedge effect generating portion for locally increasing the dynamic pressure of the lubricant on the inner peripheral surface and the eccentric outer peripheral surface.
  2.  前記挿入孔の内周面には、前記回転中心と前記偏心位置とを結ぶ直線上で、且つ前記偏心外周面の偏心方向とは反対側に、前記くさび効果発生部が設けられている請求項1に記載の減速機付モータ。 The wedge effect generating portion is provided on an inner peripheral surface of the insertion hole on a straight line connecting the rotation center and the eccentric position, and on a side opposite to an eccentric direction of the eccentric outer peripheral surface. The motor with a reduction gear according to 1.
  3.  前記挿入孔の内周面は、前記偏心部に設けられた滑り軸受の内周面であり、該内周面に前記くさび効果発生部が設けられている請求項2に記載の減速機付モータ。 The motor with a reduction gear according to claim 2, wherein an inner peripheral surface of the insertion hole is an inner peripheral surface of a sliding bearing provided in the eccentric portion, and the wedge effect generating portion is provided on the inner peripheral surface. .
  4.  前記偏心外周面には、前記回転中心と前記偏心位置とを結ぶ直線上で、且つ前記偏心外周面の偏心方向側に、前記くさび効果発生部が設けられている請求項1~請求項3の何れか1項に記載の減速機付モータ。 The wedge effect generating portion is provided on the eccentric outer peripheral surface, on a straight line connecting the rotation center and the eccentric position, and on an eccentric direction side of the eccentric outer peripheral surface. The motor with a reduction gear according to any one of the above.
  5.  前記くさび効果発生部は、軸方向に沿って形成された凸条部である請求項1~請求項4の何れか1項に記載の減速機付モータ。 The motor with a speed reducer according to any one of claims 1 to 4, wherein the wedge effect generating portion is a ridge formed along an axial direction.
  6.  前記凸条部は、前記軸方向に直交する方向に沿う断面形状が弧状面を有するように形成されている請求項5に記載の減速機付モータ。 The motor with a speed reducer according to claim 5, wherein the protruding portion is formed such that a cross-sectional shape along a direction orthogonal to the axial direction has an arcuate surface.
PCT/JP2015/081174 2014-11-06 2015-11-05 Motor with speed reducer WO2016072453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014225992A JP6399899B2 (en) 2014-11-06 2014-11-06 Reducer motor
JP2014-225992 2014-11-06

Publications (1)

Publication Number Publication Date
WO2016072453A1 true WO2016072453A1 (en) 2016-05-12

Family

ID=55909177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081174 WO2016072453A1 (en) 2014-11-06 2015-11-05 Motor with speed reducer

Country Status (2)

Country Link
JP (1) JP6399899B2 (en)
WO (1) WO2016072453A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467344A1 (en) * 2017-08-22 2019-04-10 MITSUBA Corporation Speed reducer-attached motor
US11162574B2 (en) * 2017-10-16 2021-11-02 Mitsuba Corporation Speed reduction mechanism and motor with speed reducer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027538A (en) 2017-08-01 2019-02-21 株式会社ミツバ Motor with reduction gear

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031187A (en) * 1996-07-16 1998-02-03 Ricoh Co Ltd Polygon scanner and manufacture therefor
JP2002101600A (en) * 2000-09-22 2002-04-05 Matsushita Electric Ind Co Ltd Spindle motor and floppy (registered trademark) disk device
JP2014081068A (en) * 2012-09-25 2014-05-08 Mitsuba Corp Motor with speed reducer
JP2014206229A (en) * 2013-04-12 2014-10-30 株式会社ミツバ Clutch mechanism and motor with clutch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6163298B2 (en) * 2011-12-08 2017-07-12 株式会社ミツバ Electric motor with reduction gear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031187A (en) * 1996-07-16 1998-02-03 Ricoh Co Ltd Polygon scanner and manufacture therefor
JP2002101600A (en) * 2000-09-22 2002-04-05 Matsushita Electric Ind Co Ltd Spindle motor and floppy (registered trademark) disk device
JP2014081068A (en) * 2012-09-25 2014-05-08 Mitsuba Corp Motor with speed reducer
JP2014206229A (en) * 2013-04-12 2014-10-30 株式会社ミツバ Clutch mechanism and motor with clutch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467344A1 (en) * 2017-08-22 2019-04-10 MITSUBA Corporation Speed reducer-attached motor
US11162574B2 (en) * 2017-10-16 2021-11-02 Mitsuba Corporation Speed reduction mechanism and motor with speed reducer

Also Published As

Publication number Publication date
JP6399899B2 (en) 2018-10-03
JP2016093000A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
US9397527B2 (en) Stator unit and motor
JP5489127B2 (en) Electric motor-gear mechanism unit
WO2016072453A1 (en) Motor with speed reducer
US20180337581A1 (en) Electrical induction motor having oppositely rotating rotor and stator components and including planetary arranged and counter-rotating cog gears with sprag clutch bearings for ensuring unidirectional rotation of the gears
US9621004B2 (en) Armature and DC motor
WO2016175181A1 (en) Electric motor
WO2015133518A1 (en) Armature core, armature, and electric motor
JP6745161B2 (en) Motor with reducer
JP6427470B2 (en) Variable gap motor
CN109217603A (en) Brushless motor and air supply device
JP2010154729A (en) Dc motor
CN110114964A (en) Motor
JP2013090437A (en) Electric motor
JP6372953B2 (en) Electric motor with reduction gear
EP3118979A1 (en) Electric motor
JP6823537B2 (en) Variable gap motor
JP2008061471A (en) Dc motor
JP6462235B2 (en) Electric motor with reduction gear
JP2006271103A (en) Small motor
JP2015159685A (en) Brush device and dc motor with the same
JP6510908B2 (en) Motor with reduction gear
US434590A (en) Dynamo-electric machine
JP2019027538A (en) Motor with reduction gear
JP2010110194A (en) Electric motor
JP2019146326A (en) Armature, electric motor, and electric motor with reduction gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856420

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856420

Country of ref document: EP

Kind code of ref document: A1