WO2016072366A1 - Butyrolactone compound, and production method - Google Patents

Butyrolactone compound, and production method Download PDF

Info

Publication number
WO2016072366A1
WO2016072366A1 PCT/JP2015/080805 JP2015080805W WO2016072366A1 WO 2016072366 A1 WO2016072366 A1 WO 2016072366A1 JP 2015080805 W JP2015080805 W JP 2015080805W WO 2016072366 A1 WO2016072366 A1 WO 2016072366A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
compound
group
following formula
Prior art date
Application number
PCT/JP2015/080805
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 後藤
雅久 遠藤
軍 孫
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020177014716A priority Critical patent/KR102508578B1/en
Priority to JP2016557748A priority patent/JP6760075B2/en
Priority to CN201580058217.0A priority patent/CN107108540B/en
Publication of WO2016072366A1 publication Critical patent/WO2016072366A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing a compound having a butyrolactone ring, and a novel intermediate compound used therein.
  • a voltage is applied to the liquid crystal molecules during the manufacturing process.
  • Some of them include a step of irradiating ultraviolet rays.
  • a photopolymerizable compound is added to a liquid crystal composition in advance and used together with a vertical alignment film such as polyimide to irradiate ultraviolet rays while applying a voltage to a liquid crystal cell.
  • a PSA (Polymer sustained Alignment) type liquid crystal display (PSA) that increases the response speed of liquid crystal is known.
  • the direction in which the liquid crystal molecules tilt in response to an electric field is controlled by protrusions provided on the substrate or slits provided on the display electrode, but a photopolymerizable compound is added to the liquid crystal composition, By irradiating ultraviolet rays while applying voltage to the liquid crystal cell, a polymer structure in which the tilted direction of the liquid crystal molecules is stored is formed on the liquid crystal alignment film. It is said that the response speed of the liquid crystal display element is faster than the method of controlling the above. It has also been reported that the response speed of the liquid crystal display element is increased by adding a photopolymerizable compound to the liquid crystal alignment film instead of the liquid crystal composition (SC-PVA liquid crystal display) (non-patented). Reference 2). As the additive photopolymerizable compound, several polymerizable compounds are known (see Patent Documents 2 to 6).
  • Japanese Unexamined Patent Publication No. 2003-307720 Japanese Unexamined Patent Publication No. 2008-239873 Japanese Unexamined Patent Publication No. 2011-84477 Japanese Unexamined Patent Publication No. 2012-240945 Japanese special table 2013-509457 gazette British Patent Application GB 2297549A
  • Photopolymerizable compounds have heretofore been manufactured using expensive compounds as raw materials. Therefore, as a raw material for electronic equipment that requires cost reduction, there has been a problem in its supplyability. Therefore, there is a need for a novel production method that can produce a photopolymerizable compound at low cost.
  • An object of the present invention is to solve the problems of the prior art described above. Specifically, an object of the present invention is to provide a novel production method and a novel intermediate for producing a photopolymerizable compound used in a liquid crystal display element at a low cost and in a high yield.
  • the present inventors use an expensive raw material selected from a hydroxyphenyl group and a hydroxynaphthyl group in the final step by using a ⁇ -butyrolactone compound substituted with a hydroxyalkyl group as an intermediate.
  • a ⁇ -butyrolactone compound substituted with a hydroxyalkyl group as an intermediate.
  • the intermediate can be obtained from an inexpensive unsaturated heterocyclic compound in a single step with a good yield, and that the storage stability of the intermediate is good, which is extremely advantageous industrially. It was.
  • the photopolymerizable compound useful in a liquid crystal display element could be manufactured using the said intermediate body.
  • the present invention is based on such knowledge and has the following gist. 1.
  • the compound represented by the following formula (A) and the compound represented by the following formula (C) are reacted in the presence of metal tin or a tin-containing compound under acidic conditions.
  • a method for producing the represented compound In the formula, n represents 1 or 2.
  • J 1 represents a halogen atom, and R represents an alkyl group having 1 to 6 carbon atoms.
  • n represents the above meaning.
  • a compound represented by the following formula (1) and a compound represented by the following formula (D) are reacted in the presence of a base, and then obtained when R 1 in the formula (2) is a halogen atom.
  • a method for producing a compound represented by the following formula (3), wherein a reaction product is reacted with a metal halide. In the formula, n represents 1 or 2.
  • J 2 represents a halogen atom
  • Y 1 represents —SO 2 —R 2
  • R 2 represents a hydrocarbon group.
  • R 1 represents OY 1 or a halogen atom
  • Y 1 represents —SO 2 —R 2
  • R 2 represents a hydrocarbon group.
  • each X independently represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • 6 represents a substituent selected from a haloalkoxy group and a cyano group
  • m 1 to m 6 each independently represents an integer of 0 to 4
  • m 7 and m 8 each independently represents 0 to 3 (It is an integer, and when the number of X is 2 or more, Xs may be the same or different.)
  • n and Ar 1 represent the above meanings.
  • a compound represented by the following formula (2) (In the formula, n represents 1 or 2, R 1 represents OY 1 , chlorine, bromine or iodine, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
  • a compound represented by the formula (3) having a divalent organic group having an aromatic ring having at least one halogen substituent and two ⁇ -methylene- ⁇ -butyrolactone groups A novel production method for producing at low cost and in a high yield, and a compound represented by formula (1) and a novel intermediate of the compound represented by formula (2) used in the production method and the like A compound is provided.
  • the compound represented by the formula (3) obtained by the production method of the present invention is highly oriented when used as a polymerizable compound in a liquid crystal display element, particularly as a polymerizable compound added to a liquid crystal alignment film material. It has immobilization ability, and storage stability in varnish is improved, and further solubility in liquid crystal is improved.
  • the present invention comprises an unsaturated heterocyclic compound represented by the following formula (A) and a compound represented by the following formula (C) in the presence of metal tin or a tin-containing compound. It is a manufacturing method of the compound represented by Formula (1) by making it react on acidic conditions.
  • n 0 or 1
  • J 1 represents a halogen atom
  • R represents an alkyl group having 1 to 6 carbon atoms.
  • J 1 is preferably chlorine, bromine or iodine, and preferably chlorine or bromine.
  • R is preferably an alkyl group having 1 to 5 carbon atoms, which may be linear or branched, but is preferably linear. In particular, a methyl group or an ethyl group is preferable.
  • the compound represented by the formula (A) is a known compound and can be obtained commercially.
  • the compound represented by the formula (C) is also a known compound and can be obtained commercially.
  • metal tin or tin-containing compounds examples include tin compounds such as tin powder, anhydrous tin chloride, tin chloride dihydrate, and tin chloride pentahydrate.
  • tin compounds such as tin powder, anhydrous tin chloride, tin chloride dihydrate, and tin chloride pentahydrate.
  • anhydrous tin chloride or tin chloride dihydrate is preferred.
  • an inorganic acid aqueous solution such as hydrochloric acid, sulfuric acid or phosphoric acid, an acidic resin such as Amberlyst®15, or an organic acid such as p-toluenesulfonic acid, acetic acid or formic acid can be used.
  • Hydrochloric acid, sulfuric acid or acetic acid is particularly preferable.
  • acrylic acid derivative which is the above compound (C)
  • 2- (chloromethyl) acrylic acid, 2- (chloromethyl) methyl acrylate, 2- (chloromethyl) ethyl acrylate, 2- (bromomethyl) acrylic acid 2- (Bromomethyl) methyl acrylate, 2- (bromomethyl) ethyl acrylate, and the like are preferable, and 2- (bromomethyl) acrylic acid or 2- (bromomethyl) ethyl acrylate is particularly preferable.
  • the amount of the compound (C) used is preferably 1.0 to 1.2 equivalents relative to 1 equivalent of the unsaturated heterocyclic compound, which is the compound represented by the formula (A), and 1.1 to 1. Two equivalents are more preferred.
  • the above reaction is carried out under acidic conditions, and the pH in the reaction is preferably 1 to 3, more preferably 1 to 2.
  • a solvent that is stable and inert and does not interfere with the reaction is preferable.
  • a solvent that is stable and inert and does not interfere with the reaction is preferable.
  • water, ethers Et 2 O, i-Pr 2 O
  • TBME tert-butyl methyl ether
  • CPME cyclopentyl methyl ether
  • tetrahydrofuran dioxane, etc.
  • solvents can be appropriately selected in consideration of the ease of reaction and the like, and can be used singly or in combination of two or more. Tetrahydrofuran or water is preferable.
  • the reaction temperature is not particularly limited, but is usually 0 to 100 ° C., preferably 20 to 70 ° C.
  • the reaction time is usually 1 to 100 hours, preferably 1 to 12 hours.
  • the ⁇ -methylene- ⁇ -butyrolactone compound (1) obtained as described above is purified by silica gel column chromatography after the reaction, after adding a base to the reaction solution to remove excess acid. The purity can be increased.
  • Solvents used for silica gel column chromatography used for purification are not particularly limited, but include, for example, hydrocarbons such as hexane, heptane, and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane, and chlorobenzene; And ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; esters such as ethyl acetate; mixed solutions thereof; and the like.
  • it is a mixed liquid of esters such as ethyl acetate and hydrocarbons such as hexane or heptane.
  • n 1 or 2
  • R 1 represents OY 1 or a halogen atom
  • Y 1 represents —SO 2 —R 2
  • R 2 represents a hydrocarbon group.
  • the hydroxy group of the compound represented by the formula (1) obtained above is a sulfonic acid halide which is a compound represented by the formula (D). By making it react, it can be converted into a leaving group.
  • n represents the same meaning as described above, J 2 represents a halogen atom, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group. Examples of J 2 include chlorine, bromine and iodine.
  • hydrocarbon group for R 2 a linear or branched C 1-12 alkyl group, a C 3-12 cycloalkyl group, a C 2-12 haloalkyl group, a benzyl group optionally substituted with R a , or Examples thereof include a phenyl group which may be substituted with Ra .
  • R a halogen, C 1-6 alkyl group, C 1-6 haloalkyl group, C 3-6 cycloalkyl group, C 1-6 alkoxy group, C 1-6 alkoxy C 1-6 alkyl group, C 1 And a substituent selected from a -6 haloalkoxy group, NO 2 , CN, a formyl group, and a phenyl group.
  • a methyl group or an ethyl group is preferable.
  • the reaction between compound (1) and compound (D) is preferably carried out in the presence of a base.
  • the base is preferably used in an amount of 1.2 to 10 equivalents, more preferably 1.2 to 3 equivalents, relative to compound (1).
  • bases include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride; pyridine, 4-dimethylaminopyridine, triethylamine, tributylamine , Organic bases such as N, N-dimethylaniline and 1,8-diazabicyclo [5.4.0] -7-undecene; Among them, bases such as 4-dimethylaminopyridine, pyridine and triethylamine can be used. Pyridine or triethylamine is preferable.
  • a solvent that is stable and inert and does not interfere with the reaction.
  • ketones such as acetone and methyl ethyl ketone
  • aprotic polar organic solvents DMF, DMSO, DMAc, NMP, etc.
  • ethers Et 2 O, i-Pr 2 O, TBME, CPME, tetrahydrofuran, dioxane, etc.
  • Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); halogenated hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate) , Ethyl acetate, butyl acetate, methyl propionate,
  • the reaction temperature is not particularly limited, but is usually 0 to 100 ° C., preferably 40 to 70 ° C.
  • the reaction time is usually 1 to 100 hours, preferably 1 to 12 hours.
  • the compound (2-A) obtained above can be highly purified by purifying with silica gel column chromatography after the reaction.
  • Solvents used for silica gel column chromatography are not particularly limited, but include, for example, hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; diethyl ether, tetrahydrofuran, Ethers such as 1,4-dioxane; esters such as ethyl acetate; mixed solutions thereof; and the like.
  • a mixture of an ester such as ethyl acetate and a hydrocarbon such as hexane or heptane is used. is there.
  • the compound represented by the formula (2-A) obtained above is preferably combined with a metal halide in a solvent.
  • a compound represented by the formula (2-B) in which —OY 1 is converted to halogen can be obtained. (Wherein J 3 represents a halogen atom, and Y 1 represents the above meaning.)
  • the metal halide sodium iodide, potassium iodide, sodium bromide, potassium bromide and the like can be used.
  • the amount of the metal halide to be used is preferably 1 to 2 mol, more preferably 1 to 1.2 mol, relative to 1 mol of compound (2-A).
  • a solvent for this reaction a solvent that is stable under reaction conditions, inert and does not interfere with the reaction is used.
  • ketones such as acetone and methyl ethyl ketone
  • aprotic polar organic solvents DMF, DMSO, DMAc, NMP, etc.
  • ethers Et 2 O, i-Pr 2 O, TBME, CPME, tetrahydrofuran, dioxane, etc.
  • Aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.
  • halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.
  • lower fatty acid esters methyl acetate) , Ethyl acetate, butyl acetate, methyl propionate, etc.
  • the reaction temperature is not particularly limited, but is usually 0 to 100 ° C., preferably 30 to 45 ° C.
  • the reaction time is usually 1 to 100 hours, preferably 1 to 12 hours.
  • the compound represented by the formula (2-B) can be highly purified by purifying it by silica gel column chromatography after the reaction.
  • Y 1 in OY 1 in the compound (2-A) is ⁇
  • a compound that is SO 2 —R 2 and R 2 is a phenyl group optionally substituted by R a is preferred.
  • Ar 1 is a divalent group represented by the following formula (4), (5) or (6).
  • each X independently represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • m 1 to m 6 are each independently an integer of 0 to 4, and m 7 and m 8 are each independently an integer of 0 to 3.
  • X is 2 or more, Xs may be the same or different.
  • the halogen atom include fluorine, chlorine, bromine and the like.
  • X is preferably a methoxy group, a trifluoromethyl group, a trifluoromethoxy group, or the like.
  • m 1 to m 6 are preferably 0 to 1.
  • m 7 and m 8 are preferably 0 to 1.
  • inorganic bases such as sodium hydride, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium phosphate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate and cesium carbonate can be used.
  • it is sodium carbonate or potassium carbonate.
  • Additives can be used for the purpose of accelerating the reaction rate.
  • potassium iodide, sodium iodide, quaternary ammonium salts, crown ethers and the like can be used.
  • a solvent is preferable, and a stable and inert solvent that does not hinder the reaction is used.
  • ketones such as acetone and methyl ethyl ketone; aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.); ethers (Et 2 O, i-Pr 2 O, TBME, CPME, tetrahydrofuran, dioxane, etc.), Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); halogenated hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate) , Ethyl acetate, butyl acetate, methyl propionate, etc.);
  • the reaction temperature is not particularly limited, but is usually 40 to 200 ° C, preferably 40 to 150 ° C.
  • the reaction time is usually 20 to 100 hours, preferably 20 to 60 hours.
  • the compound (3) obtained as described above can be highly purified by purifying by slurry washing, recrystallization, silica gel column chromatography and the like after the reaction.
  • the solvent used for washing is not particularly limited.
  • hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; diethyl ether, tetrahydrofuran, 1,4 -Ethers such as dioxane; esters such as ethyl acetate; ketones such as acetone or methyl ethyl ketone; alcohols such as methanol or ethanol and 2-propanol; mixtures thereof; Preferred are alcohols such as methanol, ethanol and 2-propanol.
  • the solvent used for recrystallization is not particularly limited as long as the compound (3) dissolves during heating and precipitates during cooling.
  • hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; esters such as ethyl acetate Ketones such as acetone and methyl ethyl ketone; alcohols such as methanol, ethanol and 2-propanol; and mixtures thereof.
  • Tetrahydrofuran, toluene, methanol, ethanol, 2-propanol, hexane, heptane or a mixture thereof is preferable.
  • X, m 1 and m 2 represent the above meanings
  • Hal represents Br, I or OTf (Tf is a paratoluenesulfonyl group)
  • M represents B (OH) 2 or 4, 4, 5, Represents 5-tetramethyl-1,3,2-dioxaborolan-2-yl.
  • the amount of the aryl halide [2-A] and boronic acid derivative [3-A] used in the cross-coupling reaction is not particularly limited, but the boronic acid derivative is equivalent to 1 equivalent of the halogenated aryl [2-A]. It is preferable to use 1.0 to 1.5 equivalents of [3-A]. Further, 1.0 to 1.5 equivalents of aryl halide [2-A] may be used per 1 equivalent of boronic acid derivative [3-A].
  • metal catalyst used in the above coupling reaction it is preferable to use a metal complex and a ligand. However, if the reaction proceeds without a ligand, the ligand may not be used.
  • metal complexes those having various structures can be used, but palladium complexes and nickel complexes are preferably used.
  • the metal complex a low-valent palladium complex or nickel complex is preferably used, and a zero-valent complex having tertiary phosphine or tertiary phosphite as a ligand is particularly preferable.
  • an appropriate precursor that can be easily converted into a zero-valent complex in the reaction system can also be used.
  • a complex containing no tertiary phosphine or tertiary phosphite as a ligand is mixed with a tertiary phosphine or tertiary phosphite, and the tertiary phosphine or tertiary phosphite is converted into a ligand. It is also possible to generate a low valence complex.
  • tertiary phosphine or tertiary phosphite examples include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis ( And diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, trimethyl phosphite, triethyl phosphite, triphenyl phosphite and the like. Complexes containing a mixture of two or more of these ligands are also preferably used.
  • the metal catalyst it is also preferable to use a combination of a palladium complex or nickel complex that does not contain tertiary phosphine or tertiary phosphite, a complex containing tertiary phosphine or tertiary phosphite, and the above-described ligand. It is an aspect.
  • Examples of palladium complexes and nickel complexes that do not contain the tertiary phosphine or tertiary phosphite used in combination include bis (benzylideneacetone) palladium, tris (benzylideneacetone) dipalladium, bis (acetonitrile) dichloropalladium, and bis (benzo Nitrile) dichloropalladium, palladium acetate, palladium chloride, palladium chloride-acetonitrile complex, palladium-activated carbon, nickel chloride, nickel iodide and the like.
  • Examples of the complex containing tertiary phosphine or tertiary phosphite include dimethylbis (triphenylphosphine) palladium, dimethylbis (diphenylmethylphosphine) palladium, (ethylene) bis (triphenylphosphine) palladium, tetrakis (triphenyl). Phosphine) palladium, bis (triphenylphosphine) dichloropalladium, [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, [1,2-bis (diphenylphosphino) ethane] nickel (II) dichloride Etc. These are not limited to those described above. These palladium complexes and nickel complexes may be used in so-called catalytic amounts. Generally, 20 mol% or less is sufficient relative to the substrate, and usually 10 mol% or less.
  • the base examples include inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate; methylamine, dimethyl Amine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, isopropylamine, diisopropylamine, triisopropylamine, butylamine, dibutylamine, tributylamine, diisopropylethylamine, pyridine, imidazole, quinoline, collidine, etc. And the like; sodium acetate, potassium acetate, lithium acetate; and the like can also be used.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, potassium phosphate, sodium carbon
  • a solvent is preferable, and a stable and inert solvent that does not hinder the reaction is used.
  • a solvent for example, water, alcohols, amines, aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.), ethers (Et 2 O, i-Pr 2 O, TBME, CPME, tetrahydrofuran, dioxane, etc.), Aliphatic hydrocarbons (pentane, hexane, heptane, petroleum ether, etc.), aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.), halogenated hydrocarbons (chloroform) , Dichloromethane, carbon tetrachloride, dichloroethane, etc.), lower fatty acid esters (methyl acetate, ethyl,
  • the reaction temperature is not particularly limited, but is usually ⁇ 90 to 200 ° C., preferably ⁇ 50 to 150 ° C., more preferably 40 to 120 ° C.
  • the reaction time is usually 0.05 to 100 hours, preferably 0.5 to 40 hours, and more preferably 0.5 to 24 hours.
  • the biphenyl compound [4-A] obtained as described above can be highly purified by purifying by slurry washing, recrystallization, silica gel column chromatography and the like after the reaction.
  • the solvent used for the slurry washing is not particularly limited.
  • hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; diethyl ether, tetrahydrofuran, 1, Ethers such as 4-dioxane; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; nitriles such as acetonitrile and propionitrile; alcohols such as methanol, ethanol and 2-propanol; a mixture thereof; Etc.
  • the solvent used for recrystallization is not particularly limited as long as the biphenyl compound [4-A] dissolves upon heating and precipitates upon cooling.
  • hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; esters such as ethyl acetate Ketones such as acetone and methyl ethyl ketone; nitriles such as acetonitrile and propionitrile; alcohols such as methanol, ethanol and 2-propanol; and mixtures thereof.
  • Preferred is ethyl acetate, tetrahydrofuran, toluene or hexane.
  • Example 1 When the compound obtained in Example 1 is used as a starting material, for example, it can be derived into the following compounds.
  • Ms represents a methanesulfonyl group
  • I represents an iodine atom
  • Ts represents a p-toluenesulfonyl group.
  • Example 6 The following compounds were synthesized by the reaction shown in Example 6 using the compound obtained in Example 5 as a starting material.
  • the analysis apparatus and analysis conditions employed in Example 6 use UV detection (wavelength 265 nm) as a detector, and acetonitrile / 0.2 wt% ammonium acetate aqueous solution (70/30 (0 ⁇ The above HPLC analysis was used except that 5 min) ⁇ 85/15 (10-30 min)) [v / v] was used.
  • the compound having an ⁇ -methylene- ⁇ -butyrolactone group represented by the formula (3) obtained by the production method of the present invention is used in a wide range of fields such as a photopolymerizable compound used in a liquid crystal display device. .
  • the compound represented by Formula (1) and the compound represented by Formula (2) are used as an intermediate of the compound represented by Formula (3).

Abstract

Provided are: a novel production method for inexpensively producing, in high yield, a photopolymerizable compound used in liquid crystal display elements or the like; and a novel intermediate compound. In a method for producing a compound represented by formula (1), a compound represented by formula (A) is reacted with a compound represented by formula (C), under acidic conditions, in the presence of metallic tin or a tin-containing compound. In a method for producing a compound represented by formula (2-A), the compound represented by formula (1) is reacted with a compound represented by formula (D), in the presence of a base. Also provided are the compound represented by formula (1) and the compound represented by formula (2-A). (In the formulae: n represents 1 or 2; J1 and J2 represent halogens; R represents a C1-6 alkyl group; Y1 represents -SO2-R2; and R represents a hydrocarbon group.)

Description

ブチロラクトン化合物及び製造方法Butyrolactone compound and production method
 本発明は、ブチロラクトン環を有する化合物の製造方法、及びそこで使用される新規な中間体化合物に関する。 The present invention relates to a method for producing a compound having a butyrolactone ring, and a novel intermediate compound used therein.
 基板に対して垂直に配向している液晶分子を、電界によって応答させる方式(垂直配向(VA)方式ともいう)の液晶表示素子の中には、その製造過程において、液晶分子に電圧を印加しながら紫外線を照射する工程を含むものがある。
 このような垂直配向方式の液晶表示素子では、あらかじめ液晶組成物中に光重合性化合物を添加し、ポリイミド等の垂直配向膜と共に用いて、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くするPSA((Polymer sustained Alignment)型液晶ディスプレイ)が知られている。(特許文献1及び非特許文献1参照)
In a liquid crystal display element of a method (also referred to as a vertical alignment (VA) method) in which liquid crystal molecules aligned perpendicular to a substrate are responded by an electric field, a voltage is applied to the liquid crystal molecules during the manufacturing process. Some of them include a step of irradiating ultraviolet rays.
In such a vertical alignment type liquid crystal display element, a photopolymerizable compound is added to a liquid crystal composition in advance and used together with a vertical alignment film such as polyimide to irradiate ultraviolet rays while applying a voltage to a liquid crystal cell. A PSA (Polymer sustained Alignment) type liquid crystal display (PSA) that increases the response speed of liquid crystal is known. (See Patent Document 1 and Non-Patent Document 1)
 通常、電界に応答した液晶分子の傾く方向は、基板上に設けられた突起や表示用電極に設けられたスリットなどによって制御されているが、液晶組成物中に光重合性化合物を添加し、液晶セルに電圧を印加しながら紫外線を照射することにより、液晶分子の傾いていた方向が記憶されたポリマー構造物が液晶配向膜上に形成されるので、突起やスリットのみで液晶分子の傾き方向を制御する方法と比べて、液晶表示素子の応答速度が速くなるといわれている。
 また、光重合性化合物を液晶組成物中ではなく液晶配向膜中に添加することによっても、液晶表示素子の応答速度が速くなることが報告されている(SC-PVA型液晶ディスプレイ)(非特許文献2参照)。
 上記の添加光重合性化合物としては、幾つかの重合性化合物が知られている(特許文献2~6参照)。
Usually, the direction in which the liquid crystal molecules tilt in response to an electric field is controlled by protrusions provided on the substrate or slits provided on the display electrode, but a photopolymerizable compound is added to the liquid crystal composition, By irradiating ultraviolet rays while applying voltage to the liquid crystal cell, a polymer structure in which the tilted direction of the liquid crystal molecules is stored is formed on the liquid crystal alignment film. It is said that the response speed of the liquid crystal display element is faster than the method of controlling the above.
It has also been reported that the response speed of the liquid crystal display element is increased by adding a photopolymerizable compound to the liquid crystal alignment film instead of the liquid crystal composition (SC-PVA liquid crystal display) (non-patented). Reference 2).
As the additive photopolymerizable compound, several polymerizable compounds are known (see Patent Documents 2 to 6).
日本特開2003-307720号公報Japanese Unexamined Patent Publication No. 2003-307720 日本特開2008-239873号公報Japanese Unexamined Patent Publication No. 2008-239873 日本特開2011-84477号公報Japanese Unexamined Patent Publication No. 2011-84477 日本特開2012-240945号公報Japanese Unexamined Patent Publication No. 2012-240945 日本特表2013-509457号公報Japanese special table 2013-509457 gazette 英国特許出願公開GB2297549A号公報British Patent Application GB 2297549A
 光重合性化合物は、従来、高価な化合物を原料として製造されてきた。そのため、コスト削減が要求される電子機器の原料としては、その供給性に課題があった。そこで、光重合性化合物を安価に製造しうる、新規な製造方法が求められている。 Photopolymerizable compounds have heretofore been manufactured using expensive compounds as raw materials. Therefore, as a raw material for electronic equipment that requires cost reduction, there has been a problem in its supplyability. Therefore, there is a need for a novel production method that can produce a photopolymerizable compound at low cost.
 本発明の目的は、上述した従来技術の問題点を解決することにある。
 具体的には、本発明の目的は、液晶表示素子に用いられる光重合性化合物を、安価に、収率よく製造するための新規な製造方法及び新規な中間体を提供することにある。
An object of the present invention is to solve the problems of the prior art described above.
Specifically, an object of the present invention is to provide a novel production method and a novel intermediate for producing a photopolymerizable compound used in a liquid crystal display element at a low cost and in a high yield.
 本発明者らは、上記目的を達成すべく、ヒドロキシアルキル基で置換されたγ-ブチロラクトン化合物を中間体として用いることにより、ヒドロキシフェニル基及びヒドロキシナフチル基から選ばれる高価な原料を最終工程に用いることが可能となると考え、検討を重ねた。
 その結果、当該中間体が、安価な不飽和へテロ環化合物から1段階で収率よく得られるとともに、当該中間体の保存安定性も良いことから、工業的にも極めて有利であることを見いだした。また、当該中間体を用いて、液晶表示素子において有用な光重合性化合物を製造しうることを見いだした。
In order to achieve the above object, the present inventors use an expensive raw material selected from a hydroxyphenyl group and a hydroxynaphthyl group in the final step by using a γ-butyrolactone compound substituted with a hydroxyalkyl group as an intermediate. We thought that it would be possible, and repeated examination.
As a result, it has been found that the intermediate can be obtained from an inexpensive unsaturated heterocyclic compound in a single step with a good yield, and that the storage stability of the intermediate is good, which is extremely advantageous industrially. It was. Moreover, it discovered that the photopolymerizable compound useful in a liquid crystal display element could be manufactured using the said intermediate body.
 本発明はかかる知見に基づくもので、以下の要旨を有する。
1.下記式(A)で表される化合物と、下記式(C)で表される化合物とを金属錫又は錫含有化合物の存在下に、酸性条件で反応させることを特徴とする式(1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000013
(式中、nは1又は2を表す。)
Figure JPOXMLDOC01-appb-C000014
(式中、Jはハロゲン原子を表し、Rは炭素原子数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000015
(式中、nは上記の意味を表す。)
The present invention is based on such knowledge and has the following gist.
1. In the formula (1), the compound represented by the following formula (A) and the compound represented by the following formula (C) are reacted in the presence of metal tin or a tin-containing compound under acidic conditions. A method for producing the represented compound.
Figure JPOXMLDOC01-appb-C000013
(In the formula, n represents 1 or 2.)
Figure JPOXMLDOC01-appb-C000014
(Wherein J 1 represents a halogen atom, and R represents an alkyl group having 1 to 6 carbon atoms.)
Figure JPOXMLDOC01-appb-C000015
(In the formula, n represents the above meaning.)
2.下記式(1)で表される化合物と、下記式(D)で表される化合物とを、塩基存在下で反応させ、次いで、式(2)におけるRがハロゲン原子の場合は、得られる反応生成物を金属ハロゲン化物と反応させる下記式(3)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000016
(式中、nは1又は2を表す。)
Figure JPOXMLDOC01-appb-C000017
(式中、Jはハロゲン原子を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000018
(式中、nは1又は2を表し、RはOY、ハロゲン原子を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
2. A compound represented by the following formula (1) and a compound represented by the following formula (D) are reacted in the presence of a base, and then obtained when R 1 in the formula (2) is a halogen atom. A method for producing a compound represented by the following formula (3), wherein a reaction product is reacted with a metal halide.
Figure JPOXMLDOC01-appb-C000016
(In the formula, n represents 1 or 2.)
Figure JPOXMLDOC01-appb-C000017
(Wherein J 2 represents a halogen atom, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
Figure JPOXMLDOC01-appb-C000018
(In the formula, n represents 1 or 2, R 1 represents OY 1 or a halogen atom, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
3.下記式(2)で表される化合物を、下記式(E)で表される化合物と反応させることによる、下記式(3)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000019
(式中、nは1又は2を表し、RはOY、塩素、臭素又はヨウ素を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000020
(式中、Arは下記式(4)、(5)又は(6)で表される2価の基である。)
Figure JPOXMLDOC01-appb-C000021
3. The manufacturing method of the compound represented by following formula (3) by making the compound represented by following formula (2) react with the compound represented by following formula (E).
Figure JPOXMLDOC01-appb-C000019
(In the formula, n represents 1 or 2, R 1 represents OY 1 , chlorine, bromine or iodine, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
Figure JPOXMLDOC01-appb-C000020
(In the formula, Ar 1 is a divalent group represented by the following formula (4), (5) or (6)).
Figure JPOXMLDOC01-appb-C000021
(式(4)、(5)又は(6)中、Xは、各々独立に、ハロゲン原子、炭素原子数1~6のアルコキシ基、炭素原子数1~6のハロアルキル基、炭素原子数1~6のハロアルコキシ基及びシアノ基から選ばれる置換基を表し、m~mは、各々独立に、0~4の整数であり、m7及びmは、各々独立に、0~3の整数であり、Xの数が2以上となる場合は、X同士は同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000022
(式中、n及びArは上記の意味を表す。)
(In the formula (4), (5) or (6), each X independently represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. 6 represents a substituent selected from a haloalkoxy group and a cyano group, m 1 to m 6 each independently represents an integer of 0 to 4, and m 7 and m 8 each independently represents 0 to 3 (It is an integer, and when the number of X is 2 or more, Xs may be the same or different.)
Figure JPOXMLDOC01-appb-C000022
(In the formula, n and Ar 1 represent the above meanings.)
4.下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000023
(式中、nは1又は2を表す。)
4). A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000023
(In the formula, n represents 1 or 2.)
5.下記式(2)で表される化合物。
Figure JPOXMLDOC01-appb-C000024
(式中、nは1又は2を表し、RはOY、塩素、臭素又はヨウ素を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
5. A compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000024
(In the formula, n represents 1 or 2, R 1 represents OY 1 , chlorine, bromine or iodine, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
 本発明によれば、ハロゲン置換基を少なくとも1つ有する芳香族環を有する二価の有機基と、2個のα-メチレン-γ-ブチロラクトン基を有する式(3)で表される化合物を、安価に、収率よく製造するための新規な製造方法、及び該製造方法などに使用される、式(1)で表される化合物、及び式(2)で表される化合物の新規な中間体化合物が提供される。
 本発明の製造方法で得られる式(3)で表される化合物は、液晶表示素子における重合性化合物として、特に、液晶配向膜材料に添加される重合性化合物として用いた場合には、高い配向固定化能力を有し、且つ、ワニス中での保存安定性が向上し、さらには液晶への溶解性が向上する。
According to the present invention, a compound represented by the formula (3) having a divalent organic group having an aromatic ring having at least one halogen substituent and two α-methylene-γ-butyrolactone groups, A novel production method for producing at low cost and in a high yield, and a compound represented by formula (1) and a novel intermediate of the compound represented by formula (2) used in the production method and the like A compound is provided.
The compound represented by the formula (3) obtained by the production method of the present invention is highly oriented when used as a polymerizable compound in a liquid crystal display element, particularly as a polymerizable compound added to a liquid crystal alignment film material. It has immobilization ability, and storage stability in varnish is improved, and further solubility in liquid crystal is improved.
<式(1)で表される化合物>
 本発明は、下記スキームで表されるとおり、下記式(A)で表される不飽和ヘテロ環化合物と、下記式(C)で表される化合物とを金属錫又は錫含有化合物の存在下に酸性条件で反応させることによる、式(1)で表される化合物の製造方法である。
<Compound represented by Formula (1)>
As represented by the following scheme, the present invention comprises an unsaturated heterocyclic compound represented by the following formula (A) and a compound represented by the following formula (C) in the presence of metal tin or a tin-containing compound. It is a manufacturing method of the compound represented by Formula (1) by making it react on acidic conditions.
Figure JPOXMLDOC01-appb-C000025
 式中、nは0又は1を表し、Jはハロゲン原子を表し、Rは炭素原子数が1~6のアルキル基を表す。
 Jは、塩素、臭素、ヨウ素が好ましく、塩素又は臭素が好ましい。
 Rとしては、炭素原子数が1~5のアルキル基が好ましく、直鎖状でも分岐状でもよいが、直鎖状が好ましい。特に、メチル基又はエチル基が好ましい。
Figure JPOXMLDOC01-appb-C000025
In the formula, n represents 0 or 1, J 1 represents a halogen atom, and R represents an alkyl group having 1 to 6 carbon atoms.
J 1 is preferably chlorine, bromine or iodine, and preferably chlorine or bromine.
R is preferably an alkyl group having 1 to 5 carbon atoms, which may be linear or branched, but is preferably linear. In particular, a methyl group or an ethyl group is preferable.
 式(A)で表される化合物は、公知化合物であり、商業的に入手することが可能である。式(C)で表される化合物も公知化合物であり、商業的に入手することが可能である。 The compound represented by the formula (A) is a known compound and can be obtained commercially. The compound represented by the formula (C) is also a known compound and can be obtained commercially.
 金属錫又は錫含有化合物の例としては、錫粉末、無水塩化錫、塩化錫二水和物、塩化錫五水和物などの錫系化合物が使用できる。特に、無水塩化錫又は塩化錫二水和物が好ましい。 Examples of metal tin or tin-containing compounds include tin compounds such as tin powder, anhydrous tin chloride, tin chloride dihydrate, and tin chloride pentahydrate. In particular, anhydrous tin chloride or tin chloride dihydrate is preferred.
 酸としては、塩酸、硫酸、リン酸などの無機酸水溶液、Amberlyst 15などの酸性樹脂、p-トルエンスルホン酸、酢酸、蟻酸などの有機酸が使用できる。特に塩酸、硫酸又は酢酸が好ましい。 As the acid, an inorganic acid aqueous solution such as hydrochloric acid, sulfuric acid or phosphoric acid, an acidic resin such as Amberlyst®15, or an organic acid such as p-toluenesulfonic acid, acetic acid or formic acid can be used. Hydrochloric acid, sulfuric acid or acetic acid is particularly preferable.
 上記化合物(C)である、アクリル酸誘導体としては、2-(クロロメチル)アクリル酸、2-(クロロメチル)アクリル酸メチル、2-(クロロメチル)アクリル酸エチル、2-(ブロモメチル)アクリル酸、2-(ブロモメチル)アクリル酸メチル、2-(ブロモメチル)アクリル酸エチルなどが好ましく、特に、2-(ブロモメチル)アクリル酸又は2-(ブロモメチル)アクリル酸エチルが好ましい。 As the acrylic acid derivative which is the above compound (C), 2- (chloromethyl) acrylic acid, 2- (chloromethyl) methyl acrylate, 2- (chloromethyl) ethyl acrylate, 2- (bromomethyl) acrylic acid 2- (Bromomethyl) methyl acrylate, 2- (bromomethyl) ethyl acrylate, and the like are preferable, and 2- (bromomethyl) acrylic acid or 2- (bromomethyl) ethyl acrylate is particularly preferable.
 化合物(C)の使用量は、式(A)で表される化合物である、不飽和ヘテロ環化合物の1当量に対して、1.0~1.2当量が好ましく、1.1~1.2当量がより好ましい。 The amount of the compound (C) used is preferably 1.0 to 1.2 equivalents relative to 1 equivalent of the unsaturated heterocyclic compound, which is the compound represented by the formula (A), and 1.1 to 1. Two equivalents are more preferred.
 上記反応は酸性条件で行なわれ、反応におけるpHが、好ましくは1~3、より好ましくは1~2で行なわれる。 The above reaction is carried out under acidic conditions, and the pH in the reaction is preferably 1 to 3, more preferably 1 to 2.
 上記反応は、溶媒の使用が好ましく、安定で不活性であり、反応を妨げない溶媒が好ましい。例えば、水、エーテル類(EtO、 i-PrO)、 TBME(tert-ブチルメチルエーテル)、 CPME(シクロペンチルメチルエーテル)、 テトラヒドロフラン、 ジオキサンなど)が使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独でも、2種以上混合しても用いることができる。好ましくは、テトラヒドロフラン又は水である。 In the above reaction, the use of a solvent is preferable, and a solvent that is stable and inert and does not interfere with the reaction is preferable. For example, water, ethers (Et 2 O, i-Pr 2 O), TBME (tert-butyl methyl ether), CPME (cyclopentyl methyl ether), tetrahydrofuran, dioxane, etc.) can be used. These solvents can be appropriately selected in consideration of the ease of reaction and the like, and can be used singly or in combination of two or more. Tetrahydrofuran or water is preferable.
 反応温度は、特に限定されないが、通常、0~100℃、好ましくは20~70℃である。
反応時間は、通常、1~100時間、好ましくは1~12時間である。
The reaction temperature is not particularly limited, but is usually 0 to 100 ° C., preferably 20 to 70 ° C.
The reaction time is usually 1 to 100 hours, preferably 1 to 12 hours.
 上記のようにして得られる化合物(1)である、α-メチレン-γ-ブチロラクトン化合物は、反応後に、反応液に塩基を加えて過剰の酸を除去した後、シリカゲルカラムクロマトグラフィーなどで精製することにより高純度化することができる。 The α-methylene-γ-butyrolactone compound (1) obtained as described above is purified by silica gel column chromatography after the reaction, after adding a base to the reaction solution to remove excess acid. The purity can be increased.
 精製に使用されるシリカゲルカラムクロマトグラフィーに用いる溶媒としては、特に限定されないが、例えば、ヘキサン、ヘプタン、トルエンなどの炭化水素類;クロロホルム、1,2-ジクロロエタン、クロロベンゼンなどのハロゲン系炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類;酢酸エチルなどのエステル類;これらの混溶液;などが挙げられる。好ましくは、酢酸エチルなどのエステル類とヘキサン又はヘプタンなどの炭化水素類との混合液である。 Solvents used for silica gel column chromatography used for purification are not particularly limited, but include, for example, hydrocarbons such as hexane, heptane, and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane, and chlorobenzene; And ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; esters such as ethyl acetate; mixed solutions thereof; and the like. Preferably, it is a mixed liquid of esters such as ethyl acetate and hydrocarbons such as hexane or heptane.
<式(2)で表される化合物>
 上記で得られた式(1)で表される化合物と、式(D)で表される化合物とを、塩基存在下で反応させ、次いで、式(2)におけるRがハロゲン原子の場合は、得られる反応生成物を金属ハロゲン化物と反応させることにより、式(3)で表される化合物が製造される。
Figure JPOXMLDOC01-appb-C000026
(式中、Jはハロゲン原子を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
<Compound represented by Formula (2)>
When the compound represented by the formula (1) obtained above and the compound represented by the formula (D) are reacted in the presence of a base, and R 1 in the formula (2) is a halogen atom, The compound represented by the formula (3) is produced by reacting the obtained reaction product with a metal halide.
Figure JPOXMLDOC01-appb-C000026
(Wherein J 2 represents a halogen atom, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
Figure JPOXMLDOC01-appb-C000027
(式中、nは1又は2を表し、RはOY、ハロゲン原子を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000027
(In the formula, n represents 1 or 2, R 1 represents OY 1 or a halogen atom, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
 以下にこれについて説明すると、上記で得られた式(1)で表される化合物の有するヒドロキシ基は、下記スキームに示すように、式(D)で表される化合物であるスルホン酸ハロゲン化物と反応させることにより、脱離基に変換することができる。
Figure JPOXMLDOC01-appb-C000028
 式中、nは前記と同じ意味を表し、Jはハロゲン原子を表し、Yは-SO-Rを表し、Rは炭化水素基を表す。Jとしては、塩素、臭素、ヨウ素等が挙げられる。
This will be explained below. As shown in the following scheme, the hydroxy group of the compound represented by the formula (1) obtained above is a sulfonic acid halide which is a compound represented by the formula (D). By making it react, it can be converted into a leaving group.
Figure JPOXMLDOC01-appb-C000028
In the formula, n represents the same meaning as described above, J 2 represents a halogen atom, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group. Examples of J 2 include chlorine, bromine and iodine.
 Rにおける炭化水素基としては、直鎖状又は分岐状のC1-12アルキル基、C3-12シクロアルキル基、C2-12ハロアルキル基、Rで置換されていてもよいベンジル基又はRで置換されていてもよいフェニル基が挙げられる。
 Rとしては、ハロゲン、C1-6アルキル基、C1-6ハロアルキル基、C3-6シクロアルキル基、C1-6アルコキシ基、C1-6アルコキシC1-6アルキル基、C1-6ハロアルコキシ基、NO、CN、ホルミル基、及びフェニル基から選ばれる置換基が挙げられる。好ましくはメチル基又はエチル基である。
As the hydrocarbon group for R 2 , a linear or branched C 1-12 alkyl group, a C 3-12 cycloalkyl group, a C 2-12 haloalkyl group, a benzyl group optionally substituted with R a , or Examples thereof include a phenyl group which may be substituted with Ra .
As R a , halogen, C 1-6 alkyl group, C 1-6 haloalkyl group, C 3-6 cycloalkyl group, C 1-6 alkoxy group, C 1-6 alkoxy C 1-6 alkyl group, C 1 And a substituent selected from a -6 haloalkoxy group, NO 2 , CN, a formyl group, and a phenyl group. A methyl group or an ethyl group is preferable.
 化合物(1)と化合物(D)との反応は、塩基の存在下で行うことが好ましい。塩基は、化合物(1)に対して、好ましくは1.2~10当量、より好ましくは1.2~3当量使用される。
 塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化ナトリウム等の無機塩基類;ピリジン、4-ジメチルアミノピリジン、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基類;等が挙げられる。中でも、4-ジメチルアミノピリジン、ピリジン、トリエチルアミン等の塩基類が使用できる。好ましくは、ピリジン又はトリエチルアミンである。
The reaction between compound (1) and compound (D) is preferably carried out in the presence of a base. The base is preferably used in an amount of 1.2 to 10 equivalents, more preferably 1.2 to 3 equivalents, relative to compound (1).
Examples of bases include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride; pyridine, 4-dimethylaminopyridine, triethylamine, tributylamine , Organic bases such as N, N-dimethylaniline and 1,8-diazabicyclo [5.4.0] -7-undecene; Among them, bases such as 4-dimethylaminopyridine, pyridine and triethylamine can be used. Pyridine or triethylamine is preferable.
 上記反応においては、溶媒の使用が好ましく、安定で不活性であり、反応を妨げない溶媒が用いられる。例えば、アセトン、メチルエチルケトンなどのケトン類;非プロトン性極性有機溶媒(DMF, DMSO, DMAc, NMPなど);エーテル類(EtO, i-PrO, TBME, CPME, テトラヒドロフラン, ジオキサンなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独でも、2種以上混合しても用いることができる。好ましくは、テトラヒドロフランである。 In the above reaction, the use of a solvent is preferable, and a solvent that is stable and inert and does not interfere with the reaction is used. For example, ketones such as acetone and methyl ethyl ketone; aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.); ethers (Et 2 O, i-Pr 2 O, TBME, CPME, tetrahydrofuran, dioxane, etc.); Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); halogenated hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate) , Ethyl acetate, butyl acetate, methyl propionate, etc.) can be used. These solvents can be appropriately selected in consideration of the ease of reaction and the like, and can be used singly or in combination of two or more. Tetrahydrofuran is preferable.
 反応温度は、特に限定されないが、通常、0~100℃であり、好ましくは40~70℃である。反応時間は、通常、1~100時間であり、好ましくは1~12時間である。 The reaction temperature is not particularly limited, but is usually 0 to 100 ° C., preferably 40 to 70 ° C. The reaction time is usually 1 to 100 hours, preferably 1 to 12 hours.
 上記で得られた化合物(2-A)は、反応後に、シリカゲルカラムクロマトグラフィーなどで精製することにより高純度化することができる。 The compound (2-A) obtained above can be highly purified by purifying with silica gel column chromatography after the reaction.
 シリカゲルカラムクロマトグラフィーに用いる溶媒としては、特に限定されないが、例えば、ヘキサン、ヘプタン、トルエンなどの炭化水素類;クロロホルム、1,2-ジクロロエタン、クロロベンゼンなどのハロゲン系炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類;酢酸エチルなどのエステル類;これらの混溶液;などが挙げられ、好ましくは、酢酸エチルなどのエステル類とヘキサン又はヘプタンなどの炭化水素類との混合液である。 Solvents used for silica gel column chromatography are not particularly limited, but include, for example, hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; diethyl ether, tetrahydrofuran, Ethers such as 1,4-dioxane; esters such as ethyl acetate; mixed solutions thereof; and the like. Preferably, a mixture of an ester such as ethyl acetate and a hydrocarbon such as hexane or heptane is used. is there.
 式(2)におけるR1がハロゲン原子である式(2)の化合物を得る場合には、上記で得られた式(2-A)で表される化合物を、好ましくは溶媒中、金属ハロゲン化物と反応させることにより、―OYをハロゲンに変換した、式(2-B)で表される化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000029
(式中、Jはハロゲン原子を表し、Yは前記の意味を表す。)
When obtaining the compound of the formula (2) in which R1 in the formula (2) is a halogen atom, the compound represented by the formula (2-A) obtained above is preferably combined with a metal halide in a solvent. By reacting, a compound represented by the formula (2-B) in which —OY 1 is converted to halogen can be obtained.
Figure JPOXMLDOC01-appb-C000029
(Wherein J 3 represents a halogen atom, and Y 1 represents the above meaning.)
 上記金属ハロゲン化物としては、ヨウ化ナトリウム、ヨウ化カリウム、臭化ナトリウム、臭化カリウム等が使用できる。金属ハロゲン化物の使用量としては、化合物(2-A)の1モルに対して、1~2モルが好ましく、1~1.2モルがさらに好ましい。 As the metal halide, sodium iodide, potassium iodide, sodium bromide, potassium bromide and the like can be used. The amount of the metal halide to be used is preferably 1 to 2 mol, more preferably 1 to 1.2 mol, relative to 1 mol of compound (2-A).
 この反応の溶媒としては、反応条件下に安定であり不活性で、反応を妨げない溶媒が用いられる。例えば、アセトン、メチルエチルケトンなどのケトン類;非プロトン性極性有機溶媒(DMF, DMSO, DMAc, NMPなど);エーテル類(EtO, i-PrO, TBME, CPME, テトラヒドロフラン, ジオキサンなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独でも、2種以上混合しても用いることができる。好ましくは、アセトンである。 As a solvent for this reaction, a solvent that is stable under reaction conditions, inert and does not interfere with the reaction is used. For example, ketones such as acetone and methyl ethyl ketone; aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.); ethers (Et 2 O, i-Pr 2 O, TBME, CPME, tetrahydrofuran, dioxane, etc.); Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); halogenated hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate) , Ethyl acetate, butyl acetate, methyl propionate, etc.) can be used. These solvents can be appropriately selected in consideration of the ease of reaction and the like, and can be used singly or in combination of two or more. Acetone is preferred.
 反応温度は、特に限定されないが、通常、0~100℃であり、好ましくは30~45℃である。反応時間は、通常、1~100時間であり、好ましくは1~12時間である。 The reaction temperature is not particularly limited, but is usually 0 to 100 ° C., preferably 30 to 45 ° C. The reaction time is usually 1 to 100 hours, preferably 1 to 12 hours.
 上記のようにして式(2-B)で表される化合物は、反応後に、シリカゲルカラムクロマトグラフィーなどで精製することにより高純度化することができる。 As described above, the compound represented by the formula (2-B) can be highly purified by purifying it by silica gel column chromatography after the reaction.
 上記の化合物(2-A)から化合物(2-B)を得る反応において、フェノール性水酸基との反応が特に純度良く進行するという点で、化合物(2-A)におけるOYにおけるYが-SO-Rであり、Rが上記Rで置換されていてもよいフェニル基である化合物が好ましい。 In the reaction for obtaining the compound (2-B) from the above compound (2-A), Y 1 in OY 1 in the compound (2-A) is − A compound that is SO 2 —R 2 and R 2 is a phenyl group optionally substituted by R a is preferred.
<式(3)で表される化合物>
 上記で得られた式(2)で表される化合物は、下記のスキームに示すように、式(E)で表されるフェノール性水酸基を有する芳香族化合物と、塩基の存在下で反応させることにより、式(3)で表される重合性化合物を得ることができる。
<Compound represented by Formula (3)>
The compound represented by formula (2) obtained above is reacted with an aromatic compound having a phenolic hydroxyl group represented by formula (E) in the presence of a base, as shown in the following scheme. Thus, a polymerizable compound represented by the formula (3) can be obtained.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記式中、Ar1は、下記式(4)、(5)又は(6)で表される2価の基である。式(4)、(5)又は(6)中、Xは、各々独立に、ハロゲン原子、炭素原子数1~6のアルコキシ基、炭素原子数1~6のハロアルキル基、炭素原子数1~6のハロアルコキシ基及びシアノ基から選ばれる置換基を表し、m~mは、各々独立に、0~4の整数であり、m7及びmは、各々独立に、0~3の整数であり、Xの数が2以上となる場合は、X同士は同一でも異なっていてもよい。ハロゲン原子としては、フッ素、塩素、臭素等が挙げられる。
 Xとしては、メトキシ基、トリフルオロメチル基、トリフロオロメトキシ基等が好ましい。m~mは、0~1が好ましい。m7、は、0~1が好ましい。
In the above formula, Ar 1 is a divalent group represented by the following formula (4), (5) or (6). In formula (4), (5) or (6), each X independently represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. And m 1 to m 6 are each independently an integer of 0 to 4, and m 7 and m 8 are each independently an integer of 0 to 3. When X is 2 or more, Xs may be the same or different. Examples of the halogen atom include fluorine, chlorine, bromine and the like.
X is preferably a methoxy group, a trifluoromethyl group, a trifluoromethoxy group, or the like. m 1 to m 6 are preferably 0 to 1. m 7 and m 8 are preferably 0 to 1.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 塩基としては、水素化ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、燐酸ナトリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウムなどの無機塩基などが使用できる。好ましくは、炭酸ナトリウム又は炭酸カリウムである。 As the base, inorganic bases such as sodium hydride, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium phosphate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate and cesium carbonate can be used. Preferably, it is sodium carbonate or potassium carbonate.
 反応速度を促進する目的で、更に添加剤を使用することができる。添加剤としては、ヨウ化カリウム、ヨウ化ナトリウム、第4級アンモニウム塩、クラウンエーテルなどが使用できる。 ・ Additives can be used for the purpose of accelerating the reaction rate. As additives, potassium iodide, sodium iodide, quaternary ammonium salts, crown ethers and the like can be used.
 上記反応においては、溶媒の使用が好ましく、安定で、不活性な、反応を妨げない溶媒が用いられる。例えば、アセトン、メチルエチルケトンなどのケトン類;非プロトン性極性有機溶媒(DMF, DMSO, DMAc, NMPなど);エーテル類(EtO, i-PrO, TBME, CPME, テトラヒドロフラン, ジオキサンなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独でも、2種以上混合しても用いることができる。好ましくは、非プロトン性極性有機溶媒(DMF, DMSO, DMAc, NMPなど)である。 In the above reaction, the use of a solvent is preferable, and a stable and inert solvent that does not hinder the reaction is used. For example, ketones such as acetone and methyl ethyl ketone; aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.); ethers (Et 2 O, i-Pr 2 O, TBME, CPME, tetrahydrofuran, dioxane, etc.), Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.); halogenated hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate) , Ethyl acetate, butyl acetate, methyl propionate, etc.); nitriles (acetonitrile, propionitrile, butyronitrile, etc.); These solvents can be appropriately selected in consideration of the ease of reaction and the like, and can be used singly or in combination of two or more. Preferred are aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.).
 反応温度は、特に限定されないが、通常40~200℃であり、好ましくは40~150℃である。反応時間は、通常、20~100時間であり、好ましくは20~60時間である。 The reaction temperature is not particularly limited, but is usually 40 to 200 ° C, preferably 40 to 150 ° C. The reaction time is usually 20 to 100 hours, preferably 20 to 60 hours.
 上記のようにして得られた化合物(3)は、反応後にスラリー洗浄、再結晶、シリカゲルカラムクロマトグラフィーなどで精製することにより高純度化することができる。 The compound (3) obtained as described above can be highly purified by purifying by slurry washing, recrystallization, silica gel column chromatography and the like after the reaction.
 洗浄に用いる溶媒としては、特に限定されないが、例えば、ヘキサン、ヘプタン、トルエンなどの炭化水素類;クロロホルム、1,2-ジクロロエタン、クロロベンゼンなどのハロゲン系炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類;酢酸エチルなどのエステル類、アセトン又はメチルエチルケトンなどのケトン類、メタノール又はエタノール、2-プロパノール等のアルコール類;これらの混合物;などが挙げられる。好ましくは、メタノール、エタノール、2-プロパノール等のアルコール類である。 The solvent used for washing is not particularly limited. For example, hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; diethyl ether, tetrahydrofuran, 1,4 -Ethers such as dioxane; esters such as ethyl acetate; ketones such as acetone or methyl ethyl ketone; alcohols such as methanol or ethanol and 2-propanol; mixtures thereof; Preferred are alcohols such as methanol, ethanol and 2-propanol.
 再結晶に用いる溶媒としては、化合物(3)が加熱時に溶解し、冷却時に析出すれば特に限定されない。例えば、ヘキサン、ヘプタン、トルエンなどの炭化水素類;クロロホルム、1,2-ジクロロエタン、クロロベンゼンなどのハロゲン系炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類;酢酸エチルなどのエステル類;アセトン、メチルエチルケトンなどのケトン類;メタノール、エタノール、2-プロパノール等のアルコール類;これらの混合物;などが挙げられる。好ましくは、テトラヒドロフラン、トルエン、メタノール、エタノール、2-プロパノール、ヘキサン、ヘプタン又はこれらの混合物である。 The solvent used for recrystallization is not particularly limited as long as the compound (3) dissolves during heating and precipitates during cooling. For example, hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; esters such as ethyl acetate Ketones such as acetone and methyl ethyl ketone; alcohols such as methanol, ethanol and 2-propanol; and mixtures thereof. Tetrahydrofuran, toluene, methanol, ethanol, 2-propanol, hexane, heptane or a mixture thereof is preferable.
<式(E)で表される化合物>
 原料である式(E)で表される化合物は、市販品の入手も可能であるが、下記に示すように、ハロゲン化アリール[2-A]と有機金属試薬[3-A]とを、塩基の存在下に、金属触媒を用いるクロスカップリング反応(鈴木-宮浦反応)させることにより得ることができる。
<Compound represented by Formula (E)>
The compound represented by the formula (E) as a raw material can be obtained as a commercial product. As shown below, an aryl halide [2-A] and an organometallic reagent [3-A] It can be obtained by carrying out a cross coupling reaction (Suzuki-Miyaura reaction) using a metal catalyst in the presence of a base.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式中、X、m及びmは前記の意味を表し、HalはBr、I又はOTf(Tfはパラトルエンスルホニル基)を表し、MはB(OH)又は4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イルを表す。 In the above formula, X, m 1 and m 2 represent the above meanings, Hal represents Br, I or OTf (Tf is a paratoluenesulfonyl group), and M represents B (OH) 2 or 4, 4, 5, Represents 5-tetramethyl-1,3,2-dioxaborolan-2-yl.
 上記クロスカップリング反応に用いるハロゲン化アリール[2-A]とボロン酸誘導体[3-A]の使用量は特に限定されないが、ハロゲン化アリール[2-A]1当量に対して、ボロン酸誘導体[3-A]を1.0~1.5当量使用することが好ましい。また、ボロン酸誘導体[3-A]1当量に対して、ハロゲン化アリール[2-A]を1.0~1.5当量使用してもよい。 The amount of the aryl halide [2-A] and boronic acid derivative [3-A] used in the cross-coupling reaction is not particularly limited, but the boronic acid derivative is equivalent to 1 equivalent of the halogenated aryl [2-A]. It is preferable to use 1.0 to 1.5 equivalents of [3-A]. Further, 1.0 to 1.5 equivalents of aryl halide [2-A] may be used per 1 equivalent of boronic acid derivative [3-A].
 上記カップリング反応応で用いられる金属触媒としては、金属錯体と配位子とを使用することが好ましいが、配位子なしでも反応が進行する場合は、配位子を用いなくてもよい。金属錯体としては、種々の構造のものを用いることができるが、パラジウム錯体やニッケル錯体が好ましく使用される。金属錯体としては、低原子価のパラジウム錯体又はニッケル錯体を用いることが好ましく、特に3級ホスフィンや3級ホスファイトを配位子とするゼロ価錯体が好ましい。また、反応系中で容易にゼロ価錯体に変換される適当な前駆体を用いることもできる。 As the metal catalyst used in the above coupling reaction, it is preferable to use a metal complex and a ligand. However, if the reaction proceeds without a ligand, the ligand may not be used. As metal complexes, those having various structures can be used, but palladium complexes and nickel complexes are preferably used. As the metal complex, a low-valent palladium complex or nickel complex is preferably used, and a zero-valent complex having tertiary phosphine or tertiary phosphite as a ligand is particularly preferable. In addition, an appropriate precursor that can be easily converted into a zero-valent complex in the reaction system can also be used.
 さらに、反応系中で、3級ホスフィンや3級ホスファイトを配位子として含まない錯体と、3級ホスフィンや3級ホスファイトとを混合し、3級ホスフィンや3級ホスファイトを配位子とする低原子価錯体を発生させることもできる。3級ホスフィン又は3級ホスファイトとしては、例えば、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等が挙げられる。これらの配位子の2種以上を混合して含む錯体も好適に用いられる。 Furthermore, in the reaction system, a complex containing no tertiary phosphine or tertiary phosphite as a ligand is mixed with a tertiary phosphine or tertiary phosphite, and the tertiary phosphine or tertiary phosphite is converted into a ligand. It is also possible to generate a low valence complex. Examples of the tertiary phosphine or tertiary phosphite include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis ( And diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, trimethyl phosphite, triethyl phosphite, triphenyl phosphite and the like. Complexes containing a mixture of two or more of these ligands are also preferably used.
 金属触媒としては、3級ホスフィンや3級ホスファイトを含まないパラジウム錯体やニッケル錯体、及び3級ホスフィンや3級ホスファイトを含む錯体と、前記した配位子と、を組み合わせて用いることも好ましい態様である。組み合わせて用いられる、上記3級ホスフィンや3級ホスファイトを含まないパラジウム錯体やニッケル錯体としては、ビス(ベンジリデンアセトン)パラジウム、トリス(ベンジリデンアセトン)ジパラジウム、ビス(アセトニトリル)ジクロロパラジウム、ビス(ベンゾニトリル)ジクロロパラジウム、酢酸パラジウム、塩化パラジウム、塩化パラジウム-アセトニトリル錯体、パラジウム-活性炭、塩化ニッケル、ヨウ化ニッケル等が挙げられる。また、上記3級ホスフィンや3級ホスファイトを含む錯体としては、ジメチルビス(トリフェニルホスフィン)パラジウム、ジメチルビス(ジフェニルメチルホスフィン)パラジウム、(エチレン)ビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ビス(トリフェニルホスフィン)ジクロロパラジウム、[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド、[1,2-ビス(ジフェニルホスフィノ)エタン]ニッケル(II)ジクロリド等が挙げられる。これらは、上記したものに限定されるものではない。
 これらパラジウム錯体及びニッケル錯体の使用量は、いわゆる触媒量で良く、一般的には、基質に対して20モル%以下で十分であり、通常10モル%以下である。
As the metal catalyst, it is also preferable to use a combination of a palladium complex or nickel complex that does not contain tertiary phosphine or tertiary phosphite, a complex containing tertiary phosphine or tertiary phosphite, and the above-described ligand. It is an aspect. Examples of palladium complexes and nickel complexes that do not contain the tertiary phosphine or tertiary phosphite used in combination include bis (benzylideneacetone) palladium, tris (benzylideneacetone) dipalladium, bis (acetonitrile) dichloropalladium, and bis (benzo Nitrile) dichloropalladium, palladium acetate, palladium chloride, palladium chloride-acetonitrile complex, palladium-activated carbon, nickel chloride, nickel iodide and the like. Examples of the complex containing tertiary phosphine or tertiary phosphite include dimethylbis (triphenylphosphine) palladium, dimethylbis (diphenylmethylphosphine) palladium, (ethylene) bis (triphenylphosphine) palladium, tetrakis (triphenyl). Phosphine) palladium, bis (triphenylphosphine) dichloropalladium, [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, [1,2-bis (diphenylphosphino) ethane] nickel (II) dichloride Etc. These are not limited to those described above.
These palladium complexes and nickel complexes may be used in so-called catalytic amounts. Generally, 20 mol% or less is sufficient relative to the substrate, and usually 10 mol% or less.
 塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、燐酸ナトリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウムなどの無機塩基;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、イソプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ピリジン、イミダゾール、キノリン、コリジンなどのアミン類;酢酸ナトリウム、酢酸カリウム、酢酸リチウム;なども使用できる。 Examples of the base include inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate; methylamine, dimethyl Amine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, isopropylamine, diisopropylamine, triisopropylamine, butylamine, dibutylamine, tributylamine, diisopropylethylamine, pyridine, imidazole, quinoline, collidine, etc. And the like; sodium acetate, potassium acetate, lithium acetate; and the like can also be used.
 上記反応においては、溶媒の使用が好ましく、安定で、不活性な、反応を妨げない溶媒が用いられる。例えば、水、アルコール類、アミン類、非プロトン性極性有機溶媒(DMF, DMSO, DMAc, NMPなど)、エーテル類(EtO, i-PrO, TBME, CPME, テトラヒドロフラン, ジオキサンなど)、脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど)、ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど)、低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができるが、上記溶媒は1種単独でも2種以上混合しても用いることができる。 In the above reaction, the use of a solvent is preferable, and a stable and inert solvent that does not hinder the reaction is used. For example, water, alcohols, amines, aprotic polar organic solvents (DMF, DMSO, DMAc, NMP, etc.), ethers (Et 2 O, i-Pr 2 O, TBME, CPME, tetrahydrofuran, dioxane, etc.), Aliphatic hydrocarbons (pentane, hexane, heptane, petroleum ether, etc.), aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.), halogenated hydrocarbons (chloroform) , Dichloromethane, carbon tetrachloride, dichloroethane, etc.), lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.), nitriles (acetonitrile, propionitrile, butyronitrile, etc.) and the like can be used. These solvents can be appropriately selected in consideration of the ease of reaction and the like, but the above solvents can be used singly or in combination of two or more.
 反応温度は、特に限定されないが、通常、-90~200℃であり、好ましくは-50~150℃、より好ましくは40~120℃である。反応時間は、通常、0.05~100時間、好ましくは0.5~40時間であり、より好ましくは0.5~24時間である。 The reaction temperature is not particularly limited, but is usually −90 to 200 ° C., preferably −50 to 150 ° C., more preferably 40 to 120 ° C. The reaction time is usually 0.05 to 100 hours, preferably 0.5 to 40 hours, and more preferably 0.5 to 24 hours.
 上記のようにして得られたビフェニル化合物[4-A]は、反応後にスラリー洗浄、再結晶、シリカゲルカラムクロマトグラフィーなどで精製することにより、高純度化することができる。 The biphenyl compound [4-A] obtained as described above can be highly purified by purifying by slurry washing, recrystallization, silica gel column chromatography and the like after the reaction.
 スラリー洗浄に用いる溶媒としては、特に限定されないが、例えば、ヘキサン、ヘプタン、トルエンなどの炭化水素類;クロロホルム、1,2-ジクロロエタン、クロロベンゼンなどのハロゲン系炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類;酢酸エチルなどのエステル類;アセトン、メチルエチルケトンなどのケトン類;アセトニトリル又、プロピオニトリル等のニトリル類;メタノール、エタノール、2-プロパノール等のアルコール類;これらの混合物;などが挙げられる。 The solvent used for the slurry washing is not particularly limited. For example, hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; diethyl ether, tetrahydrofuran, 1, Ethers such as 4-dioxane; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; nitriles such as acetonitrile and propionitrile; alcohols such as methanol, ethanol and 2-propanol; a mixture thereof; Etc.
 再結晶に用いる溶媒としては、ビフェニル化合物[4-A]が加熱時に溶解し、冷却時に析出すれば特に限定されない。例えば、ヘキサン、ヘプタン、トルエンなどの炭化水素類;クロロホルム、1,2-ジクロロエタン、クロロベンゼンなどのハロゲン系炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類;酢酸エチルなどのエステル類;アセトン、メチルエチルケトンなどのケトン類;アセトニトリル、プロピオニトリル等のニトリル類;メタノール、エタノール、2-プロパノール等のアルコール類;これらの混合物;などが挙げられる。好ましくは、酢酸エチル、テトラヒドロフラン、トルエン又はヘキサンである。このような方法により、各種の化合物(E)を製造することができる。 The solvent used for recrystallization is not particularly limited as long as the biphenyl compound [4-A] dissolves upon heating and precipitates upon cooling. For example, hydrocarbons such as hexane, heptane and toluene; halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; esters such as ethyl acetate Ketones such as acetone and methyl ethyl ketone; nitriles such as acetonitrile and propionitrile; alcohols such as methanol, ethanol and 2-propanol; and mixtures thereof. Preferred is ethyl acetate, tetrahydrofuran, toluene or hexane. By such a method, various compounds (E) can be produced.
 以下、本発明を実施例によりさらに具体的に説明するが、これらの実施例によって本発明の解釈が限定されるものではない。なお、実施例にて採用した分析装置及び分析条件は、下記のとおりである。
HPLC分析
装置:LC-20Aシステム(島津製作所社製)
カラム:Inertsil ODS-3(4.6mmΦ×250mm、ジーエルサイエンス社製)
検出器:UV検出(波長220nm)
溶離液:アセトニトリル/0.1wt%リン酸水溶液(30/70、v/v、0-10min)→(80/20、v/v、15-25min)
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the interpretation of the present invention is not limited by these examples. In addition, the analyzers and analysis conditions employed in the examples are as follows.
HPLC analyzer: LC-20A system (manufactured by Shimadzu Corporation)
Column: Inertsil ODS-3 (4.6 mmΦ × 250 mm, manufactured by GL Sciences Inc.)
Detector: UV detection (wavelength 220 nm)
Eluent: acetonitrile / 0.1 wt% phosphoric acid aqueous solution (30/70, v / v, 0-10 min) → (80/20, v / v, 15-25 min)
実施例1:
Figure JPOXMLDOC01-appb-C000033
Example 1:
Figure JPOXMLDOC01-appb-C000033
 THF(テトラヒドロフラン)(300.0g)、1N塩酸(33.9g)及びブロモメタクリル酸エチルエステル(75.7g、392mmol)の混合溶液に、塩化第一スズ-2水和物(88.5g、392mmol)を溶解した後、3,4-ジヒドロ-2H-ピラン(30.0g、357mmol)を、25-30℃で30分かけて滴下した。その後、64℃まで昇温し、7時間撹拌して、5-(4-ヒドロキシブチル)-3-メチレンジヒドロフラン-2(3H)-オンを含む反応混合物を得た。 To a mixed solution of THF (tetrahydrofuran) (300.0 g), 1N hydrochloric acid (33.9 g) and bromomethacrylic acid ethyl ester (75.7 g, 392 mmol) was added stannous chloride dihydrate (88.5 g, 392 mmol). ) Was dissolved, and 3,4-dihydro-2H-pyran (30.0 g, 357 mmol) was added dropwise at 25-30 ° C. over 30 minutes. Thereafter, the temperature was raised to 64 ° C. and stirred for 7 hours to obtain a reaction mixture containing 5- (4-hydroxybutyl) -3-methylenedihydrofuran-2 (3H) -one.
 次に、得られた反応液を25℃まで冷却し、トリエチルアミン(120.0g、1186mmol)を加え、生成した白色の塩をろ過により除去した。続いて、得られたろ液を濃縮して、5-(4-ヒドロキシブチル)-3-メチレンジヒドロフラン-2(3H)-オンを得た。(58.8g、収率96.9%) Next, the obtained reaction solution was cooled to 25 ° C., triethylamine (120.0 g, 1186 mmol) was added, and the formed white salt was removed by filtration. Subsequently, the obtained filtrate was concentrated to obtain 5- (4-hydroxybutyl) -3-methylenedihydrofuran-2 (3H) -one. (58.8 g, yield 96.9%)
実施例2
Figure JPOXMLDOC01-appb-C000034
Example 2
Figure JPOXMLDOC01-appb-C000034
 THF(300.0g)、1N塩酸(33.9g)及びブロモメタクリル酸エチルエステル(90.9g、471mmol)の混合溶液に、塩化第一スズ-2水和物(106.2g、471mmol)を溶解した後、2,3-ジヒドロフラン(30.0g、428mmol)を、25-30℃で30分かけて滴下した。その後、64℃まで昇温し、6時間撹拌して、5-(3-ヒドロキプロピル)-3-メチレンジヒドロフラン-2(3H)-オンを含む反応混合物を得た。
 次に、得られた反応液を25℃まで冷却し、トリエチルアミン(142.8g、1411mmol)を加え、生成した白色の塩をろ過により除去した。続いて、得られたろ液を濃縮して、5-(3-ヒドロキプロピル)-3-メチレンジヒドロフラン-2(3H)-オンを得た。(43.5g、収率65.1%)
Stannous chloride dihydrate (106.2 g, 471 mmol) was dissolved in a mixed solution of THF (300.0 g), 1N hydrochloric acid (33.9 g) and bromomethacrylic acid ethyl ester (90.9 g, 471 mmol). Then, 2,3-dihydrofuran (30.0 g, 428 mmol) was added dropwise at 25-30 ° C. over 30 minutes. Thereafter, the temperature was raised to 64 ° C. and the mixture was stirred for 6 hours to obtain a reaction mixture containing 5- (3-hydroxypropyl) -3-methylenedihydrofuran-2 (3H) -one.
Next, the obtained reaction liquid was cooled to 25 ° C., triethylamine (142.8 g, 1411 mmol) was added, and the formed white salt was removed by filtration. Subsequently, the obtained filtrate was concentrated to obtain 5- (3-hydroxypropyl) -3-methylenedihydrofuran-2 (3H) -one. (43.5 g, yield 65.1%)
 実施例1で得られた化合物を出発原料として用いた際は、例えば、以下の化合物へ誘導することが可能である。下記式中、Msはメタンスルホニル基を、Iはヨウ素原子を、Tsはp-トルエンスルホニル基をそれぞれ表す。 When the compound obtained in Example 1 is used as a starting material, for example, it can be derived into the following compounds. In the following formulae, Ms represents a methanesulfonyl group, I represents an iodine atom, and Ts represents a p-toluenesulfonyl group.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
実施例3
Figure JPOXMLDOC01-appb-C000036
Example 3
Figure JPOXMLDOC01-appb-C000036
 THF(303.5g)、トリエチルアミン(21.7g、214mmol)及び5-(4-ヒドロキシブチル)-3-メチレンジヒドロフラン-2(3H)-オン(30.4g、178mmol)の混合溶液に、メタンスルホニルクロリド(24.5g、213mmol)を、0℃で30分かけて滴下した。その後、5時間撹拌して、4-(4-メチレン-5-オキソテトラヒドロフラン-2-イル)ブチルメタンスルホナートを含む反応混合物を得た。
 次に、得られた反応液を25℃まで昇温し、生成した白色の塩をろ過により除去した。続いて、得られたろ液を濃縮して、4-(4-メチレン-5-オキソテトラヒドロフラン-2-イル)ブチルメタンスルホナートを得た。(41.1g、収率92.8%)
To a mixed solution of THF (303.5 g), triethylamine (21.7 g, 214 mmol) and 5- (4-hydroxybutyl) -3-methylenedihydrofuran-2 (3H) -one (30.4 g, 178 mmol) was added methane. Sulfonyl chloride (24.5 g, 213 mmol) was added dropwise at 0 ° C. over 30 minutes. Thereafter, the mixture was stirred for 5 hours to obtain a reaction mixture containing 4- (4-methylene-5-oxotetrahydrofuran-2-yl) butylmethanesulfonate.
Next, the obtained reaction solution was heated to 25 ° C., and the produced white salt was removed by filtration. Subsequently, the obtained filtrate was concentrated to obtain 4- (4-methylene-5-oxotetrahydrofuran-2-yl) butylmethanesulfonate. (41.1 g, yield 92.8%)
実施例4:
Figure JPOXMLDOC01-appb-C000037
Example 4:
Figure JPOXMLDOC01-appb-C000037
 アセトン(100.0g)、ヨウ化ナトリウム(7.2g、48mmol)及び4-(4-メチレン-5-オキソテトラヒドロフラン-2-イル)ブチルメタンスルホナート(10.0g、40mmol)を25~30℃で混合して仕込み、45℃で6時間撹拌して、5-(4-ヨードブチル)-3-メチレンジヒドロフラン-2(3H)-オンを含む反応混合物を得た。
 次に、得られた反応混合物を濃縮し、酢酸エチル(100.0g)で希釈し、10wt%亜硫酸ナトリウム水溶液(100.0g)で2回洗浄した。次いで、水(100.0g)で洗浄し、有機層を濃縮して、5-(4-ヨードブチル)-3-メチレンジヒドロフラン-2(3H)-オンを得た。(41.1g、収率71.0%)
Acetone (100.0 g), sodium iodide (7.2 g, 48 mmol) and 4- (4-methylene-5-oxotetrahydrofuran-2-yl) butylmethanesulfonate (10.0 g, 40 mmol) were added at 25-30 ° C. Then, the mixture was stirred at 45 ° C. for 6 hours to obtain a reaction mixture containing 5- (4-iodobutyl) -3-methylenedihydrofuran-2 (3H) -one.
The resulting reaction mixture was then concentrated, diluted with ethyl acetate (100.0 g) and washed twice with 10 wt% aqueous sodium sulfite (100.0 g). It was then washed with water (100.0 g) and the organic layer was concentrated to give 5- (4-iodobutyl) -3-methylenedihydrofuran-2 (3H) -one. (41.1 g, yield 71.0%)
実施例5:
Figure JPOXMLDOC01-appb-C000038
Example 5:
Figure JPOXMLDOC01-appb-C000038
 p-トルエンスルホニルクロリド(33.6g、176mmol)及びピリジン(200.0g)の混合溶液に、5-(4-ヒドロキシブチル)-3-メチレンジヒドロフラン-2(3H)-オン(20.0g、118mmol)を、20~30℃で10分かけて滴下した。その後、2時間撹拌して、4-(4-メチレン-5-オキソテトラヒドロフラン-2-イル)ブチル-4-メチルベンゼンスルホナートを含む反応混合物を得た。
 次に、得られた反応混合物に、ジエチルエーテル(200.0g)及び水(200.0g)を加えて水洗を行った後、水層を分離、廃棄した。その後、1N塩酸(200.0g)を加えて3回洗浄を行った後、有機層を濃縮して、4-(4-メチレン-5-オキソテトラヒドロフラン-2-イル)ブチル-4-メチルベンゼンスルホナートを得た。(14.5g、収率38.0%)
To a mixed solution of p-toluenesulfonyl chloride (33.6 g, 176 mmol) and pyridine (200.0 g), 5- (4-hydroxybutyl) -3-methylenedihydrofuran-2 (3H) -one (20.0 g, 118 mmol) was added dropwise at 20-30 ° C. over 10 minutes. Thereafter, the mixture was stirred for 2 hours to obtain a reaction mixture containing 4- (4-methylene-5-oxotetrahydrofuran-2-yl) butyl-4-methylbenzenesulfonate.
Next, diethyl ether (200.0 g) and water (200.0 g) were added to the resulting reaction mixture and washed with water, and then the aqueous layer was separated and discarded. Thereafter, 1N hydrochloric acid (200.0 g) was added and washed three times, and then the organic layer was concentrated to give 4- (4-methylene-5-oxotetrahydrofuran-2-yl) butyl-4-methylbenzenesulfone. I got a nat. (14.5 g, yield 38.0%)
 実施例5で得られた化合物を出発原料として用い、実施例6で示す反応により、下記化合物を合成した。
 なお、実施例6で採用した分析装置及び分析条件は、検出器としてUV検出(波長265nm)を使用し、また、溶離液として、アセトニトリル/0.2wt%酢酸アンモニウム水溶液(70/30(0-5min)→85/15(10-30min))[v/v]を使用した以外は、上記したHPLC分析を使用した。
The following compounds were synthesized by the reaction shown in Example 6 using the compound obtained in Example 5 as a starting material.
The analysis apparatus and analysis conditions employed in Example 6 use UV detection (wavelength 265 nm) as a detector, and acetonitrile / 0.2 wt% ammonium acetate aqueous solution (70/30 (0− The above HPLC analysis was used except that 5 min) → 85/15 (10-30 min)) [v / v] was used.
実施例6:
Figure JPOXMLDOC01-appb-C000039
Example 6:
Figure JPOXMLDOC01-appb-C000039
 ジメチルホルムアミド(100.0g)、3-フルオロ[1,1‘-ビフェニル]-4,4’-ジオール(5.0g、25mmol)及び炭酸カリウム(7.5g、54mmol)の混合溶液に、4-(4-メチレン-5-オキソテトラヒドロフラン-2-イル)ブチル-4-メチルベンゼンスルホナート(19.1g、59mmol)を、20~30℃で10分かけて滴下した。その後、60℃で20時間、80℃で27時間撹拌して、4,4‘-ビス(4-(3-メチレンテトラヒドロフラン-2(3H)-オン-5-イル)ブトキシ)-3-フルオロ-ビフェニルを含む反応混合物を得た。 To a mixed solution of dimethylformamide (100.0 g), 3-fluoro [1,1′-biphenyl] -4,4′-diol (5.0 g, 25 mmol) and potassium carbonate (7.5 g, 54 mmol), 4- (4-Methylene-5-oxotetrahydrofuran-2-yl) butyl-4-methylbenzenesulfonate (19.1 g, 59 mmol) was added dropwise at 20-30 ° C. over 10 minutes. Thereafter, the mixture was stirred at 60 ° C. for 20 hours and at 80 ° C. for 27 hours, and 4,4′-bis (4- (3-methylenetetrahydrofuran-2 (3H) -one-5-yl) butoxy) -3-fluoro- A reaction mixture containing biphenyl was obtained.
 次に、得られた反応混合物に水(167.0g)を加え、ろ過を行った後で、ろ物を回収した。次いで、ろ物にTHF(167.0g)を加えて溶解させた後、再度、ろ過により不溶物を除去した。その後、ろ液にヘプタン(67.0g)を加え、結晶を析出させた。析出した結晶をろ過し、乾燥して、4,4‘-ビス(4-(3-メチレンテトラヒドロフラン-2(3H)-オン-5-イル)ブトキシ)-3-フルオロ-ビフェニルを得た。(6.7g、収率53.5%)(HPLC純度;91%) Next, water (167.0 g) was added to the obtained reaction mixture, and after filtration, the filtrate was recovered. Next, THF (167.0 g) was added to the filtrate to dissolve it, and then insoluble matters were removed again by filtration. Thereafter, heptane (67.0 g) was added to the filtrate to precipitate crystals. The precipitated crystals were filtered and dried to obtain 4,4′-bis (4- (3-methylenetetrahydrofuran-2 (3H) -on-5-yl) butoxy) -3-fluoro-biphenyl. (6.7 g, yield 53.5%) (HPLC purity; 91%)
 本発明の製造方法により得られる、式(3)で表されるα-メチレン-γ-ブチロラクトン基を有する化合物は、液晶表示素子に用いられる光重合性化合物などして広範な分野に使用される。また、式(1)で表される化合物、及び式(2)で表される化合物は、式(3)で表される化合物の中間体などして使用される。 The compound having an α-methylene-γ-butyrolactone group represented by the formula (3) obtained by the production method of the present invention is used in a wide range of fields such as a photopolymerizable compound used in a liquid crystal display device. . Moreover, the compound represented by Formula (1) and the compound represented by Formula (2) are used as an intermediate of the compound represented by Formula (3).
 なお、2014年11月4日に出願された日本特許出願2014-224511号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2014-224511 filed on November 4, 2014 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (8)

  1.  下記式(A)で表される化合物と、下記式(C)で表される化合物とを、金属錫又は錫含有化合物の存在下に、酸性条件で反応させることを特徴とする式(1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは1又は2を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Jはハロゲン原子を表し、Rは炭素原子数1~6のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、nは上記の意味を表す。)
    A compound represented by the following formula (A) and a compound represented by the following formula (C) are reacted in the presence of metallic tin or a tin-containing compound under acidic conditions (1) The manufacturing method of the compound represented by these.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, n represents 1 or 2.)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein J 1 represents a halogen atom, and R represents an alkyl group having 1 to 6 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, n represents the above meaning.)
  2.  下記式(1)で表される化合物と、下記式(D)で表される化合物とを、塩基存在下で反応させ、次いで、式(2)におけるRがハロゲン原子の場合は、得られる反応生成物を金属ハロゲン化物と反応させる下記式(3)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは1又は2を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Jはハロゲン原子を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、nは1又は2を表し、RはOY、ハロゲン原子を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
    A compound represented by the following formula (1) and a compound represented by the following formula (D) are reacted in the presence of a base, and then obtained when R 1 in the formula (2) is a halogen atom. A method for producing a compound represented by the following formula (3), wherein a reaction product is reacted with a metal halide.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, n represents 1 or 2.)
    Figure JPOXMLDOC01-appb-C000005
    (Wherein J 2 represents a halogen atom, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, n represents 1 or 2, R 1 represents OY 1 or a halogen atom, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
  3.  下記式(2)で表される化合物を、下記式(E)で表される化合物と反応させることによる、下記式(3)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式中、nは1又は2を表し、RはOY、塩素、臭素又はヨウ素を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Arは下記式(4)、(5)又は(6)で表される2価の基を表す。)
    Figure JPOXMLDOC01-appb-C000009
    (式(4)、(5)及び(6)中、Xは、各々独立に、ハロゲン原子、炭素原子数1~6のアルコキシ基、炭素原子数1~6のハロアルキル基、炭素原子数1~6のハロアルコキシ基及びシアノ基から選ばれる置換基を表し、m~mは、各々独立に、0~4の整数であり、m7及びmは、各々独立に、0~3の整数であり、Xの数が2以上となる場合は、X同士は同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000010
    (式中、n及びArは上記の意味を表す。)
    The manufacturing method of the compound represented by following formula (3) by making the compound represented by following formula (2) react with the compound represented by following formula (E).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, n represents 1 or 2, R 1 represents OY 1 , chlorine, bromine or iodine, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, Ar 1 represents a divalent group represented by the following formula (4), (5) or (6)).
    Figure JPOXMLDOC01-appb-C000009
    (In the formulas (4), (5) and (6), each X independently represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. 6 represents a substituent selected from a haloalkoxy group and a cyano group, m 1 to m 6 each independently represents an integer of 0 to 4, and m 7 and m 8 each independently represents 0 to 3 (It is an integer, and when the number of X is 2 or more, Xs may be the same or different.)
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, n and Ar 1 represent the above meanings.)
  4.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000011
    (式中、nは1又は2を表す。)
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, n represents 1 or 2.)
  5.  下記式(2)で表される化合物。
    Figure JPOXMLDOC01-appb-C000012
    (式中、nは1又は2を表し、RはOY、塩素、臭素又はヨウ素を表し、Yは-SO2-R2を表し、R2は炭化水素基を表す。)
    A compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000012
    (In the formula, n represents 1 or 2, R 1 represents OY 1 , chlorine, bromine or iodine, Y 1 represents —SO 2 —R 2 , and R 2 represents a hydrocarbon group.)
  6.  反応条件が、pHが1~2の酸性条件である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the reaction conditions are acidic conditions having a pH of 1 to 2.
  7.  式(C)で表される化合物の使用量が、式(A)で表される化合物の1当量に対し、2.0~2.5当量である、請求項1又は6に記載の製造方法。 The production method according to claim 1 or 6, wherein the amount of the compound represented by the formula (C) is 2.0 to 2.5 equivalents relative to 1 equivalent of the compound represented by the formula (A). .
  8.  金属錫又は錫含有化合物の使用量が、式(A)で表される化合物の1当量に対して、2~4当量である、請求項1、6又は7に記載の製造方法。 The production method according to claim 1, 6 or 7, wherein the amount of metal tin or tin-containing compound used is 2 to 4 equivalents relative to 1 equivalent of the compound represented by formula (A).
PCT/JP2015/080805 2014-11-04 2015-10-30 Butyrolactone compound, and production method WO2016072366A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177014716A KR102508578B1 (en) 2014-11-04 2015-10-30 Butyrolactone compound, and production method
JP2016557748A JP6760075B2 (en) 2014-11-04 2015-10-30 Butyrolactone compound and manufacturing method
CN201580058217.0A CN107108540B (en) 2014-11-04 2015-10-30 Butyrolactone compound and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-224511 2014-11-04
JP2014224511 2014-11-04

Publications (1)

Publication Number Publication Date
WO2016072366A1 true WO2016072366A1 (en) 2016-05-12

Family

ID=55909091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080805 WO2016072366A1 (en) 2014-11-04 2015-10-30 Butyrolactone compound, and production method

Country Status (5)

Country Link
JP (1) JP6760075B2 (en)
KR (1) KR102508578B1 (en)
CN (1) CN107108540B (en)
TW (1) TWI696613B (en)
WO (1) WO2016072366A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879420A (en) * 1988-05-06 1989-11-07 E.I. Du Pont De Nemours And Company Preparation of mixtures of butanediols
WO2005061501A2 (en) * 2003-12-12 2005-07-07 Merck & Co., Inc. Process for preparing hexahydropyrimido[1,2-a]azepine-2-carboxylates and related compounds
WO2012002513A1 (en) * 2010-06-30 2012-01-05 日産化学工業株式会社 Polymerizable compound, liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, and method for producing liquid crystal display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2297549B (en) 1995-02-06 1999-06-30 Merck Patent Gmbh Direactive mesogenic compound
JP4175826B2 (en) 2002-04-16 2008-11-05 シャープ株式会社 Liquid crystal display
JP5168976B2 (en) 2007-03-28 2013-03-27 Dic株式会社 Biphenyl and terphenyl compounds and polymerizable liquid crystal compositions containing the compounds
JP5549174B2 (en) 2009-10-13 2014-07-16 Dic株式会社 Polymerizable naphthalene compound
DE102010047409A1 (en) 2009-10-28 2011-05-05 Merck Patent Gmbh Polymerizable compounds and their use in liquid crystal displays
TWI520948B (en) * 2010-06-30 2016-02-11 Nissan Chemical Ind Ltd A liquid crystal alignment device, a liquid crystal alignment device, a liquid crystal display device, and a liquid crystal display device, and a polymerizable compound
KR101831006B1 (en) * 2010-06-30 2018-02-21 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal-aligning agent, liquid crysat-aligning film, liquid crystal display element and method for producing liquid crystal display elements
JP5834489B2 (en) 2011-05-18 2015-12-24 Dic株式会社 Polymerizable naphthalene compound
JP6212912B2 (en) * 2012-07-03 2017-10-18 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
CN106132943B (en) 2014-01-30 2019-09-20 日产化学工业株式会社 The polymerizable compound being substituted with halogen atoms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879420A (en) * 1988-05-06 1989-11-07 E.I. Du Pont De Nemours And Company Preparation of mixtures of butanediols
WO2005061501A2 (en) * 2003-12-12 2005-07-07 Merck & Co., Inc. Process for preparing hexahydropyrimido[1,2-a]azepine-2-carboxylates and related compounds
WO2012002513A1 (en) * 2010-06-30 2012-01-05 日産化学工業株式会社 Polymerizable compound, liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, and method for producing liquid crystal display device

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BALLINI, R. ET AL.: "A New Synthesis of exo- Methylene Butyrolactones from Nitroalkanes", SYNTHESIS, 2001, pages 1519 - 1522 *
CHEN, W. ET AL.: "Enantioselective Synthesis of a-exo-Methylene y-Butyrolactones via Chromium Catalysis", ORGANIC LETTERS, vol. 17, no. 21, 23 October 2015 (2015-10-23), pages 5236 - 5239 *
FOUQUET, E. ET AL.: "Reactivity of Functionalaized Allyltrihalostannanes: An Easy Entry to a-Methylene-y-lactones", TETRAHEDRON LETTERS, vol. 34, no. 48, 1993, pages 7749 - 7752 *
NOKAMI, J. ET AL.: "Facile Synthesis of 2- Methylene-4-butyrolactones", CHEMISTRY LETTERS, 1986, pages 541 - 544 *
STOWELL, J. C. ET AL.: "A Facile Procedure for Producing y-Halo Butyraldehyde Acetals", JOURNAL OF ORGANIC CHEMISTRY, vol. 57, no. 7, 1992, pages 2195 - 2196 *
WOODS, JR., G. F.: "5-Hydroxypentanal, Organic Syntheses", COLL., vol. 3, 1955, pages 470 *

Also Published As

Publication number Publication date
JP6760075B2 (en) 2020-09-23
TWI696613B (en) 2020-06-21
TW201623270A (en) 2016-07-01
JPWO2016072366A1 (en) 2017-08-10
KR102508578B1 (en) 2023-03-09
KR20170081201A (en) 2017-07-11
CN107108540B (en) 2019-08-02
CN107108540A (en) 2017-08-29

Similar Documents

Publication Publication Date Title
JP5247436B2 (en) Method for producing methylene disulfonate compound
RU2324678C2 (en) Method of phenylmalonic acid dinitriles production
KR20020012274A (en) Substituted arylmalonic acid dinitriles as intermediates for the preparation of herbicides
JP5008404B2 (en) Method for producing methylene disulfonate compound
JP6760075B2 (en) Butyrolactone compound and manufacturing method
JP2006188449A (en) Method for producing cyclic disulfonic acid ester
JP5013365B2 (en) Method for synthesizing spacer-introduced bis (terpyridine) compounds
JP5092140B2 (en) Method for synthesizing asymmetric bis (terpyridine) compounds
JP6159415B2 (en) Bromine-containing N-phenyldiacrylimide derivative and method for producing the same
JP6733550B2 (en) Method for producing butyrolactone compound
JP4963970B2 (en) Method for producing methylene disulfonate compound
TWI786080B (en) Method for producing aromatic diamine compound precursor
JP5362208B2 (en) Adamantane derivatives having vinyl ether groups
JP2012188387A (en) Chiral spirobis(triazole) compound, method for producing the same and application of the same
KR20140103028A (en) Phosphorus-based (meth)acrylate compound and method for preparation thereof
KR20210108581A (en) Method of manufacturing cyclic hydrocarbon compound
JP2013189403A (en) Production method for diacetylene derivative
JP2019099537A (en) Method for producing nitrogen-containing heterocyclic compound
WO2007119402A1 (en) Method for producing 1,2-phenylethane compound using atom transfer radical coupling reaction
JP2006096692A (en) Manufacturing method of optically active trifluoromethyl carbinol derivative
WO2015178342A1 (en) Method for producing monocoupled product
JP2002205967A (en) New crosslinking compound having acenaphthylene ring and its synthetic intermediate
JP2015196668A (en) Method for manufacturing cyanopyridine compound
CN104974131A (en) Method for preparing methylene disulfonate compound
KR20150083395A (en) Manufacturing method of dipyrryl ketones and dipyrryl ketones made by the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177014716

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15856399

Country of ref document: EP

Kind code of ref document: A1