WO2016072224A1 - Wiring board material and wiring board using same - Google Patents

Wiring board material and wiring board using same Download PDF

Info

Publication number
WO2016072224A1
WO2016072224A1 PCT/JP2015/078886 JP2015078886W WO2016072224A1 WO 2016072224 A1 WO2016072224 A1 WO 2016072224A1 JP 2015078886 W JP2015078886 W JP 2015078886W WO 2016072224 A1 WO2016072224 A1 WO 2016072224A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
board material
resin
bis
sheet
Prior art date
Application number
PCT/JP2015/078886
Other languages
French (fr)
Japanese (ja)
Inventor
武徳 角谷
崇夫 三輪
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2016072224A1 publication Critical patent/WO2016072224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a wiring board material having low water absorption while maintaining low thermal expansion and high breaking elongation, and a wiring board using the same.
  • a prepreg (semi-cured resin insulating layer) obtained by impregnating a substrate made of glass fiber or aramid fiber with a resin such as epoxy is generally applied to a metal foil such as copper.
  • a circuit was formed by copper plating or the like after forming an insulating layer by applying an insulating resin composition or laminating a sheet-like insulating resin composition, or by forming a circuit by etching and bonding the insulating resin composition. Things are used.
  • the wiring board is provided with a solder resist in order to prevent the solder from flowing out during component mounting.
  • wiring board materials are required to have low thermal expansion equivalent to copper foil (copper wiring) or silicon chip components. This is because if there is a large difference in thermal expansion (thermal expansion coefficient) between the copper foil and the wiring board material, the wiring board warps due to thermal stress during component mounting, resulting in poor bonding of the components. Because. Further, the wiring board material needs to have a high elongation at break. This is because if the elongation at break of the wiring board material is low, the wiring board material cannot follow the copper foil and cracks are generated due to temperature changes in a heat cycle test or the like of the wiring board. In addition, it is essential for the wiring board material to have low water absorption.
  • the wiring board material is required to have low thermal expansibility, high elongation at break, and low water absorption.
  • An object of the present invention is to provide a wiring board material having low water absorption while maintaining low thermal expansion and a high elongation at break, and a wiring board using the same.
  • cellulose nanofibers exhibit low thermal expansion by being present in a wiring board material produced by mixing with a resin or the like.
  • a wiring board material produced by mixing with a resin or the like.
  • entanglement between fibers and mutual It exhibits low thermal expansion due to its action.
  • the water absorption is increased.
  • the wiring board material of the present invention is characterized by including a binder component, a sheet-like cellulose nanofiber, and a low water-absorbing inorganic filler.
  • low water absorption means that the inorganic filler alone is a moisture absorption rate of 3% or less.
  • the binder component preferably contains a thermosetting resin
  • the low water-absorbing inorganic filler is preferably silica
  • the volume content of the low water-absorbing inorganic filler is The volume content of the sheet-like cellulose nanofiber is preferably larger.
  • the wiring board material of the present invention can be suitably used for interlayer insulating materials for multilayer wiring boards and for forming a permanent insulating film such as a solder resist or a coverlay.
  • the wiring board of the present invention is characterized by having the wiring board material of the present invention.
  • a wiring board material having low water absorption while maintaining low thermal expansion and high elongation at break. That is, in the present invention, by including a sheet-like cellulose nanofiber and a low water-absorbing inorganic filler, a wiring board material having low thermal expansion and high breaking elongation and low water absorption is obtained. The condition of the material for finding was found. This is because wiring board materials for interlayer insulating materials and solder resists for multilayer wiring boards need to have the above-mentioned characteristics. For example, if a large amount of cellulose nanofiber is used, water absorption is increased. However, according to the present invention, the problem of water absorption can be solved while maintaining low thermal expansion and high elongation at break.
  • the wiring board material of the present invention is characterized in that it includes a binder component, a sheet-like cellulose nanofiber, and a low water-absorbing inorganic filler.
  • a sheet-like cellulose nanofiber can be obtained as follows.
  • the fine cellulose fiber that is a component of the sheet-like cellulose nanofiber is usually obtained by defibrating a cellulose fiber raw material, and the number average fiber diameter is preferably 400 nm or less.
  • the number average fiber diameter of the fine cellulose fibers is preferably as small as possible.
  • the fiber diameter of the cellulose crystal unit is usually 4 nm or more. It is.
  • the fiber diameter of the fine cellulose fiber can be obtained by measuring the cellulose nonwoven fabric obtained by drying and removing the dispersion medium in the fine cellulose fiber dispersion described in detail below by observing with SEM, TEM, or the like. it can. Specifically, it is usually observed with SEM, TEM, etc., a line is drawn on the diagonal line of the photograph, 12 points of fibers in the vicinity are randomly extracted, and 10 points obtained by removing the thickest fiber and the thinnest fiber are extracted. The number average fiber diameter is measured and averaged.
  • the cellulose fiber raw material is normally defibrated in a cellulose fiber raw material dispersion (cellulose fiber raw material dispersion).
  • a cellulose fiber raw material dispersion having a solid content concentration of, for example, 0.1% by mass or more, preferably 0.2% by mass or more, and 10% by mass or less, preferably 6% by mass or less is used.
  • a liquid is preferred.
  • the solid content concentration in the cellulose fiber raw material dispersion to be subjected to this defibrating step is 0.1% by mass or more, the amount of liquid is moderate with respect to the amount of cellulose to be processed, and the efficiency of the defibrating process is good.
  • the solid content concentration is 10% by mass or less, the fluidity is good.
  • an organic solvent, water, or a mixed solution of an organic solvent and water can be used.
  • Organic solvents include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, n-butanol, ethylene glycol and ethylene glycol mono-t-butyl ether, ketones such as acetone and methyl ethyl ketone, and other water-soluble organic compounds.
  • One kind or two or more kinds of solvents can be used.
  • the dispersion medium is preferably a mixed liquid of an organic solvent and water or water, and particularly preferably water.
  • the method of defibrating the cellulose fiber raw material there are no particular restrictions on the method of defibrating the cellulose fiber raw material, but for example, ceramic beads having a diameter of about 1 mm are placed in the cellulose fiber raw material dispersion, and vibration is applied using a paint shaker or bead mill.
  • Cellulosic fiber raw material is defibrated, blended with a blender-type disperser or a high-speed rotating slit, and a method of defibration by applying shear force through the cellulose fiber raw material dispersion (high-speed rotating homogenizer method)
  • a method of using a counter impact type disperser manufactured by Masuko Sangyo Co., Ltd.
  • the high-speed rotating homogenizer and the high-pressure homogenizer treatment improve the efficiency of defibration.
  • the frequency of the ultrasonic waves is, for example, 15 kHz to 1 MHz, preferably 20 kHz to 500 kHz.
  • the frequency of the ultrasonic wave to irradiate is 15 kHz or more, the occurrence of cavitation is good.
  • the frequency is 1 MHz or less, a fine effect can be obtained satisfactorily.
  • an output of an ultrasonic wave as an execution output density, it is 1 W / cm ⁇ 2 > or more, for example, Preferably it is 10 W / cm ⁇ 2 > or more.
  • the miniaturization efficiency is good and the miniaturization can be performed in a short time.
  • the upper limit of the effective output density of ultrasonic waves is 500 W / cm 2 or less from the viewpoint of durability of the vibrator and the horn.
  • the ultrasonic irradiation method is not particularly limited, and various methods can be used. For example, by directly inserting a horn that transmits the vibration of an ultrasonic vibrator into the cellulose fiber raw material dispersion, a method for directly refining cellulose fibers, or a floor or wall of a container containing a cellulose fiber raw material dispersion. Place ultrasonic transducers on the part to make cellulose fibers fine, or put a liquid such as water in a vessel equipped with ultrasonic transducers, and immerse the vessel containing the cellulose fiber raw material dispersion in it. Thus, a method of applying ultrasonic vibration indirectly to the cellulose fiber raw material dispersion liquid through a liquid such as water can be employed.
  • the ultrasonic waves may be irradiated continuously or intermittently at a predetermined interval.
  • centrifuging By centrifuging, a supernatant of a more uniform and fine fine cellulose fiber dispersion can be obtained.
  • the conditions for the centrifugation are not particularly limited because they depend on the miniaturization process used, but it is preferable to apply a centrifugal force of, for example, 3000 G or more, preferably 10,000 G or more.
  • the time is preferably 1 minute or longer, preferably 5 minutes or longer. When the centrifugal force is 3000 G or more, when the time is 1 minute or more, separation / removal of cellulose fibers with poor defibration is sufficient.
  • the viscosity of the fine cellulose fiber dispersion is, for example, a viscosity at a shear rate of 10 s ⁇ 1 measured at 25 ° C., for example, 500 mPa ⁇ s or less, particularly 100 mPa ⁇ s. It is preferable that it is s or less.
  • Sheet-like cellulose nanofibers are usually produced using fine cellulose fibers obtained as described above.
  • the sheet-like cellulose nanofibers can be obtained with high transparency, low linear expansion coefficient, and high elastic modulus when produced using fine cellulose fibers rather than using the cellulose fiber raw material before defibration.
  • the sheet-like cellulose nanofiber is obtained by filtering a dispersion (fine cellulose fiber dispersion) containing fine cellulose fibers obtained by performing the above-described defibrating treatment, or an appropriate substrate. It is manufactured as a sheet-like product by applying to.
  • the fine cellulose fiber concentration of the dispersion used for filtration is usually 0.01% by mass or more, preferably 0.05% by mass. % Or more.
  • concentration of the fine cellulose fiber is 0.01% by mass or more, it can be easily filtered.
  • density of a fine cellulose fiber is 10 mass% or less normally, Preferably it is 5 mass% or less.
  • concentration of fine cellulose fibers is 10% by mass or less, a uniform sheet can be obtained satisfactorily.
  • a filter cloth When filtering the fine cellulose fiber dispersion, it is important that the fine cellulose fibers do not pass through and the filtration speed is not too slow as a filter cloth at the time of filtration.
  • a sheet made of an organic polymer, a woven fabric, and a porous membrane are preferable.
  • the organic polymer non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE) and the like are preferable.
  • a porous film of polytetrafluoroethylene having a pore diameter of 0.1 to 20 ⁇ m, for example 1 ⁇ m, polyethylene terephthalate or polyethylene fabric having a pore diameter of 0.1 to 20 ⁇ m, for example 1 ⁇ m, and the like can be mentioned.
  • the paper base material which consists of cellulose which is a natural fiber can be used as a filter medium.
  • the paper base material is very preferable because it can easily produce wide and long materials and can control the amount of water passing through the paper by changing the type of pulp as the raw material and the beating degree of the pulp.
  • the sheet-like cellulose nanofibers obtained by the filtration are then dried, but in some cases, the process may proceed to the next step without drying. That is, for example, when the heat-treated fine cellulose fiber dispersion is filtered, it can be directly used for the next step without passing through the drying step. Moreover, also when filtering a fine cellulose fiber dispersion liquid and heat-processing the obtained sheet-like cellulose nanofiber, it can also carry out without passing through a drying process. However, it is preferable to perform drying also in the sense of controlling the porosity, film thickness, and strengthening the structure of the nonwoven fabric. This drying may be air drying, vacuum drying, pressure drying, or freeze drying. Moreover, you may heat-dry.
  • the temperature is preferably 50 ° C or higher, more preferably 80 ° C or higher, 250 ° C or lower is more preferable, and 150 ° C or lower is more preferable.
  • the heating temperature is 50 ° C. or higher, it can be easily dried.
  • heating temperature is 250 degrees C or less, it can suppress that a cellulose nonwoven fabric colors or a cellulose decomposes
  • pressurizing 0.01 MPa or more is preferable and 0.1 MPa or more is more preferable.
  • the pressure is 0.01 MPa or more, the drying is good.
  • the pressure is 10 MPa or less, the cellulose nonwoven fabric can be prevented from being crushed or the cellulose being decomposed.
  • the sheet-like cellulose nanofibers may be produced as a sheet-like material by applying a fine cellulose fiber dispersion to an appropriate substrate.
  • the dispersion is applied onto a predetermined substrate, and the dispersion medium is evaporated to a specific amount and removed.
  • the coating method is not particularly limited, and examples thereof include spin coating, blade coating, wire bar coating, spray coating, and slit coating.
  • the spin coating method is preferable in that a thin film having a uniform thickness can be obtained.
  • the sheet-like cellulose nanofiber may contain other components other than the cellulose fiber as long as the intended effect of the present invention is not impaired.
  • the other components may be components originally contained as raw material components such as hemicellulose and lignin, for example, binders such as glue materials, plasticizers, various fillers, various pigment sheets, and the like. May be various components used when producing the cellulose nanofibers, for example, various components used after producing the sheet-like cellulose nanofibers, such as functional group-containing silanes and alkylsilazanes. .
  • the sheet-like cellulose nanofiber produced as described above is preferably contained in the wiring board material of the present invention in a proportion of 0.1 to 40% by volume, based on the solid content of the entire wiring board material, in particular. Is preferably 5 to 35% by volume.
  • the content is 0.1% by volume or more, it becomes easy to obtain the effect of reducing the thermal expansibility.
  • the content is 40% by volume or less, the water absorption can be kept low.
  • the binder component is obtained by drying a liquid composition, and the liquid composition contains a thermosetting resin, a thermoplastic resin, a photocurable resin, an organic solvent, and the like.
  • the binder component is a component obtained by substantially removing the organic solvent from the liquid composition.
  • the organic solvent may remain in the binder component.
  • a composition containing a thermosetting resin can be particularly preferably used as the liquid composition.
  • the thermosetting resin may be a resin that is cured by heating and exhibits electrical insulation properties.
  • the thermosetting resin may be a resin that is cured by heating and exhibits electrical insulation properties.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M Type epoxy resin, bisphenol P type epoxy resin, bisphenol type epoxy resin such as bisphenol Z type epoxy resin, novolac type epoxy resin such as bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac epoxy resin, biphenyl type epoxy resin , Biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, tetraphenylol ethane type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, Enoxy-type epoxy resin, dicyclopentadiene-type epoxy resin, norbornene-type epoxy resin, adamantane-type epoxy resin, fluorene-type epoxy resin,
  • Phenol resin such as resole phenol resin such as resole phenol resin, Triazine ring-containing resin such as phenoxy resin, urea resin, melamine resin, unsaturated polyester resin, bismaleimide resin, diallyl phthalate resin, silicone resin, benzoxazine Ring-containing resin, norbornene resin, cyanate resin, isocyanate resin, urethane resin, benzocyclobutene resin, maleimide resin, bismaleimide triazine resin, polyazo Chin resins, and polyimide resins.
  • an epoxy resin or a polyimide resin is particularly preferable because of its excellent reliability as an insulating layer.
  • the epoxy resin a known and commonly used polyfunctional epoxy resin having at least two epoxy groups in one molecule can be used.
  • the epoxy resin may be liquid, and may be solid or semi-solid.
  • bisphenol A type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin or a mixture thereof is particularly preferable.
  • These epoxy resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Specific examples of the epoxy resin include jER828 manufactured by Mitsubishi Chemical Corporation, but are not limited thereto.
  • the wiring board material of the present invention may further contain a compound having two or more phenolic hydroxyl groups for the purpose of improving the mechanical strength and heat resistance of the cured product of the wiring board material.
  • the compound having two or more phenolic hydroxyl groups include phenol novolac resins, alkylphenol volac resins, bisphenol A novolac resins, dicyclopentadiene type phenol resins, Xylok type phenol resins, terpene-modified phenol resins, and polyvinylphenols.
  • a phenol resin can be used individually or in combination of 2 or more types. When the phenol resin is used together with an epoxy resin, the phenolic hydroxyl group is desirably blended at a ratio of 0.1 to 1.2 equivalents with respect to 1 equivalent of the epoxy group.
  • the liquid composition When forming a cured product using a wiring board material containing an epoxy resin, the liquid composition preferably contains at least one of a curing agent and a thermosetting catalyst in addition to the epoxy resin. Common compounds can be used as the curing agent and the thermosetting catalyst.
  • the curing agent examples include 2-ethyl-4-methylimidazole (2E4MZ), 2-phenylimidazole (2PZ), 2-phenyl-4- Imidazole-based curing agents such as methyl-5-hydroxymethylimidazole (2P4MHZ), diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, metaxylenediamine, isophoronediamine, norbornenediamine, 1,3-bisaminomethylcyclohexane
  • Amine curing agents such as N-aminoethylpiperazine
  • phenolic curing agents such as polyamide, vinylphenol, aralkyl type phenol resins, phenol phenyl aralkyl resins, phenol biphenyl aralkyl resins, Hydrophthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, methylhexahydrophthalic
  • the compounding amount of the curing agent is preferably 0.1 to 150 parts by mass, more preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • thermosetting catalyst examples include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N- Examples thereof include amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine, hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide, and phosphorus compounds such as triphenylphosphine.
  • polyimide resin As a polyimide resin, what is obtained via a polyamic acid (polyimide precursor) by a synthetic reaction of a generally known aromatic polyvalent carboxylic acid anhydride or derivative thereof and an aromatic diamine, What is marketed as what is called a polyimide varnish of the state by which the polyamic acid composition was melt
  • dissolved in the organic solvent is mentioned.
  • aromatic polycarboxylic acid anhydride examples include, for example, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 ′.
  • Polyimide varnishes include Rika Coat SN20, Rika Coat PN20, Rika Coat EN20 from Shin Nippon Rika Co., Ltd., Trenys from Toray Industries, U-Varnish from Ube Industries, Optomer from JSR, Nissan SE812 manufactured by Chemical Co., Ltd. and CRC8000 manufactured by Sumitomo Bakelite Co., Ltd. may be mentioned.
  • the polyamic acid solution obtained by the synthesis reaction or marketed is treated by heating or the like, whereby cyclization (imidization) from the polyamic acid to the polyimide is performed.
  • the polyamic acid can be imidized by a method only by heating or a chemical method. In the case of the method using only heating, the polyamic acid is imidized by heat treatment at 200 to 350 ° C., for example.
  • the chemical method is a method in which the polyamic acid is heat-treated and completely imidized while using a basic catalyst in order to rapidly advance imidization.
  • the basic catalyst is not particularly limited, and a conventionally known basic catalyst is used.
  • Examples thereof include pyridine, diazabicycloundecene (DBU), diazabicyclononene (DBN), various tertiary amines, and the like. It is done. These basic catalysts may be used alone or in combination of two or more.
  • thermoplastic resins polyesters, polyamides, polyethers, polyimides, polysulfides, polysulfones, polyacetals, butyral resins, NBR, phenoxy resins, polybutadienes, various engineering plastics, etc. can be used alone or in combination of two or more. Can be used. These thermoplastic resins are uniformly dispersed or dissolved in the wiring board material at room temperature, regardless of whether the thermosetting resin in the wiring board material is cured and then uniformly dispersed or phase-separated. Those are preferred. These thermoplastic resins contribute to the prevention of repelling during coating and the improvement of transferability, and are effective in increasing the thickness of the coating. Effective in reducing warpage. Furthermore, the melt viscosity at the time of molding can be increased, which is effective for controlling the amount of resin oozing after molding.
  • organic solvent used to dissolve each of the above components or to make a slurry, and to dissolve other components ordinary solvents such as ketones such as acetone, methyl ethyl ketone, and cyclohexanone; toluene , Xylene, tetramethylbenzene and other aromatic hydrocarbons; methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol Glycol ethers such as monoethyl ether; ethyl acetate, butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate and the above-mentioned glycols Esters such as esterified esters; alcohols such as ethanol, propano
  • Amines Sulfur containing compounds such as dimethyl sulfoxide and sulfolane; Aliphatic hydrocarbons such as octane and decane; Petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha and solvent naphtha alone or in combination Can be used in combination.
  • photocurable resin photoacid generator, photobase generator, radical scavenger, defoaming / leveling agent, thixotropy imparting agent / thickening agent, dispersant, coupling agent, UV absorber , Flame retardant, peroxide decomposer, thermal polymerization inhibitor, adhesion promoter, rust inhibitor, surface treatment agent, surfactant, lubricant, antistatic agent, pH adjuster, antioxidant, dye, pigment, Components such as a fluorescent agent may be included as long as the object of the present invention is not impaired.
  • the content of the binder component is not particularly limited, but it is preferably 5 to 60% by volume, particularly 10 to 50% by volume, based on the solid content of the entire wiring board material.
  • the content is 5% by volume or more, the curability of the resin composition is good, and the moisture resistance of the wiring board obtained using the wiring board material is improved.
  • content is 60 volume% or less, the heat resistance of wiring board material improves.
  • silica As the low water-absorbing inorganic filler used in the present invention, silica can be suitably used. Moreover, although the said silica is not specifically limited, It is preferable that it is hydrophobic. Thereby, aggregation of a silica can be suppressed and a silica can be favorably disperse
  • silica hydrophobic for example, a method in which silica is surface-treated with a functional group-containing silane or alkylsilazane in advance is exemplified.
  • the silica is preferably used as a slurry previously dispersed in an organic solvent. Thereby, the dispersibility of a silica can be improved and the fall of the fluidity
  • the silica is not particularly limited, but is preferably spherical silica having an average particle diameter (d50) of 5 to 2000 nm.
  • Admafine SO-E1, SO-E2, SO- Use commercially available products such as E3, SO-E5, SO-C1, SO-C2, SO-C3, SO-C5, SFP-20M, SFP-30M, SFP-30MHE, SFP-130MC manufactured by Denki Kagaku Kogyo Co., Ltd. Can do.
  • the shape of the silica is not limited to a spherical shape, and may be amorphous silica.
  • the low water-absorbing inorganic filler used in the present invention a known and commonly used low water-absorbing inorganic filler can be blended as long as the moisture absorption rate of the low water-absorbing inorganic filler alone is 3% or less.
  • the moisture absorption rate refers to using a water vapor atmosphere differential thermal balance apparatus, putting a container with a sample at a constant temperature of 80 ° C. in a nitrogen atmosphere, drying at 2% RH for 1 hour, and then humidifying at 60% RH for 1 hour. Thus, it means the difference in sample weight (increase rate) after drying and after humidification.
  • the low water-absorbing inorganic filler is not particularly limited in addition to silica having an average particle size of 5 to 2000 nm.
  • Examples thereof include titanium oxide, alumina, silica having an average particle size larger than 2000 nm, and amorphous silica.
  • Various powders such as titanates such as barium titanate, silicon powder, and fluorine powder can be contained.
  • titanium oxide, barium sulfate, and calcium sulfate are preferable.
  • 1 type can also be used independently and 2 or more types can also be used together.
  • blend a well-known inorganic filler include, for example, carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, sulfites such as magnesium hydroxide, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, Examples thereof include borate salts such as calcium borate and sodium borate, and silica gel.
  • the low water-absorbing inorganic filler is preferably contained in a proportion of 10 to 60% by volume, particularly 20 to 50% by volume, based on the solid content of the entire wiring board material.
  • content is 10 volume% or more, the shape retainability at the time of forming an insulating layer in a wiring board improves.
  • content is 60 volume% or less, adhesiveness with the copper foil at the time of forming an insulating layer in a wiring board becomes favorable, and it can use favorably as a wiring board material.
  • the volume content of a low water absorption inorganic filler is larger than the volume content of a sheet-like cellulose nanofiber. More preferably, the low water-absorbing inorganic filler: sheet-like cellulose nanofibers preferably has a volume ratio of 95: 5 to 55:45, and a volume ratio of 90:10 to 60:40. More preferably. By setting the relationship between the two in the above range, good characteristics can be obtained with a good balance.
  • the volume content of the low water-absorbing inorganic filler and the sheet-like cellulose nanofiber is preferably 50 to 65 vol% based on the total capacity of the wiring board material.
  • the wiring board material of the present invention is obtained by mixing a low water-absorbing inorganic filler and a liquid composition, impregnating the mixture into a sheet-like cellulose nanofiber, and then drying the impregnated material (wiring board material before drying). Can be obtained.
  • the wiring board material of the present invention is applied and impregnated with, for example, a mixture containing a low water-absorbing inorganic filler and a liquid composition in a state in which sheet-like cellulose nanofibers are arranged on an object to be coated such as a carrier film. And it can also manufacture as a dry film by carrying out the volatile drying of the organic solvent contained in a mixture, and you may bond a cover film on it further as desired.
  • the coating method include a dropping method using a pipette, a dip coating method, a bar coater method, a spin coating method, a curtain coating method, a spray coating method, a roll coating method, a slit coating method, a blade coating method, a lip coating.
  • various coating methods such as screen printing, spray printing, ink jet printing, letterpress printing, intaglio printing, and planographic printing.
  • the above-mentioned mixture can be applied by adjusting, mixing, dispersing, and diluting each component as necessary to a viscosity suitable for the application method.
  • the mixture is not particularly limited as long as it can be impregnated by impregnating the sheet-like cellulose nanofibers and can be brought into close contact with copper foil (copper wiring) or the like.
  • any known materials used for the dry film can be used, and examples thereof include a polyethylene film and a polypropylene film.
  • the carrier film and the cover film may use the same film material or different film materials, but the cover film preferably has a smaller adhesiveness to the resin than the carrier film.
  • a wiring board can be obtained by bringing the wiring board material of the present invention into close contact with a substrate.
  • the base material include a metal foil substrate, a circuit-formed wiring board, and the like, and an insulating layer can be formed by thermally adhering to the surface of the base material. ) And an insulating layer can also be laminated.
  • the wiring board material may be laminated with the wiring board materials when manufactured on the carrier film, or may be laminated with the wiring board materials when in close contact with the copper foil or the like.
  • a method of heat-curing after impregnation in the case of a dry film, the cover film is peeled off, the wiring board material is thermally adhered to the substrate surface, and then the carrier film is peeled off and then heat-cured. Can be manufactured.
  • a copper foil layer and an insulating layer may be heat-hardened one by one, and may be laminated
  • about the heating temperature at the time of heating if a cellulose nanofiber, a binder component, etc. are the range which does not decompose
  • bonding a pellet-shaped or sheet-shaped thermoplastic resin can also be used.
  • a binder component is a thermoplastic resin
  • bonding a pellet-shaped or sheet-shaped thermoplastic resin can also be used.
  • pressurization there is no particular upper limit of pressure unless the shape of the intended wiring board material is impaired.
  • the wiring board material can be molded by heat-adhering to the substrate surface, and can be produced in the same manner as described above when molding using a dry film.
  • examples of the apparatus used at the time of drying, heat-curing or heat-pressing include a hot-air circulating drying furnace, an IR furnace, a hot plate, a convection oven, a heating / pressurizing roll, and a press machine.
  • the thickness of the sheet-like cellulose nanofiber that is a component of the wiring board material of the present invention, or the thickness of the wiring board material comprising the sheet-like cellulose nanofiber, the liquid composition, and the low water-absorbing inorganic filler is particularly limited. However, the thickness is preferably 5 to 100 ⁇ m for sheet-like cellulose nanofibers, and preferably 10 to 250 ⁇ m for wiring board materials.
  • the wiring board material obtained by forming the wiring board material of the present invention on the substrate surface can be used as a core material for wiring boards. In addition, as described above, it can be used as an interlayer insulating material for multilayer wiring boards, and the wiring board material is formed on the surface of the wiring board on which the circuit is formed, and is patterned so as to cover only the circuit wiring.
  • the wiring board material of the present invention as described above can be applied to a wiring board for an electronic device, for example, can be suitably applied to an interlayer insulating material for a wiring board, a solder resist, etc. Thereby, the desired effect of the present invention can be obtained.
  • FIG. 1 is a partial cross-sectional view showing a configuration example of a wiring board obtained by using the wiring board material according to the present invention.
  • the illustrated multilayer printed wiring board can be manufactured, for example, as follows. First, a through hole is formed in the core substrate 2 on which the wiring pattern 1 is formed. The through hole can be formed by an appropriate means such as a drill, a die punch, or laser light. Then, a roughening process is performed using a roughening agent.
  • the roughening treatment is carried out by swelling with an organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, or methoxypropanol, or an alkaline aqueous solution such as caustic soda or caustic potash. It is carried out using an oxidizing agent such as salt, ozone, hydrogen peroxide / sulfuric acid or nitric acid.
  • organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, or methoxypropanol
  • an alkaline aqueous solution such as caustic soda or caustic potash.
  • an oxidizing agent such as salt, ozone, hydrogen peroxide / sulfuric acid or nitric acid.
  • the wiring pattern 3 is formed by a combination of electroless plating or electrolytic plating.
  • the step of forming the conductor layer by electroless plating is a step of immersing in an aqueous solution containing a plating catalyst, adsorbing the catalyst, and then immersing in a plating solution to deposit the plating.
  • a predetermined circuit pattern is formed on the conductor layer on the surface of the core substrate 2 in accordance with a conventional method (subtractive method, semi-additive method, etc.), and wiring patterns 3 are formed on both sides as shown in the figure.
  • the wiring connection portion 4 of the wiring pattern 3 of the multilayer printed wiring board and the wiring connection portion 1a of the wiring pattern 1 are electrically connected.
  • the through hole 5 is formed.
  • the wiring board material of the present invention is laminated or hot-plate pressed and cured by heating to form an interlayer insulating layer 6.
  • vias 7 for electrically connecting the connection portions of the conductor layers are formed by an appropriate means such as laser light, and the wiring pattern 8 is formed by the same method as the wiring pattern 3 described above.
  • the interlayer insulating layer 9, the via 10 and the wiring pattern 11 are formed by the same method.
  • a multilayer printed wiring board is manufactured by forming the solder resist layer 12 in the outermost layer.
  • a single-sided substrate or a double-sided substrate may be used instead of the multilayer substrate.
  • Cellulose fiber raw material (KC Flock manufactured by Nippon Paper Chemicals Co., Ltd.) is diluted with water to a concentration of 0.5% by mass, and using a high-speed rotating homogenizer (CLM0.8S manufactured by M Technique Co., Ltd.) at a rotational speed of 2000 rpm for 60 minutes. A fibrillation treatment was performed to obtain a fine cellulose fiber dispersion. The obtained fine cellulose fiber dispersion was diluted with water to a concentration of 0.13% by mass, and 150 g was put into a 90 mm diameter filter using PTFE having a pore diameter of 1 ⁇ m.
  • CMF0.8S high-speed rotating homogenizer
  • the solid content reached about 5% by mass, 2 -Replaced with 30 ml of propanol. Then, it press-dried at 120 degreeC and 0.14 MPa for 5 minutes, and obtained the white sheet-like cellulose nanofiber.
  • the film thickness of the sheet-like cellulose nanofiber was 20 ⁇ m, the number average fiber diameter of the cellulose fibers was 400 nm, and the density was 1.5 g / cm 3 .
  • Table 1 below shows the blending contents used as the low water-absorbing inorganic filler and the liquid composition.
  • the mixture is stirred using a rotation / revolution mixer, and each low water-absorbing inorganic filler and liquid composition are mixed. A mixture containing was prepared.
  • TMA test Evaluation of thermal expansion
  • the single film of the produced cured product was cut into 3 mm width ⁇ 30 mm length. This was heated at a rate of 5 ° C./minute from 20 to 250 ° C. under a nitrogen atmosphere of 10 mm between chucks, a load of 50 mN using a TMA (Thermal Mechanical Analysis) 7100 manufactured by Hitachi High-Tech Science Co., Ltd., and then 250 The temperature was lowered to -20 ° C at 5 ° C / min. Thereafter, an average linear expansion coefficient ⁇ 1 of 50 to 100 ° C. when the temperature was raised from 20 to 250 ° C. at 5 ° C./min was determined.
  • the wiring board 1 is cut into an appropriate size, a hole (via) having a diameter of 100 ⁇ m is formed on the cured product with a carbon dioxide laser, and then the via bottom (copper copper) is subjected to a desmear treatment by permanganic acid etching.
  • the surface was observed with a scanning electron microscope (SEM, JSM-6610LV, JEOL Ltd., magnification: 3,500 times), and the presence or absence of residues (smear) on the via bottom (copper surface) was visually confirmed. Evaluation was performed according to the following criteria, and the results are shown in Table 1 below. ( ⁇ : no residue, ⁇ : slight residue, ⁇ : residue on the entire surface)
  • Admafine SO-C2 manufactured by Admatechs (density 2.2 g / cm 3 , average particle size 500 nm), * 2 SG-2000 manufactured by Nippon Talc (density 2.7 g / cm 3 ), * 3 ZX1059 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. * 4 XD-1000 manufactured by Nippon Kayaku Co., Ltd. * 5 HP-4032 manufactured by DIC * 6 YX-6554 manufactured by Mitsubishi Chemical Corporation * 7 HF-1M manufactured by Meiwa Kasei Co., Ltd. * 8 2E4MZ manufactured by Shikoku Chemicals, * 9 BYK-LPD20950 manufactured by Big Chemie Japan, * 10 KBM-402 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the wiring board materials of Examples 1 to 5 including a binder component, a sheet-like cellulose nanofiber, and silica as a low water-absorbing inorganic filler have low thermal expansion properties.
  • a cured product excellent in water absorption was obtained while maintaining a high elongation at break.
  • the wiring board material of Example 6 containing silica and talc as the low water-absorbing inorganic filler a cured product having excellent water absorption while maintaining low thermal expansion and high elongation at break as in Example 1. I was able to get it.
  • Comparative Examples 1 to 3 containing sheet-like cellulose nanofibers and no silica contained significantly poor water absorption and electrical properties.
  • a wiring board material containing a binder component, a sheet-like cellulose nanofiber, and a low water-absorbing inorganic filler curing with low water absorption while maintaining low thermal expansion and high elongation at break. It was confirmed that things could be realized.
  • a wiring board material of the present invention can be applied to a wiring board for electronic equipment, and can be suitably applied to, for example, an interlayer insulating material for a multilayer wiring board, a solder resist or a coverlay.

Abstract

The purpose of the present invention is to provide a wiring board material having low water absorbency while maintaining low thermal expansion and a high breaking elongation rate, and a wiring board that uses the wiring board material. The wiring board material is characterized by including a binder component, sheet-shaped cellulose nanofibers, and an inorganic filler having low water absorbency. This wiring board material is capable of being favorably used as an interlayer insulator in a multilayer wiring board, and as a solder resist or a cover lay. The present invention also provides a wiring board that uses this wiring board material.

Description

配線板材料およびそれを用いた配線板Wiring board material and wiring board using the same
 本発明は、低熱膨張性および高い破断伸び率を維持しながら、吸水性が低い配線板材料、および、それを用いた配線板に関する。 The present invention relates to a wiring board material having low water absorption while maintaining low thermal expansion and high breaking elongation, and a wiring board using the same.
 電子機器用の配線板としては、一般に、ガラス繊維やアラミド繊維などからなる基材にエポキシ等の樹脂を含浸させて得られるプリプレグ(半硬化状態の樹脂絶縁層)を、銅等の金属箔に密着させ、エッチング法で回路を形成したものや、絶縁性樹脂組成物を塗工またはシート状の絶縁性樹脂組成物をラミネートすることにより絶縁層を形成した後に、銅めっきなどにより回路を形成したものが用いられている。また、配線板には、部品実装時におけるはんだの流出を防止するために、ソルダーレジストが設けられている。 As a wiring board for an electronic device, a prepreg (semi-cured resin insulating layer) obtained by impregnating a substrate made of glass fiber or aramid fiber with a resin such as epoxy is generally applied to a metal foil such as copper. A circuit was formed by copper plating or the like after forming an insulating layer by applying an insulating resin composition or laminating a sheet-like insulating resin composition, or by forming a circuit by etching and bonding the insulating resin composition. Things are used. The wiring board is provided with a solder resist in order to prevent the solder from flowing out during component mounting.
 配線板の高密度化に伴い、配線板材料には銅箔(銅配線)やシリコンチップ部品相当の低熱膨張性が求められている。これは、銅箔と配線板材料との熱膨張性(熱膨張係数)に大きな差があると、部品実装時の熱応力に起因して配線板の反りが発生し、部品の接合不良が起こるためである。また、配線板材料には高い破断伸び率を有する必要がある。配線板材料の破断伸び率が低いと、配線板のヒートサイクル試験等での温度変化により、配線板材料が銅箔に追随できずに配線板材料にクラックが発生するためである。加えて、配線板材料には、吸水性も低いことが必要不可欠である。吸水性が高い場合は、配線板のHAST試験等で配線板材料中に金属成分が移行し、マイグレーションが発生して絶縁不良を起こすといった問題が生ずるためである。
 よって、配線板材料には低熱膨張性、高い破断伸び率が必要であり、かつ、吸水性が低いことが求められている。
With the increase in the density of wiring boards, wiring board materials are required to have low thermal expansion equivalent to copper foil (copper wiring) or silicon chip components. This is because if there is a large difference in thermal expansion (thermal expansion coefficient) between the copper foil and the wiring board material, the wiring board warps due to thermal stress during component mounting, resulting in poor bonding of the components. Because. Further, the wiring board material needs to have a high elongation at break. This is because if the elongation at break of the wiring board material is low, the wiring board material cannot follow the copper foil and cracks are generated due to temperature changes in a heat cycle test or the like of the wiring board. In addition, it is essential for the wiring board material to have low water absorption. This is because when the water absorption is high, a metal component migrates into the wiring board material in a HAST test or the like of the wiring board, causing a problem of migration and occurrence of insulation failure.
Therefore, the wiring board material is required to have low thermal expansibility, high elongation at break, and low water absorption.
 従来技術として、例えば、配線基板に、セルロース繊維からなるセルロースナノファイバーを用いる方法がある(特許文献1、2参照)。しかし、多量に含有することで、セルロース繊維に起因して吸水性が高くなる問題がある。 As a conventional technique, for example, there is a method of using cellulose nanofibers made of cellulose fibers for a wiring board (see Patent Documents 1 and 2). However, when it is contained in a large amount, there is a problem that water absorption is increased due to cellulose fibers.
特開2011-001559号公報JP 2011-001559 A 特開2012-119470号公報JP 2012-119470 A
 本発明の目的は、低熱膨張性および高い破断伸び率を維持しながら、吸水性が低い配線板材料、および、それを用いた配線板を提供することにある。 An object of the present invention is to provide a wiring board material having low water absorption while maintaining low thermal expansion and a high elongation at break, and a wiring board using the same.
 本発明者らは、上記課題を解決するために鋭意検討した結果、以下のことを見出した。
 すなわち、セルロースナノファイバーは、樹脂などと混合して製造される配線板材料中に存在することで低熱膨張性を示し、シート状のセルロースナノファイバーを用いた場合には、繊維同士の絡み合いや相互作用によりさらに低熱膨張性を示す。しかし、配線板材料中にセルロースナノファイバーが多く存在すると、吸水性が高くなる。
 前述したように、配線板材料には、低熱膨張性、高破断伸び率を維持しながら、かつ、吸水性が低いことが重要となる。
As a result of intensive studies to solve the above problems, the present inventors have found the following.
In other words, cellulose nanofibers exhibit low thermal expansion by being present in a wiring board material produced by mixing with a resin or the like. When sheet-like cellulose nanofibers are used, entanglement between fibers and mutual It exhibits low thermal expansion due to its action. However, when a large amount of cellulose nanofibers are present in the wiring board material, the water absorption is increased.
As described above, it is important for the wiring board material to have low thermal expansion, high elongation at break, and low water absorption.
 上記検討の結果、本発明者らは、以下の構成とすることにより、熱膨張性および破断伸び、並びに、吸水性のバランスをとりつつ、配線板材料として利用可能となることを見出した。
 すなわち、本発明の配線板材料は、バインダー成分と、シート状のセルロースナノファイバーと、低吸水性無機充填材と、を含むことを特徴とするものである。ここで、「低吸水性」とは、無機充填材単体で、吸湿率が3%以下であることを意味する。
 本発明の配線板材料においては、前記バインダー成分が熱硬化性樹脂を含むことが好ましく、前記低吸水性無機充填材がシリカであることが好ましく、前記低吸水性無機充填材の体積含有量が、前記シート状のセルロースナノファイバーの体積含有量より多いことが好ましい。
 また、本発明の配線板材料は、多層配線板の層間絶縁材用、および、ソルダーレジストまたはカバーレイなどの永久絶縁膜形成用に好適に用いることができる。
 さらに、本発明の配線板は、上記本発明の配線板材料を有することを特徴とするものである。
As a result of the above studies, the present inventors have found that the following configuration can be used as a wiring board material while balancing thermal expansion, elongation at break, and water absorption.
That is, the wiring board material of the present invention is characterized by including a binder component, a sheet-like cellulose nanofiber, and a low water-absorbing inorganic filler. Here, “low water absorption” means that the inorganic filler alone is a moisture absorption rate of 3% or less.
In the wiring board material of the present invention, the binder component preferably contains a thermosetting resin, the low water-absorbing inorganic filler is preferably silica, and the volume content of the low water-absorbing inorganic filler is The volume content of the sheet-like cellulose nanofiber is preferably larger.
The wiring board material of the present invention can be suitably used for interlayer insulating materials for multilayer wiring boards and for forming a permanent insulating film such as a solder resist or a coverlay.
Furthermore, the wiring board of the present invention is characterized by having the wiring board material of the present invention.
 本発明によれば、低熱膨張性および高い破断伸び率を維持しながら、吸水性が低い配線板材料を得ることが可能となった。すなわち、本発明においては、シート状のセルロースナノファイバーと、低吸水性無機充填材とを含むことで、低熱膨張性および高破断伸び率を有し、かつ、吸水性が低い配線板材料を得るための材料の条件を見出したものである。これは、多層配線板の層間絶縁材用やソルダーレジスト用などの配線板材料は、前述の諸特性を有する必要があるが、例えば、セルロースナノファイバーを多量に用いると吸水性が高くなってしまうところ、本発明によれば、低熱膨張性および高い破断伸び率を維持しながら、吸水性の問題を解決できるものである。 According to the present invention, it is possible to obtain a wiring board material having low water absorption while maintaining low thermal expansion and high elongation at break. That is, in the present invention, by including a sheet-like cellulose nanofiber and a low water-absorbing inorganic filler, a wiring board material having low thermal expansion and high breaking elongation and low water absorption is obtained. The condition of the material for finding was found. This is because wiring board materials for interlayer insulating materials and solder resists for multilayer wiring boards need to have the above-mentioned characteristics. For example, if a large amount of cellulose nanofiber is used, water absorption is increased. However, according to the present invention, the problem of water absorption can be solved while maintaining low thermal expansion and high elongation at break.
本発明の多層配線板の一構成例を示す部分断面図である。It is a fragmentary sectional view which shows one structural example of the multilayer wiring board of this invention.
 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
 本発明の配線板材料は、バインダー成分と、シート状のセルロースナノファイバーと、低吸水性無機充填材と、を含む点に特徴を有する。
 かかるシート状のセルロースナノファイバーは、以下のようにして得ることができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The wiring board material of the present invention is characterized in that it includes a binder component, a sheet-like cellulose nanofiber, and a low water-absorbing inorganic filler.
Such a sheet-like cellulose nanofiber can be obtained as follows.
(シート状のセルロースナノファイバー)
 シート状のセルロースナノファイバーの成分である微細セルロース繊維は、通常、セルロース繊維原料を解繊処理することにより得られるものであり、その数平均繊維径は400nm以下であることが好ましい。微細セルロース繊維の数平均繊維径は、小さい程好ましいが、線膨張性を低くするためには、セルロースの結晶性を維持することが重要であり、通常、セルロース結晶単位の繊維径である4nm以上である。
(Sheet-like cellulose nanofiber)
The fine cellulose fiber that is a component of the sheet-like cellulose nanofiber is usually obtained by defibrating a cellulose fiber raw material, and the number average fiber diameter is preferably 400 nm or less. The number average fiber diameter of the fine cellulose fibers is preferably as small as possible. However, in order to reduce the linear expansion, it is important to maintain the crystallinity of cellulose, and the fiber diameter of the cellulose crystal unit is usually 4 nm or more. It is.
 なお、微細セルロース繊維の繊維径は、以下に詳述する微細セルロース繊維分散液中の分散媒を乾燥除去して得られるセルロース不織布を、SEMやTEM等で観察することにより計測して求めることができる。具体的には、通常、SEMやTEM等で観察して、写真の対角線に線を引き、その近傍にある繊維をランダムに12点抽出し、最も太い繊維と最も細い繊維を除去した10点を測定して、平均した値を数平均繊維径とする。
 セルロース繊維原料の解繊処理は、通常、セルロース繊維原料の分散液(セルロース繊維原料分散液)中で行う。該分散液中において、セルロース繊維原料としての固形分濃度が例えば、0.1質量%以上、好ましくは0.2質量%以上、また10質量%以下、好ましくは6質量%以下のセルロース繊維原料分散液であることが好ましい。
 この解繊工程に供するセルロース繊維原料分散液中の固形分濃度が0.1質量%以上の場合、処理するセルロース量に対して液量が適度で解繊処理の効率がよい。一方、固形分濃度が10質量%以下の場合、流動性が良好となる。
In addition, the fiber diameter of the fine cellulose fiber can be obtained by measuring the cellulose nonwoven fabric obtained by drying and removing the dispersion medium in the fine cellulose fiber dispersion described in detail below by observing with SEM, TEM, or the like. it can. Specifically, it is usually observed with SEM, TEM, etc., a line is drawn on the diagonal line of the photograph, 12 points of fibers in the vicinity are randomly extracted, and 10 points obtained by removing the thickest fiber and the thinnest fiber are extracted. The number average fiber diameter is measured and averaged.
The cellulose fiber raw material is normally defibrated in a cellulose fiber raw material dispersion (cellulose fiber raw material dispersion). In the dispersion, a cellulose fiber raw material dispersion having a solid content concentration of, for example, 0.1% by mass or more, preferably 0.2% by mass or more, and 10% by mass or less, preferably 6% by mass or less is used. A liquid is preferred.
When the solid content concentration in the cellulose fiber raw material dispersion to be subjected to this defibrating step is 0.1% by mass or more, the amount of liquid is moderate with respect to the amount of cellulose to be processed, and the efficiency of the defibrating process is good. On the other hand, when the solid content concentration is 10% by mass or less, the fluidity is good.
 なお、分散媒としては、有機溶媒、水、有機溶媒と水との混合液を使用することができる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、n-ブタノール、エチレングリコール、エチレングリコール-モノ-t-ブチルエーテル等のアルコール類、アセトンやメチルエチルケトン等のケトン類、その他水溶性の有機溶媒の1種または2種以上を用いることができる。分散媒は、有機溶媒と水との混合液または水であることが好ましく、特に、水であることが好ましい。
 セルロース繊維原料の解繊処理の具体的な方法としては、特に制限はないが、例えば、直径1mm程度のセラミック製ビーズをセルロース繊維原料分散液に入れ、ペイントシェーカーやビーズミル等を用いて振動を与えセルロース繊維原料を解繊する方法、ブレンダータイプの分散機や高速回転するスリットの間に、セルロース繊維原料分散液を通して剪断力を働かせて解繊する方法(高速回転式ホモジナイザー法)や、高圧から急に減圧することによって、セルロース繊維間に剪断力を発生させて解繊する方法(高圧ホモジナイザー法)、「マスコマイザーX」のような対向衝突型の分散機(増幸産業製)等を用いる方法などが挙げられる。特に、高速回転式ホモジナイザーや高圧ホモジナイザー処理は、解繊の効率が向上する。
As the dispersion medium, an organic solvent, water, or a mixed solution of an organic solvent and water can be used. Organic solvents include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, n-butanol, ethylene glycol and ethylene glycol mono-t-butyl ether, ketones such as acetone and methyl ethyl ketone, and other water-soluble organic compounds. One kind or two or more kinds of solvents can be used. The dispersion medium is preferably a mixed liquid of an organic solvent and water or water, and particularly preferably water.
There are no particular restrictions on the method of defibrating the cellulose fiber raw material, but for example, ceramic beads having a diameter of about 1 mm are placed in the cellulose fiber raw material dispersion, and vibration is applied using a paint shaker or bead mill. Cellulosic fiber raw material is defibrated, blended with a blender-type disperser or a high-speed rotating slit, and a method of defibration by applying shear force through the cellulose fiber raw material dispersion (high-speed rotating homogenizer method) A method of using a counter impact type disperser (manufactured by Masuko Sangyo Co., Ltd.) such as “massomizer X”, etc. Is mentioned. In particular, the high-speed rotating homogenizer and the high-pressure homogenizer treatment improve the efficiency of defibration.
 なお、上記のような処理の後に、超音波処理を組み合わせた微細化処理を行ってもよい。
 この場合、超音波の周波数は、例えば15kHz~1MHz、好ましくは20kHz~500kHzである。照射する超音波の周波数が15kHz以上の場合、キャビテーションの発生が良好となる。一方、1MHz以下の場合、微細化効果が良好に得られる。また、超音波の出力としては、実行出力密度として、例えば1W/cm以上であり、好ましくは10W/cm以上である。超音波の出力が1W/cm以上の場合、微細化効率が良好で短時間で微細化を行うことができる。なお、超音波の実行出力密度の上限は、振動子やホーン等の耐久性の点から、500W/cm以下である。
Note that a miniaturization process combined with an ultrasonic process may be performed after the above process.
In this case, the frequency of the ultrasonic waves is, for example, 15 kHz to 1 MHz, preferably 20 kHz to 500 kHz. When the frequency of the ultrasonic wave to irradiate is 15 kHz or more, the occurrence of cavitation is good. On the other hand, when the frequency is 1 MHz or less, a fine effect can be obtained satisfactorily. Moreover, as an output of an ultrasonic wave, as an execution output density, it is 1 W / cm < 2 > or more, for example, Preferably it is 10 W / cm < 2 > or more. When the output of the ultrasonic wave is 1 W / cm 2 or more, the miniaturization efficiency is good and the miniaturization can be performed in a short time. In addition, the upper limit of the effective output density of ultrasonic waves is 500 W / cm 2 or less from the viewpoint of durability of the vibrator and the horn.
 超音波の照射方法には特に制限はなく、各種の方法が利用できる。例えば、超音波振動子の振動を伝えるホーンを直接上記のセルロース繊維原料分散液に挿入することにより、直接セルロース繊維を微細化する方法や、セルロース繊維原料分散液を入れた容器の床や壁の一部に超音波振動子を設置してセルロース繊維を微細化する方法や、超音波振動子を装着した容器に水等の液体を入れ、その中にセルロース繊維原料分散液を入れた容器を漬すことにより、水等の液体を介して間接的に超音波振動をセルロース繊維原料分散液に与えて微細化する方法が採用できる。 The ultrasonic irradiation method is not particularly limited, and various methods can be used. For example, by directly inserting a horn that transmits the vibration of an ultrasonic vibrator into the cellulose fiber raw material dispersion, a method for directly refining cellulose fibers, or a floor or wall of a container containing a cellulose fiber raw material dispersion. Place ultrasonic transducers on the part to make cellulose fibers fine, or put a liquid such as water in a vessel equipped with ultrasonic transducers, and immerse the vessel containing the cellulose fiber raw material dispersion in it. Thus, a method of applying ultrasonic vibration indirectly to the cellulose fiber raw material dispersion liquid through a liquid such as water can be employed.
 また、超音波は連続的に照射してもよく、所定の間隔で間欠的に照射してもよい。
 なお、解繊処理した後は、遠心分離を用いて微細セルロース繊維分散液中の解繊不良のセルロース繊維を分離、除去することが好ましい。遠心分離することで、より均一で細かい微細セルロース繊維分散液の上澄み液が得られる。遠心分離の条件については、用いる微細化処理によるので特に限定されるものではないが、例えば3000G以上、好ましくは10000G以上の遠心力をかけることが好ましい。また、時間は例えば1分以上、好ましくは5分以上かけることが好ましい。遠心力が3000G以上の場合、時間が1分以上の場合、解繊不良のセルロース繊維の分離・除去が十分となる。
Further, the ultrasonic waves may be irradiated continuously or intermittently at a predetermined interval.
In addition, after performing the defibrating treatment, it is preferable to separate and remove the defibrated cellulose fibers in the fine cellulose fiber dispersion using centrifugation. By centrifuging, a supernatant of a more uniform and fine fine cellulose fiber dispersion can be obtained. The conditions for the centrifugation are not particularly limited because they depend on the miniaturization process used, but it is preferable to apply a centrifugal force of, for example, 3000 G or more, preferably 10,000 G or more. The time is preferably 1 minute or longer, preferably 5 minutes or longer. When the centrifugal force is 3000 G or more, when the time is 1 minute or more, separation / removal of cellulose fibers with poor defibration is sufficient.
 また、遠心分離を行う際、分離効率の観点から、微細セルロース繊維分散液の粘度としては、25℃において測定されるずり速度10s-1における粘度が、例えば、500mPa・s以下、特には100mPa・s以下であることが好ましい。 In addition, when performing centrifugation, from the viewpoint of separation efficiency, the viscosity of the fine cellulose fiber dispersion is, for example, a viscosity at a shear rate of 10 s −1 measured at 25 ° C., for example, 500 mPa · s or less, particularly 100 mPa · s. It is preferable that it is s or less.
(シート状のセルロースナノファイバーの製造方法)
 シート状のセルロースナノファイバーは、通常、上述のようにして得られた微細セルロース繊維を用いて製造される。シート状のセルロースナノファイバーは、解繊前のセルロース繊維原料を用いるよりも、微細セルロース繊維を用いて製造したものの方が、高透明性、低線膨張係数、高弾性率のものが得られる。具体的には、シート状のセルロースナノファイバーは、前述の解繊処理を施すことにより得られる微細セルロース繊維を含む分散液(微細セルロース繊維分散液)を濾過することにより、または、適当な基材に塗布することにより、シート状物として製造される。
(Method for producing sheet-like cellulose nanofiber)
Sheet-like cellulose nanofibers are usually produced using fine cellulose fibers obtained as described above. The sheet-like cellulose nanofibers can be obtained with high transparency, low linear expansion coefficient, and high elastic modulus when produced using fine cellulose fibers rather than using the cellulose fiber raw material before defibration. Specifically, the sheet-like cellulose nanofiber is obtained by filtering a dispersion (fine cellulose fiber dispersion) containing fine cellulose fibers obtained by performing the above-described defibrating treatment, or an appropriate substrate. It is manufactured as a sheet-like product by applying to.
 シート状のセルロースナノファイバーを、微細セルロース繊維分散液を濾過することによって製造する場合、濾過に供される分散液の微細セルロース繊維濃度は、通常0.01質量%以上、好ましくは0.05質量%以上である。微細セルロース繊維の濃度が0.01質量%以上の場合、容易に濾過できる。また、微細セルロース繊維の濃度は通常10質量%以下、好ましくは5質量%以下である。微細セルロース繊維の濃度が10質量%以下の場合、均一なシートが良好に得られる。 When producing sheet-like cellulose nanofibers by filtering a fine cellulose fiber dispersion, the fine cellulose fiber concentration of the dispersion used for filtration is usually 0.01% by mass or more, preferably 0.05% by mass. % Or more. When the concentration of the fine cellulose fiber is 0.01% by mass or more, it can be easily filtered. Moreover, the density | concentration of a fine cellulose fiber is 10 mass% or less normally, Preferably it is 5 mass% or less. When the concentration of fine cellulose fibers is 10% by mass or less, a uniform sheet can be obtained satisfactorily.
 微細セルロース繊維分散液を濾過する場合、濾過時の濾布としては、微細セルロース繊維は通過せずかつ濾過速度が遅くなりすぎないことが重要である。このような濾布としては、有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしては、ポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。より具体的には、孔径0.1~20μm、例えば1μmのポリテトラフルオロエチレンの多孔膜、孔径0.1~20μm、例えば1μmのポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。また、天然繊維であるセルロースからなる紙基材をろ過材として用いることができる。紙基材は幅広や長尺物のものが簡単に製造できる上に、原料であるパルプの種類やパルプの叩解度を変えることなどにより、紙の通水量を制御できるため非常に好ましい。また、耐水化剤や疎水化剤などで容易に基剤に耐水性を付与することも可能である。 When filtering the fine cellulose fiber dispersion, it is important that the fine cellulose fibers do not pass through and the filtration speed is not too slow as a filter cloth at the time of filtration. As such a filter cloth, a sheet made of an organic polymer, a woven fabric, and a porous membrane are preferable. As the organic polymer, non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE) and the like are preferable. More specifically, a porous film of polytetrafluoroethylene having a pore diameter of 0.1 to 20 μm, for example 1 μm, polyethylene terephthalate or polyethylene fabric having a pore diameter of 0.1 to 20 μm, for example 1 μm, and the like can be mentioned. Moreover, the paper base material which consists of cellulose which is a natural fiber can be used as a filter medium. The paper base material is very preferable because it can easily produce wide and long materials and can control the amount of water passing through the paper by changing the type of pulp as the raw material and the beating degree of the pulp. In addition, it is possible to easily impart water resistance to the base with a water-proofing agent or a hydrophobizing agent.
 上記濾過によって得られたシート状のセルロースナノファイバーは、その後、乾燥を行うが、場合によっては乾燥を行わずに次の工程に進んでも構わない。
 すなわち、例えば、加熱処理した微細セルロース繊維分散液を濾過した場合、乾燥工程を経ずそのまま次工程に供することもできる。
 また、微細セルロース繊維分散液を濾過して、得られたシート状のセルロースナノファイバーを加熱処理する場合にも、乾燥工程を経ずに行うこともできる。
 しかし、空隙率、膜厚の制御、不織布の構造をより強固にする意味でも、乾燥を行った方が好ましい。この乾燥は、送風乾燥であってもよく、減圧乾燥であってもよく、また、加圧乾燥、凍結乾燥であってもよい。また、加熱乾燥しても構わない。加熱する場合、温度は50℃以上が好ましく、80℃以上がより好ましく、また、250℃以下が好ましく、150℃以下がより好ましい。加熱温度が50℃以上の場合、容易に乾燥できる。一方、加熱温度が250℃以下の場合、セルロース不織布が着色したり、セルロースが分解したりすることを抑制できる。また、加圧する場合は0.01MPa以上が好ましく、0.1MPa以上がより好ましい。圧力が0.01MPa以上の場合、乾燥が良好となる。一方、圧力が10MPa以下の場合、セルロース不織布がつぶれたりセルロースが分解したりすることを抑制できる。
The sheet-like cellulose nanofibers obtained by the filtration are then dried, but in some cases, the process may proceed to the next step without drying.
That is, for example, when the heat-treated fine cellulose fiber dispersion is filtered, it can be directly used for the next step without passing through the drying step.
Moreover, also when filtering a fine cellulose fiber dispersion liquid and heat-processing the obtained sheet-like cellulose nanofiber, it can also carry out without passing through a drying process.
However, it is preferable to perform drying also in the sense of controlling the porosity, film thickness, and strengthening the structure of the nonwoven fabric. This drying may be air drying, vacuum drying, pressure drying, or freeze drying. Moreover, you may heat-dry. When heating, the temperature is preferably 50 ° C or higher, more preferably 80 ° C or higher, 250 ° C or lower is more preferable, and 150 ° C or lower is more preferable. When the heating temperature is 50 ° C. or higher, it can be easily dried. On the other hand, when heating temperature is 250 degrees C or less, it can suppress that a cellulose nonwoven fabric colors or a cellulose decomposes | disassembles. Moreover, when pressurizing, 0.01 MPa or more is preferable and 0.1 MPa or more is more preferable. When the pressure is 0.01 MPa or more, the drying is good. On the other hand, when the pressure is 10 MPa or less, the cellulose nonwoven fabric can be prevented from being crushed or the cellulose being decomposed.
 また、シート状のセルロースナノファイバーを、微細セルロース繊維分散液を適当な基材に塗布することによりシート状物として製造してもよい。この場合、通常、上記分散液を所定の基板上に塗布して、分散媒を特定量まで蒸発させて除去する。塗布の方法としては、特に限定されず、スピンコート法、ブレードコート法、ワイヤーバーコート法、スプレーコート法、スリットコート法などが挙げられる。特に、均一な膜厚の薄膜が得られる点で、スピンコート法が好ましい。なお、基板としては、特に限定されず、ガラス基板、プラスチック基板などが挙げられる。 Alternatively, the sheet-like cellulose nanofibers may be produced as a sheet-like material by applying a fine cellulose fiber dispersion to an appropriate substrate. In this case, usually, the dispersion is applied onto a predetermined substrate, and the dispersion medium is evaporated to a specific amount and removed. The coating method is not particularly limited, and examples thereof include spin coating, blade coating, wire bar coating, spray coating, and slit coating. In particular, the spin coating method is preferable in that a thin film having a uniform thickness can be obtained. In addition, it does not specifically limit as a board | substrate, A glass substrate, a plastic substrate, etc. are mentioned.
 また、シート状のセルロースナノファイバーは、本発明の所期の効果を損なわない範囲で、セルロース繊維以外のその他の成分を含んでいても構わない。その他の成分としては、例えば、ヘミセルロースやリグニン等のように、原材料成分として元々含有している成分でも構わないし、例えば、糊材等の結着剤、可塑剤、各種填料、各種顔料等のシート状のセルロースナノファイバーを製造する際に用いられる各種成分でも構わないし、例えば、官能基含有シラン類やアルキルシラザン類のように、シート状のセルロースナノファイバーを製造した後に用いられる各種成分でも構わない。 In addition, the sheet-like cellulose nanofiber may contain other components other than the cellulose fiber as long as the intended effect of the present invention is not impaired. The other components may be components originally contained as raw material components such as hemicellulose and lignin, for example, binders such as glue materials, plasticizers, various fillers, various pigment sheets, and the like. May be various components used when producing the cellulose nanofibers, for example, various components used after producing the sheet-like cellulose nanofibers, such as functional group-containing silanes and alkylsilazanes. .
 上記のように製造されたシート状のセルロースナノファイバーは、本発明の配線板材料において、配線板材料全体の固形分基準として、0.1~40体積%の割合で含有することが好ましく、特には、5~35体積%であることが好ましい。含有量が0.1体積%以上であると、熱膨張性を低くする効果を得やすくなる。一方、含有量が40体積%以下の場合、吸水性を低く抑えることができる。 The sheet-like cellulose nanofiber produced as described above is preferably contained in the wiring board material of the present invention in a proportion of 0.1 to 40% by volume, based on the solid content of the entire wiring board material, in particular. Is preferably 5 to 35% by volume. When the content is 0.1% by volume or more, it becomes easy to obtain the effect of reducing the thermal expansibility. On the other hand, when the content is 40% by volume or less, the water absorption can be kept low.
(バインダー成分)
 バインダー成分は、液状組成物を乾燥して得られるものであり、液状組成物は、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂、有機溶剤などを含む。言い換えると、バインダー成分は、液状組成物から有機溶剤を実質的に除いた成分である。但し、液状組成物の乾燥方法によっては、バインダー成分中に有機溶剤が残存する場合もある。
 本発明では、液状組成物としては、特に熱硬化性樹脂を含む組成物を好適に用いることができる。
(Binder component)
The binder component is obtained by drying a liquid composition, and the liquid composition contains a thermosetting resin, a thermoplastic resin, a photocurable resin, an organic solvent, and the like. In other words, the binder component is a component obtained by substantially removing the organic solvent from the liquid composition. However, depending on the drying method of the liquid composition, the organic solvent may remain in the binder component.
In the present invention, a composition containing a thermosetting resin can be particularly preferably used as the liquid composition.
(熱硬化性樹脂)
 熱硬化性樹脂は、加熱により硬化して電気絶縁性を示す樹脂であればよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、エポキシ変性のポリブタジエンゴム誘導体、CTBN変性エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4’-ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールまたはプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂などのノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油などで変性した油変性レゾールフェノール樹脂などのレゾール型フェノール樹脂などのフェノール樹脂、フェノキシ樹脂、尿素(ユリア)樹脂、メラミン樹脂などのトリアジン環含有樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、ノルボルネン系樹脂、シアネート樹脂、イソシアネート樹脂、ウレタン樹脂、ベンゾシクロブテン樹脂、マレイミド樹脂、ビスマレイミドトリアジン樹脂、ポリアゾメチン樹脂、ポリイミド樹脂等が挙げられる。これらの中でも特に、エポキシ樹脂やポリイミド樹脂が、絶縁層としての信頼性が優れているために好ましい。
(Thermosetting resin)
The thermosetting resin may be a resin that is cured by heating and exhibits electrical insulation properties. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M Type epoxy resin, bisphenol P type epoxy resin, bisphenol type epoxy resin such as bisphenol Z type epoxy resin, novolac type epoxy resin such as bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac epoxy resin, biphenyl type epoxy resin , Biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, tetraphenylol ethane type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, Enoxy-type epoxy resin, dicyclopentadiene-type epoxy resin, norbornene-type epoxy resin, adamantane-type epoxy resin, fluorene-type epoxy resin, glycidyl methacrylate-copolymerized epoxy resin, copolymerized epoxy resin of cyclohexyl maleimide and glycidyl methacrylate, epoxy Modified polybutadiene rubber derivative, CTBN modified epoxy resin, trimethylolpropane polyglycidyl ether, phenyl-1,3-diglycidyl ether, biphenyl-4,4′-diglycidyl ether, 1,6-hexanediol diglycidyl ether, ethylene Diglycidyl ether of glycol or propylene glycol, sorbitol polyglycidyl ether, tris (2,3-epoxypropyl) isocyanurate, Oil modification modified with glycidyl tris (2-hydroxyethyl) isocyanurate, phenol novolac resin, cresol novolac resin, novolac type phenol resin such as bisphenol A novolac resin, unmodified resole phenol resin, tung oil, linseed oil, walnut oil, etc. Phenol resin such as resole phenol resin such as resole phenol resin, Triazine ring-containing resin such as phenoxy resin, urea resin, melamine resin, unsaturated polyester resin, bismaleimide resin, diallyl phthalate resin, silicone resin, benzoxazine Ring-containing resin, norbornene resin, cyanate resin, isocyanate resin, urethane resin, benzocyclobutene resin, maleimide resin, bismaleimide triazine resin, polyazo Chin resins, and polyimide resins. Among these, an epoxy resin or a polyimide resin is particularly preferable because of its excellent reliability as an insulating layer.
 エポキシ樹脂としては、1分子中に少なくとも2つのエポキシ基を有する公知慣用の多官能エポキシ樹脂が使用できる。エポキシ樹脂は、液状であってもよく、固形または半固形であってもよい。中でも、特に、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂またはそれらの混合物が好ましい。これらのエポキシ樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。エポキシ樹脂としては、具体的には例えば、三菱化学(株)製のjER828等が挙げられるが、これに限られるものではない。 As the epoxy resin, a known and commonly used polyfunctional epoxy resin having at least two epoxy groups in one molecule can be used. The epoxy resin may be liquid, and may be solid or semi-solid. Among them, bisphenol A type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin or a mixture thereof is particularly preferable. These epoxy resins may be used individually by 1 type, and may be used in combination of 2 or more type. Specific examples of the epoxy resin include jER828 manufactured by Mitsubishi Chemical Corporation, but are not limited thereto.
 本発明の配線板材料には、さらに、配線板材料の硬化物の機械強度や耐熱性を向上させる目的で、フェノール性水酸基を2個以上有する化合物を配合することができる。
 フェノール性水酸基を2個以上有する化合物としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類など公知慣用のフェノール樹脂を、単独であるいは2種以上組み合わせて使用することができる。フェノール樹脂は、エポキシ樹脂とともに用いた場合には、エポキシ基1当量に対しフェノール性水酸基が0.1~1.2当量の割合で配合することが望ましい。
The wiring board material of the present invention may further contain a compound having two or more phenolic hydroxyl groups for the purpose of improving the mechanical strength and heat resistance of the cured product of the wiring board material.
Examples of the compound having two or more phenolic hydroxyl groups include phenol novolac resins, alkylphenol volac resins, bisphenol A novolac resins, dicyclopentadiene type phenol resins, Xylok type phenol resins, terpene-modified phenol resins, and polyvinylphenols. A phenol resin can be used individually or in combination of 2 or more types. When the phenol resin is used together with an epoxy resin, the phenolic hydroxyl group is desirably blended at a ratio of 0.1 to 1.2 equivalents with respect to 1 equivalent of the epoxy group.
 エポキシ樹脂を含む配線板材料を用いて硬化物を形成する場合には、液状組成物は、エポキシ樹脂の他に、硬化剤および熱硬化触媒のいずれか少なくとも1種を含有することが好ましい。硬化剤および熱硬化触媒としては一般的な化合物を使用することができ、硬化剤としては、2-エチル-4-メチルイミダゾール(2E4MZ)、2-フェニルイミダゾール(2PZ)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)等のイミダゾール系硬化剤、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、メタキシレンジアミン、イソホロンジアミン、ノルボルネンジアミン、1,3-ビスアミノメチルシクロヘキサン、N-アミノエチルピペラジン等のアミン系硬化剤、ポリアミド、ビニルフェノール、アラルキル型フェノール樹脂、フェノールフェニルアラルキル樹脂、フェノールビフェニルアラルキル樹脂等のフェノール系硬化剤、無水フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、メチルヘキサヒドロフタル酸、無水メチルナジック酸、ドデシル無水コハク酸、無水クロレンディック酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメート)、メチルシクロヘキセンテトラカルボン酸無水物等の酸無水物系硬化剤、シアネートエステル樹脂、活性エステル樹脂、脂肪族または芳香族の一級または二級アミン、ポリアミド樹脂、ポリメルカプト化合物などの公知の硬化剤を使用できる。硬化剤の配合量は、上記エポキシ樹脂100質量部に対して、好ましくは0.1~150質量部、より好ましくは0.5~100質量部である。硬化剤の配合量を、0.1質量部以上とすることで樹脂組成物を十分に硬化させることができ、150質量部以下とすることで、配合量に見合った効果を効率的に得ることができる。 When forming a cured product using a wiring board material containing an epoxy resin, the liquid composition preferably contains at least one of a curing agent and a thermosetting catalyst in addition to the epoxy resin. Common compounds can be used as the curing agent and the thermosetting catalyst. Examples of the curing agent include 2-ethyl-4-methylimidazole (2E4MZ), 2-phenylimidazole (2PZ), 2-phenyl-4- Imidazole-based curing agents such as methyl-5-hydroxymethylimidazole (2P4MHZ), diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, metaxylenediamine, isophoronediamine, norbornenediamine, 1,3-bisaminomethylcyclohexane Amine curing agents such as N-aminoethylpiperazine, phenolic curing agents such as polyamide, vinylphenol, aralkyl type phenol resins, phenol phenyl aralkyl resins, phenol biphenyl aralkyl resins, Hydrophthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, methylhexahydrophthalic acid, methyl nadic anhydride, dodecyl succinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride , Ethylene glycol bis (anhydrotrimate), acid anhydride curing agents such as methylcyclohexene tetracarboxylic anhydride, cyanate ester resin, active ester resin, aliphatic or aromatic primary or secondary amine, polyamide resin A known curing agent such as a polymercapto compound can be used. The compounding amount of the curing agent is preferably 0.1 to 150 parts by mass, more preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin. By setting the blending amount of the curing agent to 0.1 parts by mass or more, the resin composition can be sufficiently cured, and by setting the blending amount to 150 parts by mass or less, an effect commensurate with the blending amount can be efficiently obtained. Can do.
 また、熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物などが挙げられる。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもできる。 Examples of the thermosetting catalyst include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N- Examples thereof include amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine, hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide, and phosphorus compounds such as triphenylphosphine. Guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as -S-triazine / isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct can also be used.
 ポリイミド樹脂としては、一般的に知られている芳香族多価カルボン酸無水物またはその誘導体と芳香族ジアミンとの合成反応によって、ポリアミック酸(ポリイミド前駆体)を経由して得られるものと、既に有機溶媒にポリアミック酸組成物が溶解された状態の、いわゆるポリイミドワニスとして上市されているものが挙げられる。 As a polyimide resin, what is obtained via a polyamic acid (polyimide precursor) by a synthetic reaction of a generally known aromatic polyvalent carboxylic acid anhydride or derivative thereof and an aromatic diamine, What is marketed as what is called a polyimide varnish of the state by which the polyamic acid composition was melt | dissolved in the organic solvent is mentioned.
 芳香族多価カルボン酸無水物の具体例としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。これらは単独または2種以上混合して用いられる。これらの中でも、特に、少なくとも成分の1つとして、ピロメリット酸二無水物を用いることが好ましい。 Specific examples of the aromatic polycarboxylic acid anhydride include, for example, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 ′. -Benzophenone tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis ( 2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3 , 4- Carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic Acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic acid Anhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride and the like can be mentioned. These may be used alone or in combination of two or more. Among these, it is particularly preferable to use pyromellitic dianhydride as at least one of the components.
 芳香族多価カルボン酸無水物等の多価カルボン酸と反応させる芳香族ジアミンの具体例としては、例えば、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、ビス(3-アミノフェニル)スルフィド、(3-アミノフェニル)(4-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、ビス(3-アミノフェニル)スルフィド、(3-アミノフェニル)(4-アミノフェニル)スルホキシド、ビス(3-アミノフェニル)スルホン、(3-アミノフェニル)(4-アミノフェニル)スルホン、ビス(4-アミノフェニル)スルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、1,1-ビス〔4-(3-アミノフェノキシ)フェニル〕エタン、1,1-ビス〔4-(4-アミノフェノキシ)フェニル〕-エタン、1,2-ビス〔4-(3-アミノフェノキシ)フェニル〕エタン、1,2-ビス〔4-(4-アミノフェノキシ)フェニル〕エタン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕ブタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホキシド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホキシド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、1,4-ビス〔4-(3-アミノフェノキシ)ベンゾイル〕ベンゼン、1,3-ビス〔4-(3-アミノフェノキシ)ベンゾイル〕ベンゼン、4,4’-ビス〔3-(4-アミノフェノキシ)ベンゾイル〕ジフェニルエーテル、4,4’-ビス〔3-(3-アミノフェノキシ)ベンゾイル〕ジフェニルエーテル、4,4’-ビス〔4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ〕ベンゾフェノン、4,4’-ビス〔4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ〕ジフェニルスルホン、ビス〔4-{4-(4-アミノフェノキシ)フェノキシ}フェニル〕スルホン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕-α,α-ジメチルベンジル〕ベンゼン、1,3-ビス〔4-(4-アミノフェノキシ)-α,α-ジメチルベンジル〕ベンゼン等が挙げられる。これらは単独または2種以上を混合して使用される。これらの中でも、特に、少なくとも成分の1つとして、4,4’-ジアミノジフェニルエーテルを用いることが好ましい。 Specific examples of aromatic diamines to be reacted with polyvalent carboxylic acids such as aromatic polycarboxylic anhydrides include, for example, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p -Aminobenzylamine, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, bis (3-aminophenyl) sulfide, (3-aminophenyl) (4-aminophenyl) Sulfide, bis (4-aminophenyl) sulfide, bis (3-aminophenyl) sulfide, (3-aminophenyl) (4-aminophenyl) sulfoxide, bis (3-aminophenyl) sulfone, (3-aminophenyl) ( 4-aminophenyl) sulfone, bis (4-a Nophenyl) sulfone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diamino Diphenylmethane, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] methane, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1, 1-bis [4- (4-aminophenoxy) phenyl] -ethane, 1,2-bis [4- (3-aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-aminophenoxy) phenyl ] Ethane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4- Minophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] butane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3 3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis (3-amino Phenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis ( 3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) Bis) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfoxide, bis [ 4- (4-aminophenoxy) phenyl] sulfoxide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) Phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) Benzoyl] benzene, 4,4′-bis [3- (4-aminophenoxy) benzoyl] diphenylate 4,4′-bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′- Bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, bis [4- {4- (4-aminophenoxy) phenoxy} phenyl] sulfone, 1,4-bis [4- (4 -Aminophenoxy) phenoxy] -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene and the like. These are used individually or in mixture of 2 or more types. Among these, it is particularly preferable to use 4,4'-diaminodiphenyl ether as at least one of the components.
 ポリイミドワニスとしては、新日本理化(株)製のリカコートSN20、リカコートPN20、リカコートEN20、東レ(株)製のトレニース、宇部興産(株)製のU-ワニス、JSR(株)製のオプトマー、日産化学(株)製のSE812、住友ベークライト(株)製のCRC8000が挙げられる。 Polyimide varnishes include Rika Coat SN20, Rika Coat PN20, Rika Coat EN20 from Shin Nippon Rika Co., Ltd., Trenys from Toray Industries, U-Varnish from Ube Industries, Optomer from JSR, Nissan SE812 manufactured by Chemical Co., Ltd. and CRC8000 manufactured by Sumitomo Bakelite Co., Ltd. may be mentioned.
 合成反応により得られるかまたは上市されているポリアミック酸溶液を、加熱等により処理することで、ポリアミック酸からポリイミドへの環化(イミド化)が行なわれる。ポリアミック酸は、加熱のみによる方法、または、化学的方法によって、イミド化することが可能である。加熱のみによる方法の場合、ポリアミック酸を、例えば、200~350℃で加熱処理することによってイミド化する。また、化学的方法は、イミド化を速やかに進行させるために塩基性触媒を利用しつつ、ポリアミック酸を加熱処理して、完全にイミド化する方法である。上記塩基性触媒としては、特に限定されず、従来公知の塩基性触媒が用いられ、例えば、ピリジン、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、各種3級アミン等が挙げられる。これらの塩基性触媒は、単独で用いてもよいし、二種類以上を併用してもよい。 The polyamic acid solution obtained by the synthesis reaction or marketed is treated by heating or the like, whereby cyclization (imidization) from the polyamic acid to the polyimide is performed. The polyamic acid can be imidized by a method only by heating or a chemical method. In the case of the method using only heating, the polyamic acid is imidized by heat treatment at 200 to 350 ° C., for example. In addition, the chemical method is a method in which the polyamic acid is heat-treated and completely imidized while using a basic catalyst in order to rapidly advance imidization. The basic catalyst is not particularly limited, and a conventionally known basic catalyst is used. Examples thereof include pyridine, diazabicycloundecene (DBU), diazabicyclononene (DBN), various tertiary amines, and the like. It is done. These basic catalysts may be used alone or in combination of two or more.
 熱可塑性樹脂としては、ポリエステル、ポリアミド、ポリエーテル、ポリイミド、ポリスルフィド、ポリスルフォン、ポリアセタール、ブチラール樹脂、NBR、フェノキシ樹脂、ポリブタジエン、各種エンジニアリング・プラスチック等、公知慣用のものを単独であるいは2種以上組み合わせて使用することができる。
 これらの熱可塑性樹脂は、配線板材料中の熱硬化性樹脂が硬化した後、均一に分散するか、もしくは相分離するに拘らず、室温の状態では配線板材料中に均一に分散または溶解するものが好ましい。これらの熱可塑性樹脂は、コーティング時のはじき防止や転写性の改善に寄与してコーティングの厚膜化に効果があり、また強靭性の付与、柔軟性の付与、硬化収縮の低減による配線板の反り低減に効果がある。さらに、成形時の溶融粘度を高くすることができ、成形後の樹脂染み出し量のコントロールに有効である。
As thermoplastic resins, polyesters, polyamides, polyethers, polyimides, polysulfides, polysulfones, polyacetals, butyral resins, NBR, phenoxy resins, polybutadienes, various engineering plastics, etc. can be used alone or in combination of two or more. Can be used.
These thermoplastic resins are uniformly dispersed or dissolved in the wiring board material at room temperature, regardless of whether the thermosetting resin in the wiring board material is cured and then uniformly dispersed or phase-separated. Those are preferred. These thermoplastic resins contribute to the prevention of repelling during coating and the improvement of transferability, and are effective in increasing the thickness of the coating. Effective in reducing warpage. Furthermore, the melt viscosity at the time of molding can be increased, which is effective for controlling the amount of resin oozing after molding.
 その他、上記の各成分を溶解するためやスラリーとするために、および、その他の成分を溶解するために用いられる有機溶剤としては、通常の溶剤、例えばアセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロプレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ジエチレングリコールモノエチルエーテルアセテートおよび上記グリコールエーテル類のエステル化物などのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコールなどのアルコール類;1-メチル-2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド等のアミド類;テトラヒドロフラン、ジオキサンなどのエーテル類;アセトニトリル、ベンゾニトリル、プロピオニトリル等のニトリル類、クロロホルム、ジクロロメタン、ブロモベンゼン、ジブロモベンゼン、クロロベンゼン、ジクロロベンゼン等のハロゲン類;N-メチル-2-ピロリドン、ジメチルアニリン、ジブチルアニリン、ジイソプロピルアニリン等のアミン類;ジメチルスルホキシド、スルホラン等の含硫黄類;オクタン、デカンなどの脂肪族炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサなどの石油系溶媒等を単独でまたは2種以上を組み合わせて使用することができる。 In addition, as an organic solvent used to dissolve each of the above components or to make a slurry, and to dissolve other components, ordinary solvents such as ketones such as acetone, methyl ethyl ketone, and cyclohexanone; toluene , Xylene, tetramethylbenzene and other aromatic hydrocarbons; methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol Glycol ethers such as monoethyl ether; ethyl acetate, butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate and the above-mentioned glycols Esters such as esterified esters; alcohols such as ethanol, propanol, ethylene glycol, propylene glycol; 1-methyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε- Amides such as caprolactam, formamide, N-methylformamide, N, N-dimethylformamide, acetamide and N-methylacetamide; ethers such as tetrahydrofuran and dioxane; nitriles such as acetonitrile, benzonitrile and propionitrile; chloroform; Halogens such as dichloromethane, bromobenzene, dibromobenzene, chlorobenzene, dichlorobenzene; N-methyl-2-pyrrolidone, dimethylaniline, dibutylaniline, diisopropylaniline, etc. Amines; Sulfur containing compounds such as dimethyl sulfoxide and sulfolane; Aliphatic hydrocarbons such as octane and decane; Petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha and solvent naphtha alone or in combination Can be used in combination.
 また、必要に応じて、光硬化性樹脂、光酸発生剤、光塩基発生剤、ラジカル捕捉剤、消泡・レベリング剤、チクソトロピー付与剤・増粘剤、分散剤、カップリング剤、紫外線吸収剤、難燃剤、過酸化物分解剤、熱重合禁止剤、密着促進剤、防錆剤、表面処理剤、界面活性剤、潤滑剤、帯電防止剤、pH調整剤、酸化防止剤、染料、顔料、蛍光剤等の成分を、本発明の目的を阻害しない範囲で含んでいてもよい。 If necessary, photocurable resin, photoacid generator, photobase generator, radical scavenger, defoaming / leveling agent, thixotropy imparting agent / thickening agent, dispersant, coupling agent, UV absorber , Flame retardant, peroxide decomposer, thermal polymerization inhibitor, adhesion promoter, rust inhibitor, surface treatment agent, surfactant, lubricant, antistatic agent, pH adjuster, antioxidant, dye, pigment, Components such as a fluorescent agent may be included as long as the object of the present invention is not impaired.
 上記バインダー成分の含有量は、特に限定されないが、配線板材料全体の固形分基準として5~60体積%の割合で含有することが好ましく、特には、10~50体積%であることが好ましい。含有量が5体積%以上であると樹脂組成物の硬化性が良好であり、配線板材料を用いて得られる配線板の耐湿性が向上する。また、含有量が60体積%以下の場合、配線板材料の耐熱性が向上する。 The content of the binder component is not particularly limited, but it is preferably 5 to 60% by volume, particularly 10 to 50% by volume, based on the solid content of the entire wiring board material. When the content is 5% by volume or more, the curability of the resin composition is good, and the moisture resistance of the wiring board obtained using the wiring board material is improved. Moreover, when content is 60 volume% or less, the heat resistance of wiring board material improves.
(低吸水性無機充填材)
 本発明で用いられる低吸水性無機充填材としては、シリカを好適に用いることができる。
 また、上記シリカは、特に限定されないが、疎水性であることが好ましい。これにより、シリカの凝集を抑制することができ、本発明の配線板材料中にシリカを良好に分散させることができる。また、バインダー成分とシリカとの親和性が向上し、バインダー成分とシリカとの表面の密着性が向上するため、強度に優れる配線板材料が得られる。シリカを疎水性にする方法としては、例えば、シリカを予め官能基含有シラン類やアルキルシラザン類で表面処理する方法等が挙げられる。
 加えて、上記シリカは、予め有機溶媒に分散したスラリーとして用いることが好ましい。これにより、シリカの分散性を向上することができ、その他の低吸水性無機充填材を用いた際に生ずる流動性の低下を抑制することができる。
 また、上記シリカとしては、特に限定されないが、平均粒径(d50)が5~2000nmの球状シリカであることが好ましく、例えば、アドマテックス社製のアドマファインSO-E1、SO-E2、SO-E3、SO-E5、SO-C1、SO-C2、SO-C3、SO-C5、電気化学工業社製のSFP-20M、SFP-30M、SFP-30MHE、SFP-130MC等の市販品を用いることができる。なお、シリカの形状は球状に限られず、不定形シリカでもよい。
(Low water-absorbing inorganic filler)
As the low water-absorbing inorganic filler used in the present invention, silica can be suitably used.
Moreover, although the said silica is not specifically limited, It is preferable that it is hydrophobic. Thereby, aggregation of a silica can be suppressed and a silica can be favorably disperse | distributed in the wiring board material of this invention. Moreover, since the affinity between the binder component and silica is improved and the adhesion between the surface of the binder component and silica is improved, a wiring board material having excellent strength can be obtained. As a method for making silica hydrophobic, for example, a method in which silica is surface-treated with a functional group-containing silane or alkylsilazane in advance is exemplified.
In addition, the silica is preferably used as a slurry previously dispersed in an organic solvent. Thereby, the dispersibility of a silica can be improved and the fall of the fluidity | liquidity which arises when using another low water absorption inorganic filler can be suppressed.
The silica is not particularly limited, but is preferably spherical silica having an average particle diameter (d50) of 5 to 2000 nm. For example, Admafine SO-E1, SO-E2, SO- Use commercially available products such as E3, SO-E5, SO-C1, SO-C2, SO-C3, SO-C5, SFP-20M, SFP-30M, SFP-30MHE, SFP-130MC manufactured by Denki Kagaku Kogyo Co., Ltd. Can do. The shape of the silica is not limited to a spherical shape, and may be amorphous silica.
 本発明に用いられる低吸水性無機充填材としては、低吸水性無機充填材単体の吸湿率が3%以下であれば、公知慣用の低吸水性無機充填材を配合することもできる。ここで、吸湿率とは、水蒸気雰囲気示差熱天秤装置を用いて、窒素雰囲気下の80℃定温下に試料入り容器を投入し、2%RHで1時間乾燥後、60%RHで1時間加湿して、乾燥後から加湿後の試料重量差(増量率)を意味する。
 上記低吸水性無機充填材は、平均粒径が5~2000nmのシリカの他には、特に限定されないが、例えば、酸化チタン、アルミナ、平均粒径が2000nmよりも大きいシリカ、不定形シリカ等の酸化物、タルク、水酸化アルミニウム、ベーマイト、水酸化カルシウム等の金属水酸化物、硫酸バリウム、硫酸カルシウム等の硫酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩、シリコンパウダー、フッ素パウダー等の各種パウダーを含有することができる。これらの中でも、酸化チタン、硫酸バリウム、硫酸カルシウムが好ましい。なお、上記低吸水性無機充填材としては、1種類を単独で用いることもできるし、2種類以上を併用することもできる。
 なお、本発明の効果を阻害しない限り、公知の無機充填剤を配合してもよい。公知の無機充填剤としては、例えば、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化マグネシウム、硫酸カルシウム、亜硫酸カルシウム等の亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、シリカゲルなどが挙げられる。
As the low water-absorbing inorganic filler used in the present invention, a known and commonly used low water-absorbing inorganic filler can be blended as long as the moisture absorption rate of the low water-absorbing inorganic filler alone is 3% or less. Here, the moisture absorption rate refers to using a water vapor atmosphere differential thermal balance apparatus, putting a container with a sample at a constant temperature of 80 ° C. in a nitrogen atmosphere, drying at 2% RH for 1 hour, and then humidifying at 60% RH for 1 hour. Thus, it means the difference in sample weight (increase rate) after drying and after humidification.
The low water-absorbing inorganic filler is not particularly limited in addition to silica having an average particle size of 5 to 2000 nm. Examples thereof include titanium oxide, alumina, silica having an average particle size larger than 2000 nm, and amorphous silica. Oxides, metal hydroxides such as talc, aluminum hydroxide, boehmite and calcium hydroxide, sulfates such as barium sulfate and calcium sulfate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, strontium titanate Various powders such as titanates such as barium titanate, silicon powder, and fluorine powder can be contained. Among these, titanium oxide, barium sulfate, and calcium sulfate are preferable. In addition, as said low water absorption inorganic filler, 1 type can also be used independently and 2 or more types can also be used together.
In addition, as long as the effect of this invention is not inhibited, you may mix | blend a well-known inorganic filler. Known inorganic fillers include, for example, carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, sulfites such as magnesium hydroxide, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, Examples thereof include borate salts such as calcium borate and sodium borate, and silica gel.
 低吸水性無機充填材は、配線板材料全体の固形分基準として、10~60体積%の割合で含有することが好ましく、特には、20~50体積%であることが好ましい。含有量が10体積%以上の場合、配線板に絶縁層を形成する際の形状保持性が向上する。一方、含有量が60体積%以下の場合、配線板に絶縁層を形成する際の銅箔との密着性が良好となり、配線板材料として良好に用いることができる。 The low water-absorbing inorganic filler is preferably contained in a proportion of 10 to 60% by volume, particularly 20 to 50% by volume, based on the solid content of the entire wiring board material. When content is 10 volume% or more, the shape retainability at the time of forming an insulating layer in a wiring board improves. On the other hand, when content is 60 volume% or less, adhesiveness with the copper foil at the time of forming an insulating layer in a wiring board becomes favorable, and it can use favorably as a wiring board material.
 本発明の配線板材料においては、低吸水性無機充填材の体積含有量が、シート状のセルロースナノファイバーの体積含有量より多いことが好ましい。より好ましくは、低吸水性無機充填材:シート状のセルロースナノファイバーとして、体積比で95:5~55:45の範囲であることが好ましく、体積比で90:10~60:40の範囲であることがより好ましい。この両者の関係を上記範囲内とすることで、良好な特性をバランス良く得ることができる。
 また、低吸水性無機充填材とシート状のセルロースナノファイバーとを合わせた体積含有量は、配線板材料の全容量基準で50~65vol%であることが好ましい。
In the wiring board material of this invention, it is preferable that the volume content of a low water absorption inorganic filler is larger than the volume content of a sheet-like cellulose nanofiber. More preferably, the low water-absorbing inorganic filler: sheet-like cellulose nanofibers preferably has a volume ratio of 95: 5 to 55:45, and a volume ratio of 90:10 to 60:40. More preferably. By setting the relationship between the two in the above range, good characteristics can be obtained with a good balance.
The volume content of the low water-absorbing inorganic filler and the sheet-like cellulose nanofiber is preferably 50 to 65 vol% based on the total capacity of the wiring board material.
(配線板材料の製造)
 本発明の配線板材料は、低吸水性無機充填材と液状組成物を混合し、その混合物をシート状のセルロースナノファイバーに含浸させた後、その含浸物(乾燥前の配線板材料)を乾燥させることにより得ることができる。本発明の配線板材料は、例えば、キャリアフィルム等の被塗布物上にシート状のセルロースナノファイバーを配置した状態で、低吸水性無機充填材と液状組成物とを含む混合物を塗布、含浸させて、混合物中に含まれる有機溶媒を揮発乾燥することにより、ドライフィルムとして製造することもでき、所望に応じ、さらに、その上にカバーフィルムを貼り合わせてもよい。
 塗布方法の具体例としては、ピペット等を用いた滴下法、ディップコート法、バーコーター法、スピンコート法、カーテンコート法、スプレーコート法、ロールコート法、スリットコート法、ブレードコート法、リップコート法、コンマコート法、フィルムコート法等の各種コート法や、スクリーン印刷、スプレー印刷、インクジェット印刷、凸版印刷、凹版印刷、平版印刷等の各種印刷法が挙げられる。
 この場合、上記混合物は、必要に応じ、各成分を配合、分散、希釈して、塗布方法に適した粘度に調整し、塗布することができる。上述したように、混合物については、シート状のセルロースナノファイバーに浸透させて含浸させることができるものであればよく、銅箔(銅配線)等に対し密着させることができるものであればよい。
(Manufacture of wiring board materials)
The wiring board material of the present invention is obtained by mixing a low water-absorbing inorganic filler and a liquid composition, impregnating the mixture into a sheet-like cellulose nanofiber, and then drying the impregnated material (wiring board material before drying). Can be obtained. The wiring board material of the present invention is applied and impregnated with, for example, a mixture containing a low water-absorbing inorganic filler and a liquid composition in a state in which sheet-like cellulose nanofibers are arranged on an object to be coated such as a carrier film. And it can also manufacture as a dry film by carrying out the volatile drying of the organic solvent contained in a mixture, and you may bond a cover film on it further as desired.
Specific examples of the coating method include a dropping method using a pipette, a dip coating method, a bar coater method, a spin coating method, a curtain coating method, a spray coating method, a roll coating method, a slit coating method, a blade coating method, a lip coating. And various coating methods such as screen printing, spray printing, ink jet printing, letterpress printing, intaglio printing, and planographic printing.
In this case, the above-mentioned mixture can be applied by adjusting, mixing, dispersing, and diluting each component as necessary to a viscosity suitable for the application method. As described above, the mixture is not particularly limited as long as it can be impregnated by impregnating the sheet-like cellulose nanofibers and can be brought into close contact with copper foil (copper wiring) or the like.
 また、キャリアフィルムとカバーフィルムとは、ドライフィルムに用いられる材料として公知のものを、いずれも使用することができ、例えば、ポリエチレンフィルム、ポリプロピレンフィルム等が挙げられる。キャリアフィルムとカバーフィルムとは、同一のフィルム材料を用いても、異なるフィルム材料を用いてもよいが、カバーフィルムについては、樹脂との接着性が、キャリアフィルムよりも小さいものが好ましい。
 本発明の配線板材料を基材に密着させることで、配線板を得ることができる。基材としては、金属箔基板や、回路形成された配線板などが挙げられ、基材表面に熱密着させることで、絶縁層を形成することができ、その繰り返しにより、銅箔層(銅配線)と絶縁層とをそれぞれ積層することもできる。なお、配線板材料は、キャリアフィルム上で製造した際に、配線板材料同士で積層してもよく、銅箔等との密着時に配線板材料同士で積層してもよい。その際は、含浸させた後に加熱硬化する方法、ドライフィルムの場合は、カバーフィルムを剥がして、基材表面に配線板材料を熱密着させ、次いで、キャリアフィルムを剥がした後に加熱硬化させる方法、により製造することができる。なお、前記積層する際には、銅箔層と絶縁層を順次加熱硬化してもよく、積層して一括加熱硬化させてもよい。また、加熱を行う際の加熱温度については、セルロースナノファイバーやバインダー成分等が高熱により分解しない範囲であれば、特に下限および上限の制限はない。
In addition, as the carrier film and the cover film, any known materials used for the dry film can be used, and examples thereof include a polyethylene film and a polypropylene film. The carrier film and the cover film may use the same film material or different film materials, but the cover film preferably has a smaller adhesiveness to the resin than the carrier film.
A wiring board can be obtained by bringing the wiring board material of the present invention into close contact with a substrate. Examples of the base material include a metal foil substrate, a circuit-formed wiring board, and the like, and an insulating layer can be formed by thermally adhering to the surface of the base material. ) And an insulating layer can also be laminated. The wiring board material may be laminated with the wiring board materials when manufactured on the carrier film, or may be laminated with the wiring board materials when in close contact with the copper foil or the like. In that case, a method of heat-curing after impregnation, in the case of a dry film, the cover film is peeled off, the wiring board material is thermally adhered to the substrate surface, and then the carrier film is peeled off and then heat-cured. Can be manufactured. In addition, when laminating | stacking, a copper foil layer and an insulating layer may be heat-hardened one by one, and may be laminated | stacked and heat-cured collectively. Moreover, about the heating temperature at the time of heating, if a cellulose nanofiber, a binder component, etc. are the range which does not decompose | disassemble by high heat, there will be no restriction | limiting in particular in a minimum and an upper limit.
 また、本発明の配線板材料を作製する際に、バインダー成分が熱可塑性樹脂である場合には、ペレット形状やシート形状の熱可塑性樹脂を加熱または加熱、圧着する手法を用いることもできる。ここで、熱可塑性樹脂を含む液状組成物を、シート状のセルロースナノファイバーに含浸させるためには、装置を用いて加圧することは必須要件ではないが、加圧を行うことにより熱可塑性樹脂のシート状のセルロースナノファイバーへの浸透がより容易となる。加圧を行う場合、目的とする配線板材料の形状を損なわない限り、特に圧力の上限はない。この配線板材料を基材表面に熱密着することにより、成形することができ、ドライフィルムを用いて成形する際にも、前記同様に作製することができる。
 なお、上記において、乾燥時、加熱硬化時または加熱加圧時に用いられる装置としては、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン、加熱・加圧ロール、プレス機等が挙げられる。
Moreover, when producing the wiring board material of this invention, when a binder component is a thermoplastic resin, the method of heating or heating and crimping | bonding a pellet-shaped or sheet-shaped thermoplastic resin can also be used. Here, in order to impregnate a sheet-like cellulose nanofiber with a liquid composition containing a thermoplastic resin, it is not an essential requirement to apply pressure using an apparatus. Penetration into the sheet-like cellulose nanofiber becomes easier. When pressurization is performed, there is no particular upper limit of pressure unless the shape of the intended wiring board material is impaired. The wiring board material can be molded by heat-adhering to the substrate surface, and can be produced in the same manner as described above when molding using a dry film.
In the above, examples of the apparatus used at the time of drying, heat-curing or heat-pressing include a hot-air circulating drying furnace, an IR furnace, a hot plate, a convection oven, a heating / pressurizing roll, and a press machine.
 本発明の配線板材料の構成部材であるシート状のセルロースナノファイバー、または、シート状のセルロースナノファイバーと液状組成物と低吸水性無機充填材とからなる配線板材料の厚みについては、特に限定されず、目的に応じて適宜選択することができるが、特には、シート状のセルロースナノファイバーにおいては、5~100μmが好ましく、配線板材料においては、10~250μmが好ましい。
 本発明の配線板材料を基材表面に形成し、得られる配線板は、配線板用のコア材としても使用することができる。また、前述のように、多層配線板用の層間絶縁材として使用することができ、また、配線板材料を回路形成された配線板表面に形成し、回路配線のみを覆うようにパターニング処理して硬化すれば、配線板の最外層であるソルダーレジストやカバーレイ等として使用することもできる。
 以上、説明したような本発明の配線板材料は、電子機器用の配線板等に適用することができ、例えば、配線板用の層間絶縁材やソルダーレジスト等に好適に適用することができ、これにより、本発明の所期の効果を得ることができるものである。
The thickness of the sheet-like cellulose nanofiber that is a component of the wiring board material of the present invention, or the thickness of the wiring board material comprising the sheet-like cellulose nanofiber, the liquid composition, and the low water-absorbing inorganic filler is particularly limited. However, the thickness is preferably 5 to 100 μm for sheet-like cellulose nanofibers, and preferably 10 to 250 μm for wiring board materials.
The wiring board material obtained by forming the wiring board material of the present invention on the substrate surface can be used as a core material for wiring boards. In addition, as described above, it can be used as an interlayer insulating material for multilayer wiring boards, and the wiring board material is formed on the surface of the wiring board on which the circuit is formed, and is patterned so as to cover only the circuit wiring. If cured, it can also be used as a solder resist or cover lay which is the outermost layer of the wiring board.
As described above, the wiring board material of the present invention as described above can be applied to a wiring board for an electronic device, for example, can be suitably applied to an interlayer insulating material for a wiring board, a solder resist, etc. Thereby, the desired effect of the present invention can be obtained.
 図1に、本発明に係る配線板材料を用いて得られる配線板の一構成例を示す部分断面図を示す。ここでは、本発明の配線板材料を配線板の層間絶縁材として用いる場合を説明するが、これに限られない。
 図示する多層プリント配線板は、例えば、以下のように製造することができる。まず、配線パターン1が形成されたコア基材2に貫通穴を形成する。貫通穴の形成は、ドリルや金型パンチ、レーザー光など適切な手段によって行うことができる。その後、粗化剤を用いて粗化処理を行う。一般に、粗化処理は、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、メトキシプロパノール等の有機溶剤、または苛性ソーダ、苛性カリ等のアルカリ性水溶液等で膨潤させ、重クロム酸塩、過マンガン酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤を用いて行われる。
FIG. 1 is a partial cross-sectional view showing a configuration example of a wiring board obtained by using the wiring board material according to the present invention. Here, although the case where the wiring board material of this invention is used as an interlayer insulation material of a wiring board is demonstrated, it is not restricted to this.
The illustrated multilayer printed wiring board can be manufactured, for example, as follows. First, a through hole is formed in the core substrate 2 on which the wiring pattern 1 is formed. The through hole can be formed by an appropriate means such as a drill, a die punch, or laser light. Then, a roughening process is performed using a roughening agent. Generally, the roughening treatment is carried out by swelling with an organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, or methoxypropanol, or an alkaline aqueous solution such as caustic soda or caustic potash. It is carried out using an oxidizing agent such as salt, ozone, hydrogen peroxide / sulfuric acid or nitric acid.
 次に、無電解めっきや電解めっきの組合せ等により、配線パターン3を形成する。無電解めっきにより導体層を形成する工程は、めっき用触媒を含む水溶液に浸漬し、触媒の吸着を行った後、めっき液に浸漬してめっきを析出させるという工程である。常法(サブトラクティブ法、セミアデティブ法等)に従って、コア基材2の表面の導体層に所定の回路パターンを形成し、図示するように、両側に配線パターン3を形成する。このとき、貫通穴にもめっき層が形成され、その結果、上記多層プリント配線板の配線パターン3の配線コネクション部4と配線パターン1の配線コネクション部1aとの間は電気的に接続されることになり、スルーホール5が形成される。 Next, the wiring pattern 3 is formed by a combination of electroless plating or electrolytic plating. The step of forming the conductor layer by electroless plating is a step of immersing in an aqueous solution containing a plating catalyst, adsorbing the catalyst, and then immersing in a plating solution to deposit the plating. A predetermined circuit pattern is formed on the conductor layer on the surface of the core substrate 2 in accordance with a conventional method (subtractive method, semi-additive method, etc.), and wiring patterns 3 are formed on both sides as shown in the figure. At this time, a plated layer is also formed in the through hole, and as a result, the wiring connection portion 4 of the wiring pattern 3 of the multilayer printed wiring board and the wiring connection portion 1a of the wiring pattern 1 are electrically connected. Thus, the through hole 5 is formed.
 次に、配線パターン3を有するコア基材2上に、本発明の配線板材料をラミネートもしくは熱板プレスして加熱硬化させ、層間絶縁層6を形成する。次に、各導体層のコネクション部間を電気的に接続するためのビア7を、例えば、レーザー光など適切な手段によって形成し、上記配線パターン3と同様の方法で配線パターン8を形成する。さらに、同様の方法で層間絶縁層9、ビア10および配線パターン11を形成する。その後、最外層にソルダーレジスト層12を形成することで、多層プリント配線板が製造される。上記においては、積層基板上に層間絶縁層および導体層を形成する例について説明したが、積層基板の代わりに片面基板、または、両面基板を用いてもよい。 Next, on the core substrate 2 having the wiring pattern 3, the wiring board material of the present invention is laminated or hot-plate pressed and cured by heating to form an interlayer insulating layer 6. Next, vias 7 for electrically connecting the connection portions of the conductor layers are formed by an appropriate means such as laser light, and the wiring pattern 8 is formed by the same method as the wiring pattern 3 described above. Further, the interlayer insulating layer 9, the via 10 and the wiring pattern 11 are formed by the same method. Then, a multilayer printed wiring board is manufactured by forming the solder resist layer 12 in the outermost layer. In the above, the example in which the interlayer insulating layer and the conductor layer are formed on the multilayer substrate has been described. However, a single-sided substrate or a double-sided substrate may be used instead of the multilayer substrate.
 以下、実施例、比較例により本発明をさらに詳細に説明するが、本発明は、これら実施例、比較例によって制限されるものではない。なお、以下の表中の配合量は、すべて質量部を示す。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples. In addition, all the compounding quantities in the following table | surfaces show a mass part.
[シート状のセルロースナノファイバー(CNF)の製造例]
 セルロース繊維原料(日本製紙ケミカル社製KCフロック)を0.5質量%濃度に水で希釈し、高速回転式ホモジナイザー(エム・テクニック社製CLM0.8S)を用いて、回転数2000rpm、60分間で解繊処理を行い、微細セルロース繊維分散液を得た。得られた微細セルロース繊維分散液を0.13質量%濃度に水で希釈し、孔径1μmのPTFEを用いた90mm径の濾過器に150g投入し、固形分が約5質量%になったところで2-プロパノール30mlを投入して置換した。その後、120℃、0.14MPaで5分間プレス乾燥して白色のシート状のセルロースナノファイバーを得た。このシート状のセルロースナノファイバーの膜厚は20μmであり、セルロース繊維の数平均繊維径は400nm、密度1.5g/cmであった。
[Production Example of Sheet-like Cellulose Nanofiber (CNF)]
Cellulose fiber raw material (KC Flock manufactured by Nippon Paper Chemicals Co., Ltd.) is diluted with water to a concentration of 0.5% by mass, and using a high-speed rotating homogenizer (CLM0.8S manufactured by M Technique Co., Ltd.) at a rotational speed of 2000 rpm for 60 minutes. A fibrillation treatment was performed to obtain a fine cellulose fiber dispersion. The obtained fine cellulose fiber dispersion was diluted with water to a concentration of 0.13% by mass, and 150 g was put into a 90 mm diameter filter using PTFE having a pore diameter of 1 μm. When the solid content reached about 5% by mass, 2 -Replaced with 30 ml of propanol. Then, it press-dried at 120 degreeC and 0.14 MPa for 5 minutes, and obtained the white sheet-like cellulose nanofiber. The film thickness of the sheet-like cellulose nanofiber was 20 μm, the number average fiber diameter of the cellulose fibers was 400 nm, and the density was 1.5 g / cm 3 .
[液状組成物の調製]
 下記表1中に、低吸水性無機充填材および液状組成物として使用される配合内容を示す。下記表1中の実施例1~6および比較例1~3の記載に従い、各成分を配合した後、自転・公転ミキサーを用いて攪拌し、各低吸水性無機充填材と液状組成物とを含む混合物を調製した。
[Preparation of liquid composition]
Table 1 below shows the blending contents used as the low water-absorbing inorganic filler and the liquid composition. In accordance with the description of Examples 1 to 6 and Comparative Examples 1 to 3 in Table 1 below, after blending each component, the mixture is stirred using a rotation / revolution mixer, and each low water-absorbing inorganic filler and liquid composition are mixed. A mixture containing was prepared.
[配線板材料および硬化物の作製]
 まず、シート状のセルロースナノファイバーを、厚さ18μmの銅箔上に静置し、実施例1~6および比較例1~3において調製した上記混合物をアプリケーターを用いて塗布し含浸させた。次に、熱風循環式乾燥炉で90℃、10分間の大気条件下で乾燥させて本発明の配線板材料を得た。
 その後、配線板材料を180℃、30分間の大気条件下で加熱して硬化物を得た。その後、銅箔を除去することで、硬化物の単独膜(厚み:50~250μm)を得た。
[Production of wiring board materials and cured products]
First, sheet-like cellulose nanofibers were allowed to stand on a copper foil having a thickness of 18 μm, and the mixture prepared in Examples 1 to 6 and Comparative Examples 1 to 3 was applied and impregnated using an applicator. Next, it was dried at 90 ° C. for 10 minutes in a hot air circulation drying oven to obtain the wiring board material of the present invention.
Thereafter, the wiring board material was heated at 180 ° C. for 30 minutes to obtain a cured product. Thereafter, the copper foil was removed to obtain a single film (thickness: 50 to 250 μm) of the cured product.
[熱膨張性の評価(TMA試験)]
 作製した硬化物の単独膜を、3mm幅×30mm長にカットした。これを、日立ハイテクサイエンス社製 TMA(Thermomechanical Analysis)7100を用いて、引張モードで、チャック間10mm、荷重50mN、窒素雰囲気下、20~250℃まで5℃/分で昇温し、次いで、250~20℃まで5℃/分で降温した。その後、20~250℃まで5℃/分で昇温した際の50~100℃の平均線膨張係数α1を求めた。評価は次の基準で行い、結果を下記表1中に示した。
(〇:α1≦10ppm/K、△:10ppm/K <α1< 30ppm/K、×:α1≧30ppm/K)
[Evaluation of thermal expansion (TMA test)]
The single film of the produced cured product was cut into 3 mm width × 30 mm length. This was heated at a rate of 5 ° C./minute from 20 to 250 ° C. under a nitrogen atmosphere of 10 mm between chucks, a load of 50 mN using a TMA (Thermal Mechanical Analysis) 7100 manufactured by Hitachi High-Tech Science Co., Ltd., and then 250 The temperature was lowered to -20 ° C at 5 ° C / min. Thereafter, an average linear expansion coefficient α1 of 50 to 100 ° C. when the temperature was raised from 20 to 250 ° C. at 5 ° C./min was determined. Evaluation was performed according to the following criteria, and the results are shown in Table 1 below.
(◯: α1 ≦ 10 ppm / K, Δ: 10 ppm / K <α1 <30 ppm / K, ×: α1 ≧ 30 ppm / K)
[破断伸びの評価(引張試験)]
 作製した硬化物の単独膜を、10mm幅×100mm長にカットした。これを、島津製作所社製オートグラフ AGS-5kNGを用いて、チャック間50mm、引張速度1mm/min.の条件で測定し、破断した際の試験片の伸び(破断伸び率)を記録した。評価は次の基準で行い、結果を下記表1中に示した。 
(〇:4%以上、△:3%以上4%未満、×:3%未満)
[Evaluation of elongation at break (tensile test)]
The single film of the produced cured product was cut into 10 mm width × 100 mm length. Using an autograph AGS-5kNG manufactured by Shimadzu Corporation, the chuck is 50 mm in length and the tensile speed is 1 mm / min. The elongation (breaking elongation) of the test piece at the time of fracture was recorded. Evaluation was performed according to the following criteria, and the results are shown in Table 1 below.
(○: 4% or more, △: 3% or more and less than 4%, ×: less than 3%)
[吸水性の評価(吸湿性試験)]
 作製した硬化物の単独膜を測定用のアルミニウム容器に投入し、リガク社製水蒸気雰囲気示差熱天秤TG-DTA/HUM-1を用いて、窒素雰囲気下の80℃定温下に試料入り容器を投入し、2%RHで1時間乾燥後、60%RHで1時間加湿して、乾燥後から加湿後の試料重量差(増量率)を各試料の吸湿率として求めた。評価は次の基準で行い、結果を下記表1中に示した。
(◎:0.5%未満、〇:0.5%以上1%未満、△:1%以上2%未満、×:2%以上)
[Evaluation of water absorption (hygroscopicity test)]
A single film of the cured product thus prepared is put into an aluminum container for measurement, and a container with a sample is put under a constant temperature of 80 ° C. in a nitrogen atmosphere using a Rigaku steam atmosphere differential thermobalance TG-DTA / HUM-1. The sample was dried at 2% RH for 1 hour and then humidified at 60% RH for 1 hour, and the difference in weight of the sample (weight increase rate) after drying and after humidification was determined as the moisture absorption rate of each sample. Evaluation was performed according to the following criteria, and the results are shown in Table 1 below.
(◎: Less than 0.5%, ○: 0.5% or more and less than 1%, Δ: 1% or more and less than 2%, ×: 2% or more)
[配線板1の作製]
 シート状のセルロースナノファイバーを厚さ38μmのポリプロピレンフィルム上に配置したこと以外は、上記配線板材料の作製と同様の方法で、実施例1~6および比較例1~3において調製した混合物を塗布、乾燥させて、ポリプロピレンフィルム上に本発明の配線板材料を作製した。その後、厚み0.8mmのFR-4銅張積層板上に塗布面を貼付けて、真空プレス機で、60℃、0.5MPaで2分間熱圧着し、常温まで冷めた後、ポリプロピレンフィルムを剥離した。その後、配線板材料を180℃、30分間の大気条件下で加熱して、配線板材料の硬化物(厚み:50~250μm)を含む配線板1を得た。
[Preparation of wiring board 1]
The mixture prepared in Examples 1 to 6 and Comparative Examples 1 to 3 was applied in the same manner as in the production of the wiring board material, except that the sheet-like cellulose nanofiber was placed on a polypropylene film having a thickness of 38 μm. Then, the wiring board material of the present invention was produced on a polypropylene film. After that, the coated surface was pasted on a FR-4 copper clad laminate with a thickness of 0.8 mm, and thermocompression bonded at 60 ° C. and 0.5 MPa for 2 minutes with a vacuum press machine. After cooling to room temperature, the polypropylene film was peeled off. did. Thereafter, the wiring board material was heated at 180 ° C. under atmospheric conditions for 30 minutes to obtain a wiring board 1 containing a cured product (thickness: 50 to 250 μm) of the wiring board material.
[耐熱性] 
 上記配線板1を適当なサイズに切断し、ロジン系フラックスを塗布した後、あらかじめ260℃に設定したはんだ槽に30秒間フローさせ、プロピレングリコールモノメチルエーテルアセテートで洗浄し乾燥した後、セロハン粘着テープによるピールテストを行い、硬化物である膜の剥がれの有無を確認した。評価は次の基準で行い、結果を下記表1中に示した。
(〇:剥がれが認められない、×:剥がれが認められる)
[Heat-resistant]
After cutting the wiring board 1 to an appropriate size and applying a rosin flux, it is allowed to flow in a solder bath set at 260 ° C. for 30 seconds, washed with propylene glycol monomethyl ether acetate, dried, and then subjected to cellophane adhesive tape. A peel test was performed to confirm the presence or absence of peeling of the cured film. Evaluation was performed according to the following criteria, and the results are shown in Table 1 below.
(○: no peeling is observed, ×: peeling is recognized)
[レーザー加工性]
 上記配線板1を適当なサイズに切断し、炭酸ガスレーザーにて直径100μmの穴(ビア)を硬化物上にあけた後、過マンガン酸エッチングによるデスミア処理を施した状態で、ビア底(銅表面)を走査型電子顕微鏡(SEM、日本電子(株)製JSM-6610LV、倍率:3,500倍)で観察し、ビア底(銅表面)の残渣(スミア)の有無を目視確認した。評価は次の基準で行い、結果を下記表1中に示した。
(〇:残渣無し、△:僅かに残渣有り、×:全面に残渣有り)
[Laser processability]
The wiring board 1 is cut into an appropriate size, a hole (via) having a diameter of 100 μm is formed on the cured product with a carbon dioxide laser, and then the via bottom (copper copper) is subjected to a desmear treatment by permanganic acid etching. The surface was observed with a scanning electron microscope (SEM, JSM-6610LV, JEOL Ltd., magnification: 3,500 times), and the presence or absence of residues (smear) on the via bottom (copper surface) was visually confirmed. Evaluation was performed according to the following criteria, and the results are shown in Table 1 below.
(○: no residue, △: slight residue, ×: residue on the entire surface)
[配線板2の作製]
 上記配線板1の作製において、厚み0.8mmのFR-4銅張積層板の代わりに、厚み0.8mmのFR-4銅張積層板を用いてエッチング工法によりIPC規格Bパターンのくし型電極のパターンを作製した基材を用いたこと以外は、上記配線板1の作製と同様の方法で、くし形電極部がカバーされるように、配線板材料の硬化物(厚み:50~250μm)を含む配線板2を得た。
[Preparation of wiring board 2]
In the production of the wiring board 1, an IPC standard B pattern comb-shaped electrode is etched by an etching method using a 0.8 mm thick FR-4 copper clad laminate instead of a 0.8 mm thick FR-4 copper clad laminate. A cured product of the wiring board material (thickness: 50 to 250 μm) so that the comb-shaped electrode portion is covered in the same manner as the production of the wiring board 1 except that the base material on which the above pattern is produced is used. A wiring board 2 containing was obtained.
[電気特性]
 上記配線板2を用いて、電極付基材に50Vの直流電流を印加し、130℃、85%RHで放置試験を実施した。試験開始1h後の絶縁抵抗値から、その100分の1になった時間を記録した。評価は次の基準で行い、結果を下記表1中に示した。
(〇:100時間以上、△:50時間以上100時間未満、×:50時間未満)
[Electrical properties]
Using the wiring board 2, a direct current of 50 V was applied to the substrate with electrodes, and a standing test was performed at 130 ° C. and 85% RH. From the insulation resistance value 1 h after the start of the test, the time that became 1/100 of that was recorded. Evaluation was performed according to the following criteria, and the results are shown in Table 1 below.
(○: 100 hours or more, Δ: 50 hours or more and less than 100 hours, ×: less than 50 hours)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
*1 アドマテックス社製アドマファインSO-C2(密度2.2g/cm、平均粒径500nm)、
*2 日本タルク社製SG-2000(密度2.7g/cm)、
*3 新日鉄住金化学社製ZX1059、
*4 日本化薬社製XD-1000、
*5 DIC社製HP-4032、
*6 三菱化学社製YX-6954、
*7 明和化成社製HF-1M、
*8 四国化成工業社製2E4MZ、
*9 ビックケミージャパン社製BYK-LPD20950、
*10 信越化学工業社製KBM-402
* 1 Admafine SO-C2 manufactured by Admatechs (density 2.2 g / cm 3 , average particle size 500 nm),
* 2 SG-2000 manufactured by Nippon Talc (density 2.7 g / cm 3 ),
* 3 ZX1059 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
* 4 XD-1000 manufactured by Nippon Kayaku Co., Ltd.
* 5 HP-4032 manufactured by DIC
* 6 YX-6554 manufactured by Mitsubishi Chemical Corporation
* 7 HF-1M manufactured by Meiwa Kasei Co., Ltd.
* 8 2E4MZ manufactured by Shikoku Chemicals,
* 9 BYK-LPD20950 manufactured by Big Chemie Japan,
* 10 KBM-402 manufactured by Shin-Etsu Chemical Co., Ltd.
 上記表1に示す結果から明らかなように、バインダー成分と、シート状のセルロースナノファイバーと、低吸水性無機充填材としてのシリカとを含む実施例1~5の配線板材料により、低熱膨張性、高破断伸び率を維持しながら、吸水性に優れる硬化物を得ることができた。また、低吸水性無機充填材としてのシリカおよびタルクを含む実施例6の配線板材料でも、実施例1と同様に低熱膨張性、高破断伸び率を維持しながら、吸水性に優れる硬化物を得ることができた。
 一方、シート状のセルロースナノファイバーを含みシリカを含まない比較例1~3では、吸水性および電気特性が著しく劣っていた。
 以上より、バインダー成分と、シート状のセルロースナノファイバーと、低吸水性無機充填材とを含む配線板材料を用いることにより、低熱膨張性および高い破断伸び率を維持しながら、吸水性が低い硬化物を実現することが可能であることが確かめられた。かかる本発明の配線板材料は、電子機器用の配線板等に適用することができ、例えば、多層配線板用の層間絶縁材や、ソルダーレジスト又はカバーレイ等に好適に適用することができる。
As is apparent from the results shown in Table 1 above, the wiring board materials of Examples 1 to 5 including a binder component, a sheet-like cellulose nanofiber, and silica as a low water-absorbing inorganic filler have low thermal expansion properties. A cured product excellent in water absorption was obtained while maintaining a high elongation at break. Further, even with the wiring board material of Example 6 containing silica and talc as the low water-absorbing inorganic filler, a cured product having excellent water absorption while maintaining low thermal expansion and high elongation at break as in Example 1. I was able to get it.
On the other hand, Comparative Examples 1 to 3 containing sheet-like cellulose nanofibers and no silica contained significantly poor water absorption and electrical properties.
As described above, by using a wiring board material containing a binder component, a sheet-like cellulose nanofiber, and a low water-absorbing inorganic filler, curing with low water absorption while maintaining low thermal expansion and high elongation at break. It was confirmed that things could be realized. Such a wiring board material of the present invention can be applied to a wiring board for electronic equipment, and can be suitably applied to, for example, an interlayer insulating material for a multilayer wiring board, a solder resist or a coverlay.
1,3,8,11 配線パターン
2 コア基材
1a,4 配線コネクション部
5 スルーホール
6,9 層間絶縁層
7,10 ビア
1, 3, 8, 11 Wiring pattern 2 Core substrate 1a, 4 Wiring connection portion 5 Through hole 6, 9 Interlayer insulating layer 7, 10 Via

Claims (7)

  1.  バインダー成分と、シート状のセルロースナノファイバーと、低吸水性無機充填材と、を含むことを特徴とする配線板材料。 A wiring board material comprising a binder component, a sheet-like cellulose nanofiber, and a low water-absorbing inorganic filler.
  2.  前記バインダー成分が熱硬化性樹脂を含む請求項1記載の配線板材料。 The wiring board material according to claim 1, wherein the binder component contains a thermosetting resin.
  3.  前記低吸水性無機充填材がシリカである請求項1記載の配線板材料。 The wiring board material according to claim 1, wherein the low water-absorbing inorganic filler is silica.
  4.  前記低吸水性無機充填材の体積含有量が、前記シート状のセルロースナノファイバーの体積含有量より多い請求項1記載の配線板材料。 The wiring board material according to claim 1, wherein a volume content of the low water-absorbing inorganic filler is larger than a volume content of the sheet-like cellulose nanofiber.
  5.  多層配線板の層間絶縁材用である請求項1記載の配線板材料。 The wiring board material according to claim 1, which is used for an interlayer insulating material of a multilayer wiring board.
  6.  ソルダーレジスト用またはカバーレイ用である請求項1記載の配線板材料。 2. The wiring board material according to claim 1, wherein the wiring board material is for solder resist or coverlay.
  7.  請求項1~6のいずれか一項記載の配線板材料を用いたことを特徴とする配線板。 A wiring board comprising the wiring board material according to any one of claims 1 to 6.
PCT/JP2015/078886 2014-11-04 2015-10-13 Wiring board material and wiring board using same WO2016072224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-224577 2014-11-04
JP2014224577 2014-11-04

Publications (1)

Publication Number Publication Date
WO2016072224A1 true WO2016072224A1 (en) 2016-05-12

Family

ID=55908951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078886 WO2016072224A1 (en) 2014-11-04 2015-10-13 Wiring board material and wiring board using same

Country Status (1)

Country Link
WO (1) WO2016072224A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079850A1 (en) * 2019-10-21 2021-04-29 王子ホールディングス株式会社 Laminated sheet, and laminate
JP2021066171A (en) * 2019-10-21 2021-04-30 王子ホールディングス株式会社 Laminated sheet, and laminate
TWI741648B (en) * 2020-06-12 2021-10-01 亞洲電材股份有限公司 Cover film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065694A1 (en) * 2011-11-02 2013-05-10 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JP2014090151A (en) * 2012-10-05 2014-05-15 Toyo Ink Sc Holdings Co Ltd Electromagnetic shielding coverlay film, manufacturing method of flexible printed wiring board, and flexible printed wiring board
WO2014175196A1 (en) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Solder-resist composition and printed circuit board using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065694A1 (en) * 2011-11-02 2013-05-10 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JP2014090151A (en) * 2012-10-05 2014-05-15 Toyo Ink Sc Holdings Co Ltd Electromagnetic shielding coverlay film, manufacturing method of flexible printed wiring board, and flexible printed wiring board
WO2014175196A1 (en) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Solder-resist composition and printed circuit board using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079850A1 (en) * 2019-10-21 2021-04-29 王子ホールディングス株式会社 Laminated sheet, and laminate
JP2021066171A (en) * 2019-10-21 2021-04-30 王子ホールディングス株式会社 Laminated sheet, and laminate
TWI741648B (en) * 2020-06-12 2021-10-01 亞洲電材股份有限公司 Cover film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP7388482B2 (en) Thermosetting resin compositions, resin films with carriers, prepregs, printed wiring boards, and semiconductor devices
KR102142753B1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP5692201B2 (en) Thermosetting resin composition, and prepreg, laminate and multilayer printed wiring board using the same
JP6217165B2 (en) Prepreg with primer layer, metal foil with primer layer, metal-clad laminate, printed wiring board, semiconductor package and semiconductor device
KR101482299B1 (en) Resin composition, resin sheet, prepreg, laminate, multilayer printed wiring board, and semiconductor device
CN107075155B (en) Resin-containing sheet, and structure and circuit board using same
JP2007297597A (en) Aramid-filled polyimide having advantageous thermal expansion property and method related to the same
JP2017206578A (en) Thermosetting resin composition, carrier-attached resin film, prepreg, metal-clad laminate, resin substrate, printed wiring board, and semiconductor device
US8709587B2 (en) Resin composition, prepreg, resin sheet, metal-clad laminate, printed wiring board, multilayer printed wiring board and semiconductor device
JP2014218600A (en) Prepreg, metal-clad laminate, printed circuit substrate and semiconductor package
CN107236253A (en) Resin sheet
CN107236252A (en) Resin sheet
WO2016072224A1 (en) Wiring board material and wiring board using same
JP2002069270A (en) Flame-retardant halogen-free epoxy resin composition and use thereof
JP2006328214A (en) Thermosetting resin composition, resin film, and film-attached product
JP2014240456A (en) Prepreg with primer layer, metal-clad laminate, printed wiring board and semiconductor package
JP5696786B2 (en) Prepreg, laminated board, semiconductor package, and laminated board manufacturing method
JP2019209523A (en) Resin sheet with support medium
JP7098881B2 (en) Thermosetting resin compositions, resin films with carriers, prepregs, printed wiring boards and semiconductor devices
JP7196551B2 (en) RESIN SHEET WITH SUPPORT AND RESIN COMPOSITION LAYER
TW201619252A (en) Resinous sheet, and structure and wiring board each including same
JP2010195030A (en) Double-sided metal foil-clad laminated plate and flexible printed wiring board
JP6471622B2 (en) Build-up material, laminated board, printed wiring board, semiconductor device, and laminated board manufacturing method
JP2018174250A (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board and semiconductor device
JP5577790B2 (en) Resin varnish, carrier material with resin, prepreg and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE