WO2016072182A1 - Inoperative-type glucoraphasatin synthase gene and use of same - Google Patents

Inoperative-type glucoraphasatin synthase gene and use of same Download PDF

Info

Publication number
WO2016072182A1
WO2016072182A1 PCT/JP2015/077956 JP2015077956W WO2016072182A1 WO 2016072182 A1 WO2016072182 A1 WO 2016072182A1 JP 2015077956 W JP2015077956 W JP 2015077956W WO 2016072182 A1 WO2016072182 A1 WO 2016072182A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucorafasatin
gene
radish
deficient
function
Prior art date
Application number
PCT/JP2015/077956
Other languages
French (fr)
Japanese (ja)
Inventor
智博 柿崎
正彦 石田
隆由 小原
伸子 吹野
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Publication of WO2016072182A1 publication Critical patent/WO2016072182A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • A01H1/045Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/02Flowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/04Stems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/06Roots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/12Leaves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to an invention relating to a radish-deficient glucorafasatin synthase gene.
  • the present invention also relates to an invention relating to a technique for producing a radish line lacking glucorafasatin using the function-deficient gene.
  • the present invention also relates to an invention relating to a radish line having the function-deficient gene in a homo form at the glucorafasatin synthase locus in the genome.
  • Glucosinolate is a general term for sulfur-containing compounds that are also called mustard oil glycosides, and is a secondary metabolite that is characteristically contained in cruciferous and related family plants. More than 120 glucosinolates with different compound structures have been reported for Brassicaceae plants. In radish (Raphanus sativus), a kind of cruciferous plant, its main glucosinolate is a substance called “glucorafasatin”. 90% or more of the total amount of glucosinolate contained in the radish radish is occupied by glucorafasatin.
  • Glucorafasatin is a glucosinolate characteristic of radish, and glucorafasatin is the dominant glucosinolate component in the same cruciferous plant as Raphanus to which radish belongs (for example, Brassica, a related genus). No plants have been found to contain.
  • glucorafasatin contained in radish is an almost tasteless and odorless compound itself, the endogenous enzyme myrosinase acts to become a spicy ingredient peculiar to radish called 4-methylthio-3-butenyl isothiocyanate.
  • 4-Methylthio-3-butenyl isothiocyanate is a kind of isothiocyanate, but since it is an unstable compound, it has the property of being chemically decomposed in a short time.
  • the pungent taste of radish processed products such as radish grated disappears in a short time, and the problem that it is difficult to store with reduced flavor deterioration is a phenomenon caused by instability of 4-methylthio-3-butenyl isothiocyanate.
  • glucorafasatin contained in radish is a serious causative component that causes problems of odor and yellowing peculiar to radish in foods processed from radish.
  • components that cause generation of methyl mercaptan which is a causative component of the savory odor (sometimes expressed as radish odor, etc.), which is a characteristic odor of Japanese radish, and color unevenness due to yellowing
  • the yellow component TPMP (2- [3- (2-thioxopyrrolidine-3-ylidene) methyl] -tryptophan) is a degradation of 4-methylthio-3-butenylisothiocyanate produced from glucorafasatin It is a phenomenon caused by Such “degradation of flavor”, “occurrence of abundant odor”, and “occurrence of color unevenness due to yellowing change” are phenomena that are particularly prominent with changes over time such as storage and heat treatment.
  • the present inventors have developed a glucosinolate composition in order to solve the problems of quality deterioration such as flavor deterioration, generation of abundant odor, and yellowing change in processed radish foods.
  • the present inventors can produce a radish line having a trait that contains a high content of glucosinolates different from glucorafasatin by performing artificial breeding operations focusing on a specific variety line. (Patent document 1).
  • the present inventors have a high content of “glucoraphanin” (* a precursor of sulforaphane, which is an anticancer active ingredient) in seeds, sprouts and the like, A number of lines, such as “Glucerucin”, containing a large amount of “Glucerucin” were produced in the beetroot, and one of those lines, “Anno No. 5”, was registered as a radish variety “Daikom Intermediate Mother Farm No. 5” (variety registration No. 22662).
  • JP 2012-110238 A (Production Method of Japanese Radish Lines Highly Containing Glucoraphanin)
  • the method for obtaining a radish line having a desired glucosinolate composition described in Patent Document 1 is a method of selecting mutant individuals from a specific variety lineage group in which the glucosinolate composition is maintained in the wild type. Therefore, there was a problem that the production efficiency was low.
  • HPLC high-performance liquid chromatography
  • a cultivation period of several weeks is required, so that there is a problem that rapid analysis is difficult.
  • the present invention relates to a technology that fundamentally solves the problem of quality deterioration such as flavor deterioration, generation of abundant odor, and yellowing change in radish processed foods, etc. It is an object of the present invention to provide a technique capable of producing a radish system having a high accuracy in a short period of time.
  • the inventors of the present invention have developed a glucosinolate composition of Japanese radish using a line (NR154E line, MR050E line) that has been developed by the present inventors and exhibits excellent glucorafasatin deficiency.
  • a line N154E line, MR050E line
  • the glucorafasatin deficient gene there has been a technical problem that makes it difficult to apply molecular biological techniques due to the peculiar circumstances of this case that the object is a radish plant.
  • the operation of narrowing the locus region of the target gene was repeated, and the locus region of 23.8 kbp was identified.
  • the causative gene governing glucorafasatin deficiency in the locus region is identified. did. This gene was found to be a gene encoding glucorafasatin synthase in wild type radish.
  • the insertion sequence that induces the functional defect is a mutated sequence in the target gene, it was shown that it can be used as an excellent selection DNA marker that cannot be separated from the target trait.
  • the present invention has been conceived on the basis of the above findings, and specifically relates to the following function-deficient glucorafasatin synthase gene and an invention relating to the use thereof.
  • a function-deficient glucorafasatin synthase gene having the characteristics described in (A) and (B) below;
  • A) a feature having a mutation in the exon constituting the gene described in (a1) below, which is accompanied by a deletion of all or part of the 2-oxoglutarate-iron (II) -dependent oxygenase domain in the encoded protein;
  • A1 A gene encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 5 or an amino acid sequence showing 95% or more sequence homology with the amino acid sequence, and is involved in the synthesis reaction from glucoerucin to glucorafasatin
  • the characteristic that the glucorafasatin content of the radish root is 3
  • the function-deficient glucorafasatin synthase gene according to [1] which has the characteristics described in (C) below;
  • C The function-deficient glucorafasatin synthase gene according to [1] above, wherein the mutation described in (A) is a mutation accompanied by insertion of a base sequence of at least 1 kbp.
  • [3] The function-deficient glucorafasatin synthase gene according to [1] or [2] above, wherein the function-deficient glucorafasatin synthase gene is a gene comprising the base sequence represented by SEQ ID NO: 7 or 9.
  • a method for determining the genotype of a glucorafasatin synthase locus in radish comprising detecting the presence or absence of the mutation described in (A) above in any one of [1] to [3].
  • a genotyping kit for a glucorafasatin synthase gene locus in radish comprising the oligonucleotide primer described in the following (D) and (E);
  • An oligonucleotide primer comprising a base sequence consisting of at least 12 bases designed to detect the presence of the mutation described in (A) above, (E) at least 12 contained in the base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of [
  • the genotyping kit according to [5] or [6] above which comprises the oligonucleotide primer described in (F) and (G) below;
  • An oligonucleotide primer comprising a base sequence consisting of at least 12 bases designed at a position capable of detecting the absence of the mutation described in (A) above,
  • An oligonucleotide primer comprising a base sequence consisting of at least 12 bases and a base sequence at a position capable of forming a primer pair with the primer described in (F) above.
  • a kit for genotyping of the glucorafasatin synthase gene locus in radish comprising the oligonucleotide probe described in (H) or (I) below; (H) a base sequence comprising at least 12 bases contained in a base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of [1] to [3] or a complementary sequence thereof,
  • the mutation described in (A) is an insertion mutation
  • an oligonucleotide probe comprising a base sequence constituting the mutation or a complementary sequence thereof
  • the genotyping kit according to any one of [5] to [8] above, having the characteristics described in (J), (K), and (L) below;
  • the function-deficient glucorafasatin synthase gene is a function-deficient glucorafasatin synthase gene comprising the base sequence described in SEQ ID NO: 7 or 9
  • the above-mentioned glucorafasatin synthase gene is a glucorafasatin synthase gene comprising the base sequence set forth in SEQ ID NO: 2
  • the region on the chromosome is composed of a base sequence consisting of the first to 2971st bases in SEQ ID NO: 1, and the 4759th to 7424th bases in SEQ ID NO: 1
  • the function-deficient glucorafasatin synthase gene according to any one of the above [1] to [3] has a
  • a method for producing a glucorafasatin-deficient line in radish comprising the step described in (P) below; (P) A radish having the function-deficient glucorafasatin synthase gene according to any one of the above [1] to [3] at the glucorafasatin synthase gene locus in the genome is crossed with a self-breeding operation or desired radish Process.
  • the function-deficient glucorafasatin synthase gene and its gene sequence information can be effectively used for breeding radish.
  • problems of quality deterioration such as flavor deterioration, generation of abundant odor, and yellowing change in radish processed foods, etc. It becomes possible to produce the radish system shown in a short period of time with high accuracy.
  • FIG. 2A It is the photograph image figure which image
  • Reference numeral 1 radish. Code 2: A petiole.
  • FIG. 2B About the NR154E strain, it is a schematic diagram showing the influence on the degradation pathway due to glucorafasatin deletion.
  • Example 1 it is the figure which showed the linkage map (linkage group R1-3) clarified by linkage analysis.
  • Example 1 it is the figure which showed the linkage map (linkage group R4-6) clarified by linkage analysis.
  • Example 1 it is the figure which showed the linkage map (linkage group R7-9) clarified by linkage analysis.
  • Example 1 In the positional cloning method which concerns on Example 1, it is the flowchart which showed typically description of each process.
  • the number indicated by “N” in the figure indicates the number of plants subjected to linkage analysis or high-precision linkage analysis.
  • Example 1 In the high precision linkage analysis which concerns on Example 1, it is the schematic diagram which showed the seating area
  • Numbers 1-7 in the figure indicate candidate genes 1-7.
  • the arrows in the figure indicate genes that are predicted to exist by sequence analysis. The direction of the arrow indicates the direction in which the gene sits.
  • FIG. 8 is a photographic image obtained by photographing an electrophoresis gel after RT-PCR of gene 3 (glucorafasatin synthase gene, gray arrow in FIG. 7) in expression analysis by RT-PCR according to Example 2.
  • FIG. The abbreviations in the figure indicate the next radish variety lineage name.
  • TIB disease-resistant total fat.
  • NR154E NR154E.
  • FIG. 10A In the sequence analysis based on Example 3, it is the figure which showed typically the gene structure of the wild type gene 3 by the exon / intron structure.
  • FIG. 10B In the sequence analysis according to Example 3, the gene structure of NR154E type gene 3 (function-deficient gene) is schematically shown by exon / intron structure.
  • FIG. 10C In the sequence analysis according to Example 3, the gene structure of MR050E type gene 3 (function-deficient gene) is schematically shown by exon / intron structure.
  • FIG. 11A In the sequence analysis according to Example 3, an insertion site of an insertion sequence of NR154E gene 3 (function deficient gene 3) is shown. In the figure, the one-letter code of English letters at the bottom of the base sequence indicates an amino acid designated by a codon.
  • FIG. 11B In the sequence analysis which concerns on Example 3, it is the figure which showed the introduction site
  • Example 3 In the sequence analysis which concerns on Example 3, it is the figure which showed the alignment result of the prediction amino acid sequence of the gene 3 from each radish system. The ellipsis in the figure indicates the predicted amino acid sequence of the next protein.
  • WT HAGHN strain.
  • MR050E MR050E system.
  • NR154E NR154E strain.
  • a region surrounded by a rectangular region in the figure indicates the next domain.
  • White non-haem dioxygenase in morphine synthesis N-terminal domain.
  • Gramy 2-oxoglutarate and Fe (II) -dependent oxygenase domain.
  • FIG. 6 shows the measurement results of the relative expression level of gene 3 in the expression analysis by quantitative RT-PCR according to Example 4.
  • the abbreviations in the figure indicate the next radish variety lineage name.
  • HOG HAGHN.
  • TIB disease-resistant total fat.
  • MYS Miyashige Daikon.
  • KRM pungent 199.
  • NR154E NR154E.
  • MR050E MR050E.
  • FIG. 14A In the gene introduction test according to Example 5, it is a view showing a photographic image obtained by photographing a growing plant body (empty vector-introduced Arabidopsis thaliana) before extracting from top view.
  • FIG. 14B In the gene introduction test which concerns on Example 5, it is a figure which shows the photograph image which image
  • FIG. 15A is a diagram showing a glucosinolate profile of a grown plant body (empty vector-introduced Arabidopsis thaliana) by HPLC analysis chromatograph in the gene introduction test according to Example 5.
  • the symbols in the figure indicate the following.
  • Reference numeral 21 peak of glucoerucin.
  • Reference numeral 22 peak of glucorafasatin.
  • FIG. 15B In the gene introduction test according to Example 5, a glucosinolate profile of a grown plant body (Gene 3 overexpressing Arabidopsis thaliana) is shown by HPLC analysis chromatograph.
  • the symbols in the figure indicate the following.
  • Reference numeral 21 peak of glucoerucin.
  • Reference numeral 22 peak of glucorafasatin.
  • the present invention relates to an invention related to a function-deficient glucorafasatin synthase gene in Japanese radish.
  • the present invention also relates to an invention relating to a technique for producing a radish line lacking glucorafasatin using the function-deficient gene.
  • the present invention relates to an invention relating to a radish line having the function-deficient gene in a homo form at the genomic glucorafasatin synthase locus.
  • radish plant refers to a plant species belonging to the Brassicaceae genus Raphanus sativus. More specifically, there are over 1000 varieties of varieties, including Japanese radish (R. sativus var. Longipinnatus), radish (R. sativus var. Sativus), black radish (R. sativus var. Niger), etc. It is known to exist. In radish plants, the enlarged roots are mainly edible and used as processed foods. Sprouts, baby leaves and leaves are also edible. As used herein, “hypertrophic root” refers to the mature root and hypocotyl portion of radish.
  • genomic DNA refers to a region in genomic DNA composed of exons and introns, from the most upstream base of the first exon (5 ′ end of ORF: transcription start point) to the top of the last exon. Refers to the region up to the downstream base (3 ′ end of ORF).
  • coding region refers to a region that is translated into a protein in a gene, and refers to a region from the first base of the start codon to the third base of the stop codon in the exon. In eukaryotic genomic DNA, it is often separated by introns.
  • glucosinolate in this specification, sometimes simply referred to as “GSL”) is a general term for sulfur-containing compounds that are also referred to as mustard oil glycosides. It is a secondary metabolite that is characteristically contained in plants of the family. More than 120 glucosinolates with different compound structures have been reported for Brassicaceae plants. In radish, the main glucosinolate is a substance called “glucorafasatin”. 90% or more of the total amount of glucosinolate contained in radish radish is occupied by glucorafasatin.
  • Glucoraphasatin refers to a compound having the chemical formula shown below (Formula 1).
  • Glucorafasatin is a glucosinolate that is characteristically present in radish and is a compound that is hardly present in other plants. Even in the same cruciferous plant as Raphanus to which radish belongs (for example, Brassica which is a related genus), a plant containing glucorafasatin as a dominant glucosinolate component has not been confirmed other than radish.
  • wild type radish variety line refers to a radish variety lineage that exhibits the property of containing glucorafasatin as a main glucosinolate component in a radish plant.
  • function-deficient glucorafasatin synthase gene The “function-deficient glucorafasatin synthase gene” according to the present invention (sometimes simply referred to as “function-deficient gene” in the present specification) It refers to a mutant gene of the glucorafasatin synthase gene in which a function-deficient mutation exists in the satin synthase gene.
  • glucorafasatin synthase gene (in the present specification, sometimes simply referred to as “wild type gene”) is a novel gene found by the present inventors, and is obtained from glucoercin to glucorafasatin in radish.
  • a gene encoding a protein involved in a synthetic reaction refers to a gene encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 5.
  • the amino acid sequence of the gene is identical to the amino acid sequence described in SEQ ID NO: 5 in varieties such as Miyashige radish inbred line, Nishimachi ideal inbred line, and pungent radish inbred line. It has been confirmed that this is an amino acid sequence.
  • the glucorafasatin synthase gene allows gene sequence mutations involving substitution, deletion, insertion, and / or addition of amino acid residues due to differences between cultivar lines in radish species.
  • the allowable range of the variation of the gene sequence is i) a gene encoding a protein comprising an amino acid sequence showing high sequence homology to the amino acid sequence described in SEQ ID NO: 5, and ii) As long as it is a gene encoding a protein consisting of an amino acid sequence that guarantees gene function, mutation to the amino acid sequence shown in SEQ ID NO: 5 is allowed.
  • “high sequence homology” specifically refers to 95% or more, preferably 96% or more, more preferably 97% or more, more preferably, with respect to the amino acid sequence shown in SEQ ID NO: 5. A sequence homology of 98% or more, particularly preferably 99% or more can be mentioned.
  • “Guaranteed gene function” means that the encoded protein is guaranteed to be a protein involved in the synthesis reaction from glucoerucin to glucorafasatin. Specifically, when the gene is expressed at a normal expression level in a radish plant and the encoded protein is normally synthesized in vivo, the radish is a “glucorafasatin-containing” phenotype.
  • glucorafasatin-containing specifically means that the content of glucorafasatin with respect to the dry weight of the beetroot exceeds 3 ⁇ mol / g, preferably 4 ⁇ mol / g or more, more preferably 6 ⁇ mol / g. As mentioned above, it refers to the property of exhibiting a phenotype of 10 ⁇ mol / g or more.
  • a “glucorafasatin synthase” that is a protein encoded by the gene is an enzyme protein involved in a reaction for synthesizing glucorafasatin from glucoerucin.
  • the protein functions as an enzyme involved in any of the reactions for producing glucorafasatin from glucoerucin.
  • glucorafasatin in the radish plant is lost.
  • the protein has a domain structure of 2-oxoglutarate-iron (II) -dependent oxygenase domain (also referred to as 2-oxoglutarate and Fe (II) -dependent oxygenase domain, 2 OG-Fe (II) oxygenase domain).
  • the domain is a region corresponding to an amino acid sequence consisting of 97 amino acid residues from the 223rd to the 319th in the amino acid sequence shown in SEQ ID NO: 5 (FIGS. 9 and 12).
  • Proteins having a 2-oxoglutarate-iron (II) -dependent oxygenase domain form a superfamily in plants and are known to be enzymes including various oxidoreductases. The presence of an enzyme having the same activity as rafasatin synthase has not been reported.
  • the protein has a non-oxidase domain that is a kind of oxidoreductase domain in a region corresponding to the amino acid sequence consisting of 114 amino acid residues from the 65th to the 178th amino acids in the amino acid sequence shown in SEQ ID NO: 5.
  • a haem dioxygenase in morphine synthesis N-terminal domain (FIGS. 9 and 12).
  • the genome sequence of the wild-type glucorafasatin synthase gene is not particularly limited as long as it is a gene encoding a protein that is the above-mentioned glucorafasatin synthase. It is.
  • the full length of the genome sequence of the wild-type glucorafasatin synthase gene (the most downstream base of the first exon to the most downstream base of the third exon) is represented by SEQ ID NO: 2. It is a base sequence.
  • the genome structure of the glucorafasatin synthase gene is a structure composed of three exons and two introns in the existing wild type radish variety line (FIG. 10A). It is not limited to those having the same structure as the exon and intron structures. Note that the number of glucorafasatin synthase loci in the radish genome is recognized as a single locus. In addition, the existence of a gene showing extremely high homology showing functional complementarity and redundancy to the gene has not been confirmed.
  • Arabidopsis (a related genera of Raphanus to which radish belongs) Arabidopsis thaliana has a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 5 and an amino acid sequence having about 80% sequence homology. Exists. However, Arabidopsis has no glucorafasatin in the glucosinolate composition.
  • Arabidopsis thaliana has a “homologous gene” of a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 5, but the encoded protein of the homologous gene is used in a synthesis reaction from glucoerucin to glucorafasatin. Does not have the function involved.
  • the function-deficient glucorafasatin synthase gene is a gene having a mutation that lacks an important function as a gene on the base sequence in the exon constituting the glucorafasatin synthase gene.
  • whether or not the glucorafasatin synthase gene is a “function-deficient gene” depends on whether the locus of the glucorafasatin synthase gene in radish is a homozygous form of the mutant gene. If glucorafasatin in the body is completely or substantially deleted, it can be determined to be a function-deficient gene.
  • the determination of whether or not “a state in which glucorafasatin is substantially deleted in the radish plant” is based on the following value.
  • the glucorafasatin synthase locus in radish is homozygous for the mutant gene of interest
  • the glucorafasatin content relative to the dry weight of the radish root is 3 ⁇ mol / g or less, preferably 2 ⁇ mol / g or less. If it is preferably 1 ⁇ mol / g or less, more preferably 0.1 ⁇ mol / g or less, particularly preferably 0.01 ⁇ mol / g or less, it may be determined that glucorafasatin is in a substantially deleted state. it can.
  • most of the wild radish variety lines have a content of several tens to several hundreds ⁇ mol / g.
  • the glucorafasatin content relative to the dry weight of the enlarged radish is the total glucosinolate. If the amount is 1/10 or less, preferably 1/100 or less, more preferably 1/1000 or less, it can be determined that glucorafasatin is substantially absent. Further, it is more preferable that the ratio index with respect to the total glucosinolate amount and the index of the glucorafasatin content are combined as a determination index.
  • the measurement of glucorafasatin and glucosinolate content can be carried out by HPLC analysis or the like by a conventional method.
  • the glucorafasatin synthase locus in radish is a homozygous form of the mutant gene, a state in which no glucorafasatin is contained in the hypertrophic root (completely deleted state)
  • the function deficient gene is most preferred.
  • the amino acid sequence constituting the coding protein of the gene has a mutation involving substitution, deletion, insertion and / or addition. It is necessary.
  • the encoded protein of the gene is all or part of the “2 oxoglutarate-iron (II) -dependent oxygenase domain” It is preferable that the mutation be accompanied by deletion of.
  • the “mutation that partially deletes” means a deletion of 1 amino acid residue or more, preferably 5 amino acid residues or more, more preferably 10 amino acid residues or more, out of 97 amino acid residues constituting the domain. Mutations with loss can be mentioned. In particular, 16 amino acid residues or more, preferably 32 amino acid residues or more, more preferably 48 amino acid residues or more, still more preferably 64 amino acid residues or more, particularly preferably 72 amino acid residues constituting the C-terminal side of the domain. In the case of a mutation involving deletion of more than one group, it is more suitable as a function-deficient mutation of the gene. In the present invention, the mutation is most preferably a mutation that deletes the entire domain.
  • the “mutation that deletes all” means a mutation that involves deletion of the entire domain of the domain consisting of 97 amino acid residues constituting the domain.
  • the site where the mutation is present is not particularly limited as long as it is a mutation involving the above-mentioned “domain deletion”, but is preferably a mutation in the first exon or the second exon, more preferably a mutation in the first exon. It is preferable that Specifically, mutations involving the “domain deletion” include i) mutation due to substitution, insertion, or deletion accompanied by the appearance of a stop codon in the base sequence within the coding region, and ii) insertion of the base sequence. Examples of the mutation include a mutation accompanied by the appearance of a stop codon on the inserted nucleotide sequence, and iii) a mutation caused by insertion or deletion accompanied by the appearance of a stop codon due to a frame shift.
  • the function-deficient glucorafasatin synthase gene according to the present invention has its structural function deficiency even if it is assumed that the structural protein deficiency is somewhat insufficient.
  • the “gene expression level” is greatly reduced, it is recognized as a function-deficient gene.
  • the mutant gene is a “function-deficient gene” as a glucorafasatin synthase gene.
  • the state in which glucorafasatin is deleted or substantially deleted in the radish plant refers to the state described in the above paragraph “2. function-deficient glucorafasatin synthase gene”.
  • a mutant gene having a gene expression level greatly reduced is preferably a mutant gene having an “insertion mutation” in an exon.
  • the gene expression level tends to decrease as the transcribed mRNA length increases.
  • the gene expression level is greatly reduced.
  • the inserted base length include 1 kbp or more, preferably 1.2 kbp or more, more preferably 3 kbp or more, still more preferably 5 kbp or more, particularly preferably 8.8 kbp or more, and further preferably 9 kbp or more.
  • the upper limit of the inserted sequence is not particularly limited, but if it is strongly mentioned, it can be 1000 kbp or less, preferably 500 kbp or less, more preferably 100 kbp or less, and still more preferably 50 kbp or less.
  • an insertion mutant gene of about 1.2 kbp is homozygous. In the Japanese radish mutant, the gene expression level is drastically reduced to about 1/40. In particular, a homozygous mutant of an insertion mutant gene of about 9 kbp is about 1/1000 or less, and gene expression hardly occurs. The mutant is close to the null mutant.
  • the function-deficient glucorafasatin synthase gene according to the present invention allows the presence of mutations other than the mutations accompanied by the above-mentioned "function deficiency", but the upper limit of the number of mutations in the gene
  • the range of the number of mutations can be defined as follows:
  • the range of the “number of mutations” includes the number of mutations present in the “region corresponding to the coding region” of the gene consisting of the base sequence described in SEQ ID NO: 2 when compared with the base sequence described in SEQ ID NO: 2. Can be defined to be less than a certain number. Specifically, the number of mutations due to substitution, insertion, and / or deletion present in the “region corresponding to the coding region” in the mutant gene is the coding region in the gene comprising the base sequence described in SEQ ID NO: 2 , 5% or less, preferably 4% or less, more preferably 3% or less, even more preferably 2% or less, and particularly preferably 1% or less.
  • the “number of mutations” in this specification is a number indicating the number of mutations (that is, the number of mutations introduced). For example, if a 100 bp insertion sequence is introduced by “one time” insertion mutation, the number of mutations is “1”. On the other hand, if the 1 bp substitution mutation is independently introduced at “10 sites”, the number of mutations is “10”. For example, since the number of bases in the coding region (SEQ ID NO: 4) in the base sequence shown in SEQ ID NO: 2 is 1119 bp, the number corresponding to 5% thereof is about “56”.
  • the range of the number of mutations of the function-deficient glucorafasatin synthase gene according to the present invention is defined as described above. You can also. Specifically, when compared with the base sequence described in SEQ ID NO: 2, the number of mutations due to substitution, insertion, deletion, and / or addition present in the “entire region” of the mutant gene is SEQ ID NO: 20% or less, preferably 15% or less, more preferably 10% or less, still more preferably 5% or less, particularly preferably 2% or less, more preferably 1% or less of the number of bases constituting the base sequence described in 2, Can be defined as a number.
  • the “number of mutations” has the same meaning as described above, and indicates the number of mutations (that is, the number of mutations introduced).
  • function-deficient glucorafasatin synthase genes examples include the function-deficient mutant genes described in the examples described later.
  • the glucorafasatin synthase gene (NR154E type gene) including the base sequence set forth in SEQ ID NO: 7 can be exemplified.
  • the function-deficient gene is an insertion sequence of about 9 kbp (from the 558th position in SEQ ID NO: 7) between the 557th base and the 558th base of the wild-type glucorafasatin synthase gene (SEQ ID NO: 2).
  • the encoded protein has a structure in which the 2oxoglutarate-iron (II) -dependent oxygenase domain is completely deleted.
  • the glucorafasatin synthase gene (MR050E type gene) containing the base sequence of sequence number 9 can also be mentioned.
  • the function-deficient gene is an approximately 1.2 kbp insertion sequence (1244 in SEQ ID NO: 9) between the 1243th base and 1244th base of the wild-type glucorafasatin synthase gene (SEQ ID NO: 2).
  • the encoded protein has a structure in which 16 amino acid residues on the C-terminal side of the 2-oxoglutarate-iron (II) -dependent oxygenase domain are deleted.
  • DNA marker for genotyping the presence of a “mutation causing a functional defect” of the glucorafasatin synthase gene in the radish genome is used as a DNA marker for genotyping the glucorafasatin synthase gene. It becomes possible. That is, in the present invention, it is possible to determine the “genotype” at the glucorafasatin synthase gene locus with high accuracy by detecting the presence or absence of a mutation that causes a functional defect of the glucorafasatin synthase gene. .
  • the function-deficient mutation is used as a DNA marker, it is understood that in principle, a phenomenon that does not match the target genotype by recombination separation does not occur because the mutation is a mutation in the glucorafasatin synthase gene itself. The That is, the genotype of the glucorafasatin synthase gene can be determined with extremely high accuracy.
  • genotypes such as SNP (single nucleotide polymorphism) and SSR (microsatellite polymorphism) which are linkage markers as an index, unless the region in a very close region is used, linkage is performed by recombination separation. The marker type and target genotype may not match. In this case, an accurate genotype cannot always be determined.
  • the “phenotype” relating to the glucosinolate composition of an individual having the genotype can be determined with high accuracy. That is, whether a target radish individual belongs to a glucorafasatin-deficient line or an individual belonging to a glucorafasatin-containing line simply by examining the genotype using a general nucleic acid detection technique Can be identified with high accuracy.
  • the function-deficient mutation can be easily detected by using an existing nucleic acid detection technique.
  • a technique using a PCR method and a technique using a hybridization method can be used.
  • a polymorphism detection technique such as a real-time PCR method using a probe and a primer in combination, or a dot blot method using a combination of a mutant type and a wild type probe.
  • detect mutations by restriction enzyme fragment length polymorphism, sequencing by a sequencer, and the like.
  • an “oligonucleotide primer” is an oligonucleotide synthesized by polymerizing deoxynucleotides, which functions as a starting point for a DNA extension reaction in a PCR reaction and specifically hybridizes to a specific base sequence. It refers to a single-stranded DNA designed to be composed of sequences.
  • a primer comprising at least 12 bases in succession of a base sequence constituting a glucorafasatin synthase gene (function-deficient gene, wild type gene) or a base sequence included in its complementary sequence is suitable. is there.
  • a suitable base length base: mer
  • the base sequence contained in the base sequence or its complementary sequence is continuously at least 12 bases, preferably 15 bases or more, more preferably 20 bases or more, further preferably A primer containing 25 or more bases is preferred.
  • the upper limit of the base length of the oligonucleotide primer is not particularly limited as long as it does not deviate from the range of functioning as a primer.
  • the base length of the entire primer length is 200 bases or less, preferably 100 bases or less. Preferably, those having 50 bases or less can be mentioned.
  • the 5 ′ end of the oligonucleotide primer may be added with a restriction enzyme site for use in vector insertion or the like or a modified base sequence for introducing various vectors.
  • bonded the fluorescent substance, the labeling substance, etc. may be sufficient.
  • the 3 ′ end of the oligonucleotide primer is a nucleotide sequence that completely matches the nucleotide sequence constituting the function-deficient gene or its complementary sequence.
  • a genotype having a function-deficient gene is determined by designing a primer set that can specifically detect the presence of the function-deficient glucorafasatin synthase gene.
  • a primer set capable of detecting the presence of a function-deficient gene “a base sequence including a function-deficient mutation” or “a base sequence constituting a function-deficient mutation” can be specifically amplified by a PCR reaction. This refers to a primer set consisting of a primer pair (primers 1 and 2 for detecting a defective gene).
  • the function-deficient gene detection primer 1 is an oligonucleotide primer including a base sequence capable of detecting the “presence” of the function-deficient mutation.
  • the designable position of the primer 1 for detecting a defective gene is on a genomic DNA region on the same chromosome as the functional defective glucorafasatin synthase gene. If so, it is possible to design a base sequence in any region (a base sequence constituting the region or a complementary sequence thereof). That is, it is possible to design not only the region of the function-deficient glucorafasatin synthase gene but also the promoter and spacer region around it.
  • the primer 1 for detecting a function-deficient gene include (1) a primer containing a “base sequence specific to a function-deficient gene” present in the function-deficient gene. That is, the primer is a primer that does not hybridize to the wild type gene.
  • PCR is performed on the function-deficient gene by performing PCR with the function-deficient gene detection primer 2 (described later), but the PCR amplification product is not obtained for the wild-type gene.
  • a primer containing a base sequence on the insertion mutation or a complementary sequence thereof can be mentioned.
  • a primer including a base sequence containing the mutation in the sequence (preferably a base sequence having a mutation site at the 3 ′ end) can be mentioned. That is, these primers are primers that do not hybridize to the wild type gene.
  • a primer 1 for detecting a function-deficient gene (2) when there is a function-deficient mutation due to insertion or deletion in a function-deficient gene, a primer designed at “one of the positions sandwiching the mutation” Can be mentioned. In this case, PCR amplification products having different base lengths are obtained for the function-deficient gene and the wild-type gene by performing PCR with the primer 2 for detecting the function-deficient gene.
  • a primer containing a base sequence on the 5 ′ side of the mutation in the case of an insertion or deletion mutation can be mentioned.
  • the region for designing the function-deficient gene detection primer 1 is preferably designed in the 5 ′ side region close to the boundary between the insertion sequence and the original gene sequence in the case of i). It is. In the case of ii) above, it is preferable to design the mutation so that the mutation is contained on the 3 'side (preferably at the 3' end) in the primer sequence. In the case of (iii) above, it is preferable to design in the 5 'region adjacent to the function-deficient mutation.
  • the function-deficient gene detection primer 2 is an oligonucleotide primer comprising the above-described function-deficient gene detection primer 1 and a base sequence in a position capable of forming a primer pair in the PCR reaction.
  • the region capable of designing the function-deficient gene detection primer 2 is a radish genome region that forms a primer pair with the above-described function-deficient gene detection primer 1 and is capable of PCR amplification.
  • the base length of the amplification product is a region suitable for PCR amplification as a region where the function-deficient gene detection primer 2 can be designed. Specifically, it is preferable to design the function-deficient gene detection primer 2 at a position where the base length (base pair: bp) of the PCR amplification product is 5 kbp or less.
  • the base length is preferably 30 bp to 5 kbp, preferably 50 bp to 3 kbp, more preferably 75 bp to 2 kbp, and still more preferably 100 bp to 1.5 kbp.
  • the amplification length is designed to be too long, it is difficult to obtain a PCR amplification product, which is not preferable.
  • regions capable of designing the function-deficient gene detection primers 1 and 2 include SEQ ID NOs: 1, 2, or 7 so as to satisfy the above conditions when detecting mutations in the NR154E type gene. It can be designed on the described base sequence or its complementary sequence.
  • an oligonucleotide primer can be designed on the base sequence described in SEQ ID NO: 1, 2, or 9 or its complementary sequence so as to satisfy the above conditions.
  • a primer set capable of specifically detecting the presence of the wild-type glucorafasatin synthase gene it is possible to determine the genotype in more detail.
  • a primer capable of detecting a wild type gene a primer pair (primers 1 and 2 for detecting a wild type gene) that can specifically amplify a base sequence constituting a wild type glucorafasatin synthase gene by PCR reaction. ), And a primer set.
  • the wild-type gene detection primer 1 is an oligonucleotide primer including a base sequence capable of detecting “absence” of the function-deficient mutation. As long as the designable position of the wild-type gene detection primer 1 satisfies the conditions described in (3) or (4) below, if it is on a genomic DNA region on the same chromosome as the glucorafasatin synthase gene, It is possible to design a nucleotide sequence in any region (a nucleotide sequence constituting the region or a complementary sequence thereof). That is, it is possible to design not only the region of the wild-type glucorafasatin synthase gene but also the promoter and spacer region around it.
  • the primer 1 for detecting a wild type gene include (3) a primer containing a base sequence specific to a wild type that does not exist in a function-deficient gene.
  • the primer set is such that PCR amplification is performed for the wild-type gene but no PCR amplification product is obtained for the function-deficient gene. That is, by performing PCR with the wild-type gene detection primer 2 (described later), PCR amplification is performed for the wild-type gene, but no PCR amplification product is obtained for the function-deficient gene. Become.
  • a base sequence having a wild-type site corresponding to the function-deficient mutation preferably, a wild-type corresponding to the function-deficient mutation
  • a primer including a base sequence having a type site at the 3 ′ end that is, the primer does not hybridize with a base sequence having a function-deficient mutation.
  • the wild-type gene detection primer 1 was designed at one of the positions sandwiching the corresponding wild-type site when there is a function-deficient mutation due to insertion or deletion in the function-deficient gene (4) A primer can be mentioned.
  • a primer set is obtained in which PCR amplification products having different base lengths are obtained between the wild-type gene and the function-deficient gene.
  • a primer including a base sequence on the 5 ′ side of the wild-type site corresponding to the function-deficient mutation can be exemplified.
  • the region for designing the wild-type gene detection primer 1 is preferably the 3 ′ side (preferably the 3 ′ end) of the primer sequence corresponding to the mutation. It is preferable to design so as to be included in In the case of (4) above, it is preferable to design in the 5 'side region close to the function-deficient mutation.
  • the wild-type gene detection primer 2 is an oligonucleotide primer including the above-described wild-type gene detection primer 1 and a base sequence at a position where a primer pair can be formed in the PCR reaction.
  • the region where the wild type gene detection primer 2 can be designed is a wild type gene or the gene thereof as long as it is a radish genome region capable of PCR amplification by forming a primer pair with the wild type gene detection primer 1 described above.
  • a region on the same chromosome as (a base sequence constituting the region or a complementary sequence thereof) can be used.
  • the base length of the amplification product is a region suitable for PCR amplification as a region where the wild-type gene detection primer 2 can be designed. Specifically, it is preferable to design the wild-type gene detection primer 2 at a position where the base length (base pair: bp) of the PCR amplification product is 5 kbp or less.
  • the base length is preferably 30 bp to 5 kbp, preferably 50 bp to 3 kbp, more preferably 75 bp to 2 kbp, and still more preferably 100 bp to 1.5 kbp. If the amplification length is designed to be too long, it is difficult to obtain a PCR amplification product, which is not preferable.
  • the region where the wild-type gene detection primers 1 and 2 can be designed may be designed on the base sequence described in SEQ ID NO: 1 or 2 or its complementary sequence so as to satisfy the above conditions. it can.
  • PCR method In order to perform genotyping by PCR method, it is necessary to prepare DNA in the target radish plant as a sample that can be amplified by PCR reaction. Depending on the design conditions of the primer set, it is possible to use a crushed sample, an elution sample, etc., but DNA extraction is preferably performed using a conventional method or a commercially available kit to prepare a sample suitable for PCR reaction It is desirable. Note that since the PCR method is a detection method with extremely high sensitivity, even a very small amount of sample to be prepared (for example, a part of a sprout immediately after germination) can be sufficiently subjected to analysis.
  • the tissue of the radish plant used for sample preparation can be any tissue containing DNA.
  • the present invention by performing a PCR reaction using the above-mentioned “function-deficient gene detection primers 1 and 2”, the presence of “function-deficient mutation” in the glucorafasatin synthase gene of the target radish is detected. It becomes possible to detect the genotype based on this result. Specifically, when a PCR amplification product specific for a function-deficient gene is obtained using the primer set described in (1) or (2) above, the genotype of the glucorafasatin synthase locus of the target radish Can be determined to be a “genotype having a function-deficient gene”.
  • the genotype of the target radish can be determined to be “function-deficient gene homotype” or “heterotype” (function-deficient gene / heterotype of wild-type gene).
  • the “function-deficient gene homotype” and “heterotype” are discriminated by the difference in base length. Is also possible. Since the radish individuals of these genotypes are individuals having a function-deficient glucorafasatin synthase gene in their genome, they are effective as breeding materials and gene resources for creating glucorafasatin deficient lines. Can be used.
  • wild type gene detection primers 1 and 2 by using “wild type gene detection primers 1 and 2”, it is possible to distinguish between “function deficient gene homotype” and “heterotype” and more reliably detect them. Become. Specifically, when a PCR amplification product specific for the wild-type gene is obtained using the primer set described in (3) or (4) above, the genotype of the glucorafasatin synthase gene locus of the target radish is , “A genotype having a wild type gene”. That is, in this case, the genotype of the target radish can be determined to be “wild type gene homotype” or “heterotype”.
  • the PCR reaction described above can be performed by a normal PCR method.
  • a method of performing a PCR reaction by binding a labeling substance to dNTP is also possible.
  • After the PCR reaction it is easily detected whether PCR amplification products are obtained by the usual methods (intercalation method, fluorescence detection method, luminescence detection method, color detection method, antibody detection method, RI detection method, etc.) It is possible.
  • As a simple method it can be easily detected using ethidium bromide, a fluorescent substance, or the like. It is also preferable to use a technique using a real-time PCR apparatus.
  • PCR when PCR is carried out using two pairs of primer sets of “function-deficient gene detection primers 1 and 2” and “wild-type gene detection primers 1 and 2”, specifically, PCR can be performed by this method.
  • first method there can be mentioned a method in which two reaction solutions are prepared for each primer set and PCR reaction is separately performed. In this case, the genotype can be determined by electrophoresis of each reaction solution and integrating the amplification patterns.
  • the second method there can be mentioned a method in which the two pairs of primer sets are mixed to prepare one reaction solution, and one PCR is performed. In this case, the genotype can be determined from the amplification pattern after electrophoresis in one lane.
  • two pairs of primers are designed by designing the primer set so that the functional deficient gene detection primer 2 and the wild type gene detection primer 2 are shared.
  • the set is composed of only three kinds of primers.
  • Specific embodiments in this case include “function-deficient gene detection primer 1”, “primer for common use (primer for function-deficient gene detection and primer for wild-type gene detection that forms a primer pair with the primer”) 2), and “wild type gene detection primer 1” that forms a primer pair with the common primer.
  • an “oligonucleotide probe” is an oligonucleotide synthesized by polymerizing deoxynucleotides or nucleotides, and is a single-stranded nucleic acid composed of a base sequence that specifically hybridizes to a specific base sequence. It is what you point to. Either DNA or RNA can be used as the nucleic acid molecular species. In addition, nucleic acid analogs such as morpholino oligos can be used.
  • a probe for detecting the function-deficient mutation (“function-deficient gene detection probe”), a base sequence constituting a function-deficient glucorafasatin synthase gene or a base sequence included in its complementary sequence
  • a probe including a base sequence capable of specifically detecting the function-deficient mutation can be exemplified.
  • a probe including a base sequence on the insertion mutation or a complementary sequence thereof can be mentioned.
  • the probe in order to avoid mishybridization with the wild-type gene and ensure the specificity of the detection signal, it preferably does not include the base sequence of the region commonly present in the wild-type gene or its complementary sequence
  • a probe is preferred.
  • the probe specifically hybridizes to a function-deficient gene but does not hybridize to a wild-type gene.
  • a probe containing ii) a base sequence containing the mutation site in the case of substitution, deletion, or insertion mutation there can be mentioned a probe containing ii) a base sequence containing the mutation site in the case of substitution, deletion, or insertion mutation.
  • the probe is easy to hybridize to a function-deficient gene but difficult to hybridize to a wild-type gene.
  • the “masking probe” refers to a probe including a base sequence specific to a wild-type gene or a complementary sequence thereof, and including a base sequence including a wild-type site corresponding to the function-deficient mutation. Is. Since the masking probe has a higher affinity for hybridizing to the wild-type gene than the function-deficient gene detection probe, the function-deficient gene is present in the coexistence of the function-deficient gene detection probe and the masking probe. It becomes possible to remarkably suppress the detection probe from being mishybridized to the wild type gene. In particular, in the case of the probe described in ii) above, the use of a masking probe is very suitable.
  • the oligonucleotide probe varies depending on the use of the probe, but at least a base sequence that constitutes a glucorafasatin synthase gene (function-deficient gene, wild-type gene) or a complementary sequence thereof is continuously at least.
  • a probe having 12 bases is preferred.
  • the base sequence contained in the base sequence or its complementary sequence is continuously at least 12 bases, preferably 15 bases or more, more preferably 20 bases or more, further preferably A probe containing 25 bases or more is preferred.
  • the upper limit of the base length of the oligonucleotide probe may be the upper limit of the base length itself of the inserted sequence.
  • the oligonucleotide probe can be suitably used by binding a fluorescent substance for detection, a labeling substance or the like. Further, at the time of probe synthesis, dNTP or NTP bound with a labeling substance can be incorporated and used as a probe constituent base.
  • -Genotyping using oligonucleotide probes In order to perform genotyping using probes, it is necessary to prepare a sample capable of PCR reaction using DNA in the target radish plant as a template. Depending on the hybridization conditions, it is possible to use a disrupted sample or an elution sample. Specifically, a DNA sample is extracted using a conventional method or a commercially available kit to obtain a sample suitable for the hybridization reaction. It is desirable to prepare. Note that since the hybridization method is a detection method with extremely high sensitivity, even a trace amount of sample to be prepared (for example, a part of a sprout immediately after germination) can be sufficiently subjected to analysis.
  • the tissue of the radish plant used for sample preparation can be any tissue containing DNA.
  • a signal detection method is a specific hybridization signal obtained by a conventional method (intercalation method, fluorescence detection method, luminescence detection method, color detection method, antibody detection method, RI detection method, etc.)? Can be easily detected.
  • a method in which a fluorescent substance or a labeling substance is bound to the probe itself and the signal of the hybridized probe is specifically detected is suitable.
  • the genotype of the glucorafasatin synthase locus of the target radish is “function-deficient type”. It can be determined that the genotype has a gene. That is, in this case, the genotype of the target radish can be determined to be “function-deficient gene homotype” or “heterotype”. Since the radish individuals of these genotypes have the function-deficient glucorafasatin synthase gene in the genome, they are effective as breeding materials and genetic resources for creating glucorafasatin deficient lines. Can be used.
  • a linkage marker SNP, SSR, etc.
  • a linkage marker present in a very close region that cannot be separated from the glucorafasatin synthase gene is used to detect the presence or absence of a mutation in the glucorafasatin synthase gene. It is possible to use. That is, for the adjacent region linkage marker, the presence or absence of “function-deficient mutation” of the locus can be indirectly detected with relatively high accuracy, and the genotype of the glucorafasatin synthase locus can be determined. It becomes possible.
  • such a proximity region is within 200 kbp, preferably within 100 kbp, more preferably within 75 kbp, and even more preferably within 50 kbp adjacent to each of the 3 ′ side and 5 ′ side of the glucorafasatin synthase gene. Particularly preferred is a region within 20 kbp, more preferably within 10 kbp. If such a linked marker is located in a region very close to the glucorafasatin synthase gene locus, separation from the glucorafasatin synthase gene by recombination is extremely difficult. The presence or absence of can be determined.
  • the detection of the linked marker type existing in the adjacent region can be performed using a technique using a PCR method or a technique using a hybridization method. It is also possible to use a polymorphism detection technique such as a real-time PCR method using a probe and a primer in combination, or a dot blot method using a combination of a mutant type and a wild type probe. It is also possible to detect the marker type by restriction enzyme fragment length polymorphism, base sequence determination by a sequencer, and the like.
  • the linkage marker described in Example 1 (6) can be used in the case of the NR154E strain described later or a strain derived from the strain.
  • the linkage marker described in Example 1 (6) can be used in the case of the NR154E strain described later or a strain derived from the strain.
  • genotype Since glucorafasatin deficiency is due to a recessive gene, the relationship between genotype and phenotype is as follows. Specifically, when the genotype is a genotype indicating “wild type gene homotype” and “heterotype”, the radish individual lacks glucorafasatin in the gene responsible for other glucorafasatin metabolism As long as there is no mutation to cause, the phenotype is a phenotype exhibiting glucorafasatin content. On the other hand, when the genotype is a “function-deficient gene homotype”, it becomes a phenotype exhibiting glucorafasatin deficiency.
  • a “glucorafasatin deficient strain” resulting from the genotype is identified with high accuracy. It becomes possible.
  • the kit containing the oligonucleotide primer set and / or the oligonucleotide probe can be used as a genotype determination kit for the glucorafasatin synthase gene locus.
  • the kit may be a product kit including a PCR reaction reagent, a hybridization reaction reagent, a detection reagent, and the like.
  • the oligonucleotide primer set and / or oligonucleotide probe can be fixed to a cellulose carrier such as a membrane or filter paper, a base carrier such as a glass chip, a column carrier such as a synthetic resin, etc., and genotype determination can be easily performed. It can also be a product form.
  • the genotyping kit may be a product form of a glucorafasatin-deficient strain identification kit as a strain identification kit.
  • glucorafasatin deficiency refers to the property that glucorafasatin is deleted or substantially deleted in a radish plant. Specifically, it refers to the property of the glucorafasatin content and / or glucosinolate composition described in the above paragraph “2. Function-deficient glucorafasatin synthase gene”.
  • the “radish plant” that can be homozygous for the function-deficient gene at the glucorafasatin synthase locus is a plant species belonging to the general Raphanus sativus.
  • Any cultivar line can be mentioned.
  • Specific examples include Japanese radish (R. sativus var. Longipinnatus), Japanese radish (R. sativus var. Sativus), black radish (R. sativus var. Niger), and the like. More specifically, a variety line belonging to Japanese radish (R. sativus var. Longipinnatus) can be mentioned.
  • glucorafasatin synthase loci in the radish genome is recognized as a single locus.
  • the existence of a gene showing extremely high homology showing functional complementarity and redundancy to the gene has not been confirmed.
  • normal radish is diploid, but if it is a cultivar line in which chromosome polyploidization (for example, double diploidization, tetraploidization, etc.) has occurred, all genes at the gene locus function. By making it a deficient gene (being a homozygous gene), it becomes a radish showing a glucorafasatin deficient phenotype.
  • the causative gene that induces the glucorafasatin deficiency discovered by the present inventors is a positional cloning method (linkage analysis and high-precision linkage analysis) using the NR154E strain, quantitative expression analysis, gain-of-function gene transfer test, It is a causative gene that induces glucorafasatin deficiency, identified by gene sequence analysis.
  • the wild type gene of the causative gene is a gene encoding an enzyme involved in the synthesis reaction of glucorafasatin.
  • the breeding “Nishimachi Ideal” (generally showing a wild-type glucosinolate composition) is used as an original population, and artificial self-propagation and selection of excellent individuals using glucosinolate composition as an index is repeated.
  • This is one of the created lines. Specifically, it is a radish system having a homozygous gene containing the nucleotide sequence set forth in SEQ ID NO: 7 at the glucorafasatin synthase locus in the genome.
  • the original cultivar “Nishimachi Ideal” is a variety that normally contains wild-type glucorafasatin, and is not known to exhibit glucorafasatin deficiency.
  • the NR154E strain is an indicator of self-breeding operations and glucorafasatin content from within the population of individuals who have a homozygous mutant gene of the function deficiency that has occurred in an artificially cultivated population of the variety “Nishimachi Ideal” It is the system obtained for the first time by selecting as.
  • self-breeding operation of Japanese radish is an artificial isolation operation to pollinate self-pollen within a certain period of time before self-incompatibility before flowering. It is a step of performing an operation of selecting individuals exhibiting a deletion property.
  • Japanese radish self-pollination is a phenomenon that is unlikely to occur under free mating conditions.
  • the phenotype of “glucorafasatin deficiency” is a trait related to the glucosinolate composition related to the endogenous component that cannot be distinguished from the outline of the plant body. It is necessary to carry out by HPLC analysis or the like. That is, the expression type cannot be determined by looking at the form of radish (shape, color, etc.).
  • the present inventors have targeted radish gene resources "more than 650 varieties" that are conserved all over the world. Although exhaustive search was conducted, no radish cultivar line was found in which the trait indicating “glucorafasatin deficiency” was fixed in the population. The reason why the glucorafasatin-deficient line (specifically, the group including the radish line having the homologous function-deficient gene) was not found in the conventional variety lines is considered as follows. That is, in radish, i) it is difficult for the recessive mutation according to the present invention to occur in a normal state, and ii) the recessive mutation type gene may have been deceived and disappeared before spreading in the population. .
  • the glucorafasatin-deficient radish line according to the present invention has a glucorafasatin-deficiency by having a homozygous function-deficient gene at the glucorafasatin synthase locus (action mechanism). It is a radish system.
  • the NR154E strain is a radish strain having a homozygous gene having a function-deficient mutation in the first exon of the glucorafasatin synthase gene (a gene containing the base sequence described in SEQ ID NO: 7).
  • the MR050E strain is a radish strain having a homozygous gene having a function-deficient mutation in the third exon of the glucorafasatin synthase gene (a gene containing the base sequence described in SEQ ID NO: 9).
  • glucorafasatin metabolism synthesis, degradation, etc.
  • a plurality of genetic factors involved in glucorafasatin metabolism (synthesis, degradation, etc.) in radish are considered to exist in addition to the glucorafasatin synthase gene according to the present invention.
  • a gene involved in the synthesis and production of glucorafasatin a gene that regulates the expression of the glucorafasatin synthase gene, a gene involved in the degradation reaction of glucorafasatin, glucorafafa Presence of genes involved in the production of secondary metabolites from satin is presumed.
  • glucorafasatin lacks glucorafasatin.
  • Arabidopsis thaliana may have a Myb transcription factor that is a transcriptional regulatory factor that controls the overall biosynthesis of an aliphatic glucosinolate.
  • Myb transcription factor that is a transcriptional regulatory factor that controls the overall biosynthesis of an aliphatic glucosinolate.
  • Known Hirai et al., 2007 PNAS, 104: 6478-6483.
  • the above findings indicate that not all radish strains exhibiting “glucorafasatin deficiency” may be induced by the functional deficiency of the glucorafasatin synthase gene according to the present invention.
  • the phenotype of “glucorafasatin deficiency” may be induced by a functional defect or functional abnormality of another gene different from the glucorafasatin synthase gene, and is completely different from the present invention.
  • the existence of “mechanism” is also assumed.
  • radish introduced with the function-deficient gene at the locus it can.
  • any gene introducing means can be exemplified.
  • radish in which the function-deficient gene is introduced into the gene locus can be exemplified by homologous recombination techniques using gene introduction such as Agrobacterium, electroporation, particle gun, cell fusion and the like.
  • radish in which the function-deficient gene has been introduced into the gene locus by an artificial mating technique can be mentioned.
  • a radish in which a function-deficient mutation is introduced into a wild-type glucorafasatin synthase gene present at the locus can be used, and the radish can be used as a gene donor.
  • the introduction of the function-deficient mutation into the gene any mutation can be mentioned.
  • mutation introduction accompanied by introduction of an insertion sequence via a transposon, retrotransposon, plant virus or the like can be mentioned.
  • mutation can be introduced by accelerating mutation by performing irradiation treatment on seeds, heavy ion beam treatment, treatment with a solution containing a mutagen substance, and the like.
  • mutation introduction by gene editing techniques ZFN, CRISPR, etc.
  • An individual having a function-deficient gene obtained by such mutagenesis can be suitably used as a gene donor.
  • the radish when there is a radish having the function-deficient gene at the gene locus already created, the radish can be used as a gene donor.
  • a radish belonging to a progeny line derived from any one of the above radish (i) to iii) (a line obtained by self-breeding and / or mating) and having a function-deficient gene at the locus Japanese radish can also be used as a gene donor.
  • the other mating parent normally, i) an individual belonging to a radish variety line having a desired trait (desired radish individual) is used as a receptor for the function-deficient gene.
  • desired traits can include all traits that are advantageous for cultivation characteristics and quality, processed radish products, and the like.
  • traits that improve the quality of enlarged radish for example, size of enlarged radish, shape of enlarged radish, density of soft tissue of enlarged radish, etc.
  • traits related to environmental resistance eg, cold resistance, heat resistance, etc.
  • disease resistance Traits related to sex traits related to growth (for example, early or late cultivation period, plant hormone synthesis system, etc.), traits related to reproduction (eg, flowering control, self-incompatibility, cytoplasmic male sterility, etc.)
  • traits related to pigments for example, anthocyanin composition, anthocyanin content, etc.
  • radish having the function-deficient gene can be used as it is.
  • an operation is performed in which two individuals (same strains or other strains) that are radish having the function-deficient gene are pollinated by cross breeding.
  • iii) it is also possible to obtain a desired Japanese radish by performing crossing by self-pollination (self-breeding operation) without using the other crossing parent.
  • a radish individual having further excellent traits can be obtained by repeatedly performing mating with a desired radish individual, self-breeding operation, and selection operation.
  • a radish line (or cultivar) showing glucorafasatin deficiency can be produced by obtaining a population in which the glucorafasatin deficiency and a desired trait are genetically fixed. .
  • the genotype of the glucorafasatin synthase gene locus can be determined with high accuracy by using the genotyping method according to the present invention. It becomes possible. This makes it possible to select a desired individual relating to glucorafasatin with high accuracy, and to efficiently produce a glucorafasatin deficient line in a short period of time.
  • Plant of glucorafasatin-deficient strain The plant obtained from the radish of the glucorafasatin deficient strain according to the present invention can be used very effectively in various fields such as agriculture and food.
  • radish as agricultural products, radish processed foods (salmon, pickles, radish grated, dried radish, tsuma, etc.), various products (beverages, pigments, etc.) using radish.
  • quality degradation problems such as “flavor deterioration”, “generation of scented odor”, and “occurrence of color unevenness due to yellowing”.
  • examples of the “plant obtained from radish” include all parts and tissues constituting the radish plant and plants belonging to all growth stages. Specific examples include roots (including lateral roots and undeveloped roots), hypocotyls, leaves, petioles, stems, florets, flowers, seeds, sprout, baby leaves, seedlings, and the like.
  • roots including lateral roots and undeveloped roots
  • hypocotyls leaves, petioles, stems, florets, flowers, seeds, sprout, baby leaves, seedlings, and the like.
  • a radish part consisting of root and hypocotyl
  • Sprouts plants consisting of cotyledons, hypocotyls, and roots immediately after germination
  • Baby leaves and leaves can also be used as food.
  • seeds and seedlings preferably seedlings up to about 40 days after germination
  • Example 1 “Identification of loci by positional cloning” Linkage analysis by positional cloning and high-precision linkage analysis were performed to identify the locus responsible for the glucorafasatin-deficient trait.
  • Glucorafasatin deficient radish line In order to identify the causal locus of glucorafasatin deficiency by the positional cloning method, the “NR154E” strain whose glucosinolate composition phenotype exhibits glucorafasatin deficiency was used (FIGS. 2A and 2B).
  • the NR154E strain is one of a plurality of glucorafasatin-deficient strains independently created by the present inventors. Specifically, the line is a good individual with an index of artificial self-propagation and glucosinolate composition, using the cultivar “Nishimachi Ideal” (generally showing wild-type glucosinolate composition) as the original population.
  • the “NR154E” line does not contain glucorafasatin, but instead has a high glucoerucin content, as compared to other normal wild type cultivar lines. Moreover, the property that the total amount of glucosinolate itself is low is shown.
  • the glucosinolate content per dry weight of the radish (the enlarged root and hypocotyl) part was measured.
  • the measurement involves freeze-powdering the radish root with liquid nitrogen, then desulfurizing glucosinolate extracted with 70% methanol and subjecting it to HPLC analysis, and quantifying the glucosinolate composition in terms of sinigrin as an internal standard. I went there.
  • Table 2 no glucorafasatin was detected in the “NR154E” line, indicating that the line exhibits extremely superior properties in terms of glucorafasatin deficiency.
  • the “MR050E” line in Table 2 is also a glucorafasatin-deficient line produced by the present inventors, but is a line with a large total amount of glucosinolates originating from a different source from the NR154E line.)
  • a solution containing two kinds of oligonucleotide probes in the relationship of these confrontations was mixed.
  • a probe solution was similarly prepared for each of the 131 SNPs, and a probe solution for SNP detection corresponding to each of the 131 SNP regions was prepared.
  • primers that specifically amplify 49 sites were identified.
  • the “NR154E” line that is deficient in glucorafasatin (mutant type) and the radish inbred line “HAGHN” that is glucorafasatin-containing (usually wild type) by mating, gluco Lafayette satin deletion trait gene responsible (hereinafter, simply referred to as the causative gene.) were grown separated F 2 population to identify. DNA was extracted from F 2 population 96 individuals relevant breeding, the SNP region of the 131 locations was amplified by PCR, and fixed by spotting the PCR amplification products obtained from each individual for each SNP on the nylon membrane.
  • the recombination titer between the causative gene and each marker was calculated using the predicted genotype of the causative gene in each individual and the information on each marker genotype. Based on the value of the recombination value, the locus region of the causative gene was positioned on the linkage map. As a result, it was shown that the locus region of the causative gene exists between the SNP markers “CL4624” and “CL6024” (FIG. 6).
  • the obtained recombinant individuals were transplanted into 9 cm pots.
  • Example 2 “Estimation of a causative gene for glucorafasatin deficiency” In the locus region clarified by the high-accuracy linkage analysis, a glucorafasatin deficient causative gene was estimated from genes existing in the locus region.
  • RNA total RNA
  • NR154E glucorafasatin-deficient strain
  • QIAGEN RNeasy plant mini kit
  • a glucorafasatin-containing cultivar wild type
  • “disease-resistant total fat” was used to extract total RNA and synthesize cDNA.
  • RT-PCR was performed using each synthesized cDNA as a template to detect the gene expression of each of genes 1-7.
  • the PCR reaction uses SYBR (R) Premix Ex Taq (TM) (Tli RNaseH Plus) (TaKaRa bio), and is shown in Table 4 at 95 ° C. for 5 seconds and 60 ° C. for 30 seconds using the template cDNA. PCR reaction of 30 cycles or 35 cycles was performed using primers.
  • the obtained PCR product is electrophoresed on an agarose gel and the degree of amplification of the PCR product between samples is detected, so that the relative expression level between “NR154E” and “total disease resistance” in each gene is detected. A significant difference was detected.
  • Table 5 The results are shown in Table 5. In the table, “+” indicates a sample in which PCR amplification was clearly confirmed, and “ ⁇ ” indicates a sample in which amplification was not clearly confirmed. Moreover, when a clear difference was detected in the amount of amplification between both systems, it was indicated by “*”.
  • the gene 3 is normally expressed in the “disease resistant total fat” which is a glucorafasatin-containing variety (wild type).
  • the gene was not expressed, suggesting the possibility that the gene function was deleted.
  • “gene 3” is the gene responsible for the deficiency of glucorafasatin. It was suggested that there is.
  • RNA is extracted from the true leaves of “HAGHN” (wild type) using RNeasy Plant (QIAGEN), and mRNA having a CAP structure is extracted using First Choice RLM-RACE Kit (Life Technologies). Specific selection was performed, and the cDNA sequence was isolated by the 5′RACE method. Using a sequencer (3730xl DNA Analyzer, Applied Biosystems), determine the 5'-end cDNA sequence and compare it with the genome sequence to obtain a "transcription start point" (5 'end of ORF, first base of first exon) Made a decision. As a result, it was speculated that the “transcription start point” of gene 3 is located 29 bp upstream from the first base of the translation initiation codon.
  • 3′RACE is performed using RNA from the true leaf of “HAGHN” (wild type), the 3 ′ end cDNA sequence is determined, and compared with the genome sequence to compare the “ORF 3 ′ end” ( Determination of the most downstream base of the third exon, which is the end of the open reading frame, was performed. As a result, it was speculated that the “ORF 3 ′ end” of gene 3 was located at 334 bp from the third base of the stop codon.
  • the wild type gene 3 (gene derived from “HAGHN”) is a gene having a total length of 1787 bp consisting of the nucleotide sequence set forth in SEQ ID NO: 2. It became clear that. It was revealed that the gene structure on the genome sequence was a genome structure containing 3 exons and 2 introns (FIG. 10A). Here, the full length of the wild type gene 3 was the base sequence (full length 1787 bp) from the most upstream base (ORF 5 ′ end) of the first exon to the most downstream base (ORF 3 ′ end) of the third exon ( Table 6).
  • genomic DNA sequence from the “HAGHN” matches the gene 3 sequence of the Scaffold sequence of “Aokubi Sh” (base sequence consisting of bases from 2972 to 4758 in SEQ ID NO: 1). It was confirmed that the sequence was.
  • cDNA sequence of gene 3 has the nucleotide sequence described in SEQ ID NO: 3. It became clear that it was an array.
  • the structure was DNA of 1482 bp in total length from 5′UTR to 3′UTR (Table 7).
  • the coding region (CDS: first base of start codon to third base of stop codon) was 1119 bp DNA consisting of the base sequence of SEQ ID NO: 4 (Table 7).
  • amino acid sequence encoded by the wild type gene 3 was predicted using amino acid sequence prediction software (GENETYX ver.12.0.1, manufactured by GENETYX), a total length of 372aa consisting of the amino acid sequence set forth in SEQ ID NO: 5 It was shown to be a protein. As a result of homology search using the NCBI database, it was found that there was no preceding registered sequence, and the gene completely encodes a novel protein.
  • amino acid sequence prediction software GENETYX ver.12.0.1, manufactured by GENETYX
  • the translation product of gene 3 was recognized as an enzyme protein that functions as a kind of oxidoreductase. There were no other genes encoding enzymes in the other six candidate genes (genes 1, 2, 4 to 6) in the advanced linkage analysis.
  • an insertion sequence of 8853 bp (consisting of the 558th to 9410th bases in SEQ ID NO: 7) between the 557th base and the 558th base of the wild type gene 3 (SEQ ID NO: 2) It was revealed that this was a mutant gene (NR154E type gene 3) having a mutation introduced in the base sequence and a stop codon introduced in-frame (FIG. 11A).
  • the genome sequence related to the mutant gene 3 is shown in SEQ ID NO: 7.
  • the predicted amino acid sequence was estimated to be a protein with a total length of 176aa consisting of the amino acid sequence set forth in SEQ ID NO: 8, but had a structure in which the C-terminal 184aa of the wild type gene 3 protein was deleted (FIG. 12).
  • MR050E Structure of MR050E type gene 3
  • the “MR050E” strain is one of the glucorafasatin-deficient strains created separately by the inventors from the NR154E strain. Therefore, the base sequence of gene 3 was also analyzed for the MR050E strain, and the presence or absence of gene 3 mutation was confirmed. As a result, it was revealed that gene 3 from the MR050E strain is a mutant gene in which an insertion sequence of about 1.2 kbp was introduced into a region corresponding to the third exon of wild-type gene 3 (FIG. 10C). ).
  • the MR050E strain was shown to be a glucorafasatin-deficient strain created by introducing an in-frame insertion mutation into the same gene as the NR154E strain.
  • the mutation of gene 3 possessed by MR050E strain (MR050E type mutation) was different from the mutation of NR154E strain (NR154E mutation).
  • the above results were recognized as supporting results that the glucorafasatin-deficient phenotype could be created by the loss of function of gene 3.
  • RNA was extracted from the true leaves of each radish variety shown in Table 11 using RNeasy plant mini kit (manufactured by QIAGEN). Using the obtained RNA as a template, cDNA (complementary strand DNA) was synthesized using PrimeScript RT reagent Kit (TaKaRa bio). Quantitative RT-PCR of the glucorafasatin synthase gene was performed by real-time PCR method using the obtained cDNA from each true leaf (sample). As an amplification primer for the glucorafasatin synthase gene, the primer set shown in Table 10 was used, which targeted the common sequence of 3′UTR from the latter half of the third exon.
  • the actin gene (Zou et al. 2013 PLos One 8: e53541.) was adopted as an internal standard gene, and the primer set shown in Table 10 was used as its amplification primer.
  • Real-time PCR analysis was performed using Thermal Cycler Dice® Real Time System II (TaKaRa bio) as an analyzer.
  • the PCR reaction uses SYBR (R) Premix Ex Taq (TM) (Tli RNaseH Plus) (TaKaRa bio), and the cycle of 95 ° C. for 5 seconds and 60 ° C. for 30 seconds using the template cDNA and the primer set.
  • a PCR reaction was performed in which the reaction was performed for 35 cycles.
  • the fluorescence intensity of the amplification product during the PCR reaction was measured over time in real time using the above analyzer. It is possible to obtain a value obtained by dividing the measurement target "fluorescence intensity measurement value (average value) of glucorafasatin synthase gene" by "fluorescence intensity measurement value (average value) of internal standard gene” and compare between samples. It was calculated as the relative expression level of the glucorafasatin synthase gene.
  • Table 11 the values in parentheses are values based on the value of the variety “Disease-resistant total fat”.
  • the gene expression level in the true leaf was “Gene 3” in both the “NR154E” and “MR050E” lines, which are glucorafasatin-deficient lines, as compared to the glucorafasatin-containing variety line (wild type). It became clear that the expression level of was significantly decreased. Specifically, it was shown that in the “MR050E” line, only 1/40 of the gene is expressed as compared to the “HAGHN” line which is a wild type. In particular, the “NR154E” line showed that the gene was expressed in a trace amount of less than 1/1000 compared to the wild-type “HAGHN” line.
  • Arabidopsis thaliana is a plant belonging to Arabidopsis, a genus closely related to Raphanus to which radish belongs.
  • the genome sequence of Arabidopsis thaliana has a gene having a 2-oxoglutarate-iron (II) -dependent oxygenase domain that shows sequence similarity to gene 3 It has been shown that there are multiple genes belonging to the gene family (The Arabidopsis Information Resource (TAIR), http://www.arabidopsis.org/).
  • TAIR The Arabidopsis Information Resource
  • glucorafasatin is a glucosinolate characteristic of radish plants, and Arabidopsis thaliana has a completely different glucosinolate composition in that it does not contain any glucorafasatin.
  • Table 12 In Arabidopsis thaliana, the entire genome sequence has been decoded (Nature 2000 Dec.14; 408 (6814): p796-815). As is clear from the above findings, there is no “gene having a function equivalent to gene 3” in the Arabidopsis genome sequence.
  • the full-length cDNA of wild-type gene 3 was amplified by RT-PCR using the primers shown in Table 13. The obtained full-length cDNA was ligated downstream of the CaMV35S promoter, and then modified from pPZP202 (Hajdukiewicz P. et al., 1994 Plant Mol.
  • pZK3B (Kuroda et al., 2010). Biosci. Biotechnol. Biochem., 74: 2348-2351) was prepared, and plasmid DNA of the construct was prepared. As a control, an empty vector plasmid DNA was prepared in the same manner except that no cDNA was incorporated.
  • the molecular structure of glucoerucine is in the relationship of becoming the molecular structure of glucorafasatin when the 3rd and 4th carbons are double-bonded (oxidized). From the results of amino acid sequence prediction, it is recognized that the coding protein of gene 3 is not a protein (transcription factor or the like) that regulates gene expression but a kind of oxidoreductase. From the above findings, it was recognized that the protein encoded by “gene 3” is an enzyme involved in any reaction for synthesizing glucorafasatin from glucoerucin (FIG. 16). That is, the gene 3 was recognized as a “glucorafasatin synthase gene”.
  • gene 3 is the causative gene of the glucorafasatin deficient causative gene in Japanese radish. Further, gene 3 was identified as a gene (glucorafasatin synthase gene) encoding an enzyme involved in the reaction for producing glucorafasatin from glucoerucin. In addition, considering that “glucorafasatin” does not exist in wild-type Arabidopsis thaliana, the gene function of gene 3 is similar to that of Arabidopsis thaliana (eg, At1g03410, The Arabidopsis Information Resource (TAIR), http: / (/www.arabidopsis.org/) was shown to be a feature that does not exist.
  • TAIR Arabidopsis Information Resource
  • Example 6 “Use as a selected DNA marker” A PCR primer set capable of genotype determination at the glucorafasatin synthase gene locus was designed using the insertion base sequence of the function-deficient glucorafasatin synthase gene.
  • Primer set design As a PCR primer set using the nucleotide sequence of the glucorafasatin synthase gene, a primer set consisting of the following three primers was designed (Table 15, FIG. 17). First, i) As a first primer, a “function-deficient gene detection primer” was designed on the insertion sequence into the first exon of the glucorafasatin synthase gene in the NR154E strain (FIG. 17). Specifically, a primer consisting of the base sequence described in SEQ ID NO: 47 (reverse primer shown in FIG. 17, symbol 33) was designed. In addition, as a second primer, a “wild type gene detection primer” was designed downstream of the site where the above insertion sequence was inserted.
  • a primer having the base sequence set forth in SEQ ID NO: 48 (reverse primer shown in FIG. 17, symbol 34) was designed.
  • a “common primer” to be an amplification pair with the primers described in i) and ii) above was designed on the first exon of the glucorafasatin synthase gene.
  • a primer consisting of the base sequence set forth in SEQ ID NO: 49 (forward primer indicated by reference numeral 35 in FIG. 17) was designed.
  • the wild type “HAGHN” line amplification of 714 bp corresponding to the amplification lengths of the wild type gene detection primer and the common primer was obtained. The amplification was observed to be derived from the wild type gene of the HAGHN line. Also, from both the F 1 individuals, two amplification corresponding to the mutant gene and the wild-type gene was confirmed. From the above results, it was shown that the genotype of the glucorafasatin synthase locus can be identified from the obtained amplification pattern by PCR using the primer set. In particular, it was shown that "heterotype", which is a genotype that does not appear in the phenotype, can be detected.
  • a PCR reaction was performed in the same manner as in the operation described in (2) above, and the genotype of the glucorafasatin synthase locus was estimated from the PCR amplification pattern, and 3 populations ( Functionally deficient gene homotype, wild type gene homotype, and heterotype).
  • a gluco Lafayette satin content in hypertrophic roots were measured to confirm the match between genotype and phenotype was classified by a selectable marker.
  • the measuring method of glucorafasatin content was performed like the method as described in Example 1 (3). The results are shown in Tables 18-20.
  • the genotype and phenotype of the segregated population obtained by classification using the above primer set in the population that had been backcrossed and self-bred with any glucorafasatin-containing (wild type) strain Confirmed to do. That is, the group in which the genotype was classified as a “function-deficient gene homotype” according to the PCR amplification pattern of the selection marker showed a remarkably low glucorafasatin content. On the other hand, the group in which the genotype was classified into “wild type gene homotype” or “heterotype” showed a high glucorafasatin content. Moreover, since the variation of the standard error of the glucorafasatin content was remarkably small in all of these classified groups, it was shown that the phenotype discrimination accuracy by the selected DNA marker was extremely high.
  • the gene 3 coding protein is a mutated protein in which a stop codon has been inserted in an inlay, and the important structure of the protein It has been shown that all or part of the 2-oxoglutarate-iron (II) -dependent oxygenase domain is deleted. In addition, the expression level of mutant gene 3 in both lines was significantly lower than that in the wild type line, indicating that the gene function was lost in terms of gene expression level.
  • the present invention is expected to be a technology that can be used effectively in seed and seedling manufacturers and public test sites that are developing radish variety lines. In addition, it is expected to be a technology that can be effectively used by radish producers and manufacturers in various fields that handle radish processed foods and drinks.
  • Glucorafasatin synthase gene (genomic DNA) 32. Insertion sequence in a deficient gene 33. Primer for detection of function-deficient gene 34. Primer for detecting wild type gene 35. Common primer

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a technique with which it is possible to produce a glucoraphasatin-deficient daikon line in a short time at high accuracy, as pertains to a technique for fundamentally overcoming the problems of deterioration of flavor, occurrence of radish odor, and deterioration of quality such as yellowing in processed daikon foods and the like. The present invention pertains to an inoperative-type glucoraphasatin synthase gene having (A) the characteristic of having a mutation associated with complete or partial deletion of the 2-oxoglutarate-iron(II)-dependent oxygenase domain in an encoded protein within an exon constituting a glucoraphasatin synthase gene, and (B) the characteristic of having the glucoraphasatin of the root portion deleted or substantially deleted when the glucoraphasatin synthase gene locus in the daikon genome is a homo-type of this inoperative-type gene.

Description

機能欠損型グルコラファサチン合成酵素遺伝子及びその利用Function deficient glucorafasatin synthase gene and use thereof
 本発明は、ダイコンの機能欠損型グルコラファサチン合成酵素遺伝子に係る発明に関する。また、本発明は、前記機能欠損型遺伝子を利用したグルコラファサチンを欠失したダイコン系統の作出技術に係る発明に関する。また、本発明は、ゲノムにおけるグルコラファサチン合成酵素遺伝子座に前記機能欠損型遺伝子をホモ型で有するダイコン系統に係る発明に関する。 The present invention relates to an invention relating to a radish-deficient glucorafasatin synthase gene. The present invention also relates to an invention relating to a technique for producing a radish line lacking glucorafasatin using the function-deficient gene. The present invention also relates to an invention relating to a radish line having the function-deficient gene in a homo form at the glucorafasatin synthase locus in the genome.
 グルコシノレートは、カラシ油配糖体とも呼ばれる含硫化合物の総称であり、アブラナ科及びその近縁科の植物に特徴的に含まれる二次代謝物質である。アブラナ科植物には、化合物構造の異なる120種以上のグルコシノレートが報告されている。
 アブラナ科植物の一種であるダイコン(Raphanus sativus)では、その主要なグルコシノレートは「グルコラファサチン」と呼ばれる物質である。ダイコンの肥大根部に含まれる総グルコシノレート量は、実に90%以上がグルコラファサチンで占められている。
 グルコラファサチンは、ダイコンに特徴的なグルコシノレートであり、ダイコンが属するRaphanusと同じアブラナ科の植物(例えば、近縁属であるBrassicaなど)においても、グルコラファサチンを優占グルコシノレート成分として含む植物は見出されていない。
Glucosinolate is a general term for sulfur-containing compounds that are also called mustard oil glycosides, and is a secondary metabolite that is characteristically contained in cruciferous and related family plants. More than 120 glucosinolates with different compound structures have been reported for Brassicaceae plants.
In radish (Raphanus sativus), a kind of cruciferous plant, its main glucosinolate is a substance called “glucorafasatin”. 90% or more of the total amount of glucosinolate contained in the radish radish is occupied by glucorafasatin.
Glucorafasatin is a glucosinolate characteristic of radish, and glucorafasatin is the dominant glucosinolate component in the same cruciferous plant as Raphanus to which radish belongs (for example, Brassica, a related genus). No plants have been found to contain.
 ダイコンに含まれるグルコラファサチンは、それ自体はほとんど無味無臭の化合物であるが、内在性酵素ミロシナーゼが作用して4メチルチオ-3-ブテニルイソチオシアネートと呼ばれるダイコン特有の辛み成分となる。「4メチルチオ-3-ブテニルイソチオシアネート」は、イソチオシアネートの一種であるが、化合物として不安定な物質であるため、短時間で化学分解されてしまう性質を有する。ダイコンおろし等のダイコン加工品の辛味が短時間で消失してしまい、風味劣化を抑えた保管がしにくい問題は、4メチルチオ-3-ブテニルイソチオシアネートの不安定さに起因する現象である。
 さらに、ダイコンに含まれるグルコラファサチンは、ダイコンを加工した食品において、ダイコン特有の悪臭や黄変の問題を引き起こす、深刻な原因成分となっている。
 図1に示すように、ダイコンに特徴的な悪臭である沢庵臭(大根臭等と表現される場合もある)の原因成分であるメチルメルカプタン等の生成や、黄変による色ムラ発生の原因成分である黄色成分TPMP(2-[3-(2-チオキソピロリジン-3-イリデン)メチル]-トリプトファン)の生成などは、グルコラファサチンから生成された4メチルチオ-3-ブテニルイソチオシアネートの分解によって引き起こされる現象である。
 このような「風味劣化」、「沢庵臭の発生」及び「黄変化による色ムラの発生」は、特に保存等の経時変化や加熱処理等に伴って顕著な問題となる現象である。特に、一部の大根漬、大根おろし、切り干し大根等の大根加工食品において、その品質を著しく劣化させる主たる原因となっている。
 現在、日本国内のダイコン生産量の約6割が加工用として使用されていることから、大根加工食品等における風味劣化防止、低臭化、及び黄変化防止を実現可能とする技術は、農業及び飲食品産業の各分野の製造業者等にとって、その解決が切望されている技術である。
Although glucorafasatin contained in radish is an almost tasteless and odorless compound itself, the endogenous enzyme myrosinase acts to become a spicy ingredient peculiar to radish called 4-methylthio-3-butenyl isothiocyanate. “4-Methylthio-3-butenyl isothiocyanate” is a kind of isothiocyanate, but since it is an unstable compound, it has the property of being chemically decomposed in a short time. The pungent taste of radish processed products such as radish grated disappears in a short time, and the problem that it is difficult to store with reduced flavor deterioration is a phenomenon caused by instability of 4-methylthio-3-butenyl isothiocyanate.
Furthermore, glucorafasatin contained in radish is a serious causative component that causes problems of odor and yellowing peculiar to radish in foods processed from radish.
As shown in Fig. 1, components that cause generation of methyl mercaptan, which is a causative component of the savory odor (sometimes expressed as radish odor, etc.), which is a characteristic odor of Japanese radish, and color unevenness due to yellowing The yellow component TPMP (2- [3- (2-thioxopyrrolidine-3-ylidene) methyl] -tryptophan) is a degradation of 4-methylthio-3-butenylisothiocyanate produced from glucorafasatin It is a phenomenon caused by
Such “degradation of flavor”, “occurrence of abundant odor”, and “occurrence of color unevenness due to yellowing change” are phenomena that are particularly prominent with changes over time such as storage and heat treatment. In particular, in some processed radish foods such as pickled radish, radish grated radish, and dried radish, it is a major cause of significant deterioration in quality.
Currently, about 60% of the Japanese radish production in Japan is used for processing. Therefore, technologies that can prevent flavor deterioration, low bromide, and yellowing prevention in processed radish are This is a technology that is eagerly desired by manufacturers in various fields of the food and beverage industry.
 このような産業分野からの要望に応えて、本発明者らは、大根加工食品等における風味劣化、沢庵臭の発生、及び黄変化等の品質劣化の問題を解決するため、グルコシノレート組成が通常のダイコン品種系統とは全く異なるダイコン系統の作出に取り組んだ。
 その結果、本発明者らは、特定の品種系統に着目して人為的な育種的操作を行うことによって、グルコラファサチンとは別種のグルコシノレートを高含有する形質を有するダイコン系統を作出できることを見出した(特許文献1)。具体的には、本発明者らは、特許文献1に記載の方法に従って、種子やスプラウト等に「グルコラファニン」(※抗癌作用成分であるスルホラファンの前駆物質)を高含有する系統、肥大根部に「グルコエルシン」を高含有する系統、などを複数系統作出し、そのうちの1系統である「安濃5号」を、ダイコン品種「だいこん中間母本農5号」として品種登録した(品種登録第22662号)。
In response to such a demand from the industrial field, the present inventors have developed a glucosinolate composition in order to solve the problems of quality deterioration such as flavor deterioration, generation of abundant odor, and yellowing change in processed radish foods. We worked on the creation of a radish line completely different from the normal radish variety line.
As a result, the present inventors can produce a radish line having a trait that contains a high content of glucosinolates different from glucorafasatin by performing artificial breeding operations focusing on a specific variety line. (Patent document 1). Specifically, according to the method described in Patent Document 1, the present inventors have a high content of “glucoraphanin” (* a precursor of sulforaphane, which is an anticancer active ingredient) in seeds, sprouts and the like, A number of lines, such as “Glucerucin”, containing a large amount of “Glucerucin” were produced in the beetroot, and one of those lines, “Anno No. 5”, was registered as a radish variety “Daikom Intermediate Mother Farm No. 5” (variety registration No. 22662).
特開2012-110238号公報(グルコラファニンを高含有するダイコン系統の作出方法)JP 2012-110238 A (Production Method of Japanese Radish Lines Highly Containing Glucoraphanin)
 しかしながら、特許文献1に記載の所望のグルコシノレート組成を有するダイコン系統を得る方法では、グルコシノレート組成が野生型で維持されている特定品種系統集団の中から変異個体を選抜する方法であるため、作出効率が低いという課題があった。
 また、特許文献1に記載の方法では、表現型の判定のために、グルコシノレート組成を測定したい組織部位を用いて高速液体クロマトグラフィー(HPLC)等を用いて分析することが必要であった。しかし、HPLC分析等に供するための十分な試料量を採取するには、数週間の栽培期間を要するため、迅速な分析が困難であるという課題があった。また、HPLC分析等で得られる情報はあくまでも表現型の情報に過ぎないため、育種を効率に行うことを可能とする遺伝子型の情報までは原理的に得ることができなかった。
 また、得られた作出系統(特に中間母本系統)を形質供与体である交配親として用いて、他の有用形質を備えた品種系統と交配して新たな系統等を作出する場合、表現型の後代検定のための育成に甚大な労力と時間が必要であるという課題があった。
However, the method for obtaining a radish line having a desired glucosinolate composition described in Patent Document 1 is a method of selecting mutant individuals from a specific variety lineage group in which the glucosinolate composition is maintained in the wild type. Therefore, there was a problem that the production efficiency was low.
In addition, in the method described in Patent Document 1, it was necessary to perform analysis using high-performance liquid chromatography (HPLC) or the like using a tissue site where the glucosinolate composition is to be measured in order to determine the phenotype. . However, in order to collect a sufficient amount of sample for use in HPLC analysis or the like, a cultivation period of several weeks is required, so that there is a problem that rapid analysis is difficult. In addition, since information obtained by HPLC analysis or the like is merely phenotypic information, genotype information that enables efficient breeding could not be obtained in principle.
In addition, when the resulting production line (especially the intermediate mother line) is used as a mating parent as a trait donor and crossed with a variety line having other useful traits, There was a problem that enormous effort and time were required for training for the progeny of the next generation.
 本発明は、上記従来技術の課題を鑑みて、大根加工食品等における風味劣化、沢庵臭の発生、及び黄変化等の品質劣化の問題を根本的に解決する技術に関して、グルコラファサチン欠失性を示すダイコン系統を、短期間で且つ高い精度にて作出可能とする技術を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention relates to a technology that fundamentally solves the problem of quality deterioration such as flavor deterioration, generation of abundant odor, and yellowing change in radish processed foods, etc. It is an object of the present invention to provide a technique capable of producing a radish system having a high accuracy in a short period of time.
 本発明者らは、上記課題に鑑み、本発明者らが独自に作出した優れたグルコラファサチン欠失性を示す系統(NR154E系統、MR050E系統)を用いて、ダイコンのグルコシノレート組成を劇的に変化させる原因の1つであると考えられるグルコラファサチン欠失性を支配する遺伝子、を同定するという視点に着目した。
 しかしながら、グルコラファサチン欠失性遺伝子を同定するためには、対象がダイコン植物であるという本件特有の事情に起因して、分子生物学的手法の適用の困難な技術的な問題が存在した。
In view of the above-mentioned problems, the inventors of the present invention have developed a glucosinolate composition of Japanese radish using a line (NR154E line, MR050E line) that has been developed by the present inventors and exhibits excellent glucorafasatin deficiency. We focused on the viewpoint of identifying a gene that controls glucorafasatin deficiency, which is considered to be one of the causes of the change.
However, in order to identify the glucorafasatin deficient gene, there has been a technical problem that makes it difficult to apply molecular biological techniques due to the peculiar circumstances of this case that the object is a radish plant.
  i )まず、植物においてグルコラファサチン代謝に関与する遺伝子の情報は一切不明であった。そのため、本件課題を解決する手段として、他の植物の遺伝子の相同性配列を手掛かりにする遺伝子単離法(縮重配列プライマーを利用したPCR法、ハイブリダイゼーションを利用したスクリーニング法など)の手段を、全く利用することができない状況にあった。
 ii)また、近年の次世代シーケンサー等の遺伝子解析技術の進展により、ダイコンのドラフトゲノム配列がデータベースとして公開されて、網羅的解析の基盤整備が充実しつつある(Raphanus sativus Genome DataBase(http://radish.kazusa.or.jp/))が、当該データベースにおいては、機能解析が行われていない遺伝子のアノテーション情報までは掲載されていなかった。
 当該データベースに掲載されているゲノム配列上の予測遺伝子の推定機能は、既知の他の生物の相同性検索情報やドメイン予測から推定された情報を掲載したものに過ぎないため、「遺伝子機能の解析が行われていない新規のダイコン遺伝子」については、当該データベース上でその存在を見出すことはできなかった。
 また、勿論であるが、各変異系統の変異型遺伝子の配列情報も登録されていないため、当該データベース上にて各変異体の原因遺伝子を見出すことはできなかった。
i) First, information on genes involved in glucorafasatin metabolism in plants was completely unknown. Therefore, as a means for solving this problem, there is a means of gene isolation methods (PCR method using degenerate sequence primers, screening method using hybridization, etc.) based on homologous sequences of genes of other plants. It was in a situation where it could not be used at all.
ii) In addition, due to recent advances in gene analysis technologies such as next-generation sequencers, radish draft genome sequences have been released as a database, and the foundation for comprehensive analysis is being improved (Raphanus sativus Genome DataBase (http: / /radish.kazusa.or.jp/)), however, the annotation information of genes for which functional analysis has not been performed has not been published in the database.
Since the predicted gene estimation function on the genome sequence published in the database is merely information on homology search information of other known organisms and information estimated from domain prediction, “analysis of gene function” The existence of “a novel radish gene that has not been performed” could not be found on the database.
Of course, since the sequence information of the mutant gene of each mutant strain is not registered, the causative gene of each mutant could not be found on the database.
 以上に示すように、既知の遺伝子配列情報を利用する手段によっては、グルコラファサチン代謝に関わる遺伝子(ダイコンの新規遺伝子)の単離・同定を行うことはできない状況であった。
 そこで、本発明者らは鋭意研究を重ね、膨大な量の実験を行った。まず、本発明者らが独自に作出したNR154E系統というグルコラファサチン欠失系統と、グルコラファサチン含有系統(野生型)との連鎖マーカー(SNP,SSR)を同定して、両系統間の連鎖マーカーの連鎖地図を作製した。そして、当該連鎖地図を利用して、ポジショナルクローニング法により連鎖解析と高精度連鎖解析を繰り返すことで、対象遺伝子の座乗領域を狭める操作を繰り返し行い、23.8kbpの座乗領域を特定した。
 配列予測、定量的発現解析、及び機能獲得型(gain of function)の遺伝子導入試験等の詳細な解析を行った結果、当該座乗領域にあるグルコラファサチン欠失性を支配する原因遺伝子を同定した。当該遺伝子は、野生型のダイコンにおいては、グルコラファサチン合成酵素をコードする遺伝子であることが明らかになった。
 また、当該機能欠損を誘起する挿入配列は、対象遺伝子内の変異配列であるため、対象形質との分離が生じ得ない優れた選抜DNAマーカーとして利用できることが示された。
As described above, it was impossible to isolate and identify a gene involved in glucorafasatin metabolism (a new gene of radish) by means of using known gene sequence information.
Therefore, the present inventors conducted extensive research and conducted a huge amount of experiments. First, a linkage marker (SNP, SSR) between a glucorafasatin-deficient strain called NR154E strain originally created by the present inventors and a glucorafasatin-containing strain (wild type) was identified, and the linkage between both strains was identified. A marker map was created. Then, by repeating the linkage analysis and the high-accuracy linkage analysis by the positional cloning method using the linkage map, the operation of narrowing the locus region of the target gene was repeated, and the locus region of 23.8 kbp was identified.
As a result of detailed analysis such as sequence prediction, quantitative expression analysis, gain of function gene transfer test, etc., the causative gene governing glucorafasatin deficiency in the locus region is identified. did. This gene was found to be a gene encoding glucorafasatin synthase in wild type radish.
Moreover, since the insertion sequence that induces the functional defect is a mutated sequence in the target gene, it was shown that it can be used as an excellent selection DNA marker that cannot be separated from the target trait.
 本発明は、上記知見に基づいて想到されたものであり、具体的には以下の機能欠損型グルコラファサチン合成酵素遺伝子及びその利用に係る発明に関する。
[1]
 下記(A)及び(B)に記載の特徴を有する、機能欠損型グルコラファサチン合成酵素遺伝子;
(A)下記(a1)に記載の遺伝子を構成するエクソン内に、コード蛋白質における2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインの全部又は一部の欠失を伴う変異を有する特徴、
(a1)配列番号5に記載のアミノ酸配列又は当該アミノ酸配列と95%以上の配列相同性を示すアミノ酸配列、からなる蛋白質をコードする遺伝子であって、グルコエルシンからグルコラファサチンへの合成反応に関与する蛋白質をコードする遺伝子、
(B)ダイコンゲノムにおけるグルコラファサチン合成酵素遺伝子座が当該機能欠損型グルコラファサチン合成酵素遺伝子のホモ型となった場合に、肥大根部のグルコラファサチン含量が3μmоl/g以下となる特徴。
[2]
 更に下記(C)に記載の特徴を有する、前記[1]に記載の機能欠損型グルコラファサチン合成酵素遺伝子;
(C)上記(A)に記載の変異が、少なくとも1kbpの塩基配列の挿入を伴う変異である、前記[1]に記載の機能欠損型グルコラファサチン合成酵素遺伝子。
[3]
 上記機能欠損型グルコラファサチン合成酵素遺伝子が、配列番号7又は9に記載の塩基配列を含む遺伝子である、前記[1]又は[2]に記載の機能欠損型グルコラファサチン合成酵素遺伝子。
[4]
 前記[1]~[3]のいずれかにおける上記(A)に記載の変異の存在の有無を検出することを特徴とする、ダイコンにおけるグルコラファサチン合成酵素遺伝子座の遺伝子型判定方法。
[5]
 下記(D)及び(E)に記載のオリゴヌクレオチドプライマーを含んでなることを特徴とする、ダイコンにおけるグルコラファサチン合成酵素遺伝子座の遺伝子型判定用キット;
(D)前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子又は当該遺伝子と同じ染色体上の領域、を構成する塩基配列又はその相補配列に含まれる塩基配列であって、上記(A)に記載の変異の存在を検出可能な位置に設計された少なくとも12塩基からなる塩基配列、を含むオリゴヌクレオチドプライマー、
(E)前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子又は当該遺伝子と同じ染色体上の領域、を構成する塩基配列又はその相補配列に含まれる少なくとも12塩基からなる塩基配列であって、上記(D)に記載のプライマーとプライマー対を形成可能な位置にある塩基配列、を含むオリゴヌクレオチドプライマー。
[6]
 上記(D)に記載のプライマーが、下記(d1)又は(d2)に記載のオリゴヌクレオチドプライマーである、前記[5]に記載の遺伝子型判定用キット;
(d1)上記(A)に記載の変異が挿入変異である場合において、当該変異を構成する塩基配列又はその相補配列を含むオリゴヌクレオチドプライマー、
(d2)上記(A)に記載の変異をその配列内に含む塩基配列、を含むオリゴヌクレオチドプライマー。
[7]
 さらに、下記(F)及び(G)に記載のオリゴヌクレオチドプライマーを含んでなる、前記[5]又は[6]に記載の遺伝子型判定用キット;
(F)前記[1]~[3]のいずれかにおける上記(a1)に記載のグルコラファサチン合成酵素遺伝子又は当該遺伝子と同じ染色体上の領域、を構成する塩基配列又はその相補配列に含まれる塩基配列であって、上記(A)に記載の変異の不存在を検出可能な位置に設計された少なくとも12塩基からなる塩基配列、を含むオリゴヌクレオチドプライマー、
(G)前記[1]~[3]のいずれかにおける上記(a1)に記載のグルコラファサチン合成酵素遺伝子又は当該遺伝子と同じ染色体上の領域、を構成する塩基配列又はその相補配列に含まれる少なくとも12塩基からなる塩基配列であって、上記(F)に記載のプライマーとプライマー対を形成可能な位置にある塩基配列、を含むオリゴヌクレオチドプライマー。
[8]
 下記(H)又は(I)に記載のオリゴヌクレオチドプローブを含んでなることを特徴とする、ダイコンにおけるグルコラファサチン合成酵素遺伝子座の遺伝子型判定用キット;
(H)前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を構成する塩基配列又はその相補配列に含まれる少なくとも12塩基からなる塩基配列であって、上記(A)に記載の変異が挿入変異である場合における当該変異を構成する塩基配列又はその相補配列、を含むオリゴヌクレオチドプローブ、
(I)前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を構成する塩基配列又はその相補配列に含まれる少なくとも12塩基からなる塩基配列であって、上記(A)に記載の変異をその配列内に含む塩基配列、を含むオリゴヌクレオチドプローブ。
[9]
 下記(J)、(K)、及び(L)に記載の特徴を有する、前記[5]~[8]のいずれかに記載の遺伝子型判定用キット;
(J)上記機能欠損型グルコラファサチン合成酵素遺伝子が、配列番号7又は9に記載の塩基配列を含む機能欠損型グルコラファサチン合成酵素遺伝子である特徴、
(K)上記グルコラファサチン合成酵素遺伝子が、配列番号2に記載の塩基配列からなるグルコラファサチン合成酵素遺伝子である特徴、
(L)上記染色体上の領域が、配列番号1における第1番目から第2971番目までの塩基からなる塩基配列で構成される領域、及び、配列番号1における第4759番目から第7424番目までの塩基からなる塩基配列で構成される領域、である特徴。
[10]
 前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を、ゲノムにおけるグルコラファサチン合成酵素遺伝子座にホモ型で有し、肥大根部の乾燥重量に対するグルコラファサチン含量が3μmоl/g以下であることを特徴とするダイコン系統。
[11]
 下記(M)~(O)のいずれかに記載のダイコンを自殖操作し又は所望のダイコンと交配し、その後代集団から選抜して得られた、前記[10]に記載のダイコン系統;
(M)ゲノムにおけるグルコラファサチン合成酵素遺伝子座に、前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子が導入されたダイコン、
(N)ゲノムにおけるグルコラファサチン合成酵素遺伝子に機能欠損型変異が導入されたダイコンであって、ゲノムにおけるグルコラファサチン合成酵素遺伝子座に前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を有するダイコン、
(O)上記(M)又は(N)に記載のダイコンの後代集団から得られたダイコンであって、前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子をゲノムにおけるグルコラファサチン合成酵素遺伝子座に有するダイコン。
[12]
 上記機能欠損型グルコラファサチン合成酵素遺伝子が、配列番号7又は9に記載の塩基配列を含む機能欠損型グルコラファサチン合成酵素遺伝子である、前記[10]又は[11]に記載のダイコン系統。
[13]
 前記[10]~[12]のいずれかに記載のダイコン系統の植物体から得られた、根、胚軸部、肥大根部、葉、葉柄、茎、花蕾、花、種子、スプラウト、ベビーリーフ、又は苗。
[14]
 下記(P)に記載の工程を含むことを特徴とする、ダイコンにおけるグルコラファサチン欠失系統の作出方法;
(P)ゲノムにおけるグルコラファサチン合成酵素遺伝子座に前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を有するダイコンを、自殖操作又は所望のダイコンと交配する工程。
[15]
 前記(P)に記載の機能欠損型グルコラファサチン合成酵素遺伝子を有するダイコンが、下記(Q)~(S)に記載のいずれかのダイコンである、前記[14]に記載の作出方法;
(Q)ゲノムにおけるグルコラファサチン合成酵素遺伝子座に、前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子が導入されたダイコン、
(R)ゲノムにおけるグルコラファサチン合成酵素遺伝子に機能欠損型変異が導入されたダイコンであって、ゲノムにおけるグルコラファサチン合成酵素遺伝子座に前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を有するダイコン、
(S)上記(Q)又は(R)に記載のダイコンの後代集団から得られたダイコンであって、前記[1]~[3]のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子をゲノムにおけるグルコラファサチン合成酵素遺伝子座に有するダイコン。
[16]
 前記[4]に記載の遺伝子型判定方法を使用して行うものである、前記[14]又は[15]に記載の作出方法。
[17]
 さらに下記(T)に記載の工程を含むことを特徴とする、前記[14]~[16]のいずれかに記載の作出方法;
(T)上記(P)に記載の工程により得られた後代集団から、前記[4]に記載の遺伝子型判定方法を使用して、グルコラファサチン欠失性を示すダイコン個体を選抜する工程。
The present invention has been conceived on the basis of the above findings, and specifically relates to the following function-deficient glucorafasatin synthase gene and an invention relating to the use thereof.
[1]
A function-deficient glucorafasatin synthase gene having the characteristics described in (A) and (B) below;
(A) a feature having a mutation in the exon constituting the gene described in (a1) below, which is accompanied by a deletion of all or part of the 2-oxoglutarate-iron (II) -dependent oxygenase domain in the encoded protein;
(A1) A gene encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 5 or an amino acid sequence showing 95% or more sequence homology with the amino acid sequence, and is involved in the synthesis reaction from glucoerucin to glucorafasatin A gene encoding a protein to be
(B) The characteristic that the glucorafasatin content of the radish root is 3 μmol / g or less when the glucorafasatin synthase gene locus in the radish genome is homozygous for the function-deficient glucorafasatin synthase gene.
[2]
Furthermore, the function-deficient glucorafasatin synthase gene according to [1], which has the characteristics described in (C) below;
(C) The function-deficient glucorafasatin synthase gene according to [1] above, wherein the mutation described in (A) is a mutation accompanied by insertion of a base sequence of at least 1 kbp.
[3]
The function-deficient glucorafasatin synthase gene according to [1] or [2] above, wherein the function-deficient glucorafasatin synthase gene is a gene comprising the base sequence represented by SEQ ID NO: 7 or 9.
[4]
A method for determining the genotype of a glucorafasatin synthase locus in radish, comprising detecting the presence or absence of the mutation described in (A) above in any one of [1] to [3].
[5]
A genotyping kit for a glucorafasatin synthase gene locus in radish, comprising the oligonucleotide primer described in the following (D) and (E);
(D) A base sequence included in the function-deficient glucorafasatin synthase gene according to any one of [1] to [3] above or a region on the same chromosome as the gene, or a base sequence included in a complementary sequence thereof An oligonucleotide primer comprising a base sequence consisting of at least 12 bases designed to detect the presence of the mutation described in (A) above,
(E) at least 12 contained in the base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of [1] to [3] above or a region on the same chromosome as the gene or a complementary sequence thereof An oligonucleotide primer comprising a base sequence composed of bases and a base sequence at a position capable of forming a primer pair with the primer described in (D) above.
[6]
The genotype determination kit according to [5], wherein the primer described in (D) is the oligonucleotide primer described in (d1) or (d2) below;
(D1) when the mutation described in (A) is an insertion mutation, an oligonucleotide primer comprising a base sequence constituting the mutation or a complementary sequence thereof,
(D2) An oligonucleotide primer comprising a base sequence containing the mutation described in (A) above in its sequence.
[7]
Furthermore, the genotyping kit according to [5] or [6] above, which comprises the oligonucleotide primer described in (F) and (G) below;
(F) The glucorafasatin synthase gene according to any one of (1) to [3] above or a base sequence constituting the same chromosomal region as that gene or a complementary sequence thereof An oligonucleotide primer comprising a base sequence consisting of at least 12 bases designed at a position capable of detecting the absence of the mutation described in (A) above,
(G) glucorafasatin synthase gene according to any one of the above [1] to [3] or a nucleotide sequence constituting the same chromosomal region as the gene or a complementary sequence thereof An oligonucleotide primer comprising a base sequence consisting of at least 12 bases and a base sequence at a position capable of forming a primer pair with the primer described in (F) above.
[8]
A kit for genotyping of the glucorafasatin synthase gene locus in radish, comprising the oligonucleotide probe described in (H) or (I) below;
(H) a base sequence comprising at least 12 bases contained in a base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of [1] to [3] or a complementary sequence thereof, When the mutation described in (A) is an insertion mutation, an oligonucleotide probe comprising a base sequence constituting the mutation or a complementary sequence thereof,
(I) A base sequence comprising at least 12 bases included in the base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of [1] to [3] or a complementary sequence thereof, An oligonucleotide probe comprising a base sequence comprising the mutation described in (A) in its sequence.
[9]
The genotyping kit according to any one of [5] to [8] above, having the characteristics described in (J), (K), and (L) below;
(J) the function-deficient glucorafasatin synthase gene is a function-deficient glucorafasatin synthase gene comprising the base sequence described in SEQ ID NO: 7 or 9,
(K) The above-mentioned glucorafasatin synthase gene is a glucorafasatin synthase gene comprising the base sequence set forth in SEQ ID NO: 2,
(L) The region on the chromosome is composed of a base sequence consisting of the first to 2971st bases in SEQ ID NO: 1, and the 4759th to 7424th bases in SEQ ID NO: 1 A feature that is a region composed of a base sequence consisting of
[10]
The function-deficient glucorafasatin synthase gene according to any one of the above [1] to [3] has a homotype at the glucorafasatin synthase locus in the genome, and glucorafasatin relative to the dry weight of the bean radish A radish line having a content of 3 μmol / g or less.
[11]
The radish line according to [10] obtained by self-breeding the radish according to any one of (M) to (O) below or crossing with a desired radish and then selecting from a progeny population;
(M) Japanese radish in which the function-deficient glucorafasatin synthase gene according to any one of [1] to [3] is introduced into the glucorafasatin synthase gene locus in the genome,
(N) A radish obtained by introducing a function-deficient mutation into a glucorafasatin synthase gene in the genome, wherein the function according to any one of [1] to [3] Japanese radish having a deficient glucorafasatin synthase gene,
(O) A radish obtained from a progeny population of radish according to (M) or (N) above, wherein the function-deficient glucorafasatin synthase gene according to any one of [1] to [3] At the glucorafasatin synthase locus in the genome.
[12]
The radish system according to [10] or [11] above, wherein the function-deficient glucorafasatin synthase gene is a function-deficient glucorafasatin synthase gene comprising the base sequence described in SEQ ID NO: 7 or 9.
[13]
Roots, hypocotyls, hypertrophic roots, leaves, petioles, stems, florets, flowers, seeds, sprout, baby leaves, obtained from the radish plant of any one of [10] to [12] Or seedling.
[14]
A method for producing a glucorafasatin-deficient line in radish, comprising the step described in (P) below;
(P) A radish having the function-deficient glucorafasatin synthase gene according to any one of the above [1] to [3] at the glucorafasatin synthase gene locus in the genome is crossed with a self-breeding operation or desired radish Process.
[15]
The production method according to [14] above, wherein the radish having the function-deficient glucorafasatin synthase gene according to (P) is any of the following radish according to (Q) to (S):
(Q) Japanese radish in which the function-deficient glucorafasatin synthase gene according to any one of [1] to [3] is introduced into the glucorafasatin synthase gene locus in the genome,
(R) A radish obtained by introducing a loss-of-function mutation into a glucorafasatin synthase gene in the genome, wherein the function according to any one of [1] to [3] Japanese radish having a deficient glucorafasatin synthase gene,
(S) A radish obtained from a progeny population of radish according to (Q) or (R) above, wherein the function-deficient glucorafasatin synthase gene according to any of [1] to [3] At the glucorafasatin synthase locus in the genome.
[16]
The production method according to [14] or [15], which is performed using the genotyping method according to [4].
[17]
The production method according to any one of [14] to [16] above, further comprising the step described in (T) below;
(T) A step of selecting a radish individual exhibiting glucorafasatin deficiency from the progeny population obtained by the step described in (P) above using the genotyping method described in [4].
 本発明によれば、機能欠損型グルコラファサチン合成酵素遺伝子及びその遺伝子配列情報を、ダイコンの育種に有効に利用することが可能となる。これにより、本発明によれば、大根加工食品等における風味劣化、沢庵臭の発生、及び黄変化等の品質劣化の問題について、当該問題を本質的に解決可能とするグルコラファサチン欠失性を示すダイコン系統を、短期間で且つ高い精度にて作出することが可能となる。
According to the present invention, the function-deficient glucorafasatin synthase gene and its gene sequence information can be effectively used for breeding radish. Thereby, according to the present invention, with respect to problems of quality deterioration such as flavor deterioration, generation of abundant odor, and yellowing change in radish processed foods, etc. It becomes possible to produce the radish system shown in a short period of time with high accuracy.
グルコシノレート組成が通常野生型である一般のダイコン品種系統について、グルコラファサチンに関する分解経路を示した模式図である。It is the schematic diagram which showed the degradation pathway regarding glucorafasatin about the common radish variety system | strain whose glucosinolate composition is usually a wild type.
(図2A)NR154E系統について、植物体の外観形状を撮影した写真像図である。当該図中の符号は次のものを示す。符号1:肥大根部。符号2:葉柄。(図2B)NR154E系統について、グルコラファサチン欠失による分解経路への影響を示した模式図である。(FIG. 2A) It is the photograph image figure which image | photographed the external appearance shape of the plant body about NR154E system | strain. The symbols in the figure indicate the following. Reference numeral 1: radish. Code 2: A petiole. (FIG. 2B) About the NR154E strain, it is a schematic diagram showing the influence on the degradation pathway due to glucorafasatin deletion.
実施例1において、連鎖解析にて明らかになった連鎖地図(連鎖群R1~3)を示した図である。In Example 1, it is the figure which showed the linkage map (linkage group R1-3) clarified by linkage analysis.
実施例1において、連鎖解析にて明らかになった連鎖地図(連鎖群R4~6)を示した図である。In Example 1, it is the figure which showed the linkage map (linkage group R4-6) clarified by linkage analysis.
実施例1において、連鎖解析にて明らかになった連鎖地図(連鎖群R7~9)を示した図である。In Example 1, it is the figure which showed the linkage map (linkage group R7-9) clarified by linkage analysis.
実施例1に係るポジショナルクローニング法において、各工程の説明を模式的に示したフロー図である。図中「N」が示す数は、連鎖解析又は高精度連鎖解析に供した植物体の数を示す。In the positional cloning method which concerns on Example 1, it is the flowchart which showed typically description of each process. The number indicated by “N” in the figure indicates the number of plants subjected to linkage analysis or high-precision linkage analysis.
実施例1に係る高精度連鎖解析において、絞り込まれたグルコラファサチン欠失性原因遺伝子の座乗領域を示した模式図である。図中の数字1~7は、候補遺伝子1~7を示す。図中の矢印は、配列解析により存在が予測された遺伝子を示す。矢印の向きは遺伝子が座乗する方向を示す。In the high precision linkage analysis which concerns on Example 1, it is the schematic diagram which showed the seating area | region of the glucorafasatin deficiency causative gene narrowed down. Numbers 1-7 in the figure indicate candidate genes 1-7. The arrows in the figure indicate genes that are predicted to exist by sequence analysis. The direction of the arrow indicates the direction in which the gene sits.
実施例2に係るRT-PCRによる発現解析において、遺伝子3(グルコラファサチン合成酵素遺伝子、図7における灰色矢印)のRT-PCR後の電気泳動ゲルを撮影した写真像である。当該図中における省略記号は、次のダイコン品種系統名を示す。「TIB」:耐病総太り。「NR154E」:NR154E。FIG. 8 is a photographic image obtained by photographing an electrophoresis gel after RT-PCR of gene 3 (glucorafasatin synthase gene, gray arrow in FIG. 7) in expression analysis by RT-PCR according to Example 2. FIG. The abbreviations in the figure indicate the next radish variety lineage name. “TIB”: disease-resistant total fat. “NR154E”: NR154E.
実施例3に係る配列解析において、遺伝子3蛋白質に存在するドメイン構造の予測結果を示した図である。In the sequence analysis which concerns on Example 3, it is the figure which showed the prediction result of the domain structure which exists in gene 3 protein.
(図10A)実施例3に係る配列解析において、野生型遺伝子3の遺伝子構造をエクソン/イントロン構造により模式的に示した図である。(図10B)実施例3に係る配列解析において、NR154E型遺伝子3(機能欠損型遺伝子)の遺伝子構造をエクソン/イントロン構造により模式的に示した図である。(図10C)実施例3に係る配列解析において、MR050E型遺伝子3(機能欠損型遺伝子)の遺伝子構造をエクソン/イントロン構造により模式的に示した図である。(FIG. 10A) In the sequence analysis based on Example 3, it is the figure which showed typically the gene structure of the wild type gene 3 by the exon / intron structure. (FIG. 10B) In the sequence analysis according to Example 3, the gene structure of NR154E type gene 3 (function-deficient gene) is schematically shown by exon / intron structure. (FIG. 10C) In the sequence analysis according to Example 3, the gene structure of MR050E type gene 3 (function-deficient gene) is schematically shown by exon / intron structure.
(図11A)実施例3に係る配列解析において、NR154E型遺伝子3(機能欠損型遺伝子3)の挿入配列の導入部位を示した図である。図中における塩基配列の下段にある英文字1文字表記は、コドンによって指定されるアミノ酸を示す。(図11B)実施例3に係る配列解析において、MR050E型遺伝子3(機能欠損型遺伝子3)の挿入配列の導入部位を示した図である。図中における塩基配列の下段にある英文字1文字表記は、コドンによって指定されるアミノ酸を示す。(FIG. 11A) In the sequence analysis according to Example 3, an insertion site of an insertion sequence of NR154E gene 3 (function deficient gene 3) is shown. In the figure, the one-letter code of English letters at the bottom of the base sequence indicates an amino acid designated by a codon. (FIG. 11B) In the sequence analysis which concerns on Example 3, it is the figure which showed the introduction site | part of the insertion sequence of MR050E type gene 3 (function deficient gene 3). In the figure, the one-letter code of English letters at the bottom of the base sequence indicates an amino acid designated by a codon.
実施例3に係る配列解析において、各ダイコン系統からの遺伝子3の予測アミノ酸配列のアライメント結果を示した図である。図中における省略記号は、次の蛋白質の予測アミノ酸配列を示す。「W.T.」:HAGHN系統。「MR050E」:MR050E系統。「NR154E」:NR154E系統。また、図中の矩形域で囲った領域は、次のドメインを示す。「白色」:non-haem dioxygenase in morphine synthesis N-terminal domain。「灰色」:2-oxoglutarate and Fe(II)-dependent oxygenase domain。In the sequence analysis which concerns on Example 3, it is the figure which showed the alignment result of the prediction amino acid sequence of the gene 3 from each radish system. The ellipsis in the figure indicates the predicted amino acid sequence of the next protein. “WT”: HAGHN strain. “MR050E”: MR050E system. “NR154E”: NR154E strain. In addition, a region surrounded by a rectangular region in the figure indicates the next domain. “White”: non-haem dioxygenase in morphine synthesis N-terminal domain. “Gray”: 2-oxoglutarate and Fe (II) -dependent oxygenase domain.
実施例4に係る定量的RT-PCRによる発現解析において、遺伝子3の相対発現量の測定結果を示した図である。当該図中における省略記号は、次のダイコン品種系統名を示す。「HAG」:HAGHN。「TIB」:耐病総太り。「MYS」:宮重ダイコン。「KRM」:辛味199。「NR154E」:NR154E。「MR050E」:MR050E。FIG. 6 shows the measurement results of the relative expression level of gene 3 in the expression analysis by quantitative RT-PCR according to Example 4. The abbreviations in the figure indicate the next radish variety lineage name. “HAG”: HAGHN. “TIB”: disease-resistant total fat. "MYS": Miyashige Daikon. “KRM”: pungent 199. “NR154E”: NR154E. “MR050E”: MR050E.
(図14A)実施例5に係る遺伝子導入試験において、抽苔前の育成植物体(エンプティベクター導入シロイヌナズナ)を上面視にて撮影した写真像を示す図である。(図14B)実施例5に係る遺伝子導入試験において、抽苔前の育成植物体(遺伝子3過剰発現体シロイヌナズナ)を上面視にて撮影した写真像を示す図である。(FIG. 14A) In the gene introduction test according to Example 5, it is a view showing a photographic image obtained by photographing a growing plant body (empty vector-introduced Arabidopsis thaliana) before extracting from top view. (FIG. 14B) In the gene introduction test which concerns on Example 5, it is a figure which shows the photograph image which image | photographed the growth plant body (Gene 3 overexpression body Arabidopsis thaliana) before extraction from top view.
(図15A)実施例5に係る遺伝子導入試験において、育成した植物体(エンプティベクター導入シロイヌナズナ)のグルコシノレートプロファイルをHPLC分析クロマトグラフにより示した図である。当該図中の符号は、次のものを示す。符号21:グルコエルシンのピーク。符号22:グルコラファサチンのピーク。(図15B)実施例5に係る遺伝子導入試験において、育成した植物体(遺伝子3過剰発現体シロイヌナズナ)のグルコシノレートプロファイルをHPLC分析クロマトグラフにより示した図である。当該図中の符号は、次のものを示す。符号21:グルコエルシンのピーク。符号22:グルコラファサチンのピーク。FIG. 15A is a diagram showing a glucosinolate profile of a grown plant body (empty vector-introduced Arabidopsis thaliana) by HPLC analysis chromatograph in the gene introduction test according to Example 5. The symbols in the figure indicate the following. Reference numeral 21: peak of glucoerucin. Reference numeral 22: peak of glucorafasatin. (FIG. 15B) In the gene introduction test according to Example 5, a glucosinolate profile of a grown plant body (Gene 3 overexpressing Arabidopsis thaliana) is shown by HPLC analysis chromatograph. The symbols in the figure indicate the following. Reference numeral 21: peak of glucoerucin. Reference numeral 22: peak of glucorafasatin.
野生型ダイコン又は遺伝子3過剰発現体シロイヌナズナにおいて、グルコエルシンからグルコラファサチンが生成される反応を示した模式図である。It is the schematic diagram which showed the reaction in which glucorafasatin is produced | generated from glucoerucin in wild type radish or gene 3 overexpression body Arabidopsis thaliana.
グルコラファサチン合成酵素遺伝子座の遺伝子型判定用プライマーセットの設計例の一例を示した模式図である。当該図中の符号は次のものを示す。符号31:グルコラファサチン合成酵素遺伝子を構成するゲノムDNA。符号32:機能欠損型の変異型遺伝子における挿入配列。符号33:機能欠損型遺伝子検出用プライマー。符号34:野生型遺伝子検出用プライマー。符号35:共通用プライマー。It is the schematic diagram which showed an example of the design example of the primer set for genotype determination of a glucorafasatin synthetase gene locus. The symbols in the figure indicate the following. Code 31: Genomic DNA constituting the glucorafasatin synthase gene. Code 32: Insertion sequence in a mutant gene of function-deficient type. Reference numeral 33: a primer for detecting a function-deficient gene. Reference numeral 34: a primer for detecting a wild type gene. Symbol 35: common primer.
実施例6に係る遺伝子型判定例において、遺伝子型判定用プライマーセットを用いてPCRを行った後、電気泳動ゲルを撮影した写真像図である。In the genotyping example which concerns on Example 6, after performing PCR using the primer set for genotyping, it is the photograph image figure which image | photographed the electrophoresis gel.
 本出願は、2014年11月7日に日本国に本出願人により出願された特願2014-226635に基づく優先権主張を伴う出願であり、その全内容は参照により本出願に組み込まれる。 This application is an application with a priority claim based on Japanese Patent Application No. 2014-226635 filed by the applicant in Japan on November 7, 2014, the entire contents of which are incorporated into this application by reference.
 以下、本発明の実施形態を詳細に説明する。
 本発明は、ダイコンにおける機能欠損型グルコラファサチン合成酵素遺伝子に係る発明に関する。また、本発明は、前記機能欠損型遺伝子を利用したグルコラファサチンを欠失したダイコン系統の作出技術に係る発明に関する。また、本発明は、ゲノムのグルコラファサチン合成酵素遺伝子座に前記機能欠損型遺伝子をホモ型で有するダイコン系統に係る発明に関する。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention relates to an invention related to a function-deficient glucorafasatin synthase gene in Japanese radish. The present invention also relates to an invention relating to a technique for producing a radish line lacking glucorafasatin using the function-deficient gene. In addition, the present invention relates to an invention relating to a radish line having the function-deficient gene in a homo form at the genomic glucorafasatin synthase locus.
1.用語の説明
 本明細書で用いる用語について、以下に説明する。
 本明細書中、「ダイコン(ダイコン植物)」とは、アブラナ科ダイコン属サティバス(Raphanus sativus)に属する植物種を指す。具体的には、日本ダイコン(R. sativus var. longipinnatus)、ハツカダイコン(R. sativus var. sativus)、クロダイコン(R. sativus var. niger)等を含めて、全世界で千種以上の品種系統が存在することが知られている。ダイコンの植物体では、主に肥大した根が食用となり、加工食品としても利用される。スプラウト(かいわれ)、ベビーリーフ、葉も食用となる。
 本明細書中、「肥大根部」とは、ダイコンの成熟した根及び胚軸部を指す。
1. Explanation of Terms Terms used in this specification will be described below.
In the present specification, “radish plant” refers to a plant species belonging to the Brassicaceae genus Raphanus sativus. More specifically, there are over 1000 varieties of varieties, including Japanese radish (R. sativus var. Longipinnatus), radish (R. sativus var. Sativus), black radish (R. sativus var. Niger), etc. It is known to exist. In radish plants, the enlarged roots are mainly edible and used as processed foods. Sprouts, baby leaves and leaves are also edible.
As used herein, “hypertrophic root” refers to the mature root and hypocotyl portion of radish.
 本明細書中、「遺伝子」とは、エクソン及びイントロンから構成されるゲノムDNA中の領域を指し、最初のエクソンの最上流塩基(ORFの5’末端:転写開始点)から最後のエクソンの最下流塩基(ORFの3’末端)までの領域を指す。
 本明細書中、「コーディング領域(CDS)」とは、遺伝子において蛋白質に翻訳される領域を指し、エクソンにおける開始コドンの第1塩基~終止コドンの第3塩基までの領域を指す。真核生物のゲノムDNAにおいては、イントロンで分断されて存在する場合が多い。
In the present specification, “gene” refers to a region in genomic DNA composed of exons and introns, from the most upstream base of the first exon (5 ′ end of ORF: transcription start point) to the top of the last exon. Refers to the region up to the downstream base (3 ′ end of ORF).
In the present specification, the “coding region (CDS)” refers to a region that is translated into a protein in a gene, and refers to a region from the first base of the start codon to the third base of the stop codon in the exon. In eukaryotic genomic DNA, it is often separated by introns.
 本明細書中、「グルコシノレート」(本明細書中、単に「GSL」という場合がある。)とは、カラシ油配糖体とも呼ばれる含硫化合物の総称であり、アブラナ科及びその近縁科の植物に特徴的に含まれる二次代謝物質である。アブラナ科植物には、化合物構造の異なる120種以上のグルコシノレートが報告されている。ダイコンでは、その主要なグルコシノレートは「グルコラファサチン」と呼ばれる物質である。ダイコン肥大根部に含まれる総グルコシノレート量は、実に90%以上がグルコラファサチンで占められている。 In the present specification, “glucosinolate” (in this specification, sometimes simply referred to as “GSL”) is a general term for sulfur-containing compounds that are also referred to as mustard oil glycosides. It is a secondary metabolite that is characteristically contained in plants of the family. More than 120 glucosinolates with different compound structures have been reported for Brassicaceae plants. In radish, the main glucosinolate is a substance called “glucorafasatin”. 90% or more of the total amount of glucosinolate contained in radish radish is occupied by glucorafasatin.
 本明細書中、「グルコラファサチン」(Glucoraphasatin)とは、下記(式1)に示す化学式の化合物を指す。グルコラファサチンは、ダイコンにおいて特徴的に存在するグルコシノレートであり、他の植物にはほとんど存在しない化合物である。ダイコンが属するRaphanusと同じアブラナ科の植物(例えば、近縁属であるBrassicaなど)においても、グルコラファサチンを優占グルコシノレート成分として含有する植物は、ダイコン以外には確認されていない。 In this specification, “Glucoraphasatin” refers to a compound having the chemical formula shown below (Formula 1). Glucorafasatin is a glucosinolate that is characteristically present in radish and is a compound that is hardly present in other plants. Even in the same cruciferous plant as Raphanus to which radish belongs (for example, Brassica which is a related genus), a plant containing glucorafasatin as a dominant glucosinolate component has not been confirmed other than radish.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本明細書中、「野生型ダイコン品種系統」とは、ダイコンの植物体においてグルコラファサチンを主要なグルコシノレート成分として含有する性質を示すダイコン品種系統を示す。 In the present specification, “wild type radish variety line” refers to a radish variety lineage that exhibits the property of containing glucorafasatin as a main glucosinolate component in a radish plant.
2.機能欠損型グルコラファサチン合成酵素遺伝子
 本発明に係る「機能欠損型グルコラファサチン合成酵素遺伝子」(本明細書中、単に「機能欠損型遺伝子」という場合がある。)とは、ダイコンのグルコラファサチン合成酵素遺伝子に機能欠損型の変異が存在する、グルコラファサチン合成酵素遺伝子の変異型遺伝子を指す。
2. Function-deficient glucorafasatin synthase gene The “function-deficient glucorafasatin synthase gene” according to the present invention (sometimes simply referred to as “function-deficient gene” in the present specification) It refers to a mutant gene of the glucorafasatin synthase gene in which a function-deficient mutation exists in the satin synthase gene.
[野生型のグルコラファサチン合成酵素遺伝子]
 「グルコラファサチン合成酵素遺伝子」(本明細書中、単に「野生型遺伝子」という場合がある。)とは、本発明者らが見出した新規遺伝子であり、ダイコンにおいてグルコエルシンからグルコラファサチンへの合成反応に関与する蛋白質をコードする遺伝子を指す。具体的には、配列番号5に記載のアミノ酸配列からなる蛋白質をコードする遺伝子を指す。
 なお、当該遺伝子のアミノ酸配列は、宮重ダイコン系の自殖系統、西町理想系の自殖系統、及び辛味ダイコン系の自殖系統などの品種系統においては、配列番号5に記載のアミノ酸配列と一致するアミノ酸配列であることが確認されている。
[Wild-type glucorafasatin synthase gene]
The “glucorafasatin synthase gene” (in the present specification, sometimes simply referred to as “wild type gene”) is a novel gene found by the present inventors, and is obtained from glucoercin to glucorafasatin in radish. A gene encoding a protein involved in a synthetic reaction. Specifically, it refers to a gene encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 5.
The amino acid sequence of the gene is identical to the amino acid sequence described in SEQ ID NO: 5 in varieties such as Miyashige radish inbred line, Nishimachi ideal inbred line, and pungent radish inbred line. It has been confirmed that this is an amino acid sequence.
 また、グルコラファサチン合成酵素遺伝子としては、ダイコン種内における品種系統間の違いによるアミノ酸残基の置換、欠失、挿入、及び/又は付加を伴う遺伝子配列の変異を許容するものである。
 遺伝子配列の変異の許容範囲として、具体的には、i)配列番号5に記載のアミノ酸配列に対して高い配列相同性を示すアミノ酸配列からなる蛋白質をコードする遺伝子であり、且つ、ii)その遺伝子機能を担保するアミノ酸配列からなる蛋白質をコードする遺伝子であれば、配列番号5に記載のアミノ酸配列に対する変異は許容される。
In addition, the glucorafasatin synthase gene allows gene sequence mutations involving substitution, deletion, insertion, and / or addition of amino acid residues due to differences between cultivar lines in radish species.
Specifically, the allowable range of the variation of the gene sequence is i) a gene encoding a protein comprising an amino acid sequence showing high sequence homology to the amino acid sequence described in SEQ ID NO: 5, and ii) As long as it is a gene encoding a protein consisting of an amino acid sequence that guarantees gene function, mutation to the amino acid sequence shown in SEQ ID NO: 5 is allowed.
 ここで、i)「高い配列相同性」としては、具体的には、配列番号5に記載のアミノ酸配列に対して95%以上、好ましくは96%以上、より好ましくは97%以上、さらに好ましくは98%以上、特に好ましくは99%以上、の配列相同性を挙げることができる。
 また、ii)「遺伝子機能の担保」とは、コード蛋白質が、グルコエルシンからグルコラファサチンへの合成反応に関与する蛋白質であること、が担保されていることを指す。
 具体的には、当該遺伝子がダイコン植物体にて通常の発現量にて発現して、生体内にてコード蛋白質が正常に合成された場合、当該ダイコンが「グルコラファサチン含有性」の表現型を示すことを指す。
 ここで、「グルコラファサチン含有性」とは、具体的には、肥大根部の乾燥重量に対するグルコラファサチン含量が、3μmоl/gを超える含量、好ましくは4μmоl/g以上、より好ましくは6μmоl/g以上、さらに好ましくは10μmоl/g以上、となる表現型を示す性質を指す。
Here, i) “high sequence homology” specifically refers to 95% or more, preferably 96% or more, more preferably 97% or more, more preferably, with respect to the amino acid sequence shown in SEQ ID NO: 5. A sequence homology of 98% or more, particularly preferably 99% or more can be mentioned.
Ii) “Guaranteed gene function” means that the encoded protein is guaranteed to be a protein involved in the synthesis reaction from glucoerucin to glucorafasatin.
Specifically, when the gene is expressed at a normal expression level in a radish plant and the encoded protein is normally synthesized in vivo, the radish is a “glucorafasatin-containing” phenotype. Indicates that
Here, “glucorafasatin-containing” specifically means that the content of glucorafasatin with respect to the dry weight of the beetroot exceeds 3 μmol / g, preferably 4 μmol / g or more, more preferably 6 μmol / g. As mentioned above, it refers to the property of exhibiting a phenotype of 10 μmol / g or more.
 当該遺伝子のコード蛋白質である「グルコラファサチン合成酵素」は、グルコエルシンからグルコラファサチンを合成する反応に関与する酵素蛋白質である。当該蛋白質は、グルコエルシンからグルコラファサチンを生成する反応のいずれかに関与する酵素として機能し、当該酵素の機能が欠損するとダイコン植物体におけるグルコラファサチンは欠失する。
 当該蛋白質は、2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメイン(2-oxoglutarate and Fe(II)-dependent oxygenase domain、2 OG-Fe(II) oxygenase domainともいう。)というドメイン構造を有する。当該ドメインは、配列番号5に記載のアミノ酸配列上においては、第223番目から第319番目までの97アミノ酸残基からなるアミノ酸配列に相当する領域である(図9、図12)。
 なお、2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインを有する蛋白質は、植物においてスーパーファミリーを形成しており、様々な酸化還元酵素を含む酵素であることが知られているが、ダイコンのグルコラファサチン合成酵素と同様の活性を有する酵素の存在は報告されていない。
 また、当該蛋白質には、配列番号5に記載のアミノ酸配列上、第65番目から第178番目までの114アミノ酸残基からなるアミノ酸配列に相当する領域に、酸化還元酵素ドメインの一種であるnon-haem dioxygenase in morphine synthesis N-terminal domainも存在する(図9、図12)。
A “glucorafasatin synthase” that is a protein encoded by the gene is an enzyme protein involved in a reaction for synthesizing glucorafasatin from glucoerucin. The protein functions as an enzyme involved in any of the reactions for producing glucorafasatin from glucoerucin. When the function of the enzyme is lost, glucorafasatin in the radish plant is lost.
The protein has a domain structure of 2-oxoglutarate-iron (II) -dependent oxygenase domain (also referred to as 2-oxoglutarate and Fe (II) -dependent oxygenase domain, 2 OG-Fe (II) oxygenase domain). The domain is a region corresponding to an amino acid sequence consisting of 97 amino acid residues from the 223rd to the 319th in the amino acid sequence shown in SEQ ID NO: 5 (FIGS. 9 and 12).
Proteins having a 2-oxoglutarate-iron (II) -dependent oxygenase domain form a superfamily in plants and are known to be enzymes including various oxidoreductases. The presence of an enzyme having the same activity as rafasatin synthase has not been reported.
In addition, the protein has a non-oxidase domain that is a kind of oxidoreductase domain in a region corresponding to the amino acid sequence consisting of 114 amino acid residues from the 65th to the 178th amino acids in the amino acid sequence shown in SEQ ID NO: 5. There is also a haem dioxygenase in morphine synthesis N-terminal domain (FIGS. 9 and 12).
 野生型のグルコラファサチン合成酵素遺伝子のゲノム配列としては、上記グルコラファサチン合成酵素である蛋白質をコードする遺伝子であれば特に制限はなく、イントロン等の配列に変異は特に問題なく許容されるものである。なお、宮重ダイコン系の自殖系統では、野生型のグルコラファサチン合成酵素遺伝子のゲノム配列の全長(第1エクソンの最上流塩基から第3エクソンの最下流塩基)は、配列番号2に記載の塩基配列である。
 また、グルコラファサチン合成酵素遺伝子のゲノム構造は、既存の野生型のダイコン品種系統において、3つのエクソンと2つのイントロンから構成される構造であることを確認しているが(図10A)、当該エクソン及びイントロン構造と同一構造であるものに限定されるものではない。
 なお、ダイコンゲノムにおけるグルコラファサチン合成酵素遺伝子座の数は、単一遺伝子座であると認められる。また、当該遺伝子に対して機能相補性や冗長性を示す極めて高い相同性を示す遺伝子の存在は確認されていない。
The genome sequence of the wild-type glucorafasatin synthase gene is not particularly limited as long as it is a gene encoding a protein that is the above-mentioned glucorafasatin synthase. It is. In the Miyaji radish inbred line, the full length of the genome sequence of the wild-type glucorafasatin synthase gene (the most downstream base of the first exon to the most downstream base of the third exon) is represented by SEQ ID NO: 2. It is a base sequence.
In addition, it has been confirmed that the genome structure of the glucorafasatin synthase gene is a structure composed of three exons and two introns in the existing wild type radish variety line (FIG. 10A). It is not limited to those having the same structure as the exon and intron structures.
Note that the number of glucorafasatin synthase loci in the radish genome is recognized as a single locus. In addition, the existence of a gene showing extremely high homology showing functional complementarity and redundancy to the gene has not been confirmed.
 ダイコン以外の他のアブラナ科植物では、配列番号5に記載のアミノ酸配列からなる蛋白質をコードする遺伝子の相同遺伝子が存在する。具体的には、Arabidopsis(ダイコンが属するRaphanusの近縁属)のシロイヌナズナには、配列番号5に記載のアミノ酸配列と、80%程度の配列相同性を示すアミノ酸配列からなる蛋白質をコードする遺伝子が存在する。
 しかし、シロイヌナズナには、グルコシノレート組成にグルコラファサチンが存在しない。この点、シロイヌナズナには、配列番号5に記載のアミノ酸配列からなる蛋白質をコードする遺伝子の「相同遺伝子」は存在するものの、当該相同遺伝子のコード蛋白質は、グルコエルシンからグルコラファサチンへの合成反応に関与する機能を有していない。
In other cruciferous plants other than radish, there is a homologous gene of a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 5. Specifically, Arabidopsis (a related genera of Raphanus to which radish belongs) Arabidopsis thaliana has a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 5 and an amino acid sequence having about 80% sequence homology. Exists.
However, Arabidopsis has no glucorafasatin in the glucosinolate composition. In this regard, Arabidopsis thaliana has a “homologous gene” of a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 5, but the encoded protein of the homologous gene is used in a synthesis reaction from glucoerucin to glucorafasatin. Does not have the function involved.
[機能欠損型グルコラファサチン合成酵素遺伝子の特徴]
 本発明に係る機能欠損型グルコラファサチン合成酵素遺伝子は、上記したグルコラファサチン合成酵素遺伝子を構成するエクソン内の塩基配列上に、遺伝子としての重要機能が欠損する変異を有する遺伝子である。
 ここで、グルコラファサチン合成酵素遺伝子が「機能欠損型遺伝子」であるかどうかは、ダイコンにおけるグルコラファサチン合成酵素遺伝子の遺伝子座が、当該変異型遺伝子のホモ型となった場合に、ダイコン植物体におけるグルコラファサチンが完全に又は実質的に欠失している状態であれば、機能欠損型遺伝子であると判定することができる。
[Characteristics of functional deficient glucorafasatin synthase gene]
The function-deficient glucorafasatin synthase gene according to the present invention is a gene having a mutation that lacks an important function as a gene on the base sequence in the exon constituting the glucorafasatin synthase gene.
Here, whether or not the glucorafasatin synthase gene is a “function-deficient gene” depends on whether the locus of the glucorafasatin synthase gene in radish is a homozygous form of the mutant gene. If glucorafasatin in the body is completely or substantially deleted, it can be determined to be a function-deficient gene.
 本明細書中、「ダイコン植物体においてグルコラファサチンが実質的に欠失している状態」であるか否かの判定は、次の値を指標とするものである。ダイコンにおけるグルコラファサチン合成酵素遺伝子座が、対象とする変異型遺伝子のホモ型となった場合に、肥大根部の乾燥重量に対するグルコラファサチン含量が3μmоl/g以下、好ましくは2μmоl/g以下、さらに好ましくは1μmоl/g以下、より好ましくは0.1μmоl/g以下、特に好ましくは0.01μmоl/g以下であれば、グルコラファサチンが実質的に欠失している状態であると判定することができる。
 なお、通常の野生型ダイコン品種系統では、当該含量が数十~数百μmоl/gのものがほとんどである。
In the present specification, the determination of whether or not “a state in which glucorafasatin is substantially deleted in the radish plant” is based on the following value. When the glucorafasatin synthase locus in radish is homozygous for the mutant gene of interest, the glucorafasatin content relative to the dry weight of the radish root is 3 μmol / g or less, preferably 2 μmol / g or less. If it is preferably 1 μmol / g or less, more preferably 0.1 μmol / g or less, particularly preferably 0.01 μmol / g or less, it may be determined that glucorafasatin is in a substantially deleted state. it can.
Incidentally, most of the wild radish variety lines have a content of several tens to several hundreds μmol / g.
 また、別の判定指標としては、ダイコンにおけるグルコラファサチン合成酵素遺伝子座が、対象とする変異型遺伝子のホモ型となった場合に、肥大根部の乾燥重量に対するグルコラファサチン含量が総グルコシノレート量に対して、1/10以下、好ましくは1/100以下、さらに好ましくは1/1000以下であれば、グルコラファサチンが実質的に欠失している状態であると判定することができる。
 また、当該総グルコシノレート量に対する比率の指標と、上記グルコラファサチン含量の指標とを、両方合わせて判定指標とするとさらに好適である。
 ここで、グルコラファサチン及びグルコシノレート含量の測定は、常法によりHPLC分析等で行うことができる。
As another determination index, when the glucorafasatin synthase locus in radish is homozygous for the mutant gene of interest, the glucorafasatin content relative to the dry weight of the enlarged radish is the total glucosinolate. If the amount is 1/10 or less, preferably 1/100 or less, more preferably 1/1000 or less, it can be determined that glucorafasatin is substantially absent.
Further, it is more preferable that the ratio index with respect to the total glucosinolate amount and the index of the glucorafasatin content are combined as a determination index.
Here, the measurement of glucorafasatin and glucosinolate content can be carried out by HPLC analysis or the like by a conventional method.
 なお、最も好適には、ダイコンにおけるグルコラファサチン合成酵素遺伝子座が当該変異型遺伝子のホモ型となった場合に、肥大根部においてグルコラファサチンを全く含まない状態(完全に欠失した状態)となる機能欠損型遺伝子が最も好適である。 Most preferably, when the glucorafasatin synthase locus in radish is a homozygous form of the mutant gene, a state in which no glucorafasatin is contained in the hypertrophic root (completely deleted state) The function deficient gene is most preferred.
・蛋白質構造上の機能欠損
 グルコラファサチン合成酵素遺伝子が機能欠損型遺伝子となるためには、当該遺伝子のコード蛋白質を構成するアミノ酸配列に置換、欠失、挿入及び/又は付加を伴う変異を有することが必要である。具体的には、グルコラファサチン合成酵素遺伝子が「機能欠損型遺伝子」になるためには、当該遺伝子のコード蛋白質が、「2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメイン」の全部又は一部の欠失を伴う変異であることが好適である。
 ここで、「一部を欠失する変異」とは、当該ドメインを構成する97アミノ酸残基のうち1アミノ酸残基以上、好ましくは5アミノ酸残基以上、より好ましくは10アミノ酸残基以上の欠失を伴う変異を挙げることができる。特には、当該ドメインのC端側を構成する16アミノ酸残基以上、好ましくは32アミノ酸残基以上、より好ましくは48アミノ酸残基以上、さらに好ましくは64アミノ酸残基以上、特に好ましくは72アミノ酸残基以上の欠失を伴う変異である場合、当該遺伝子の機能欠損型の変異としてより好適である。
 なお、本発明においては、当該ドメインの全部を欠失する変異であることが最も好適である。「全部を欠失する変異」とは、当該ドメインを構成する97アミノ酸残基からなる領域について、当該ドメイン全領域の欠失を伴う変異を意味する。
・ Functional deficiency in protein structure In order for the glucorafasatin synthase gene to become a function deficient gene, the amino acid sequence constituting the coding protein of the gene has a mutation involving substitution, deletion, insertion and / or addition. It is necessary. Specifically, in order for the glucorafasatin synthase gene to become a “function-deficient gene”, the encoded protein of the gene is all or part of the “2 oxoglutarate-iron (II) -dependent oxygenase domain” It is preferable that the mutation be accompanied by deletion of.
Here, the “mutation that partially deletes” means a deletion of 1 amino acid residue or more, preferably 5 amino acid residues or more, more preferably 10 amino acid residues or more, out of 97 amino acid residues constituting the domain. Mutations with loss can be mentioned. In particular, 16 amino acid residues or more, preferably 32 amino acid residues or more, more preferably 48 amino acid residues or more, still more preferably 64 amino acid residues or more, particularly preferably 72 amino acid residues constituting the C-terminal side of the domain. In the case of a mutation involving deletion of more than one group, it is more suitable as a function-deficient mutation of the gene.
In the present invention, the mutation is most preferably a mutation that deletes the entire domain. The “mutation that deletes all” means a mutation that involves deletion of the entire domain of the domain consisting of 97 amino acid residues constituting the domain.
 当該変異が存在する部位としては、上記「ドメイン欠失」を伴う変異であれば、特に制限はないが、好ましくは第1エクソン又は第2エクソン内の変異、より好ましくは第1エクソン内の変異であることが好適である。
 当該「ドメイン欠失」を伴う変異の態様としては、具体的には、i) コーディング領域内の塩基配列に終止コドンの出現を伴う置換、挿入、又は欠失による変異、ii) 塩基配列の挿入変異であって当該挿入塩基配列上に終止コドンの出現を伴う変異、iii) フレームシフトにより終止コドンの出現を伴う挿入又は欠失による変異、などを挙げることができる。
The site where the mutation is present is not particularly limited as long as it is a mutation involving the above-mentioned “domain deletion”, but is preferably a mutation in the first exon or the second exon, more preferably a mutation in the first exon. It is preferable that
Specifically, mutations involving the “domain deletion” include i) mutation due to substitution, insertion, or deletion accompanied by the appearance of a stop codon in the base sequence within the coding region, and ii) insertion of the base sequence. Examples of the mutation include a mutation accompanied by the appearance of a stop codon on the inserted nucleotide sequence, and iii) a mutation caused by insertion or deletion accompanied by the appearance of a stop codon due to a frame shift.
・遺伝子発現の低減による遺伝子機能欠損
 本発明に係る機能欠損型グルコラファサチン合成酵素遺伝子は、コード蛋白質の構造的な機能欠損がやや不十分であると推測される場合であっても、その「遺伝子発現量」が大幅に低減されている場合には、機能欠損型遺伝子であると認められる。
 例えば、上記コーディング領域への変異が存在するものの、アミノ酸配列上での酵素機能の欠損がやや不十分であると推測される場合であっても、遺伝子発現量が著しく低下したものであれば、ダイコン植物体におけるグルコラファサチンが完全に又は実質的に欠失している状態となる。即ち、当該変異型遺伝子は、グルコラファサチン合成酵素遺伝子としては「機能欠損型遺伝子」となる。なお、ダイコン植物体においてグルコラファサチンが欠失又は実質的に欠失している状態とは、上記段落「2.機能欠損型グルコラファサチン合成酵素遺伝子」に記載した状態を指す。
-Gene function deficiency due to reduced gene expression The function-deficient glucorafasatin synthase gene according to the present invention has its structural function deficiency even if it is assumed that the structural protein deficiency is somewhat insufficient. When the “gene expression level” is greatly reduced, it is recognized as a function-deficient gene.
For example, although there is a mutation in the coding region, even if it is assumed that the lack of enzyme function on the amino acid sequence is somewhat insufficient, if the gene expression level is significantly reduced, Glucorafasatin in the radish plant is completely or substantially deleted. That is, the mutant gene is a “function-deficient gene” as a glucorafasatin synthase gene. In addition, the state in which glucorafasatin is deleted or substantially deleted in the radish plant refers to the state described in the above paragraph “2. function-deficient glucorafasatin synthase gene”.
 遺伝子発現量が大幅に低減された変異型遺伝子となるのは、エクソン内の「挿入変異」を有する変異型遺伝子の場合が好適である。この場合、転写されるmRNA長が長くなる程、遺伝子発現量自体が低下する傾向が認められる。例えば、少なくとも1kbpの挿入変異を有することで、遺伝子発現量が激減した遺伝子となる。挿入塩基長としては、lkbp以上、好ましくは1.2kbp以上、より好ましくは3kbp以上、さらに好ましくは5kbp以上、特に好ましくは8.8kbp以上、一層好ましくは9kbp以上を挙げることができる。
 なお、挿入配列の上限としては特に制限はないが、強いて挙げるならば、1000kbp以下、好ましくは500kbp以下、より好ましくは100kbp以下、さらに好ましくは50kbp以下を挙げることができる。
 例えば、グルコラファサチン合成酵素遺伝子の発現量を、品種「耐病総太り」(一般的なグルコシノレート組成である通常野生型)と比較した場合、約1.2kbpの挿入変異型遺伝子をホモ型で有するダイコン変異体では、遺伝子発現量は約1/40と激減する。
 特に、約9kbpの挿入変異型遺伝子のホモ型変異体では、約1/1000以下となり、遺伝子発現自体がほとんど起こらなくなる。当該変異体は、null変異体に近い状態となる。
A mutant gene having a gene expression level greatly reduced is preferably a mutant gene having an “insertion mutation” in an exon. In this case, it is recognized that the gene expression level tends to decrease as the transcribed mRNA length increases. For example, by having an insertion mutation of at least 1 kbp, the gene expression level is greatly reduced. Examples of the inserted base length include 1 kbp or more, preferably 1.2 kbp or more, more preferably 3 kbp or more, still more preferably 5 kbp or more, particularly preferably 8.8 kbp or more, and further preferably 9 kbp or more.
The upper limit of the inserted sequence is not particularly limited, but if it is strongly mentioned, it can be 1000 kbp or less, preferably 500 kbp or less, more preferably 100 kbp or less, and still more preferably 50 kbp or less.
For example, when the expression level of the glucorafasatin synthase gene is compared with the cultivar “Disease-resistant total fat” (usually wild type which is a general glucosinolate composition), an insertion mutant gene of about 1.2 kbp is homozygous. In the Japanese radish mutant, the gene expression level is drastically reduced to about 1/40.
In particular, a homozygous mutant of an insertion mutant gene of about 9 kbp is about 1/1000 or less, and gene expression hardly occurs. The mutant is close to the null mutant.
・変異数の範囲
 本発明に係る機能欠損型グルコラファサチン合成酵素遺伝子は、上記した「機能欠損」を伴う変異以外の変異についてもその存在を許容するものであるが、遺伝子における変異数の上限については、次のように変異の数の範囲を定義することができる。
-Range of the number of mutations The function-deficient glucorafasatin synthase gene according to the present invention allows the presence of mutations other than the mutations accompanied by the above-mentioned "function deficiency", but the upper limit of the number of mutations in the gene For, the range of the number of mutations can be defined as follows:
 当該「変異数」の範囲としては、配列番号2に記載の塩基配列と比較した場合において、配列番号2に記載の塩基配列からなる遺伝子の「コーディング領域に相当する領域」に存在する変異数が、一定数以下であると定義することができる。具体的には、当該変異型遺伝子における「コーディング領域に相当する領域」に存在する置換、挿入、及び/又は欠失による変異の数が、配列番号2に記載の塩基配列からなる遺伝子におけるコーディング領域、を構成する塩基数の5%以下、好ましくは4%以下、より好ましくは3%以下、さらに好ましくは2%以下、特に好ましくは1%以下、である数と定義することができる。 The range of the “number of mutations” includes the number of mutations present in the “region corresponding to the coding region” of the gene consisting of the base sequence described in SEQ ID NO: 2 when compared with the base sequence described in SEQ ID NO: 2. Can be defined to be less than a certain number. Specifically, the number of mutations due to substitution, insertion, and / or deletion present in the “region corresponding to the coding region” in the mutant gene is the coding region in the gene comprising the base sequence described in SEQ ID NO: 2 , 5% or less, preferably 4% or less, more preferably 3% or less, even more preferably 2% or less, and particularly preferably 1% or less.
 ここで、本明細書における「変異数」とは、変異が生じた数(即ち、変異が導入された回数)を指す数である。例えば、100bpの挿入配列が「1回」の挿入変異で導入された場合であれば、変異の数は「1」となる。一方、1bpの置換変異が独立して「10ヶ所」で導入されている場合であれば、変異の数は「10」となる。
 例えば、配列番号2に記載の塩基配列におけるコーディング領域(配列番号4)の塩基数は1119bpであるため、その5%に相当する数は約「56」となる。当該変異の全てがアミノ酸変異を伴う変異であると仮定した場合であっても、配列番号5に記載のアミノ酸配列(野生型グルコラファサチン合成酵素を構成するアミノ酸配列)に対して、約85%という高い配列相同性を有するアミノ酸配列の範囲に含まれるものとなる。
Here, the “number of mutations” in this specification is a number indicating the number of mutations (that is, the number of mutations introduced). For example, if a 100 bp insertion sequence is introduced by “one time” insertion mutation, the number of mutations is “1”. On the other hand, if the 1 bp substitution mutation is independently introduced at “10 sites”, the number of mutations is “10”.
For example, since the number of bases in the coding region (SEQ ID NO: 4) in the base sequence shown in SEQ ID NO: 2 is 1119 bp, the number corresponding to 5% thereof is about “56”. Even if it is assumed that all of the mutations are mutations involving amino acid mutations, about 85% of the amino acid sequence shown in SEQ ID NO: 5 (amino acid sequence constituting wild-type glucorafasatin synthase) It is included in the range of amino acid sequences having high sequence homology.
 また、本発明に係る機能欠損型グルコラファサチン合成酵素遺伝子の変異数の範囲は、上記のように定義するものであるが、遺伝子を構成するエクソン及びイントロン全体として、次のような定義を加えることもできる。
 具体的には、配列番号2に記載の塩基配列と比較した場合において、当該変異型遺伝子の「全領域」に存在する置換、挿入、欠失、及び/又は付加による変異の数が、配列番号2に記載の塩基配列を構成する塩基数の20%以下、好ましくは15%以下、より好ましくは10%以下、さらに好ましくは5%以下、特に好ましくは2%以下、一層好ましくは1%以下、である数と定義することができる。なお、ここで「変異数」とは、上記と同様の意味であり、変異が生じた数(即ち、変異が導入された回数)を指す。
In addition, the range of the number of mutations of the function-deficient glucorafasatin synthase gene according to the present invention is defined as described above. You can also.
Specifically, when compared with the base sequence described in SEQ ID NO: 2, the number of mutations due to substitution, insertion, deletion, and / or addition present in the “entire region” of the mutant gene is SEQ ID NO: 20% or less, preferably 15% or less, more preferably 10% or less, still more preferably 5% or less, particularly preferably 2% or less, more preferably 1% or less of the number of bases constituting the base sequence described in 2, Can be defined as a number. Here, the “number of mutations” has the same meaning as described above, and indicates the number of mutations (that is, the number of mutations introduced).
・機能欠損型遺伝子の具体例
 上記のような機能欠損型グルコラファサチン合成酵素遺伝子としては、後述する実施例に記載した機能欠損型の変異型遺伝子を挙げることができる。
 具体的には、配列番号7に記載の塩基配列を含むグルコラファサチン合成酵素遺伝子(NR154E型遺伝子)を挙げることができる。当該機能欠損型遺伝子は、野生型グルコラファサチン合成酵素遺伝子(配列番号2)の第557番目の塩基と第558番目の塩基の間に、約9kbpの挿入配列(配列番号7における第558番目から第9410番目までの塩基からなる塩基配列)が導入された変異を有し、インレームにて終止コドンが出現する変異型遺伝子である。コード蛋白質は、2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインを完全に欠失した構造を有する。
 また、配列番号9に記載の塩基配列を含むグルコラファサチン合成酵素遺伝子(MR050E型遺伝子)を挙げることもできる。当該機能欠損型遺伝子は、野生型グルコラファサチン合成酵素遺伝子(配列番号2)の第1243番目の塩基と第1244番目の塩基の間に、約1.2kbpの挿入配列(配列番号9における第1244番目から第2465番目までの塩基からなる塩基配列)が導入された変異を有し、インレームにて終止コドンが出現する変異型遺伝子である。コード蛋白質は、2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインのC端側16アミノ酸残基を欠失した構造を有する。
-Specific examples of function-deficient genes Examples of the function-deficient glucorafasatin synthase genes as described above include the function-deficient mutant genes described in the examples described later.
Specifically, the glucorafasatin synthase gene (NR154E type gene) including the base sequence set forth in SEQ ID NO: 7 can be exemplified. The function-deficient gene is an insertion sequence of about 9 kbp (from the 558th position in SEQ ID NO: 7) between the 557th base and the 558th base of the wild-type glucorafasatin synthase gene (SEQ ID NO: 2). This is a mutated gene having a mutation introduced in the base sequence consisting of the bases up to the 9410th position and having a stop codon appearing in the inframe. The encoded protein has a structure in which the 2oxoglutarate-iron (II) -dependent oxygenase domain is completely deleted.
Moreover, the glucorafasatin synthase gene (MR050E type gene) containing the base sequence of sequence number 9 can also be mentioned. The function-deficient gene is an approximately 1.2 kbp insertion sequence (1244 in SEQ ID NO: 9) between the 1243th base and 1244th base of the wild-type glucorafasatin synthase gene (SEQ ID NO: 2). (Mutant base sequence consisting of the 2nd to 2465th bases) is introduced, and is a mutant gene in which a stop codon appears in an inlay. The encoded protein has a structure in which 16 amino acid residues on the C-terminal side of the 2-oxoglutarate-iron (II) -dependent oxygenase domain are deleted.
3.遺伝子型判定用DNAマーカー
 本発明においては、ダイコンゲノム中におけるグルコラファサチン合成酵素遺伝子の「機能欠損を引き起こす変異」の存在を、グルコラファサチン合成酵素遺伝子の遺伝子型判定用のDNAマーカーとして利用することが可能となる。
 即ち、本発明においては、グルコラファサチン合成酵素遺伝子の機能欠損を引き起こす変異の有無を検出することによって、グルコラファサチン合成酵素遺伝子座における「遺伝子型」を高精度で判定することが可能となる。
3. DNA marker for genotyping In the present invention, the presence of a “mutation causing a functional defect” of the glucorafasatin synthase gene in the radish genome is used as a DNA marker for genotyping the glucorafasatin synthase gene. It becomes possible.
That is, in the present invention, it is possible to determine the “genotype” at the glucorafasatin synthase gene locus with high accuracy by detecting the presence or absence of a mutation that causes a functional defect of the glucorafasatin synthase gene. .
 当該機能欠損変異をDNAマーカーとして利用する場合、当該変異はグルコラファサチン合成酵素遺伝子内の変異そのものであるため、組換え分離によって対象遺伝子型と不一致となる現象は原理的に生じないと解される。即ち、グルコラファサチン合成酵素遺伝子の遺伝子型を、極めて高精度に判定することが可能となる。
 一方、連鎖マーカーであるSNP(一塩基多型)やSSR(マイクロサテライト多型)などの遺伝子型を指標とした場合では、極めて近接する領域のものを利用しない限りは、組換え分離によって、連鎖マーカー型と対象遺伝子型が一致しない場合がある。この場合、必ずしも正確な遺伝子型が判定できるとは限らない。
When the function-deficient mutation is used as a DNA marker, it is understood that in principle, a phenomenon that does not match the target genotype by recombination separation does not occur because the mutation is a mutation in the glucorafasatin synthase gene itself. The That is, the genotype of the glucorafasatin synthase gene can be determined with extremely high accuracy.
On the other hand, when using genotypes such as SNP (single nucleotide polymorphism) and SSR (microsatellite polymorphism) which are linkage markers as an index, unless the region in a very close region is used, linkage is performed by recombination separation. The marker type and target genotype may not match. In this case, an accurate genotype cannot always be determined.
 また、本発明においては、当該グルコラファサチン合成酵素遺伝子の遺伝子型を判定することによって、その遺伝子型を有する個体のグルコシノレート組成に関する「表現型」を、高精度で判定することができる。即ち、一般的な核酸検出技術を利用して遺伝子型を調べるのみで、対象のダイコン個体がグルコラファサチン欠失系統に属する個体であるか、又は、グルコラファサチン含有系統に属する個体であるかを、高い精度で識別することが可能となる。 Also, in the present invention, by determining the genotype of the glucorafasatin synthase gene, the “phenotype” relating to the glucosinolate composition of an individual having the genotype can be determined with high accuracy. That is, whether a target radish individual belongs to a glucorafasatin-deficient line or an individual belonging to a glucorafasatin-containing line simply by examining the genotype using a general nucleic acid detection technique Can be identified with high accuracy.
 当該機能欠損変異の検出手段としては、既存の核酸検出技術を利用することによって、容易に行うことが可能である。例えば、PCR法を利用した技術、ハイブリダイゼーション法を利用した技術、を利用することができる。また、プローブとプライマーを併用したリアルタイムPCR法、変異型と野生型の2種類のプローブを併用したドットブロット法、などの多型検出技術を利用することも可能である。また、制限酵素断片長多型、シーケンサーによる塩基配列決定、などによって、変異を検出することも可能である。 The function-deficient mutation can be easily detected by using an existing nucleic acid detection technique. For example, a technique using a PCR method and a technique using a hybridization method can be used. It is also possible to use a polymorphism detection technique such as a real-time PCR method using a probe and a primer in combination, or a dot blot method using a combination of a mutant type and a wild type probe. It is also possible to detect mutations by restriction enzyme fragment length polymorphism, sequencing by a sequencer, and the like.
[オリゴヌクレオチドプライマー]
 核酸検出技術によって当該機能欠損変異を検出するためには、オリゴヌクレオチドプライマーを用いたPCR法を利用する方法が有効である。
 本明細書中、「オリゴヌクレオチドプライマー」とは、デオキシヌクレオチドを重合させて合成したオリゴヌクレオチドであって、PCR反応におけるDNA伸長反応の起点として機能する、特定塩基配列に特異的にハイブリダイズする塩基配列で構成されるように設計された一本鎖DNAを指すものである。
[Oligonucleotide primer]
In order to detect the function-deficient mutation by a nucleic acid detection technique, a method using a PCR method using an oligonucleotide primer is effective.
In the present specification, an “oligonucleotide primer” is an oligonucleotide synthesized by polymerizing deoxynucleotides, which functions as a starting point for a DNA extension reaction in a PCR reaction and specifically hybridizes to a specific base sequence. It refers to a single-stranded DNA designed to be composed of sequences.
 当該オリゴヌクレオチドプライマーとしては、グルコラファサチン合成酵素遺伝子(機能欠損型遺伝子、野生型遺伝子)を構成する塩基配列又はその相補配列に含まれる塩基配列を、連続して少なくとも12塩基含むプライマーが好適である。好適な塩基長(塩基:mer)としては、当該塩基配列又はその相補配列に含まれる塩基配列を、連続して少なくとも12塩基以上、好ましくは15塩基以上、より好ましくは20塩基以上、さらに好ましくは25塩基以上含むプライマーであることが好適である。
 また、オリゴヌクレオチドプライマーの塩基長の上限としては、プライマーとして機能する範囲を逸脱しない内であれば特に制限はないが、例えばプライマー全長の塩基長が、200塩基以下、好ましくは100塩基以下、より好ましくは50塩基以下、のものを挙げることができる。
 また、配列特異的性を上げて、非特異的PCR増幅を下げるためには、プライマー対を形成するプライマーとのTm値を合わせた上で、塩基長の長い適切なプライマーを設計することが好適である。
 なお、オリゴヌクレオチドプライマーの5’端は、ベクター挿入等に利用するための制限酵素サイトや各種ベクター導入用の修飾塩基配列を付加したものであっても良い。また、蛍光物質や標識物質等を結合した形態のものであっても良い。
 また、オリゴヌクレオチドプライマーの3’端は、機能欠損型遺伝子を構成する塩基配列又はその相補配列と完全一致する塩基配列であることが好適である。
As the oligonucleotide primer, a primer comprising at least 12 bases in succession of a base sequence constituting a glucorafasatin synthase gene (function-deficient gene, wild type gene) or a base sequence included in its complementary sequence is suitable. is there. As a suitable base length (base: mer), the base sequence contained in the base sequence or its complementary sequence is continuously at least 12 bases, preferably 15 bases or more, more preferably 20 bases or more, further preferably A primer containing 25 or more bases is preferred.
The upper limit of the base length of the oligonucleotide primer is not particularly limited as long as it does not deviate from the range of functioning as a primer. For example, the base length of the entire primer length is 200 bases or less, preferably 100 bases or less. Preferably, those having 50 bases or less can be mentioned.
In addition, in order to increase sequence specificity and reduce non-specific PCR amplification, it is preferable to design an appropriate primer having a long base length after matching the Tm value with the primer forming the primer pair. It is.
The 5 ′ end of the oligonucleotide primer may be added with a restriction enzyme site for use in vector insertion or the like or a modified base sequence for introducing various vectors. Moreover, the thing of the form which couple | bonded the fluorescent substance, the labeling substance, etc. may be sufficient.
Moreover, it is preferable that the 3 ′ end of the oligonucleotide primer is a nucleotide sequence that completely matches the nucleotide sequence constituting the function-deficient gene or its complementary sequence.
・機能欠損型遺伝子検出用プライマーセット
 本発明では、機能欠損型グルコラファサチン合成酵素遺伝子の存在を特異的に検出可能なプライマーセットを設計することによって、機能欠損遺伝子を有する遺伝子型を判定することが可能となる。ここで、機能欠損型遺伝子の存在を検出可能なプライマーセットとしては、「機能欠損変異を含む塩基配列」又は「機能欠損変異を構成する塩基配列」を、PCR反応にて特異的に増幅可能なプライマー対(機能欠損型遺伝子検出用プライマー1及び2)からなるプライマーセットを指すものである。
-Primer set for detecting a function-deficient gene In the present invention, a genotype having a function-deficient gene is determined by designing a primer set that can specifically detect the presence of the function-deficient glucorafasatin synthase gene. Is possible. Here, as a primer set capable of detecting the presence of a function-deficient gene, “a base sequence including a function-deficient mutation” or “a base sequence constituting a function-deficient mutation” can be specifically amplified by a PCR reaction. This refers to a primer set consisting of a primer pair ( primers 1 and 2 for detecting a defective gene).
 PCR法を利用して当該機能欠損変異を検出するためのプライマーセットとしては、「機能欠損型遺伝子検出用プライマー1」を設計することが必要である。機能欠損型遺伝子検出用プライマー1は、当該機能欠損変異の「存在」を検出可能な塩基配列を含むオリゴヌクレオチドプライマーである。
 機能欠損型遺伝子検出用プライマー1の設計可能な位置は、下記(1)又は(2)に記載の条件を満たす限り、機能欠損型グルコラファサチン合成酵素遺伝子と同じ染色体上にあるゲノムDNA領域上であれば、如何なる領域にある塩基配列(当該領域を構成する塩基配列又はその相補配列)に設計することが可能である。即ち、機能欠損型グルコラファサチン合成酵素遺伝子の領域だけでなく、その周辺のプロモーターやスペーサー領域に設計することも可能である。
As a primer set for detecting the function-deficient mutation using the PCR method, it is necessary to design “function-deficient gene detection primer 1”. The function-deficient gene detection primer 1 is an oligonucleotide primer including a base sequence capable of detecting the “presence” of the function-deficient mutation.
As long as the conditions described in (1) or (2) below are satisfied, the designable position of the primer 1 for detecting a defective gene is on a genomic DNA region on the same chromosome as the functional defective glucorafasatin synthase gene. If so, it is possible to design a base sequence in any region (a base sequence constituting the region or a complementary sequence thereof). That is, it is possible to design not only the region of the function-deficient glucorafasatin synthase gene but also the promoter and spacer region around it.
 機能欠損型遺伝子検出用プライマー1としては、具体的には、(1)機能欠損型遺伝子に存在する「機能欠損型遺伝子に特異的な塩基配列」を含むプライマーを挙げることができる。即ち、当該プライマーは、野生型遺伝子には、ハイブリダイズしないプライマーとなる。この場合、機能欠損型遺伝子検出用プライマー2(後述)とのPCRを行うことで、機能欠損型遺伝子に対してはPCR増幅するが、野生型遺伝子が対してはPCR増幅産物が得られないプライマーセットとなる。例えば、i) 挿入変異の場合において、当該挿入変異上の塩基配列又はその相補配列、を含むプライマーを挙げることができる。また、ii) 置換、欠失、又は挿入変異の場合において、当該変異を配列内に含む塩基配列(好ましくは変異部位を3’端に有する塩基配列)、を含むプライマーを挙げることができる。即ち、これらのプライマーは、野生型遺伝子には、ハイブリダイズしないプライマーとなる。
 また、機能欠損型遺伝子検出用プライマー1としては、(2)機能欠損型遺伝子に挿入又は欠失による当該機能欠失変異がある場合において、「当該変異を挟む位置の一方」に設計したプライマーを挙げることができる。この場合、機能欠損型遺伝子検出用プライマー2とのPCRを行うことで、機能欠損型遺伝子と野生型遺伝子とで、異なる塩基長のPCR増幅産物が得られることになる。例えば、iii) 挿入又は欠失変異の場合における当該変異の5’側にある塩基配列、を含むプライマーを挙げることができる。
Specific examples of the primer 1 for detecting a function-deficient gene include (1) a primer containing a “base sequence specific to a function-deficient gene” present in the function-deficient gene. That is, the primer is a primer that does not hybridize to the wild type gene. In this case, PCR is performed on the function-deficient gene by performing PCR with the function-deficient gene detection primer 2 (described later), but the PCR amplification product is not obtained for the wild-type gene. Set. For example, in the case of i) an insertion mutation, a primer containing a base sequence on the insertion mutation or a complementary sequence thereof can be mentioned. In addition, in the case of ii) substitution, deletion, or insertion mutation, a primer including a base sequence containing the mutation in the sequence (preferably a base sequence having a mutation site at the 3 ′ end) can be mentioned. That is, these primers are primers that do not hybridize to the wild type gene.
In addition, as a primer 1 for detecting a function-deficient gene, (2) when there is a function-deficient mutation due to insertion or deletion in a function-deficient gene, a primer designed at “one of the positions sandwiching the mutation” Can be mentioned. In this case, PCR amplification products having different base lengths are obtained for the function-deficient gene and the wild-type gene by performing PCR with the primer 2 for detecting the function-deficient gene. For example, iii) a primer containing a base sequence on the 5 ′ side of the mutation in the case of an insertion or deletion mutation can be mentioned.
 なお、機能欠損型遺伝子検出用プライマー1を設計する領域としては、好ましくは、上記 i) の場合では、挿入配列と元々の遺伝子配列の境界に近接する5’側の領域に設計することが好適である。上記 ii) の場合では、当該変異がプライマー配列内の3’側(好ましくは3’端)に含まれるように、設計することが好適である。上記 iii) の場合では、当該機能欠損変異に近接する5’側の領域に設計することが好適である。 It should be noted that the region for designing the function-deficient gene detection primer 1 is preferably designed in the 5 ′ side region close to the boundary between the insertion sequence and the original gene sequence in the case of i). It is. In the case of ii) above, it is preferable to design the mutation so that the mutation is contained on the 3 'side (preferably at the 3' end) in the primer sequence. In the case of (iii) above, it is preferable to design in the 5 'region adjacent to the function-deficient mutation.
 PCR法により当該機能欠損型変異を検出するためには、「機能欠損型遺伝子検出用プライマー2」を設計することが必要である。機能欠損型遺伝子検出用プライマー2は、PCR反応において上記した機能欠損型遺伝子検出用プライマー1とプライマー対を形成可能な位置にある塩基配列、を含むオリゴヌクレオチドプライマーである。
 機能欠損型遺伝子検出用プライマー2を設計可能な領域としては、上記した機能欠損型遺伝子検出用プライマー1とプライマー対を形成して、PCR増幅が可能なダイコンゲノム領域であれば、機能欠損型遺伝子又は当該遺伝子と同じ染色体上にある領域(当該領域を構成する塩基配列又はその相補配列)に設計することが可能である。
 PCRの技術的な点を考慮すると、機能欠損型遺伝子検出用プライマー2を設計可能な領域としては、増幅産物の塩基長がPCR増幅に適した領域であることが好適である。具体的には、PCR増幅産物の塩基長(塩基対:bp)が、5kbp以下となる位置に、上記機能欠損型遺伝子検出用プライマー2を設計することが好適である。好ましくは、30bp~5kbp、好ましくは50bp~3kbp、より好ましくは75bp~2kbp、さらに好ましくは100bp~1.5kbp、となる塩基長が好適である。なお、増幅長があまりに長鎖になり過ぎるように設計した場合、PCR増幅産物が得られ難くなり好適でない。
In order to detect the function-deficient mutation by the PCR method, it is necessary to design “a primer 2 for detecting a function-deficient gene”. The function-deficient gene detection primer 2 is an oligonucleotide primer comprising the above-described function-deficient gene detection primer 1 and a base sequence in a position capable of forming a primer pair in the PCR reaction.
The region capable of designing the function-deficient gene detection primer 2 is a radish genome region that forms a primer pair with the above-described function-deficient gene detection primer 1 and is capable of PCR amplification. Alternatively, it is possible to design a region on the same chromosome as the gene (a base sequence constituting the region or a complementary sequence thereof).
In consideration of the technical point of PCR, it is preferable that the base length of the amplification product is a region suitable for PCR amplification as a region where the function-deficient gene detection primer 2 can be designed. Specifically, it is preferable to design the function-deficient gene detection primer 2 at a position where the base length (base pair: bp) of the PCR amplification product is 5 kbp or less. The base length is preferably 30 bp to 5 kbp, preferably 50 bp to 3 kbp, more preferably 75 bp to 2 kbp, and still more preferably 100 bp to 1.5 kbp. In addition, when the amplification length is designed to be too long, it is difficult to obtain a PCR amplification product, which is not preferable.
 機能欠損型遺伝子検出用プライマー1及び2を設計可能な領域としては、具体的には、NR154E型遺伝子の変異を検出する場合、上記条件を満たすようにして、配列番号1、2、又は7に記載の塩基配列又はその相補配列上に設計することができる。また、MR050E型遺伝子の変異を検出する場合、上記条件を満たすようにして、配列番号1、2、又は9に記載の塩基配列又はその相補配列上に、オリゴヌクレオチドプライマーを設計することができる。 Specifically, regions capable of designing the function-deficient gene detection primers 1 and 2 include SEQ ID NOs: 1, 2, or 7 so as to satisfy the above conditions when detecting mutations in the NR154E type gene. It can be designed on the described base sequence or its complementary sequence. In addition, when detecting a mutation in the MR050E type gene, an oligonucleotide primer can be designed on the base sequence described in SEQ ID NO: 1, 2, or 9 or its complementary sequence so as to satisfy the above conditions.
・野生型遺伝子検出用プライマーセット
 また、本発明では、野生型グルコラファサチン合成酵素遺伝子の存在を特異的に検出可能なプライマーセットをさらに設計することによって、より詳細な遺伝子型の判定が可能となる。ここで、野生型遺伝子を検出可能なプライマーとしては、野生型グルコラファサチン合成酵素遺伝子を構成する塩基配列をPCR反応にて特異的に増幅可能なプライマー対(野生型遺伝子検出用プライマー1及び2)、からなるプライマーセットを指すものである。
-Primer set for wild-type gene detection Further, in the present invention, by further designing a primer set capable of specifically detecting the presence of the wild-type glucorafasatin synthase gene, it is possible to determine the genotype in more detail. Become. Here, as a primer capable of detecting a wild type gene, a primer pair ( primers 1 and 2 for detecting a wild type gene) that can specifically amplify a base sequence constituting a wild type glucorafasatin synthase gene by PCR reaction. ), And a primer set.
 PCR法を利用して当該野生型遺伝子を特異的に検出するためのプライマーセットとしては、「野生型遺伝子検出用プライマー1」を設計することが必要である。野生型遺伝子検出用プライマー1は、当該機能欠損変異の「不存在」を検出可能な塩基配列を含むオリゴヌクレオチドプライマーである。
 野生型遺伝子検出用プライマー1の設計可能な位置は、下記(3)又は(4)に記載の条件を満たす限り、グルコラファサチン合成酵素遺伝子と同じ染色体上にあるゲノムDNA領域上であれば、如何なる領域にある塩基配列(当該領域を構成する塩基配列又はその相補配列)に設計することが可能である。即ち、野生型グルコラファサチン合成酵素遺伝子の領域だけでなく、その周辺のプロモーターやスペーサー領域に設計することも可能である。
As a primer set for specifically detecting the wild type gene using the PCR method, it is necessary to design “Primer 1 for detecting wild type gene”. The wild-type gene detection primer 1 is an oligonucleotide primer including a base sequence capable of detecting “absence” of the function-deficient mutation.
As long as the designable position of the wild-type gene detection primer 1 satisfies the conditions described in (3) or (4) below, if it is on a genomic DNA region on the same chromosome as the glucorafasatin synthase gene, It is possible to design a nucleotide sequence in any region (a nucleotide sequence constituting the region or a complementary sequence thereof). That is, it is possible to design not only the region of the wild-type glucorafasatin synthase gene but also the promoter and spacer region around it.
 野生型遺伝子検出用プライマー1としては、具体的には、(3)機能欠損型遺伝子には存在しない野生型に特異的な塩基配列を含むプライマーを挙げることができる。この場合、野生型遺伝子に対してはPCR増幅するが、機能欠損型遺伝子に対してはPCR増幅産物が得られないプライマーセットとなる。即ち、野生型遺伝子検出用プライマー2(後述)とのPCRを行うことで、野生型遺伝子に対してはPCR増幅するが、機能欠損型遺伝子に対してはPCR増幅産物が得られないプライマーセットとなる。例えば、機能欠損型遺伝子に置換、欠失、又は挿入による当該機能欠損変異が存在する場合において、当該機能欠損変異に対応する野生型部位を有する塩基配列(好ましくは、当該機能欠損に対応する野生型部位を3’端に有する塩基配列)、を含むプライマーを挙げることができる。即ち、機能欠損型変異を有する塩基配列とはハイブリダイズしないプライマーとなる。
 また、野生型遺伝子検出用プライマー1としては、(4)機能欠損型遺伝子に挿入又は欠失による当該機能欠失変異がある場合において、これに対応する野生型部位を挟む位置の一方に設計したプライマーを挙げることができる。この場合、野生型遺伝子検出用プライマー2とのPCRを行うことで、野生型遺伝子と機能欠損型遺伝子とで、異なる塩基長のPCR増幅産物が得られるプライマーセットとなる。例えば、機能欠損型遺伝子に挿入又は欠失変異が存在する場合において、当該機能欠損変異に対応する野生型部位の5’側にある塩基配列、を含むプライマーを挙げることができる。
Specific examples of the primer 1 for detecting a wild type gene include (3) a primer containing a base sequence specific to a wild type that does not exist in a function-deficient gene. In this case, the primer set is such that PCR amplification is performed for the wild-type gene but no PCR amplification product is obtained for the function-deficient gene. That is, by performing PCR with the wild-type gene detection primer 2 (described later), PCR amplification is performed for the wild-type gene, but no PCR amplification product is obtained for the function-deficient gene. Become. For example, when the function-deficient mutation is present in a function-deficient gene due to substitution, deletion, or insertion, a base sequence having a wild-type site corresponding to the function-deficient mutation (preferably, a wild-type corresponding to the function-deficient mutation) And a primer including a base sequence having a type site at the 3 ′ end. That is, the primer does not hybridize with a base sequence having a function-deficient mutation.
In addition, the wild-type gene detection primer 1 was designed at one of the positions sandwiching the corresponding wild-type site when there is a function-deficient mutation due to insertion or deletion in the function-deficient gene (4) A primer can be mentioned. In this case, by performing PCR with the wild-type gene detection primer 2, a primer set is obtained in which PCR amplification products having different base lengths are obtained between the wild-type gene and the function-deficient gene. For example, when an insertion or deletion mutation is present in the function-deficient gene, a primer including a base sequence on the 5 ′ side of the wild-type site corresponding to the function-deficient mutation can be exemplified.
 なお、野生型遺伝子検出用プライマー1を設計する領域としては、好ましくは、上記(3)の場合では、当該変異に対応する野生型部位が、プライマー配列内の3’側(好ましくは3’端)に含まれるように設計することが好適である。上記(4)の場合では、当該機能欠損変異に近接する5’側の領域に設計することが好適である。 In the case of (3) above, the region for designing the wild-type gene detection primer 1 is preferably the 3 ′ side (preferably the 3 ′ end) of the primer sequence corresponding to the mutation. It is preferable to design so as to be included in In the case of (4) above, it is preferable to design in the 5 'side region close to the function-deficient mutation.
 PCR法により当該野生型遺伝子を機能欠損型遺伝子と区別して検出するためには、「野生型遺伝子検出用プライマー2」を設計することが必要である。野生型遺伝子検出用プライマー2は、PCR反応において上記した野生型遺伝子検出用プライマー1とプライマー対を形成可能な位置にある塩基配列、を含むオリゴヌクレオチドプライマーである。
 野生型遺伝子検出用プライマー2を設計可能な領域としては、上記した野生型遺伝子検出用プライマー1とプライマー対を形成して、PCR増幅が可能なダイコンゲノム領域であれば、野生型遺伝子又は当該遺伝子と同じ染色体上にある領域(当該領域を構成する塩基配列又はその相補配列)を用いることができる。
In order to distinguish and detect the wild-type gene from the function-deficient gene by the PCR method, it is necessary to design the “wild-type gene detection primer 2”. The wild-type gene detection primer 2 is an oligonucleotide primer including the above-described wild-type gene detection primer 1 and a base sequence at a position where a primer pair can be formed in the PCR reaction.
The region where the wild type gene detection primer 2 can be designed is a wild type gene or the gene thereof as long as it is a radish genome region capable of PCR amplification by forming a primer pair with the wild type gene detection primer 1 described above. A region on the same chromosome as (a base sequence constituting the region or a complementary sequence thereof) can be used.
 PCRの技術的な点を考慮すると、野生型遺伝子検出用プライマー2を設計可能な領域としては、増幅産物の塩基長がPCR増幅に適した領域であることが好適である。具体的には、PCR増幅産物の塩基長(塩基対:bp)が、5kbp以下となる位置に、上記野生型遺伝子検出用プライマー2を設計することが好適である。好ましくは、30bp~5kbp、好ましくは50bp~3kbp、より好ましくは75bp~2kbp、さらに好ましくは100bp~1.5kbp、となる塩基長が好適である。なお、増幅長があまりに長鎖になりすぎるように設計した場合、PCR増幅産物が得られにくくなり好適でない。 Considering the technical point of PCR, it is preferable that the base length of the amplification product is a region suitable for PCR amplification as a region where the wild-type gene detection primer 2 can be designed. Specifically, it is preferable to design the wild-type gene detection primer 2 at a position where the base length (base pair: bp) of the PCR amplification product is 5 kbp or less. The base length is preferably 30 bp to 5 kbp, preferably 50 bp to 3 kbp, more preferably 75 bp to 2 kbp, and still more preferably 100 bp to 1.5 kbp. If the amplification length is designed to be too long, it is difficult to obtain a PCR amplification product, which is not preferable.
 野生型遺伝子検出用プライマー1及び2を設計可能な領域としては、具体的には、上記条件を満たすようにして、配列番号1又は2に記載の塩基配列又はその相補配列上に設計することができる。 Specifically, the region where the wild-type gene detection primers 1 and 2 can be designed may be designed on the base sequence described in SEQ ID NO: 1 or 2 or its complementary sequence so as to satisfy the above conditions. it can.
・PCR法による遺伝子型判定
 PCR法による遺伝子型判定を行うためには、対象ダイコン植物体におけるDNAを、PCR反応にて増幅可能な試料として調製することが必要である。プライマーセットの設計条件によっては、破砕試料や溶出試料等を用いることも可能であるが、好適には常法や市販キット等を用いてDNA抽出を行って、PCR反応に適した試料を調製することが望ましい。なお、PCR法は極めて感度が高い検出法であるため、調製する試料の量は微量(例えば、発芽直後のスプラウトの一部分)でも十分に分析に供することが可能である。また、試料調製に用いるダイコン植物体の組織は、DNAを含む如何なる組織であっても使用可能である。
-Genotyping by PCR method In order to perform genotyping by PCR method, it is necessary to prepare DNA in the target radish plant as a sample that can be amplified by PCR reaction. Depending on the design conditions of the primer set, it is possible to use a crushed sample, an elution sample, etc., but DNA extraction is preferably performed using a conventional method or a commercially available kit to prepare a sample suitable for PCR reaction It is desirable. Note that since the PCR method is a detection method with extremely high sensitivity, even a very small amount of sample to be prepared (for example, a part of a sprout immediately after germination) can be sufficiently subjected to analysis. The tissue of the radish plant used for sample preparation can be any tissue containing DNA.
 本発明においては、上記した「機能欠損型遺伝子検出用プライマー1及び2」を用いてPCR反応を行うことによって、対象であるダイコンのグルコラファサチン合成酵素遺伝子における「機能欠失変異」の存在を検出することが可能となり、この結果を基に遺伝子型を判定することができる。
 具体的には、上記(1)又は(2)に記載のプライマーセットを用いて機能欠損型遺伝子に特異的PCR増幅産物が得られた場合、対象ダイコンのグルコラファサチン合成酵素遺伝子座の遺伝子型は、「機能欠損型遺伝子を有する遺伝子型」であると判定することができる。即ち、この場合、対象であるダイコンの遺伝子型は、「機能欠損型遺伝子ホモ型」又は「ヘテロ型」(機能欠損型遺伝子/野生型遺伝子のヘテロ型)であると判定することができる。
 なお、上記(2)に記載のプライマーセットを用いた場合において、増幅産物の塩基長の設定が適正である場合、塩基長の違いによって「機能欠損型遺伝子ホモ型」と「ヘテロ型」の判別も可能となる。
 これらの遺伝子型であるダイコン個体は、そのゲノム中に機能欠損型グルコラファサチン合成酵素遺伝子を有する個体であるため、グルコラファサチン欠失系統を作出するための育種素材及び遺伝子資源として、有効に用いることができる。
In the present invention, by performing a PCR reaction using the above-mentioned “function-deficient gene detection primers 1 and 2”, the presence of “function-deficient mutation” in the glucorafasatin synthase gene of the target radish is detected. It becomes possible to detect the genotype based on this result.
Specifically, when a PCR amplification product specific for a function-deficient gene is obtained using the primer set described in (1) or (2) above, the genotype of the glucorafasatin synthase locus of the target radish Can be determined to be a “genotype having a function-deficient gene”. That is, in this case, the genotype of the target radish can be determined to be “function-deficient gene homotype” or “heterotype” (function-deficient gene / heterotype of wild-type gene).
In the case of using the primer set described in (2) above, if the base length of the amplification product is appropriate, the “function-deficient gene homotype” and “heterotype” are discriminated by the difference in base length. Is also possible.
Since the radish individuals of these genotypes are individuals having a function-deficient glucorafasatin synthase gene in their genome, they are effective as breeding materials and gene resources for creating glucorafasatin deficient lines. Can be used.
 また、さらに本発明においては、「野生型遺伝子検出用プライマー1及び2」を用いることによって、「機能欠損型遺伝子ホモ型」と「ヘテロ型」を区別して、より確実に検出することが可能となる。
 具体的には、上記(3)又は(4)に記載のプライマーセットを用いて野生型遺伝子に特異的PCR増幅産物が得られた場合、対象ダイコンのグルコラファサチン合成酵素遺伝子座の遺伝子型は、「野生型遺伝子を有する遺伝子型」であると判定することができる。即ち、この場合、対象であるダイコンの遺伝子型は、「野生型遺伝子ホモ型」又は「ヘテロ型」であると判定することができる。
 従って、本発明においては、「機能欠損型遺伝子検出用プライマー1及び2」と「野生型遺伝子検出用プライマー1及び2」の2対のプライマーセットを両方用いることによって、「機能欠損型遺伝子ホモ型」、「ヘテロ型」、及び「野生型遺伝子ホモ型」の3種類の遺伝子型を区別して、遺伝子型を高精度で判定することが可能となる。
Furthermore, in the present invention, by using “wild type gene detection primers 1 and 2”, it is possible to distinguish between “function deficient gene homotype” and “heterotype” and more reliably detect them. Become.
Specifically, when a PCR amplification product specific for the wild-type gene is obtained using the primer set described in (3) or (4) above, the genotype of the glucorafasatin synthase gene locus of the target radish is , “A genotype having a wild type gene”. That is, in this case, the genotype of the target radish can be determined to be “wild type gene homotype” or “heterotype”.
Therefore, in the present invention, by using both of the two primer sets of “function-deficient gene detection primers 1 and 2” and “wild-type gene detection primers 1 and 2”, “function-deficient gene homotype” It is possible to distinguish genotypes with high accuracy by distinguishing three types of genotypes, “heterotype” and “wild type gene homotype”.
 ここで、上記におけるPCR反応は、通常のPCR法により行うことが可能である。また、dNTPに標識物質を結合させて、PCR反応を行う方法も可能である。PCR反応後は、通常の手法(インターカレート法、蛍光検出法、発光検出法、発色検出法、抗体検出法、RI検出法など)によって、PCR増幅産物が得られているかを容易に検出することが可能である。簡便な方法としては、エチジウムブロマイド、蛍光物質等を用いて容易に検出が可能である。リアルタイムPCR装置を利用した手法を用いることも好適である。 Here, the PCR reaction described above can be performed by a normal PCR method. A method of performing a PCR reaction by binding a labeling substance to dNTP is also possible. After the PCR reaction, it is easily detected whether PCR amplification products are obtained by the usual methods (intercalation method, fluorescence detection method, luminescence detection method, color detection method, antibody detection method, RI detection method, etc.) It is possible. As a simple method, it can be easily detected using ethidium bromide, a fluorescent substance, or the like. It is also preferable to use a technique using a real-time PCR apparatus.
 本発明においては、「機能欠損型遺伝子検出用プライマー1及び2」と「野生型遺伝子検出用プライマー1及び2」の2対のプライマーセットを用いてPCRを行う場合、具体的には次に示す方法にてPCRを行うことが可能である。
 まず、i )第1の方法としては、プライマーセットごとに2つの反応液を調製して、それぞれ別途にPCR反応を行う方法を挙げることができる。この場合、それぞれの反応液を電気泳動し、増幅パターンを総合することで遺伝子型を判定することができる。
 また、ii)第2の方法としては、当該2対のプライマーセットを混合して1つの反応液として調製し、1回のPCRを行う方法を挙げることができる。この場合、1つのレーンにおける電気泳動後の増幅パターンから遺伝子型を判定することが可能となる。そのため、1検体につき1試料の調製のみで結果が得られ、検体数が極めて多い場合に有効である。しかし、当該方法においては、野生型遺伝子由来の増幅産物と機能欠損型遺伝子由来の増幅産物の間で、2種類の増幅産物の差異を区別できるようにする必要がある。例えば、増幅産物の塩基長の長さが異なるようにプライマーセットを設計する、プライマーに両者を区別可能な標識物質等をそれぞれに付与する、等の態様が必要となる。
 なお、各プライマーセットで検出可能な遺伝子型の例を表1に示した。
In the present invention, when PCR is carried out using two pairs of primer sets of “function-deficient gene detection primers 1 and 2” and “wild-type gene detection primers 1 and 2”, specifically, PCR can be performed by this method.
First, i) as the first method, there can be mentioned a method in which two reaction solutions are prepared for each primer set and PCR reaction is separately performed. In this case, the genotype can be determined by electrophoresis of each reaction solution and integrating the amplification patterns.
In addition, ii) as the second method, there can be mentioned a method in which the two pairs of primer sets are mixed to prepare one reaction solution, and one PCR is performed. In this case, the genotype can be determined from the amplification pattern after electrophoresis in one lane. Therefore, a result can be obtained only by preparing one sample for each sample, which is effective when the number of samples is very large. However, in this method, it is necessary to be able to distinguish a difference between two types of amplification products between an amplification product derived from a wild-type gene and an amplification product derived from a function-deficient gene. For example, it is necessary to design the primer sets so that the base lengths of the amplification products are different, or to add a labeling substance or the like that can distinguish the two to the primers.
Examples of genotypes that can be detected by each primer set are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、2対のプライマーセットの設計例の応用として、機能欠損型遺伝子検出用プライマー2と野生型遺伝子検出用プライマー2とを共用プライマーとするようにプライマーセットを設計することによって、2対のプライマーセットを3種類のプライマーのみで構成する態様を挙げることができる。この場合の具体的態様としては、「機能欠損型遺伝子検出用プライマー1」、前記プライマーとプライマー対を形成する「共通用プライマー(機能欠損型遺伝子検出用プライマー2であり且つ野生型遺伝子検出用プライマー2であるプライマー)」、及び前記共通用プライマーとプライマー対を形成する「野生型遺伝子検出用プライマー1」、の3種類のプライマーからなるプライマーセットを挙げることができる。 In addition, as an application of the design example of two pairs of primer sets, two pairs of primers are designed by designing the primer set so that the functional deficient gene detection primer 2 and the wild type gene detection primer 2 are shared. There can be mentioned an embodiment in which the set is composed of only three kinds of primers. Specific embodiments in this case include “function-deficient gene detection primer 1”, “primer for common use (primer for function-deficient gene detection and primer for wild-type gene detection that forms a primer pair with the primer”) 2), and “wild type gene detection primer 1” that forms a primer pair with the common primer.
[オリゴヌクレオチドプローブ]
 本発明において当該機能欠損変異を検出する手段としては、オリゴヌクレオチドプローブを用いた技術を利用する方法も有効である。
 本明細書中、「オリゴヌクレオチドプローブ」とは、デオキシヌクレオチド又はヌクレオチドを重合させて合成したオリゴヌクレオチドであって、特定塩基配列に特異的にハイブリダイズする塩基配列で構成された一本鎖核酸を指すものである。核酸分子種としてはDNA、RNAのいずれも利用することができる。また、モルフォリノオリゴなどの核酸類似物質を用いることもできる。
[Oligonucleotide probe]
In the present invention, a method using a technique using an oligonucleotide probe is also effective as a means for detecting the function-deficient mutation.
In this specification, an “oligonucleotide probe” is an oligonucleotide synthesized by polymerizing deoxynucleotides or nucleotides, and is a single-stranded nucleic acid composed of a base sequence that specifically hybridizes to a specific base sequence. It is what you point to. Either DNA or RNA can be used as the nucleic acid molecular species. In addition, nucleic acid analogs such as morpholino oligos can be used.
 ハイブリダイゼーション法により当該機能欠損型遺伝子を野生型遺伝子と区別して検出するためには、機能欠損変異の存在を特異的に検出可能なプローブを設計することが必要である。
 ここで、当該機能欠損変異を検出するためのプローブ(「機能欠損型遺伝子検出用プローブ」)としては、機能欠損型グルコラファサチン合成酵素遺伝子を構成する塩基配列又はその相補配列に含まれる塩基配列であって、当該機能欠損変異を特異的に検出可能な塩基配列を含むプローブを挙げることができる。
 具体的に、i) 挿入変異の場合において、当該挿入変異上の塩基配列又はその相補配列、を含むプローブを挙げることができる。当該態様の場合、野生型遺伝子とのミスハイブリを回避して、検出シグナルの特異性を担保するために、好ましくは野生型遺伝子に共通して存在する領域の塩基配列又はその相補配列を含まないプローブとすることが好適である。当該態様の場合、機能欠損型遺伝子に対しては特異的にハイブリダイゼーションするが、野生型遺伝子に対してはハイブリダイゼーションしないプローブとなる。
 また、当該プローブの別態様としては、ii) 置換、欠失、又は挿入変異の場合において、当該変異部位を含む塩基配列、を含むプローブを挙げることができる。当該態様の場合、機能欠損型遺伝子に対してはハイブリダイゼーションしやすいが、野生型遺伝子に対してはハイブリダイゼーションしにくいプローブとなる。
In order to distinguish and detect the function-deficient gene from the wild-type gene by the hybridization method, it is necessary to design a probe that can specifically detect the presence of the function-deficient mutation.
Here, as a probe for detecting the function-deficient mutation (“function-deficient gene detection probe”), a base sequence constituting a function-deficient glucorafasatin synthase gene or a base sequence included in its complementary sequence Thus, a probe including a base sequence capable of specifically detecting the function-deficient mutation can be exemplified.
Specifically, in the case of i) an insertion mutation, a probe including a base sequence on the insertion mutation or a complementary sequence thereof can be mentioned. In the case of this embodiment, in order to avoid mishybridization with the wild-type gene and ensure the specificity of the detection signal, it preferably does not include the base sequence of the region commonly present in the wild-type gene or its complementary sequence A probe is preferred. In this embodiment, the probe specifically hybridizes to a function-deficient gene but does not hybridize to a wild-type gene.
As another embodiment of the probe, there can be mentioned a probe containing ii) a base sequence containing the mutation site in the case of substitution, deletion, or insertion mutation. In the case of this embodiment, the probe is easy to hybridize to a function-deficient gene but difficult to hybridize to a wild-type gene.
 機能欠損型遺伝子検出用プローブと野生型遺伝子とのミスハイブリを回避し、検出感度を向上させる手段としては、マスキングプローブの使用を挙げることができる。ここで、「マスキングプローブ」とは、野生型遺伝子に特異的な塩基配列又はその相補配列を含むプローブであって、当該機能欠損変異に対応する野生型部位を含む塩基配列、を含むプローブを指すものである。
 当該マスキングプローブは、機能欠損型遺伝子検出用プローブよりも野生型遺伝子にハイブリダイズする親和性が高いため、機能欠損型遺伝子検出用プローブとマスキングプローブが競合する共存在下においては、機能欠損型遺伝子検出用プローブが野生型遺伝子にミスハイブリすることを顕著に抑制することが可能となる。特に、上記ii)に記載のプローブの場合、マスキングプローブの使用は極めて好適である。
As a means for avoiding mishybridization between the function-deficient gene detection probe and the wild-type gene and improving the detection sensitivity, use of a masking probe can be mentioned. Here, the “masking probe” refers to a probe including a base sequence specific to a wild-type gene or a complementary sequence thereof, and including a base sequence including a wild-type site corresponding to the function-deficient mutation. Is.
Since the masking probe has a higher affinity for hybridizing to the wild-type gene than the function-deficient gene detection probe, the function-deficient gene is present in the coexistence of the function-deficient gene detection probe and the masking probe. It becomes possible to remarkably suppress the detection probe from being mishybridized to the wild type gene. In particular, in the case of the probe described in ii) above, the use of a masking probe is very suitable.
 当該オリゴヌクレオチドプローブとしては、プローブの用途によって異なるが、グルコラファサチン合成酵素遺伝子(機能欠損型遺伝子、野生型遺伝子)を構成する塩基配列又はその相補配列と一致する塩基配列を、連続して少なくとも12塩基有するプローブが好適である。好適な塩基長(塩基:mer)としては、当該塩基配列又はその相補配列に含まれる塩基配列を、連続して少なくとも12塩基以上、好ましくは15塩基以上、より好ましくは20塩基以上、さらに好ましくは25塩基以上、含むプローブであることが好適である。
 また、オリゴヌクレオチドプローブの塩基長の上限としては、挿入配列の塩基長自体を上限とすることもできるが、例えば、1000塩基以下、好ましくは500塩基以下、より好ましくは100塩基以下を挙げることができる。
 また、ドットブロット法、TaqMan(R)プローブ法、マイクロアレイ法などによって、1~数塩基の相違を検出するのであれば、検出感度を担保するために、上限値が短い鎖とした方が好適である。この場合の上限値としては、200塩基以下、好ましくは100塩基以下、より好ましくは50塩基以下程度の短いプローブとすることが好適である。
 また、オリゴヌクレオチドプローブの5’端や3’端は、検出用の蛍光物質や標識物質等を結合したものを好適に用いることができる。また、プローブ合成時に、dNTPやNTPに標識物質を結合させたものをプローブ構成塩基として取り込ませて用いることもできる。
The oligonucleotide probe varies depending on the use of the probe, but at least a base sequence that constitutes a glucorafasatin synthase gene (function-deficient gene, wild-type gene) or a complementary sequence thereof is continuously at least. A probe having 12 bases is preferred. As a suitable base length (base: mer), the base sequence contained in the base sequence or its complementary sequence is continuously at least 12 bases, preferably 15 bases or more, more preferably 20 bases or more, further preferably A probe containing 25 bases or more is preferred.
The upper limit of the base length of the oligonucleotide probe may be the upper limit of the base length itself of the inserted sequence. For example, it may be 1000 bases or less, preferably 500 bases or less, more preferably 100 bases or less. it can.
If a difference of one to several bases is detected by dot blot method, TaqMan (R) probe method, microarray method, etc., it is preferable to use a chain with a short upper limit value to ensure detection sensitivity. is there. In this case, the upper limit is preferably a short probe of about 200 bases or less, preferably 100 bases or less, more preferably about 50 bases or less.
In addition, the 5 ′ end or 3 ′ end of the oligonucleotide probe can be suitably used by binding a fluorescent substance for detection, a labeling substance or the like. Further, at the time of probe synthesis, dNTP or NTP bound with a labeling substance can be incorporated and used as a probe constituent base.
・オリゴヌクレオチドプローブを用いた遺伝子型判定
 プローブを用いた遺伝子型判定を行うためには、対象ダイコン植物体におけるDNAを鋳型としたPCR反応が可能な試料を調製することが必要である。
 ハイブリダイゼーションの条件によっては、破砕試料や溶出試料等を用いることも可能であるが、具体的には、常法や市販キット等を用いてDNA抽出を行って、ハイブリダイゼーション反応に適した試料を調製することが望ましい。なお、ハイブリダイゼーション法は極めて感度が高い検出法であるため、調製する試料の量は微量(例えば、発芽直後のスプラウトの一部分)でも十分に分析に供することが可能である。また、試料調製に用いるダイコン植物体の組織は、DNAを含む如何なる組織であっても使用可能である。
 シグナルの検出法としては、通常の手法(インターカレート法、蛍光検出法、発光検出法、発色検出法、抗体検出法、RI検出法など)によって、特異的なハイブリダイゼーションシグナルが得られているかを容易に検出することが可能である。好ましくは、プローブ自体に蛍光物質や標識物質を結合して、ハイブリダイズしたプローブのシグナルを特異的に検出する方法が好適である。
-Genotyping using oligonucleotide probes In order to perform genotyping using probes, it is necessary to prepare a sample capable of PCR reaction using DNA in the target radish plant as a template.
Depending on the hybridization conditions, it is possible to use a disrupted sample or an elution sample. Specifically, a DNA sample is extracted using a conventional method or a commercially available kit to obtain a sample suitable for the hybridization reaction. It is desirable to prepare. Note that since the hybridization method is a detection method with extremely high sensitivity, even a trace amount of sample to be prepared (for example, a part of a sprout immediately after germination) can be sufficiently subjected to analysis. The tissue of the radish plant used for sample preparation can be any tissue containing DNA.
As a signal detection method, is a specific hybridization signal obtained by a conventional method (intercalation method, fluorescence detection method, luminescence detection method, color detection method, antibody detection method, RI detection method, etc.)? Can be easily detected. Preferably, a method in which a fluorescent substance or a labeling substance is bound to the probe itself and the signal of the hybridized probe is specifically detected is suitable.
 本発明においては、上記機能欠損型遺伝子検出用プローブを用いて機能欠損型遺伝子に特異的なシグナルが得られた場合、対象ダイコンのグルコラファサチン合成酵素遺伝子座の遺伝子型は、「機能欠損型遺伝子を有する遺伝子型」であると判定することができる。即ち、この場合、対象であるダイコンの遺伝子型は、「機能欠損型遺伝子ホモ型」又は「ヘテロ型」であると判定することができる。
 これらの遺伝子型であるダイコン個体は、当該ゲノム中に機能欠損型グルコラファサチン合成酵素遺伝子を有する個体であるため、グルコラファサチン欠失系統を作出するための育種素材及び遺伝子資源として、有効に用いることができる。
In the present invention, when a signal specific to a function-deficient gene is obtained using the probe for detecting a function-deficient gene, the genotype of the glucorafasatin synthase locus of the target radish is “function-deficient type”. It can be determined that the genotype has a gene. That is, in this case, the genotype of the target radish can be determined to be “function-deficient gene homotype” or “heterotype”.
Since the radish individuals of these genotypes have the function-deficient glucorafasatin synthase gene in the genome, they are effective as breeding materials and genetic resources for creating glucorafasatin deficient lines. Can be used.
[近接領域連鎖マーカーの利用]
 本発明においては、グルコラファサチン合成酵素遺伝子と分離が生じ得ないような極めて近接な領域に存在する連鎖マーカー(SNP、SSRなど)については、グルコラファサチン合成酵素遺伝子の変異の有無の検出に利用することが可能である。即ち、当該近接領域連鎖マーカーについては、当該遺伝子座の「機能欠損変異の有無」を間接的であるが比較的精度良く検出して、グルコラファサチン合成酵素遺伝子座の遺伝子型を判定することが可能となる。
[Use of proximity region linkage marker]
In the present invention, a linkage marker (SNP, SSR, etc.) present in a very close region that cannot be separated from the glucorafasatin synthase gene is used to detect the presence or absence of a mutation in the glucorafasatin synthase gene. It is possible to use. That is, for the adjacent region linkage marker, the presence or absence of “function-deficient mutation” of the locus can be indirectly detected with relatively high accuracy, and the genotype of the glucorafasatin synthase locus can be determined. It becomes possible.
 このような近接領域として、具体的には、グルコラファサチン合成酵素遺伝子の3’側及び5’側のそれぞれに近接する200kbp以内、好ましくは100kbp以内、より好ましくは75kbp以内、さらに好ましくは50kbp以内、特に好ましくは20kbp以内、一層好ましくは10kbp以内の領域を挙げることができる。このようなグルコラファサチン合成酵素遺伝子座と極めて近接する領域にある連鎖マーカーであれば、組換えによるグルコラファサチン合成酵素遺伝子との分離は極めて生じ難いため、連鎖マーカー型から当該機能欠損型変異の有無を判定することができる。この点は、ポジショナルクローニング法により近傍連鎖マーカーを利用するためには、大規模な分離集団を用いた高精度連鎖解析が必要となる点からも支持される知見である。
 当該近接領域に存在する連鎖マーカー型の検出は、PCR法を利用した技術、ハイブリダイゼーション法を利用した技術、を利用することができる。また、プローブとプライマーを併用したリアルタイムPCR法、変異型と野生型の2種類のプローブを併用したドットブロット法、などの多型検出技術を利用することも可能である。また、制限酵素断片長多型、シーケンサーによる塩基配列決定、などによって、マーカー型を検出することも可能である。
Specifically, such a proximity region is within 200 kbp, preferably within 100 kbp, more preferably within 75 kbp, and even more preferably within 50 kbp adjacent to each of the 3 ′ side and 5 ′ side of the glucorafasatin synthase gene. Particularly preferred is a region within 20 kbp, more preferably within 10 kbp. If such a linked marker is located in a region very close to the glucorafasatin synthase gene locus, separation from the glucorafasatin synthase gene by recombination is extremely difficult. The presence or absence of can be determined. This is a finding that is supported by the fact that in order to use a nearby linkage marker by the positional cloning method, a high-precision linkage analysis using a large-scale segregated population is required.
The detection of the linked marker type existing in the adjacent region can be performed using a technique using a PCR method or a technique using a hybridization method. It is also possible to use a polymorphism detection technique such as a real-time PCR method using a probe and a primer in combination, or a dot blot method using a combination of a mutant type and a wild type probe. It is also possible to detect the marker type by restriction enzyme fragment length polymorphism, base sequence determination by a sequencer, and the like.
 当該近接領域連鎖マーカーとしては、一例として挙げると、後述するNR154E系統又は当該系統に由来する系統の場合であれば、実施例1(6)に記載の連鎖マーカーを用いることが可能である。但し、NR154E系統以外の別系統(例えば、MR050E系統など)において機能欠失型遺伝子を検出する場合であれば、各変異系統に特異的な近傍連鎖マーカーを探索して、利用することが必要となる。 As an example of the proximity region linkage marker, the linkage marker described in Example 1 (6) can be used in the case of the NR154E strain described later or a strain derived from the strain. However, in the case of detecting a loss-of-function gene in another line other than the NR154E line (for example, MR050E line), it is necessary to search for and use a nearby linked marker specific to each mutant line. Become.
[系統識別]
 本発明においては、グルコラファサチン合成酵素遺伝子座の遺伝子型を判定することによって、その判定した遺伝子型情報を用いて、グルコラファサチン含有性又は欠失性に関する表現型を識別することが可能となる。ここで、当該遺伝子型は、グルコラファサチン合成酵素遺伝子そのものの変異を指標としているため、通常の連鎖マーカー(上記、近接領域連鎖マーカーを除く)を利用した方法とは異なり、グルコラファサチン欠失性を示す表現型の高精度での識別及び選抜が可能となる。
 また、勿論であるが、当該機能欠損型の変異をDNAマーカーとして利用した場合の方が、原理的に上記近傍連鎖マーカーよりも正確な識別及び選抜が可能となる。
[System identification]
In the present invention, by determining the genotype of the glucorafasatin synthase gene locus, it is possible to identify the phenotype related to glucorafasatin-containing or deficiency using the determined genotype information. Become. Here, since the genotype uses the mutation of the glucorafasatin synthase gene itself as an index, unlike a method using a normal linkage marker (excluding the above-mentioned proximity region linkage marker), the glucorafasatin deletion It is possible to identify and select a phenotype exhibiting sex with high accuracy.
Of course, when the function-deficient mutation is used as a DNA marker, in principle, more accurate identification and selection are possible than the above-mentioned nearby linked marker.
 グルコラファサチン欠失性は劣性遺伝子によるものであるため、遺伝子型と表現型の関係は次のようになる。
 具体的には、当該遺伝子型が「野生型遺伝子ホモ型」及び「ヘテロ型」を示す遺伝子型である場合、そのダイコン個体は、他のグルコラファサチン代謝を司る遺伝子にグルコラファサチンを欠失させる変異が生じていない限り、その表現型はグルコラファサチン含有性を示す表現型となる。
 一方、当該遺伝子型が「機能欠損型遺伝子ホモ型」の場合、グルコラファサチン欠失性を示す表現型となる。
Since glucorafasatin deficiency is due to a recessive gene, the relationship between genotype and phenotype is as follows.
Specifically, when the genotype is a genotype indicating “wild type gene homotype” and “heterotype”, the radish individual lacks glucorafasatin in the gene responsible for other glucorafasatin metabolism As long as there is no mutation to cause, the phenotype is a phenotype exhibiting glucorafasatin content.
On the other hand, when the genotype is a “function-deficient gene homotype”, it becomes a phenotype exhibiting glucorafasatin deficiency.
 以上に示すように、本発明においては、上記プライマーセット及び/又はプローブを用いて遺伝子型の判定を行うことによって、当該遺伝子型に起因する「グルコラファサチン欠失系統」を高精度で識別することが可能となる。 As described above, in the present invention, by performing genotype determination using the above primer set and / or probe, a “glucorafasatin deficient strain” resulting from the genotype is identified with high accuracy. It becomes possible.
[遺伝子型判定用キット、系統識別用キット]
 本発明においては、上記オリゴヌクレオチドプライマーセット及び/又はオリゴヌクレオチドプローブを含むキットを、グルコラファサチン合成酵素遺伝子座の遺伝子型判定用キットとすることができる。当該キットは、PCR反応用試薬、ハイブリダイゼーション反応用試薬、検出用試薬等、を含めた製品形態のキットとすることもできる。
 また、上記オリゴヌクレオチドプライマーセット及び/又はオリゴヌクレオチドプローブを、メンブレンや濾紙等のセルロース担体、ガラスチップ等の基盤担体、合成樹脂等のカラム担体などに固定して、簡易に遺伝子型判定が可能な製品形態とすることもできる。
 さらに、当該遺伝子型判定キットは、系統識別用キットとして、グルコラファサチン欠失系統識別用キットの製品形態とすることも可能である。
[Genotyping kit, strain identification kit]
In the present invention, the kit containing the oligonucleotide primer set and / or the oligonucleotide probe can be used as a genotype determination kit for the glucorafasatin synthase gene locus. The kit may be a product kit including a PCR reaction reagent, a hybridization reaction reagent, a detection reagent, and the like.
The oligonucleotide primer set and / or oligonucleotide probe can be fixed to a cellulose carrier such as a membrane or filter paper, a base carrier such as a glass chip, a column carrier such as a synthetic resin, etc., and genotype determination can be easily performed. It can also be a product form.
Further, the genotyping kit may be a product form of a glucorafasatin-deficient strain identification kit as a strain identification kit.
4.機能欠損型遺伝子をホモ型で有するダイコン系統
 ダイコンゲノムにおいて、グルコラファサチン合成酵素遺伝子座に上記した機能欠損型遺伝子を「ホモ型」で有する個体は、グルコシノレート組成がグルコラファサチン欠失性を示すダイコンとなる。
 ここで、「グルコラファサチン欠失性」とは、ダイコン植物体においてグルコラファサチンが欠失又は実質的に欠失している性質を指す。具体的には、上記段落「2.機能欠損型グルコラファサチン合成酵素遺伝子」に記載したグルコラファサチン含量及び/又はグルコシノレート組成である性質を指す。
 なお、当該遺伝子座において、当該機能欠損型遺伝子と野生型遺伝子の組み合わせで有する個体(機能欠損型遺伝子/野生型遺伝子のヘテロ型個体)では、「グルコラファサチン欠失性」を示す個体にはならず、通常野生型のグルコシノレート組成である「グルコラファサチン含有性」の表現型を示す個体となる。
4). In radish genomes with homozygous dysfunctional genes, individuals with the glucorafasatin synthase locus at the glucorafasatin synthase locus as “homotypes” have an glucosinolate composition that lacks glucorafasatin It becomes a radish showing.
Here, “glucorafasatin deficiency” refers to the property that glucorafasatin is deleted or substantially deleted in a radish plant. Specifically, it refers to the property of the glucorafasatin content and / or glucosinolate composition described in the above paragraph “2. Function-deficient glucorafasatin synthase gene”.
In addition, in individuals having a combination of the function-deficient gene and the wild-type gene at the locus (function-deficient gene / heterotype individual of the wild-type gene), an individual exhibiting “glucorafasatin deficiency” In other words, it becomes an individual exhibiting a “glucorafasatin-containing” phenotype, which is usually a wild-type glucosinolate composition.
 ここで、グルコラファサチン合成酵素遺伝子座に当該機能欠損型遺伝子をホモ型に有することにすることが可能な「ダイコン(ダイコン植物)」とは、一般的なRaphanus sativusに属する植物種であれば、いずれの品種系統のものを挙げることができる。具体的には、日本ダイコン(R. sativus var. longipinnatus)、ハツカダイコン(R. sativus var. sativus)、クロダイコン(R. sativus var. niger)等を挙げることができる。より具体的には、日本ダイコン(R. sativus var. longipinnatus)に属する品種系統を挙げることができる。
 なお、ダイコンゲノムにおけるグルコラファサチン合成酵素遺伝子座の数は、単一遺伝子座であると認められる。また、当該遺伝子に対して機能相補性や冗長性を示す極めて高い相同性を示す遺伝子の存在は確認されていない。
 なお、通常のダイコンは二倍体であるが、染色体の倍数体化(例えば複二倍体化、四倍体化等)が生じた品種系統である場合、当該遺伝子座における全ての遺伝子が機能欠損型遺伝子になる(ホモ型になる)ようにすることで、グルコラファサチン欠失性の表現型を示すダイコンとなる。
Here, the “radish plant” that can be homozygous for the function-deficient gene at the glucorafasatin synthase locus is a plant species belonging to the general Raphanus sativus. , Any cultivar line can be mentioned. Specific examples include Japanese radish (R. sativus var. Longipinnatus), Japanese radish (R. sativus var. Sativus), black radish (R. sativus var. Niger), and the like. More specifically, a variety line belonging to Japanese radish (R. sativus var. Longipinnatus) can be mentioned.
Note that the number of glucorafasatin synthase loci in the radish genome is recognized as a single locus. In addition, the existence of a gene showing extremely high homology showing functional complementarity and redundancy to the gene has not been confirmed.
In addition, normal radish is diploid, but if it is a cultivar line in which chromosome polyploidization (for example, double diploidization, tetraploidization, etc.) has occurred, all genes at the gene locus function. By making it a deficient gene (being a homozygous gene), it becomes a radish showing a glucorafasatin deficient phenotype.
[機能欠損型遺伝子ホモ型系統の作出困難性]
 本発明者らが見出したグルコラファサチン欠失性を誘起する原因遺伝子は、NR154E系統を用いたポジショナルクローニング法(連鎖解析及び高精度連鎖解析)、定量的発現解析、機能獲得型遺伝子導入試験、遺伝子配列解析、等を駆使して同定された、グルコラファサチン欠失性を誘起する原因遺伝子である。当該原因遺伝子の野生型遺伝子は、グルコラファサチンの合成反応に関与する酵素をコードする遺伝子である。
[Difficulty of creating homozygous strains with deficient genes]
The causative gene that induces the glucorafasatin deficiency discovered by the present inventors is a positional cloning method (linkage analysis and high-precision linkage analysis) using the NR154E strain, quantitative expression analysis, gain-of-function gene transfer test, It is a causative gene that induces glucorafasatin deficiency, identified by gene sequence analysis. The wild type gene of the causative gene is a gene encoding an enzyme involved in the synthesis reaction of glucorafasatin.
 NR154E系統は、品種「西町理想」(通常野生型のグルコシノレート組成を示す品種)を原集団として、人為的な自殖操作及びグルコシノレート組成を指標とする優良個体の選抜を繰り返して行うことによって、作出された系統のうちの1系統である。具体的には、ゲノム中のグルコラファサチン合成酵素遺伝子座に、配列番号7に記載の塩基配列を含む遺伝子をホモ型で有するダイコン系統である。
 なお、原集団である品種「西町理想」は、通常野生型のグルコラファサチン含有性を示す品種であり、グルコラファサチン欠失性を示すことは知られていない。NR154E系統は、品種「西町理想」の人為的な栽培集団内において生じた当該機能欠損型の突然変異遺伝子を「ホモ型」で有する個体について、自殖操作と集団内からグルコラファサチン含量を指標として選抜することによってはじめて得られた系統である。
In the NR154E line, the breeding “Nishimachi Ideal” (generally showing a wild-type glucosinolate composition) is used as an original population, and artificial self-propagation and selection of excellent individuals using glucosinolate composition as an index is repeated. This is one of the created lines. Specifically, it is a radish system having a homozygous gene containing the nucleotide sequence set forth in SEQ ID NO: 7 at the glucorafasatin synthase locus in the genome.
The original cultivar “Nishimachi Ideal” is a variety that normally contains wild-type glucorafasatin, and is not known to exhibit glucorafasatin deficiency. The NR154E strain is an indicator of self-breeding operations and glucorafasatin content from within the population of individuals who have a homozygous mutant gene of the function deficiency that has occurred in an artificially cultivated population of the variety “Nishimachi Ideal” It is the system obtained for the first time by selecting as.
 ここで、ダイコンの「自殖操作」とは、人為的な隔離操作を行って、開花前の自家不和合性のみられない一定期間内に自家花粉を受粉させ、得られた集団からグルコラファサチン欠失性を示す個体を選抜する操作を行う工程である。なお、ダイコンの自家受粉は、自由交配の状態では起こり難い現象である。
 また、「グルコラファサチン欠失性」という表現型は、植物体の外形では判別できない内在成分に係るグルコシノレート組成に関する形質であるため、当該含量を指標とした表現型判定を行うためには、HPLC分析等により行うことが必要となる。即ち、ダイコンの形態(形状、色彩等)を見ても、当該表現型を判定することはできない。
 これらの点から明らかなように、当該「グルコラファサチン欠失性」という形質を集団内で固定するためには、HPLC分析等で各個体のグルコシノレート含量を測定した上で、人為的に自殖操作及び選抜操作を行うことが必要であると認められる。
Here, “self-breeding operation” of Japanese radish is an artificial isolation operation to pollinate self-pollen within a certain period of time before self-incompatibility before flowering. It is a step of performing an operation of selecting individuals exhibiting a deletion property. In addition, Japanese radish self-pollination is a phenomenon that is unlikely to occur under free mating conditions.
In addition, the phenotype of “glucorafasatin deficiency” is a trait related to the glucosinolate composition related to the endogenous component that cannot be distinguished from the outline of the plant body. It is necessary to carry out by HPLC analysis or the like. That is, the expression type cannot be determined by looking at the form of radish (shape, color, etc.).
As is clear from these points, in order to fix the trait called “glucorafasatin deficiency” within a population, after measuring the glucosinolate content of each individual by HPLC analysis or the like, It is recognized that it is necessary to perform selfing and selection operations.
 なお、本発明者らは、本発明に係る研究を開始するにあたり、世界中で保存されているダイコン遺伝子資源「650品種系統以上」を対象にして、グルコラファサチン欠失性を示す品種系統の探索を網羅的に行ったが、「グルコラファサチン欠失性」を示す形質が集団内に固定されたダイコン品種系統は見出されなかった。
 従来品種系統において、グルコラファサチン欠失系統(具体的には当該機能欠損型遺伝子をホモ型で有するダイコン系統を含む集団)が見いだされなかった理由としては、次の理由が考えられる。即ち、ダイコンでは、i)通常の状態では本発明に係る劣性突然変異が生じにくく、ii)また、劣性突然変異型遺伝子は、集団内に広がる前に淘汰され消滅していた可能性が考えられる。
In order to start research related to the present invention, the present inventors have targeted radish gene resources "more than 650 varieties" that are conserved all over the world. Although exhaustive search was conducted, no radish cultivar line was found in which the trait indicating “glucorafasatin deficiency” was fixed in the population.
The reason why the glucorafasatin-deficient line (specifically, the group including the radish line having the homologous function-deficient gene) was not found in the conventional variety lines is considered as follows. That is, in radish, i) it is difficult for the recessive mutation according to the present invention to occur in a normal state, and ii) the recessive mutation type gene may have been deceived and disappeared before spreading in the population. .
[グルコラファサチン欠失性を誘起する作用機序]
 本発明におけるグルコラファサチン欠失性ダイコン系統は、グルコラファサチン合成酵素遺伝子座に機能欠損型遺伝子をホモ型で有すること(作用機序)によって、グルコラファサチン欠失性を示すようになったダイコン系統である。
 例えば、NR154E系統は、グルコラファサチン合成酵素遺伝子の第1エクソンに機能欠損型変異を有する遺伝子(配列番号7に記載の塩基配列を含む遺伝子)をホモ型で有するダイコン系統である。また、MR050E系統は、グルコラファサチン合成酵素遺伝子の第3エクソンに機能欠損型変異を有する遺伝子(配列番号9に記載の塩基配列を含む遺伝子)をホモ型で有するダイコン系統である。
[Mechanism to induce glucorafasatin deficiency]
The glucorafasatin-deficient radish line according to the present invention has a glucorafasatin-deficiency by having a homozygous function-deficient gene at the glucorafasatin synthase locus (action mechanism). It is a radish system.
For example, the NR154E strain is a radish strain having a homozygous gene having a function-deficient mutation in the first exon of the glucorafasatin synthase gene (a gene containing the base sequence described in SEQ ID NO: 7). The MR050E strain is a radish strain having a homozygous gene having a function-deficient mutation in the third exon of the glucorafasatin synthase gene (a gene containing the base sequence described in SEQ ID NO: 9).
 ここで、ダイコンにおけるグルコラファサチン代謝(合成や分解等)に関与する遺伝的因子は、原理的には、本発明に係るグルコラファサチン合成酵素遺伝子以外にも複数存在すると考えられる。具体的には、当該遺伝子とは別途にグルコラファサチンの合成・生成に関与する遺伝子、当該グルコラファサチン合成酵素遺伝子の発現調節を行う遺伝子、グルコラファサチンの分解反応に関与する遺伝子、グルコラファサチンからの二次代謝物の生成に関与する遺伝子、などの存在が推測される。
 これらの遺伝子のいずれかにその機能を欠損又は過剰作用する変異が生じた場合、グルコラファサチンが欠失する表現型になると推測される。
 また、グルコラファサチン代謝の例ではないが、近縁属の植物であるシロイヌナズナには、アリファティック系グルコシノレート全般の生合成を制御する転写制御因子であるMyb転写因子が存在することが知られている(Hirai et al., 2007 PNAS, 104: 6478-6483)。
 以上の知見は、「グルコラファサチン欠失性」を示すダイコン系統の全ての系統が、本発明に係るグルコラファサチン合成酵素遺伝子の機能欠損によって誘起されるわけではない可能性を示している。即ち、「グルコラファサチン欠失性」という表現型は、グルコラファサチン合成酵素遺伝子とは異なる別の遺伝子の機能欠損や機能異常によって誘起される可能性があり、本発明とは全く異なる「作用機序」の存在も想定される。
Here, in principle, a plurality of genetic factors involved in glucorafasatin metabolism (synthesis, degradation, etc.) in radish are considered to exist in addition to the glucorafasatin synthase gene according to the present invention. Specifically, in addition to the gene, a gene involved in the synthesis and production of glucorafasatin, a gene that regulates the expression of the glucorafasatin synthase gene, a gene involved in the degradation reaction of glucorafasatin, glucorafafa Presence of genes involved in the production of secondary metabolites from satin is presumed.
If any of these genes has a mutation that lacks or overacts its function, it is presumed that the phenotype lacks glucorafasatin.
Although not an example of glucorafasatin metabolism, Arabidopsis thaliana, a related genus plant, may have a Myb transcription factor that is a transcriptional regulatory factor that controls the overall biosynthesis of an aliphatic glucosinolate. Known (Hirai et al., 2007 PNAS, 104: 6478-6483).
The above findings indicate that not all radish strains exhibiting “glucorafasatin deficiency” may be induced by the functional deficiency of the glucorafasatin synthase gene according to the present invention. That is, the phenotype of “glucorafasatin deficiency” may be induced by a functional defect or functional abnormality of another gene different from the glucorafasatin synthase gene, and is completely different from the present invention. The existence of “mechanism” is also assumed.
[グルコラファサチン欠失系統の作出方法]
 グルコラファサチンを欠失したダイコン系統を作出するためには、グルコラファサチン合成酵素遺伝子座に当該機能欠失型遺伝子を「ホモ型」で有するダイコンを作出する必要がある。そのためには、当該遺伝子座に当該機能欠失型遺伝子を有するダイコンを「遺伝子供与体」として用いた育種的手法を利用することが好適である。
 ここで、遺伝子供与体(交配親)として用いる「当該遺伝子座に当該機能欠失型遺伝子を有するダイコン」としては、上記した機能欠損型遺伝子を当該遺伝子座に有するダイコンであれば、如何なる個体を用いることができる。また、機能欠損型遺伝子をホモ型で有する個体だけでなく、ヘテロ型(機能欠損型遺伝子/野生型遺伝子のヘテロ型)で有する個体も、遺伝子供与体として好適に用いることができる。
[Method for producing glucorafasatin deficient strain]
In order to create a radish line that lacks glucorafasatin, it is necessary to create a radish that has the function-deficient gene in a “homotype” at the glucorafasatin synthase locus. For this purpose, it is preferable to use a breeding technique using a radish having the loss-of-function gene at the locus as a “gene donor”.
Here, “radish having the function-deficient gene at the gene locus” used as a gene donor (mating parent) means any individual as long as it is a radish having the function-deficient gene at the gene locus. Can be used. Further, not only individuals having a function-deficient gene in a homo form but also individuals having a hetero form (function-deficient gene / wild type gene hetero form) can be suitably used as a gene donor.
 「機能欠損型遺伝子の供与体(交配親)」として用いることが可能なダイコンとしては、具体的には、i)当該遺伝子座へ「当該機能欠損型遺伝子が導入されたダイコン」を用いることができる。ここで、当該遺伝子座への当該機能欠損型遺伝子の導入手段としては、如何なる遺伝子導入手段を挙げることができる。例えば、アグロバクテリウム、エレクトロポレーション、パーティクルガン、細胞融合等、遺伝子導入を利用した相同組み換え技術により、当該機能欠損型遺伝子が当該遺伝子座に導入されたダイコンを挙げることができる。また、人為的な交配手法によって当該機能欠損型遺伝子が当該遺伝子座に導入されたダイコンを挙げることができる。
 また、ii)当該遺伝子座に存在する野生型のグルコラファサチン合成酵素遺伝子に、機能欠損型の変異が導入されたダイコンを得て、当該ダイコンを遺伝子供与体として用いることができる。ここで、当該遺伝子への当該機能欠損型変異の導入として、如何なる変異導入を挙げることができる。例えば、トランスポゾン、レトロトランスポゾン、植物ウイルス等を介した挿入配列導入を伴う変異導入を挙げることができる。また、種子に対する放射線照射処理、重イオンビーム処理、変異源物質を含む溶液での処理などを行った突然変異促進により変異導入を挙げることができる。また、遺伝子編集技術(ZFN、CRISPR等)による変異導入を挙げることができる。
 このような変異導入によって得られた機能欠損型遺伝子を有する個体は、遺伝子供与体として好適に用いることができる。
 また、iii)既に作出した当該遺伝子座に当該機能欠損型遺伝子を有するダイコンがある場合、そのダイコンを遺伝子供与体として用いることができる。
 また、iv)上記 i)~iii)のいずれかのダイコンに由来する後代系統(自殖及び/又は交配により得られた系統)に属するダイコンであって、当該遺伝子座に機能欠損型遺伝子を有するダイコンについても、遺伝子供与体として用いることができる。
Specifically, as a radish that can be used as a “donor of a function-deficient gene (mating parent)”, i) use of “radish introduced with the function-deficient gene” at the locus it can. Here, as a means for introducing the function-deficient gene into the gene locus, any gene introducing means can be exemplified. For example, radish in which the function-deficient gene is introduced into the gene locus can be exemplified by homologous recombination techniques using gene introduction such as Agrobacterium, electroporation, particle gun, cell fusion and the like. Moreover, radish in which the function-deficient gene has been introduced into the gene locus by an artificial mating technique can be mentioned.
In addition, ii) a radish in which a function-deficient mutation is introduced into a wild-type glucorafasatin synthase gene present at the locus can be used, and the radish can be used as a gene donor. Here, as the introduction of the function-deficient mutation into the gene, any mutation can be mentioned. For example, mutation introduction accompanied by introduction of an insertion sequence via a transposon, retrotransposon, plant virus or the like can be mentioned. In addition, mutation can be introduced by accelerating mutation by performing irradiation treatment on seeds, heavy ion beam treatment, treatment with a solution containing a mutagen substance, and the like. In addition, mutation introduction by gene editing techniques (ZFN, CRISPR, etc.) can be mentioned.
An individual having a function-deficient gene obtained by such mutagenesis can be suitably used as a gene donor.
In addition, iii) when there is a radish having the function-deficient gene at the gene locus already created, the radish can be used as a gene donor.
Iv) A radish belonging to a progeny line derived from any one of the above radish (i) to iii) (a line obtained by self-breeding and / or mating) and having a function-deficient gene at the locus Japanese radish can also be used as a gene donor.
 一方、他方の交配親(所望のダイコン)としては、通常であれば、i)当該機能欠損型遺伝子の受容体として、所望の形質を有するダイコン品種系統に属する個体(所望のダイコン個体)を用いることができる。
 ここで、「所望の形質」としては、栽培特性や品質、ダイコン加工品等に有利になる全ての形質を挙げることができる。例えば、肥大根部の品質を向上させる形質(例えば、肥大根部の大きさ、肥大根部の形状、肥大根部の柔組織の密度等)、環境耐性に関する形質(例えば、耐寒性、耐暑性等)、耐病性に関する形質、成長に関する形質(例えば、栽培期間の早晩性、植物ホルモン合成系等)、生殖に関する形質(例えば、花成制御、自家不和合性、細胞質雄性不稔性等)、色素に関する形質(例えば、アントシアニン組成、アントシアニン含量等)等を挙げることができる。
 また、他方の交配親(所望のダイコン)としては、ii)当該機能欠損型遺伝子を有するダイコンをそのまま用いることも可能である。この場合、当該機能欠損型遺伝子を有するダイコンどうしである2個体(同系統どうし又は他系統どうし)を、他殖操作によって受粉させる操作を行う。また、iii)所望によっては、他方の交配親を用いずに自家受粉による交配(自殖操作)を行うことによって、所望のダイコンを得ることも可能である。
On the other hand, as the other mating parent (desired radish), normally, i) an individual belonging to a radish variety line having a desired trait (desired radish individual) is used as a receptor for the function-deficient gene. be able to.
Here, “desired traits” can include all traits that are advantageous for cultivation characteristics and quality, processed radish products, and the like. For example, traits that improve the quality of enlarged radish (for example, size of enlarged radish, shape of enlarged radish, density of soft tissue of enlarged radish, etc.), traits related to environmental resistance (eg, cold resistance, heat resistance, etc.), disease resistance Traits related to sex, traits related to growth (for example, early or late cultivation period, plant hormone synthesis system, etc.), traits related to reproduction (eg, flowering control, self-incompatibility, cytoplasmic male sterility, etc.), traits related to pigments ( For example, anthocyanin composition, anthocyanin content, etc.) can be mentioned.
As the other mating parent (desired radish), ii) radish having the function-deficient gene can be used as it is. In this case, an operation is performed in which two individuals (same strains or other strains) that are radish having the function-deficient gene are pollinated by cross breeding. Moreover, iii) If desired, it is also possible to obtain a desired Japanese radish by performing crossing by self-pollination (self-breeding operation) without using the other crossing parent.
 上記交配操作を行った後は、必要に応じて自殖操作及び選抜操作を行うことによって、所望の優良形質を有し且つ当該機能欠損型遺伝子をホモ型で有する個体を得ることが可能である。また、更に必要に応じて、更なる所望のダイコン個体との交配、自殖操作、及び選抜操作を繰り返して行うことによって、更に優良形質を有するダイコン個体を得ることもできる。
 本発明では、当該グルコラファサチン欠失性及び所望の形質が遺伝的に固定された集団を得ることで、グルコラファサチン欠失性を示すダイコン系統(又は品種)を作出することが可能となる。
After performing the above-mentioned mating operation, it is possible to obtain an individual having a desired excellent trait and having the function-deficient gene in a homo form by performing self-breeding operation and selection operation as necessary. . Further, if necessary, a radish individual having further excellent traits can be obtained by repeatedly performing mating with a desired radish individual, self-breeding operation, and selection operation.
In the present invention, a radish line (or cultivar) showing glucorafasatin deficiency can be produced by obtaining a population in which the glucorafasatin deficiency and a desired trait are genetically fixed. .
 本発明では、上記交配後の後代集団からの「選抜操作」において、本発明に係る遺伝子型判定方法を利用することにより、グルコラファサチン合成酵素遺伝子座の遺伝子型を高精度で判定することが可能となる。これにより、グルコラファサチンに関する所望の個体を高い精度にて選抜することが可能となり、グルコラファサチン欠失系統を短期間で且つ効率良く作出することが可能となる。 In the present invention, in the “selection operation” from the progeny population after mating, the genotype of the glucorafasatin synthase gene locus can be determined with high accuracy by using the genotyping method according to the present invention. It becomes possible. This makes it possible to select a desired individual relating to glucorafasatin with high accuracy, and to efficiently produce a glucorafasatin deficient line in a short period of time.
[グルコラファサチン欠失系統の植物体]
 本発明に係るグルコラファサチン欠失系統のダイコンから得られた植物体は、農業及び食品等の様々な分野において、極めて有効に利用することができる。当該植物体を利用することによって、農作物としてのダイコン、大根加工食品(沢庵、漬物、大根おろし、切り干し大根、つま、など)、大根を利用した各種製品(飲料、色素等)等の各分野において、「風味劣化」、「沢庵臭の発生」、及び「黄変化による色ムラの発生」などの品質劣化の問題を根本的に解決することが可能となる。
 ここで、「ダイコンから得られた植物体」としては、ダイコンの植物体を構成する全ての部位や組織、全ての生育段階に属する植物体を挙げることができる。具体的には、根(側根や未発達状態の根を含む)、胚軸部、葉、葉柄、茎、花蕾、花、種子、スプラウト、ベビーリーフ、苗、などを挙げることができる。
 農作物及び加工食品等の利用を考慮すると、肥大根(根と胚軸部からなる部分)部を好適に用いることができる。生鮮食品として、スプラウト(発芽直後の子葉、胚軸、及び根からなる植物体)も好適に用いることができる。また、ベビーリーフや葉についても食品として用いることができる。
 また、種子、苗(好ましくは発芽後40日程度までの幼苗)は、栽培や育種に好適に用いることができる。
[Plant of glucorafasatin-deficient strain]
The plant obtained from the radish of the glucorafasatin deficient strain according to the present invention can be used very effectively in various fields such as agriculture and food. By using the plant body, in various fields such as radish as agricultural products, radish processed foods (salmon, pickles, radish grated, dried radish, tsuma, etc.), various products (beverages, pigments, etc.) using radish, It becomes possible to fundamentally solve the quality degradation problems such as “flavor deterioration”, “generation of scented odor”, and “occurrence of color unevenness due to yellowing”.
Here, examples of the “plant obtained from radish” include all parts and tissues constituting the radish plant and plants belonging to all growth stages. Specific examples include roots (including lateral roots and undeveloped roots), hypocotyls, leaves, petioles, stems, florets, flowers, seeds, sprout, baby leaves, seedlings, and the like.
In consideration of the use of crops, processed foods, and the like, it is possible to suitably use a radish (part consisting of root and hypocotyl) portion. Sprouts (plants consisting of cotyledons, hypocotyls, and roots immediately after germination) can also be suitably used as fresh food. Baby leaves and leaves can also be used as food.
In addition, seeds and seedlings (preferably seedlings up to about 40 days after germination) can be suitably used for cultivation and breeding.
 以下、実施例を挙げて本発明を説明するが、本発明の範囲はこれらにより限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the scope of the present invention is not limited thereto.
[実施例1]『ポジショナルクローニングによる遺伝子座の同定』
 ポジショナルクローニングによる連鎖解析及び高精度連鎖解析を行い、グルコラファサチン欠失形質の原因遺伝子座の同定を行った。
[Example 1] “Identification of loci by positional cloning”
Linkage analysis by positional cloning and high-precision linkage analysis were performed to identify the locus responsible for the glucorafasatin-deficient trait.
(1)「グルコラファサチン欠失性ダイコン系統」
 ポジショナルクローニング法によりグルコラファサチン欠失性の原因遺伝子座を同定するため、グルコシノレート組成の表現型がグルコラファサチン欠失性を示す「NR154E」系統を用いた(図2A、図2B)。
 当該NR154E系統は、本発明者らが独自に作出した複数のグルコラファサチン欠失系統のうちの1系統である。具体的には、当該系統は、品種「西町理想」(通常野生型のグルコシノレート組成を示す品種)を原集団として、人為的な自殖操作及びグルコシノレート組成を指標とする優良個体の選抜を繰り返して行うことによって、作出した系統のうちの1系統である。
 当該「NR154E」系統は、他の通常野生型の品種系統と比べて、グルコラファサチンを含まず、その代わりにグルコエルシン含量が高いという性質を示す。また、グルコシノレート総量自体が低いという性質を示す。
(1) "Glucorafasatin deficient radish line"
In order to identify the causal locus of glucorafasatin deficiency by the positional cloning method, the “NR154E” strain whose glucosinolate composition phenotype exhibits glucorafasatin deficiency was used (FIGS. 2A and 2B).
The NR154E strain is one of a plurality of glucorafasatin-deficient strains independently created by the present inventors. Specifically, the line is a good individual with an index of artificial self-propagation and glucosinolate composition, using the cultivar “Nishimachi Ideal” (generally showing wild-type glucosinolate composition) as the original population. By repeating selection, it is one of the created lines.
The “NR154E” line does not contain glucorafasatin, but instead has a high glucoerucin content, as compared to other normal wild type cultivar lines. Moreover, the property that the total amount of glucosinolate itself is low is shown.
 「NR154E」系統の優れたグルコラファサチン欠失性を確認するため、肥大根(肥大した根及び胚軸)部の乾燥重量あたりのグルコシノレート含量の測定を行った。当該測定は、肥大根部を液体窒素で凍結粉末化した後、70%メタノールで抽出したグルコシノレートを脱硫化してHPLC分析に供し、グルコシノレート組成を内部標準であるシニグリン換算で定量化することで行った。
 その結果、表2に示すように、「NR154E」系統ではグルコラファサチンが検出されず、グルコラファサチン欠失性という観点において、極めて優れた性質を示す系統であることが示された。(※なお、表2における「MR050E」系統も本発明者らが作出したグルコラファサチン欠失系統であるが、NR154E系統とは別起源であるグルコシノレート総量が多い系統である。)
In order to confirm the excellent glucorafasatin deficiency of the “NR154E” strain, the glucosinolate content per dry weight of the radish (the enlarged root and hypocotyl) part was measured. The measurement involves freeze-powdering the radish root with liquid nitrogen, then desulfurizing glucosinolate extracted with 70% methanol and subjecting it to HPLC analysis, and quantifying the glucosinolate composition in terms of sinigrin as an internal standard. I went there.
As a result, as shown in Table 2, no glucorafasatin was detected in the “NR154E” line, indicating that the line exhibits extremely superior properties in terms of glucorafasatin deficiency. (* The “MR050E” line in Table 2 is also a glucorafasatin-deficient line produced by the present inventors, but is a line with a large total amount of glucosinolates originating from a different source from the NR154E line.)
 また、本発明者らは、世界中で保存されているダイコン遺伝子資源「650品種系統以上」を対象にして、グルコラファサチン欠失性を示す品種系統の探索を網羅的に行ったが、当該グルコラファサチン欠失性形質が固定された品種系統を発見することができなかった。 In addition, the present inventors have comprehensively searched for cultivars that show glucorafasatin deficiency for radish gene resources “650 cultivars or more” conserved all over the world. It was not possible to find a breed line in which the glucorafasatin-deficient trait was fixed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2)「分離比解析」
 戻し交雑(BC)集団の分離比の解析を行ったところ、当該グルコラファサチン欠失性は、単因子劣性遺伝子によることが示唆された。
(2) “Separation ratio analysis”
Analysis of the segregation ratio of the backcross (BC 1 ) population suggested that the glucorafasatin deficiency was due to a single factor recessive gene.
(3)「原因遺伝子座の同定(連鎖解析)」
 「NR154E」及び「HAGHN」の両系統の個体からそれぞれDNAを抽出し、無作為に選択した遺伝子領域2880ヶ所をPCR法により増幅し、その塩基配列を決定して両系統間の多型を同定した。
 得られた多型のうち131ヵ所のSNP領域に、NR154E型SNPを含む塩基配列からなる標識したオリゴヌクレオチドプローブを設計した。また、SNPのHAGHN型(対立座)の塩基配列からなる非標識のオリゴヌクレオチドプローブも設計した。これら対立座の関係にある2種類のオリゴヌクレオチドプローブを含む溶液を混合した。
 131ヶ所それぞれのSNPについて、同様にしてプローブ溶液を調製して、131ヶ所のそれぞれのSNP領域に対応したSNP検出用プローブ溶液を調製した。また、49ヵ所の片親特異的に増幅するプライマーを同定した。
(3) “Identification of causal loci (linkage analysis)”
DNA was extracted from individuals of both “NR154E” and “HAGHN” strains, 2880 randomly selected gene regions were amplified by PCR, and their nucleotide sequences were determined to identify polymorphisms between both strains did.
Of the obtained polymorphisms, a labeled oligonucleotide probe having a nucleotide sequence containing NR154E type SNP was designed in 131 SNP regions. In addition, an unlabeled oligonucleotide probe comprising a nucleotide sequence of SNP HAGHN type (allelic locus) was also designed. A solution containing two kinds of oligonucleotide probes in the relationship of these confrontations was mixed.
A probe solution was similarly prepared for each of the 131 SNPs, and a probe solution for SNP detection corresponding to each of the 131 SNP regions was prepared. In addition, primers that specifically amplify 49 sites were identified.
 連鎖解析用の集団を確保するため、上記グルコラファサチン欠失性(変異型)である「NR154E」系統と、グルコラファサチン含有性(通常野生型)であるダイコン自殖系統「HAGHN」とを交配することで、グルコラファサチン欠失形質の原因遺伝子(以下、単に原因遺伝子という場合がある。)を同定するための分離F集団を育成した。
 当該育成したF集団96個体からDNAを抽出し、前記131ヶ所のSNP領域をPCR法により増幅し、SNPごとに各個体から得られたPCR増幅産物をナイロンメンブレンにスポットして固定した。(即ち、SNPごとにPCR産物をスポットしたナイロンメンブレンを131枚作成した。)
 各ナイロンメンブレン(各SNPのPCR増幅産物)に対応するSNP検出用プローブ溶液を用いて、ドットブロットハイブリダイゼーション法(Dot-blot hybridization法;Shirasawa et. al., 2006 Theor. Appl. Genet. 113: p147-155)を行うことで、F集団96個体それぞれにおける131ヶ所のSNP型を決定した。
 当該遺伝子型の情報からJoinMap4.0(Kyazma)を用いて各マーカー間の組換え価を算出し、連鎖地図を構築した。当該連鎖地図において、本実施例に係る原因遺伝子のマッピングに利用したSNPを表3及び図3~5に示した。
In order to secure a population for linkage analysis, the “NR154E” line that is deficient in glucorafasatin (mutant type) and the radish inbred line “HAGHN” that is glucorafasatin-containing (usually wild type) by mating, gluco Lafayette satin deletion trait gene responsible (hereinafter, simply referred to as the causative gene.) were grown separated F 2 population to identify.
DNA was extracted from F 2 population 96 individuals relevant breeding, the SNP region of the 131 locations was amplified by PCR, and fixed by spotting the PCR amplification products obtained from each individual for each SNP on the nylon membrane. (That is, 131 nylon membranes spotted with PCR products for each SNP were prepared.)
Using a probe solution for SNP detection corresponding to each nylon membrane (PCR amplification product of each SNP), a dot blot hybridization method (Dot-blot hybridization method; Shirasawa et. Al., 2006 Theor. Appl. Genet. 113: P147-155) by performing, to determine the SNP type 131 locations in F 2 population 96 individuals each.
The recombination value between each marker was calculated from the genotype information using JoinMap4.0 (Kyazma), and a linkage map was constructed. In the linkage map, SNPs used for mapping of the causative gene according to the present example are shown in Table 3 and FIGS.
 F集団96個体の本葉1gを用いて、グルコラファサチン含量を測定し、各個体の表現型を判定した。グルコラファサチン含量の測定は、石田ら(Ishida et al., 2011 Breeding Science 61: 208-211)に記載の方法に準じたHPLC分析により行った。
 ここで、上記(2)で記載したように、当該グルコラファサチン欠失形質性は、単因子劣性遺伝子によること示唆されていることから、原因遺伝子の遺伝子型を次のように仮定した。
 即ち、 i) グルコラファサチン欠失性を示す個体の遺伝子型を「NR154Eホモ型」と仮定した。また、ii) グルコラファサチン含有性を示す個体の遺伝子型を「HAGHNホモ型」又は「ヘテロ型」と仮定した。
Using this leaf 1g of F 2 population 96 individuals, by measuring the glucoamylase Lafayette satin content was determined the phenotype of each individual. The measurement of glucorafasatin content was performed by HPLC analysis according to the method described in Ishida et al. (Ishida et al., 2011 Breeding Science 61: 208-211).
Here, as described in (2) above, since it is suggested that the glucorafasatin deficiency trait is due to a single factor recessive gene, the genotype of the causative gene was assumed as follows.
That is, i) It was assumed that the genotype of an individual exhibiting glucorafasatin deficiency was “NR154E homotype”. In addition, ii) the genotype of an individual showing glucorafasatin-containing properties was assumed to be “HAGHN homotype” or “heterotype”.
 各個体における原因遺伝子の予測遺伝子型と上記各マーカー遺伝子型の情報を用いて、原因遺伝子と各マーカー間の組換え価を算出した。当該組換え価の値から、連鎖地図上に当該原因遺伝子の座乗領域を位置づけた。
 その結果、当該原因遺伝子の座乗領域は、SNPマーカー「CL4624」と「CL6024」の範囲の間に存在することが示された(図6)。
The recombination titer between the causative gene and each marker was calculated using the predicted genotype of the causative gene in each individual and the information on each marker genotype. Based on the value of the recombination value, the locus region of the causative gene was positioned on the linkage map.
As a result, it was shown that the locus region of the causative gene exists between the SNP markers “CL4624” and “CL6024” (FIG. 6).
(4)「原因遺伝子座の絞り込み(連鎖解析)」
 近傍連鎖マーカー(SNP、SSRなど)を利用して、さらなる原因遺伝子座の絞り込みを行った。
 上記原因遺伝子座乗領域の近傍SNPである「CL4624」と「CL6024」のF集団1358個体のSNP型を決定し、2つのSNPの間で組換えが生じていた44個体を選抜した。
 次に、当該両SNPで挟まれた領域内に、「NR154E」系統と「HAGHN」系統とが区別できるDNAマーカーを新たに探索して同定した。DNAマーカーの探索及びDNAマーカー型の決定は、上記(3)に記載のSNP型の決定手順に準じて行った。探索の結果、新たなSNP及びSSRを同定した。
 上記選抜した44個体について、上記(3)に記載の方法と同様にして、本葉におけるグルコラファサチン含量を測定し、表現型及び原因遺伝子の遺伝子型を判定した。そして、当該原因遺伝子と、上記新たに見出した各DNAマーカーとの組換え値を算出し、当該組換え価と比較することで、座乗領域をさらに絞り込んだ。
 その結果、当該原因遺伝子の座乗領域は、SSRマーカー「4D01_NED」とSNPマーカー「6C04_post」の間(約1cM)に絞り込めることが明らかになった(図6)。
(4) “Restriction of causal loci (linkage analysis)”
Using a nearby linkage marker (SNP, SSR, etc.), the causal locus was further narrowed down.
The causative gene Zajo in the vicinity SNP region to determine the F 2 population 1358 individuals SNP type of the "CL4624""CL6024", were selected two 44 individuals recombination has occurred between the SNP.
Next, in the region sandwiched between the two SNPs, a DNA marker that can distinguish between the “NR154E” line and the “HAGHN” line was newly searched and identified. The search for the DNA marker and the determination of the DNA marker type were performed according to the procedure for determining the SNP type described in (3) above. As a result of the search, new SNPs and SSRs were identified.
For the 44 individuals selected, the glucorafasatin content in the true leaves was measured in the same manner as in the method described in (3) above, and the phenotype and the genotype of the causative gene were determined. Then, the recombination value between the causative gene and each of the newly found DNA markers was calculated and compared with the recombination value to further narrow down the locus region.
As a result, it became clear that the locus region of the causative gene can be narrowed down between the SSR marker “4D01_NED” and the SNP marker “6C04_post” (about 1 cM) (FIG. 6).
(5)「ゲノムコンティグ配列」
 次に、グルコラファサチン含有性(野生型)系統である「Aokubi S-h」系統のBACライブラリーの塩基配列及びScaffold配列(Rsa1.0_00457.1)を用いて、前述のSSRマーカー「4D01_NED」及びSNPマーカー「6C04_post」を用いたスクリーニングを行った。ダイコンのゲノム塩基配列は、Raphanus sativus Genome DataBase(http://radish.kazusa.or.jp/)から入手した。
 その結果、当該原因遺伝子は、「Aokubi S-h」系統で解析された1つのScaffold配列と2クローンのBACライブラリーによりカバーされる領域内に、座乗することが明らかとなった(図6)。
 これらの塩基配列情報から、当該対象原因遺伝子の座乗範囲を物理的にカバーするゲノムコンティグ配列(野生型である「Aokubi S-h」系統のゲノム配列)を作成した。
(5) "Genome contig sequence"
Next, using the base sequence and Scaffold sequence (Rsa1.0_00457.1) of the “Aokubi Sh” strain, which is a glucorafasatin-containing (wild-type) strain, the SSR markers “4D01_NED” and SNP described above are used. Screening using the marker “6C04_post” was performed. The radish genome sequence was obtained from Raphanus sativus Genome DataBase (http://radish.kazusa.or.jp/).
As a result, it was clarified that the causative gene sits within a region covered by one Scaffold sequence analyzed by the “Aokubi Sh” strain and a two-clone BAC library (FIG. 6).
From these base sequence information, a genomic contig sequence (genomic sequence of the wild type “Aokubi Sh” strain) that physically covers the locus range of the target causative gene was created.
(6)「高精度連鎖解析」
 高精度連鎖解析により当該原因遺伝子をマップベースクローニング法で単離するためには、大量の分離集団を用いて組換え価を算出することが必要となる。そこで、当該原因遺伝子座が「ヘテロ型」となっているF個体について自殖操作を行い、3840個体からなるF集団を育成した。F集団の育成は128穴セルトレイを用いて行い、各植物体からDNAを抽出した。
 当該原因遺伝子を挟み込む位置にあるSSRマーカー「sca8159_A02」及び「node11_F03」に着目し、これら2つのマーカー間で組換えのある21個体を選抜した。得られた組換え個体を9cmポットへ移植した。
 選抜個体について、上記(3)に記載の方法と同様にして、本葉におけるグルコラファサチン含量を測定し、表現型及び原因遺伝子の遺伝子型を判定した。
(6) “High precision linkage analysis”
In order to isolate the causative gene by map-based cloning by high-precision linkage analysis, it is necessary to calculate the recombination titer using a large number of segregated populations. Therefore, self-breeding operation was performed for F 2 individuals in which the causal locus is “heterotype”, and an F 3 population consisting of 3840 individuals was bred. Development of F 3 populations was performed using a 128 hole cell trays, DNA was extracted from each plant.
Paying attention to the SSR markers “sca8159_A02” and “node11_F03” at the position where the causative gene is sandwiched, 21 individuals with recombination between these two markers were selected. The obtained recombinant individuals were transplanted into 9 cm pots.
About the selected individual | organism | solid, the glucorafasatin content in a main leaf was measured similarly to the method as described in said (3), and the phenotype and the genotype of the causative gene were determined.
 次に、原因遺伝子の座乗領域を狭めるため、当該原因遺伝子と上記(4)で同定した各DNAマーカーとの組換え価を高精度で算出し、当該組換え価と比較することで、座乗領域をさらに絞り込んだ。
 その結果、最終的に、SSRマーカー「sca8159_D07」及び「ssG02」に挟まれる約23.8kbpの領域内に、当該原因遺伝子が座乗することが明らかになった(図6)。
Next, in order to narrow the locus region of the causative gene, the recombination value between the causative gene and each DNA marker identified in (4) above is calculated with high accuracy and compared with the recombination value. The riding area was further narrowed down.
As a result, it was finally clarified that the causal gene sits within the region of about 23.8 kbp sandwiched between the SSR markers “sca8159_D07” and “ssG02” (FIG. 6).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例2]『グルコラファサチン欠失性原因遺伝子の推定』
 上記高精度連鎖解析にて明らかになった座乗領域において、当該座乗領域に存在する遺伝子の中からグルコラファサチン欠失性原因遺伝子の推定を行った。
[Example 2] “Estimation of a causative gene for glucorafasatin deficiency”
In the locus region clarified by the high-accuracy linkage analysis, a glucorafasatin deficient causative gene was estimated from genes existing in the locus region.
(1)「配列予測」
 実施例1にて同定された原因遺伝子の座乗領域について、当該領域に含まれる全ての遺伝子を推定した。遺伝子配列の推定には、遺伝子予測プログラムであるAugustus(http://augustus.gobics.de/)及びGENSCAN(http://genes.mit.edu/GENSCAN.html)による配列解析を行った。
 その結果、高精度連鎖解析で絞り込んだ当該座乗領域には、7つの遺伝子(遺伝子1~7)が存在することが推定された(図7)。即ち、当該解析により、グルコラファサチン欠失性原因遺伝子の候補が、7つの候補遺伝子に絞り込めることが示された。
(1) “Sequence prediction”
Regarding the locus region of the causative gene identified in Example 1, all genes included in the region were estimated. In order to estimate the gene sequence, sequence analysis was performed by Augustus (http://augustus.gobics.de/) and GENSCAN (http://genes.mit.edu/GENSCAN.html), which are gene prediction programs.
As a result, it was estimated that seven genes (genes 1 to 7) exist in the locus region narrowed down by high-precision linkage analysis (FIG. 7). That is, the analysis showed that the candidates for the glucorafasatin-deficient causal gene could be narrowed down to seven candidate genes.
(2)「発現解析による候補遺伝子の推定」
 上記高精度連鎖解析で得られた座乗領域に存在する7つの候補遺伝子(遺伝子1~7)について、発現解析を行うことによって、当該原因遺伝子の候補の絞り込みを行った。
 グルコラファサチン欠失系統である「NR154E」系統の肥大根部及び本葉から、RNeasy plant mini kit(QIAGEN社製)を使用して、全RNA(total RNA)を抽出した。得られたRNAを鋳型として、PrimeScript RT reagent Kit(TaKaRa bio社製)を用いて、cDNA(相補鎖DNA)を合成した。対照試料として、グルコラファサチン含有品種(野生型)である「耐病総太り」を用い、同様にして全RNAを抽出してcDNAを合成した。
 合成した各cDNAを鋳型として、RT-PCRを行うことで、遺伝子1~7のそれぞれの遺伝子発現を検出した。PCR反応は、SYBR(R) Premix Ex Taq(TM)(Tli RNaseH Plus)(TaKaRa bio社製)を使用し、上記鋳型cDNAを用いて、95℃ 5秒,60℃ 30秒、表4に示すプライマーを用いて、30サイクル又は35サイクルのPCR反応を行った。
 得られたPCR産物をアガロースゲルに電気泳動し、試料間のPCR産物の増幅量の度合いを検出することで、各遺伝子における「NR154E」及び「耐病総太り」の間での発現量の相対的な差異を検出した。結果を表5に示した。当該表中において、PCR増幅が明確に確認された試料を「+」、増幅が明確に確認されなかった試料を「-」で示した。また、両系統間で増幅量に明確な差異が検出された場合、「*」で示した。
(2) “Estimation of candidate genes by expression analysis”
Expression analysis was performed on the seven candidate genes (genes 1 to 7) present in the locus region obtained by the high-accuracy linkage analysis to narrow down the candidates for the causative gene.
Total RNA (total RNA) was extracted from the hypertrophic root and true leaves of the “NR154E” strain, which is a glucorafasatin-deficient strain, using an RNeasy plant mini kit (QIAGEN). Using the obtained RNA as a template, cDNA (complementary strand DNA) was synthesized using PrimeScript RT reagent Kit (TaKaRa bio). As a control sample, a glucorafasatin-containing cultivar (wild type), “disease-resistant total fat”, was used to extract total RNA and synthesize cDNA.
RT-PCR was performed using each synthesized cDNA as a template to detect the gene expression of each of genes 1-7. The PCR reaction uses SYBR (R) Premix Ex Taq (TM) (Tli RNaseH Plus) (TaKaRa bio), and is shown in Table 4 at 95 ° C. for 5 seconds and 60 ° C. for 30 seconds using the template cDNA. PCR reaction of 30 cycles or 35 cycles was performed using primers.
The obtained PCR product is electrophoresed on an agarose gel and the degree of amplification of the PCR product between samples is detected, so that the relative expression level between “NR154E” and “total disease resistance” in each gene is detected. A significant difference was detected. The results are shown in Table 5. In the table, “+” indicates a sample in which PCR amplification was clearly confirmed, and “−” indicates a sample in which amplification was not clearly confirmed. Moreover, when a clear difference was detected in the amount of amplification between both systems, it was indicated by “*”.
 その結果、「NR154E」系統と「耐病総太り」とでは、遺伝子3の遺伝子発現に顕著な差異があることが明らかになった(表5)。具体的には、図8のゲル写真が示すように、遺伝子3の遺伝子発現は、グルコラファサチン欠失系統である「NR154E」系統では、グルコラファサチン含有品種(野生型)の「耐病総太り」よりも、著しく減少していることが明らかになった。当該結果は、肥大根部及び本葉の両方において、同様の発現様式を示す結果であった。
 一方、他の6つの遺伝子(遺伝子1,2,4~7)では、「NR154E」系統と「耐病総太り」との間で、発現様式に明確な差異は検出されなかった(表5)。
As a result, it became clear that there was a marked difference in gene expression of gene 3 between the “NR154E” line and “disease resistant fat” (Table 5). Specifically, as shown in the gel photograph of FIG. 8, the gene expression of gene 3 is “Glullafasatin-deficient line” “NR154E” line of “Glucurafasatin-containing varieties (wild type)” ”Was found to be significantly reduced. The said result was a result which shows the same expression pattern in both a radish root part and a true leaf.
On the other hand, in the other six genes ( genes 1, 2, 4 to 7), no clear difference in expression pattern was detected between the “NR154E” line and “disease-resistant fat” (Table 5).
 これらの結果から、グルコラファサチン含有品種(野生型)である「耐病総太り」では、遺伝子3は正常に遺伝子発現していることが示唆された。一方、グルコラファサチン欠失系統である「NR154E」系統では、当該遺伝子が発現しておらず、遺伝子機能が欠失している可能性が示唆された。
 当該遺伝子発現解析の結果を踏まえると、高精度連鎖解析で絞り込んだ座乗領域に存在する7つの遺伝子(遺伝子1~7)のうち、「遺伝子3」が、グルコラファサチン欠失性原因遺伝子であることが示唆された。
From these results, it was suggested that the gene 3 is normally expressed in the “disease resistant total fat” which is a glucorafasatin-containing variety (wild type). On the other hand, in the “NR154E” line, which is a glucorafasatin-deficient line, the gene was not expressed, suggesting the possibility that the gene function was deleted.
Based on the results of the gene expression analysis, among the seven genes (genes 1 to 7) existing in the locus region narrowed down by high-precision linkage analysis, “gene 3” is the gene responsible for the deficiency of glucorafasatin. It was suggested that there is.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例3]『グルコラファサチン欠失性原因遺伝子の遺伝子構造』
 上記実施例にてグルコラファサチン欠失性原因遺伝子と推定された「遺伝子3」について、その遺伝子構造を詳細に解析した。
[Example 3] "Gene structure of the causative gene for glucorafasatin deficiency"
The gene structure of “Gene 3”, which was estimated to be a glucorafasatin-deficient gene in the above example, was analyzed in detail.
(1)「野生型遺伝子3の構造」
 グルコラファサチン含有系統「HAGHN」(野生型)の本葉からDNAを抽出し、「Aokubi S-h」のScaffold配列(Rsa1.0_00457.1)の配列を基に作成したプライマーを用いてPCRを行い、遺伝子3のゲノム配列を単離してゲノムの塩基配列を決定した。
(1) “Structure of wild-type gene 3”
DNA was extracted from the true leaf of the glucorafasatin-containing strain “HAGHN” (wild type), and PCR was performed using a primer created based on the Scaffold sequence (Rsa1.0_00457.1) of “Aokubi Sh”. The genomic sequence of gene 3 was isolated and the base sequence of the genome was determined.
 また、「HAGHN」(野生型)の本葉からRNeasy Plant(QIAGEN社製)を用いて全RNAを抽出し、First Choice RLM-RACE Kit(ライフテクノロジーズ社)を使用してCAP構造を有するmRNAを特異的に選抜し、5’RACE法によりcDNA配列の単離を行った。シーケンサー(3730xl DNA Analyzer, Applied Biosystems社製)を用いて5’端cDNA配列の決定し、ゲノム配列と比較することで「転写開始点」(ORFの5’端、第1エクソンの第1塩基)の決定を行った。
 その結果、遺伝子3の「転写開始点」は、翻訳開始コドンの最初の塩基から上流29bpの位置にあると推測された。
In addition, total RNA is extracted from the true leaves of “HAGHN” (wild type) using RNeasy Plant (QIAGEN), and mRNA having a CAP structure is extracted using First Choice RLM-RACE Kit (Life Technologies). Specific selection was performed, and the cDNA sequence was isolated by the 5′RACE method. Using a sequencer (3730xl DNA Analyzer, Applied Biosystems), determine the 5'-end cDNA sequence and compare it with the genome sequence to obtain a "transcription start point" (5 'end of ORF, first base of first exon) Made a decision.
As a result, it was speculated that the “transcription start point” of gene 3 is located 29 bp upstream from the first base of the translation initiation codon.
 また、同様にして、「HAGHN」(野生型)の本葉からRNAを用いて3’RACEを行って、3’端cDNA配列を決定し、ゲノム配列と比較することで「ORF3’末端」(オープンリーディングフレーム末端である第3エクソンの最下流塩基)の決定を行った。
 その結果、遺伝子3の「ORF3’末端」は、終止コドンの第3塩基から334bpの位置にあると推測された。
Similarly, 3′RACE is performed using RNA from the true leaf of “HAGHN” (wild type), the 3 ′ end cDNA sequence is determined, and compared with the genome sequence to compare the “ORF 3 ′ end” ( Determination of the most downstream base of the third exon, which is the end of the open reading frame, was performed.
As a result, it was speculated that the “ORF 3 ′ end” of gene 3 was located at 334 bp from the third base of the stop codon.
 以上、得られた当該ゲノム配列情報と転写開始点及びORF末端の情報を総合すると、野生型遺伝子3(「HAGHN」由来の遺伝子)は、配列番号2に記載の塩基配列からなる全長1787bpの遺伝子であることが明らかになった。当該ゲノム配列上の遺伝子構造は、3つのエクソン及び2つのイントロンを含むゲノム構造であることが明らかにあった(図10A)。
 ここで、野生型遺伝子3の全長は、第1エクソンの最上流の塩基(ORF5’端)から第3エクソンの最下流の塩基(ORF3’末端)までの塩基配列(全長1787bp)であった(表6)。また、当該「HAGHN」(野生型)からのゲノムDNA配列は、「Aokubi S-h」のScaffold配列の遺伝子3配列(配列番号1における第2972番目から第4758番目までの塩基からなる塩基配列)と一致する配列であることが確認された。
As described above, when the obtained genome sequence information, transcription start point and ORF end information are combined, the wild type gene 3 (gene derived from “HAGHN”) is a gene having a total length of 1787 bp consisting of the nucleotide sequence set forth in SEQ ID NO: 2. It became clear that. It was revealed that the gene structure on the genome sequence was a genome structure containing 3 exons and 2 introns (FIG. 10A).
Here, the full length of the wild type gene 3 was the base sequence (full length 1787 bp) from the most upstream base (ORF 5 ′ end) of the first exon to the most downstream base (ORF 3 ′ end) of the third exon ( Table 6). Further, the genomic DNA sequence from the “HAGHN” (wild type) matches the gene 3 sequence of the Scaffold sequence of “Aokubi Sh” (base sequence consisting of bases from 2972 to 4758 in SEQ ID NO: 1). It was confirmed that the sequence was.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 当該野生型遺伝子3のゲノム配列を基にグルコラファサチン含有系統「HAGHN」(野生型)から、完全長cDNAの単離を行ったところ、遺伝子3のcDNA配列は、配列番号3に記載の塩基配列であることが明らかになった。その構造は、5’UTR~3’UTRまで全長1482bpのDNAであった(表7)。
 また、コーディング領域(CDS:開始コドンの第1塩基~終止コドンの第3塩基)は、配列番号4の塩基配列からなる1119bpのDNAであった(表7)。
When full-length cDNA was isolated from the glucorafasatin-containing strain “HAGHN” (wild type) based on the genomic sequence of the wild-type gene 3, the cDNA sequence of gene 3 has the nucleotide sequence described in SEQ ID NO: 3. It became clear that it was an array. The structure was DNA of 1482 bp in total length from 5′UTR to 3′UTR (Table 7).
The coding region (CDS: first base of start codon to third base of stop codon) was 1119 bp DNA consisting of the base sequence of SEQ ID NO: 4 (Table 7).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 次に、アミノ酸配列予測ソフト(GENETYX ver.12.0.1, GENETYX社製)を用いて野生型遺伝子3にコードされるアミノ酸配列を予測したところ、配列番号5に記載のアミノ酸配列からなる全長372aaの蛋白質であることが示された。
 NCBIデータベースを用いた相同性検索を行った結果、先行の登録配列は存在せず、完全に新規タンパク質をコードする遺伝子であることが分かった。また、ドメイン予測解析(NCBI, Conserved Domain Search Service (CD Service), http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)を行ったところ、2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメイン(2-oxoglutarate and Fe(II)-dependent oxygenase domain、2 OG-Fe(II) oxygenase domainともいう。)を有することが示された(図9、表8)。
 ここで、当該酵素ドメインを有する蛋白質は、植物においてスーパーファミリーを形成しており、様々な酸化還元酵素を含む酵素群である。
 以上の知見から、遺伝子3の翻訳産物は、酸化還元酵素の一種として機能する酵素蛋白質であると認められた。なお、高度連鎖解析における他の6つの候補遺伝子(遺伝子1、2、4~6)に、他に酵素をコードする遺伝子は存在しなかった。
Next, when the amino acid sequence encoded by the wild type gene 3 was predicted using amino acid sequence prediction software (GENETYX ver.12.0.1, manufactured by GENETYX), a total length of 372aa consisting of the amino acid sequence set forth in SEQ ID NO: 5 It was shown to be a protein.
As a result of homology search using the NCBI database, it was found that there was no preceding registered sequence, and the gene completely encodes a novel protein. In addition, when domain prediction analysis (NCBI, Conserved Domain Search Service (CD Service), http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) was performed, 2oxoglutarate-iron ( II) It was shown to have a dependent oxygenase domain (2-oxoglutarate and Fe (II) -dependent oxygenase domain, also referred to as 2 OG-Fe (II) oxygenase domain) (FIG. 9, Table 8).
Here, the protein which has the said enzyme domain forms the superfamily in a plant, and is an enzyme group containing various oxidoreductases.
From the above findings, the translation product of gene 3 was recognized as an enzyme protein that functions as a kind of oxidoreductase. There were no other genes encoding enzymes in the other six candidate genes ( genes 1, 2, 4 to 6) in the advanced linkage analysis.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(2)「変異型遺伝子3の構造」
 i)NR154E変異型遺伝子3
 上記野生型遺伝子3の配列からプライマーを作成し、グルコラファサチン欠失系統である「NR154E」系統の遺伝子3の塩基配列を決定した。
 その結果、NR154E系統からの遺伝子3は、野生型遺伝子3の第1エクソンに相当する領域に、約9kbpの挿入配列が導入された変異型遺伝子であることが明らかになった(図10B)。
 具体的には野生型遺伝子3(配列番号2)の第557番目の塩基と第558番目の塩基の間に、8853bpの挿入配列(配列番号7における第558番目から第9410番目までの塩基からなる塩基配列)が導入された変異を有し、インフレームにて終止コドンが導入された変異型遺伝子(NR154E型遺伝子3)であることが明らかになった(図11A)。当該変異型遺伝子3に係るゲノム配列を配列番号7に示した。
 その予測アミノ酸配列は、配列番号8に記載のアミノ酸配列からなる全長176aaの蛋白質であると推定されたが、野生型遺伝子3蛋白質のC端側184aaを欠失した構造であった(図12)。特に、2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインの全部が完全欠失した構造であることから、酵素としての蛋白質機能が失われていると推測された。
 当該結果は、NR154E系統に遺伝子3の機能欠損型の挿入変異が存在するという結果であった。即ち、当該結果は、遺伝子3がグルコラファサチン欠失性原因遺伝子であることを裏付ける結果であると認められた。
(2) “Structure of mutant gene 3”
i) NR154E mutant gene 3
Primers were prepared from the sequence of the wild-type gene 3 and the nucleotide sequence of gene 3 of the “NR154E” strain, which is a glucorafasatin-deficient strain, was determined.
As a result, it was revealed that gene 3 from the NR154E line was a mutant gene in which an insertion sequence of about 9 kbp was introduced into a region corresponding to the first exon of wild-type gene 3 (FIG. 10B).
Specifically, an insertion sequence of 8853 bp (consisting of the 558th to 9410th bases in SEQ ID NO: 7) between the 557th base and the 558th base of the wild type gene 3 (SEQ ID NO: 2) It was revealed that this was a mutant gene (NR154E type gene 3) having a mutation introduced in the base sequence and a stop codon introduced in-frame (FIG. 11A). The genome sequence related to the mutant gene 3 is shown in SEQ ID NO: 7.
The predicted amino acid sequence was estimated to be a protein with a total length of 176aa consisting of the amino acid sequence set forth in SEQ ID NO: 8, but had a structure in which the C-terminal 184aa of the wild type gene 3 protein was deleted (FIG. 12). . In particular, it was speculated that the protein function as an enzyme was lost due to the complete deletion of the 2oxoglutarate-iron (II) -dependent oxygenase domain.
The result was that there was a loss-of-function insertion mutation of gene 3 in the NR154E strain. That is, this result was recognized as a result supporting that gene 3 is a causative gene for glucorafasatin deficiency.
 ii)MR050E型遺伝子3の構造
 「MR050E」系統は、本発明者らがNR154E系統とは別途に作出したグルコラファサチン欠失系統の1系統である。そこで、当該MR050E系統についても遺伝子3の塩基配列を解析し、遺伝子3の変異の有無を確認した。
 その結果、MR050E系統からの遺伝子3は、野生型遺伝子3の第3エクソンに相当する領域に、約1.2kbpの挿入配列が導入された変異型遺伝子であることが明らかになった(図10C)。
 具体的には、野生型遺伝子3(配列番号2)の第1243番目の塩基と第1244番目の塩基の間に、1222bpの挿入配列(配列番号9における第1244番目から第2465番目までの塩基からなる塩基配列)が導入された変異を有し、インレームにて終止コドンが導入された変異型遺伝子(MR050E型遺伝子3)であることが明らかになった(図11B)。当該変異型遺伝子3に係るゲノム配列を配列番号9に示した。
 その予測アミノ酸配列は、配列番号10に記載のアミノ酸配列からなる全長303aaの蛋白質であると推定されたが、野生型遺伝子3蛋白質のC端側69aaを欠失した構造であった(図12)。特に、2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインのC端側16aaが欠失した構造であることから、酵素としてのその蛋白質機能は、大幅に欠失していると推測された。
ii) Structure of MR050E type gene 3 The “MR050E” strain is one of the glucorafasatin-deficient strains created separately by the inventors from the NR154E strain. Therefore, the base sequence of gene 3 was also analyzed for the MR050E strain, and the presence or absence of gene 3 mutation was confirmed.
As a result, it was revealed that gene 3 from the MR050E strain is a mutant gene in which an insertion sequence of about 1.2 kbp was introduced into a region corresponding to the third exon of wild-type gene 3 (FIG. 10C). ).
Specifically, between the 1243th base and the 1244th base of the wild-type gene 3 (SEQ ID NO: 2), a 1222 bp insertion sequence (from the 1244th to 2465th base in SEQ ID NO: 9) It was revealed that this is a mutant gene (MR050E type gene 3) having a mutation introduced therein and a stop codon introduced in an inlay (FIG. 11B). The genome sequence related to the mutant gene 3 is shown in SEQ ID NO: 9.
The predicted amino acid sequence was estimated to be a protein with a total length of 303aa consisting of the amino acid sequence shown in SEQ ID NO: 10, but had a structure in which the C-terminal side 69aa of the wild-type gene 3 protein was deleted (FIG. 12). . In particular, since the C-terminal 16aa of the 2-oxoglutarate-iron (II) -dependent oxygenase domain was deleted, it was assumed that the protein function as an enzyme was greatly deleted.
 当該結果から明らかなように、MR050E系統は、NR154E系統と同じ遺伝子にインフレームでの挿入変異が導入されて作出された、グルコラファサチン欠失系統であることが示された。但し、MR050E系統の有する遺伝子3の変異(MR050E型変異)は、NR154E系統の変異(NR154E型変異)とは異なるものであった。
 以上の結果は、遺伝子3の機能欠損(loss of function)により、グルコラファサチン欠失型の表現型が作出できることを支持する結果と認められた。
As apparent from the results, the MR050E strain was shown to be a glucorafasatin-deficient strain created by introducing an in-frame insertion mutation into the same gene as the NR154E strain. However, the mutation of gene 3 possessed by MR050E strain (MR050E type mutation) was different from the mutation of NR154E strain (NR154E mutation).
The above results were recognized as supporting results that the glucorafasatin-deficient phenotype could be created by the loss of function of gene 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[実施例4]『遺伝子3の定量的発現解析』
 上記実施例により原因遺伝子と推定された遺伝子3について、グルコラファサチン欠失系統と野生型品種系統とを比較した遺伝子発現量を、定量的RT-PCRにより詳細に分析した。
[Example 4] "Quantitative expression analysis of gene 3"
For gene 3, which was estimated to be the causative gene according to the above example, the gene expression level comparing the glucorafasatin-deficient line with the wild-type variety line was analyzed in detail by quantitative RT-PCR.
 表11に示す各ダイコン品種系統の本葉から、RNeasy plant mini kit(QIAGEN社製)を使用して、全RNA(total RNA)を抽出した。得られたRNAを鋳型として、PrimeScript RT reagent Kit(TaKaRa bio社製)を用いて、cDNA(相補鎖DNA)を合成した。
 得られた各本葉(試料)からのcDNAを用いて、リアルタイムPCR法によりグルコラファサチン合成酵素遺伝子の定量的RT-PCRを行った。グルコラファサチン合成酵素遺伝子の増幅プライマーとしては、第3エクソン後半から3’UTRの共通配列をターゲットとした、表10に示すプライマーセットを用いた。また、内部標準遺伝子としてはアクチン遺伝子(Zou et al. 2013 PLos One 8: e53541.)を採用し、その増幅プライマーとしては、表10に示すプライマーセットを用いた。
 リアルタイムPCR分析は、Thermal Cycler Dice(R) Real Time System II(TaKaRa bio社製)を分析装置として用いて行った。PCR反応は、SYBR(R) Premix Ex Taq(TM)(Tli RNaseH Plus)(TaKaRa bio社製)を使用し、上記鋳型cDNAとプライマーセットを用いて、95℃ 5秒,60℃ 30秒のサイクル反応を35サイクル行うPCR反応を行った。上記分析装置によりPCR反応中の増幅産物の蛍光強度をリアルタイムにて経時的に測定した。
 測定対象である「グルコラファサチン合成酵素遺伝子の蛍光強度測定値(平均値)」を、「内部標準遺伝子の蛍光強度測定値(平均値)」で除した値を求め、各試料間で比較可能なグルコラファサチン合成酵素遺伝子の相対発現量として算出した。結果を表11及び図13に示した。当該表において、括弧内の数値は、品種「耐病総太り」の値を基準にした場合の値である。
Total RNA was extracted from the true leaves of each radish variety shown in Table 11 using RNeasy plant mini kit (manufactured by QIAGEN). Using the obtained RNA as a template, cDNA (complementary strand DNA) was synthesized using PrimeScript RT reagent Kit (TaKaRa bio).
Quantitative RT-PCR of the glucorafasatin synthase gene was performed by real-time PCR method using the obtained cDNA from each true leaf (sample). As an amplification primer for the glucorafasatin synthase gene, the primer set shown in Table 10 was used, which targeted the common sequence of 3′UTR from the latter half of the third exon. Moreover, the actin gene (Zou et al. 2013 PLos One 8: e53541.) Was adopted as an internal standard gene, and the primer set shown in Table 10 was used as its amplification primer.
Real-time PCR analysis was performed using Thermal Cycler Dice® Real Time System II (TaKaRa bio) as an analyzer. The PCR reaction uses SYBR (R) Premix Ex Taq (TM) (Tli RNaseH Plus) (TaKaRa bio), and the cycle of 95 ° C. for 5 seconds and 60 ° C. for 30 seconds using the template cDNA and the primer set. A PCR reaction was performed in which the reaction was performed for 35 cycles. The fluorescence intensity of the amplification product during the PCR reaction was measured over time in real time using the above analyzer.
It is possible to obtain a value obtained by dividing the measurement target "fluorescence intensity measurement value (average value) of glucorafasatin synthase gene" by "fluorescence intensity measurement value (average value) of internal standard gene" and compare between samples. It was calculated as the relative expression level of the glucorafasatin synthase gene. The results are shown in Table 11 and FIG. In the table, the values in parentheses are values based on the value of the variety “Disease-resistant total fat”.
 その結果、本葉における遺伝子発現量は、グルコラファサチン欠失系統である「NR154E」及び「MR050E」の両系統では、グルコラファサチン含有品種系統(野生型)と比較して、「遺伝子3」の発現量が顕著に減少していることが明らかになった。
 具体的には、「MR050E」系統では、野生型である「HAGHN」系統に比べて、当該遺伝子が1/40しか発現していないことが示された。そして、特に「NR154E」系統では、野生型である「HAGHN」系統に比べて、当該遺伝子が1/1000未満という極微量しか発現してないことが示された。
 一方、野生型品種系統である「HAGHN」、「耐病総太り」、「宮重ダイコン」、及び「辛味199」の4品種系統の間では、グルコラファサチン合成酵素遺伝子の発現量に大きな差異はなく、当該遺伝子が正常に発現し機能していると認められた。
As a result, the gene expression level in the true leaf was “Gene 3” in both the “NR154E” and “MR050E” lines, which are glucorafasatin-deficient lines, as compared to the glucorafasatin-containing variety line (wild type). It became clear that the expression level of was significantly decreased.
Specifically, it was shown that in the “MR050E” line, only 1/40 of the gene is expressed as compared to the “HAGHN” line which is a wild type. In particular, the “NR154E” line showed that the gene was expressed in a trace amount of less than 1/1000 compared to the wild-type “HAGHN” line.
On the other hand, there is no significant difference in the expression level of the glucorafasatin synthase gene among the four cultivar lines, “HAGHN”, “disease-resistant fat”, “Miyashige radish”, and “pungency 199”, which are wild-type cultivars. The gene was found to be normally expressed and functioning.
 当該結果から、グルコラファサチン欠失性系統においては、蛋白質の構造欠失の点に加えて、遺伝子発現量の点においても、「遺伝子3」の機能が大幅に失われていることが示された。 The results show that in the glucorafasatin-deficient strain, the function of “gene 3” is greatly lost in terms of gene expression in addition to protein structural deletion. It was.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[実施例5]『機能獲得型遺伝子導入試験』
 上記実施例にてグルコラファサチン欠失性原因遺伝子と推定された「遺伝子3」について、シロイヌナズナへの機能獲得型の遺伝子導入試験を行った。
[Example 5] "Functional acquisition type gene transfer test"
With respect to “gene 3”, which was estimated to be a glucorafasatin-deficient causative gene in the above-described Examples, a function acquisition type gene introduction test into Arabidopsis thaliana was performed.
(1)「シロイヌナズナで機能獲得型遺伝子導入試験をする意義」
 ここで、「シロイヌナズナ」は、ダイコンの属するRaphanusと近縁関係にある属であるArabidopsisに属する植物である。遺伝子3について、NCBIデータベースを用いた相同性検索を行った結果、シロイヌナズナのゲノム配列には、遺伝子3と配列類似性を示す、2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインを有する遺伝子(当該遺伝子ファミリーに属する遺伝子)が複数存在することが示された(The Arabidopsis Information Resource(TAIR), http://www.arabidopsis.org/)。
 しかし、「グルコラファサチン」はダイコン植物に特徴的なグルコシノレートであり、シロイヌナズナには、グルコラファサチンが全く含まれない点で、シロイヌナズナとダイコンとは、全く異なるグルコシノレート組成を有している(表12)。
 また、シロイヌナズナでは全ゲノム配列が解読されている(Nature 2000 Dec.14; 408 (6814): p796-815)。
 以上の知見から明らかなように、シロイヌナズナゲノム配列には、「遺伝子3と同等の機能を有する遺伝子」は存在しない。
 従って、シロイヌナズナに「遺伝子3」を遺伝子導入した過剰発現体を作製し、本来はグルコラファサチンを含まないはずのシロイヌナズナからグルコラファサチンが検出されれば、「遺伝子3」がグルコラファサチン合成に関与する遺伝子であることの証拠となる。
(1) Significance of gain-of-function gene transfer test in Arabidopsis
Here, “Arabidopsis thaliana” is a plant belonging to Arabidopsis, a genus closely related to Raphanus to which radish belongs. As a result of homology search using the NCBI database for gene 3, the genome sequence of Arabidopsis thaliana has a gene having a 2-oxoglutarate-iron (II) -dependent oxygenase domain that shows sequence similarity to gene 3 It has been shown that there are multiple genes belonging to the gene family (The Arabidopsis Information Resource (TAIR), http://www.arabidopsis.org/).
However, “glucorafasatin” is a glucosinolate characteristic of radish plants, and Arabidopsis thaliana has a completely different glucosinolate composition in that it does not contain any glucorafasatin. (Table 12).
In Arabidopsis thaliana, the entire genome sequence has been decoded (Nature 2000 Dec.14; 408 (6814): p796-815).
As is clear from the above findings, there is no “gene having a function equivalent to gene 3” in the Arabidopsis genome sequence.
Therefore, an overexpressing body in which “gene 3” is introduced into Arabidopsis thaliana is prepared, and if glucorafasatin is detected in Arabidopsis which should not originally contain glucorafasatin, “gene 3” can be used for glucorafasatin synthesis. Evidence that the gene is involved.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(2)「強制発現コンストラクト」
 グルコラファサチン含有系統(野生型)である「HAGHN」の本葉からRNeasy plant mini kit(QIAGEN社製)を用いて全RNAを抽出し、PrimeScript RT reagent Kit(TaKaRa bio社製)を用いてcDNAを合成した。当該cDNAを鋳型として、表13に記載のプライマーを用いて野生型遺伝子3の完全長cDNAをRT-PCR法により増幅した。
 得られた完全長cDNAをCaMV35Sプロモーターの下流に連結した後、pPZP202(Hajdukiewicz P. et al., 1994 Plant Mol. Biol, 25: p989-994)より改変したバイナリベクターpZK3B(Kuroda et al., 2010 Biosci. Biotechnol. Biochem., 74:2348-2351)へ組み込んだコンストラクトを作製し、当該コンストラクトのプラスミドDNAを調製した。
 また、対照として、cDNAを組み込まない以外は同様にしてエンプティベクターのプラスミドDNAを調製した。
(2) “Forced expression construct”
Total RNA was extracted from the true leaf of “HAGHN”, a glucorafasatin-containing strain (wild type), using RNeasy plant mini kit (QIAGEN) and cDNA using PrimeScript RT reagent Kit (TaKaRa bio). Was synthesized. Using the cDNA as a template, the full-length cDNA of wild-type gene 3 was amplified by RT-PCR using the primers shown in Table 13.
The obtained full-length cDNA was ligated downstream of the CaMV35S promoter, and then modified from pPZP202 (Hajdukiewicz P. et al., 1994 Plant Mol. Biol, 25: p989-994) pZK3B (Kuroda et al., 2010). Biosci. Biotechnol. Biochem., 74: 2348-2351) was prepared, and plasmid DNA of the construct was prepared.
As a control, an empty vector plasmid DNA was prepared in the same manner except that no cDNA was incorporated.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(3)「遺伝子3過剰発現体の作製」
 上記調製したプラスミドDNAをアグロバクテリウムGV3101へ形質転換し、当該アグロバクテリウム懸濁液を用いたフローラルディップ法(Floral-dip法)によりシロイヌナズナ(Col-0系統)へ導入し種子を得た。
 得られた種子を50mg/mLのカナマイシン存在下で育成して形質転換体の選抜を行い、T世代の後代検定により導入遺伝子がホモ型に固定されている系統を選抜した。形質転換した植物体(遺伝子3過剰発現体(実験対象)及びエンプティベクター導入体(対照))の育成は、22℃にて12時間日長のチャンバー内で行った。なお、植物体の生育状態は、遺伝子3強制発現体(実験対象)及びエンプティベクター導入体(対照)の間で、差異は見られなかった(図14A、図14B)。
(3) “Preparation of overexpressed gene 3”
The prepared plasmid DNA was transformed into Agrobacterium GV3101 and introduced into Arabidopsis thaliana (Col-0 line) by the floral dip method (Floral-dip method) using the Agrobacterium suspension to obtain seeds.
The resulting seeds After screening of the transformants was grown in kanamycin presence of 50 mg / mL, the transgene by T 2 generation progeny assay were selected lines is fixed to homozygous. The transformed plants (gene 3 overexpressing body (experimental subject) and empty vector introduced body (control)) were grown in a chamber at 22 ° C. for 12 hours. In addition, the difference in the growth state of the plant body was not seen between the gene 3 forced expression body (experiment subject) and the empty vector introduction body (control) (FIG. 14A, FIG. 14B).
(4)「グルコシノレート組成の分析」
 育成個体について、抽だい直前の植物体からHPLC分析によりグルコシノレート組成を分析した。分析方法は、実施例1(1)に記載の方法に準じて行った。HPCL分析後のグルコシノレートプロファイリングの結果を図15A及び図15Bに示した。当該図中において、溶出時間13.897分のピークは「グルコエルシン」(符号21)を、溶出時間14.655分のピークは「グルコラファサチン」(符号21)を表す。
 また、グルコエルシン(符号21)とグルコラファサチン(符号22)のピークについては、ピーク面積値(相対値)を表14に示した。
(4) "Analysis of glucosinolate composition"
About the growing individual | organism | solid, the glucosinolate composition was analyzed by the HPLC analysis from the plant body just before drawing. The analysis method was performed according to the method described in Example 1 (1). The results of glucosinolate profiling after HPCL analysis are shown in FIGS. 15A and 15B. In the figure, the peak at an elution time of 13.897 minutes represents “glucoercin” (symbol 21), and the peak at an elution time of 14.655 minutes represents “glucorafasatin” (symbol 21).
Table 14 shows the peak area values (relative values) for the peaks of glucoerucine (symbol 21) and glucorafasatin (symbol 22).
 その結果、図15A、図15B、及び表14が示すように、エンプティベクター導入体(対照)では、グルコエルシンのピーク(符号21)が確認されたが、グルコラファサチンのピーク(符号22)は全く確認されなかった。
 一方、遺伝子3過剰発現体(実験対象)では、グルコエルシンのピーク(符号21)が減少し、グルコラファサチンのピーク(符号22)が生成されていることが確認された。
As a result, as shown in FIG. 15A, FIG. 15B, and Table 14, in the empty vector introduced body (control), the peak of glucoerucin (symbol 21) was confirmed, but the peak of glucorafasatin (symbol 22) was completely absent. It was not confirmed.
On the other hand, in the gene 3 overexpressing body (experimental object), it was confirmed that the peak of glucoerucine (symbol 21) was reduced and the peak of glucorafasatin (symbol 22) was generated.
(5)「原因遺伝子の同定」
 以上の結果から、ダイコンにおけるグルコラファサチン欠失性原因遺伝子に関して、次の重要な知見が得られた。
  i )通常の野生型シロイヌナズナの植物体では、グルコラファサチンを含まないことから、「遺伝子3」は「グルコラファサチン合成に関与する遺伝子」であることが示された。
 ii)「遺伝子3過剰発現体」では、グルコエルシン含量が低下しその代わりにグルコラファサチンの生成が確認された。グルコエルシンの分子構造は、3位と4位の炭素間が二重結合化される(酸化される)と、グルコラファサチンの分子構造となる関係にある。また、アミノ酸配列予測の結果から、遺伝子3のコード蛋白質は、遺伝子発現を調節する蛋白質(転写因子等)ではなく、酸化還元酵素の一種であると認められる。
 以上の知見から、「遺伝子3」がコードする蛋白質は、グルコエルシンからグルコラファサチンを合成するいずれかの反応に関与する酵素であると認められた(図16)。即ち、遺伝子3は、「グルコラファサチン合成酵素遺伝子」であると認められた。
 iii)野生型シロイヌナズナでは、グルコシノレート組成の点でグルコラファサチン欠失性の表現型を示す。従って、本実施例における遺伝子導入試験(機能獲得:gain of function)は、ダイコンのグルコラファサチン欠失系統での機能相補試験とみなすことができる。
 従って、本実施例において遺伝子3過剰発現体シロイヌナズナから、本来存在しないはずのグルコラファサチンが検出されたという結果は、「遺伝子3」がグルコラファサチン欠失系統の原因遺伝子であることを示す結果であると認められた。
 iv)原因遺伝子の同定に関する当該知見は、NR154E系統とは別途に作出されたMR050E系統において、当該遺伝子3に遺伝子機能欠損(loss of function)が導入されていたことからも支持される結果であった。
(5) “Identification of causative gene”
From the above results, the following important findings were obtained regarding the glucorafasatin deficient causative gene in Japanese radish.
i) In a normal wild-type Arabidopsis thaliana plant, since it does not contain glucorafasatin, it was shown that "gene 3" is a "gene involved in glucorafasatin synthesis".
ii) In the “gene 3 overexpressing body”, the glucoerucin content was decreased and the production of glucorafasatin was confirmed instead. The molecular structure of glucoerucine is in the relationship of becoming the molecular structure of glucorafasatin when the 3rd and 4th carbons are double-bonded (oxidized). From the results of amino acid sequence prediction, it is recognized that the coding protein of gene 3 is not a protein (transcription factor or the like) that regulates gene expression but a kind of oxidoreductase.
From the above findings, it was recognized that the protein encoded by “gene 3” is an enzyme involved in any reaction for synthesizing glucorafasatin from glucoerucin (FIG. 16). That is, the gene 3 was recognized as a “glucorafasatin synthase gene”.
iii) Wild-type Arabidopsis thaliana exhibits a glucorafasatin-deficient phenotype in terms of glucosinolate composition. Therefore, the gene introduction test (gain of function) in this example can be regarded as a function complementation test in a radish glucorafasatin-deficient line.
Therefore, in this example, the result that glucorafasatin that should not originally exist was detected from the gene 3 overexpressing Arabidopsis thaliana. It was recognized that
iv) The findings regarding the identification of the causative gene were supported by the fact that a loss of function was introduced into the gene 3 in the MR050E strain created separately from the NR154E strain. It was.
 以上の結果から、ダイコンにおけるグルコラファサチン欠失性原因遺伝子は、遺伝子3が原因遺伝子であると同定された。また、遺伝子3は、グルコエルシンからグルコラファサチンを生成する反応に関与する酵素をコードする遺伝子(グルコラファサチン合成酵素遺伝子)であると同定された。
 なお、「グルコラファサチン」が野生型シロイヌナズナに全く存在しない点を踏まえると、遺伝子3の当該遺伝子機能は、シロイヌナズナの類似配列遺伝子(例えば、At1g03410等,The Arabidopsis Information Resource(TAIR), http://www.arabidopsis.org/)には存在しない機能であることが示された。
From the above results, it was identified that gene 3 is the causative gene of the glucorafasatin deficient causative gene in Japanese radish. Further, gene 3 was identified as a gene (glucorafasatin synthase gene) encoding an enzyme involved in the reaction for producing glucorafasatin from glucoerucin.
In addition, considering that “glucorafasatin” does not exist in wild-type Arabidopsis thaliana, the gene function of gene 3 is similar to that of Arabidopsis thaliana (eg, At1g03410, The Arabidopsis Information Resource (TAIR), http: / (/www.arabidopsis.org/) was shown to be a feature that does not exist.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[実施例6]『選抜DNAマーカーとしての利用』
 機能欠損型グルコラファサチン合成酵素遺伝子の挿入塩基配列を利用して、グルコラファサチン合成酵素遺伝子座における遺伝子型の判定が可能なPCRプライマーセットを設計した。
[Example 6] “Use as a selected DNA marker”
A PCR primer set capable of genotype determination at the glucorafasatin synthase gene locus was designed using the insertion base sequence of the function-deficient glucorafasatin synthase gene.
(1)「プライマーセットの設計」
 グルコラファサチン合成酵素遺伝子の塩基配列を利用したPCRプライマーセットとして、次の3つのプライマーからなるプライマーセットを設計した(表15、図17)。
 まず、 i) 第1のプライマーとして、NR154E系統におけるグルコラファサチン合成酵素遺伝子の第1エクソンへの挿入配列上(図17)に、「機能欠損型遺伝子検出用プライマー」を設計した。具体的には、配列番号47に記載の塩基配列からなるプライマー(図17符号33のリバースプライマー)を設計した。
 また、ii) 第2のプライマーとして、上記挿入配列が挿入された部位より下流側に、「野生型遺伝子検出用プライマー」を設計した。具体的には、配列番号48に記載の塩基配列からなるプライマー(図17符号34のリバースプライマー)を設計した。
 また、iii) 第3のプライマーとして、上記 i) 及び ii) に記載のプライマーとの増幅対になる「共通用プライマー」をグルコラファサチン合成酵素遺伝子の第1エクソン上に設計した。具体的には、配列番号49に記載の塩基配列からなるプライマー(図17符号35のフォワードプライマー)を設計した。
(1) "Primer set design"
As a PCR primer set using the nucleotide sequence of the glucorafasatin synthase gene, a primer set consisting of the following three primers was designed (Table 15, FIG. 17).
First, i) As a first primer, a “function-deficient gene detection primer” was designed on the insertion sequence into the first exon of the glucorafasatin synthase gene in the NR154E strain (FIG. 17). Specifically, a primer consisting of the base sequence described in SEQ ID NO: 47 (reverse primer shown in FIG. 17, symbol 33) was designed.
In addition, as a second primer, a “wild type gene detection primer” was designed downstream of the site where the above insertion sequence was inserted. Specifically, a primer having the base sequence set forth in SEQ ID NO: 48 (reverse primer shown in FIG. 17, symbol 34) was designed.
In addition, as a third primer, a “common primer” to be an amplification pair with the primers described in i) and ii) above was designed on the first exon of the glucorafasatin synthase gene. Specifically, a primer consisting of the base sequence set forth in SEQ ID NO: 49 (forward primer indicated by reference numeral 35 in FIG. 17) was designed.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(2)「PCR増幅パターンによる遺伝子型の識別」
 表17に示す系統又はFの本葉からDNAを抽出し、上記3つ全てのプライマーを含むプライマーセットを用いてPCR反応を行った。PCR反応は、表16に記載の条件にて行った。結果を表17及び図18に示した。
 その結果、グルコラファサチン欠失系統である「NR154E」系統からは、機能欠損型遺伝子検出用プライマーと共通プライマーの増幅長と一致する588bpの増幅が得られることが確認された。当該増幅は、NR154E系統の変異型遺伝子に由来するものと認められた。
 一方、野生型である「HAGHN」系統からは、野生型遺伝子検出用プライマーと共通用プライマーの増幅長と一致する714bpの増幅が得られた。当該増幅は、HAGHN系統の野生型遺伝子に由来するものと認められた。
 また、両者のF個体からは、上記変異型遺伝子及び野生型遺伝子に相当する2つの増幅が確認された。
 以上の結果から、当該プライマーセットを用いたPCRにより、得られた増幅パターンからグルコラファサチン合成酵素遺伝子座の遺伝子型が識別できることが示された。特に、表現型に現れない遺伝子型である「ヘテロ型」の検出も可能であることが示された。
(2) “Genotyping by PCR amplification pattern”
DNA was extracted from the leaves of lines or F 1 shown in Table 17, PCR was carried out using a primer set containing all primers above three. The PCR reaction was performed under the conditions described in Table 16. The results are shown in Table 17 and FIG.
As a result, it was confirmed that from the “NR154E” strain, which is a glucorafasatin-deficient strain, an amplification of 588 bp corresponding to the amplification length of the function-deficient gene detection primer and the common primer was obtained. The amplification was found to be derived from the NR154E strain mutant gene.
On the other hand, from the wild type “HAGHN” line, amplification of 714 bp corresponding to the amplification lengths of the wild type gene detection primer and the common primer was obtained. The amplification was observed to be derived from the wild type gene of the HAGHN line.
Also, from both the F 1 individuals, two amplification corresponding to the mutant gene and the wild-type gene was confirmed.
From the above results, it was shown that the genotype of the glucorafasatin synthase locus can be identified from the obtained amplification pattern by PCR using the primer set. In particular, it was shown that "heterotype", which is a genotype that does not appear in the phenotype, can be detected.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(3)「分離集団と表現型との相関」
 上記作成したプライマーセットを用いて分類した分離集団について、マーカー遺伝子型と表現型が相関するかを確認した。
 グルコラファサチン欠失系統である「NR154E」系統について、表18~20に示すグルコラファサチン含有性(野生型)系統との戻し交雑を2回行い、次いで自殖操作を2回行って、BC集団を得た。
 BC集団の各個体について、上記(2)に記載の操作と同様にしてPCR反応を行って、PCR増幅パターンからグルコラファサチン合成酵素遺伝子座の遺伝子型を推定して、3集団(機能欠損型遺伝子ホモ型、野生型遺伝子ホモ型、ヘテロ型)に分類した。
 また、BC集団の各個体について、肥大根部におけるグルコラファサチン含量を測定し、選抜マーカーにより分類した遺伝子型と表現型との一致を確認した。なお、グルコラファサチン含量の測定方法は、実施例1(3)に記載の方法と同様にして行った。結果を表18~20に示した。
(3) “Correlation between segregated population and phenotype”
It was confirmed whether the marker genotype and the phenotype correlate for the segregated population classified using the created primer set.
For the “NR154E” line which is a glucorafasatin-deficient line, backcrossing with the glucorafasatin-containing (wild-type) lines shown in Tables 18 to 20 is performed twice, followed by self-breeding operations twice. A 2 F 2 population was obtained.
For each individual of the BC 2 F 2 population, a PCR reaction was performed in the same manner as in the operation described in (2) above, and the genotype of the glucorafasatin synthase locus was estimated from the PCR amplification pattern, and 3 populations ( Functionally deficient gene homotype, wild type gene homotype, and heterotype).
Moreover, for each individual in BC 2 F 2 population, a gluco Lafayette satin content in hypertrophic roots were measured to confirm the match between genotype and phenotype was classified by a selectable marker. In addition, the measuring method of glucorafasatin content was performed like the method as described in Example 1 (3). The results are shown in Tables 18-20.
 その結果、いずれのグルコラファサチン含有性(野生型)系統との戻し交雑及び自殖を経た集団においても、上記プライマーセットを用いて分類して得た分離集団では、遺伝子型と表現型が一致することが確認された。
 即ち、選抜マーカーのPCR増幅パターンによる当該遺伝子型が「機能欠損型遺伝子ホモ型」と分類された集団では、グルコラファサチン含量が著しく低い値を示した。一方、当該遺伝子型が「野生型遺伝子ホモ型」又は「ヘテロ型」に分類された集団では、グルコラファサチン含量が高い値を示した。
 また、これら分類された集団全てにおいて、グルコラファサチン含量の標準誤差のばらつきが著しく少ないことから、当該選抜DNAマーカーによる表現型の識別精度は極めて高いことが示された。
As a result, the genotype and phenotype of the segregated population obtained by classification using the above primer set in the population that had been backcrossed and self-bred with any glucorafasatin-containing (wild type) strain Confirmed to do.
That is, the group in which the genotype was classified as a “function-deficient gene homotype” according to the PCR amplification pattern of the selection marker showed a remarkably low glucorafasatin content. On the other hand, the group in which the genotype was classified into “wild type gene homotype” or “heterotype” showed a high glucorafasatin content.
Moreover, since the variation of the standard error of the glucorafasatin content was remarkably small in all of these classified groups, it was shown that the phenotype discrimination accuracy by the selected DNA marker was extremely high.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
[実施例1~6からの知見]
 以上、上記実施例に係る実験結果からの知見を整理して示した。
[Knowledge from Examples 1 to 6]
As mentioned above, the knowledge from the experimental results according to the above-described example has been organized and shown.
(1)「グルコラファサチン欠失性原因遺伝子について」
 上記実施例1~5から、グルコラファサチン欠失性原因遺伝子に関して、次の知見が得られた。
  i)ポジショナルクローニング法による連鎖解析及び高精度連鎖解析から、グルコラファサチン欠失性原因遺伝子の座乗領域が特定された。当該座乗領域には、7つの候補遺伝子の存在が予測されたが、RT-PCRの発現解析の結果、「遺伝子3」が候補遺伝子であると推測された。
 ii)グルコラファサチン欠失性系統である「NR154E」と「MR050E」の両系統とも、遺伝子3のコード蛋白質は、インレームにて終止コドンが挿入された変異蛋白質となっており、蛋白質の重要構造である2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインの全部又は一部を欠失していることが示された。
 また、当該両系統における変異型遺伝子3の発現量は、野生型品種系統より著しく低い値であり、遺伝子発現量の点でも、遺伝子機能が失われていることが示された。
 iii)シロイヌナズナへの遺伝子3の機能獲得(gain of function)型の遺伝子導入試験により、ダイコンにおけるグルコラファサチン欠失性原因遺伝子は、遺伝子3が原因遺伝子であると同定された。また、遺伝子3は、グルコラファサチン合成酵素遺伝子であると同定された。
(1) “Glucorafasatin deficiency causative gene”
From the above Examples 1 to 5, the following findings were obtained regarding the glucorafasatin deficient causative gene.
i) From the linkage analysis by the positional cloning method and the high-accuracy linkage analysis, the locus region of the gene responsible for glucorafasatin deficiency was identified. The presence of seven candidate genes was predicted in the locus region. As a result of RT-PCR expression analysis, it was estimated that “gene 3” was a candidate gene.
ii) In both the NR154E and MR050E strains, which are glucorafasatin-deficient strains, the gene 3 coding protein is a mutated protein in which a stop codon has been inserted in an inlay, and the important structure of the protein It has been shown that all or part of the 2-oxoglutarate-iron (II) -dependent oxygenase domain is deleted.
In addition, the expression level of mutant gene 3 in both lines was significantly lower than that in the wild type line, indicating that the gene function was lost in terms of gene expression level.
iii) The gene 3 gain-of-function gene transfer test into Arabidopsis thaliana has identified the gene responsible for glucorafasatin deficiency in radish as gene 3. Gene 3 was identified as a glucorafasatin synthase gene.
(2)「DNAマーカーについて」
 また、実施例6から、グルコラファサチン合成酵素遺伝子のゲノム配列内の挿入配列をDNAマーカーとして利用することについて、次の知見が得られた。
 i)PCR増幅パターンによって、グルコラファサチン合成酵素遺伝子座の遺伝子型(野生型、変異型、ヘテロ型)を、容易に判定できることが示された。
 ii)通常の連鎖マーカー(SNP、SSRなど)とは異なり、グルコラファサチン合成酵素遺伝子そのものの変異を指標としているため、当該グルコラファサチン合成酵素遺伝子の遺伝子型を利用することで、グルコラファサチン欠失性を示す表現型の高精度での識別及び選抜が可能であることが示された。
 iii)従来においては、劣性ホモ遺伝子のBC世代以降の戻し交雑を行うためには、当該遺伝子がヘテロ型となっている個体を選抜する必要があった。そのため、ヘテロ型の遺伝子型を判別するためには、それぞれの個体について自殖操作を行って後代集団の表現型分離比を調べる必要があった。当該選抜DNAマーカーを用いることによって、後代集団の育成を行うことなく各個体におけるPCR増幅パターンを調べるのみで、容易に「ヘテロ型」の遺伝子型を判別できることが示された。
 iv)本実施例は、NR154E系統の変異型遺伝子を検出する例であるが、変異配列の識別を可能とするプライマー設計が可能であれば、原理的には全ての機能欠損型遺伝子の検出に応用可能であると認められた。
(2) “About DNA markers”
Moreover, the following knowledge was obtained from Example 6 about using the insertion sequence in the genomic sequence of the glucorafasatin synthase gene as a DNA marker.
i) It was shown that the genotype (wild type, mutant type, hetero type) of the glucorafasatin synthase locus can be easily determined by the PCR amplification pattern.
ii) Unlike ordinary linkage markers (SNP, SSR, etc.), since the mutation of the glucorafasatin synthase gene itself is used as an index, by using the genotype of the glucorafasatin synthase gene, glucorafasatin It was shown that the phenotype showing the deletion property can be identified and selected with high accuracy.
iii) Conventionally, in order to perform backcross after the BC 1 generation of recessive homogenes, it was necessary to select individuals in which the genes are heterozygous. Therefore, in order to discriminate heterogeneous genotypes, it was necessary to carry out selfing operations on each individual and to examine the phenotypic segregation ratio of the progeny population. It was shown that by using the selected DNA marker, the “heterotype” genotype can be easily discriminated only by examining the PCR amplification pattern in each individual without growing a progeny population.
iv) This example is an example of detecting a mutant gene of the NR154E strain. However, in principle, if it is possible to design a primer that can identify a mutant sequence, all of the function-deficient genes can be detected. It was recognized that it could be applied.
 本発明は、ダイコン品種系統の開発を行っている種苗メーカー及び公設試験場において、有効に利用される技術となることが期待される。また、ダイコン生産農家及び大根加工飲食品等を扱う各分野の製造業者等にとって有効に利用される技術となることが期待される。
The present invention is expected to be a technology that can be used effectively in seed and seedling manufacturers and public test sites that are developing radish variety lines. In addition, it is expected to be a technology that can be effectively used by radish producers and manufacturers in various fields that handle radish processed foods and drinks.
  1. 肥大根部
  2. 葉柄
1. 1. radish Petiole
 21. グルコエルシンを示すピーク
 22. グルコラファサチンを示すピーク
21. 21. Peak showing glucoerucine Peak showing glucorafasatin
 31. グルコラファサチン合成酵素遺伝子(ゲノムDNA)
 32. 機能欠損型遺伝子における挿入配列
 33. 機能欠損型遺伝子検出用プライマー
 34. 野生型遺伝子検出用プライマー
 35. 共通用プライマー
31. Glucorafasatin synthase gene (genomic DNA)
32. Insertion sequence in a deficient gene 33. Primer for detection of function-deficient gene 34. Primer for detecting wild type gene 35. Common primer

Claims (17)

  1.  下記(A)及び(B)に記載の特徴を有する、機能欠損型グルコラファサチン合成酵素遺伝子;
    (A)下記(a1)に記載の遺伝子を構成するエクソン内に、コード蛋白質における2オキソグルタル酸-鉄(II)依存性オキシゲナーゼドメインの全部又は一部の欠失を伴う変異を有する特徴、
    (a1)配列番号5に記載のアミノ酸配列又は当該アミノ酸配列と95%以上の配列相同性を示すアミノ酸配列、からなる蛋白質をコードする遺伝子であって、グルコエルシンからグルコラファサチンへの合成反応に関与する蛋白質をコードする遺伝子、
    (B)ダイコンゲノムにおけるグルコラファサチン合成酵素遺伝子座が当該機能欠損型グルコラファサチン合成酵素遺伝子のホモ型となった場合に、肥大根部のグルコラファサチン含量が3μmоl/g以下となる特徴。
    A function-deficient glucorafasatin synthase gene having the characteristics described in (A) and (B) below;
    (A) a feature having a mutation in the exon constituting the gene described in (a1) below, which is accompanied by a deletion of all or part of the 2-oxoglutarate-iron (II) -dependent oxygenase domain in the encoded protein;
    (A1) A gene encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 5 or an amino acid sequence showing 95% or more sequence homology with the amino acid sequence, and is involved in the synthesis reaction from glucoerucin to glucorafasatin A gene encoding a protein to be
    (B) The characteristic that the glucorafasatin content of the radish root is 3 μmol / g or less when the glucorafasatin synthase gene locus in the radish genome is homozygous for the function-deficient glucorafasatin synthase gene.
  2.  更に下記(C)に記載の特徴を有する、請求項1に記載の機能欠損型グルコラファサチン合成酵素遺伝子;
    (C)上記(A)に記載の変異が、少なくとも1kbpの塩基配列の挿入を伴う変異である、請求項1に記載の機能欠損型グルコラファサチン合成酵素遺伝子。
    Furthermore, the function-deficient glucorafasatin synthase gene according to claim 1, which has the characteristics described in (C) below;
    (C) The function-deficient glucorafasatin synthase gene according to claim 1, wherein the mutation described in (A) is a mutation accompanied by insertion of a base sequence of at least 1 kbp.
  3.  上記機能欠損型グルコラファサチン合成酵素遺伝子が、配列番号7又は9に記載の塩基配列を含む遺伝子である、請求項1又は2に記載の機能欠損型グルコラファサチン合成酵素遺伝子。 The function-deficient glucorafasatin synthase gene according to claim 1 or 2, wherein the function-deficient glucorafasatin synthase gene is a gene comprising the base sequence represented by SEQ ID NO: 7 or 9.
  4.  請求項1~3のいずれかにおける上記(A)に記載の変異の存在の有無を検出することを特徴とする、ダイコンにおけるグルコラファサチン合成酵素遺伝子座の遺伝子型判定方法。 A method for determining the genotype of a glucorafasatin synthase locus in radish, comprising detecting the presence or absence of the mutation according to (A) in any one of claims 1 to 3.
  5.  下記(D)及び(E)に記載のオリゴヌクレオチドプライマーを含んでなることを特徴とする、ダイコンにおけるグルコラファサチン合成酵素遺伝子座の遺伝子型判定用キット;
    (D)請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子又は当該遺伝子と同じ染色体上の領域、を構成する塩基配列又はその相補配列に含まれる塩基配列であって、上記(A)に記載の変異の存在を検出可能な位置に設計された少なくとも12塩基からなる塩基配列、を含むオリゴヌクレオチドプライマー、
    (E)請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子又は当該遺伝子と同じ染色体上の領域、を構成する塩基配列又はその相補配列に含まれる少なくとも12塩基からなる塩基配列であって、上記(D)に記載のプライマーとプライマー対を形成可能な位置にある塩基配列、を含むオリゴヌクレオチドプライマー。
    A genotyping kit for a glucorafasatin synthase gene locus in radish, comprising the oligonucleotide primer described in the following (D) and (E);
    (D) a base sequence included in a base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 or a region on the same chromosome as the gene or a complementary sequence thereof, An oligonucleotide primer comprising a base sequence consisting of at least 12 bases designed at a position where the presence of the mutation described in (A) can be detected,
    (E) It comprises at least 12 bases included in a base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 or a region on the same chromosome as the gene or a complementary sequence thereof An oligonucleotide primer comprising a base sequence at a position capable of forming a primer pair with the primer described in (D) above.
  6.  上記(D)に記載のプライマーが、下記(d1)又は(d2)に記載のオリゴヌクレオチドプライマーである、請求項5に記載の遺伝子型判定用キット;
    (d1)上記(A)に記載の変異が挿入変異である場合において、当該変異を構成する塩基配列又はその相補配列を含むオリゴヌクレオチドプライマー、
    (d2)上記(A)に記載の変異をその配列内に含む塩基配列、を含むオリゴヌクレオチドプライマー。
    The genotyping kit according to claim 5, wherein the primer described in (D) is the oligonucleotide primer described in (d1) or (d2) below;
    (D1) when the mutation described in (A) is an insertion mutation, an oligonucleotide primer comprising a base sequence constituting the mutation or a complementary sequence thereof,
    (D2) An oligonucleotide primer comprising a base sequence containing the mutation described in (A) above in its sequence.
  7.  さらに、下記(F)及び(G)に記載のオリゴヌクレオチドプライマーを含んでなる、請求項5又は6に記載の遺伝子型判定用キット;
    (F)請求項1~3のいずれかにおける上記(a1)に記載のグルコラファサチン合成酵素遺伝子又は当該遺伝子と同じ染色体上の領域、を構成する塩基配列又はその相補配列に含まれる塩基配列であって、上記(A)に記載の変異の不存在を検出可能な位置に設計された少なくとも12塩基からなる塩基配列、を含むオリゴヌクレオチドプライマー、
    (G)請求項1~3のいずれかにおける上記(a1)に記載のグルコラファサチン合成酵素遺伝子又は当該遺伝子と同じ染色体上の領域、を構成する塩基配列又はその相補配列に含まれる少なくとも12塩基からなる塩基配列であって、上記(F)に記載のプライマーとプライマー対を形成可能な位置にある塩基配列、を含むオリゴヌクレオチドプライマー。
    Furthermore, the genotyping kit according to claim 5 or 6, comprising the oligonucleotide primer described in (F) and (G) below;
    (F) a base sequence constituting a glucorafasatin synthase gene according to any one of claims 1 to 3 or a region on the same chromosome as the gene, or a base sequence included in a complementary sequence thereof. An oligonucleotide primer comprising a base sequence consisting of at least 12 bases designed to detect the absence of the mutation described in (A) above,
    (G) at least 12 bases included in the base sequence constituting the glucorafasatin synthase gene according to any one of claims 1 to 3 or a region on the same chromosome as the gene or a complementary sequence thereof An oligonucleotide primer comprising a base sequence comprising: a base sequence at a position capable of forming a primer pair with the primer described in (F) above.
  8.  下記(H)又は(I)に記載のオリゴヌクレオチドプローブを含んでなることを特徴とする、ダイコンにおけるグルコラファサチン合成酵素遺伝子座の遺伝子型判定用キット;
    (H)請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を構成する塩基配列又はその相補配列に含まれる少なくとも12塩基からなる塩基配列であって、上記(A)に記載の変異が挿入変異である場合における当該変異を構成する塩基配列又はその相補配列、を含むオリゴヌクレオチドプローブ、
    (I)請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を構成する塩基配列又はその相補配列に含まれる少なくとも12塩基からなる塩基配列であって、上記(A)に記載の変異をその配列内に含む塩基配列、を含むオリゴヌクレオチドプローブ。
    A kit for genotyping of the glucorafasatin synthase gene locus in radish, comprising the oligonucleotide probe described in (H) or (I) below;
    (H) a base sequence comprising at least 12 bases contained in a base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 or a complementary sequence thereof, An oligonucleotide probe comprising a base sequence constituting the mutation or a complementary sequence thereof when the mutation described in 1 is an insertion mutation,
    (I) A base sequence comprising at least 12 bases contained in a base sequence constituting the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 or a complementary sequence thereof, An oligonucleotide probe comprising a nucleotide sequence comprising the mutation described in 1 in its sequence.
  9.  下記(J)、(K)、及び(L)に記載の特徴を有する、請求項5~8のいずれかに記載の遺伝子型判定用キット;
    (J)上記機能欠損型グルコラファサチン合成酵素遺伝子が、配列番号7又は9に記載の塩基配列を含む機能欠損型グルコラファサチン合成酵素遺伝子である特徴、
    (K)上記グルコラファサチン合成酵素遺伝子が、配列番号2に記載の塩基配列からなるグルコラファサチン合成酵素遺伝子である特徴、
    (L)上記染色体上の領域が、配列番号1における第1番目から第2971番目までの塩基からなる塩基配列で構成される領域、及び、配列番号1における第4759番目から第7424番目までの塩基からなる塩基配列で構成される領域、である特徴。
    The genotyping kit according to any one of claims 5 to 8, which has the characteristics described in the following (J), (K), and (L);
    (J) the function-deficient glucorafasatin synthase gene is a function-deficient glucorafasatin synthase gene comprising the base sequence described in SEQ ID NO: 7 or 9,
    (K) The above-mentioned glucorafasatin synthase gene is a glucorafasatin synthase gene comprising the base sequence set forth in SEQ ID NO: 2,
    (L) The region on the chromosome is composed of a base sequence consisting of the first to 2971st bases in SEQ ID NO: 1, and the 4759th to 7424th bases in SEQ ID NO: 1 A feature that is a region composed of a base sequence consisting of
  10.  請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を、ゲノムにおけるグルコラファサチン合成酵素遺伝子座にホモ型で有し、肥大根部の乾燥重量に対するグルコラファサチン含量が3μmоl/g以下であることを特徴とするダイコン系統。 The function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 is homozygous at the glucorafasatin synthase gene locus in the genome, and the glucorafasatin content relative to the dry weight of the enlarged radish is 3 μmol A Japanese radish system characterized by being not more than / g.
  11.  下記(M)~(O)のいずれかに記載のダイコンを自殖操作し又は所望のダイコンと交配し、その後代集団から選抜して得られた、請求項10に記載のダイコン系統;
    (M)ゲノムにおけるグルコラファサチン合成酵素遺伝子座に、請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子が導入されたダイコン、
    (N)ゲノムにおけるグルコラファサチン合成酵素遺伝子に機能欠損型変異が導入されたダイコンであって、ゲノムにおけるグルコラファサチン合成酵素遺伝子座に請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を有するダイコン、
    (O)上記(M)又は(N)に記載のダイコンの後代集団から得られたダイコンであって、請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子をゲノムにおけるグルコラファサチン合成酵素遺伝子座に有するダイコン。
    The radish line according to claim 10, wherein the radish line according to any one of the following (M) to (O) is obtained by self-breeding or mating with a desired radish and then selecting from a progeny population;
    (M) Japanese radish in which the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 is introduced into the glucorafasatin synthase gene locus in the genome,
    (N) A radish in which a function-deficient mutation has been introduced into the glucorafasatin synthase gene in the genome, wherein the function-deficient glucose according to any one of claims 1 to 3 is present at the glucorafasatin synthase gene locus in the genome. Japanese radish having a rafasatin synthase gene,
    (O) A radish obtained from a progeny population of radish according to (M) or (N) above, wherein the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 is present in a genome. Japanese radish at the glucorafasatin synthase locus.
  12.  上記機能欠損型グルコラファサチン合成酵素遺伝子が、配列番号7又は9に記載の塩基配列を含む機能欠損型グルコラファサチン合成酵素遺伝子である、請求項10又は11に記載のダイコン系統。 The radish system according to claim 10 or 11, wherein the function-deficient glucorafasatin synthase gene is a function-deficient glucorafasatin synthase gene comprising the base sequence represented by SEQ ID NO: 7 or 9.
  13.  請求項10~12のいずれかに記載のダイコン系統の植物体から得られた、根、胚軸部、肥大根部、葉、葉柄、茎、花蕾、花、種子、スプラウト、ベビーリーフ、又は苗。 A root, hypocotyl part, hypertrophic root part, leaf, petiole, stem, flower bud, flower, seed, sprout, baby leaf, or seedling obtained from a plant of the radish line according to any one of claims 10 to 12.
  14.  下記(P)に記載の工程を含むことを特徴とする、ダイコンにおけるグルコラファサチン欠失系統の作出方法;
    (P)ゲノムにおけるグルコラファサチン合成酵素遺伝子座に請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を有するダイコンを、自殖操作又は所望のダイコンと交配する工程。
    A method for producing a glucorafasatin-deficient line in radish, comprising the step described in (P) below;
    (P) A step of mating a radish having the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 at a glucorafasatin synthase gene locus in a genome with a self-breeding operation or a desired radish.
  15.  前記(P)に記載の機能欠損型グルコラファサチン合成酵素遺伝子を有するダイコンが、下記(Q)~(S)に記載のいずれかのダイコンである、請求項14に記載の作出方法;
    (Q)ゲノムにおけるグルコラファサチン合成酵素遺伝子座に、請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子が導入されたダイコン、
    (R)ゲノムにおけるグルコラファサチン合成酵素遺伝子に機能欠損型変異が導入されたダイコンであって、ゲノムにおけるグルコラファサチン合成酵素遺伝子座に請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子を有するダイコン、
    (S)上記(Q)又は(R)に記載のダイコンの後代集団から得られたダイコンであって、請求項1~3のいずれかに記載の機能欠損型グルコラファサチン合成酵素遺伝子をゲノムにおけるグルコラファサチン合成酵素遺伝子座に有するダイコン。
    The production method according to claim 14, wherein the radish having the function-deficient glucorafasatin synthase gene described in (P) is any of the radish described in (Q) to (S) below;
    (Q) Japanese radish in which the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 is introduced into a glucorafasatin synthase gene locus in the genome,
    (R) A radish obtained by introducing a function-deficient mutation into a glucorafasatin synthase gene in the genome, wherein the function-deficient gluco according to any one of claims 1 to 3 is present at the glucorafasatin synthase gene locus in the genome. Japanese radish having a rafasatin synthase gene,
    (S) A radish obtained from a progeny population of radish according to (Q) or (R) above, wherein the function-deficient glucorafasatin synthase gene according to any one of claims 1 to 3 is present in the genome. Japanese radish at the glucorafasatin synthase locus.
  16.  請求項4に記載の遺伝子型判定方法を使用して行うものである、請求項14又は15に記載の作出方法。 The production method according to claim 14 or 15, which is carried out using the genotyping method according to claim 4.
  17.  さらに下記(T)に記載の工程を含むことを特徴とする、請求項14~16のいずれかに記載の作出方法;
    (T)上記(P)に記載の工程により得られた後代集団から、請求項4に記載の遺伝子型判定方法を使用して、グルコラファサチン欠失性を示すダイコン個体を選抜する工程。
    The production method according to any one of claims 14 to 16, further comprising the step described in (T) below;
    (T) A step of selecting a radish individual exhibiting glucorafasatin deficiency from the progeny population obtained by the step described in (P) above, using the genotyping method according to claim 4.
PCT/JP2015/077956 2014-11-07 2015-10-01 Inoperative-type glucoraphasatin synthase gene and use of same WO2016072182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-226635 2014-11-07
JP2014226635A JP6499817B2 (en) 2014-11-07 2014-11-07 Function deficient glucorafasatin synthase gene and use thereof

Publications (1)

Publication Number Publication Date
WO2016072182A1 true WO2016072182A1 (en) 2016-05-12

Family

ID=55908911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077956 WO2016072182A1 (en) 2014-11-07 2015-10-01 Inoperative-type glucoraphasatin synthase gene and use of same

Country Status (2)

Country Link
JP (1) JP6499817B2 (en)
WO (1) WO2016072182A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117396066A (en) * 2021-04-01 2024-01-12 可果美株式会社 Cross-genus hybrid plant rich in glucoraphanin and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066949A1 (en) * 2010-11-19 2012-05-24 独立行政法人農業・食品産業技術総合研究機構 Method for producing glucoraphanin-rich radish line
JP2013198436A (en) * 2012-03-26 2013-10-03 Ochanomizu Univ Method for producing radish processed food causing no yellowing and sulfur smell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066949A1 (en) * 2010-11-19 2012-05-24 独立行政法人農業・食品産業技術総合研究機構 Method for producing glucoraphanin-rich radish line
JP2013198436A (en) * 2012-03-26 2013-10-03 Ochanomizu Univ Method for producing radish processed food causing no yellowing and sulfur smell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE DDBJ/EMBL/GenBank [o] 26 July 2012 (2012-07-26), "DEFINITION: TSA: Raphanus sativus RS10991 mRNA sequence", Database accession no. JT795538 *
TOMOHIRO KAKIZAKI ET AL.: "Daikon ni Okeru Glucoraphasatin Gosei Koso Idenshi no Dotei", BREEDING RESEARCH, 21 March 2015 (2015-03-21), pages 85 *

Also Published As

Publication number Publication date
JP2016086761A (en) 2016-05-23
JP6499817B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
AU2020202265B2 (en) Genetic markers for myb28
WO2020036950A1 (en) Molecular markers for blackleg resistance gene rlm1 in brassica napus, and methods of using the same
EP2451269A1 (en) Plant resistant to a pathogen
RU2717017C2 (en) Molecular markers for blackleg resistance gene rlm2 in brassica napus and methods of use thereof
WO2013142348A1 (en) Molecular markers for low palmitic acid content in sunflower (helianthus annus), and methods of using the same
US9161501B2 (en) Genetic markers for Orobanche resistance in sunflower
JP6499817B2 (en) Function deficient glucorafasatin synthase gene and use thereof
RU2718584C2 (en) Molecular markers of rlm4 gene of brassica napus black stem resistance and methods of using them
CA3106706A1 (en) Molecular markers for blackleg resistance gene rlm7 in brassica napus, and methods of using the same
JP6145102B2 (en) Materials and methods for detecting aryloxyalkanoate dioxygenase genes (AAD-12) in plants
US9534260B2 (en) Materials and methods for detecting the aryloxyalkanoate dioxygenase gene (AAD-12) containing event pDAB4472-1606 in plants
WO2023248150A1 (en) Quantitative trait locus associated with a flower density trait in cannabis
CN116479156A (en) Primer for detecting peanut imidazolinone herbicide resistant gene AhALS-G1709T and application
US20210307276A1 (en) Genetic regions & genes associated with increased yield in plants
JP2005229850A (en) Gene marker connected to gene locus participating on thousand-kernel weight and its utilization
Wu Verification of SNP Markers Associated with After-cooking Darkening in Potatoes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856395

Country of ref document: EP

Kind code of ref document: A1