WO2016072104A1 - ホスホニウム化合物およびその製造方法 - Google Patents

ホスホニウム化合物およびその製造方法 Download PDF

Info

Publication number
WO2016072104A1
WO2016072104A1 PCT/JP2015/059857 JP2015059857W WO2016072104A1 WO 2016072104 A1 WO2016072104 A1 WO 2016072104A1 JP 2015059857 W JP2015059857 W JP 2015059857W WO 2016072104 A1 WO2016072104 A1 WO 2016072104A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkoxy
phenyl
diphenylphosphonium
fluoroethoxy
alkyl
Prior art date
Application number
PCT/JP2015/059857
Other languages
English (en)
French (fr)
Inventor
祥三 古本
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2015516353A priority Critical patent/JP6555719B2/ja
Priority to US15/523,988 priority patent/US20180030074A1/en
Priority to EP15857241.2A priority patent/EP3216796B1/en
Publication of WO2016072104A1 publication Critical patent/WO2016072104A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5456Arylalkanephosphonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/004Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5442Aromatic phosphonium compounds (P-C aromatic linkage)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se

Definitions

  • the present invention relates to a method for producing a quaternary phosphonium compound labeled with a radionuclide, particularly a positron emitting nuclide such as 18 F.
  • the present invention also relates to a radionuclide, particularly a positron emitting nuclide labeled quaternary phosphonium compound such as 18 F, and an imaging agent containing the compound.
  • ⁇ DLCs Delocalized Liphphilic Cations
  • ⁇ DLCs are molecules with a structure that can be delocalized by resonance stabilization of positive charge in the molecule, and can easily pass through the lipid bilayer of the cell membrane It has fat solubility and has the property of being accumulated in the mitochondria in the living body using the electrochemical potential of the mitochondrial membrane potential (Non-patent Documents 1 and 2).
  • DLCs labeled with radionuclides have been studied for use in applications such as myocardial perfusion imaging, apoptosis imaging, and brown adipose tissue (Brown Adipose Tissue, BAT) activity imaging. Has been.
  • ischemic heart disease is the most common cause of death in the world. According to a survey by the World Health Organization, 7 million people died in 2011. In Japan, ischemic heart disease is the second leading cause of death after malignant neoplasms. Ischemic heart disease is a general term for angina pectoris, myocardial infarction, and the like, and is mainly caused by the progression of coronary arteriosclerosis. Early detection of myocardial ischemia is important for effective treatment. Therefore, it can be said that the development of a highly accurate diagnostic method that leads to early detection of ischemic heart disease is one of the important issues in modern medicine.
  • myocardial perfusion imaging using nuclear medicine examination PET or SPECT can be mentioned.
  • myocardial ischemia is mild, blood flow is maintained throughout the myocardium when the patient is at rest, but the myocardium requires a lot of oxygen and nutrition when the myocardium is stressed by exercise etc. Circulatory blood flow increases. While the blood flow increases in the normal site, the arteriole after the stenosis site maintains the blood flow by maximally expanding the blood vessel at rest, so that the coronary blood flow does not increase.
  • the stenosis site appears as a radioactivity deficient image.
  • myocardial blood flow is diagnosed by applying a load to the patient's myocardium with drugs such as exercise or adenosine and comparing images at rest.
  • SPECT drugs such as [ 99m Tc] Estamibi (MIBI) and [ 99m Tc] Tetrofosmin labeled with [ 201 Tl] TlCl or 99m Tc are mainly used as myocardial perfusion imaging agents.
  • MIBI Magnetic Infrared
  • 99m Tc] Tetrofosmin labeled with [ 201 Tl] TlCl or 99m Tc are mainly used as myocardial perfusion imaging agents.
  • Apoptosis is programmed cell death and is performed through the activation of a specific protease (caspase) in the cell. It has been reported that the activation of caspase involves cytochrome c released from mitochondria, and that release occurs in parallel with changes in mitochondrial membrane potential. Mitochondria play an important role in the control of apoptosis (Non-patent Document 3).
  • Brown adipose tissue is one of the targets for the treatment of obesity because it produces heat by the consumption of energy, unlike white fat which is responsible for energy storage. Brown fat produces heat by maintaining body temperature in a cold environment or by ingesting a high fat diet. This heat production is performed in mitochondria, which are abundant in brown fat cells.
  • Non-patent Document 5 synthesis of 4- [ 18 F] fluorobenzyltriphenylphosphonium bromide ([ 18 F] FBnTP) was reported by Ravert et al. (Non-patent Document 5).
  • DLCs delocalized lipophilic cations
  • the present invention is a radionuclide, the quaternary phosphonium compounds labeled with positron-emitting nuclides such as in particular 18 F, and to provide an efficient implementation possible preparation methods in a short time.
  • Another object of the present invention is to provide a radionuclide, particularly a quaternary phosphonium compound labeled with a positron emitting nuclide such as 18 F, particularly a quaternary phosphonium compound suitable for an imaging agent for PET useful for imaging of the myocardium.
  • the inventors of the present invention have made extensive studies to achieve the above-mentioned problems. As a result, the inventors have found a highly efficient production method for a quaternary phosphonium compound labeled with a radionuclide, and further, a quaternary phosphonium that can be produced by the method. The present inventors have found that the compound has favorable characteristics as an imaging agent for PET and completed the present invention.
  • the disclosure of this specification includes the inventions described in the following (1) to (24).
  • Ar 1 , Ar 2 , and Ar 3 are each independently aryl optionally substituted by one or more substituents selected from B 2 , wherein Ar 1 , Ar 2 , and At least one of Ar 3 is C 1-6 alkyl labeled with a radionuclide, C 2-6 alkoxy labeled with a radionuclide, C 2-6 alkoxy C 1-6 alkyl labeled with a radionuclide, radioactive C 2-6 alkoxy C 2-6 alkoxy labeled with nuclides, C 2-6 alkoxy C 2-6 alkoxy C 1-6 alkyl labeled with radio nuclides, and C 2-6 alkoxy labeled with radio nuclides Substituted with one or more substituents selected from C 2-6 alkoxy C 2-6 alkoxy; A 1 is a hydrogen atom, 1 or more substituents the optionally substituted C 1-10 alkyl is selected from B 1, which may be substituted by one or more substituents selected from B 1 C 2
  • a 1 is a hydrogen atom, C 1-6 alkyl, phenyl, or phenyl C 1-4 alkyl optionally substituted with one or more halogen atoms, wherein phenyl or phenyl C 1-4
  • the phenyl portion of alkyl is one or more halogen atoms, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylthio, cyano, amino, C 1-6 alkylamino, di (C 1-6 alkyl) amino
  • a radiopharmaceutical that contains the phosphonium compound according to any one of (1) to (6) and is used for imaging.
  • the triphenylphosphine may further have one or more substituents selected from B 2 on the benzene ring.
  • Ar 1 , Ar 2 , and Ar 3 are each independently aryl optionally substituted by one or more substituents selected from B 2 ;
  • at least one of Ar 1 , Ar 2 , and Ar 3 is C 1-6 alkyl optionally substituted by one or more substituents selected from L, one or more substituents selected from L
  • B 2 is a halogen atom, C 1-6 alky
  • the manufacturing method which can be implemented efficiently in a short time is provided.
  • the present invention also provides a radionuclide-labeled quaternary phosphonium compound such as 18 F, particularly a quaternary phosphonium compound suitable for PET imaging agents useful for imaging of the myocardium and the like.
  • Example 3 is a result of preparative HPLC of [ 18 F] TAP-001 synthesized in Example 1. It is the imaging image of mouse
  • the method comprises reacting triphenylphosphine substituted with a substituent labeled with a positron emitting nuclide and an electrophile represented by the above formula (I).
  • a method for producing a nuclide-labeled quaternary phosphonium compound is provided.
  • aryl means an aromatic hydrocarbon ring group having 6 to 14 carbon atoms and includes, for example, phenyl, 1-naphthyl, 2-naphthyl and the like.
  • C 1-10 alkyl means a linear, branched, cyclic or partially cyclic alkyl group having 1 to 10 carbon atoms, such as methyl, ethyl, n-propyl. I-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, 3-methylbutyl, 2-methylbutyl, 1-methylbutyl, 1-ethylpropyl, n-hexyl, 4-methylpentyl , 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 3-ethylbutyl, 2-ethylbutyl, n-heptyl, n-octyl, n-nonyl, n-decyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and Cyclopropylmethyl and
  • C 1-6 alkyl means a linear, branched, cyclic or partially cyclic alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, n-propyl. I-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, 3-methylbutyl, 2-methylbutyl, 1-methylbutyl, 1-ethylpropyl, n-hexyl, 4-methylpentyl , 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 3-ethylbutyl, and 2-ethylbutyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, and the like, for example, C 1-4 alkyl And C 1-3 alkyl and the like are also included.
  • C 2-10 alkenyl means a linear, branched, cyclic or partially cyclic alkenyl group having 2 to 10 carbon atoms, and the contained double bond is 1 or 2 It may be the above.
  • alkenyl groups include vinyl, 1-propenyl, 2-propenyl (allyl), 1-butenyl, 2-butenyl, 3-butenyl and the like, for example, C 2-6 alkenyl, C 2-4 alkenyl and C 2-3 alkenyl and the like are also included.
  • C 1-6 alkoxy means an alkyloxy group [—O— (C 1-6 alkyl)] having an alkyl group having 1 to 6 carbon atoms already defined as the alkyl moiety, , Methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, i-butoxy, t-butoxy, n-pentoxy, 3-methylbutoxy, 2-methylbutoxy, 1-methylbutoxy, 1- Includes ethylpropoxy, n-hexyloxy, 4-methylpentoxy, 3-methylpentoxy, 2-methylpentoxy, 1-methylpentoxy, 3-ethylbutoxy, cyclopentyloxy, cyclohexyloxy, cyclopropylmethyloxy, etc. Examples thereof include C 1-4 alkoxy and C 1-3 alkoxy. In this specification, “C 1-4 alkoxy” includes, for example, C 1-3 alkoxy and the like.
  • C 2-6 alkoxy means an alkyloxy group [—O— (C 2-6 alkyl)] having an alkyl group having 2 to 6 carbon atoms as an alkyl moiety, such as ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, i-butoxy, t-butoxy, n-pentoxy, 3-methylbutoxy, 2-methylbutoxy, 1-methylbutoxy, 1-ethylpropoxy, n- Hexyloxy, 4-methylpentoxy, 3-methylpentoxy, 2-methylpentoxy, 1-methylpentoxy, 3-ethylbutoxy, cyclopentyloxy, cyclohexyloxy, cyclopropylmethyloxy, etc. Also included are 1-4 alkoxy and C 1-3 alkoxy.
  • C 1-6 alkylthio means an alkylthio group [—S— (C 1-6 alkyl)] having an alkyl group having 1 to 6 carbon atoms already defined as the alkyl moiety, Methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, s-butylthio, i-butylthio, t-butylthio, n-pentylthio, 3-methylbutylthio, 2-methylbutylthio, 1-methylbutylthio, 1-ethylpropylthio, n-hexylthio, 4-methylpentylthio, 3-methylpentylthio, 2-methylpentylthio, 1-methylpentylthio, 3-ethylbutylthio, cyclopentylthio, cyclohexylthio, cyclopropy
  • amino means —NH 2 and may form an acid addition salt in the molecule.
  • C 1-6 alkylamino means an alkylamino group [—NH— (C 1-6 alkyl)] having an alkyl group having 1 to 6 carbon atoms which has already been defined as an alkyl moiety, For example, methylamino, ethylamino, n-propylamino, i-propylamino, n-butylamino, s-butylamino, i-butylamino, t-butylamino, n-pentylamino, 3-methylbutylamino, 2 -Methylbutylamino, 1-methylbutylamino, 1-ethylpropylamino, n-hexylamino, 4-methylpentylamino, 3-methylpentylamino, 2-methylpentylamino, 1-methylpentylamino, 3-ethylbutyl Includes amino, cyclopentylamino, cyclohex
  • C 1-4 alkylamino also includes, for example, C 1-3 alkylamino.
  • the C 1-6 alkylamino group may form an acid addition salt in the molecule.
  • di (C 1-6 alkyl) amino refers to an alkylamino group [—N (C 1-6 alkyl) 2 ] having an alkyl group having 1 to 6 carbon atoms already defined as the alkyl moiety. This means that the two alkyl groups may be the same or different.
  • di (C 1-6 alkyl) amino examples include dimethylamino, diethylamino, ethyl (methyl) amino, methyl (n-propyl) amino, ethyl (n-propyl) amino, methyl (i-propyl) amino, ethyl (I-propyl) amino, di (n-propyl) amino, di (i-propyl) amino and the like, such as di (C 1-4 alkyl) amino and di (C 1-3 alkyl) amino, etc. Is also included.
  • di (C 1-4 alkyl) amino includes, for example, di (C 1-3 alkyl) amino and the like.
  • the di (C 1-6 alkyl) amino group may form an acid addition salt in the molecule.
  • C 1-6 alkoxycarbonyl means an alkoxycarbonyl group having a C 1-6 alkoxy group already defined as an alkoxy moiety, such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, C 1-3 alkoxycarbonyl and the like are included.
  • C 1-3 alkoxycarbonyl means an alkoxycarbonyl group having a C 1-3 alkoxy group already defined as an alkoxy moiety, such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, and iso Propoxycarbonyl is included.
  • C 2-6 alkoxyC 1-6 alkyl means a group represented by the formula — (C 1-6 alkylene) —O— (C 2-6 alkyl), such as ethoxymethyl, 2 -Ethoxyethyl, 2-ethoxypropyl, 3-ethoxypropyl and the like are included.
  • Examples of C 2-6 alkoxy C 1-6 alkyl substituted with 18 F include —CH 2 OCH 2 CH 2 — 18 F, —CH 2 CH 2 OCH 2 CH 2 — 18 F, and the like.
  • C 2-6 alkoxyC 2-6 alkoxy means a group represented by the formula —O— (C 2-6 alkylene) -O— (C 2-6 alkyl), for example, 2- Ethoxyethoxy, 2-ethoxypropoxy, 3-ethoxypropoxy and the like are included.
  • Examples of C 2-6 alkoxy C 2-6 alkoxy substituted with 18 F include —OCH 2 CH 2 OCH 2 CH 2 — 18 F and the like.
  • C 2-6 alkoxyC 2-6 alkoxyC 1-6 alkyl refers to the formula — (C 1-6 alkylene) -O— (C 2-6 alkylene) -O— (C 2-6 alkyl). ), Such as (2-ethoxyethoxy) methyl, 2- (2-ethoxyethoxy) ethyl, 2- (2-ethoxyethoxy) propyl, 3- (2-ethoxyethoxy) propyl, and the like. included.
  • C 2-6 alkoxy C 2-6 alkoxy C 1-6 alkyl substituted with 18 F examples include —CH 2 OCH 2 CH 2 OCH 2 CH 2 — 18 F, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 - 18 F and the like.
  • C 2-6 alkoxy C 2-6 alkoxy C 2-6 alkoxy C 2-6 alkoxy in the present specification have the formula -O- (C 2-6 alkylene) -O- (C 2-6 alkylene) -O- (C 2- 6- alkyl) and includes, for example, 2- (2-ethoxyethoxy) ethoxy, 2- (2-ethoxyethoxy) propoxy, 3- (2-ethoxyethoxy) propoxy and the like.
  • Examples of C 2-6 alkoxy C 2-6 alkoxy C 2-6 alkoxy C 2-6 alkoxy substituted with 18 F include —OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 — 18 F and the like.
  • Examples of “optionally substituted C 1-6 alkylsulfonyloxy” in the present specification include methanesulfonyloxy, trifluoromethanesulfonyloxy and the like.
  • Examples of “optionally substituted phenylsulfonyloxy” in the present specification include benzenesulfonyloxy and toluenesulfonyloxy.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the present invention can be implemented as a solvate.
  • the compounds of the present invention can be appropriately implemented as a mixture, solution, crystal polymorph and the like.
  • Examples of X 1 in the present specification include chlorine atom, bromine atom, iodine atom, methanesulfonyloxy, trifluoromethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy and the like.
  • Ar 1 , Ar 2 , and Ar 3 are each independently phenyl optionally substituted with one or more substituents selected from B 2 .
  • Ar 1 and Ar 2 are phenyl, and Ar 3 is phenyl optionally substituted by one or more substituents selected from B 2 .
  • a 1 is are selected from hydrogen atoms, one or more optionally substituted with a substituent C 1-10 alkyl is selected from B 1, from B 1 C 2-10 alkenyl optionally substituted by one or more substituents, and phenyl optionally substituted by one or more substituents selected from B 2 .
  • the anion (X ⁇ ) contained in the phosphonium compound is, for example, an anion that forms a pharmaceutically acceptable salt. Specifically, Cl ⁇ , Br ⁇ , I ⁇ , PhSO 2 O ⁇ , CH 3 C 6 H 4 SO 2 O ⁇ , CH 3 SO 2 O ⁇ and the like can be mentioned. In one embodiment, X ⁇ may be an anion generated by leaving the leaving group X 1 during the reaction.
  • Examples of a leaving group as defined herein are a halogen atom, an optionally substituted C 1-6 alkylsulfonyloxy, or an optionally substituted phenylsulfonyloxy, preferably a bromine atom , Iodine atom, p-toluenesulfonyloxy, methanesulfonyloxy, chloromethanesulfonyloxy, trifluoromethanesulfonyloxy and the like.
  • L or X 1 examples include halogen atoms, optionally substituted C 1-6 alkylsulfonyloxy, or optionally substituted phenylsulfonyloxy, Preferable examples include bromine atom, iodine atom, p-toluenesulfonyloxy, methanesulfonyloxy, chloromethanesulfonyloxy, trifluoromethanesulfonyloxy and the like.
  • the phosphonium compound of the present invention can be contained in various solutions such as aqueous solutions, various solvates such as hydrates, and crystal polymorphs.
  • the compound of the present invention can be labeled with a radionuclide by a known method.
  • the radionuclide include 3 H, 14 C, 35 S, 131 I, 99m Tc, 111 In, 67 Ga, 201 Tl, 123 I, 133 Xe, and positrons, which are ⁇ -ray emitting nuclides.
  • Examples include 11 C, 13 N, 15 O, 18 F, 62 Cu, 64 Cu, 68 Ga, and 76 Br, which are emission nuclides.
  • Compounds labeled with gamma-emitting nuclides can be used as imaging agents for computed tomography (SPECT), for example, compounds labeled with 99m Tc and 123 I are often used for SPECT.
  • SPECT computed tomography
  • a compound labeled with a positron emitting nuclide can be used as an imaging agent for positron emission tomography (PET).
  • PET positron emission tomography
  • 11 C, 13 N, 15 O, and 18 F are preferable, 18 F and 11 C are more preferable, and 18 F is more preferable from the viewpoint of appropriate half-life and ease of labeling. Particularly preferred.
  • Examples of the phosphonium moiety of the phosphonium compound represented by the formula (II) include the following.
  • triphenylphosphine having one or more substituents labeled with a positron emitting nuclide on the benzene ring and the electrophile of formula (I) can be performed, for example, by the steps shown in the following scheme.
  • the production method of the present invention can be carried out by the following scheme together with the preparation of the labeled precursor.
  • Ar 2, Ar 3, X 1, A 1, X - is already as defined herein; n is an integer selected from 1 ⁇ 4; R 1 is the B 2 A 2 is- (C 1-6 alkylene)-,-(C 1-6 alkylene) -O- (C 2-6 alkylene)-,-(C 1-6 alkylene) -O- (C 2-6 alkylene) -O- (C 2-6 alkylene) -, - O- (C 2-6 alkylene) -, - O- (C 2-6 alkylene) -O- (C 2 -6 alkylene) -, and -O- (C 2-6 alkylene) -O- (C 2-6 alkylene) -O- (C 2-6 alkylene) - is selected from; X 2 is a leaving group ]
  • the first use in the fluorination step [18 F] KF for example, using a cyclotron [18 O] irradiated with the proton beam in H 2
  • [ 18 F] fluorination reaction is carried out in the presence of a suitable solvent (eg, acetonitrile, DMSO, DMF, DMA, etc.) with heating (eg, 80 to 150 ° C., specifically 100 to 120 ° C., more specifically 110 ° C.).
  • the reaction time can be, for example, 5 to 60 minutes, specifically 5 to 20 minutes, more specifically 10 minutes.
  • This reaction can be performed, for example, under pressure by heating in a sealed container.
  • [2,2,2] cryptand (1,10-diaza-4,7,13,16,24,24-hexoxabicyclo [8.8.8] is added as an additive to increase the reaction efficiency.
  • Hexacosane, Kryptofix (registered trademark) [2, 2, 2]) and the like can be used.
  • a solution of phosphine as a substrate is added to a solid obtained by azeotropic drying of [ 18 F] KF / K 2 CO 3 aqueous solution and [2,2,2] cryptand, and then sealed. It can be made to react by heating under.
  • the leaving group (X 2 ) used in the above step is a halogen atom, an optionally substituted C 1-6 alkylsulfonyloxy, or an optionally substituted phenylsulfonyloxy, preferably bromine
  • An atom, an iodine atom, p-toluenesulfonyloxy, methanesulfonyloxy, chloromethanesulfonyloxy, trifluoromethanesulfonyloxy and the like can be mentioned.
  • the second step can be performed by the same method as in Scheme A.
  • the two steps of Scheme B can be carried out as a one-pot reaction.
  • an electrophilic reagent can be added to the reaction system and heated under sealing without post-treatment to obtain the desired product.
  • the target product can be purified by an ordinary method, for example, using preparative HPLC based on radiation intensity. Further, it can be easily purified by using a disposable small column cartridge (Sep-Pak (registered trademark)).
  • the imaging agent of the present invention can be prepared by dissolving or suspending a positron emitting nuclide-labeled quaternary phosphonium compound in physiological saline or the like.
  • the imaging agent may contain an additive, for example, a pH adjuster, a solubilizer, a dispersant, a solubilizer, a radical scavenger (radiolysis inhibitor), if necessary.
  • the dosage of the imaging agent of the present invention can be appropriately selected depending on the organ to be imaged, the body shape of the subject (patient), and the like.
  • the imaging agent of the present invention can contain a therapeutically effective amount and / or a prophylactically effective amount of a compound of formula (I) above.
  • the compound of the above formula (I) can generally be used at a dose of 0.001 mg / kg body weight.
  • the imaging agent of the present invention can be used for confirmation of tumor cells by PET and monitoring of the circulatory system, particularly the myocardium. Therefore, the imaging agent can be used for tumors such as brain tumors, head and neck cancers, lung cancers, liver cancers, and diagnosis of ischemic heart diseases such as angina, myocardial infarction, arteriosclerosis such as coronary arteries, and myocardium. It can be used for diagnosis of ischemia.
  • an unlabeled compound was synthesized by the following procedure.
  • the corresponding bromide (alkylating agent) was added to a 315 ⁇ mol (50 eq relative to the precursor) vial and subjected to phosphoniumation reaction at 100 ° C. for each time.
  • the vial is lifted from the oil bath, 5 mL of water is added to the reaction vial, and the solution in the reaction vial is transferred to a Seppak (registered trademark) tC18 cartridge activated by introducing 5 mL of ethanol and water (10 mL) in advance. Then, the Seppak® tC18 cartridge was washed with water (10 mL).
  • the target radioactivity fraction is fractionated, and the fraction is diluted with pure water (20 mL), and then introduced into an Seppak (registered trademark) tC18 cartridge activated with ethanol (5 mL) and water (10 mL) in advance. After introducing the fraction solution, the Seppak® tC18 cartridge was washed with water (10 mL). Thereafter, air was introduced to remove water in the cartridge, and then [ 18 F] -labeled compound was eluted from the cartridge with ethanol (5 mL) into a vial. The eluate was azeotropically dried in an oil bath at 100 ° C. under reflux of helium, and then a solution obtained by adding an appropriate amount of physiological saline into a reaction vial was used as a drug solution and used for biological evaluation.
  • an Seppak registered trademark
  • the total label synthesis time until formulation was about 1 hour 30 minutes, and the radiochemical yield was 43 ⁇ 18% (attenuation correction value) and the radiochemical purity was 98 ⁇ 1.8% or more.
  • the HPLC at the time of purification is shown in FIG.
  • the total label synthesis time until formulation was about 1 hour 30 minutes, and the radiochemical yield was 36 ⁇ 8.4% (attenuation correction value) and the radiochemical purity was 99 ⁇ 0.1% or more.
  • 3-iodopropylbenzene was used as the alkylating agent. Also, since 3-iodopropylbenzene is a solid, after performing the first step of fluorination reaction, acetonitrile is distilled off once, and an acetonitrile solution of the reagent (78 mg (50 eq) / 600 ⁇ L) is added. An eye reaction was performed. Other operations were performed in the same manner as the 18 F labeling reaction procedure described above. The total label synthesis time until formulation was about 1 hour 30 minutes, with a radiochemical yield of 21% (attenuation correction value) and a radiochemical purity of 99% or more.
  • Example 16 Examination of reaction time of phosphoniumation reaction The reaction of the following scheme was carried out according to the above 18 F labeling reaction procedure. At that time, the reaction time of the phosphoniumation reaction was changed, and the radiological yields in each case were compared. The results are shown in the table below. When the reaction time in the second step was 20 minutes, 10 minutes, or 5 minutes, the radiochemical yield was the highest in 5 minutes.
  • Test Example 1 Mouse PET / CT imaging A 6 to 10-week-old Slc: ICR mouse cage (Japan SLC Co., Ltd.) was used in the experiment. 200 ⁇ L (1.94 to 14.7 MBq) of physiological saline of [ 18 F] -labeled compound used for the measurement was administered to the awake mouse from the tail vein and allowed to stand for 50 minutes. Thereafter, the body was fixed under isoflurane anesthesia (2%, 1.5 mL / min), and the whole body was imaged with small animal PET (ClairvivoPET: Shimadzu Corporation) for 10 minutes 60 minutes after administration. Subsequently, the whole body was imaged with a small animal CT (Clairvivo CT: Shimadzu Corporation) while the body was fixed. PET data was reconstructed by the 3D-DRAM method, and pixel values of the obtained PET image were converted to SUV to create an SUV image. CT images and fusion were performed to obtain fusion images. The results are shown in FIG.
  • [ 18 F] TAP-018 showed high accumulation in the heart, and the myocardial / liver ratio reached a value of about 15.5 at 60 minutes. This value is about ten times higher than 1.5 of [ 18 F] FBnTP used as a gold standard, and is sufficiently higher than 9.2 of [ 18 F] FTPP which is recently being studied. Thus, the usefulness as a myocardial blood flow imaging agent was shown.
  • Test Example 4 Small Animal PET Evaluation in Rats For evaluation of myocardial imaging in rats with [ 18 F] TAP-018, 6-week-old Wistar rat cages were used in the experiments. 200 ⁇ L (7.83-9.66 MBq) of physiological saline for [ 18 F] TAP-018 to be measured is administered from the tail vein to a rat with a fixed body mass under Isoflurane anesthesia (2%, 1.5 mL / min) The whole body was imaged with small animal PET from just after the post-administration to 120 minutes later. Subsequently, the whole body was imaged with small animal CT while the body was fixed.
  • PET data was reconstructed by the 3D-DRAM method, and pixel values of the obtained PET image were converted to SUV to create an SUV image.
  • CT images and fusion were performed to obtain fusion images. Further, the positions of the myocardium, lungs, and liver were specified from the fusion image, the region of interest (ROI) was set, and each SUVavg was calculated.
  • PET images up to 60 minutes after administration are shown in FIG. 5A.
  • the radioactivity time curves of heart, liver and lung are shown in 5B. As is apparent, the radioactivity of the liver disappears rapidly by 10 minutes after administration, while high radioactivity accumulation is confirmed in the heart immediately after administration, and its usefulness as a myocardial blood flow drug is shown by PET imaging. It was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明により、式(II)で表されるホスホニウム化合物が提供され、さらに式(I):X-CH-Aで表される求電子剤を、ベンゼン環上に陽電子放出核種で標識された1以上の置換基を有するトリフェニルホスフィンと反応させて、4級ホスホニウム塩を得る工程を含む、陽電子放出核種標識4級ホスホニウム化合物の製造方法が提供される。

Description

ホスホニウム化合物およびその製造方法
 本発明は、放射性核種,特に18Fなどの陽電子放出核種で標識された4級ホスホニウム化合物の製造方法に関する。また本発明は、放射性核種,特に18Fなどの陽電子放出核種標識4級ホスホニウム化合物、および該化合物を含有するイメージング剤に関する。
 ミトコンドリア内膜内外間にはプロトン濃度勾配が形成しており、濃度勾配によりミトコンドリア内膜には-140mVから-180mVの膜電位が生じている。非局在型脂溶性陽イオン(Delocalized Liphphilic Cations, DLCs)は分子内の正電荷の共鳴安定化による非局在化が可能な構造を有する分子であり、細胞膜の脂質二重層を容易に通過できる脂溶性を有し、ミトコンドリア膜電位の電気化学ポテンシャルを利用して、生体内のミトコンドリアに集積するという特性を有している(非特許文献1および2)。
 放射性核種で標識したDLCsは、心筋血流イメージング、アポトーシスイメージング、褐色脂肪組織(Brown Adipose Tissue, BAT)活性イメージングなどの用途での利用法が研究されており、特に心筋血流イメージングに関する報告が多くされている。
 現在、虚血性心疾患は世界で最も多い死因であり、世界保健機構の調査によると2011年には700万人が亡くなっている。日本において虚血性心疾患は、悪性新生物に次いで第2位の死因となっている。虚血性心疾患とは狭心症や心筋梗塞などの総称で、冠動脈の動脈硬化の進行が主な原因とされ、有効な治療のためには心筋虚血の早期発見が重要である。したがって、虚血性心疾患の早期発見につながる高精度な診断法の開発は現代医学における重要な課題の1つであるといえる。
 虚血性心疾患の一般的な検査法として、心電図検査、超音波検査、血液検査、心臓カテーテル検査などの他に、核医学検査であるPETやSPECTを用いた心筋血流イメージングが挙げられる。心筋の虚血状態が軽度の場合、患者が安静な時では心筋全体での血流が保たれているが、運動などで心筋に負荷がかかると心筋は多くの酸素・栄養を必要とするため、循環血流が増加する。正常部位では血流が増加する一方で、狭窄部位以降の細動脈では、安静時においてほぼ最大に血管を拡張して血流を維持しているため、冠血流の増大は生じない。そのため心筋負荷時の撮像では、狭窄部位は放射能の欠損画像として現れる。このような原理のもと、患者へ運動またはアデノシンなどの薬剤により心筋へ負荷をかけ、安静時との画像を比べることで心筋血流の診断は行われる。
 臨床現場では現在、[201Tl]TlClや99mTcで標識した[99mTc]Sestamibi(MIBI)、[99mTc]TetrofosminといったSPECT用薬剤が心筋血流イメージング剤として主に用いられている。しかし、SPECTでは放射線の標準化された減弱補正法がないため、太った患者や胸部の大きい女性患者では減弱による影響が出ることや、定量的な測定には不向きであることなどの制限があり、高い空間解像度と感度を持つPETの利用が期待されている。
 アポトーシスはプログラムされた細胞死であり、細胞内の特異的なプロテアーゼ(カスパーゼ)の活性化を介して実行される。カスパーゼの活性化には、ミトコンドリアから遊離されるシトクロムcが関与しており、その遊離はミトコンドリアの膜電位の変化と並行して起こることが報告されている。ミトコンドリアはアポトーシスの制御おいて重要な役割を担っている(非特許文献3)。
 褐色脂肪組織はエネルギーの貯蔵を担う白色脂肪と異なりエネルギーの消費により熱を産生することから、肥満治療の標的の一つとなっている。褐色脂肪は、寒い環境下での体温維持や、高脂肪食の摂取により熱を産生するが、この熱産生は褐色脂肪細胞中に豊富に含まれるミトコンドリアで行われる。
 PET用の薬剤としては、[15O]HOや[13N]NH、[82Rb]RbClが報告されている。しかし、15Oは2分、13Nは10分と半減期が短いため、[15O]HOや[13N]NHの使用はサイクロトロン保有臨床施設に限られている。また、82Rbは82Srからジェネレータで製造されるが、ジェネレータが高価なためハイスループットな使用が制限されている。そのため、これらの核種と比べて長い半減期(110分)を有する18Fで標識したPET用イメージング剤の開発研究が近年活発に行われている(特許文献1~3、および非特許文献5~11)。
特表2005-532262号 特開2012-52196号 特表2013-523702号
Ross, M. F.ら、Biochemistry (Moscow) 2005, 70, 222; Yousif, L. F.ら、ChemBioChem 2009, 10, 1939; Tatton, W. G.ら、Biochim. Biophys. Acta, 1999, 1410, 195; Madar, I.ら、J. Nucl. Med. 2011, 52, 808; Ravert, H. T.ら、J. Label. Compd. Radiopharm. 2004, 47, 469; Madar, I.ら、J. Nucl. Med. 2006, 47, 1359; Madar, I.ら、J. Nucl. Med. 2007, 48, 1021; Higuchi, T.ら、J. Nucl. Med. 2011, 52, 965; Shoup, T. M.ら、J. Mol. Imaging Biol. 2011, 13, 511; Kim, D. Y.ら、J. Bioconjug. Chem. 2012, 23, 431; 冨永ら、第53回日本核医学会学術総会特別企画・一般演題抄録、197。
 2004年にRavertらにより4-[18F]フルオロベンジルトリフェニルホスホニウムブロミド([18F]FBnTP)について合成が報告されている(非特許文献5)。このような3つのフェニル基を有するホスホニウム化合物は、共鳴安定化による正電荷の分子内非局在化が可能となる非局在型脂溶性陽イオン(Delocalized Lipophilic Cations(DLCs))としての特性を有する。DLCsは、その脂溶性により細胞膜の脂質二重層を容易に通過でき、非常に低い膜電位が生じているミトコンドリア内膜に優先的に蓄積する。心筋細胞中に豊富に含まれるミトコンドリアを標的として、[18F]FBnTPを用いた心筋血流イメージングにおける利用が報告されている(非特許文献6~8)。
 しかし、18Fの半減期は110分であるため、PET用イメージング剤として利用する化合物は短時間で効率的に製造可能な合成方法が求められる。[18F]FBnTPの合成では臭素化によりベンジルブロミドを合成する工程を経るため、腐食性が強い臭素化剤を使用する必要があり、合成装置を利用した自動合成を行う上で問題となっていた。また、[18F]FBnTPは、心筋近傍の肝臓で心筋と同程度に集積する性質があるため、心筋イメージングに悪影響を及ぼすことが懸念されている。
 また、Shoupらは(4-[18F]フルオロフェニル)トリフェニルホスホニウム(FTPP)を利用したPETによる心筋イメージングを報告している(非特許文献9)。しかしFTPPの合成では18F化に200℃と高い温度を要している点や、放射化学的収率が10%程度であるが問題点となっている。Kimらが報告している(6-[18F]フルオロヘキシル)トリフェニルホスホニウム(非特許文献10)についても、その合成において220℃の条件を用いていることから、実用化の点では問題がある。
 本発明は、放射性核種、特に18Fなどの陽電子放出核種で標識された4級ホスホニウム化合物について、短時間で効率的に実施可能な製造方法を提供することを目的とする。また本発明は、放射性核種、特に18Fなどの陽電子放出核種標識4級ホスホニウム化合物、特に心筋などのイメージングに有用なPET用イメージング剤に適した4級ホスホニウム化合物の提供を目的とする。
 本発明者らは、上記課題を達成するために鋭意研究を進めたところ、放射性核種で標識された4級ホスホニウム化合物について効率性の高い製造方法を見いだし、さらに該方法により製造可能な4級ホスホニウム化合物がPET用イメージング剤として好ましい特性を有することを見いだし、本発明を完成させた。本明細書の開示は、以下の(1)~(24)に記載の発明を包含する。
 (1)式(II):
Figure JPOXMLDOC01-appb-C000004
[式中、Ar、Ar、およびArは、それぞれ独立に、Bから選択される1以上の置換基により置換されていてもよいアリールであり、ここでAr、Ar、およびArの少なくとも1つは、放射性核種で標識されたC1-6アルキル、放射性核種で標識されたC2-6アルコキシ、放射性核種で標識されたC2-6アルコキシC1-6アルキル、放射性核種で標識されたC2-6アルコキシC2-6アルコキシ、放射性核種で標識されたC2-6アルコキシC2-6アルコキシC1-6アルキル、および放射性核種で標識されたC2-6アルコキシC2-6アルコキシC2-6アルコキシから選択される1以上の置換基で置換されており;
 Aは、水素原子、Bから選択される1以上の置換基により置換されていてもよいC1-10アルキル、Bから選択される1以上の置換基により置換されていてもよいC2-10アルケニル、またはBから選択される1以上の置換基により置換されていてもよいアリールであり;
 Bは、それぞれ独立に、ハロゲン原子、C1-6アルコキシ、フェニル、およびナフチルであり、ここで該フェニル、およびナフチルは、C1-6アルキル、C1-6アルコキシ、およびハロゲン原子から選択される1以上の置換基により置換されていてもよく;
 Bは、それぞれ独立に、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、シアノ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、ニトロ、ヒドロキシ、または(C1-3アルコキシ)カルボニルであり、ここで該アルキル、アルコキシ、およびアルキルチオはハロゲン原子から選択される1以上の置換基により置換されていてもよく;
 Ar、Ar、ArおよびA、ならびにそれらに含まれる置換基は、酸付加塩を形成していてもよく;
 Xは、全体の荷電が-1のアニオンである]
で表される、ホスホニウム化合物。
 (2)放射性核種が陽電子放出核種である、上記(1)に記載のホスホニウム化合物。
 (3)陽電子放出核種が18Fである、上記(2)に記載のホスホニウム化合物。
 (4)Aが、水素原子、1以上のハロゲン原子で置換されていてもよいC1-6アルキル、フェニル、またはフェニルC1-4アルキルであり、ここで、フェニルまたはフェニルC1-4アルキルのフェニル部分は、1以上のハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、シアノ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、ニトロ、ヒドロキシ、および(C1-3アルコキシ)カルボニルから選択される1以上の置換基により置換されていてもよい、上記(1)~(3)のいずれかに記載のホスホニウム化合物。
 (5)ベンジル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
 ベンジル-(4-[2-{2-(2-[18F]フルオロエトキシ)エトキシ}エトキシ]フェニル)-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシカルボニルフェニル)メチル-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-(4-フルオロフェニル)メチル-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-(3,4,5-トリフルオロフェニル)メチル-ジフェニルホスホニウム;
 (4-クロロフェニル)メチル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシフェニル)メチル-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-(n-ペンチル)-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-(3-フェニルプロピル)-ジフェニルホスホニウム;
 (4-n-ブチルフェニル)メチル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
 (3-フルオロフェニル)メチル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-[4-(トリフルオロメチルチオ)フェニル]メチル-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-(2-メチルフェニル)メチル-ジフェニルホスホニウム;
 (3-シアノフェニル)メチル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
 [4-(2-[18F]フルオロエトキシ)フェニル]-メチル-ジフェニルホスホニウム;
 アリル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
 ベンジル-[3-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
 [3-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシフェニル)メチル-ジフェニルホスホニウム;
 [3-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシカルボニルフェニル)メチル-ジフェニルホスホニウム;
 [3-(2-[18F]フルオロエトキシ)フェニル]-(4-フルオロフェニル)メチル-ジフェニルホスホニウム;
 [3-(2-[18F]フルオロエトキシ)フェニル]-(3-フェニルプロピル)-ジフェニルホスホニウム;
 (4-クロロフェニル)メチル-[3-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
 [3-(2-[18F]フルオロエトキシ)フェニル]-(3,4,5-トリフルオロフェニル)メチル-ジフェニルホスホニウム;
 ベンジル-[3-(3-[18F]フルオロプロポキシ)フェニル]-ジフェニルホスホニウム;
 ベンジル-[3-(4-[18F]フルオロブトキシ)フェニル]-ジフェニルホスホニウム;
 [3-(2-[18F]フルオロエトキシ)フェニル]-メチル-ジフェニルホスホニウム;および
 ベンジル-[2-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
から選択されるホスホニウムを含む、上記(1)に記載のホスホニウム化合物。
 (6)ベンジル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド;
 ベンジル-[3-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド;
 [3-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシフェニル)メチル-ジフェニルホスホニウムブロミド;および
 [3-(2-[18F]フルオロエトキシ)フェニル]-(3-フェニルプロピル)-ジフェニルホスホニウムブロミド;
から選択される、上記(1)に記載のホスホニウム化合物。
 (7)上記(1)~(6)のいずれかに記載のホスホニウム化合物を含有し、イメージングに使用する放射性医薬品。
 (8)上記(2)~(6)のいずれかに記載のホスホニウム化合物を含有し、PETイメージングに使用する放射性医薬品。
 (9)ミトコンドリアのイメージングに使用される、上記(8)に記載のPET用放射性医薬品。
 (10)心筋、腫瘍、または褐色脂肪組織のイメージングに使用される、上記(8)または(9)に記載のPET用放射性医薬品。
 (11)上記(7)~(10)のいずれかに記載の射性医薬品を含む、ディスポーザブル製品。
 (12)放射性核種で標識した4級ホスホニウム化合物の製造方法であって、
  式(I):X-CH-A
 [式中、Xは脱離基であり;
 Aは、水素原子、Bから選択される1以上の置換基により置換されていてもよいC1-10アルキル、Bから選択される1以上の置換基により置換されていてもよいC1-10アルケニル、またはBから選択される1以上の置換基により置換されていてもよいアリールであり、
 Bは、それぞれ独立に、ハロゲン原子、C1-6アルコキシ、フェニル、およびナフチルであり、ここで該フェニル、およびナフチルは、C1-6アルキル、C1-6アルコキシ、およびハロゲン原子から選択される1以上の置換基により置換されていてもよく;
 Bは、それぞれ独立に、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、シアノ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、ニトロ、ヒドロキシ、または(C1-3アルコキシ)カルボニルであり、ここで該アルキル、アルコキシ、およびアルキルチオはハロゲン原子から選択される1以上の置換基により置換されていてもよい]
で表される求電子剤を、ベンゼン環上に放射性核種で標識された1以上の置換基を有するトリフェニルホスフィンと反応させて、4級ホスホニウム塩を得る工程を含み;
 ここで放射性核種で標識された1以上の置換基は、放射性核種で標識されたC1-6アルキル、放射性核種で標識されたC2-6アルコキシ、放射性核種で標識されたC2-6アルコキシC1-6アルキル、放射性核種で標識されたC2-6アルコキシC2-6アルコキシ、放射性核種で標識されたC2-6アルコキシC2-6アルコキシC1-6アルキル、および放射性核種で標識されたC2-6アルコキシC2-6アルコキシC2-6アルコキシから選択され;
 ここで該トリフェニルホスフィンはBから選択される1以上の置換基をベンゼン環上にさらに有していてもよい、前記製造方法。
 (13)放射性核種が陽電子放出核種である、上記(12)に記載の製造方法。
 (14)陽電子放出核種が18Fである、上記(13)に記載の製造方法。
 (15)Xが、ハロゲン原子、置換されていてもよいC1-6アルキルスルホニルオキシ、または置換されていてもよいフェニルスルホニルオキシである、上記(12)~(14)のいずれかに記載の製造方法。
 (16)自動合成装置で行う、上記(12)~(15)のいずれかに記載の製造方法。
 (17)式(III):
Figure JPOXMLDOC01-appb-C000005
[式中、Ar、Ar、およびArは、上記(1)に定義した通りである]
で表される、ホスフィン化合物。
 (18)放射性核種が18Fである、上記(17)に記載のホスフィン化合物。
 (19)放射性核種を非放射性の同一元素に置き換えた、上記(1)~(6)のいずれかに記載のホスホニウム化合物。
 (20)上記(3)~(6)のいずれかに記載の18F標識ホスホニウム化合物の18Fを19Fに置き換えたホスホニウム化合物。
 (21)式(III):
Figure JPOXMLDOC01-appb-C000006
[式中、Ar、Ar、およびArは、それぞれ独立に、Bから選択される1以上の置換基により置換されていてもよいアリールであり;
 ここでAr、Ar、およびArの少なくとも1つは、Lから選択される1以上の置換基により置換されていてもよいC1-6アルキル、Lから選択される1以上の置換基により置換されていてもよいC2-6アルコキシ、Lから選択される1以上の置換基により置換されていてもよいC2-6アルコキシC1-6アルキル、Lから選択される1以上の置換基により置換されていてもよいC2-6アルコキシC2-6アルコキシ、Lから選択される1以上の置換基により置換されていてもよいC2-6アルコキシC2-6アルコキシC1-6アルキル、およびLから選択される1以上の置換基により置換されていてもよいC2-6アルコキシC2-6アルコキシC2-6アルコキシから選択される1以上の置換基で置換されており;
 Bは、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、シアノ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、ニトロ、ヒドロキシ、または(C1-3アルコキシ)カルボニルであり、ここで該アルキル、アルコキシ、およびアルキルチオはハロゲン原子から選択される1以上の置換基により置換されていてもよく;
 Lは、臭素、ヨウ素、p-トルエンスルホニルオキシ、メタンスルホニルオキシ、クロロメタンスルホニルオキシ、またはトリフルオロメタンスルホニルオキシである]
で表される、ホスフィン化合物。
 (22)上記(21)に記載の化合物と放射性核種とから、上記(17)または(18)に記載のホスフィン化合物を製造する方法。
 (23)上記(1)~(6)のいずれかに記載のホスホニウム化合物を製造するためのキットであって、上記(21)に記載の化合物を試薬として含む前記キット。
 (24)上記(17)または(18)のいずれかに記載のホスフィン化合物を製造するためのキットであって、上記(21)に記載の化合物を試薬として含む前記キット。
 本発明によれば、18Fなどの放射性核種で標識された4級ホスホニウム化合物について、短時間で効率的に実施可能な製造方法が提供される。また本発明によれば、18Fなどの放射性核種標識4級ホスホニウム化合物、特に心筋などのイメージングに有用なPET用イメージング剤に適した4級ホスホニウム化合物が提供される。
実施例1で合成した[18F]TAP-001の分取HPLCの結果である。 本発明の標識化合物を使用して撮像したマウスPET/CTのイメージング画像である。 本発明の標識化合物を使用した体内動態分布試験の結果を示すグラフである。 本発明の標識化合物を使用した体内動態分布試験の結果を示すグラフである。 本発明の標識化合物を使用したラットにおける心筋イメージング評価のための、投与後から60分までのPET画像である。
 以下、本発明を更に具体的に説明する。
 本発明の1つの側面によれば、陽電子放出核種で標識された置換基により置換されたトリフェニルホスフィンと、上記式(I)で表される求電子剤とを反応させる工程を含む、陽電子放出核種標識4級ホスホニウム化合物の製造方法上が提供される。
 本明細書で「アリール」とは、炭素数6~14の芳香族炭化水素環基を意味し、例えば、フェニル、1-ナフチル、2-ナフチルなどが含まれる。
 本明細書において「C1-10アルキル」とは、炭素数1~10の直鎖状、分岐鎖状、環状または部分的に環状のアルキル基を意味し、例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、3-メチルブチル、2-メチルブチル、1-メチルブチル、1-エチルプロピル、n-ヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、3-エチルブチル、2-エチルブチル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、およびシクロプロピルメチルなどが含まれ、例えば、C1-6アルキル、C1-4アルキルおよびC1-3アルキルなども含まれる。
 本明細書において「C1-6アルキル」とは、炭素数1~6の直鎖状、分岐鎖状、環状または部分的に環状のアルキル基を意味し、例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、3-メチルブチル、2-メチルブチル、1-メチルブチル、1-エチルプロピル、n-ヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、3-エチルブチル、および2-エチルブチル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、およびシクロプロピルメチルなどが含まれ、例えば、C1-4アルキルおよびC1-3アルキルなども含まれる。
 本明細書において「C2-10アルケニル」とは、炭素数2~10の直鎖状、分岐鎖状、環状または部分的に環状のアルケニル基を意味し、含まれる二重結合は1または2以上であってもよい。アルケニル基の例としては、ビニル、1-プロペニル、2-プロペニル(アリル)、1-ブテニル、2-ブテニル、3-ブテニルなどが含まれ、例えば、C2-6アルケニル、C2-4アルケニルおよびC2-3アルケニルなども含まれる。
 本明細書において「C1-6アルコキシ」とは、アルキル部分として既に定義した炭素数1~6のアルキル基を有するアルキルオキシ基[-O-(C1-6アルキル)]を意味し、例えば、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、s-ブトキシ、i-ブトキシ、t-ブトキシ、n-ペントキシ、3-メチルブトキシ、2-メチルブトキシ、1-メチルブトキシ、1-エチルプロポキシ、n-ヘキシルオキシ、4-メチルペントキシ、3-メチルペントキシ、2-メチルペントキシ、1-メチルペントキシ、3-エチルブトキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロプロピルメチルオキシなどが含まれ、例えば、C1-4アルコキシおよびC1-3アルコキシなども含まれる。また、本明細書において「C1-4アルコキシ」には、例えばC1-3アルコキシなども含まれる。
 本明細書において「C2-6アルコキシ」とは、アルキル部分として炭素数2~6のアルキル基を有するアルキルオキシ基[-O-(C2-6アルキル)]を意味し、例えば、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、s-ブトキシ、i-ブトキシ、t-ブトキシ、n-ペントキシ、3-メチルブトキシ、2-メチルブトキシ、1-メチルブトキシ、1-エチルプロポキシ、n-ヘキシルオキシ、4-メチルペントキシ、3-メチルペントキシ、2-メチルペントキシ、1-メチルペントキシ、3-エチルブトキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロプロピルメチルオキシなどが含まれ、例えば、C1-4アルコキシおよびC1-3アルコキシなども含まれる。
 本明細書において「C1-6アルキルチオ」とは、アルキル部分として既に定義した炭素数1~6のアルキル基を有するアルキルチオ基[-S-(C1-6アルキル)]を意味し、例えば、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、n-ブチルチオ、s-ブチルチオ、i-ブチルチオ、t-ブチルチオ、n-ペンチルチオ、3-メチルブチルチオ、2-メチルブチルチオ、1-メチルブチルチオ、1-エチルプロピルチオ、n-ヘキシルチオ、4-メチルペンチルチオ、3-メチルペンチルチオ、2-メチルペンチルチオ、1-メチルペンチルチオ、3-エチルブチルチオ、シクロペンチルチオ、シクロヘキシルチオ、シクロプロピルメチルチオなどが含まれ、例えば、C1-4アルキルチオおよびC1-3アルキルチオなども含まれる。また、本明細書において「C1-4アルキルチオ」には、例えばC1-3アルキルチオなども含まれる。
 本明細書において「アミノ」は-NHを意味し、分子内において酸付加塩を形成していてもよい。
 本明細書において「C1-6アルキルアミノ」とは、アルキル部分として既に定義した炭素数1~6のアルキル基を有するアルキルアミノ基[-NH-(C1-6アルキル)]を意味し、例えば、メチルアミノ、エチルアミノ、n-プロピルアミノ、i-プロピルアミノ、n-ブチルアミノ、s-ブチルアミノ、i-ブチルアミノ、t-ブチルアミノ、n-ペンチルアミノ、3-メチルブチルアミノ、2-メチルブチルアミノ、1-メチルブチルアミノ、1-エチルプロピルアミノ、n-ヘキシルアミノ、4-メチルペンチルアミノ、3-メチルペンチルアミノ、2-メチルペンチルアミノ、1-メチルペンチルアミノ、3-エチルブチルアミノ、シクロペンチルアミノ、シクロヘキシルアミノ、シクロプロピルメチルアミノなどが含まれ、例えば、C1-4アルキルアミノおよびC1-3アルキルアミノなども含まれる。また、本明細書において「C1-4アルキルアミノ」には、例えばC1-3アルキルアミノなども含まれる。C1-6アルキルアミノ基は分子内において酸付加塩を形成していてもよい。
 本明細書において「ジ(C1-6アルキル)アミノ」とは、アルキル部分として既に定義した炭素数1~6のアルキル基を有するアルキルアミノ基[-N(C1-6アルキル)]を意味し、2つのアルキル基は同一であっても異なっていてもよい。ジ(C1-6アルキル)アミノの例としては、ジメチルアミノ、ジエチルアミノ、エチル(メチル)アミノ、メチル(n-プロピル)アミノ、エチル(n-プロピル)アミノ、メチル(i-プロピル)アミノ、エチル(i-プロピル)アミノ、ジ(n-プロピル)アミノ、およびジ(i-プロピル)アミノなどが含まれ、例えば、ジ(C1-4アルキル)アミノおよびジ(C1-3アルキル)アミノなども含まれる。また、本明細書において「ジ(C1-4アルキル)アミノ」には、例えばジ(C1-3アルキル)アミノなども含まれる。ジ(C1-6アルキル)アミノ基は分子内において酸付加塩を形成していてもよい。
 本明細書において「C1-6アルコキシカルボニル」とは、アルコキシ部分として既に定義したC1-6アルコキシ基を有するアルコキシカルボニル基を意味し、例えばメトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニルの他、C1-3アルコキシカルボニルなどが含まれる。
 本明細書において「C1-3アルコキシカルボニル」とは、アルコキシ部分として既に定義したC1-3アルコキシ基を有するアルコキシカルボニル基を意味し、例えばメトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニル、およびイソプロポキシカルボニルが含まれる。
 本明細書における「C2-6アルコキシC1-6アルキル」は式-(C1-6アルキレン)-O-(C2-6アルキル)で表される基を意味し、例えばエトキシメチル、2-エトキシエチル、2-エトキシプロピル、3-エトキシプロピルなどが含まれる。18Fで置換されたC2-6アルコキシC1-6アルキルの例としては、-CHOCHCH18F、-CHCHOCHCH18Fなどが挙げられる。
 本明細書における「C2-6アルコキシC2-6アルコキシ」は式-O-(C2-6アルキレン)-O-(C2-6アルキル)で表される基を意味し、例えば2-エトキシエトキシ、2-エトキシプロポキシ、3-エトキシプロポキシなどが含まれる。18Fで置換されたC2-6アルコキシC2-6アルコキシの例としては、-OCHCHOCHCH18Fなどが挙げられる。
 本明細書における「C2-6アルコキシC2-6アルコキシC1-6アルキル」は式-(C1-6アルキレン)-O-(C2-6アルキレン)-O-(C2-6アルキル)で表される基を意味し、例えば(2-エトキシエトキシ)メチル、2-(2-エトキシエトキシ)エチル、2-(2-エトキシエトキシ)プロピル、3-(2-エトキシエトキシ)プロピルなどが含まれる。18Fで置換されたC2-6アルコキシC2-6アルコキシC1-6アルキルの例としては、-CHOCHCHOCHCH18F、-CHCHOCHCHOCHCH18Fなどが挙げられる。
 本明細書における「C2-6アルコキシC2-6アルコキシC2-6アルコキシ」は式-O-(C2-6アルキレン)-O-(C2-6アルキレン)-O-(C2-6アルキル)で表される基を意味し、例えば2-(2-エトキシエトキシ)エトキシ、2-(2-エトキシエトキシ)プロポキシ、3-(2-エトキシエトキシ)プロポキシなどが含まれる。18Fで置換されたC2-6アルコキシC2-6アルコキシC2-6アルコキシの例としては、-OCHCHOCHCHOCHCH18Fなどが挙げられる。
 本明細書における「置換されていてもよいC1-6アルキルスルホニルオキシ」の例としては、メタンスルホニルオキシ、およびトリフルオロメタンスルホニルオキシなどが挙げられる。
 本明細書における「置換されていてもよいフェニルスルホニルオキシ」の例としては、ベンゼンスルホニルオキシ、およびトルエンスルホニルオキシなどが挙げられる。
 ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
 本発明の化合物が水和物などの溶媒和物を形成する場合には、本発明は溶媒和物として実施することができる。さらに本発明の化合物は、混合物、溶液、結晶多形などとして適宜実施することができる。
 本明細書におけるXの例としては、塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ、ベンゼンスルホニルオキシ、トルエンスルホニルオキシなどが挙げられる。
 式(II)にホスホニウム化合物の一つの態様において、Ar、Ar、およびArは、それぞれ独立に、Bから選択される1以上の置換基により置換されていてもよいフェニルである。
 式(II)にホスホニウム化合物の一つの態様において、Ar、およびArはフェニルであり、Arは、Bから選択される1以上の置換基により置換されていてもよいフェニルである。
 式(II)にホスホニウム化合物の一つの態様において、Aは、水素原子、Bから選択される1以上の置換基により置換されていてもよいC1-10アルキル、Bから選択される1以上の置換基により置換されていてもよいC2-10アルケニル、Bから選択される1以上の置換基により置換されていてもよいフェニルである。
 ホスホニウム化合物に含まれるアニオン(X)は、例えば、医薬として許容される塩を形成するアニオンであり、具体的には、Cl、Br、I、PhSO、CHSO、CHSOなどが挙げられる。一つの態様において、Xは、脱離基Xが反応中に脱離して生じるアニオンであってもよい。
 本明細書において定義される脱離基の例としては、ハロゲン原子、置換されていてもよいC1-6アルキルスルホニルオキシ、または置換されていてもよいフェニルスルホニルオキシであり、好ましくは、臭素原子、ヨウ素原子、p-トルエンスルホニルオキシ、メタンスルホニルオキシ、クロロメタンスルホニルオキシ、トリフルオロメタンスルホニルオキシなどが挙げられる。
 本明細書においてLまたはXとして定義される脱離基の例としては、ハロゲン原子、置換されていてもよいC1-6アルキルスルホニルオキシ、または置換されていてもよいフェニルスルホニルオキシであり、好ましくは、臭素原子、ヨウ素原子、p-トルエンスルホニルオキシ、メタンスルホニルオキシ、クロロメタンスルホニルオキシ、トリフルオロメタンスルホニルオキシなどが挙げられる。
 式(II)のAr、Ar、ArおよびA、ならびにそれらに含まれる置換基が、アミノ基、アルキルアミノ基、またはジアルキルアミノ基を含有する場合には、酸付加塩を形成していてもよい。
 本明細書において1以上の置換基により置換されている場合、例えば、1~3個の置換基により置換されている。
 本発明のホスホニウム化合物は、水溶液などの各種溶液、水和物などの各種溶媒和物、および結晶多形などに含まれうる。
 本発明の化合物は、公知の方法により放射性核種によるによる標識化を行うことができる。放射性核種としては、例えば、H、14C、35S、131Iの他に、γ線放出核種である、99mTc、111In、67Ga、201Tl、123I、133Xeなど、および陽電子放出核種である11C、13N、15O、18F,62Cu、64Cu、68Ga、76Brなどが挙げられる。γ線放出核種により標識化された化合物はコンピューター断層撮影法(SPECT)のイメージング剤として用いることができ、例えば、99mTcおよび123Iにより標識化された化合物がSPECT用によく用いられている。陽電子放出核種により標識化された化合物は陽電子断層撮影法(PET)のイメージング剤として用いることができる。陽電子放出核種のなかでも、半減期が適当であること、標識しやすさ等の点から、11C、13N、15O、18Fが好ましく、18Fおよび11Cがより好ましく、18Fが特に好ましい。
 式(II)で示されるホスホニウム化合物のホスホニウム部分としては、例えば以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 ベンゼン環上に陽電子放出核種で標識された1以上の置換基を有するトリフェニルホスフィンと式(I)の求電子剤の反応は、例えば、以下のスキームに示す工程により行うことができる。
Figure JPOXMLDOC01-appb-C000011
[式中、Ar、Ar、Ar、X、A、Xは、本明細書において既に定義したとおりである]
 上記の反応は、適当な溶媒(例えば、アセトニトリル、DMSO、DMF、トルエン、キシレンなど)の存在下、加熱(例えば、50~150℃、具体的には90~120℃、より具体的には105~115℃)することにより行うことができる。反応時間は、例えば5~60分とすることができる。本反応は、例えば、密封した容器中で加熱による加圧下において行うことができる。
 本発明の製造方法は、標識化前駆体の調製と合わせて、以下のスキームにより行うことができる。
Figure JPOXMLDOC01-appb-C000012
[式中、Ar、Ar、X、A、Xは、本明細書において既に定義したとおりであり;nは1~4から選択される整数であり;Rは上記Bから選択される基であり;Aは、-(C1-6アルキレン)-、-(C1-6アルキレン)-O-(C2-6アルキレン)-、-(C1-6アルキレン)-O-(C2-6アルキレン)-O-(C2-6アルキレン)-、-O-(C2-6アルキレン)-、-O-(C2-6アルキレン)-O-(C2-6アルキレン)-、および-O-(C2-6アルキレン)-O-(C2-6アルキレン)-O-(C2-6アルキレン)-から選択され;Xは脱離基である]
 最初のフッ素化工程において使用する[18F]KFとしては、例えばサイクロトロンを利用して[18O]HOに陽子ビームを照射し生じる18にKCOを反応させて、得られる[18F]KF/KCO水溶液を利用することができる。[18F]フッ素化反応は、適当な溶媒(例えば、アセトニトリル、DMSO、DMF、DMAなど)の存在下、加熱(例えば、80~150℃、具体的には100~120℃、より具体的には110℃)することにより行うことができる。反応時間は、例えば5~60分、具体的には5~20分、より具体的には10分とすることができる。本反応は、例えば、密封した容器中で加熱による加圧下において行うことができる。フッ素化工程では、反応効率を高めるために添加物として[2,2,2]クリプタンド(1,10-ジアザ-4,7,13,16,24,24-ヘキサオキサビシクロ[8.8.8]ヘキサコサン、Kryptofix(登録商標)[2,2,2])などを使用することができる。上記のフッ素化工程は、例えば、[18F]KF/KCO水溶液と[2,2,2]クリプタンドを共沸乾燥して得られる固体に基質であるホスフィンの溶液を加えて、密封下加熱することにより反応させることができる。
 上記工程で使用される脱離基(X)としては、ハロゲン原子、置換されていてもよいC1-6アルキルスルホニルオキシ、または置換されていてもよいフェニルスルホニルオキシであり、好ましくは、臭素原子、ヨウ素原子、p-トルエンスルホニルオキシ、メタンスルホニルオキシ、クロロメタンスルホニルオキシ、トリフルオロメタンスルホニルオキシなどが挙げられる。
 第2工程は、スキームAと同様の手法により行うことができる。スキームBの2工程はワンポット反応として行うことができ、例えばフッ素化反応終了後、後処理することなく、求電子試薬を反応系中に加えて密封下加熱し、目的物を得ることができる。
 目的物の精製は、通常の方法で行うことができ、例えば放射線強度に基づく分取HPLCを使用して精製することができる。また、ディスポーザルの小型カラムカートリッジ(Sep-Pak(商標登録)などを使用して、簡便に精製することができる。
 本発明のイメージング剤は、陽電子放出核種標識4級ホスホニウム化合物を生理食塩水などに溶解または懸濁させることにより調製することができる。該イメージング剤は、必要に応じて、添加物、例えば、pH調整剤、溶解剤、分散剤、溶解補助剤、ラジカル除去剤(放射線分解防止剤)を含んでいてもよい、
 本発明のイメージング剤の投与量は、イメージングの対象臓器、対象(患者)の体型などにより、適宜選択することができる。本発明のイメージング剤は、治療有効量および/または予防有効量の上記式(I)の化合物を含むことができる。本発明において上記式(I)の化合物は、一般に0.001mg/kg体重の用量で使用されうる。
 本発明のイメージング剤は、PETによる腫瘍細胞の確認や、循環器系、特に心筋のモニタリングに利用することができる。したがって、該イメージング剤は、腫瘍、例えば、脳腫瘍、頭頸部がん、肺がん、肝がんの検査、および虚血性心疾患の診断、例えば狭心症、心筋梗塞、冠動脈などの動脈硬化、および心筋虚血などの診断に利用することができる。
 以下、実施例を示すことにより本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例に示した合成化合物の精製のために行ったハイフラッシュシリカゲルカラムクロマトグラフィーでは、山善社製のフラッシュクロマトシステムYFLC-AI-700およびハイフラッシュカラム(シリカゲル)を用いた。質量分析は、日本電子(株)社製のJMS-700または島津製作所社製のLCMS-2020を用いて行った。高速液体クロマトグラフィー(HPLC)では、日本分光社製 LC-2000Plusシステムを使用した。
 合成例1:4-ジフェニルホスファニルフェノール
Figure JPOXMLDOC01-appb-C000013
 反応容器へ4-ヨードフェノール(5.90g、26.9mmol)、酢酸カリウム(3.17g、32.3mmol)、酢酸パラジウム(II)(36.0mg、0.6mol%)、N,N-ジメチルアセトアミド(27mL)を加え撹拌させながら、ジフェニルホスフィン(4.63mL、26.9mmol)をゆっくり滴下した。続いて反応容器を130℃に加温し2時間反応させた。反応後、反応系中へ水を加え、CHClで3回、有機層へ生成物を抽出した。得られた有機層を飽和食塩水で洗浄後、MgSOで乾燥させた。減圧下で濃縮後、ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒AcOEt:ヘキサン=11:89→32:68)で分離し、生成物を得た。6.74g(24.2mmol)、収率90%、白色固体。
 H-NMR(600MHz,CDCl):δ7.36-7.15(m,12H),6.82(d,J=7.8Hz,2H),5.01(s,1H);
 LRMS(EI) C1815OP(M)の計算値:278.1,実測値278.1。
 合成例2:トルエン-4-スルホン酸 2-(4-ジフェニルホスファニル-フェノキシ)-エチルエステル
Figure JPOXMLDOC01-appb-C000014
 反応容器へ4-ジフェニルホスファニルフェノール(434mg、1.56mmol)、1,2-ビス(トシルオキシ)エタン(2.89g、7.80mmol)、炭酸カリウム(431mg、3.12mmol)、N,N-ジメチルホルムアミド(DMF、5mL)を加え、50℃に加温し19時間反応させた。反応後、反応系中へ水と酢酸エチルを加え、未反応の1,2-ビス(トシルオキシ)エタンを濾過して取り除いたのち、酢酸エチルで3回、有機層へ生成物を抽出した。得られた有機層を飽和食塩水で洗浄後、MgSOで乾燥させた。減圧下で濃縮後、ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=22:78→43:57)で分離し、生成物を得た。587mg(1.23mmol)、収率79%、白色固体。
 H-NMR(600MHz,CDCl):δ7.81(d,J=7.8Hz,2H),7.34-7.31(m,8H),7.29-7.21(m,6H),6.77(d,J=7.8Hz,2H),4.38-4.35(m,2H),4.16-4.14(m,2H),2.43(s,3H);
 LRMS(EI) C2725PS(M)の計算値:476.1,実測値476.1。
 合成例3:2-ジフェニルホスファニルフェノール
Figure JPOXMLDOC01-appb-C000015
 4-ヨードフェノールを2-ヨードフェノールに変えて、合成例1と同様の手法で合成を行った。ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=18:82-39:61)で分離し、生成物を得た。収率53%、白色固体。
 H-NMR(600MHz,CDCl):δ7.38-7.28(m,11H),7.00-6.87(m,3H),6.16(d,J=6.6,Hz,1H);
 LRMS(EI)C1815OP(M)の計算値,278.1,実測値278.1。
 合成例4:トルエン-4-スルホン酸 2-(2-ジフェニルホスファニル-フェノキシ)-エチルエステル
Figure JPOXMLDOC01-appb-C000016
 化合物5を原料として使用し、合成例2と同様の手法で合成を行った。ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=22:78→43:57)で分離し、生成物を得た。収率36%、白色固体。
 LRMS(EI) C2725PS(M)の計算値:476.1,実測値476.0。
 合成例5:3-ジフェニルホスファニルフェノール
Figure JPOXMLDOC01-appb-C000017
 4-ヨードフェノールをを3-ヨードフェノールに代えて、合成例1と同様の手法で合成を行った。ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=12:88-33:67)で分離し、生成物を得た。収率47%、白色固体。
 H-NMR(600MHz,CDCl):δ7.37-7.28(m,10H),7.22(td,J=7.8,1.8Hz,1H),6.90(t,J=7.8Hz,1H),6.81(dd,J=7.8,2.4Hz,1H),6.70(dt,J=7.2,1.2Hz,1H),4.82(s,1H);
 LRMS(EI) C1815OP(M)の計算値:278.1,実測値278.1。
 合成例6:トルエン-4-スルホン酸 2-(3-ジフェニルホスファニル-フェノキシ)-エチルエステル
Figure JPOXMLDOC01-appb-C000018
 化合物8を原料として、合成例2と同様の手法で合成を行った。ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=22:78→43:57)で分離し、生成物を得た。収率65%、白色固体。
 H-NMR(600MHz,CDCl):δ7.78(d,J=7.8Hz,2H),7.37-7.25(m,13H),6.87(t,J=7.8Hz,1H),6.75(d,J=7.8Hz,1H),6.72(d,J=7.8Hz,1H),4.34-4.29(m,2H),4.06-4.03(m,2H),2.42(s,3H);
 LRMS(EI) C2725PS(M)の計算値:476.1,実測値:476.1。
 合成例7:トルエン-4-スルホン酸 3-フェニルプロピルエステル
Figure JPOXMLDOC01-appb-C000019
 反応容器へ3-フェニル-1-プロパノール(500μL、3.67mmol)、p-トルエンスルホニルクロリド(770mg、4.04mmol)、ピリジン(1mL)を加え、常温で1時間反応させた。反応後、反応系中へ水と塩酸を加え、酢酸エチルで3回、有機層へ生成物を抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液で洗浄後、MgSOで乾燥させた。減圧下で濃縮後、ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=22:78-43:57)で分離し、生成物を得た。898mg(3.09mmol)、収率84%、無色液体。
 H-NMR(600MHz,CDCl):δ7.79(d,J=7.8Hz,2H),7.34(d,J=7.8Hz,2H),7.24(t,J=7.8Hz,2H),7.17(t,J=7.8Hz,1H),7.06(d,J=7.8Hz,2H),4.03(t,J=6.0Hz,2H),2.65(t,J=7.2Hz,2H),2.46(s,3H),1.99-1.93(m,2H);
 LRMS(EI) C1618S(M)の計算値:290.1,実測値:290.1。
 合成例8:3-ヨードプロピルベンゼン
Figure JPOXMLDOC01-appb-C000020
 反応容器へ3-(4-メチルフェニルスルホニルオキシ)プロピルベンゼン(200mg、0.688mmol)、ヨウ化ナトリウム(310mg、2.07mmol)、アセトン(3.4mL)を加え、常温で6時間反応させた。反応後、反応系中へ水を加え、酢酸エチルで3回、有機層へ生成物を抽出した。得られた有機層を飽和食塩水で洗浄後、MgSOで乾燥させた。減圧下で濃縮後、ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=0:100→11:89)で分離し、生成物を得た。140mg(0.569mmol)、収率83%、橙色液体。
 H-NMR(600MHz,CDCl):δ7.29(t,J=7.8Hz,2H),7.22(d,J=7.8Hz,1H),7.20(d,J=7.8Hz,2H),3.18(t,J=7.2Hz,2H),2.73(t,J=7.2Hz,2H),2.14(quint,J=7.2Hz,2H);
 LRMS(EI) C11I(M)の計算値:246.0,実測値:246.0。
 標識化化合物同定のための標品として、非標識化化合物を以下の手順で合成した。
 合成例9:トルエン-4-スルホン酸 2-フルオロエチルエステル
Figure JPOXMLDOC01-appb-C000021
 反応容器へ2-フルオロエタノール(1.00mL、16.9mmol)、p-トルエンスルホニルクロリド(3.85g、20.2mmol)、N-メチルモルホリン(9.30mL、84.5mmol)、CHCl(50mL)を加え、常温で17時間反応させた。反応後、反応系中へ水を加え、酢酸エチルで3回、有機層へ生成物を抽出した。得られた有機層を飽和食塩水で洗浄後、MgSOで乾させた。減圧下で濃縮後、ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=19:81→40:60)で分離し、生成物を得た。3.79g(17.2mmol)、収率>100%、淡黄色液体。
 H-NMR(600MHz,CDCl):δ7.81(d,J=8.4Hz,2H),7.36(d,J=8.4Hz,2H),4.63-4.60(m,1H),4.55-4.52(m,1H),4.31-4.27(m,1H),4.26-4.23(m,1H),2.46(s,3H);
 LRMS(EI) C11FOS(M)の計算値:218.0,実測値:218.0。
 合成例10:[4-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィン
Figure JPOXMLDOC01-appb-C000022
 反応容器へ4-ジフェニルホスファニルフェノール(1.00g、3.59mmol)、トルエン-4-スルホン酸 2-フルオロエチルエステル(1.02g、4.67mmol)、炭酸カリウム(992mg、7.18mmol)、DMF(5mL)を加え、50℃に加温し1日反応させた。反応後、反応系中へ水を加え、酢酸エチルで3回、有機層へ生成物を抽出した。得られた有機層を飽和食塩水で洗浄後、MgSOで乾させた。減圧下で濃縮後、ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=4:96→25:75)で分離し、生成物を得た。921mg(2.84mmol)、収率80%、白色固体。
 H-NMR(600MHz,CDCl):δ7.69-7.43(m,1H),7.36-7.24(m,11H),7.01-6.89(m,2H),4.75(dt,J=48.0,4.2Hz,2H),4.21(dt,J=28.2,4.2Hz,2H);
 LRMS(EI) C2018FOP(M)の計算値:324.1,実測値:324.1。
 合成例11:ベンジル-[4-(2-フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド(TAP-001)
Figure JPOXMLDOC01-appb-C000023
 反応容器へ[4-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィン(100mg、0.308mmol)、ベンジルブロミド(366μL、3.08mmol)、MeCN(2mL)を加え、100℃に加温し45分間、加熱還流させた。反応後、反応液をオープンシリカゲルカラムクロマトグラフィーへ導入し、酢酸エチルで未反応のベンジルブロミドを溶出させた。その後、展開溶媒をメタノール:CHCl=25:75に変更して分離を行い、生成物を得た。161mg(0.326mmol)、収率106%、白色固体。
 H-NMR(600MHz,CDCl):δ7.78-7.70(m,4H),7.69-7.59(m,8H),7.25-7.07(m,7H),5.26(d,J=14.4Hz,2H),4.80(dt,J=48.0,4.2Hz,2H),4.35(dt,J=28.2,4.2Hz,2H);
 LRMS(FAB) C2725FOP([M-Br])の計算値:415.2,実測値:415.2([M-Br])。
同様の合成方法で、[4-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィンと求電子剤を反応させて、次の化合物を合成した。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 
 合成例12:[2-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィン
Figure JPOXMLDOC01-appb-C000027
 2-ジフェニルホスファニルフェノールを原料として、合成例10と同様の手法で合成を行った。ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=3:97→21:79)で分離し、生成物を得た。収率76%、白色固体。
 H-NMR(600MHz,CDCl):δ7.36-7.29(m,11H),6.91-6.87(m,2H),6.74-6.70(m,1H),4.40(dt,J=47.4,4.8Hz,2H),4.11(dt,J=25.8,4.8Hz,2H);
 LRMS(EI) C2018FOP(M)の計算値:324.1,実測値:324.1。
 合成例13:ベンジル-[2-(2-フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド(TAP-028)
Figure JPOXMLDOC01-appb-C000028
 [2-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィンを原料として、合成例11と同様の手法で合成を行った。酢酸エチルで未反応のベンジルブロミドを溶出させた後、展開溶媒をメタノール:CHCl=25:75に変更して分離を行い、生成物を得た。収率70%、白色固体。
 H-NMR(600MHz,CDCl):δ7.90-7.83(m,1H),7.80-7.73(m,2H),7.66-7.58(m,4H),7.55-7.46(m,5H),7.35-7.25(m,2H),7.23-7.16(m,3H),7.01(d,J=6.6Hz,1H),5.03(d,J=15.0Hz,2H),4.51(s,2H),4.48-4.46(m,1H),4.44-4.42(m,1H);
 LRMS(FAB) C2725FOP([M-Br])の計算値:415.2,実測値415.2([M-Br])。
 合成例14:[3-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィン
Figure JPOXMLDOC01-appb-C000029
 3-ジフェニルホスファニルフェノールを原料として、合成例10と同様の手法で合成を行った。ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=4:96→25:75)で分離し、生成物を得た。収率91%、白色固体。
 H-NMR(600MHz,CDCl):δ7.41-7.24(m,11H),6.94-6.84(m,3H),4.77-4.71(m,1H),4.69-4.63(m,1H),4.24-4.08(m,2H);
 LRMS(EI) C2018FOP(M)の計算値:324.1,実測値:324.1。
 合成例15:ベンジル-[3-(2-フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド(TAP-018)
Figure JPOXMLDOC01-appb-C000030
 [3-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィンを原料として、合成例11と同様の手法で合成を行った。酢酸エチルで未反応のベンジルブロミドを溶出させた後、展開溶媒をメタノール:CHCl=20:80に変更して分離を行い、生成物を得た。収率88%、白色固体。
 H-NMR(600MHz,CDCl):δ7.80-7.74(m,3H),7.70-7.64(m,4H),7.63-7.58(m,4H),7.50-7.46(m,1H),7.35-7.31(m,1H),7.24-7.20(m,1H),7.16-7.09(m,5H),5.49(d,J=14.4Hz,2H),4.84-4.80(m,1H),4.76-4.72(m,1H),4.57-4.54(m,1H),4.52-4.49(m,1H);
 LRMS(FAB) C2725FOP([M-Br])の計算値:415.2,実測値:415.2([M-Br])。
 合成例16:[3-(2-フルオロエトキシ)フェニル]-(4-メトキシカルボニルフェニル)メチル-ジフェニルホスホニウムブロミド(TAP-020)
Figure JPOXMLDOC01-appb-C000031
 反応容器へ[3-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィン(63.8mg、0.197mmol)、4-(ブロモメチル)安息香酸メチルエステル(54.8mg、0.239mmol)、アセトニトリル(2mL)を加え、90℃に加温し4時間、加熱還流させた。反応後、反応液をオープンシリカゲルカラムクロマトグラフィーへ導入し、酢酸エチルで未反応の化合物を溶出させた。その後、展開溶媒をメタノール:CHCl=20:80に変更して分離を行い、生成物を得た。102mg(0.184mmol)、収率93%、白色固体。
 H-NMR(600MHz,CDCl):δ7.85(d,J=14.4Hz,H),7.79-7.74(m,4H),7.70(d,J=14.4Hz,2H),7.68(d,J=14.4Hz,2H),7.63-7.58(m,4H),7.46(td,J=7.8,4.2Hz,1H),7.32(d,J=7.8Hz,1H),7.23-7.20(m,2H),7.11(dd,J=13.2,7.2Hz,1H),5.71(d,J=15.0Hz,2H),4.77(dt,J=47.4,3.6Hz,2H),4.54(dt,J=28.8,3.6Hz,2H),3.86(s,3H);
 LRMS(FAB) C2927FO([M-Br])の計算値:473.2,実測値:473.2([M-Br])。
 合成例17:[3-(2-フルオロエトキシ)フェニル]-(4-メトキシフェニル)メチル-ジフェニルホスホニウムブロミド(TAP-019)
Figure JPOXMLDOC01-appb-C000032
 反応容器へ4-メトキシベンジルクロリド(431μL、3.19mmol)、ヨウ化ナトリウム(1.44g、9.58mmol)、アセトン(16mL)を加え、常温で18時間反応させた。反応後、反応系中へ水を加え、酢酸エチルで3回、有機層へ生成物を抽出した。得られた有機層を飽和食塩水で洗浄後、MgSOで乾させた。減圧下で濃縮後、ハイフラッシュシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:99→20:80)で分離し、4-メトキシベンジルヨージドを得た。527mg(2.12mmol)、収率67%、黄色液体。
 続けて、得られた4-メトキシベンジルヨージド(57.3mg、0.231mmol)、[3-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィン(50.0mg、0.154mmol)、アセトニトリル(2mL)を反応容器へ加え、100℃に加温し25分間、加熱還流させた。反応後、反応液をオープンシリカゲルカラムクロマトグラフィーへ導入し、酢酸エチルで未反応の化合物を溶出させた。その後、展開溶媒をメタノール:CHCl=10:90に変更して分離を行い、生成物を得た。76.3mg(0.133mmol)、収率86.6%、淡黄色固体。
 H-NMR(600MHz,CDCl):δ7.79(t,J=7.2Hz,2H),7.70-7.61(m,8H),7.52(td,J=8.4,4.2Hz,1H),7.46(d,J=13.2Hz,1H),7.63-7.58(m,4H),7.46(td,J=7.8,4.2Hz,1H),7.32(d,J=9.6Hz,1H),7.14(dd,J=12.3,7.2Hz,1H),7.02(d,J=7.2Hz,1H),6.67(d,J=8.4Hz,2H),5.22(d,J=13.8Hz,2H),4.77(dt,J=46.5,3.6Hz,2H),4.46(dt,J=30.0,3.6Hz,2H),3.73(s,3H);
 LRMS(FAB) C2827FIO([M-I])の計算値:445.2,実測値:445.2([M-I])。
 合成例18:[3-(2-フルオロエトキシ)フェニル]-ジフェニル-(3-フェニルプロピル)ホスホニウムブロミド(TAP-022)
Figure JPOXMLDOC01-appb-C000033
 反応容器へ[3-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィン(50.0mg、0.154mmol)、3-ヨードプロピルベンゼン(76.0mg、0.308mmol)、アセトニトリル(1mL)を加え、100℃に加温し3.5時間、加熱還流させた。反応後、反応液をオープンシリカゲルカラムクロマトグラフィーへ導入し、酢酸エチルで未反応の化合物を溶出させた。その後、展開溶媒をメタノール:CHCl=20:80に変更して分離を行い、生成物を得た。73.5mg(0.145mmol)、収率94%、淡黄色固体。
 H-NMR(600MHz,CDCl):δ7.81-7.77(m,2H),7.74-7.69(m,4H),7.68-7.64(m,4H),7.54(td,J=7.8,4.2Hz,1H),7.50-7.46(m,1H),7.34-7.32(m,1H),7.29-7.25(m,2H),7.22-7.16(m,4H),4.79(dt,J=36.6,4.2Hz,2H),4.48(dt,J=28.8,4.2Hz,2H),3.89-3.83(m,2H),3.05(t,J=7.2Hz,2H),2.01-1.93(m,2H);
 LRMS(FAB) C2929FIOP([M-I])の計算値:443.2,実測値:443.2([M-I])。
同様の合成方法で、[3-(2-フルオロエトキシ)フェニル]-ジフェニルホスフィン、または[3-(3-フルオロプロポキシ)フェニル]-ジフェニルホスフィン、または[3-(4-フルオロブトキシ)フェニル]-ジフェニルホスフィンと求電子剤を反応させて、次の化合物を合成した。
Figure JPOXMLDOC01-appb-T000034
  18 F標識化反応手順
 サイクロトロンCypris HM12(住友重工株式会社)で加速した12MeVの陽子ビームを同位体純度97%以上の[18O]HO(太陽日酸株式会社)へ40分間照射し、18O(p,n)18F核反応により18を合成した。次いでその溶液を陰イオン交換樹脂(AG1-X8)に通して18を樹脂上に捕捉し、33mM KCO溶液で溶出させ、[18F]KF/KCO水溶液を得た。この水溶液から150-250μL程度、適切な放射能量(55-65mCi)を取り、Kryptfix(登録商標)2.2.2.MeCN溶液(20mg/ml)が800μL入っている反応バイアルへ添加して、ヘリウム還流下100℃の油浴で共沸乾燥させた。次いでそれぞれの標識前駆体のMeCN溶液{3mg(6.30μmol)/600μL}から600μL、反応バイアルへ加え100℃で10分間18Fフッ素化反応を行った。次いで二工程目のホスホニウム化を行うため、対応するブロミド(アルキル化剤)を315μmol(前駆体に対して50eq)バイアルへ加え100℃で、それぞれの時間ホスホニウム化反応を行った。反応後、バイアルを油浴から引き上げた後に、反応バイアルへ水5mLを加え、あらかじめ、エタノール5mL、水(10mL)を導入し活性化させたSeppak(登録商標)tC18カートリッジへ反応バイアル中の溶液を導入し、次いでSeppak(登録商標)tC18カートリッジを水(10mL)を導入し洗浄した。その後、空気を導入しカートリッジ中の水を除いた後、エタノール(5mL)でカートリッジから[18F]標識化合物を含む溶液を溶出し、水(1mL)で溶出液を希釈したものを分取HPLCカラムに導入し、分離・精製を行った(分取カラムInertsil(登録商標)ODS-4、10mm×250mm、移動相PBS:MeCN=52:48、流速5.0mL/分、測定UV波長254nm)。目的の放射能画分を分取し、分取フラクションを純水(20mL)で希釈した後、あらかじめエタノール(5mL)、水(10mL)を導入し活性化させたSeppak(登録商標)tC18カートリッジへフラクションの溶液を導入後、Seppak(登録商標)tC18カートリッジを水(10mL)を導入し洗浄した。その後、空気を導入しカートリッジ中の水を除いた後、エタノール(5mL)でカートリッジから[18F]標識化合物をバイアル中へ溶出した。溶出液をヘリウム還流下、100℃の油浴で共沸乾燥させ、その後反応バイアル中へ生理食塩水を適量加えた溶液を薬液とし、生物学的評価に用いた。
 上記の手順により以下の実施例化合物を合成した。
 実施例1:ベンジル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド([18F]TAP-001)
Figure JPOXMLDOC01-appb-C000035
 製剤化までの全標識合成の時間は約1時間30分であり、放射化学的収率43±18%(減衰補正値)、放射化学的純度98±1.8%以上であった。精製時のHPLCを図1に示す。
 HPLC条件:カラム Inertsil ODS-4(4.6×150mm、粒径5μm)、移動相 MeCN/PBS=50/50、UV波長 254 nm、流速 1.5 mL/min
 保持時間:4.8分。
 実施例2:ベンジル-[2-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド([18F]TAP-028)
Figure JPOXMLDOC01-appb-C000036
 製剤化までの全標識合成の時間は約1時間30分であり、放射化学的収率12±9.9%(減衰補正値)、放射化学的純度92±5.8%以上であった。
 HPLC条件:カラム InertSustain C-18(4.6×150mm、粒径5μm)、移動相 MeCN/PBS=50/50、UV波長 254 nm、流速 1.5 mL/min。
 保持時間:4.4分。
 実施例3:ベンジル-[3-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド([18F]TAP-003)
Figure JPOXMLDOC01-appb-C000037
 製剤化までの全標識合成の時間は約1時間30分であり、放射化学的収率36±8.4%(減衰補正値)、放射化学的純度99±0.1%以上であった。
 HPLC条件:カラム InertSustain C-18(4.6×150mm、粒径5μm)、移動相 MeCN/PBS=50/50、UV波長 254 nm、流速 1.5 mL/min。
 保持時間:4.4分。
 実施例4:[3-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシカルボニルフェニル)メチル-ジフェニルホスホニウムブロミド([18F]TAP-020)
Figure JPOXMLDOC01-appb-C000038
 標識化合物[18F]TAP-004の合成では、ホスホニウム化の際に用いる試薬4-(ブロモメチル)安息香酸メチルエステルが固体であるため、一工程目のフッ素化反応を行った後、一度アセトニトリルを留去し、試薬のアセトニトリル溶液(72mg(50eq)/600μL)を添加し、二段階目の反応を行った。その他の操作は、上記の18F標識化反応手順と同様に行った。製剤化までの全標識合成の時間は約1時間30分であり、放射化学的収率32%(減衰補正値)、放射化学的純度95%以上であった。
 HPLC条件:カラム InertSustain C-18(4.6×150mm、粒径5μm)、移動相 MeCN/PBS=50/50、UV波長 254 nm、流速 1.0 mL/min。
 保持時間:5.5分。
 実施例5:[3-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシフェニル)メチル-ジフェニルホスホニウムブロミド([18F]TAP-019)
Figure JPOXMLDOC01-appb-C000039
 アルキル化剤として、(4-メトキシフェニル)メチルクロリドを使用し、反応温度を130℃とした以外は、上記の18F標識化反応手順と同様に行った。製剤化までの全標識合成の時間は約1時間30分であり、放射化学的収率42%(減衰補正値)、放射化学的純度99%以上であった。
 HPLC条件:カラム InertSustain C-18(4.6×150mm、粒径5μm)、移動相 MeCN/PBS=50/50、UV波長 254 nm、流速 1.0 mL/min。
 保持時間:6.8分。
 実施例6:[18F][3-(2-フルオロエトキシ)フェニル]-(3-フェニルプロピル)-ジフェニルホスホニウムブロミド([18F]TAP-022)
Figure JPOXMLDOC01-appb-C000040
 標識化合物[18F]TAP-006の合成では、アルキル化剤として3-ヨードプロピルベンゼンを使用した。また、3-ヨードプロピルベンゼンは固体であるため、一工程目のフッ素化反応を行った後、一度アセトニトリルを留去し、試薬のアセトニトリル溶液(78mg(50eq)/600μL)を添加し、二段階目の反応を行った。その他の操作は、上記の18F標識化反応手順と同様に行った。製剤化までの全標識合成の時間は約1時間30分であり、放射化学的収率21%(減衰補正値)、放射化学的純度99%以上でであった。
 HPLC条件:カラム InertSustain C-18(4.6×150mm、粒径5μm)、移動相 MeCN/PBS=50/50、UV波長 254 nm、流速 1.5 mL/min。
 保持時間:6.8分。
 同様の合成方法により以下の化合物を合成した。
Figure JPOXMLDOC01-appb-T000041
 実施例16:ホスホニウム化反応の反応時間の検討
 上記の18F標識化反応手順にしたがって、下記スキームの反応を行った。その際、ホスホニウム化反応の反応時間を変えて行い、それぞれの場合の放射科学的収率を比較した。結果を以下の表に示す。2工程目の反応時間を20分、10分、または5分としたとき、5分の場合が最も放射化学的収率が高かった。
Figure JPOXMLDOC01-appb-C000042
 試験例1:マウスPET/CT撮像
 6~10週齢のSlc:ICRマウス♂(日本SLC株式会社)を実験に用いた。測定に使用する[18F]標識化合物の生理食塩液200μL(1.94~14.7MBq)を覚醒下のマウスへ尾静脈から投与し、50分静置した。その後、イソフルラン麻酔下(2%,1.5mL/分)で体躯を固定し、投与60分後から10分間、小動物PET(ClairvivoPET:島津製作所)で全身を撮像した。続いて体躯を固定したまま小動物CT(ClairvivoCT:島津製作所)で全身を撮像した。PETデータを3D-DRAMA法で再構成し、得られたPET画像の画素値をSUVに変換してSUV画像を作成した。CT画像とフュージョンを行い、フュージョン画像を得た。結果を図2に示す。
 [18F]TAP-001、018、019、022を使用した場合の全てにおいて、心筋への放射能の集積が認められ、これらの化合物が心筋のイメージングに使用可能であることが確認された。特に[18F]TAP-018、019、および022を使用した場合はコントラストの高い心筋イメージング画像が得られた。
 試験例2:マウスの体内動態分布試験
 6~8週齢のSlc:ICRマウス♂(日本SLC株式会社)を実験に用いた(n=4)。測定する[18F]標識化合物の生理食塩液200μL(370-740kBq)をマウスに尾静脈から投与し、投与60分後、120分後にイソフルラン麻酔下で頸椎脱臼により安楽死させた。速やかに心採血を行った後、心臓、肺、肝臓、脾臓、腎臓、小腸、大腿部筋肉、大腿骨、脳を摘出し、放射能量をγカウンターで測定した。摘出した各臓器の重量を測定し、投与量に対する各臓器1gあたりの集積率(%投与量/g臓器,%ID/g)を薬剤の集積指標として算出した(n=4)。結果を図3に示す。
 [18F]TAP-001、018、019、022を使用した場合の全てにおいて、心筋への標識化合物の集積が認められ、近傍臓器と比べて心筋への放射能の集積が高いことが確認された。特に最もイメージングに影響を与えることが懸念される肝臓と心筋の放射能集積値の比率(心筋/肝臓比)算出したところ、60分における比率は[18F]TAP-001(2.70)、[18F]TAP-018(9.40)、[18F]TAP-019(4.56)、[18F]TAP-022(4.98)となり、いずれも心臓特異的集積性を示した。
 試験例3:ラット体内分布評価
 [18F]TAP-018のラットにおける体内分布実験は、試験例2と同様の方法手順で、6週齢のWistarラット♂(日本SLC株式会社)を実験に用いて(n=4)行った。その結果を棒グラフにまとめた(図4)。[18F]TAP-018は心臓に高い集積性を示し、心筋/肝臓比は、60分で約15.5の値となった。この数値は、ゴールドスタンダードとして用いられている[18F]FBnTPの1.5の約十倍高い値であり、また最近、治験が進められている[18F]FTPPの9.2よりも十分に大きい値となって、心筋血流イメージング剤としての有用性が示された。
 試験例4:ラットでの小動物PET評価
 [18F]TAP-018のラットにおける心筋イメージング評価は、6週齢のWistarラット♂を実験に用いた。測定する[18F]TAP-018の生理食塩液200μL(7.83-9.66MBq)をIsoflurane麻酔下(2%、1.5mL/min)の体躯を固定したラットへ尾静脈から投与し、後投与直後から120分後まで小動物PETで全身を撮像した。続いて体躯を固定したまま小動物CTで全身を撮像した。PETデータを3D-DRAMA法で再構成し、得られたPET画像の画素値をSUVに変換してSUV画像を作成した。CT画像とフュージョンを行い、フュージョン画像を得た。さらに、フュージョン画像から心筋、肺、肝臓の位置を特定し、関心領域(region of interest,ROI)を設定してそれぞれのSUVavgを算出した。投与後60分までのPET画像を図5Aに示した。また、心臓、肝臓、肺の放射能時間曲線を5Bに示した。明らかなように、投与後10分までに肝臓の放射能が速やかに消失し、一方、投与直後から心臓には高い放射能集積が確認され、PETイメージングによって心筋血流薬剤としての有用性が示された。

Claims (24)

  1.  式(II):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Ar、Ar、およびArは、それぞれ独立に、Bから選択される1以上の置換基により置換されていてもよいアリールであり、ここでAr、Ar、およびArの少なくとも1つは、放射性核種で標識されたC1-6アルキル、放射性核種で標識されたC2-6アルコキシ、放射性核種で標識されたC2-6アルコキシC1-6アルキル、放射性核種で標識されたC2-6アルコキシC2-6アルコキシ、放射性核種で標識されたC2-6アルコキシC2-6アルコキシC1-6アルキル、および放射性核種で標識されたC2-6アルコキシC2-6アルコキシC2-6アルコキシから選択される1以上の置換基で置換されており;
     Aは、水素原子、Bから選択される1以上の置換基により置換されていてもよいC1-10アルキル、Bから選択される1以上の置換基により置換されていてもよいC2-10アルケニル、またはBから選択される1以上の置換基により置換されていてもよいアリールであり;
     Bは、それぞれ独立に、ハロゲン原子、C1-6アルコキシ、フェニル、およびナフチルであり、ここで該フェニル、およびナフチルは、C1-6アルキル、C1-6アルコキシ、およびハロゲン原子から選択される1以上の置換基により置換されていてもよく;
     Bは、それぞれ独立に、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、シアノ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、ニトロ、ヒドロキシ、または(C1-3アルコキシ)カルボニルであり、ここで該アルキル、アルコキシ、およびアルキルチオはハロゲン原子から選択される1以上の置換基により置換されていてもよく;
     Ar、Ar、ArおよびA、ならびにそれらに含まれる置換基は、酸付加塩を形成していてもよく;
     Xは、全体の荷電が-1のアニオンである]
    で表される、ホスホニウム化合物。
  2.  放射性核種が陽電子放出核種である、請求項1に記載のホスホニウム化合物。
  3.  陽電子放出核種が18Fである、請求項2に記載のホスホニウム化合物。
  4.  Aが、水素原子、1以上のハロゲン原子で置換されていてもよいC1-6アルキル、フェニル、またはフェニルC1-4アルキルであり、ここで、フェニルまたはフェニルC1-4アルキルのフェニル部分は、1以上のハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、シアノ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、ニトロ、ヒドロキシ、および(C1-3アルコキシ)カルボニルから選択される1以上の置換基により置換されていてもよい、請求項1~3のいずれか1項に記載のホスホニウム化合物。
  5.  ベンジル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
     ベンジル-(4-[2-{2-(2-[18F]フルオロエトキシ)エトキシ}エトキシ]フェニル)-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシカルボニルフェニル)メチル-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-(4-フルオロフェニル)メチル-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-(3,4,5-トリフルオロフェニル)メチル-ジフェニルホスホニウム;
     (4-クロロフェニル)メチル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシフェニル)メチル-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-(n-ペンチル)-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-(3-フェニルプロピル)-ジフェニルホスホニウム;
     (4-n-ブチルフェニル)メチル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
     (3-フルオロフェニル)メチル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-[4-(トリフルオロメチルチオ)フェニル]メチル-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-(2-メチルフェニル)メチル-ジフェニルホスホニウム;
     (3-シアノフェニル)メチル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
     [4-(2-[18F]フルオロエトキシ)フェニル]-メチル-ジフェニルホスホニウム;
     アリル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
     ベンジル-[3-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
     [3-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシフェニル)メチル-ジフェニルホスホニウム;
     [3-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシカルボニルフェニル)メチル-ジフェニルホスホニウム;
     [3-(2-[18F]フルオロエトキシ)フェニル]-(4-フルオロフェニル)メチル-ジフェニルホスホニウム;
     [3-(2-[18F]フルオロエトキシ)フェニル]-(3-フェニルプロピル)-ジフェニルホスホニウム;
     (4-クロロフェニル)メチル-[3-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
     [3-(2-[18F]フルオロエトキシ)フェニル]-(3,4,5-トリフルオロフェニル)メチル-ジフェニルホスホニウム;
     ベンジル-[3-(3-[18F]フルオロプロポキシ)フェニル]-ジフェニルホスホニウム;
     ベンジル-[3-(4-[18F]フルオロブトキシ)フェニル]-ジフェニルホスホニウム;
     [3-(2-[18F]フルオロエトキシ)フェニル]-メチル-ジフェニルホスホニウム;および
     ベンジル-[2-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウム;
    から選択されるホスホニウムを含む、請求項1に記載のホスホニウム化合物。
  6.  ベンジル-[4-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド;
     ベンジル-[3-(2-[18F]フルオロエトキシ)フェニル]-ジフェニルホスホニウムブロミド;
     [3-(2-[18F]フルオロエトキシ)フェニル]-(4-メトキシフェニル)メチル-ジフェニルホスホニウムブロミド;および
     [3-(2-[18F]フルオロエトキシ)フェニル]-(3-フェニルプロピル)-ジフェニルホスホニウムブロミド;
    から選択される、請求項1に記載のホスホニウム化合物。
  7.  請求項1~6のいずれか1項に記載のホスホニウム化合物を含有し、イメージングに使用する放射性医薬品。
  8.  請求項2~6のいずれか1項に記載のホスホニウム化合物を含有し、PETイメージングに使用する放射性医薬品。
  9.  ミトコンドリアのイメージングに使用される、請求項8に記載のPET用放射性医薬品。
  10.  心筋、腫瘍、または褐色脂肪組織のイメージングに使用される、請求項8または9に記載のPET用放射性医薬品。
  11.  請求項7~10のいずれか1項に記載の射性医薬品を含む、ディスポーザブル製品。
  12.  放射性核種で標識した4級ホスホニウム化合物の製造方法であって、
      式(I):X-CH-A
     [式中、Xは脱離基であり;
     Aは、水素原子、Bから選択される1以上の置換基により置換されていてもよいC1-10アルキル、Bから選択される1以上の置換基により置換されていてもよいC1-10アルケニル、またはBから選択される1以上の置換基により置換されていてもよいアリールであり;
     Bは、それぞれ独立に、ハロゲン原子、C1-6アルコキシ、フェニル、およびナフチルであり、ここで該フェニル、およびナフチルは、C1-6アルキル、C1-6アルコキシ、およびハロゲン原子から選択される1以上の置換基により置換されていてもよく;
     Bは、それぞれ独立に、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、シアノ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、ニトロ、ヒドロキシ、または(C1-3アルコキシ)カルボニルであり、ここで該アルキル、アルコキシ、およびアルキルチオはハロゲン原子から選択される1以上の置換基により置換されていてもよい]
    で表される求電子剤を、ベンゼン環上に放射性核種で標識された1以上の置換基を有するトリフェニルホスフィンと反応させて、4級ホスホニウム塩を得る工程を含み;
     ここで放射性核種で標識された1以上の置換基は、放射性核種で標識されたC1-6アルキル、放射性核種で標識されたC2-6アルコキシ、放射性核種で標識されたC2-6アルコキシC1-6アルキル、放射性核種で標識されたC2-6アルコキシC2-6アルコキシ、放射性核種で標識されたC2-6アルコキシC2-6アルコキシC1-6アルキル、および放射性核種で標識されたC2-6アルコキシC2-6アルコキシC2-6アルコキシから選択され;
     ここで該トリフェニルホスフィンはBから選択される1以上の置換基をベンゼン環上にさらに有していてもよい、前記製造方法。
  13.  放射性核種が陽電子放出核種である、請求項12に記載の製造方法。
  14.  陽電子放出核種が18Fである、請求項13に記載の製造方法。
  15.  Xが、ハロゲン原子、置換されていてもよいC1-6アルキルスルホニルオキシ、または置換されていてもよいフェニルスルホニルオキシである、請求項12~14のいずれか1項に記載の製造方法。
  16.  自動合成装置で行う、請求項12~15のいずれか1項に記載の製造方法。
  17.  式(III):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Ar、Ar、およびArは、請求項1に定義した通りである]
    で表される、ホスフィン化合物。
  18.  放射性核種が18Fである、請求項17に記載のホスフィン化合物。
  19.  放射性核種を非放射性の同一元素に置き換えた、請求項1~6のいずれか1項に記載のホスホニウム化合物。
  20.  請求項3~6のいずれか1項に記載の18F標識ホスホニウム化合物の18Fを19Fに置き換えたホスホニウム化合物。
  21. 式(III):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Ar、Ar、およびArは、それぞれ独立に、Bから選択される1以上の置換基により置換されていてもよいアリールであり;
     ここでAr、Ar、およびArの少なくとも1つは、Lから選択される1以上の置換基により置換されていてもよいC1-6アルキル、Lから選択される1以上の置換基により置換されていてもよいC2-6アルコキシ、Lから選択される1以上の置換基により置換されていてもよいC2-6アルコキシC1-6アルキル、Lから選択される1以上の置換基により置換されていてもよいC2-6アルコキシC2-6アルコキシ、Lから選択される1以上の置換基により置換されていてもよいC2-6アルコキシC2-6アルコキシC1-6アルキル、およびLから選択される1以上の置換基により置換されていてもよいC2-6アルコキシC2-6アルコキシC2-6アルコキシから選択される1以上の置換基で置換されており;
     Bは、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、シアノ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、ニトロ、ヒドロキシ、または(C1-3アルコキシ)カルボニルであり、ここで該アルキル、アルコキシ、およびアルキルチオはハロゲン原子から選択される1以上の置換基により置換されていてもよく;
     Lは、臭素、ヨウ素、p-トルエンスルホニルオキシ、メタンスルホニルオキシ、クロロメタンスルホニルオキシ、またはトリフルオロメタンスルホニルオキシである]
    で表される、ホスフィン化合物。
  22.  請求項21に記載の化合物と放射性核種とから、請求項17または18に記載のホスフィン化合物を製造する方法。
  23.  請求項1~6のいずれか1項に記載のホスホニウム化合物を製造するためのキットであって、請求項21に記載の化合物を試薬として含む前記キット。
  24.  請求項17または18に記載のホスフィン化合物を製造するためのキットであって、請求項21に記載の化合物を試薬として含む前記キット。
PCT/JP2015/059857 2014-11-05 2015-03-30 ホスホニウム化合物およびその製造方法 WO2016072104A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015516353A JP6555719B2 (ja) 2014-11-05 2015-03-30 ホスホニウム化合物およびその製造方法
US15/523,988 US20180030074A1 (en) 2014-11-05 2015-03-30 Phosphonium compound and production method therefor
EP15857241.2A EP3216796B1 (en) 2014-11-05 2015-03-30 Phosphonium compound and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014224986 2014-11-05
JP2014-224986 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016072104A1 true WO2016072104A1 (ja) 2016-05-12

Family

ID=55908841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059857 WO2016072104A1 (ja) 2014-11-05 2015-03-30 ホスホニウム化合物およびその製造方法

Country Status (4)

Country Link
US (1) US20180030074A1 (ja)
EP (1) EP3216796B1 (ja)
JP (1) JP6555719B2 (ja)
WO (1) WO2016072104A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299498B (zh) * 2018-01-18 2020-06-16 暨南大学 一类对甲苯磺酸根为阴离子的季鏻盐及其合成方法、制备方法、应用
CN108586524B (zh) * 2018-05-28 2019-10-01 厦门大学 氟代氧化膦类化合物及其在正电子发射显像中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249677A (ja) * 1995-12-22 1997-09-22 Basf Ag キラルなルテニウム錯体、その製造方法、及びプロキラルなケトンの鏡像選択的なトランスファー水素添加の方法
JP2005532262A (ja) * 2002-02-06 2005-10-27 ジョンズ ホプキンス ユニバーシティ 放射性標識された親油性の塩を使用することによる、ミトコンドリアのための非浸襲性の画像診断技術
WO2006121035A1 (ja) * 2005-05-10 2006-11-16 Nihon Medi-Physics Co., Ltd. 放射性ハロゲン標識有機化合物の製造方法
CN102898470A (zh) * 2012-11-02 2013-01-30 北京师范大学 一类新型有机膦化合物及其制备方法和应用
JP2013523702A (ja) * 2010-04-01 2013-06-17 メディカル リサーチ カウンシル Petイメージングのための親油性カチオンプローブ
WO2013172979A1 (en) * 2012-05-14 2013-11-21 University Of Southern California Methods and compositions for positron emission tomography myocardial perfusion imaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ237758A (en) * 1990-04-17 1992-12-23 Shell Int Research (phenylalkyl) triphenylphosphonium salt derivatives and fungicidal compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249677A (ja) * 1995-12-22 1997-09-22 Basf Ag キラルなルテニウム錯体、その製造方法、及びプロキラルなケトンの鏡像選択的なトランスファー水素添加の方法
JP2005532262A (ja) * 2002-02-06 2005-10-27 ジョンズ ホプキンス ユニバーシティ 放射性標識された親油性の塩を使用することによる、ミトコンドリアのための非浸襲性の画像診断技術
WO2006121035A1 (ja) * 2005-05-10 2006-11-16 Nihon Medi-Physics Co., Ltd. 放射性ハロゲン標識有機化合物の製造方法
JP2013523702A (ja) * 2010-04-01 2013-06-17 メディカル リサーチ カウンシル Petイメージングのための親油性カチオンプローブ
WO2013172979A1 (en) * 2012-05-14 2013-11-21 University Of Southern California Methods and compositions for positron emission tomography myocardial perfusion imaging
CN102898470A (zh) * 2012-11-02 2013-01-30 北京师范大学 一类新型有机膦化合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3216796A4 *

Also Published As

Publication number Publication date
US20180030074A1 (en) 2018-02-01
JP6555719B2 (ja) 2019-08-07
EP3216796A1 (en) 2017-09-13
EP3216796A4 (en) 2018-05-30
JPWO2016072104A1 (ja) 2017-08-10
EP3216796B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6891139B2 (ja) 造影剤の合成および使用のための組成物、方法およびシステム
AU2012304359B2 (en) Compositions, methods, and systems for the synthesis and use of imaging agents
KR101664855B1 (ko) Psma-결합제 및 그의 용도
CA3049470A1 (en) 18/19f-labelled compounds which target the prostate specific membrane antigen
CA3035532A1 (en) Psma-targeting compounds and uses thereof
MX2010012636A (es) Nuevos derivados de acido l-glutamico y l-glutamina marcados con [f-18] (i), su uso y procedimiento para su preparacion.
US20110250136A1 (en) Fluorinated benzothiazole derivatives, preparation method thereof and imaging agent for diagnosing altzheimer's disease using the same
BRPI0821241B1 (pt) Processo para a produção de um composto orgânico marcado com flúor radioativo
JP6555719B2 (ja) ホスホニウム化合物およびその製造方法
ES2907130T3 (es) Darapladib radiomarcado, análogos del mismo y su uso como compuestos para la obtención de imágenes
KR101469275B1 (ko) 베타아밀로이드 침착의 영상화를 위한 헤테로사이클릭 인덴계열의 유도체 및 그의 방사성 동위원소 표지화합물
CN114230505A (zh) 一种氟-18标记靶向p2x7受体分子探针的制备及其动物模型pet成像应用
Zheng et al. Syntheses and evaluation of fluorinated benzothiazole anilines as potential tracers for β-amyloid plaques in Alzheimer's disease
KR101920902B1 (ko) 심혈관 질환 조기진단 pet 조영용 화합물 및 그의 용도
EP2957556B1 (en) Aromatic amino acid derivative and positron emission tomography (pet) probe using the same
KR101519006B1 (ko) 신규한 벤즈아마이드 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 피부암 진단용 약학적 조성물
Zhenga et al. Syntheses and evaluation of fluorinated benzothiazole anilines as potential tracers for b-amyloid plaques in Alzheimer’s disease
WO2015194954A1 (en) 6,7-dioxyalkyltetrahydroisoquinoline compounds

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015516353

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015857241

Country of ref document: EP