WO2016072100A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2016072100A1
WO2016072100A1 PCT/JP2015/054289 JP2015054289W WO2016072100A1 WO 2016072100 A1 WO2016072100 A1 WO 2016072100A1 JP 2015054289 W JP2015054289 W JP 2015054289W WO 2016072100 A1 WO2016072100 A1 WO 2016072100A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
fluid
pair
path
flow
Prior art date
Application number
PCT/JP2015/054289
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 優
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to EP15857045.7A priority Critical patent/EP3217119B1/en
Priority to US15/524,711 priority patent/US20170328644A1/en
Publication of WO2016072100A1 publication Critical patent/WO2016072100A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present invention relates to a heat exchanger, and more particularly to a heat exchanger including a heat transfer member in which a heat exchange passage and a connection passage portion are formed.
  • a heat exchanger including a heat transfer member in which a heat exchange passage and a connection passage portion are formed is known.
  • Such a heat exchanger is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-227482.
  • Japanese Patent Laid-Open No. 4-227481 includes a metal plate in which a fluid inlet portion, a plurality of heat exchange passages, and a connection passage portion for distributing fluid from the inlet portion to each heat exchange passage are provided.
  • a plate fin heat exchanger is disclosed.
  • Japanese Patent Laid-Open No. 4-227481 discloses a structure in which a large number of dot-shaped convex portions called dot cores are distributed in a distribution region connected in parallel with a large number of heat exchange passages as a connection passage portion. Has been.
  • the fluid dispersed in each dot core in the distribution area is distributed to each heat exchange passage.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a heat exchanger capable of accurately suppressing flow rate variations in a plurality of heat exchange passages. It is to be.
  • a heat exchanger includes a circulation port for introducing or deriving a fluid, a plurality of heat exchange passages for causing the fluid to exchange heat, and a plurality of heat exchanges at both ends and the circulation port.
  • a heat transfer member including a connection passage portion connected to each of the passages is provided, and the connection passage portion has a tournament shape that branches two by two toward the heat exchange passage.
  • the “tournament shape” of the present invention is a broad concept showing a branch shape that repeats two branches, and the shape and length of the branch portion and the number of branches are not limited.
  • the flow path that constitutes the connection passage section is not only a flow path that branches into two at right angles as in the so-called tournament table, but also branches in a curved shape such as an arc shape or in an oblique direction such as a Y shape. It may be a flow path.
  • connection passage portion is formed in a tournament shape that branches two by two toward the heat exchange passage.
  • path part in the introduction side of a fluid the fluid which goes in and out of a heat exchange channel can be divided
  • branching (dividing) one flow path into three or more flow paths the flow rate of each flow path is likely to vary due to uneven flow, etc.
  • the distribution amount to each flow path can be easily equalized. Therefore, by repeating the two branches as many times as the number of heat exchange passages, it is possible to accurately control the flow rate variation of multiple heat exchange passages compared to a structure that distributes fluid to many heat exchange passages at once. can do.
  • connection passage portion includes a pair of branch passages that branch into two from the branch source portion, and the branch source portion has a pair of branch passages with respect to the pair of branch passages.
  • the connection is made in the direction in which the bisector of the angle formed extends. If comprised in this way, since a fluid can be made to flow toward the middle direction (direction where a bisector extends) of a pair of branch paths from a branch source part to each branch path, more evenly, Fluid can be distributed to each of the pair of branches. As a result, it is possible to more effectively suppress the flow rate variation of the plurality of heat exchange passages.
  • the branch path is a first part branched from the branch source part, and a second linear part as a branch source part extending from the first part and connected to the pair of branch paths on the heat exchange passage side. Part.
  • the fluid when the fluid is allowed to flow from the upstream branch path to the downstream branch path, the fluid is supplied to the downstream branch path in a state where the flow direction is aligned by the linear second portion. Can flow in.
  • the fluid can flow into each of the downstream branch passages in a state where the flow direction is aligned toward the middle of the pair of branch passages, the fluid can be more evenly distributed.
  • connection passage portion includes a pair of branch passages that branch into two from the branch source portion, and the pair of branch passages have the same passage length. If comprised in this way, since it can aim at equalization of channel resistance of a pair of bifurcated paths which branch into two, the amount of distribution of the fluid to a pair of branched paths can be made more equal. Then, by repeating the two branches with the same flow path length as many times as the number of heat exchange passages, it is possible to more effectively suppress the flow rate variation of each heat exchange passage.
  • the pair of branch paths are formed in a symmetrical shape with the branch source portion interposed therebetween. If comprised in this way, since the same branch path can be branched symmetrically, the flow-path resistance of a pair of branch path can be equalized more reliably. As a result, it is possible to further suppress flow rate variations in the plurality of heat exchange passages.
  • the pair of branch paths are branched from the branch source portion so as to form a semi-elliptical shape.
  • the flow of the semi-elliptical channel is in the tangential direction of the elliptic curve. Therefore, after the pair of branch paths are branched from the branching source portion in the lateral direction with respect to the flow from the upstream side.
  • the fluid flow can be gradually directed downstream along the semi-ellipse. As a result, the fluid flow can be made closer to the downstream direction so that the fluid can be evenly distributed.
  • the pair of branch paths are branched in an arc shape from the branch source portion so as to form a semicircular shape. If comprised in this way, after making a branch path branch from a branch origin part to a horizontal direction, the flow of a fluid can be gradually directed to a downstream direction along a circular arc. Further, since the branch path does not bend sharply after branching at the branch source part, the channel resistance is unlikely to increase. As a result, the flow of the fluid can be made closer to the downstream direction so that the fluid can be evenly distributed while suppressing an increase in the channel resistance.
  • FIG. 3A is a plan view showing a first heat transfer member of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 3B is a plan view showing a second heat transfer member of the heat exchanger according to the first embodiment of the present invention. It is the enlarged plan view which showed the connection channel
  • path part in the heat exchanger by 1st Embodiment It is the schematic diagram which showed the flow velocity vector in the connection channel
  • the heat exchanger 100 is a plate heat exchanger. As shown in FIGS. 1 and 2, the heat exchanger 100 includes a core 1 and header portions 2 to 5 (see FIG. 2).
  • the core 1 includes a plurality of first heat transfer members 10 through which the first fluid 6 flows and a plurality of second heat transfer members 20 through which the second fluid 7 flows.
  • the core 1 is a heat exchange unit that performs heat exchange between the first fluid 6 flowing through the first heat transfer member 10 and the second fluid 7 flowing through the second heat transfer member 20. Both the first fluid 6 and the second fluid 7 are examples of the “fluid” of the present invention.
  • the first heat transfer member 10 and the second heat transfer member 20 are both examples of the “heat transfer member” of the present invention.
  • the first fluid 6 is a gas on the high temperature side
  • the second fluid 7 is a liquid on the low temperature side. Note that the first fluid 6 and the second fluid 7 may be either on the high temperature side, or may be either gas or liquid.
  • white arrows indicate the flow direction of the first fluid 6, and hatched arrows indicate the flow direction of the second fluid 7.
  • the core 1 is configured by alternately laminating a plurality of plate-like first heat transfer members 10 and a plurality of plate-like second heat transfer members 20. Further, side plates 8 are respectively provided at both ends of the core 1 in the stacking direction (Z direction).
  • the core 1 is formed by sandwiching alternately laminated first heat transfer members 10 and second heat transfer members 20 by a pair of side plates 8 and joining them by fastening, diffusion bonding, brazing, or the like using fastening members. The whole is formed in a rectangular box shape (cuboid shape).
  • the first heat transfer member 10 and the second heat transfer member 20 are made of a metal material having high heat conductivity.
  • the first heat transfer member 10 and the second heat transfer member 20 are formed with flow paths for allowing the first fluid 6 and the second fluid 7 to circulate, respectively. Detailed configurations of the first heat transfer member 10 and the second heat transfer member 20 will be described later.
  • the side plate 8 on the upper surface, the first heat transfer member 10, and the second heat transfer member 20 are illustrated by being separated by a broken line.
  • the lamination direction of the 1st heat-transfer member 10 and the 2nd heat-transfer member 20 shown in FIG. 2 be a Z direction.
  • the longitudinal direction of the core 1 when viewed from the Z direction is the X direction
  • the short direction of the core 1 is the Y direction.
  • the header part 2 is an inlet flow path of the second fluid 7 for allowing the second fluid 7 to flow into the core 1 (second heat transfer member 20).
  • the header part 3 is an outlet channel for the second fluid 7 that causes the second fluid 7 to flow out of the core 1 (second heat transfer member 20).
  • the header parts 2 and 3 are attached to the surface of one side (Z1 side) of the core 1, the header part 2 is arranged in the vicinity of the X1 side end part, and the header part 3 is arranged in the vicinity of the X2 side end part. .
  • the header portions 2 and 3 are both cylindrical tube members.
  • the header portions 2 and 3 are connected to the introduction path 91 and the outlet path 92 for the second fluid 7 with respect to the plurality of second heat transfer members 20, respectively.
  • the header part 2 causes the second fluid 7 to flow into the plurality of second heat transfer members 20 in a lump, and the header part 3 causes the second fluid 7 to flow out from the plurality of second heat transfer members 20 at a time.
  • the header part 4 is an inlet flow path of the first fluid 6 for allowing the first fluid 6 to flow into the core 1 (first heat transfer member 10).
  • the header portion 5 is an outlet flow path for the first fluid 6 that causes the first fluid 6 to flow out of the core 1 (the first heat transfer member 10).
  • the header portions 4 and 5 are attached to the other surface (Z2 side) of the core 1, the header portion 4 is disposed in the vicinity of the X2 side end portion, and the header portion 5 is disposed in the vicinity of the X1 side end portion. .
  • the header parts 4 and 5 are both cylindrical tube members.
  • the header parts 4 and 5 are respectively connected to an introduction path 93 and an outlet path 94 for the first fluid 6 with respect to the plurality of first heat transfer members 10.
  • the header portion 4 causes the first fluid 6 to flow into the plurality of first heat transfer members 10 at once, and the header portion 5 causes the first fluid 6 to flow out from the plurality of first heat transfer members 10 at once.
  • the first fluid 6 is introduced into each first heat transfer member 10 from the header portion 4 on the X2 side, flows in the flow path of the first heat transfer member 10 in the X1 direction, and from the header portion 5 on the X1 side. leak.
  • the second fluid 7 is introduced into each second heat transfer member 20 from the header portion 2 on the X1 side, flows in the flow path of the second heat transfer member 20 in the X2 direction, and from the header portion 3 on the X2 side. leak.
  • the heat exchanger 100 of 1st Embodiment is comprised as a counterflow type heat exchanger.
  • the first fluid 6 on the high temperature side is cooled by the second fluid 7 on the low temperature side, and is taken out from the header portion 5 in a state where the temperature has dropped.
  • the second fluid 7 functions as a coolant for the first fluid 6.
  • the first heat transfer member 10 is a metal plate-like member including an inlet port 11 and an outlet port 12, a plurality of heat exchange passages 13, and a connection passage portion 14. .
  • the introduction port 11 and the outlet 12 are examples of the “distribution port” in the present invention.
  • the plurality of heat exchange passages 13 and the connection passage portions 14 are groove-like passages that are integrally formed with the first heat transfer member 10.
  • the heat exchange passage 13 is a linear flow path provided for exchanging heat with the fluid, and is provided so as to extend in the X direction and to be arranged in parallel to the Y direction. In the first embodiment, 32 heat exchange passages 13 are formed.
  • the number of heat exchange passages 13 may be an even number and may be other than 32.
  • Both the inlet 11 and the outlet 12 are circular through holes that penetrate the first heat transfer member 10 in the thickness direction.
  • the introduction port 11 is disposed in the vicinity of the end portion of the first heat transfer member 10 on the X2 direction side, and the outlet port 12 is disposed in the vicinity of the end portion of the first heat transfer member 10 on the X1 direction side.
  • the introduction port 11 and the outlet port 12 are each connected to the connection passage portion 14 via a plurality (four) of communication passages 15.
  • the inlet 11 is provided to introduce the first fluid 6 into the flow path, and the outlet 12 is provided to lead out the first fluid 6 from the flow path.
  • through holes 9b similar to the inlet port 11 and the outlet port 12 are also provided at corresponding positions of the second heat transfer member 20, respectively.
  • the respective inlets 11 and through holes 9b of the stacked first heat transfer member 10 and second heat transfer member 20 are connected in the thickness direction (Z direction), and penetrate the core 1 in the Z direction as a whole.
  • An introduction path 93 (see FIG. 2) is configured.
  • each lead-out port 12 and the through-hole 9b are connected to constitute a lead-out path 94 (see FIG. 2) that penetrates the core 1 in the Z direction as a whole.
  • the Z2 side plate 8 (see FIG. 2) is also provided with a through hole to connect the header portions 4 and 5 to the introduction path 93 and the lead-out path 94.
  • connection passage portions 14 are provided between the inlet 11 and the plurality of heat exchange passages 13 and between the outlet 12 and the plurality of heat exchange passages 13, respectively.
  • the number of connection passage portions 14 corresponds to the number of heat exchange passages 13, and in the first embodiment, four connection passage portions 14 are provided on the introduction port 11 side and the discharge port 12 side, respectively. Since the structure of the connection passage portion 14 is common to the introduction port 11 side and the outlet port 12 side, only the connection passage portion 14 of the introduction port 11 will be described.
  • the four connection passage portions 14 have the same structure.
  • connection passage portion 14 Both ends of the connection passage portion 14 are connected to the introduction port 11 (communication passage 15) and the plurality of heat exchange passages 13, respectively, and the function of distributing the first fluid 6 from the introduction port 11 to each heat exchange passage 13 is provided.
  • the connection passage portion 14 has a tournament shape that branches two by two toward the heat exchange passage 13.
  • connection passage portion 14 is branched into three stages of a first stage 31, a second stage 32, and a third stage 33, and one flow path (communication path 15). ) Is finally branched into eight channels. Then, the four connection passage portions 14 are branched into eight pieces and connected to the 32 heat exchange passages 13 respectively.
  • the connection passage portion 14 includes a pair of branch passages 34 that branch from the branch source portion 35 (second portion 37 or communication passage 15 described later) into two. Therefore, one pair of the branch paths 34 is provided in the first stage 31, two sets in the second stage 32, and four sets in the third stage 33.
  • the branch path 34 of the first stage 31 is bifurcated with the end of the communication path 15 as the branch source portion 35.
  • the branch path 34 after the second stage 32 is bifurcated with a later-described second portion 37 as a branch source portion 35.
  • the dimension in the X direction is L1.
  • the pair of branch paths 34 branch from the branch source portion 35 to both sides in the Y direction.
  • the pair of branch paths 34 have the same channel length. More specifically, the pair of branch paths 34 are formed in a symmetrical shape with the branch source portion 35 interposed therebetween. That is, the pair of branch paths 34 is symmetrical in the Y direction with the branch source portion 35 as the center. Further, the flow path widths W1 of the pair of branch paths 34 are the same, and although not shown, the pair of branch paths 34 have the same channel cross-sectional area. 4 shows an example in which the connection passage portion 14 has a constant flow path width W1 and a constant flow path cross-sectional area throughout.
  • the pair of branch paths 34 are branched from the branch source portion 35 so as to form a semi-elliptical shape.
  • the pair of branch paths 34 are branched from the branch source portion 35 in an arc shape so as to form a semicircular shape which is a kind of semi-elliptical shape. Therefore, the pair of branch paths 34 branch from the branch source part 35 in the Y1 direction and the Y2 direction, which are tangential directions, extend so as to form a 1 ⁇ 4 arc, and are along the X1 direction at the end of the arc. More specifically, each branch path 34 includes a first portion 36 and a second portion 37 that is continuous with the first portion 36.
  • the first part 36 of the pair of branch paths 34 is a flow path branched from the branch source part 35, and is a 1/4 arc-shaped part.
  • the radius of the first portion 36 is a radius R1, a radius R2, and a radius R3, respectively.
  • the radius R1 is larger than (R2 + R3).
  • the radius R2 is larger than the radius R3.
  • the second portion 37 of the pair of branch paths 34 extends from the first portion 36 and is connected to the pair of branch paths 34 on the heat exchange passage 13 side (X1 side in FIG. 4) as a straight flow as a branch source portion. Road. That is, the second portion 37 of the branch path 34 of the first stage 31 is connected to the branch path 34 of the second stage 32 as the branch source part 35, and the second portion 37 of the branch path 34 of the second stage 32 is the third stage. A branch source portion 35 is connected to 33 branch paths 34. Note that the branch passage 34 of the third stage 33 is connected to the linear heat exchange passage 13 at the end on the heat exchange passage 13 side, and does not include the second portion 37.
  • the second portion 37 is an example of the “branch source portion” in the present invention.
  • the second portion 37 of each branch path 34 extends linearly along the X direction. In other words, the second portion 37 extends in parallel with the heat exchange passage 13.
  • the length of the second portion 37 is substantially equal between the first step 31 and the second step 32, and any second portion 37 has a length L2.
  • the X direction dimension (length) L2 of the second portion 37 is smaller than the X direction dimension (R1, R2 or R3) of the first portion 36. In the example of FIG. 4, the length L2 is about 1/9 of R1 and about 1/5 of R2.
  • the length of the second part 37 may be different between the first stage 31 and the second stage 32, but the length of the plurality of second parts 37 included in the same stage is preferably the same.
  • the branching source portion 35 is connected to the pair of branch paths 34 in the direction in which the bisector BS of the angle ⁇ formed by the pair of branch paths 34 extends. That is, in FIG. 4, the first portion 36 of the pair of branch paths 34 branches in the Y1 direction and the Y2 direction, which are tangential directions, so the angle ⁇ formed by the pair of branch paths 34 is 180 degrees.
  • the branch source portion 35 (second portion 37, communication path 15) extends linearly in the X1 direction and is connected to the pair of branch paths 34 from the upstream side.
  • the branching source portion 35 is connected to the pair of branch paths 34 at 90 degrees perpendicular to the tangential direction of the first portion 36, and the angle ⁇ (180 degrees) formed by the pair of branch paths 34 is 2 etc.
  • the branch line 34 is connected in the direction (X1 direction) in which the branch line BS extends. Further, the tangent line of the inner wall portion (inner wall point) 34 a facing the branch source portion 35 is a vertical line orthogonal to the branch source portion 35.
  • the first fluid 6 that has flowed from the introduction port 11 flows into the connection passage portions 14 through the communication passages 15. .
  • the first fluid 6 is divided into eight parts in three stages and flows into eight corresponding heat exchange passages 13.
  • the first fluid 6 cooled by passing through the heat exchange passage 13 flows into the respective connection passage portions 14 on the downstream side and merges from eight to one, and then is led out via the communication passage 15 on the downstream side. 12 flows out.
  • the second heat transfer member 20 is a metal plate-like member including an inlet port 21 and an outlet port 22, a plurality of heat exchange passages 23, and a plurality of connection passage portions 24. It is.
  • the introduction port 21 and the outlet port 22 are examples of the “distribution port” in the present invention.
  • the introduction port 21 is disposed in the vicinity of the end portion of the second heat transfer member 20 on the X1 direction side, and the outlet port 22 is disposed in the vicinity of the end portion of the second heat transfer member 20 on the X2 direction side.
  • the introduction port 21 and the lead-out port 22 are respectively arranged at positions shifted from the through hole 9b to the outside in the X direction.
  • the through-hole 9a similar to the inlet 21 and the outlet 22 is also provided in the corresponding position of the 1st heat-transfer member 10, respectively.
  • each through-hole 9a and the introduction port 21 of the 1st heat-transfer member 10 and the 2nd heat-transfer member 20 are connected to the thickness direction (Z direction), and the introduction path 91 which penetrates the core 1 to the Z direction as a whole. (See FIG. 2).
  • each lead-out port 22 and the through-hole 9a are connected to constitute a lead-out path 92 (see FIG. 2) that penetrates the core 1 in the Z direction as a whole.
  • the configuration of the second heat transfer member 20 is basically the same as the configuration of the first heat transfer member 10 except for the positions of the inlet port 21 and the outlet port 22 (and the position of the through hole 9a or 9b). The same. Therefore, the configuration of each connection passage portion 24 of the second heat transfer member 20 is the same as the configuration of the connection passage portion 14 of the first heat transfer member 10. Therefore, the detailed description about the structure of the 2nd heat-transfer member 20 is abbreviate
  • the second fluid 7 that has flowed from the introduction port 21 flows into the corresponding heat exchange passages 23 through the respective connection passage portions 24.
  • the second fluid 7 that has been heated through the heat exchange passage 23 (has deprived of heat) flows into the respective connection passage portions 24 on the downstream side and flows out from the outlet port 22.
  • the first heat transfer member 10 and the second heat transfer member 20 are configured as described above.
  • connection passage portion 14 (24) is formed in a tournament shape that branches two by two toward the heat exchange passage 13 (23). Accordingly, in the connection passage portion 14 (24), the first fluid 6 (second fluid 7) entering and exiting the heat exchange passage 13 (23) is divided into two parts, and each of the plurality of heat exchange passages 13 (23). Can be distributed.
  • branching (dividing) one flow path into three or more flow paths the flow rate of each flow path is likely to vary due to uneven flow, etc. The distribution flow rate to each flow path can be easily equalized.
  • connection passage portion 14 (24) is provided with a pair of branch paths 34 that branch from the branch source portion 35 into two.
  • the branching source portion 35 is configured to be connected to the pair of branch paths 34 in the direction in which the bisector BS of the angle ⁇ formed by the pair of branch paths 34 extends. Accordingly, the first fluid 6 (second fluid 7) is caused to flow from the branching source portion 35 to the respective branch paths 34 toward the middle direction of the pair of branch paths 34 (the direction in which the bisector BS extends). Therefore, the first fluid 6 (second fluid 7) can be distributed to each of the pair of branch paths 34 more evenly. As a result, flow rate variations in the plurality of heat exchange passages 13 (23) can be more effectively suppressed.
  • the first portion 36 branched from the branching source portion 35 and the pair of branch passages 34 extending from the first portion 36 and connected to the heat exchange passage 13 (23) side are connected.
  • a straight second portion 37 as a branch source portion is provided in the branch path 34.
  • the pair of branch paths 34 are formed so as to have the same flow path length.
  • the flow resistance of the pair of branch paths 34 branched into two can be made uniform, so that the distribution amount of the first fluid 6 (second fluid 7) to the pair of branch paths 34 is further equalized. be able to.
  • the two branches by repeating the two branches with the same flow path length as many times as the number of heat exchange passages 13 (23), it is possible to more effectively suppress the flow rate variation of each heat exchange passage 13 (23). .
  • the pair of branch paths 34 are formed in a symmetrical shape with the branch source portion 35 interposed therebetween. Therefore, since the same branch path 34 can be branched symmetrically, the channel resistance of a pair of branch paths 34 can be equalized more reliably. As a result, the flow rate variation of the plurality of heat exchange passages 13 (23) can be further suppressed.
  • the pair of branch paths 34 are branched from the branch source portion 35 so as to form a semi-elliptical shape.
  • the flow of the first fluid 6 (second fluid 7) gradually flows along the semi-ellipse after the pair of branch paths 34 are branched from the branch source portion 35 in the lateral direction with respect to the flow from the upstream side. Can be directed downstream.
  • the flow of the first fluid 6 (second fluid 7) can be made closer to the downstream direction so that the first fluid 6 (second fluid 7) can be evenly distributed.
  • the pair of branch paths 34 are respectively branched from the branch source portion 35 in an arc shape so as to form a semicircular shape.
  • the flow of the arc-shaped flow path is in the tangential direction of the arc, and therefore the flow of the first fluid 6 (second fluid 7) is arced after the branch path 34 is branched laterally from the branch source portion 35. Can be gradually directed downstream.
  • the branch path 34 does not bend sharply after branching at the branch source part 35, the flow path resistance is unlikely to increase.
  • the flow of the first fluid 6 (second fluid 7) is made closer to the downstream direction so that the first fluid 6 (second fluid 7) can be evenly distributed while suppressing an increase in flow path resistance. be able to.
  • connection passage portion 14 of the first heat transfer member 10 (the connection passage portion 24 of the second heat transfer member 20) in the heat exchanger 100 according to the first embodiment.
  • a simulation result performed for confirming the above will be described.
  • the flow rate of the first fluid 6 for each of 32 flow paths (channels) flowing out from the connection passage portion 14 was calculated by flowing the first fluid 6 at a predetermined flow rate into the connection passage portion 14.
  • the same calculation was performed also about the connection channel
  • connection passage portion 50 branches the first fluid 6 from the communication passage 15 six at a time.
  • the connection passage part 50 of the comparative example branches the first fluid 6 from the communication passage 15 six at a time.
  • five sets of the six-branch connection passage portions 50 are provided to constitute 30 flow paths (channels).
  • Each connection passage portion 50 includes a branch portion 52 that extends linearly on both sides in the Y direction from the connection portion 51 with the communication passage 15 and an individual portion 53 that extends linearly from the branch portion 52 in the X1 direction.
  • the connection portion 51 of the communication path 15 is disposed at the center in the Y direction.
  • the individual portions 53 are arranged at equal intervals in the Y direction.
  • FIG. 6 shows a simulation result of the connection passage portion 50 according to the comparative example
  • FIG. 7 shows a simulation result of the connection passage portion 14 according to the first embodiment
  • the horizontal axis indicates the flow path number (channel number)
  • the vertical axis indicates the flow rate of the first fluid 6.
  • the vertical axis represents the ratio when the average value of all channels is 100%. The simulation was performed under the condition that the first fluid 6 was supplied from the inlet 11 at a mass flow rate of 1.0 ⁇ 10 ⁇ 3 Kg / s.
  • connection passage portion 50 of the comparative example shown in FIG. 6 the flow rate for each channel varies greatly in the range VR1 of about 0% to about 180%. Further, in the connection passage portion 50 of the comparative example, a group having a relatively small flow rate (channels 3, 4, 9, 10, 15, 16, etc.) and a group having a relatively large flow rate (channels 1, 6, 7, 12, 13, 18, etc.).
  • connection passage portion 14 of the first embodiment in the connection passage portion 14 of the first embodiment, the variation in the flow rate for each channel is remarkably reduced.
  • the flow rate of each channel is within a range VR2 of about 20% above and below, centering on the average value of 100%.
  • FIG. 8 is a diagram showing a velocity vector of the first fluid 6 passing through the pair of branch paths 34 (first stage 31) in the connection passage portion 14 according to the first embodiment.
  • FIG. 9 is a diagram showing a velocity vector of the first fluid 6 passing through the connection passage portion 50 according to the comparative example. In each figure, the velocity vector at an arbitrary position in the flow path is shown as a representative point, and the length of the vector indicates the magnitude of the velocity.
  • the flow of the first fluid 6 proceeds to both ends in the Y direction at the branch portion 52, and concentrated on the individual portions 53 at both ends in the Y direction. It can be seen that the fluid 6 is flowing in. As a result, the first fluid 6 hardly flows into the central individual portion 53. For this reason, as shown in FIG. 6, in the connection passage portion 50, the flow rate increases in the channels (channels 1, 6, etc.) at both ends in the Y direction, and the flow rate decreases in the center channels (channels 3, 4, etc.). became.
  • connection passage portion 14 having the arc-shaped branch passage 34
  • connection passage portion 114 having the branch passage 134 that branches in a Y shape.
  • An example of the heat exchanger 200 provided with the above will be described.
  • the heat exchanger 200 of 2nd Embodiment differs from the said 1st Embodiment only in the connection channel
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only the connection passage portion 114 will be described.
  • path part 114 in the 1st heat transfer member is demonstrated here, and description is abbreviate
  • connection passage portion 114 of the second embodiment has a tournament shape that branches two by two toward the heat exchange passage 13 as in the first embodiment. Also in the second embodiment, the connection passage portion 114 branches in three stages and is connected to the 32 heat exchange passages 13. In the second embodiment, the connection passage portion 114 includes a pair of branch paths 134 that are bifurcated into a Y shape.
  • the pair of branch paths 134 branches from a common branch source portion 135 in a Y shape (reverse Y shape) on both sides in the Y direction.
  • the pair of branch paths 134 have the same channel length, and are formed symmetrically with the branch source portion 135 interposed therebetween. Further, the channel width W2 of the pair of branch paths 134 is the same.
  • the entire flow path of the connection passage portion 114 has a flow path width W2, and has the same flow path cross-sectional area.
  • Each of the pair of branch paths 134 includes a first portion 136 that branches obliquely from the branch source portion 135 in the Y direction and the X1 direction, and a linear second portion 137 that continues to the first portion 136. Yes.
  • the second portion 137 is an example of the “branch source portion” in the present invention.
  • the first portion 136 of the pair of branch paths 134 extends linearly obliquely from the branch source portion 135.
  • a Y-shaped branch is formed by the first portion 136 of each of the pair of branch paths 134 and the upstream second portion 137 which is the branching source portion 135.
  • the angle ⁇ formed by the pair of first portions 136 is about 120 degrees.
  • the X-direction dimensions of the first portions 136 are L3, L4, and L5, respectively.
  • the Y direction dimensions of each first portion 136 are W3, W4, and W5, respectively.
  • lengths L3, L4, and L5 in the X direction are smaller than lengths W3, W4, and W5 in the Y direction, respectively.
  • the branch path 134 of the second embodiment is dimensioned in the X direction compared to the branch path 34 of the first embodiment. Can be reduced. As a result, the connection passage portion 114 of the second embodiment can have a smaller X-direction dimension L6 than the connection passage portion 14 of the first embodiment.
  • the second portion 137 of the pair of branch paths 134 is a linear flow path and extends along the X direction.
  • the second part 137 of the first stage 31 has a length L7
  • the second part 137 of the second stage 32 has a length L8.
  • the length L7 is larger than the length L8.
  • the length L7 is about 1/8 of W3.
  • the length L8 is about 1/5 of W4.
  • the line BS is connected in the extending direction (X1 direction).
  • the inner wall part 134 a facing the branching source part 135 is a triangular wall of about 120 degrees with respect to the branching source part 135. For this reason, compared with the inner wall part 34a of the said 1st Embodiment which is a 180 degree
  • connection passage portion 114 similarly to the first embodiment, by forming the connection passage portion 114 in a tournament shape that branches two by two toward the heat exchange passage 13, the distribution flow rate to each flow path is easy. Can be equalized. Therefore, by repeating the two branches as many times as the number of heat exchange passages 13, the flow rate variation of the plurality of heat exchange passages 13 can be accurately suppressed.
  • connection passage portion 114 of the second embodiment some of the 32 channels show values higher than 150%, but most of the others are from the average value of 100%. It is within the range of ⁇ 50% (hatched part). That is, 26 out of 32 channels (about 72%) are within an average value ⁇ 50%.
  • connection passage portion 50 Compared with the connection passage portion 50 according to the comparative example of FIG. 6, in the comparative example, 10 out of 30 channels (about 33%) are only within the range of the average value ⁇ 50%. Thereby, the effect which equalizes the distribution flow volume to each flow path by the connection passage part 114 of the heat exchanger 200 by 2nd Embodiment was confirmed. As a result, it was confirmed that the flow rate variation of the plurality of heat exchange passages 13 distributed by the connection passage portion 114 can be accurately suppressed.
  • connection passage portion 14 in comparison with the connection passage portion 14 according to the first embodiment of FIG. 7, in the first embodiment, all 32 channels are within the range of the average value ⁇ 50%. For this reason, in the second embodiment, the X-direction dimension L6 (see FIG. 11) of the connection passage portion 114 can be reduced as compared with the first embodiment. On the other hand, in terms of equalizing the distribution flow rate, It can be seen that the first embodiment is more effective.
  • the example of the counterflow type heat exchanger 100 (200) in which the first fluid 6 and the second fluid 7 flow in opposite directions to each other in the X direction has been described.
  • the invention is not limited to this.
  • the heat exchanger is a parallel flow type in which the first fluid 6 and the second fluid 7 flow in the same direction, or a cross flow in which the flow of the first fluid 6 and the flow of the second fluid 7 intersect. It may be a mold or the like.
  • the said 1st and 2nd embodiment showed the example which comprised the core 1 by laminating
  • this invention was shown. Is not limited to this.
  • the first heat transfer member and the second heat transfer member are not necessarily stacked alternately.
  • two (multiple) layers of the second heat transfer member may be laminated.
  • one layer of the second heat transfer member may be laminated on the two layers (multiple layers) of the first heat transfer member.
  • a tournament-shaped connection passage portion may be provided in only one of the first heat transfer member and the second heat transfer member, and a tournament-shaped connection passage portion may not be provided in the other.
  • the first heat transfer member 10 and the second heat transfer member 20 are provided, and an example of a heat exchanger that performs heat exchange between two kinds of fluids is shown. Is not limited to this.
  • the heat exchanger may perform heat exchange between three or more types of fluids. In that case, what is necessary is just to provide 3 or more types of heat-transfer members, such as a 3rd heat-transfer member. At that time, each of the three or more types of heat transfer members may include a tournament-shaped connection passage portion.
  • the tournament-shaped connecting passage portion 14 (114) is branched into three stages and finally branched into eight flow paths. It is not limited to this.
  • the number of stages of the connection passage portion (that is, the number of branches) is not particularly limited.
  • the connecting passage portion may be branched into two stages or four or more stages.
  • connection passage portions 14 including eight flow paths may be provided by branching in two stages. It is also possible to provide two connection passage portions that branch into four stages and include 16 flow paths, or to provide one connection passage section that branches into five stages and includes 32 flow paths. Good.
  • the example which provided the pair of branch path 34 which branches in a semi-ellipse (semicircle) shape is shown
  • a pair of branch path 134 which branches in a Y shape is shown.
  • the pair of branch paths may branch into a shape other than the semicircular shape and the Y shape.
  • the connection passage portion 214 may have a pair of branch paths 234 that branch at right angles.
  • the pair of branch paths 234 includes a first portion 236 that extends linearly along the Y direction and a second portion 237 that extends linearly along the X direction from the first portion 236.
  • the second portion 237 is an example of the “branch source portion” in the present invention. If comprised in this way, the X direction dimension of the 1st part 236 can be suppressed to the minimum. Therefore, in the connection passage portion 214, the X-direction dimension L10 can be further reduced as compared with the connection passage portion 114 of the second embodiment. As a result, the overall size of the heat exchanger can be reduced while suppressing the size in the X direction.
  • the pair of branch paths may be formed so that the pair of branch paths has a semi-elliptical shape having a major axis and a minor axis having different lengths.
  • connection is made between the heat exchange passage 13 (23) and the inlet 11 (21) and between the heat exchange passage 13 (23) and the outlet 12 (22).
  • a tournament-shaped connection passage portion may be provided only between the heat exchange passage and the introduction port, or a tournament-shaped connection passage portion may be provided only between the heat exchange passage and the outlet port. .
  • the branch path 34 (134) includes the linear second portion 37 (137) is shown, but the present invention is not limited to this. In the present invention, the branch path may not include the second portion.
  • the length L2 of the 2nd part 37 of the branched path 34 showed the example of the structure which is about 1/9 of radius R1 of the 1st part 36, and about 1/5 of R2.
  • the present invention is not limited to this.
  • the length of the second portion may be relatively increased with respect to the radius of the first portion.
  • FIG. 14 is a diagram showing changes in the velocity vector of the first fluid 6 when the length of the second portion 37 is increased in the branch path 34 of the first embodiment.
  • the flow (vector) of the first fluid 6 is biased radially outward when passing through the first portion 36 and enters the second portion 37 (end position of the 1 ⁇ 4 arc). Is slightly inclined in the Y direction. Thereafter, the flow (vector) of the first fluid 6 is aligned in the X direction with the Y direction component gradually decreasing in the linear second portion 37.
  • the rectification effect increases toward the upstream side of the second portion 37, and in the range of 0 ⁇ L2 ⁇ R / 2, the rectification effect can be expected to be improved by the amount provided for the second portion 37.
  • the length of the second portion 37 is preferably length L2 ⁇ R / 4, and more preferably R / 4 ⁇ length L2 ⁇ R / 2. Although illustration is omitted, in the simulation in which the length L2 of the second portion 37 is sufficiently large, a result that can suppress the variation in the flow rate of each channel within a range of about ⁇ 5% was obtained. .
  • path part 14 (114) showed the example which has a fixed flow-path cross-sectional area with the fixed flow-path width W1 (W2) over the whole
  • the present invention is not limited to this.
  • the flow path width (flow path cross-sectional area) of the connection passage portion may change.
  • the connection passage portion 314 may have a branch path 334 having a different flow path width in each of the first stage 31 to the third stage 33.
  • the channel cross-sectional area (channel width) of the pair of branch paths 334 is approximately 1 ⁇ 2 of the channel cross-sectional area (channel width) before branching.
  • the sum of the channel cross-sectional area (channel width) of the bifurcated branch channel 334 matches the channel cross-sectional area (channel width) before branching.
  • the flow passage width (flow passage cross-sectional area) W12 (W11 / 2) of the branch passage 334 of the first stage 31 with respect to the flow passage width (flow passage cross-sectional area) W11 of the communication passage 15.
  • the channel width (channel cross-sectional area) W13 (W12 / 2) of the branch path 334 of the second stage 32
  • the channel width (channel cross-sectional area) W14 of the branch path 334 of the third stage 33 (W13 / 2).
  • the flow path depth is assumed to be constant, and the description has been made on the assumption that the flow path width corresponds to the flow path cross-sectional area. Replace with channel cross-sectional area.
  • the heat exchange passage 13 (23) may have a curved shape other than a straight shape, for example, a shape that bends after extending from one end of the heat transfer member to the other end and is folded back in the opposite direction. Good.
  • Second fluid (fluid) First heat transfer member (heat transfer member) 11, 21 Introduction port (distribution port) 12, 22 Outlet (distribution port) 13, 23 Heat exchange passage 14, 24, 114, 214, 314 Connection passage portion 20 Second heat transfer member (heat transfer member) 34, 134, 234, 334 Branch path 35, 135 Branch source part 36, 136, 236 First part 37, 137, 237 Second part (branch source part) 100, 200 heat exchanger ⁇ angle formed by a pair of branch paths BS bisecting line

Abstract

This heat exchanger is provided with heat transfer members (10 and 20), each comprising: flow ports (11, 12, 21, and 22) through which a fluid (6 and 7) is introduced or discharged; a plurality of heat exchange passages (13 and 23); and connection channel parts (14 and 24) configured such that both ends thereof are connected to the flow port and the plurality of heat exchange passages (13 and 23). The connection channel parts are shaped like a tournament tree branching in two toward the heat exchange passages.

Description

熱交換器Heat exchanger
 この発明は、熱交換器に関し、特に、熱交換通路と接続通路部とが形成された伝熱部材を備える熱交換器に関する。 The present invention relates to a heat exchanger, and more particularly to a heat exchanger including a heat transfer member in which a heat exchange passage and a connection passage portion are formed.
 従来、熱交換通路と接続通路部とが形成された伝熱部材を備える熱交換器が知られている。このような熱交換器は、たとえば、特開平4-227481号公報に開示されている。 Conventionally, a heat exchanger including a heat transfer member in which a heat exchange passage and a connection passage portion are formed is known. Such a heat exchanger is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-227482.
 上記特開平4-227481号公報には、流体の入口部と、複数の熱交換通路と、入口部からの流体を各熱交換通路に分配する接続通路部とが形成された金属板を備えたプレートフィン型熱交換器が開示されている。上記特開平4-227481号公報には、接続通路部として、多数の熱交換通路と並列接続した分配領域に、ドットコアと呼ばれる点状の凸部を多数点在するように分布させる構造が開示されている。上記特開平4-227481号公報では、分配領域の各ドットコアで分散された流体が、各熱交換通路に分配される。 The above Japanese Patent Laid-Open No. 4-227481 includes a metal plate in which a fluid inlet portion, a plurality of heat exchange passages, and a connection passage portion for distributing fluid from the inlet portion to each heat exchange passage are provided. A plate fin heat exchanger is disclosed. Japanese Patent Laid-Open No. 4-227481 discloses a structure in which a large number of dot-shaped convex portions called dot cores are distributed in a distribution region connected in parallel with a large number of heat exchange passages as a connection passage portion. Has been. In the above-mentioned Japanese Patent Application Laid-Open No. 4-227481, the fluid dispersed in each dot core in the distribution area is distributed to each heat exchange passage.
特開平4-227481号公報Japanese Patent Laid-Open No. 4-227481
 しかしながら、上記特開平4-227481号公報の接続通路部では、多数のドットコアによって分散された流体が各熱交換通路に分配されるため、各熱交換通路に分配される流体の流量は制御できずにランダムになる。そのため、各熱交換通路の流量ばらつきを精度よく抑制するのが困難であるという問題点がある。各熱交換通路の流量がばらつくと、流路毎の熱交換性能のばらつきが大きくなり、所望の性能を得るための熱交換器の設計が困難になる。 However, in the connection passage part of the above-mentioned Japanese Patent Application Laid-Open No. 4-227481, since the fluid dispersed by a large number of dot cores is distributed to each heat exchange passage, the flow rate of the fluid distributed to each heat exchange passage can be controlled. Without being random. Therefore, there is a problem that it is difficult to accurately suppress the flow rate variation in each heat exchange passage. If the flow rate of each heat exchange passage varies, the heat exchange performance varies from flow path to flow path, making it difficult to design a heat exchanger for obtaining the desired performance.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、複数の熱交換通路の流量ばらつきを精度よく抑制することが可能な熱交換器を提供することである。 The present invention has been made to solve the above-described problems, and one object of the present invention is to provide a heat exchanger capable of accurately suppressing flow rate variations in a plurality of heat exchange passages. It is to be.
 上記目的を達成するために、この発明による熱交換器は、流体を導入または導出する流通口と、流体に熱交換をさせるための複数の熱交換通路と、両端が流通口と複数の熱交換通路とにそれぞれ接続された接続通路部とを含む伝熱部材を備え、接続通路部は、熱交換通路に向かって2つずつ分岐するトーナメント形状を有する。なお、本発明の「トーナメント形状」とは、2分岐を繰り返す分岐形状を示す広い概念であり、分岐部分の形状や長さ、分岐回数は問わない。このため、接続通路部を構成する流路は、いわゆるトーナメント表のように直角に2分岐する流路のみならず、円弧形状などの曲線状に分岐したり、Y字状などの斜め方向に分岐したりする流路であってもよい。 In order to achieve the above object, a heat exchanger according to the present invention includes a circulation port for introducing or deriving a fluid, a plurality of heat exchange passages for causing the fluid to exchange heat, and a plurality of heat exchanges at both ends and the circulation port. A heat transfer member including a connection passage portion connected to each of the passages is provided, and the connection passage portion has a tournament shape that branches two by two toward the heat exchange passage. The “tournament shape” of the present invention is a broad concept showing a branch shape that repeats two branches, and the shape and length of the branch portion and the number of branches are not limited. For this reason, the flow path that constitutes the connection passage section is not only a flow path that branches into two at right angles as in the so-called tournament table, but also branches in a curved shape such as an arc shape or in an oblique direction such as a Y shape. It may be a flow path.
 この発明による熱交換器では、上記のように、接続通路部を、熱交換通路に向かって2つずつ分岐するトーナメント形状に形成する。これにより、接続通路部を流体の導入側に設ける場合には、熱交換通路に出入りする流体を2つずつ分割して複数の熱交換通路の各々に分配することができる。ここで、1つの流路を3以上の流路に分岐(分割)させる場合、流れの偏りなどに起因して流路毎の流量がばらつきやすくなる一方、流路を2分岐させる場合には、各流路への分配量を容易に均等化することができる。そのため、熱交換通路の数に応じた回数分だけ2分岐を繰り返すことによって、一度に多数の熱交換通路に流体を分配させる構造と比較して、複数の熱交換通路の流量ばらつきを精度よく抑制することができる。 In the heat exchanger according to the present invention, as described above, the connection passage portion is formed in a tournament shape that branches two by two toward the heat exchange passage. Thereby, when providing a connection channel | path part in the introduction side of a fluid, the fluid which goes in and out of a heat exchange channel can be divided | segmented 2 each, and it can distribute to each of several heat exchange channel | paths. Here, when branching (dividing) one flow path into three or more flow paths, the flow rate of each flow path is likely to vary due to uneven flow, etc. The distribution amount to each flow path can be easily equalized. Therefore, by repeating the two branches as many times as the number of heat exchange passages, it is possible to accurately control the flow rate variation of multiple heat exchange passages compared to a structure that distributes fluid to many heat exchange passages at once. can do.
 上記発明による熱交換器において、好ましくは、接続通路部は、分岐元部分から2つに分岐する一対の分岐路を含み、分岐元部分は、一対の分岐路に対して、一対の分岐路のなす角の2等分線の延びる方向に向けて接続している。このように構成すれば、分岐元部分から各分岐路に対して、一対の分岐路の中間方向(2等分線の延びる方向)に向けて流体を流入させることができるので、より均等に、流体を一対の分岐路のそれぞれに分配することができる。その結果、複数の熱交換通路の流量ばらつきをより効果的に抑制することができる。 In the heat exchanger according to the invention described above, preferably, the connection passage portion includes a pair of branch passages that branch into two from the branch source portion, and the branch source portion has a pair of branch passages with respect to the pair of branch passages. The connection is made in the direction in which the bisector of the angle formed extends. If comprised in this way, since a fluid can be made to flow toward the middle direction (direction where a bisector extends) of a pair of branch paths from a branch source part to each branch path, more evenly, Fluid can be distributed to each of the pair of branches. As a result, it is possible to more effectively suppress the flow rate variation of the plurality of heat exchange passages.
 この場合において、好ましくは、分岐路は、分岐元部分から分岐する第1部分と、第1部分から延びて熱交換通路側の一対の分岐路に接続する分岐元部分としての直線状の第2部分とを含む。このように構成すれば、上流側の分岐路から下流側の分岐路に流体を流入させる際に、直線状の第2部分によって流れの向きを揃えた状態で、下流側の分岐路に流体を流入させることができる。この結果、一対の分岐路の中間に向けて流れの向きを揃えた状態で、流体を下流側の各々の分岐路に流入させることができるので、より一層均等に流体を分配することができる。 In this case, preferably, the branch path is a first part branched from the branch source part, and a second linear part as a branch source part extending from the first part and connected to the pair of branch paths on the heat exchange passage side. Part. According to this structure, when the fluid is allowed to flow from the upstream branch path to the downstream branch path, the fluid is supplied to the downstream branch path in a state where the flow direction is aligned by the linear second portion. Can flow in. As a result, since the fluid can flow into each of the downstream branch passages in a state where the flow direction is aligned toward the middle of the pair of branch passages, the fluid can be more evenly distributed.
 上記発明による熱交換器において、好ましくは、接続通路部は、分岐元部分から2つに分岐する一対の分岐路を含み、一対の分岐路は、互いに等しい流路長を有する。このように構成すれば、2分岐する一対の分岐路の流路抵抗の均一化を図ることができるので、一対の分岐路への流体の分配量をより均等化することができる。そして、熱交換通路の数に応じた回数分だけ同じ流路長で2分岐を繰り返すことによって、より効果的に各熱交換通路の流量ばらつきを抑制することができる。 In the heat exchanger according to the invention described above, preferably, the connection passage portion includes a pair of branch passages that branch into two from the branch source portion, and the pair of branch passages have the same passage length. If comprised in this way, since it can aim at equalization of channel resistance of a pair of bifurcated paths which branch into two, the amount of distribution of the fluid to a pair of branched paths can be made more equal. Then, by repeating the two branches with the same flow path length as many times as the number of heat exchange passages, it is possible to more effectively suppress the flow rate variation of each heat exchange passage.
 この場合、好ましくは、一対の分岐路は、分岐元部分を挟んで対称形状に形成されている。このように構成すれば、同一の分岐路を対称に分岐させることができるので、一対の分岐路の流路抵抗をより確実に均等化することができる。その結果、複数の熱交換通路の流量ばらつきをより一層抑制することができる。 In this case, preferably, the pair of branch paths are formed in a symmetrical shape with the branch source portion interposed therebetween. If comprised in this way, since the same branch path can be branched symmetrically, the flow-path resistance of a pair of branch path can be equalized more reliably. As a result, it is possible to further suppress flow rate variations in the plurality of heat exchange passages.
 上記一対の分岐路が対称形状に形成される構成において、好ましくは、一対の分岐路は、半楕円形状をなすように、分岐元部分からそれぞれ分岐している。このように構成すれば、半楕円形状の流路の流れは楕円曲線の接線方向になるので、上流側からの流れに対して、一対の分岐路を分岐元部分から横方向に分岐させた後、流体の流れを半楕円に沿って徐々に下流方向に向けることができる。この結果、流体の均等な分配が可能なように流体の流れを下流向きに近づけることができる。 In the configuration in which the pair of branch paths are formed in a symmetrical shape, preferably, the pair of branch paths are branched from the branch source portion so as to form a semi-elliptical shape. With this configuration, the flow of the semi-elliptical channel is in the tangential direction of the elliptic curve. Therefore, after the pair of branch paths are branched from the branching source portion in the lateral direction with respect to the flow from the upstream side. The fluid flow can be gradually directed downstream along the semi-ellipse. As a result, the fluid flow can be made closer to the downstream direction so that the fluid can be evenly distributed.
 この場合において、好ましくは、一対の分岐路は、半円形状をなすように、分岐元部分からそれぞれ円弧状に分岐している。このように構成すれば、分岐元部分から分岐路を横方向に分岐させた後、流体の流れを円弧に沿って徐々に下流方向に向けることができる。また、分岐元部分で分岐した後で分岐路が急激に屈曲することがないので、流路抵抗が増大しにくい。これらの結果、流路抵抗の増大を抑制しながら、流体の均等な分配が可能なように流体の流れを下流向きに近づけることができる。 In this case, it is preferable that the pair of branch paths are branched in an arc shape from the branch source portion so as to form a semicircular shape. If comprised in this way, after making a branch path branch from a branch origin part to a horizontal direction, the flow of a fluid can be gradually directed to a downstream direction along a circular arc. Further, since the branch path does not bend sharply after branching at the branch source part, the channel resistance is unlikely to increase. As a result, the flow of the fluid can be made closer to the downstream direction so that the fluid can be evenly distributed while suppressing an increase in the channel resistance.
 本発明によれば、上記のように、複数の熱交換通路の流量ばらつきを精度よく抑制することができる。 According to the present invention, as described above, flow rate variations in a plurality of heat exchange passages can be accurately suppressed.
本発明の第1実施形態による熱交換器を上面側から見た模式図である。It is the schematic diagram which looked at the heat exchanger by 1st Embodiment of this invention from the upper surface side. 本発明の第1実施形態による熱交換器を側面側から見た模式図である。It is the schematic diagram which looked at the heat exchanger by 1st Embodiment of this invention from the side surface side. 図3(A)は、本発明の第1実施形態による熱交換器の第1伝熱部材を示した平面図である。図3(B)は、本発明の第1実施形態による熱交換器の第2伝熱部材を示した平面図である。FIG. 3A is a plan view showing a first heat transfer member of the heat exchanger according to the first embodiment of the present invention. FIG. 3B is a plan view showing a second heat transfer member of the heat exchanger according to the first embodiment of the present invention. 第1伝熱部材の接続通路部を示した拡大平面図である。It is the enlarged plan view which showed the connection channel | path part of the 1st heat-transfer member. 比較例による接続通路部を示した模式図である。It is the schematic diagram which showed the connection channel | path part by a comparative example. 比較例による接続通路部の流量シミュレーション結果を示した図である。It is the figure which showed the flow volume simulation result of the connection channel | path part by a comparative example. 第1実施形態による熱交換器における接続通路部の流量シミュレーション結果を示した図である。It is the figure which showed the flow simulation result of the connection channel | path part in the heat exchanger by 1st Embodiment. 第1実施形態による熱交換器の接続通路部における流速ベクトルを示した模式図である。It is the schematic diagram which showed the flow velocity vector in the connection channel | path part of the heat exchanger by 1st Embodiment. 比較例による接続通路部の流速ベクトルを示した模式図である。It is the schematic diagram which showed the flow velocity vector of the connection channel | path part by a comparative example. 本発明の第2実施形態による熱交換器の接続通路部を示した平面図である。It is the top view which showed the connection channel | path part of the heat exchanger by 2nd Embodiment of this invention. 本発明の第2実施形態による熱交換器の接続通路部の詳細構造を示した拡大平面図である。It is the enlarged plan view which showed the detailed structure of the connection channel | path part of the heat exchanger by 2nd Embodiment of this invention. 第2実施形態による熱交換器における接続通路部の流量シミュレーション結果を示した図である。It is the figure which showed the flow rate simulation result of the connection channel | path part in the heat exchanger by 2nd Embodiment. 第1実施形態による熱交換器の接続通路部の第1変形例を示した模式図である。It is the schematic diagram which showed the 1st modification of the connection channel | path part of the heat exchanger by 1st Embodiment. 第1実施形態の接続通路部の第2部分を長くした場合の流速ベクトルを示した模式図である。It is the schematic diagram which showed the flow velocity vector at the time of lengthening the 2nd part of the connection channel | path part of 1st Embodiment. 第1実施形態による熱交換器の接続通路部の第2変形例を示した模式図である。It is the schematic diagram which showed the 2nd modification of the connection channel | path part of the heat exchanger by 1st Embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施形態)
 まず、図1~図4を参照して、第1実施形態による熱交換器100の構成について説明する。
(First embodiment)
First, the configuration of the heat exchanger 100 according to the first embodiment will be described with reference to FIGS.
 熱交換器100は、プレート式熱交換器である。図1および図2に示すように、熱交換器100は、コア1と、ヘッダ部2~5(図2参照)とを備えている。コア1は、第1流体6が流れる複数の第1伝熱部材10と、第2流体7が流れる複数の第2伝熱部材20とを含む。コア1は、第1伝熱部材10を流れる第1流体6と第2伝熱部材20を流れる第2流体7との間で熱交換を行う熱交換部である。第1流体6および第2流体7は、共に、本発明の「流体」の一例である。第1伝熱部材10および第2伝熱部材20は、共に、本発明の「伝熱部材」の一例である。 The heat exchanger 100 is a plate heat exchanger. As shown in FIGS. 1 and 2, the heat exchanger 100 includes a core 1 and header portions 2 to 5 (see FIG. 2). The core 1 includes a plurality of first heat transfer members 10 through which the first fluid 6 flows and a plurality of second heat transfer members 20 through which the second fluid 7 flows. The core 1 is a heat exchange unit that performs heat exchange between the first fluid 6 flowing through the first heat transfer member 10 and the second fluid 7 flowing through the second heat transfer member 20. Both the first fluid 6 and the second fluid 7 are examples of the “fluid” of the present invention. The first heat transfer member 10 and the second heat transfer member 20 are both examples of the “heat transfer member” of the present invention.
 第1実施形態では、第1流体6が高温側で気体であり、第2流体7が低温側で液体である。なお、第1流体6および第2流体7は、いずれが高温側であってもよいし、気体および液体のいずれでもよい。図1および図2において、白抜き矢印が第1流体6の流通方向を示しており、ハッチング付き矢印が、第2流体7の流通方向を示している。 In the first embodiment, the first fluid 6 is a gas on the high temperature side, and the second fluid 7 is a liquid on the low temperature side. Note that the first fluid 6 and the second fluid 7 may be either on the high temperature side, or may be either gas or liquid. In FIGS. 1 and 2, white arrows indicate the flow direction of the first fluid 6, and hatched arrows indicate the flow direction of the second fluid 7.
 コア1は、複数の板状の第1伝熱部材10と複数の板状の第2伝熱部材20とを交互に積層することにより構成されている。また、積層方向(Z方向)におけるコア1の両端には、それぞれサイドプレート8が設けられている。コア1は、交互に積層した第1伝熱部材10と第2伝熱部材20との積層体を一対のサイドプレート8により挟み込み、締結部材による締結、拡散接合またはろう付けなどにより結合することにより、全体として矩形箱状(直方体形状)に形成されている。第1伝熱部材10および第2伝熱部材20は、熱伝導性の高い金属材料などからなる。第1伝熱部材10と第2伝熱部材20とには、それぞれ、第1流体6と第2流体7とを流通させるための流路が形成されている。第1伝熱部材10および第2伝熱部材20の詳細な構成については、後述する。なお、図1では、上面のサイドプレート8と、第1伝熱部材10と、第2伝熱部材20とを、破断線により区切ってそれぞれ図示している。以下では、図2に示す第1伝熱部材10および第2伝熱部材20の積層方向をZ方向とする。また、図1に示すようにZ方向から見てコア1の長手方向をX方向とし、コア1の短手方向をY方向とする。 The core 1 is configured by alternately laminating a plurality of plate-like first heat transfer members 10 and a plurality of plate-like second heat transfer members 20. Further, side plates 8 are respectively provided at both ends of the core 1 in the stacking direction (Z direction). The core 1 is formed by sandwiching alternately laminated first heat transfer members 10 and second heat transfer members 20 by a pair of side plates 8 and joining them by fastening, diffusion bonding, brazing, or the like using fastening members. The whole is formed in a rectangular box shape (cuboid shape). The first heat transfer member 10 and the second heat transfer member 20 are made of a metal material having high heat conductivity. The first heat transfer member 10 and the second heat transfer member 20 are formed with flow paths for allowing the first fluid 6 and the second fluid 7 to circulate, respectively. Detailed configurations of the first heat transfer member 10 and the second heat transfer member 20 will be described later. In FIG. 1, the side plate 8 on the upper surface, the first heat transfer member 10, and the second heat transfer member 20 are illustrated by being separated by a broken line. Below, let the lamination direction of the 1st heat-transfer member 10 and the 2nd heat-transfer member 20 shown in FIG. 2 be a Z direction. Further, as shown in FIG. 1, the longitudinal direction of the core 1 when viewed from the Z direction is the X direction, and the short direction of the core 1 is the Y direction.
 ヘッダ部2は、第2流体7をコア1(第2伝熱部材20)に対して流入させる第2流体7の入口流路である。ヘッダ部3は、第2流体7をコア1(第2伝熱部材20)から流出させる第2流体7の出口流路である。ヘッダ部2および3は、コア1の一方(Z1側)の表面に取り付けられており、ヘッダ部2がX1側端部近傍に配置され、ヘッダ部3がX2側端部近傍に配置されている。ヘッダ部2および3は、共に円筒状の管部材である。ヘッダ部2および3は、それぞれ、複数の第2伝熱部材20に対する第2流体7の導入路91および導出路92に接続されている。ヘッダ部2は、複数の第2伝熱部材20に対して一括して第2流体7を流入させ、ヘッダ部3は、複数の第2伝熱部材20から一括して第2流体7を流出させる。 The header part 2 is an inlet flow path of the second fluid 7 for allowing the second fluid 7 to flow into the core 1 (second heat transfer member 20). The header part 3 is an outlet channel for the second fluid 7 that causes the second fluid 7 to flow out of the core 1 (second heat transfer member 20). The header parts 2 and 3 are attached to the surface of one side (Z1 side) of the core 1, the header part 2 is arranged in the vicinity of the X1 side end part, and the header part 3 is arranged in the vicinity of the X2 side end part. . The header portions 2 and 3 are both cylindrical tube members. The header portions 2 and 3 are connected to the introduction path 91 and the outlet path 92 for the second fluid 7 with respect to the plurality of second heat transfer members 20, respectively. The header part 2 causes the second fluid 7 to flow into the plurality of second heat transfer members 20 in a lump, and the header part 3 causes the second fluid 7 to flow out from the plurality of second heat transfer members 20 at a time. Let
 ヘッダ部4は、第1流体6をコア1(第1伝熱部材10)に対して流入させる第1流体6の入口流路である。ヘッダ部5は、第1流体6をコア1(第1伝熱部材10)から流出させる第1流体6の出口流路である。ヘッダ部4および5は、コア1の他方(Z2側)の表面に取り付けられており、ヘッダ部4がX2側端部近傍に配置され、ヘッダ部5がX1側端部近傍に配置されている。ヘッダ部4および5は、共に円筒状の管部材である。ヘッダ部4および5は、それぞれ、複数の第1伝熱部材10に対する第1流体6の導入路93および導出路94に接続されている。ヘッダ部4は、複数の第1伝熱部材10に対して一括して第1流体6を流入させ、ヘッダ部5は、複数の第1伝熱部材10から一括して第1流体6を流出させる。 The header part 4 is an inlet flow path of the first fluid 6 for allowing the first fluid 6 to flow into the core 1 (first heat transfer member 10). The header portion 5 is an outlet flow path for the first fluid 6 that causes the first fluid 6 to flow out of the core 1 (the first heat transfer member 10). The header portions 4 and 5 are attached to the other surface (Z2 side) of the core 1, the header portion 4 is disposed in the vicinity of the X2 side end portion, and the header portion 5 is disposed in the vicinity of the X1 side end portion. . The header parts 4 and 5 are both cylindrical tube members. The header parts 4 and 5 are respectively connected to an introduction path 93 and an outlet path 94 for the first fluid 6 with respect to the plurality of first heat transfer members 10. The header portion 4 causes the first fluid 6 to flow into the plurality of first heat transfer members 10 at once, and the header portion 5 causes the first fluid 6 to flow out from the plurality of first heat transfer members 10 at once. Let
 第1流体6は、X2側のヘッダ部4からそれぞれの第1伝熱部材10に導入され、第1伝熱部材10の流路をX1方向に向けて流れて、X1側のヘッダ部5から流出する。第2流体7は、X1側のヘッダ部2からそれぞれの第2伝熱部材20に導入され、第2伝熱部材20の流路をX2方向に向けて流れて、X2側のヘッダ部3から流出する。この結果、第1伝熱部材10をX1方向に流れる第1流体6と、第2伝熱部材20をX2方向に流れる第2流体7との間で、第1伝熱部材10および第2伝熱部材20を介した熱交換が行われる。このように、第1実施形態の熱交換器100は、対向流型の熱交換器として構成されている。第1実施形態では、高温側の第1流体6が低温側の第2流体7によって冷却され、温度低下した状態でヘッダ部5から取り出される。第2流体7は第1流体6の冷却液として機能する。 The first fluid 6 is introduced into each first heat transfer member 10 from the header portion 4 on the X2 side, flows in the flow path of the first heat transfer member 10 in the X1 direction, and from the header portion 5 on the X1 side. leak. The second fluid 7 is introduced into each second heat transfer member 20 from the header portion 2 on the X1 side, flows in the flow path of the second heat transfer member 20 in the X2 direction, and from the header portion 3 on the X2 side. leak. As a result, the first heat transfer member 10 and the second heat transfer between the first fluid 6 flowing in the first heat transfer member 10 in the X1 direction and the second fluid 7 flowing in the second heat transfer member 20 in the X2 direction. Heat exchange via the heat member 20 is performed. Thus, the heat exchanger 100 of 1st Embodiment is comprised as a counterflow type heat exchanger. In the first embodiment, the first fluid 6 on the high temperature side is cooled by the second fluid 7 on the low temperature side, and is taken out from the header portion 5 in a state where the temperature has dropped. The second fluid 7 functions as a coolant for the first fluid 6.
 次に、第1伝熱部材10および第2伝熱部材20の詳細な構成について説明する。 Next, detailed configurations of the first heat transfer member 10 and the second heat transfer member 20 will be described.
 図3(A)に示すように、第1伝熱部材10は、導入口11および導出口12と、複数の熱交換通路13と、接続通路部14とを含む金属製の板状部材である。導入口11および導出口12は、それぞれ、本発明の「流通口」の一例である。複数の熱交換通路13と、接続通路部14とは、第1伝熱部材10に一体形成された溝状の流路である。熱交換通路13は、流体に熱交換をさせるために設けられた直線状の流路であり、X方向に延びるとともに、Y方向に平行に並ぶように設けられている。第1実施形態では、熱交換通路13は、32本形成されている。なお、熱交換通路13の本数は偶数であればよく、32本以外でもよい。 As shown in FIG. 3A, the first heat transfer member 10 is a metal plate-like member including an inlet port 11 and an outlet port 12, a plurality of heat exchange passages 13, and a connection passage portion 14. . The introduction port 11 and the outlet 12 are examples of the “distribution port” in the present invention. The plurality of heat exchange passages 13 and the connection passage portions 14 are groove-like passages that are integrally formed with the first heat transfer member 10. The heat exchange passage 13 is a linear flow path provided for exchanging heat with the fluid, and is provided so as to extend in the X direction and to be arranged in parallel to the Y direction. In the first embodiment, 32 heat exchange passages 13 are formed. The number of heat exchange passages 13 may be an even number and may be other than 32.
 導入口11および導出口12は、共に第1伝熱部材10を厚み方向に貫通した円形状の貫通孔である。導入口11は、第1伝熱部材10のX2方向側の端部近傍に配置され、導出口12は、第1伝熱部材10のX1方向側の端部近傍に配置されている。導入口11および導出口12は、それぞれ、複数(4本)の連通路15を介して接続通路部14と接続している。導入口11は、第1流体6を流路に導入するために設けられ、導出口12は、第1流体6を流路から導出するために設けられている。なお、導入口11および導出口12と同様の貫通孔9b(図3(B)参照)が、第2伝熱部材20の対応する位置にもそれぞれ設けられている。このため、積層された第1伝熱部材10および第2伝熱部材20のそれぞれの導入口11および貫通孔9bが厚み方向(Z方向)に接続され、全体としてコア1をZ方向に貫通する導入路93(図2参照)を構成している。同様に、それぞれの導出口12と貫通孔9bとが接続され、全体としてコア1をZ方向に貫通する導出路94(図2参照)を構成している。なお、Z2側のサイドプレート8(図2参照)にも貫通孔が設けられており、ヘッダ部4および5と、導入路93および導出路94とを接続している。 Both the inlet 11 and the outlet 12 are circular through holes that penetrate the first heat transfer member 10 in the thickness direction. The introduction port 11 is disposed in the vicinity of the end portion of the first heat transfer member 10 on the X2 direction side, and the outlet port 12 is disposed in the vicinity of the end portion of the first heat transfer member 10 on the X1 direction side. The introduction port 11 and the outlet port 12 are each connected to the connection passage portion 14 via a plurality (four) of communication passages 15. The inlet 11 is provided to introduce the first fluid 6 into the flow path, and the outlet 12 is provided to lead out the first fluid 6 from the flow path. Note that through holes 9b (see FIG. 3B) similar to the inlet port 11 and the outlet port 12 are also provided at corresponding positions of the second heat transfer member 20, respectively. Therefore, the respective inlets 11 and through holes 9b of the stacked first heat transfer member 10 and second heat transfer member 20 are connected in the thickness direction (Z direction), and penetrate the core 1 in the Z direction as a whole. An introduction path 93 (see FIG. 2) is configured. Similarly, each lead-out port 12 and the through-hole 9b are connected to constitute a lead-out path 94 (see FIG. 2) that penetrates the core 1 in the Z direction as a whole. The Z2 side plate 8 (see FIG. 2) is also provided with a through hole to connect the header portions 4 and 5 to the introduction path 93 and the lead-out path 94.
 接続通路部14は、導入口11と複数の熱交換通路13との間、および、導出口12と複数の熱交換通路13との間にそれぞれ複数設けられている。接続通路部14の数は、熱交換通路13の数に対応しており、第1実施形態では導入口11側と導出口12側とにそれぞれ4つの接続通路部14が設けられている。接続通路部14の構造は、導入口11側と導出口12側とで共通であるので、導入口11の接続通路部14についてのみ説明する。なお、4つの接続通路部14は、互いに同一構造を有する。 A plurality of connection passage portions 14 are provided between the inlet 11 and the plurality of heat exchange passages 13 and between the outlet 12 and the plurality of heat exchange passages 13, respectively. The number of connection passage portions 14 corresponds to the number of heat exchange passages 13, and in the first embodiment, four connection passage portions 14 are provided on the introduction port 11 side and the discharge port 12 side, respectively. Since the structure of the connection passage portion 14 is common to the introduction port 11 side and the outlet port 12 side, only the connection passage portion 14 of the introduction port 11 will be described. The four connection passage portions 14 have the same structure.
 接続通路部14は、両端が導入口11(連通路15)と複数の熱交換通路13とにそれぞれ接続されており、導入口11からの第1流体6を各熱交換通路13に分配する機能を有する。第1実施形態では、接続通路部14は、熱交換通路13に向かって2つずつ分岐するトーナメント形状を有する。 Both ends of the connection passage portion 14 are connected to the introduction port 11 (communication passage 15) and the plurality of heat exchange passages 13, respectively, and the function of distributing the first fluid 6 from the introduction port 11 to each heat exchange passage 13 is provided. Have In the first embodiment, the connection passage portion 14 has a tournament shape that branches two by two toward the heat exchange passage 13.
 具体的には、図4に示すように、接続通路部14は、第1段31、第2段32、第3段33の3段階に分岐しており、1本の流路(連通路15)を最終的に8本の流路に分岐させている。そして、4つの接続通路部14が8本ずつに分岐して、32本の熱交換通路13にそれぞれ接続している。第1実施形態では、接続通路部14は、分岐元部分35(後述する第2部分37または連通路15)から2つに分岐する一対の分岐路34を含む。したがって、一対の分岐路34は、第1段31に1組、第2段32に2組、第3段33に4組設けられている。第1段31の分岐路34は、連通路15の端部を分岐元部分35として、2分岐している。第2段32以降の分岐路34は、後述する第2部分37を分岐元部分35として、2分岐している。接続通路部14の全体では、X方向寸法がL1である。 Specifically, as shown in FIG. 4, the connection passage portion 14 is branched into three stages of a first stage 31, a second stage 32, and a third stage 33, and one flow path (communication path 15). ) Is finally branched into eight channels. Then, the four connection passage portions 14 are branched into eight pieces and connected to the 32 heat exchange passages 13 respectively. In the first embodiment, the connection passage portion 14 includes a pair of branch passages 34 that branch from the branch source portion 35 (second portion 37 or communication passage 15 described later) into two. Therefore, one pair of the branch paths 34 is provided in the first stage 31, two sets in the second stage 32, and four sets in the third stage 33. The branch path 34 of the first stage 31 is bifurcated with the end of the communication path 15 as the branch source portion 35. The branch path 34 after the second stage 32 is bifurcated with a later-described second portion 37 as a branch source portion 35. In the entire connection passage portion 14, the dimension in the X direction is L1.
 一対の分岐路34は、分岐元部分35から、Y方向の両側にそれぞれ分岐している。一対の分岐路34は、互いに等しい流路長を有する。より具体的には、一対の分岐路34は、分岐元部分35を挟んで対称形状に形成されている。すなわち、一対の分岐路34は、分岐元部分35を中心として、Y方向に対称となっている。また、一対の分岐路34の流路幅W1は、互いに同一であり、図示しないが、一対の分岐路34は流路断面積が同一である。なお、図4では、接続通路部14は、全体に渡って、流路幅W1が一定で、かつ、流路断面積が一定である例を示している。 The pair of branch paths 34 branch from the branch source portion 35 to both sides in the Y direction. The pair of branch paths 34 have the same channel length. More specifically, the pair of branch paths 34 are formed in a symmetrical shape with the branch source portion 35 interposed therebetween. That is, the pair of branch paths 34 is symmetrical in the Y direction with the branch source portion 35 as the center. Further, the flow path widths W1 of the pair of branch paths 34 are the same, and although not shown, the pair of branch paths 34 have the same channel cross-sectional area. 4 shows an example in which the connection passage portion 14 has a constant flow path width W1 and a constant flow path cross-sectional area throughout.
 ここで、好ましくは、一対の分岐路34は、半楕円形状をなすように、分岐元部分35からそれぞれ分岐している。第1実施形態では、一対の分岐路34は、半楕円形状の一種である半円形状をなすように、分岐元部分35からそれぞれ円弧状に分岐している。このため、一対の分岐路34は、分岐元部分35から接線方向であるY1方向およびY2方向にそれぞれ分岐し、1/4円弧をなすように延び、円弧の終端ではX1方向に沿っている。より詳細には、それぞれの分岐路34は、第1部分36と、第1部分36に連続する第2部分37とを含んでいる。 Here, it is preferable that the pair of branch paths 34 are branched from the branch source portion 35 so as to form a semi-elliptical shape. In the first embodiment, the pair of branch paths 34 are branched from the branch source portion 35 in an arc shape so as to form a semicircular shape which is a kind of semi-elliptical shape. Therefore, the pair of branch paths 34 branch from the branch source part 35 in the Y1 direction and the Y2 direction, which are tangential directions, extend so as to form a ¼ arc, and are along the X1 direction at the end of the arc. More specifically, each branch path 34 includes a first portion 36 and a second portion 37 that is continuous with the first portion 36.
 一対の分岐路34の第1部分36は、分岐元部分35からそれぞれ分岐した流路であり、1/4円弧状の部分である。第1段31、第2段32および第3段33の各々において、第1部分36の半径は、それぞれ半径R1、半径R2および半径R3である。半径R1は(R2+R3)よりも大きい。半径R2は、半径R3よりも大きい。 The first part 36 of the pair of branch paths 34 is a flow path branched from the branch source part 35, and is a 1/4 arc-shaped part. In each of the first stage 31, the second stage 32, and the third stage 33, the radius of the first portion 36 is a radius R1, a radius R2, and a radius R3, respectively. The radius R1 is larger than (R2 + R3). The radius R2 is larger than the radius R3.
 一対の分岐路34の第2部分37は、第1部分36から延びて熱交換通路13側(図4ではX1側)の一対の分岐路34に接続する、分岐元部分としての直線状の流路である。つまり、第1段31の分岐路34の第2部分37が第2段32の分岐路34に分岐元部分35として接続し、第2段32の分岐路34の第2部分37が第3段33の分岐路34に分岐元部分35として接続している。なお、第3段33の分岐路34は、熱交換通路13側の端部で直線状の熱交換通路13に接続しており、第2部分37を備えていない。第2部分37は、本発明の「分岐元部分」の一例である。 The second portion 37 of the pair of branch paths 34 extends from the first portion 36 and is connected to the pair of branch paths 34 on the heat exchange passage 13 side (X1 side in FIG. 4) as a straight flow as a branch source portion. Road. That is, the second portion 37 of the branch path 34 of the first stage 31 is connected to the branch path 34 of the second stage 32 as the branch source part 35, and the second portion 37 of the branch path 34 of the second stage 32 is the third stage. A branch source portion 35 is connected to 33 branch paths 34. Note that the branch passage 34 of the third stage 33 is connected to the linear heat exchange passage 13 at the end on the heat exchange passage 13 side, and does not include the second portion 37. The second portion 37 is an example of the “branch source portion” in the present invention.
 各分岐路34の第2部分37は、X方向に沿って直線状に延びている。言い換えると、第2部分37は、熱交換通路13と平行に延びている。第2部分37の長さは、第1段31と第2段32とで略等しく、いずれの第2部分37も長さL2を有する。なお、第2部分37のX方向寸法(長さ)L2は、第1部分36のX方向寸法(R1、R2またはR3)よりも小さい。図4の例では、長さL2は、R1の約1/9、R2の約1/5である。第2部分37の長さは第1段31と第2段32とで異なっていてもよいが、同一段に含まれる複数の第2部分37同士の長さは、同一であることが好ましい。 The second portion 37 of each branch path 34 extends linearly along the X direction. In other words, the second portion 37 extends in parallel with the heat exchange passage 13. The length of the second portion 37 is substantially equal between the first step 31 and the second step 32, and any second portion 37 has a length L2. The X direction dimension (length) L2 of the second portion 37 is smaller than the X direction dimension (R1, R2 or R3) of the first portion 36. In the example of FIG. 4, the length L2 is about 1/9 of R1 and about 1/5 of R2. The length of the second part 37 may be different between the first stage 31 and the second stage 32, but the length of the plurality of second parts 37 included in the same stage is preferably the same.
 ここで、第1実施形態では、分岐元部分35は、一対の分岐路34に対して、一対の分岐路34のなす角θの2等分線BSの延びる方向に向けて接続している。すなわち、図4では、一対の分岐路34の第1部分36が接線方向であるY1方向およびY2方向にそれぞれ分岐しているため、一対の分岐路34のなす角θは180度である。これに対して、分岐元部分35(第2部分37、連通路15)が、X1方向に直線状に延びて一対の分岐路34に上流側から接続している。したがって、分岐元部分35は、第1部分36の接線方向に対して垂直の90度で一対の分岐路34に接続しており、一対の分岐路34のなす角θ(180度)の2等分線BSの延びる方向(X1方向)に向けて一対の分岐路34に接続している。また、分岐元部分35に対向する内壁部(内壁点)34aの接線は、分岐元部分35に対して直交する垂直線となっている。 Here, in the first embodiment, the branching source portion 35 is connected to the pair of branch paths 34 in the direction in which the bisector BS of the angle θ formed by the pair of branch paths 34 extends. That is, in FIG. 4, the first portion 36 of the pair of branch paths 34 branches in the Y1 direction and the Y2 direction, which are tangential directions, so the angle θ formed by the pair of branch paths 34 is 180 degrees. On the other hand, the branch source portion 35 (second portion 37, communication path 15) extends linearly in the X1 direction and is connected to the pair of branch paths 34 from the upstream side. Therefore, the branching source portion 35 is connected to the pair of branch paths 34 at 90 degrees perpendicular to the tangential direction of the first portion 36, and the angle θ (180 degrees) formed by the pair of branch paths 34 is 2 etc. The branch line 34 is connected in the direction (X1 direction) in which the branch line BS extends. Further, the tangent line of the inner wall portion (inner wall point) 34 a facing the branch source portion 35 is a vertical line orthogonal to the branch source portion 35.
 以上のような構成により、第1伝熱部材10では、図3(A)に示すように、導入口11から流入した第1流体6が連通路15を通って各接続通路部14に流入する。各接続通路部14では、第1流体6が3段階に2分岐して8分割され、それぞれ対応する8本の熱交換通路13に流入する。熱交換通路13を通過して冷却された第1流体6は、下流側の各接続通路部14に流入して8本から1本に合流した後、下流側の連通路15を介して導出口12から流出する。 With the above configuration, in the first heat transfer member 10, as shown in FIG. 3A, the first fluid 6 that has flowed from the introduction port 11 flows into the connection passage portions 14 through the communication passages 15. . In each connection passage portion 14, the first fluid 6 is divided into eight parts in three stages and flows into eight corresponding heat exchange passages 13. The first fluid 6 cooled by passing through the heat exchange passage 13 flows into the respective connection passage portions 14 on the downstream side and merges from eight to one, and then is led out via the communication passage 15 on the downstream side. 12 flows out.
 図3(B)に示すように、第2伝熱部材20は、導入口21および導出口22と、複数の熱交換通路23と、複数の接続通路部24とを含む金属製の板状部材である。導入口21および導出口22は、それぞれ、本発明の「流通口」の一例である。 As shown in FIG. 3B, the second heat transfer member 20 is a metal plate-like member including an inlet port 21 and an outlet port 22, a plurality of heat exchange passages 23, and a plurality of connection passage portions 24. It is. The introduction port 21 and the outlet port 22 are examples of the “distribution port” in the present invention.
 導入口21は、第2伝熱部材20のX1方向側の端部近傍に配置され、導出口22は、第2伝熱部材20のX2方向側の端部近傍に配置されている。導入口21および導出口22は、それぞれ、貫通孔9bよりもX方向の外側にずれた位置に配置されている。そして、導入口21および導出口22と同様の貫通孔9a(図3(A)参照)が、第1伝熱部材10の対応する位置にもそれぞれ設けられている。これにより、第1伝熱部材10および第2伝熱部材20のそれぞれの貫通孔9aおよび導入口21が厚み方向(Z方向)に接続され、全体としてコア1をZ方向に貫通する導入路91(図2参照)を構成している。同様に、それぞれの導出口22と貫通孔9aとが接続され、全体としてコア1をZ方向に貫通する導出路92(図2参照)を構成している。 The introduction port 21 is disposed in the vicinity of the end portion of the second heat transfer member 20 on the X1 direction side, and the outlet port 22 is disposed in the vicinity of the end portion of the second heat transfer member 20 on the X2 direction side. The introduction port 21 and the lead-out port 22 are respectively arranged at positions shifted from the through hole 9b to the outside in the X direction. And the through-hole 9a (refer FIG. 3 (A)) similar to the inlet 21 and the outlet 22 is also provided in the corresponding position of the 1st heat-transfer member 10, respectively. Thereby, each through-hole 9a and the introduction port 21 of the 1st heat-transfer member 10 and the 2nd heat-transfer member 20 are connected to the thickness direction (Z direction), and the introduction path 91 which penetrates the core 1 to the Z direction as a whole. (See FIG. 2). Similarly, each lead-out port 22 and the through-hole 9a are connected to constitute a lead-out path 92 (see FIG. 2) that penetrates the core 1 in the Z direction as a whole.
 第1実施形態では、第2伝熱部材20の構成は、導入口21および導出口22の位置(および貫通孔9aまたは9bの位置)を除いて基本的に第1伝熱部材10の構成と同じである。したがって、第2伝熱部材20の各接続通路部24の構成も、上記第1伝熱部材10の接続通路部14の構成と同様である。そのため、第2伝熱部材20の構造についての詳細な説明は省略する。 In the first embodiment, the configuration of the second heat transfer member 20 is basically the same as the configuration of the first heat transfer member 10 except for the positions of the inlet port 21 and the outlet port 22 (and the position of the through hole 9a or 9b). The same. Therefore, the configuration of each connection passage portion 24 of the second heat transfer member 20 is the same as the configuration of the connection passage portion 14 of the first heat transfer member 10. Therefore, the detailed description about the structure of the 2nd heat-transfer member 20 is abbreviate | omitted.
 このような構成の第2伝熱部材20では、導入口21から流入した第2流体7が各接続通路部24を通って、それぞれ対応する熱交換通路23に流入する。熱交換通路23を通過して加温された(熱を奪った)第2流体7は、下流側の各接続通路部24に流入して導出口22から流出する。 In the second heat transfer member 20 having such a configuration, the second fluid 7 that has flowed from the introduction port 21 flows into the corresponding heat exchange passages 23 through the respective connection passage portions 24. The second fluid 7 that has been heated through the heat exchange passage 23 (has deprived of heat) flows into the respective connection passage portions 24 on the downstream side and flows out from the outlet port 22.
 第1伝熱部材10および第2伝熱部材20は、以上のように構成されている。 The first heat transfer member 10 and the second heat transfer member 20 are configured as described above.
 第1実施形態では、以下のような効果を得ることができる。 In the first embodiment, the following effects can be obtained.
 第1実施形態では、上記のように、接続通路部14(24)を、熱交換通路13(23)に向かって2つずつ分岐するトーナメント形状に形成する。これにより、接続通路部14(24)において、熱交換通路13(23)に出入りする第1流体6(第2流体7)を2分割ずつ分割して複数の熱交換通路13(23)の各々に分配することができる。ここで、1つの流路を3以上の流路に分岐(分割)させる場合、流れの偏りなどに起因して流路毎の流量がばらつきやすくなる一方、流路を2分岐させる場合には、各流路への分配流量を容易に均等化することができる。そのため、熱交換通路13(23)の数に応じた回数分だけ2分岐を繰り返すことによって、一度に多数の熱交換通路13(23)に第1流体6(第2流体7)を分配させる構造と比較して、複数の熱交換通路13(23)の流量ばらつきを精度よく抑制することができる。 In the first embodiment, as described above, the connection passage portion 14 (24) is formed in a tournament shape that branches two by two toward the heat exchange passage 13 (23). Accordingly, in the connection passage portion 14 (24), the first fluid 6 (second fluid 7) entering and exiting the heat exchange passage 13 (23) is divided into two parts, and each of the plurality of heat exchange passages 13 (23). Can be distributed. Here, when branching (dividing) one flow path into three or more flow paths, the flow rate of each flow path is likely to vary due to uneven flow, etc. The distribution flow rate to each flow path can be easily equalized. Therefore, a structure in which the first fluid 6 (second fluid 7) is distributed to many heat exchange passages 13 (23) at a time by repeating two branches as many times as the number of heat exchange passages 13 (23). Compared with, the flow rate variation of the plurality of heat exchange passages 13 (23) can be suppressed with high accuracy.
 また、第1実施形態では、上記のように、接続通路部14(24)に、分岐元部分35から2つに分岐する一対の分岐路34を設ける。そして、分岐元部分35を、一対の分岐路34に対して、一対の分岐路34のなす角θの2等分線BSの延びる方向に向けて接続するように構成する。これにより、分岐元部分35から各分岐路34に対して、一対の分岐路34の中間方向(2等分線BSの延びる方向)に向けて第1流体6(第2流体7)を流入させることができるので、より均等に、第1流体6(第2流体7)を一対の分岐路34のそれぞれに分配することができる。その結果、複数の熱交換通路13(23)の流量ばらつきをより効果的に抑制することができる。 Further, in the first embodiment, as described above, the connection passage portion 14 (24) is provided with a pair of branch paths 34 that branch from the branch source portion 35 into two. The branching source portion 35 is configured to be connected to the pair of branch paths 34 in the direction in which the bisector BS of the angle θ formed by the pair of branch paths 34 extends. Accordingly, the first fluid 6 (second fluid 7) is caused to flow from the branching source portion 35 to the respective branch paths 34 toward the middle direction of the pair of branch paths 34 (the direction in which the bisector BS extends). Therefore, the first fluid 6 (second fluid 7) can be distributed to each of the pair of branch paths 34 more evenly. As a result, flow rate variations in the plurality of heat exchange passages 13 (23) can be more effectively suppressed.
 また、第1実施形態では、上記のように、分岐元部分35から分岐する第1部分36と、第1部分36から延びて熱交換通路13(23)側の一対の分岐路34に接続する分岐元部分としての直線状の第2部分37とを、分岐路34に設ける。これにより、上流側の分岐路34から下流側の分岐路34に第1流体6(第2流体7)を流入させる際に、直線状の第2部分37によって流れの向きを揃えた状態で、下流側の分岐路34に第1流体6(第2流体7)を流入させることができる。この結果、一対の分岐路34の中間に向けて流れの向きを揃えた状態で第1流体6(第2流体7)を下流側の各々の分岐路34に流入させることができるので、より一層均等に第1流体6(第2流体7)を分配することができる。 In the first embodiment, as described above, the first portion 36 branched from the branching source portion 35 and the pair of branch passages 34 extending from the first portion 36 and connected to the heat exchange passage 13 (23) side are connected. A straight second portion 37 as a branch source portion is provided in the branch path 34. Thus, when the first fluid 6 (second fluid 7) flows from the upstream branch path 34 to the downstream branch path 34, the flow direction is aligned by the linear second portion 37. The first fluid 6 (second fluid 7) can flow into the downstream branch path 34. As a result, the first fluid 6 (second fluid 7) can be caused to flow into each of the downstream branch passages 34 in a state where the flow direction is aligned toward the middle of the pair of branch passages 34. The first fluid 6 (second fluid 7) can be evenly distributed.
 また、第1実施形態では、上記のように、一対の分岐路34を、互いに等しい流路長を有するように形成する。これにより、2分岐する一対の分岐路34の流路抵抗の均一化を図ることができるので、一対の分岐路34への第1流体6(第2流体7)の分配量をより均等化することができる。そして、熱交換通路13(23)の数に応じた回数分だけ同じ流路長で2分岐を繰り返すことによって、より効果的に各熱交換通路13(23)の流量ばらつきを抑制することができる。 In the first embodiment, as described above, the pair of branch paths 34 are formed so as to have the same flow path length. As a result, the flow resistance of the pair of branch paths 34 branched into two can be made uniform, so that the distribution amount of the first fluid 6 (second fluid 7) to the pair of branch paths 34 is further equalized. be able to. Then, by repeating the two branches with the same flow path length as many times as the number of heat exchange passages 13 (23), it is possible to more effectively suppress the flow rate variation of each heat exchange passage 13 (23). .
 また、第1実施形態では、上記のように、一対の分岐路34を、分岐元部分35を挟んで対称形状に形成する。これにより、同一の分岐路34を対称に分岐させることができるので、一対の分岐路34の流路抵抗をより確実に均等化することができる。その結果、複数の熱交換通路13(23)の流量ばらつきをより一層抑制することができる。 In the first embodiment, as described above, the pair of branch paths 34 are formed in a symmetrical shape with the branch source portion 35 interposed therebetween. Thereby, since the same branch path 34 can be branched symmetrically, the channel resistance of a pair of branch paths 34 can be equalized more reliably. As a result, the flow rate variation of the plurality of heat exchange passages 13 (23) can be further suppressed.
 また、第1実施形態では、上記のように、一対の分岐路34を、分岐元部分35から半楕円形状をなすようにそれぞれ分岐させる。これにより、上流側からの流れに対して、一対の分岐路34を分岐元部分35から横方向に分岐させた後、第1流体6(第2流体7)の流れを半楕円に沿って徐々に下流方向に向けることができる。この結果、第1流体6(第2流体7)の均等な分配が可能なように第1流体6(第2流体7)の流れを下流向きに近づけることができる。 In the first embodiment, as described above, the pair of branch paths 34 are branched from the branch source portion 35 so as to form a semi-elliptical shape. As a result, the flow of the first fluid 6 (second fluid 7) gradually flows along the semi-ellipse after the pair of branch paths 34 are branched from the branch source portion 35 in the lateral direction with respect to the flow from the upstream side. Can be directed downstream. As a result, the flow of the first fluid 6 (second fluid 7) can be made closer to the downstream direction so that the first fluid 6 (second fluid 7) can be evenly distributed.
 また、第1実施形態では、上記のように、一対の分岐路34を、半円形状をなすように、分岐元部分35からそれぞれ円弧状に分岐させる。これにより、円弧形状の流路の流れは円弧の接線方向になるので、分岐元部分35から分岐路34を横方向に分岐させた後、第1流体6(第2流体7)の流れを円弧に沿って徐々に下流方向に向けることができる。また、分岐元部分35で分岐した後で分岐路34が急激に屈曲することがないので、流路抵抗が増大しにくい。これらの結果、流路抵抗の増大を抑制しながら、第1流体6(第2流体7)の均等な分配が可能なように第1流体6(第2流体7)の流れを下流向きに近づけることができる。 Further, in the first embodiment, as described above, the pair of branch paths 34 are respectively branched from the branch source portion 35 in an arc shape so as to form a semicircular shape. As a result, the flow of the arc-shaped flow path is in the tangential direction of the arc, and therefore the flow of the first fluid 6 (second fluid 7) is arced after the branch path 34 is branched laterally from the branch source portion 35. Can be gradually directed downstream. Further, since the branch path 34 does not bend sharply after branching at the branch source part 35, the flow path resistance is unlikely to increase. As a result, the flow of the first fluid 6 (second fluid 7) is made closer to the downstream direction so that the first fluid 6 (second fluid 7) can be evenly distributed while suppressing an increase in flow path resistance. be able to.
(シミュレーション結果の説明)
 次に、図5~図9を参照して、第1実施形態による熱交換器100における、第1伝熱部材10の接続通路部14(第2伝熱部材20の接続通路部24)の効果を確認するために行ったシミュレーション結果について説明する。シミュレーションでは、所定流量の第1流体6を接続通路部14に流入させ、接続通路部14から流出する32本の流路(チャンネルという)毎の第1流体6の流量を計算した。また、図5に示す比較例による接続通路部50についても同様の計算を行い、それぞれの接続通路部の流量ばらつきを比較した。
(Explanation of simulation results)
Next, referring to FIGS. 5 to 9, the effect of the connection passage portion 14 of the first heat transfer member 10 (the connection passage portion 24 of the second heat transfer member 20) in the heat exchanger 100 according to the first embodiment. A simulation result performed for confirming the above will be described. In the simulation, the flow rate of the first fluid 6 for each of 32 flow paths (channels) flowing out from the connection passage portion 14 was calculated by flowing the first fluid 6 at a predetermined flow rate into the connection passage portion 14. Moreover, the same calculation was performed also about the connection channel | path part 50 by the comparative example shown in FIG. 5, and the flow volume dispersion | variation in each connection channel | path part was compared.
 まず、図5に示す比較例による接続通路部50の構造について説明する。比較例の接続通路部50は、連通路15からの第1流体6を一度に6分岐させるものである。比較例では、この6分岐の接続通路部50を5組設けて、30本の流路(チャンネル)を構成している。各接続通路部50は、連通路15との接続部分51からY方向の両側に直線状に延びる分岐部分52と、分岐部分52からX1方向に直線状に延びる個別部分53とを含む。分岐部分52において、連通路15の接続部分51は、Y方向の中央に配置されている。個別部分53は、Y方向に等間隔で配列されている。 First, the structure of the connection passage portion 50 according to the comparative example shown in FIG. 5 will be described. The connection passage part 50 of the comparative example branches the first fluid 6 from the communication passage 15 six at a time. In the comparative example, five sets of the six-branch connection passage portions 50 are provided to constitute 30 flow paths (channels). Each connection passage portion 50 includes a branch portion 52 that extends linearly on both sides in the Y direction from the connection portion 51 with the communication passage 15 and an individual portion 53 that extends linearly from the branch portion 52 in the X1 direction. In the branch portion 52, the connection portion 51 of the communication path 15 is disposed at the center in the Y direction. The individual portions 53 are arranged at equal intervals in the Y direction.
 図6は比較例による接続通路部50のシミュレーション結果であり、図7は、第1実施形態による接続通路部14のシミュレーション結果である。各図共に、横軸が流路番号(チャンネル番号)を示しており、縦軸が第1流体6の流量を示している。第1実施形態では、4つの接続通路部14で合計32本の流路を有しているので、図7ではY1方向側から順に1~32のチャンネルがある。縦軸は、全チャンネルの平均値を100%とした場合の比率で示している。シミュレーションは、1.0×10-3Kg/sの質量流量で第1流体6を導入口11から供給した条件で行った。 FIG. 6 shows a simulation result of the connection passage portion 50 according to the comparative example, and FIG. 7 shows a simulation result of the connection passage portion 14 according to the first embodiment. In each figure, the horizontal axis indicates the flow path number (channel number), and the vertical axis indicates the flow rate of the first fluid 6. In the first embodiment, since the four connection passage portions 14 have a total of 32 flow paths, there are 1 to 32 channels in order from the Y1 direction side in FIG. The vertical axis represents the ratio when the average value of all channels is 100%. The simulation was performed under the condition that the first fluid 6 was supplied from the inlet 11 at a mass flow rate of 1.0 × 10 −3 Kg / s.
 図6に示す比較例の接続通路部50では、チャンネル毎の流量が、約0%~約180%の範囲VR1で大きくばらついている。また、比較例の接続通路部50では、相対的に流量の小さいグループ(チャンネル3、4、9、10、15、16など)と、相対的に流量の大きいグループ(チャンネル1、6、7、12、13、18など)とに大きく分かれている。 In the connection passage portion 50 of the comparative example shown in FIG. 6, the flow rate for each channel varies greatly in the range VR1 of about 0% to about 180%. Further, in the connection passage portion 50 of the comparative example, a group having a relatively small flow rate ( channels 3, 4, 9, 10, 15, 16, etc.) and a group having a relatively large flow rate ( channels 1, 6, 7, 12, 13, 18, etc.).
 これに対して、図7に示すように、第1実施形態の接続通路部14では、チャンネル毎の流量のばらつきが顕著に小さくなっている。各チャンネルの流量は、平均値である100%を中心に、上下それぞれに約20%程度の範囲VR2に収まっている。 On the other hand, as shown in FIG. 7, in the connection passage portion 14 of the first embodiment, the variation in the flow rate for each channel is remarkably reduced. The flow rate of each channel is within a range VR2 of about 20% above and below, centering on the average value of 100%.
 図8は、第1実施形態による接続通路部14における一対の分岐路34(第1段31)を通過する第1流体6の速度ベクトルを示した図であり。図9は比較例による接続通路部50を通過する第1流体6の速度ベクトルを示した図である。各図共に、流路中の任意の位置での速度ベクトルを代表点として図示し、ベクトルの長さが速度の大きさを示している。 FIG. 8 is a diagram showing a velocity vector of the first fluid 6 passing through the pair of branch paths 34 (first stage 31) in the connection passage portion 14 according to the first embodiment. FIG. 9 is a diagram showing a velocity vector of the first fluid 6 passing through the connection passage portion 50 according to the comparative example. In each figure, the velocity vector at an arbitrary position in the flow path is shown as a representative point, and the length of the vector indicates the magnitude of the velocity.
 図8に示すように、第1実施形態の接続通路部14では、速度ベクトルの分布は一対の分岐路34で対称的であり、ばらつきが少ないことがわかる。また、各分岐路34の第1部分36でおおよそ接線方向に速度ベクトルが延び、第2部分37で速度ベクトルの向きがX方向に近付くように変化していることが分かる。このため、第2段32以降も同様な結果となっている。この結果、図7に示したように流量のばらつきが小さくなった。 As shown in FIG. 8, in the connecting passage portion 14 of the first embodiment, it can be seen that the distribution of velocity vectors is symmetrical between the pair of branch paths 34 and there is little variation. In addition, it can be seen that the velocity vector extends approximately in the tangential direction in the first portion 36 of each branch path 34 and the direction of the velocity vector changes in the second portion 37 so as to approach the X direction. For this reason, the second stage 32 and the subsequent results are similar. As a result, as shown in FIG.
 図9に示すように、比較例の接続通路部50では、分岐部分52で第1流体6の流れがY方向の両端まで進んでしまい、Y方向の両端の個別部分53に集中的に第1流体6が流入していることがわかる。その結果、中央の個別部分53へ第1流体6がほとんど流入していない。このため、図6に示したように、接続通路部50において、Y方向の両端のチャンネル(チャンネル1、6など)で流量が増大し、中央のチャンネル(チャンネル3、4など)で流量が小さくなった。 As shown in FIG. 9, in the connection passage portion 50 of the comparative example, the flow of the first fluid 6 proceeds to both ends in the Y direction at the branch portion 52, and concentrated on the individual portions 53 at both ends in the Y direction. It can be seen that the fluid 6 is flowing in. As a result, the first fluid 6 hardly flows into the central individual portion 53. For this reason, as shown in FIG. 6, in the connection passage portion 50, the flow rate increases in the channels ( channels 1, 6, etc.) at both ends in the Y direction, and the flow rate decreases in the center channels ( channels 3, 4, etc.). became.
 以上から、第1実施形態による熱交換器100の接続通路部14(24)による、各流路への分配流量を均等化する効果が確認された。これにより、接続通路部14(24)により分配された複数の熱交換通路13(23)の流量ばらつきを精度よく抑制できることが確認された。 From the above, the effect of equalizing the distribution flow rate to each flow path by the connection passage portion 14 (24) of the heat exchanger 100 according to the first embodiment was confirmed. Thereby, it was confirmed that the flow volume dispersion | variation of the several heat exchange channel | path 13 (23) distributed by the connection channel | path part 14 (24) can be suppressed accurately.
(第2実施形態)
 次に、図10および図11を参照して、第2実施形態について説明する。この第2実施形態では、熱交換器100に円弧形状の分岐路34を有する接続通路部14を設けた上記第1実施形態と異なり、Y字状に分岐する分岐路134を有する接続通路部114を設けた熱交換器200の例について説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. 10 and 11. In the second embodiment, unlike the first embodiment in which the heat exchanger 100 is provided with the connection passage portion 14 having the arc-shaped branch passage 34, the connection passage portion 114 having the branch passage 134 that branches in a Y shape. An example of the heat exchanger 200 provided with the above will be described.
 なお、第2実施形態の熱交換器200は、接続通路部114のみが上記第1実施形態と異なり、熱交換器200の他の構成は上記第1実施形態と同様である。そのため、上記第1実施形態と同様の構成については同一の符号を付して説明を省略し、接続通路部114のみについて説明する。また、ここでは、第1伝熱部材に接続通路部114を設けた例についてのみ説明し、第2伝熱部材については説明を省略する。 In addition, the heat exchanger 200 of 2nd Embodiment differs from the said 1st Embodiment only in the connection channel | path part 114, and the other structure of the heat exchanger 200 is the same as that of the said 1st Embodiment. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only the connection passage portion 114 will be described. Moreover, only the example which provided the connection channel | path part 114 in the 1st heat transfer member is demonstrated here, and description is abbreviate | omitted about the 2nd heat transfer member.
 図10に示すように、第2実施形態の接続通路部114は、上記第1実施形態と同様、熱交換通路13に向かって2つずつ分岐するトーナメント形状を有する。この第2実施形態でも、接続通路部114が3段階に分岐し、32本の熱交換通路13に接続している。第2実施形態では、接続通路部114は、Y字状に2分岐する一対の分岐路134を含む。 As shown in FIG. 10, the connection passage portion 114 of the second embodiment has a tournament shape that branches two by two toward the heat exchange passage 13 as in the first embodiment. Also in the second embodiment, the connection passage portion 114 branches in three stages and is connected to the 32 heat exchange passages 13. In the second embodiment, the connection passage portion 114 includes a pair of branch paths 134 that are bifurcated into a Y shape.
 図11に示すように、一対の分岐路134は、共通の分岐元部分135から、Y方向の両側にY字状(逆Y字状)に分岐している。一対の分岐路134は、互いに等しい流路長を有し、分岐元部分135を挟んで対称形状に形成されている。また、一対の分岐路134の流路幅W2は、互いに同一である。第2実施形態では接続通路部114の流路全体が流路幅W2を有し、同一の流路断面積を有する。 As shown in FIG. 11, the pair of branch paths 134 branches from a common branch source portion 135 in a Y shape (reverse Y shape) on both sides in the Y direction. The pair of branch paths 134 have the same channel length, and are formed symmetrically with the branch source portion 135 interposed therebetween. Further, the channel width W2 of the pair of branch paths 134 is the same. In the second embodiment, the entire flow path of the connection passage portion 114 has a flow path width W2, and has the same flow path cross-sectional area.
 一対の分岐路134は、それぞれ、分岐元部分135からY方向かつX1方向へ向けて斜めに分岐する第1部分136と、第1部分136に連続する直線状の第2部分137とを含んでいる。第2部分137は、本発明の「分岐元部分」の一例である。 Each of the pair of branch paths 134 includes a first portion 136 that branches obliquely from the branch source portion 135 in the Y direction and the X1 direction, and a linear second portion 137 that continues to the first portion 136. Yes. The second portion 137 is an example of the “branch source portion” in the present invention.
 一対の分岐路134の第1部分136は、分岐元部分135から斜めに直線状に延びている。一対の分岐路134のそれぞれの第1部分136と、分岐元部分135である上流側の第2部分137とによって、Y字状の分岐が形成されている。一対の第1部分136のなす角θは、約120度である。第1段31、第2段32および第3段33の各々において、各第1部分136のX方向寸法は、それぞれL3、L4およびL5である。各第1部分136のY方向寸法は、それぞれW3、W4およびW5である。各第1部分136において、X方向の長さL3、L4およびL5が、Y方向の長さW3、W4およびW5よりもそれぞれ小さい。そのため、W3、W4、W5がそれぞれR1、R2、R3(図4参照)と等しい場合、第2実施形態の分岐路134は、上記第1実施形態の分岐路34と比較して、X方向寸法を小さくすることができる。その結果、第2実施形態の接続通路部114は、第1実施形態の接続通路部14と比較して、X方向寸法L6を小さくすることが可能である。 The first portion 136 of the pair of branch paths 134 extends linearly obliquely from the branch source portion 135. A Y-shaped branch is formed by the first portion 136 of each of the pair of branch paths 134 and the upstream second portion 137 which is the branching source portion 135. The angle θ formed by the pair of first portions 136 is about 120 degrees. In each of the first stage 31, the second stage 32, and the third stage 33, the X-direction dimensions of the first portions 136 are L3, L4, and L5, respectively. The Y direction dimensions of each first portion 136 are W3, W4, and W5, respectively. In each first portion 136, lengths L3, L4, and L5 in the X direction are smaller than lengths W3, W4, and W5 in the Y direction, respectively. Therefore, when W3, W4, and W5 are equal to R1, R2, and R3 (see FIG. 4), the branch path 134 of the second embodiment is dimensioned in the X direction compared to the branch path 34 of the first embodiment. Can be reduced. As a result, the connection passage portion 114 of the second embodiment can have a smaller X-direction dimension L6 than the connection passage portion 14 of the first embodiment.
 一対の分岐路134の第2部分137は、直線状の流路であり、X方向に沿って延びている。第1段31の第2部分137は、長さL7を有し、第2段32の第2部分137は、長さL8を有する。長さL7は、長さL8よりも大きい。長さL7は、W3の約1/8である。長さL8は、W4の約1/5である。 The second portion 137 of the pair of branch paths 134 is a linear flow path and extends along the X direction. The second part 137 of the first stage 31 has a length L7, and the second part 137 of the second stage 32 has a length L8. The length L7 is larger than the length L8. The length L7 is about 1/8 of W3. The length L8 is about 1/5 of W4.
 また、分岐元部分135は、一対の分岐路134に対して、一対の分岐路134のなす角θの2等分線BSの延びる方向に向けて接続している。すなわち、一対の分岐路134(第1部分136)のなす角θ=約120度に対して、分岐元部分135(第2部分137、連通路15)が、一対の分岐路134の2等分線BSの延びる方向(X1方向)に向けて接続している。このため、分岐元部分135に対向する内壁部134aは、分岐元部分135に対して約120度の三角形状の壁となっている。このため、180度の壁である上記第1実施形態の内壁部34aと比較して、内壁部134aに角度が付いている分だけ、流路抵抗を減少させることが可能である。 Further, the branching source portion 135 is connected to the pair of branch paths 134 in the direction in which the bisector BS of the angle θ formed by the pair of branch paths 134 extends. That is, with respect to the angle θ formed by the pair of branch paths 134 (first portion 136) = about 120 degrees, the branch source portion 135 (second portion 137, communication path 15) is divided into two equal parts of the pair of branch paths 134. The line BS is connected in the extending direction (X1 direction). For this reason, the inner wall part 134 a facing the branching source part 135 is a triangular wall of about 120 degrees with respect to the branching source part 135. For this reason, compared with the inner wall part 34a of the said 1st Embodiment which is a 180 degree | times wall, it is possible to reduce flow path resistance by the part which the inner wall part 134a has an angle.
 第2実施形態のその他の構成は、上記第1実施形態と同様である。 Other configurations of the second embodiment are the same as those of the first embodiment.
 第2実施形態でも、上記第1実施形態と同様に、接続通路部114を、熱交換通路13に向かって2つずつ分岐するトーナメント形状に形成することにより、各流路への分配流量を容易に均等化することができる。そのため、熱交換通路13の数に応じた回数分だけ2分岐を繰り返すことによって、複数の熱交換通路13の流量ばらつきを精度よく抑制することができる。 Also in the second embodiment, similarly to the first embodiment, by forming the connection passage portion 114 in a tournament shape that branches two by two toward the heat exchange passage 13, the distribution flow rate to each flow path is easy. Can be equalized. Therefore, by repeating the two branches as many times as the number of heat exchange passages 13, the flow rate variation of the plurality of heat exchange passages 13 can be accurately suppressed.
(シミュレーション結果の説明)
 次に、図12を参照して、第2実施形態による熱交換器200における接続通路部114の効果を確認するために行ったシミュレーション結果について説明する。シミュレーションの内容は上記第1実施形態と同様である。
(Explanation of simulation results)
Next, with reference to FIG. 12, the simulation result performed in order to confirm the effect of the connection channel | path part 114 in the heat exchanger 200 by 2nd Embodiment is demonstrated. The contents of the simulation are the same as in the first embodiment.
 図12に示すように、第2実施形態の接続通路部114では、32のチャンネルのうち一部が150%よりも高い値を示しているものの、その他の大部分が平均値である100%から±50%の間の範囲(ハッチング部)に収まっている。すなわち、32チャンネル中26チャンネル(約72%)が、平均値±50%の範囲内に収まっている。 As shown in FIG. 12, in the connection passage portion 114 of the second embodiment, some of the 32 channels show values higher than 150%, but most of the others are from the average value of 100%. It is within the range of ± 50% (hatched part). That is, 26 out of 32 channels (about 72%) are within an average value ± 50%.
 図6の比較例による接続通路部50と比較すると、比較例では、30チャンネル中10チャンネル(約33%)が、平均値±50%の範囲に収まっているのみである。これにより、第2実施形態による熱交換器200の接続通路部114による、各流路への分配流量を均等化する効果が確認された。この結果、接続通路部114により分配された複数の熱交換通路13の流量ばらつきを精度よく抑制できることが確認された。 Compared with the connection passage portion 50 according to the comparative example of FIG. 6, in the comparative example, 10 out of 30 channels (about 33%) are only within the range of the average value ± 50%. Thereby, the effect which equalizes the distribution flow volume to each flow path by the connection passage part 114 of the heat exchanger 200 by 2nd Embodiment was confirmed. As a result, it was confirmed that the flow rate variation of the plurality of heat exchange passages 13 distributed by the connection passage portion 114 can be accurately suppressed.
 なお、図7の第1実施形態による接続通路部14と比較すると、第1実施形態では、32チャンネルの全てのチャンネルが平均値±50%の範囲に収まっている。このため、第2実施形態では、第1実施形態と比較して接続通路部114のX方向寸法L6(図11参照)を小さく抑えることが可能である一方、分配流量の均等化の点では、上記第1実施形態の方が効果が高いことが分かる。 Note that, in comparison with the connection passage portion 14 according to the first embodiment of FIG. 7, in the first embodiment, all 32 channels are within the range of the average value ± 50%. For this reason, in the second embodiment, the X-direction dimension L6 (see FIG. 11) of the connection passage portion 114 can be reduced as compared with the first embodiment. On the other hand, in terms of equalizing the distribution flow rate, It can be seen that the first embodiment is more effective.
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。 In addition, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims for patent, and further includes all modifications (modifications) within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記第1および第2実施形態では、第1流体6と第2流体7とが互いにX方向の逆方向に流れる対向流型の熱交換器100(200)の例を示したが、本発明はこれに限られない。本発明では、熱交換器は、第1流体6と第2流体7とが互いに同じ方向に流れる並行流型、または、第1流体6の流れと第2流体7の流れとが交差する直交流型などであってもよい。 For example, in the first and second embodiments, the example of the counterflow type heat exchanger 100 (200) in which the first fluid 6 and the second fluid 7 flow in opposite directions to each other in the X direction has been described. The invention is not limited to this. In the present invention, the heat exchanger is a parallel flow type in which the first fluid 6 and the second fluid 7 flow in the same direction, or a cross flow in which the flow of the first fluid 6 and the flow of the second fluid 7 intersect. It may be a mold or the like.
 また、上記第1および第2実施形態では、複数の第1伝熱部材10および複数の第2伝熱部材20を、交互に積層することによりコア1を構成した例を示したが、本発明はこれに限られない。本発明では、第1伝熱部材と第2伝熱部材とを必ずしも交互に積層しなくともよい。たとえば、Z方向に沿って、第1伝熱部材、第2伝熱部材、第2伝熱部材、第1伝熱部材・・・、となるように、1層の第1伝熱部材に対して2層(複数層)の第2伝熱部材を積層させてもよい。逆に、2層(複数層)の第1伝熱部材に対して1層の第2伝熱部材を積層させてもよい。 Moreover, although the said 1st and 2nd embodiment showed the example which comprised the core 1 by laminating | stacking the some 1st heat-transfer member 10 and the some 2nd heat-transfer member 20 alternately, this invention was shown. Is not limited to this. In the present invention, the first heat transfer member and the second heat transfer member are not necessarily stacked alternately. For example, along the Z direction, the first heat transfer member, the second heat transfer member, the second heat transfer member, the first heat transfer member,... Alternatively, two (multiple) layers of the second heat transfer member may be laminated. Conversely, one layer of the second heat transfer member may be laminated on the two layers (multiple layers) of the first heat transfer member.
 また、上記第1および第2実施形態では、第1伝熱部材10および第2伝熱部材20の両方にトーナメント形状の接続通路部14(114)を設けた例を示したが、本発明はこれに限られない。本発明では、第1伝熱部材および第2伝熱部材の一方のみにトーナメント形状の接続通路部を設け、他方にはトーナメント形状の接続通路部を設けない構成であってもよい。 Moreover, in the said 1st and 2nd embodiment, although the example which provided the tournament-shaped connection channel | path part 14 (114) in both the 1st heat-transfer member 10 and the 2nd heat-transfer member 20 was shown, this invention is shown. It is not limited to this. In the present invention, a tournament-shaped connection passage portion may be provided in only one of the first heat transfer member and the second heat transfer member, and a tournament-shaped connection passage portion may not be provided in the other.
 また、上記第1および第2実施形態では、第1伝熱部材10および第2伝熱部材20を設け、2種類の流体間で熱交換を行う熱交換器の例を示したが、本発明はこれに限られない。本発明では、熱交換器は、3種類以上の流体間で熱交換を行ってもよい。その場合、第3伝熱部材など、3種以上の伝熱部材を設ければよい。その際、3種以上の伝熱部材の各々が、トーナメント形状の接続通路部を含んでよい。 In the first and second embodiments, the first heat transfer member 10 and the second heat transfer member 20 are provided, and an example of a heat exchanger that performs heat exchange between two kinds of fluids is shown. Is not limited to this. In the present invention, the heat exchanger may perform heat exchange between three or more types of fluids. In that case, what is necessary is just to provide 3 or more types of heat-transfer members, such as a 3rd heat-transfer member. At that time, each of the three or more types of heat transfer members may include a tournament-shaped connection passage portion.
 また、上記第1および第2実施形態では、トーナメント形状の接続通路部14(114)が3段階に分岐して、最終的に8本の流路に分岐する例を示したが、本発明はこれに限られない。接続通路部の段数(すなわち、分岐回数)は、特に限定されない。接続通路部は、2段または4段以上に分岐してもよい。 In the first and second embodiments, the tournament-shaped connecting passage portion 14 (114) is branched into three stages and finally branched into eight flow paths. It is not limited to this. The number of stages of the connection passage portion (that is, the number of branches) is not particularly limited. The connecting passage portion may be branched into two stages or four or more stages.
 また、上記第1および第2実施形態では、32本の熱交換通路13に対応させて、最終的に8本の流路に分岐する接続通路部14(114)を4つ設けた例を示したが、本発明はこれに限られない。接続通路部は、熱交換通路の数に応じた数だけ設ければよい。熱交換通路13が32本の場合、8本の流路を含む接続通路部14を4つ設ける代わりに、2段階に分岐して4本の流路を含む接続通路部を8つ設けてもよいし、4段階に分岐して16本の流路を含む接続通路部を2つ設けてもよいし、5段階に分岐して32本の流路を含む接続通路部を1つ設けてもよい。 Moreover, in the said 1st and 2nd embodiment, the example which provided the four connection channel | path parts 14 (114) finally branched to eight flow paths corresponding to the 32 heat exchange paths 13 was shown. However, the present invention is not limited to this. It is only necessary to provide as many connection passage portions as the number of heat exchange passages. When the number of the heat exchange passages 13 is 32, instead of providing four connection passage portions 14 including eight flow paths, eight connection passage portions including four flow paths may be provided by branching in two stages. It is also possible to provide two connection passage portions that branch into four stages and include 16 flow paths, or to provide one connection passage section that branches into five stages and includes 32 flow paths. Good.
 また、上記第1実施形態では、半楕円(半円)状に分岐する一対の分岐路34を設けた例を示し、上記第2実施形態では、Y字状に分岐する一対の分岐路134を設けた例を示したが、本発明はこれに限られない。本発明では、一対の分岐路が半円状およびY字状以外の形状に分岐してもよい。たとえば、図13の第1変形例に示すように、接続通路部214が、直角に分岐する一対の分岐路234を有してもよい。一対の分岐路234は、Y方向に沿って直線状に延びる第1部分236と、第1部分236からX方向に沿って直線状に延びる第2部分237とを含む。第2部分237は、本発明の「分岐元部分」の一例である。このように構成すれば、第1部分236のX方向寸法を最小限に抑えることができる。そのため、接続通路部214では、上記第2実施形態の接続通路部114よりも、さらにX方向寸法L10を小さくすることができる。その結果、熱交換器全体のX方向寸法を抑制して小型化することができる。この他、一対の分岐路が長さの異なる長軸および短軸を有する半楕円形状をなすように、一対の分岐路を形成してもよい。 Moreover, in the said 1st Embodiment, the example which provided the pair of branch path 34 which branches in a semi-ellipse (semicircle) shape is shown, and in the said 2nd Embodiment, a pair of branch path 134 which branches in a Y shape is shown. Although the example provided is shown, the present invention is not limited to this. In the present invention, the pair of branch paths may branch into a shape other than the semicircular shape and the Y shape. For example, as shown in the first modification of FIG. 13, the connection passage portion 214 may have a pair of branch paths 234 that branch at right angles. The pair of branch paths 234 includes a first portion 236 that extends linearly along the Y direction and a second portion 237 that extends linearly along the X direction from the first portion 236. The second portion 237 is an example of the “branch source portion” in the present invention. If comprised in this way, the X direction dimension of the 1st part 236 can be suppressed to the minimum. Therefore, in the connection passage portion 214, the X-direction dimension L10 can be further reduced as compared with the connection passage portion 114 of the second embodiment. As a result, the overall size of the heat exchanger can be reduced while suppressing the size in the X direction. In addition, the pair of branch paths may be formed so that the pair of branch paths has a semi-elliptical shape having a major axis and a minor axis having different lengths.
 また、上記第1実施形態では、熱交換通路13(23)と導入口11(21)との間、および、熱交換通路13(23)と導出口12(22)との間に、それぞれ接続通路部14(24)を設けた例を示したが、本発明はこれに限られない。本発明では、熱交換通路と導入口との間にのみトーナメント形状の接続通路部を設けてもよいし、熱交換通路と導出口との間にのみトーナメント形状の接続通路部を設けてもよい。 In the first embodiment, the connection is made between the heat exchange passage 13 (23) and the inlet 11 (21) and between the heat exchange passage 13 (23) and the outlet 12 (22). Although the example which provided the channel | path part 14 (24) was shown, this invention is not limited to this. In the present invention, a tournament-shaped connection passage portion may be provided only between the heat exchange passage and the introduction port, or a tournament-shaped connection passage portion may be provided only between the heat exchange passage and the outlet port. .
 また、上記第1および第2実施形態では、分岐路34(134)が直線状の第2部分37(137)を含む例を示したが、本発明はこれに限られない。本発明では、分岐路が第2部分を含まなくてもよい。 In the first and second embodiments, the example in which the branch path 34 (134) includes the linear second portion 37 (137) is shown, but the present invention is not limited to this. In the present invention, the branch path may not include the second portion.
 また、上記第1実施形態では、分岐路34の第2部分37の長さL2が、第1部分36の半径R1の約1/9、R2の約1/5である構成の例を示したが、本発明はこれに限られない。本発明では、第2部分の長さを第1部分の半径に対して相対的に大きくしてもよい。 Moreover, in the said 1st Embodiment, the length L2 of the 2nd part 37 of the branched path 34 showed the example of the structure which is about 1/9 of radius R1 of the 1st part 36, and about 1/5 of R2. However, the present invention is not limited to this. In the present invention, the length of the second portion may be relatively increased with respect to the radius of the first portion.
 図14は、上記第1実施形態の分岐路34において、第2部分37の長さを大きくした場合の第1流体6の速度ベクトルの変化を示した図である。図14に示すように、第1流体6の流れ(ベクトル)は、第1部分36を通過する際に半径方向外側に偏り、第2部分37に進入する位置(1/4円弧の終端位置)で僅かにY方向に傾斜している。その後、第1流体6の流れ(ベクトル)は、直線状の第2部分37において徐々にY方向成分が減少して、X方向に揃えられる。このシミュレーションの結果、第1部分36の半径Rに対して、第2部分37の長さL2がR/2あれば、第1流体6の流れ(ベクトル)を実際上十分にX方向に揃えられることが分かった。一方、第2部分37の長さL2>R/2の領域では、接続通路部14のX方向寸法が大きくなるというデメリットに対して、得られる整流効果のメリットが相対的に小さくなる。 FIG. 14 is a diagram showing changes in the velocity vector of the first fluid 6 when the length of the second portion 37 is increased in the branch path 34 of the first embodiment. As shown in FIG. 14, the flow (vector) of the first fluid 6 is biased radially outward when passing through the first portion 36 and enters the second portion 37 (end position of the ¼ arc). Is slightly inclined in the Y direction. Thereafter, the flow (vector) of the first fluid 6 is aligned in the X direction with the Y direction component gradually decreasing in the linear second portion 37. As a result of this simulation, if the length L2 of the second portion 37 is R / 2 with respect to the radius R of the first portion 36, the flow (vector) of the first fluid 6 can be practically sufficiently aligned in the X direction. I understood that. On the other hand, in the region where the length L2> R / 2 of the second portion 37, the merit of the rectifying effect obtained is relatively small with respect to the demerit that the dimension in the X direction of the connection passage portion 14 is large.
 図14から分かるように、第2部分37の上流側ほど整流効果が大きく、0<L2<R/2の範囲では、第2部分37を設けた分だけの整流効果の向上を期待できる。第2部分37の長さは、好ましくは、長さL2≧R/4であり、より好ましくは、R/4<長さL2<R/2である。なお、図示は省略するが、第2部分37の長さL2を十分に大きくした場合のシミュレーションでは、各チャンネルの流量のばらつきを±5%程度の範囲に抑えることが可能な結果が得られた。 As can be seen from FIG. 14, the rectification effect increases toward the upstream side of the second portion 37, and in the range of 0 <L2 <R / 2, the rectification effect can be expected to be improved by the amount provided for the second portion 37. The length of the second portion 37 is preferably length L2 ≧ R / 4, and more preferably R / 4 <length L2 <R / 2. Although illustration is omitted, in the simulation in which the length L2 of the second portion 37 is sufficiently large, a result that can suppress the variation in the flow rate of each channel within a range of about ± 5% was obtained. .
 また、上記第1および第2実施形態では、接続通路部14(114)が、全体に渡って、一定の流路幅W1(W2)で一定の流路断面積を有する例を示したが、本発明はこれに限られない。本発明では、接続通路部の流路幅(流路断面積)が変化してもよい。たとえば、図15に示す第2変形例のように、接続通路部314が、第1段31~第3段33のそれぞれで異なる流路幅の分岐路334を有していてもよい。好ましくは、一対の分岐路334の流路断面積(流路幅)は、分岐前の流路断面積(流路幅)の略1/2である。つまり、2分岐する分岐路334の流路断面積(流路幅)の合計が、分岐前の流路断面積(流路幅)と一致する。接続通路部314では、連通路15の流路幅(流路断面積)W11に対して、第1段31の分岐路334の流路幅(流路断面積)W12=(W11/2)であり、第2段32の分岐路334の流路幅(流路断面積)W13=(W12/2)であり、第3段33の分岐路334の流路幅(流路断面積)W14=(W13/2)である。これにより、分岐の前後における流路断面積の変化を抑制することができるので、圧力損失を抑制することができる。なお、ここでは流路深さを一定と仮定し、流路幅と流路断面積とが対応することを前提として説明したが、流路深さが異なる場合、上記の説明は流路幅を流路断面積に置き換える。 Moreover, in the said 1st and 2nd embodiment, although the connection channel | path part 14 (114) showed the example which has a fixed flow-path cross-sectional area with the fixed flow-path width W1 (W2) over the whole, The present invention is not limited to this. In the present invention, the flow path width (flow path cross-sectional area) of the connection passage portion may change. For example, as in the second modification shown in FIG. 15, the connection passage portion 314 may have a branch path 334 having a different flow path width in each of the first stage 31 to the third stage 33. Preferably, the channel cross-sectional area (channel width) of the pair of branch paths 334 is approximately ½ of the channel cross-sectional area (channel width) before branching. That is, the sum of the channel cross-sectional area (channel width) of the bifurcated branch channel 334 matches the channel cross-sectional area (channel width) before branching. In the connection passage portion 314, the flow passage width (flow passage cross-sectional area) W12 = (W11 / 2) of the branch passage 334 of the first stage 31 with respect to the flow passage width (flow passage cross-sectional area) W11 of the communication passage 15. Yes, the channel width (channel cross-sectional area) W13 = (W12 / 2) of the branch path 334 of the second stage 32, and the channel width (channel cross-sectional area) W14 of the branch path 334 of the third stage 33 = (W13 / 2). Thereby, since the change of the flow-path cross-sectional area before and behind a branch can be suppressed, pressure loss can be suppressed. Here, the flow path depth is assumed to be constant, and the description has been made on the assumption that the flow path width corresponds to the flow path cross-sectional area. Replace with channel cross-sectional area.
 また、上記第1および第2実施形態では、直線状の熱交換通路13(23)を設けた例を示したが、本発明はこれに限られない。本発明では、熱交換通路は直線状以外の曲線状であってもよいし、たとえば伝熱部材の一端から他端まで延びた後で屈曲し、逆方向に折り返されるような形状であってもよい。 In the first and second embodiments, the example in which the linear heat exchange passage 13 (23) is provided has been described, but the present invention is not limited to this. In the present invention, the heat exchange passage may have a curved shape other than a straight shape, for example, a shape that bends after extending from one end of the heat transfer member to the other end and is folded back in the opposite direction. Good.
 6 第1流体(流体)
 7 第2流体(流体)
 10 第1伝熱部材(伝熱部材)
 11、21 導入口(流通口)
 12、22 導出口(流通口)
 13、23 熱交換通路
 14、24、114、214、314 接続通路部
 20 第2伝熱部材(伝熱部材)
 34、134、234、334 分岐路
 35、135 分岐元部分
 36、136、236 第1部分
 37、137、237 第2部分(分岐元部分)
 100、200 熱交換器
 θ 一対の分岐路のなす角
 BS 2等分線
6 First fluid (fluid)
7 Second fluid (fluid)
10 First heat transfer member (heat transfer member)
11, 21 Introduction port (distribution port)
12, 22 Outlet (distribution port)
13, 23 Heat exchange passage 14, 24, 114, 214, 314 Connection passage portion 20 Second heat transfer member (heat transfer member)
34, 134, 234, 334 Branch path 35, 135 Branch source part 36, 136, 236 First part 37, 137, 237 Second part (branch source part)
100, 200 heat exchanger θ angle formed by a pair of branch paths BS bisecting line

Claims (7)

  1.  流体を導入または導出する流通口と、前記流体に熱交換をさせるための複数の熱交換通路と、両端が前記流通口と前記複数の熱交換通路とにそれぞれ接続された接続通路部とを含む伝熱部材を備え、
     前記接続通路部は、前記熱交換通路に向かって2つずつ分岐するトーナメント形状を有する、熱交換器。
    A circulation port for introducing or deriving a fluid; a plurality of heat exchange passages for causing the fluid to exchange heat; and a connection passage portion having both ends connected to the circulation port and the plurality of heat exchange passages, respectively. A heat transfer member,
    The said connection channel | path part is a heat exchanger which has a tournament shape branched to two each toward the said heat exchange channel | path.
  2.  前記接続通路部は、分岐元部分から2つに分岐する一対の分岐路を含み、
     前記分岐元部分は、前記一対の分岐路に対して、前記一対の分岐路のなす角の2等分線の延びる方向に向けて接続している、請求項1に記載の熱交換器。
    The connection passage portion includes a pair of branch paths that branch into two from a branch source portion,
    2. The heat exchanger according to claim 1, wherein the branching source portion is connected to the pair of branch paths in a direction in which a bisector of an angle formed by the pair of branch paths extends.
  3.  前記分岐路は、前記分岐元部分から分岐する第1部分と、前記第1部分から延びて前記熱交換通路側の前記一対の分岐路に接続する前記分岐元部分としての直線状の第2部分とを含む、請求項2に記載の熱交換器。 The branch path includes a first part branched from the branch source part and a linear second part as the branch source part extending from the first part and connected to the pair of branch paths on the heat exchange passage side. The heat exchanger of Claim 2 containing these.
  4.  前記接続通路部は、分岐元部分から2つに分岐する一対の分岐路を含み、
     前記一対の分岐路は、互いに等しい流路長を有する、請求項1に記載の熱交換器。
    The connection passage portion includes a pair of branch paths that branch into two from a branch source portion,
    The heat exchanger according to claim 1, wherein the pair of branch paths have equal channel lengths.
  5.  前記一対の分岐路は、前記分岐元部分を挟んで対称形状に形成されている、請求項4に記載の熱交換器。 The heat exchanger according to claim 4, wherein the pair of branch paths are formed in a symmetrical shape with the branch source portion interposed therebetween.
  6.  前記一対の分岐路は、半楕円形状をなすように、前記分岐元部分からそれぞれ分岐している、請求項5に記載の熱交換器。 The heat exchanger according to claim 5, wherein the pair of branch paths are branched from the branch source part so as to form a semi-elliptical shape.
  7.  前記一対の分岐路は、半円形状をなすように、前記分岐元部分からそれぞれ円弧状に分岐している、請求項6に記載の熱交換器。 The heat exchanger according to claim 6, wherein the pair of branch paths are each branched in an arc shape from the branch source portion so as to form a semicircular shape.
PCT/JP2015/054289 2014-11-06 2015-02-17 Heat exchanger WO2016072100A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15857045.7A EP3217119B1 (en) 2014-11-06 2015-02-17 Heat exchanger
US15/524,711 US20170328644A1 (en) 2014-11-06 2015-02-17 Heat Exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-225794 2014-11-06
JP2014225794A JP5847913B1 (en) 2014-11-06 2014-11-06 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2016072100A1 true WO2016072100A1 (en) 2016-05-12

Family

ID=55176103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054289 WO2016072100A1 (en) 2014-11-06 2015-02-17 Heat exchanger

Country Status (4)

Country Link
US (1) US20170328644A1 (en)
EP (1) EP3217119B1 (en)
JP (1) JP5847913B1 (en)
WO (1) WO2016072100A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356343A (en) * 2020-03-11 2020-06-30 深圳绿色云图科技有限公司 Cooling liquid distribution device and liquid cooling cabinet
CN114845517A (en) * 2022-03-25 2022-08-02 中国电子科技集团公司第二十九研究所 Multi-path liquid uniform distribution method and device
WO2023223905A1 (en) * 2022-05-16 2023-11-23 パナソニックIpマネジメント株式会社 Outdoor unit, and air conditioning device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646761B1 (en) * 2016-02-03 2016-08-08 임종수 Heat Exchanging Apparatus
JP6321067B2 (en) * 2016-03-31 2018-05-09 住友精密工業株式会社 Diffusion bonding type heat exchanger
CN107152797A (en) * 2017-07-11 2017-09-12 石同生 Single tube mouthful multiple-limb Natural Circulation tubular type collector
CN111051805A (en) * 2017-08-29 2020-04-21 株式会社威工 Heat exchanger
JPWO2019087235A1 (en) * 2017-10-30 2020-10-22 三菱電機株式会社 Refrigerant distributor and refrigeration cycle equipment
US20200041212A1 (en) * 2018-08-03 2020-02-06 Hamilton Sundstrand Corporation Counter flow heat exchanger
CN109579575B (en) * 2018-11-16 2023-09-19 大连海事大学 Fractal Channel Printed Circuit Board Heat Exchanger
US11118838B2 (en) 2019-02-20 2021-09-14 Hamilton Sundstrand Corporation Leaf-shaped geometry for heat exchanger core
US11359864B2 (en) 2019-03-08 2022-06-14 Hamilton Sundstrand Corporation Rectangular helical core geometry for heat exchanger
US11280550B2 (en) 2019-03-08 2022-03-22 Hamilton Sundstrand Corporation Radially layered helical core geometry for heat exchanger
US11274886B2 (en) * 2019-03-08 2022-03-15 Hamilton Sundstrand Corporation Heat exchanger header with fractal geometry
DE102020203892A1 (en) * 2019-03-29 2020-10-01 Dana Canada Corporation EXCHANGER MODULE WITH AN ADAPTER MODULE FOR DIRECT MOUNTING ON A VEHICLE COMPONENT
US11268770B2 (en) * 2019-09-06 2022-03-08 Hamilton Sunstrand Corporation Heat exchanger with radially converging manifold
US11656032B2 (en) * 2019-09-27 2023-05-23 Industrial Technology Research Institute High temperature flow splitting component and heat exchanger and reforming means using the same
TWI744725B (en) * 2019-09-27 2021-11-01 財團法人工業技術研究院 High temperature flow splitting component and heat exchanger and reforming means using the same
CN114514407A (en) * 2019-10-21 2022-05-17 Hrl实验室有限责任公司 Staged heat exchanger manifold and heat exchanger including the same
EP3842723A1 (en) * 2019-12-23 2021-06-30 Hamilton Sundstrand Corporation Two-stage fractal heat exchanger
CN111780598B (en) * 2020-06-23 2021-11-09 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Heat exchange plate and micro-channel heat exchanger
US11209222B1 (en) 2020-08-20 2021-12-28 Hamilton Sundstrand Corporation Spiral heat exchanger header
JP2023170397A (en) * 2022-05-19 2023-12-01 三菱重工業株式会社 Header member, heat exchange unit and method of manufacturing header member
JP2024013036A (en) * 2022-07-19 2024-01-31 ダイキン工業株式会社 Heat exchanger, and refrigerant cycle device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734224A (en) * 1956-02-14 winstead
JPH03502079A (en) * 1987-11-09 1991-05-16 ザ リージェンツ オブ ザ ユニヴァーシティ オブ ミネソタ Continuous extrusion die for extruding reactive polymer mixtures
US5289224A (en) * 1992-05-18 1994-02-22 Eastman Kodak Company Processing apparatus
JPH09189490A (en) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp Heat exchanger and its manufacture
JPH10267468A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Distribution header
JPH10281589A (en) * 1997-04-07 1998-10-23 Hitachi Ltd Heat exchanger
JPH11159917A (en) * 1997-11-28 1999-06-15 Goh Shoji Co Inc Refrigerant flow divider and manufacture thereof
US5992453A (en) * 1995-10-17 1999-11-30 Zimmer; Johannes Flow-dividing arrangement
JP2003342003A (en) * 2002-05-23 2003-12-03 Kawasaki Heavy Ind Ltd Plate-type evaporator
JP2013538112A (en) * 2010-07-20 2013-10-10 ウニヴァルシテ ドゥ サヴォワ Fluid circulation module
WO2014185391A1 (en) * 2013-05-15 2014-11-20 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423997A (en) * 1944-03-22 1947-07-15 Tech Studien Ag Ramified tubular gas heater
US4386505A (en) * 1981-05-01 1983-06-07 The Board Of Trustees Of The Leland Stanford Junior University Refrigerators
AU568940B2 (en) * 1984-07-25 1988-01-14 University Of Sydney, The Plate type heat exchanger
JPS6192795A (en) * 1984-10-15 1986-05-10 Toshiba Corp Production of thin-walled pipe
DE69838063T2 (en) * 1997-05-30 2008-03-13 Qualcomm Inc., San Diego Method and device for the indirect paging of a cordless terminal with less coded paging information.
DE19961257C2 (en) * 1999-12-18 2002-12-19 Inst Mikrotechnik Mainz Gmbh micromixer
EP1272804A2 (en) * 2000-03-16 2003-01-08 Robert Bosch Gmbh Heat exchanger for a co2 vehicle air conditioner
US6688381B2 (en) * 2000-06-05 2004-02-10 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Multiscale transport apparatus and methods
US7212405B2 (en) * 2004-05-27 2007-05-01 Intel Corporation Method and apparatus for providing distributed fluid flows in a thermal management arrangement
DE202005013835U1 (en) * 2005-09-01 2005-11-10 Syntics Gmbh Micro heat exchanger is made up of stack of foils and thin plates containing rows of longitudinal process fluid channels alternating with rows of transverse heat carrier fluid channels, feed and drain channels being mounted on outside
JP2008212814A (en) * 2007-03-02 2008-09-18 Canon Inc Fluid carrying passage, fluid treatment apparatus and fluid treatment system
JP4895214B2 (en) * 2007-07-27 2012-03-14 株式会社トヨックス Air conditioning panel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734224A (en) * 1956-02-14 winstead
JPH03502079A (en) * 1987-11-09 1991-05-16 ザ リージェンツ オブ ザ ユニヴァーシティ オブ ミネソタ Continuous extrusion die for extruding reactive polymer mixtures
US5289224A (en) * 1992-05-18 1994-02-22 Eastman Kodak Company Processing apparatus
US5992453A (en) * 1995-10-17 1999-11-30 Zimmer; Johannes Flow-dividing arrangement
JPH09189490A (en) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp Heat exchanger and its manufacture
JPH10267468A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Distribution header
JPH10281589A (en) * 1997-04-07 1998-10-23 Hitachi Ltd Heat exchanger
JPH11159917A (en) * 1997-11-28 1999-06-15 Goh Shoji Co Inc Refrigerant flow divider and manufacture thereof
JP2003342003A (en) * 2002-05-23 2003-12-03 Kawasaki Heavy Ind Ltd Plate-type evaporator
JP2013538112A (en) * 2010-07-20 2013-10-10 ウニヴァルシテ ドゥ サヴォワ Fluid circulation module
WO2014185391A1 (en) * 2013-05-15 2014-11-20 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356343A (en) * 2020-03-11 2020-06-30 深圳绿色云图科技有限公司 Cooling liquid distribution device and liquid cooling cabinet
CN111356343B (en) * 2020-03-11 2022-02-18 深圳绿色云图科技有限公司 Cooling liquid distribution device and liquid cooling cabinet
CN114845517A (en) * 2022-03-25 2022-08-02 中国电子科技集团公司第二十九研究所 Multi-path liquid uniform distribution method and device
CN114845517B (en) * 2022-03-25 2023-10-24 中国电子科技集团公司第二十九研究所 Multi-path liquid uniform distribution method
WO2023223905A1 (en) * 2022-05-16 2023-11-23 パナソニックIpマネジメント株式会社 Outdoor unit, and air conditioning device

Also Published As

Publication number Publication date
EP3217119B1 (en) 2018-12-12
EP3217119A4 (en) 2017-11-29
US20170328644A1 (en) 2017-11-16
JP2016090157A (en) 2016-05-23
JP5847913B1 (en) 2016-01-27
EP3217119A1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP5847913B1 (en) Heat exchanger
EP3104110B1 (en) Board-type heat exchanger
CA2960353C (en) Heat exchanger including furcating unit cells
WO2019043801A1 (en) Heat sink
WO2011126488A3 (en) Formed microchannel heat exchanger
JP2016125686A (en) Oil cooler
JP2018189352A (en) Heat exchanger
US20170205156A1 (en) Heat exchangers
JP5818397B2 (en) Plate heat exchanger
JP2019178807A5 (en)
JP2017180984A5 (en)
CN109443056B (en) Double-sided staggered printed circuit board type heat exchange plate and heat exchanger
US20210063091A1 (en) Plate type heat exchanger
JPWO2021149223A5 (en)
JP2018105535A5 (en)
JP6267954B2 (en) Plate heat exchanger
JP7072790B2 (en) Heat exchanger
JP2022128039A (en) Heat exchanger
JP5933605B2 (en) Plate heat exchanger
JP5918904B2 (en) Plate heat exchanger
US20190376750A1 (en) Water heat exchanger
JP5818396B2 (en) Plate heat exchanger
JP6268045B2 (en) Plate heat exchanger
US20180010864A1 (en) Heat exchanger with interleaved passages
KR101987850B1 (en) Printed Circuit Type Heat Exchanger Having Structure Of Elimination Dead Zone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857045

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015857045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15524711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE