WO2016072027A1 - Method of calculating stable bonded structure, calculating device, and program - Google Patents

Method of calculating stable bonded structure, calculating device, and program Download PDF

Info

Publication number
WO2016072027A1
WO2016072027A1 PCT/JP2014/079635 JP2014079635W WO2016072027A1 WO 2016072027 A1 WO2016072027 A1 WO 2016072027A1 JP 2014079635 W JP2014079635 W JP 2014079635W WO 2016072027 A1 WO2016072027 A1 WO 2016072027A1
Authority
WO
WIPO (PCT)
Prior art keywords
stable
drug candidate
molecule
candidate molecule
target molecule
Prior art date
Application number
PCT/JP2014/079635
Other languages
French (fr)
Japanese (ja)
Inventor
谷田 義明
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2014/079635 priority Critical patent/WO2016072027A1/en
Publication of WO2016072027A1 publication Critical patent/WO2016072027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment

Definitions

  • This case relates to a method for calculating a stable binding structure between a target molecule and a drug candidate molecule, a calculation apparatus, and a program for executing the calculation method.
  • a drug candidate molecule is to calculate a molecule (ligand) that strongly interacts with a target molecule involved in a target disease (target disease) as a drug candidate. Therefore, screening of compounds based on the target molecule steric structure by computers is actively performed.
  • SBDD Structure-Based Drug Design
  • This method is a molecular design method based on the three-dimensional structure information of a target molecule (for example, protein).
  • the target molecule structure is fixed to one structure, and the drug candidate molecule has a shape within the binding site.
  • the design is aimed at achieving good agreement and minimizing energy.
  • the great advantage of drug discovery using a computer is that drug candidate molecule design and identification of a stable binding structure between a target molecule and a drug candidate molecule can be simultaneously obtained.
  • the stable binding structure between the target molecule and drug candidate molecule obtained by such a method has a large discrepancy from the actual stable binding structure, and the drug candidate molecule does not show the activity value as expected. There is.
  • an object of the present invention is to provide a calculation method and a calculation apparatus for a stable bond structure that can efficiently calculate a stable bond structure, and a program that executes the calculation method.
  • the method for calculating the disclosed stable bond structure is as follows: A method for calculating a stable binding structure of a target molecule and a drug candidate molecule using a computer, When searching for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and the drug candidate molecule, the first stability A plurality of states are prepared for the bond structure, and the second stable bond structure is searched.
  • the disclosed program is stored on a computer.
  • searching for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and drug candidate molecule the first stable binding structure A plurality of states are prepared for and the search for the second stable bond structure is executed.
  • the disclosed apparatus for calculating a stable binding structure searches for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and drug candidate molecule.
  • a search unit for preparing a plurality of states for the first stable coupling structure and searching for the second stable coupling structure is provided.
  • the conventional problems can be solved, the object can be achieved, and a stable bond structure can be calculated efficiently.
  • the disclosed program the conventional problems can be solved, the object can be achieved, and a stable coupling structure can be calculated efficiently.
  • the disclosed device for calculating a stable bond structure the conventional problems can be solved, the object can be achieved, and a stable bond structure can be calculated efficiently.
  • FIG. 1A is a conceptual diagram of a structure space search by simulated annealing (part 1).
  • FIG. 1B is a conceptual diagram of structural space search by simulated annealing (part 2).
  • FIG. 1C is a conceptual diagram of structural space search by simulated annealing (part 3).
  • FIG. 2A is a conceptual diagram of structure space search using metadynamics (part 1).
  • FIG. 2B is a conceptual diagram of a structure space search using metadynamics (part 2).
  • FIG. 2C is a conceptual diagram of structural space search using metadynamics (part 3).
  • FIG. 2D is a conceptual diagram of structural space search using metadynamics (part 4).
  • FIG. 3A is a conceptual diagram of a contour map of free energy (part 1).
  • FIG. 3A is a conceptual diagram of a contour map of free energy (part 1).
  • FIG. 3A is a conceptual diagram of a contour map of free energy (part 1).
  • FIG. 1A is a conceptual diagram of
  • FIG. 3B is a conceptual diagram of a contour map of free energy (part 2).
  • FIG. 4 is a flowchart of an example of the disclosed method for calculating a stable bond structure.
  • FIG. 5 is a flowchart of an example of an application example of the disclosed method for calculating a stable coupling structure.
  • FIG. 6 is a flowchart of another example of application of the disclosed method for calculating a stable coupling structure.
  • FIG. 7 is a hardware configuration example of the disclosed apparatus.
  • the disclosed method for calculating a stable binding structure is a method for calculating a stable binding structure of a target molecule and a drug candidate molecule using a computer.
  • the present inventor examined the search for a stable bond structure by simulated annealing.
  • the simulation temperature is set high and the search range is expanded to a structure space that cannot be searched by room temperature simulation. Thereafter, by gradually lowering the temperature (annealing: annealing), a more stable structure (stable bonding structure) can be found.
  • the first stable binding structure (binding pose A) between the target molecule and drug candidate molecule is determined by an arbitrary method (FIG. 1A).
  • the first stable bond structure (bonding pose A) is energetically more stable than the bond structure in the surrounding structure space.
  • the search range of the structure space is widened by setting the simulation temperature high (FIG. 1B).
  • a second stable coupling structure (coupling pose B) that is more stable than the first stable coupling structure (coupling pose A) can be found.
  • the simulated annealing has a problem.
  • the problem with this method is that the set temperature at a high temperature is as high as 500 ° C. to 1,000 ° C., and thus exceeds the denaturation temperature (about 60 ° C.) of the target molecule (for example, protein). Therefore, the target molecule does not return to a stable structure at room temperature after annealing.
  • a simulation using a classical potential is performed.
  • the present inventor next examined the search for a stable bond structure using metadynamics. Unlike the simulated annealing, the metadynamics attempts to widen the search range of the structure space by filling a potential valley with a penalty function. Therefore, in the metadynamics, the target molecule is not denatured and the water molecule network is not broken as in the simulated annealing. A Gaussian distribution is often used for the penalty function. However, in the metadynamics, which stable bond structure is found when escaping from a certain stable bond structure using the penalty function greatly depends on the speed direction of the drug candidate molecule at that time.
  • the present inventor prepared a plurality of states for the certain stable bond structure when searching for another stable bond structure using metadynamics from a certain stable bond structure, thereby efficiently creating a stable bond structure. I found that I could search.
  • Metadynamics is a method of tabu search. By placing a potential proportional to the existence probability on the coordinate axis (giving a penalty function), the existence probability in the area once visited is suppressed and smoothed on the coordinates. This is a technique for realizing a simple probability distribution.
  • the metadynamics is a method of smoothing the free energy surface by successively adding a small potential to the free energy curved surface (minimum) of the system by a penalty function. By using the metadynamics, it is possible to increase the probability of an event that normally occurs only rarely.
  • FIGS. 2A to 2D an example of adding a small potential to a free energy curved surface where a certain stable bond structure (bonding pose A) exists and searching for another stable bond structure (bonding pose B) is shown in FIGS. 2A to 2D.
  • the first stable binding structure (binding pose A) between the target molecule and drug candidate molecule is determined by an arbitrary method (FIG. 2A).
  • the first stable bond structure (bonding pose A) exists at the minimum of the free energy curved surface and is more energetically stable than the bond structure in the surrounding structure space.
  • a micropotential is given to the valley of the free energy curved surface where the first stable coupling structure (coupling pose A) exists (FIG. 2B). Then, the search range of the structure space is widened.
  • the first stable binding structure is a binding structure (binding pose) of the target molecule and the drug candidate molecule.
  • the method for determining the first stable binding structure is not particularly limited and may be appropriately selected depending on the purpose. For example, it may be determined by molecular dynamics simulation of the target molecule and the drug candidate molecule. However, it may be determined by flexible docking. In addition, the drug candidate molecule may be manually placed at the binding site of the target molecule in consideration of hydrogen bonding, van der Waals force and the like.
  • the first stable coupling structure preferably has a minimum energy value, but need not have a minimum energy value.
  • the molecular dynamics simulation can be performed using a molecular dynamics calculation program.
  • the molecular dynamics calculation program include AMBER, CHARMm, GROMACS, GROMOS, NAMD, myPresto, and the like.
  • the flexible docking can be performed using a docking program. Examples of the docking program include ICM, FlexE, ADAM, FlexX, AS dock, Ph4 dock, and the like.
  • the target molecule is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include protein, RNA (ribonucleic acid), DNA (deoxyribonucleic acid), and the like.
  • the determination of the first stable bond structure and the search for the second stable bond structure are preferably performed in a solvent, more preferably in water. By doing so, a stable bond structure closer to the bond structure in the living body can be obtained.
  • the search for the second stable binding structure using the metadynamics is performed with respect to the potential energy of the binding structure in the snapshot.
  • This can be done by applying a potential.
  • the penalty function is not particularly limited and can be appropriately selected according to the purpose, but is usually a Gaussian function.
  • the width and height of the penalty function parameters are not particularly limited and can be appropriately selected depending on the purpose.
  • the penalty function is usually given a plurality of times. There is no restriction
  • the penalty function may be given for each time step in the molecular dynamics simulation, or several time steps may be taken as one unit, and the penalty function may be given for each unit. Good. In that case, it is preferable that the parameter of the penalty function used is fixed.
  • the free energy landform includes, for example, a free energy valley in which a first stable coupling structure (coupling pose A) exists and a more stable second stable coupling structure (coupling pose B). There is a valley of free energy that exists.
  • each one of the arrows in the coupling pose A means one state of the first stable coupling structure (coupling pose A).
  • the relative positions of the first stable coupling structure (coupling pose A) and the second stable coupling structure (coupling pose B) are shown in the free energy contour maps. In free energy terrain, its relative position is unknown. Therefore, when searching for a more stable bond structure from the first stable bond structure (bonding pose A) using metadynamics, the state of the first stable bond structure (bonding pose A) is one. The second stable bond structure (bonding pose B) cannot be found or is very time consuming to find. On the other hand, when searching for a more stable bond structure from the first stable bond structure (bonding pose A) using metadynamics, by preparing a plurality of states of the first stable bond structure (bonding pose A) The second stable coupling structure (coupling pose B) can be found quickly.
  • seven states are prepared as the plurality of states.
  • the number is not particularly limited and can be appropriately selected according to calculation time, calculation accuracy, and the like. Examples of the number of the plurality of states include 2 to 60.
  • the plurality of states are preferably prepared by preparing a plurality of momentums of atoms of the drug candidate molecule in the first stable bond structure.
  • the momentum may be determined manually or by a random number.
  • the plurality of states may be prepared by changing the momentum of each atom constituting the drug candidate molecule by a random number. At that time, the coordinates of each atom in the plurality of states are the same.
  • the search for the second stable binding structure using the metadynamics is preferably performed by limiting the distance between the target molecule and the drug candidate molecule. By doing so, even if a plurality of states are prepared for the first stable coupling structure, the calculation amount does not become enormous.
  • the limitation on the distance between the target molecule and the drug candidate molecule is preferably the limitation on the distance between the binding site of the target molecule and the drug candidate molecule, and the limitation on retaining the drug candidate molecule in the binding site. More preferably. This is because a stable binding structure cannot be expected when the drug candidate molecule comes out of the binding site.
  • Examples of the restriction of retaining the drug candidate molecule in the binding site include, for example, the distance between the atom constituting the binding site of the target molecule and the atom constituting the drug candidate molecule from the atom constituting the binding site. Limiting the distance to the outer edge of the binding site or the vicinity of the outer edge of the outer edge may be mentioned. Here, if at least a part of the drug candidate molecule is present in the binding site, it corresponds to “retain the drug candidate molecule in the binding site”. Normally, in the first stable binding structure, the drug candidate molecule is located within the binding site of the target molecule.
  • the search for the second stable coupling structure using the metadynamics is preferably performed in a coordinate space including a distance and an angle, for example.
  • a distance (R1-L1) and angle (R1-L1-L2) are defined. Then, the distance (R1-L1) is set within a range slightly outside the binding site (for example, 0.5 mm).
  • a plurality of stable bond structures may be found when searching for the second stable bond structure from the first stable bond structure. Then, the most stable stable bond structure may be selected from the plurality of stable bond structures as the second stable bond structure.
  • the calculation method of the stable coupling structure is, for example, a normal computer system (for example, various network servers, workstations, personal computers) including a CPU (Central Processing Unit), a RAM (Random Access Memory), a hard disk, various peripheral devices, and the like. Etc.) can be realized.
  • a normal computer system for example, various network servers, workstations, personal computers
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • hard disk for example, various peripheral devices, and the like. Etc.
  • the disclosed program is a program that causes a computer to execute the disclosed calculation method of the stable bond structure.
  • a preferable aspect in the execution of the method for calculating the stable bond structure is the same as the preferable aspect in the method for calculating the stable bond structure.
  • the program can be created using various known programming languages according to the configuration of the computer system to be used and the type / version of the operating system.
  • the program may be recorded on a recording medium such as an internal hard disk or an external hard disk, a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), or an MO disk (You may record on recording media, such as a Magneto-Optical disk and USB memory [USB (Universal Serial Bus) flash drive].
  • a recording medium such as a CD-ROM, DVD-ROM, MO disk, USB memory, etc.
  • the program is directly stored on a hard disk or through a recording medium reader included in the computer system as needed. Can be installed and used.
  • the program is recorded in an external storage area (another computer or the like) that is accessible from the computer system through the information communication network, and if necessary, the program is directly stored in the external storage area through the information communication network, or It can also be installed and used on a hard disk.
  • the program may be divided and recorded on a plurality of recording media for each arbitrary process.
  • the disclosed computer-readable recording medium records the disclosed program.
  • the computer-readable recording medium is not particularly limited and can be appropriately selected according to the purpose.
  • an internal hard disk, an external hard disk, a CD-ROM, a DVD-ROM, an MO disk, a USB memory, etc. Is mentioned.
  • the recording medium may be a plurality of recording media on which the program is divided and recorded for each arbitrary process.
  • the disclosed stable coupling structure calculation apparatus includes at least a search unit, and further includes other units as necessary.
  • the search unit the first stable binding structure of the target molecule and drug candidate molecule is searched for a second stable binding structure that is more stable than the first stable binding structure using metadynamics.
  • a plurality of states are prepared for one stable bond structure, and the second stable bond structure is searched.
  • the plurality of states are preferably prepared by preparing a plurality of momentums of atoms of the drug candidate molecule in the first stable bond structure.
  • the search for the second stable binding structure using the metadynamics is preferably performed by limiting the distance between the target molecule and the drug candidate molecule.
  • the limitation on the distance between the target molecule and the drug candidate molecule is preferably a limitation on the distance between the binding site of the target molecule and the drug candidate molecule.
  • the limitation on the distance between the binding site of the target molecule and the drug candidate molecule is preferably a limitation that keeps the drug candidate molecule in the binding site.
  • the calculation device may be a plurality of calculation devices each including a plurality of recording media on which the program is divided and recorded for each arbitrary process.
  • the first stable binding structure of the target molecule and drug candidate molecule is determined. This determination is performed, for example, by placing drug candidate molecules in the target molecule binding site in consideration of hydrogen bonding and van der Waals forces. This is performed, for example, by manually inputting the coordinates of the target molecule and the drug candidate molecule into a computer.
  • a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics. At this time, a plurality of states are prepared for the first stable coupling structure. At this time, the distance between the target molecule and the drug candidate molecule is limited so that the drug candidate molecule remains in the binding site.
  • the first stable binding structure is variously changed, and the disclosed method for calculating the stable binding structure is used to bind the target molecule and the drug candidate molecule with a stable binding structure.
  • drug candidate molecules are designed or selected.
  • the drug candidate molecule can be designed, for example, by de novo design.
  • the drug candidate molecule can be selected, for example, by selecting from a compound library.
  • a first stable binding structure between the drug candidate molecule designed or selected and the target molecule is determined. The determination method can be performed according to the method described above.
  • a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics.
  • the search method can be performed according to the method described above. Next, it is determined whether or not to end the search.
  • the determination method is not particularly limited.
  • the first stable bond structure is determined based on conditions different from the previous conditions. That is, a first stable bond structure different from the first stable bond structure is determined.
  • a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics.
  • it is determined whether or not to end the search If the search is not terminated, a different first stable bond structure is further determined. When the search is terminated, the binding free energy is calculated for the second stable bond structure finally searched.
  • the binding free energy of the stable binding structure of the target molecule and the drug candidate molecule is calculated using the calculation method of the stable binding structure while changing the structure of the drug candidate molecule in various ways.
  • drug candidate molecules are designed or selected.
  • the drug candidate molecule can be designed, for example, by de novo design.
  • the drug candidate molecule can be selected, for example, by selecting from a compound library.
  • a first stable binding structure between the drug candidate molecule designed or selected and the target molecule is determined. The determination method can be performed according to the method described above.
  • a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics.
  • the search method can be performed according to the method described above. Next, it is determined whether or not to end the search. The determination method is not particularly limited. If the search is not terminated, drug candidate molecules are designed or selected again. This design or selection is the design or selection of a drug candidate molecule different from the previous drug candidate molecule. Next, a first stable binding structure between the drug candidate molecule designed or selected and the target molecule is determined. Next, using the first stable bond structure as a starting bond structure, a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics. Next, it is determined whether or not to end the search. If the search is not terminated, a different drug candidate molecule is further designed or selected. When the search is terminated, the binding free energy is calculated for the second stable bond structure finally searched.
  • FIG. 7 illustrates a hardware configuration example of the disclosed apparatus.
  • the apparatus 10 is configured by connecting a CPU 11, a memory 12, a storage unit 13, a display unit 14, an input unit 15, an output unit 16, an I / O interface unit 17, and the like via a system bus 18.
  • a CPU (Central Processing Unit) 11 performs operations (four arithmetic operations, comparison operations, etc.), hardware and software operation control, and the like.
  • the memory 12 is a memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the RAM stores an OS (Operating System) and application programs read from the ROM and the storage unit 13, and functions as a main memory and work area of the CPU 11.
  • the storage unit 13 is a device that stores various programs and data, and is, for example, a hard disk.
  • the storage unit 13 stores a program executed by the CPU 11, data necessary for program execution, an OS, and the like.
  • the program is stored in the storage unit 13, loaded into the RAM (main memory) of the memory 12, and executed by the CPU 11.
  • the display unit 14 is a display device, for example, a display device such as a CRT monitor or a liquid crystal panel.
  • the input unit 15 is an input device for various data, such as a keyboard and a pointing device (for example, a mouse).
  • the output unit 16 is an output device for various data, and is, for example, a printer.
  • the I / O interface unit 17 is an interface for connecting various external devices. For example, input / output of data such as a CD-ROM, a DVD-ROM, an MO disk, and a USB memory is enabled.
  • RNA was used as a target molecule, and Theophylline was used as a drug candidate molecule.
  • the experimental value of the bond free energy of these bond structures (complexes) is ⁇ 8.92 kcal / mol.
  • the stable binding structure (binding pose) of the RNA and Theophylline was determined in consideration of hydrogen bond and van der Waals force.
  • the bond free energy of the obtained first stable bond structure (bonding pose A) is described in the literature [D. L. Mobley, J.M. D. Chodera, and K.C. A. Dill, J.M. Chem. Phys.
  • the second stable bond structure (bonding pose B) was searched using the molecular dynamics simulation package GROMACS using metadynamics. In the search, six states were prepared in the first stable coupling structure (coupling pose A). In this state, the momentum of atoms constituting Theophylline is determined by random numbers.
  • the bond free energy of the obtained second stable bond structure (bonding pose B) was determined by the alchemical conversion method with reference to the above-mentioned literature and found to be ⁇ 8.90 kcal / mol.

Abstract

A method of employing a computer to calculate a stable bonded structure comprising a target molecule and a drug candidate molecule, in which, when metadynamics is employed to search for a second stable bonded structure that is more stable than a first stable bonded structure comprising the target molecule and the drug candidate molecule, the second stable bonded structure is searched for by preparing a plurality of states for the first stable bonded structure.

Description

安定結合構造の算出方法、及び算出装置、並びにプログラムMethod, apparatus and program for calculating stable bond structure
 本件は、標的分子と薬候補分子との安定結合構造の算出方法、及び算出装置、並びに前記算出方法を実行するプログラムに関する。 This case relates to a method for calculating a stable binding structure between a target molecule and a drug candidate molecule, a calculation apparatus, and a program for executing the calculation method.
 近年、薬候補分子を実験的に探索するのに要する膨大な費用と労力とを削減するため、計算機による各種のシミュレーションが行われている。薬候補分子の計算とは、標的疾患(ターゲットとする疾患)に関与する標的分子に対して強く相互作用する分子(リガンド)を薬候補として計算することである。そこで、計算機による標的分子立体構造に基づく化合物のスクリーニングが活発に行われている。 In recent years, various types of computer simulations have been performed to reduce the enormous cost and labor required to experimentally search for drug candidate molecules. The calculation of a drug candidate molecule is to calculate a molecule (ligand) that strongly interacts with a target molecule involved in a target disease (target disease) as a drug candidate. Therefore, screening of compounds based on the target molecule steric structure by computers is actively performed.
 特に利用されている方法として、例えば、構造ベース薬剤設計方法(Structure-Based Drug Design,SBDD)が挙げられる(例えば、非特許文献1参照)。この方法は、標的分子(例えば、タンパク質)の立体構造情報に基づいた分子設計法である。 As a particularly utilized method, for example, there is a structure-based drug design method (Structure-Based Drug Design, SBDD) (for example, see Non-Patent Document 1). This method is a molecular design method based on the three-dimensional structure information of a target molecule (for example, protein).
 計算機を用いて、溶媒中での標的分子と薬候補分子との安定結合構造を探索する場合、標的分子の構造を一つの構造に固定して、薬候補分子をその結合サイトの中で形状がよく一致して、かつエネルギーが最小となることを目指して設計を行っている。このように、薬候補分子の設計と、標的分子と薬候補分子との安定結合構造の同定とを同時に得ることができる点が、計算機を利用した創薬の大きな利点である。
 しかし、このような方法により得られた標的分子と薬候補分子との安定結合構造は、現実の安定結合構造との乖離が大きく、前記薬候補分子は、期待したような活性値を示さないことがある。
When searching for a stable binding structure between a target molecule and a drug candidate molecule in a solvent using a computer, the target molecule structure is fixed to one structure, and the drug candidate molecule has a shape within the binding site. The design is aimed at achieving good agreement and minimizing energy. Thus, the great advantage of drug discovery using a computer is that drug candidate molecule design and identification of a stable binding structure between a target molecule and a drug candidate molecule can be simultaneously obtained.
However, the stable binding structure between the target molecule and drug candidate molecule obtained by such a method has a large discrepancy from the actual stable binding structure, and the drug candidate molecule does not show the activity value as expected. There is.
 本件は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本件は、安定な結合構造を効率的に算出できる安定結合構造の算出方法、及び算出装置、並びに前記算出方法を実行するプログラムを提供することを目的とする。 This issue is to solve the above-mentioned problems and achieve the following objectives. That is, an object of the present invention is to provide a calculation method and a calculation apparatus for a stable bond structure that can efficiently calculate a stable bond structure, and a program that executes the calculation method.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 開示の安定結合構造の算出方法は、
 計算機を用いた、標的分子及び薬候補分子の安定結合構造の算出方法であって、
 前記標的分子及び前記薬候補分子の第1の安定結合構造から、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する際に、前記第1の安定結合構造について複数の状態を用意して前記第2の安定結合構造の探索を行う。
Means for solving the problems are as follows. That is,
The method for calculating the disclosed stable bond structure is as follows:
A method for calculating a stable binding structure of a target molecule and a drug candidate molecule using a computer,
When searching for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and the drug candidate molecule, the first stability A plurality of states are prepared for the bond structure, and the second stable bond structure is searched.
 開示のプログラムは、コンピュータに、
 標的分子及び薬候補分子の第1の安定結合構造から、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する際に、前記第1の安定結合構造について複数の状態を用意して前記第2の安定結合構造の探索を行うことを実行させる。
The disclosed program is stored on a computer.
When searching for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and drug candidate molecule, the first stable binding structure A plurality of states are prepared for and the search for the second stable bond structure is executed.
 開示の安定結合構造の算出装置は、標的分子及び薬候補分子の第1の安定結合構造から、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する際に、前記第1の安定結合構造について複数の状態を用意して前記第2の安定結合構造の探索を行う探索部を備える。 The disclosed apparatus for calculating a stable binding structure searches for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and drug candidate molecule. In this case, a search unit for preparing a plurality of states for the first stable coupling structure and searching for the second stable coupling structure is provided.
 開示の安定結合構造の算出方法によると、従来における前記諸問題を解決し、前記目的を達成することができ、安定な結合構造を効率的に算出できる。
 開示のプログラムによると、従来における前記諸問題を解決し、前記目的を達成することができ、安定な結合構造を効率的に算出できる。
 開示の安定結合構造の算出装置によると、従来における前記諸問題を解決し、前記目的を達成することができ、安定な結合構造を効率的に算出できる。
According to the disclosed method for calculating a stable bond structure, the conventional problems can be solved, the object can be achieved, and a stable bond structure can be calculated efficiently.
According to the disclosed program, the conventional problems can be solved, the object can be achieved, and a stable coupling structure can be calculated efficiently.
According to the disclosed device for calculating a stable bond structure, the conventional problems can be solved, the object can be achieved, and a stable bond structure can be calculated efficiently.
図1Aは、シミュレーテッドアニーリングによる構造空間の探索の概念図である(その1)。FIG. 1A is a conceptual diagram of a structure space search by simulated annealing (part 1). 図1Bは、シミュレーテッドアニーリングによる構造空間の探索の概念図である(その2)。FIG. 1B is a conceptual diagram of structural space search by simulated annealing (part 2). 図1Cは、シミュレーテッドアニーリングによる構造空間の探索の概念図である(その3)。FIG. 1C is a conceptual diagram of structural space search by simulated annealing (part 3). 図2Aは、メタダイナミクスを用いた構造空間の探索の概念図である(その1)。FIG. 2A is a conceptual diagram of structure space search using metadynamics (part 1). 図2Bは、メタダイナミクスを用いた構造空間の探索の概念図である(その2)。FIG. 2B is a conceptual diagram of a structure space search using metadynamics (part 2). 図2Cは、メタダイナミクスを用いた構造空間の探索の概念図である(その3)。FIG. 2C is a conceptual diagram of structural space search using metadynamics (part 3). 図2Dは、メタダイナミクスを用いた構造空間の探索の概念図である(その4)。FIG. 2D is a conceptual diagram of structural space search using metadynamics (part 4). 図3Aは、自由エネルギーの等高線図の概念図である(その1)。FIG. 3A is a conceptual diagram of a contour map of free energy (part 1). 図3Bは、自由エネルギーの等高線図の概念図である(その2)。FIG. 3B is a conceptual diagram of a contour map of free energy (part 2). 図4は、開示の安定結合構造の算出方法の一例のフローチャートである。FIG. 4 is a flowchart of an example of the disclosed method for calculating a stable bond structure. 図5は、開示の安定結合構造の算出方法の応用例の一例のフローチャートである。FIG. 5 is a flowchart of an example of an application example of the disclosed method for calculating a stable coupling structure. 図6は、開示の安定結合構造の算出方法の応用例の他の一例のフローチャートである。FIG. 6 is a flowchart of another example of application of the disclosed method for calculating a stable coupling structure. 図7は、開示の装置のハードウエア構成例である。FIG. 7 is a hardware configuration example of the disclosed apparatus.
(安定結合構造の算出方法)
 開示の安定結合構造の算出方法は、計算機を用いた、標的分子及び薬候補分子の安定結合構造の算出方法である。
(Calculation method of stable bond structure)
The disclosed method for calculating a stable binding structure is a method for calculating a stable binding structure of a target molecule and a drug candidate molecule using a computer.
 計算機を用いて、溶媒中での標的分子と薬候補分子との安定結合構造(複合体構造)を探索しても、その探索結果に基づいて選択された薬候補分子の多くが、期待したような活性値を示さないことがある。それは、標的分子と選択された薬候補分子とが、現実には、上記方法で探索された安定結合構造をとっていないためと考えられる。 Even if a stable binding structure (complex structure) between a target molecule and a drug candidate molecule in a solvent is searched using a computer, many drug candidate molecules selected based on the search result are expected. May not show a good activity value. This is probably because the target molecule and the selected drug candidate molecule do not actually have the stable binding structure searched by the above method.
 そこで、本発明者は、シミュレーテッドアニーリングによる安定結合構造の探索を検討した。前記シミュレーテッドアニーリングでは、シミュレーション温度を高く設定して、室温のシミュレーションでは探索できない構造空間まで探索範囲を広げる。その後、徐々に温度を下げること(焼きなまし:アニーリング)によって、より安定な構造(安定結合構造)を見出すことができる。 Therefore, the present inventor examined the search for a stable bond structure by simulated annealing. In the simulated annealing, the simulation temperature is set high and the search range is expanded to a structure space that cannot be searched by room temperature simulation. Thereafter, by gradually lowering the temperature (annealing: annealing), a more stable structure (stable bonding structure) can be found.
 ここで、前記シミュレーテッドアニーリングによる構造空間の探索の概念図を図1A~図1Cを用いて説明する。まず、標的分子と薬候補分子との第1の安定結合構造(結合ポーズA)を任意の方法により決定する(図1A)。第1の安定結合構造(結合ポーズA)は、周囲の構造空間における結合構造よりもエネルギー的に安定である。次に、シミュレーション温度を高く設定することにより、構造空間の探索範囲が広くなる(図1B)。そして、アニーリングすることにより、第1の安定結合構造(結合ポーズA)よりも、より安定な第2の安定結合構造(結合ポーズB)を見つけることができる。 Here, a conceptual diagram of the structure space search by the simulated annealing will be described with reference to FIGS. 1A to 1C. First, the first stable binding structure (binding pose A) between the target molecule and drug candidate molecule is determined by an arbitrary method (FIG. 1A). The first stable bond structure (bonding pose A) is energetically more stable than the bond structure in the surrounding structure space. Next, the search range of the structure space is widened by setting the simulation temperature high (FIG. 1B). Then, by annealing, a second stable coupling structure (coupling pose B) that is more stable than the first stable coupling structure (coupling pose A) can be found.
 しかし、前記シミュレーテッドアニーリングには問題点がある。
 この方法の問題点は、高温時の設定温度が500℃~1,000℃と高いために、標的分子(例えば、タンパク質)の変性温度(60℃程度)を超えてしまうことである。そのため、標的分子が、アニーリング後に、室温での安定構造に戻らなくなってしまう。
 また、このようなシミュレーションは、水分子を陽に取り扱う必要があるため、古典ポテンシャルを用いたシミュレーションが行われる。しかし、一般に、水分子の物性をよく再現するとされるポテンシャルを用いた場合でも、有効なのは10℃~30℃程度の狭い温度領域である。そのため、前記シミュレーテッドアニーリングでは、水分子のネットワークが壊れてしまう。
 即ち、計算機支援の創薬システムにおいて、安定結合構造の探索に前記シミュレーテッドアニーリングを用いることは適切ではない。
However, the simulated annealing has a problem.
The problem with this method is that the set temperature at a high temperature is as high as 500 ° C. to 1,000 ° C., and thus exceeds the denaturation temperature (about 60 ° C.) of the target molecule (for example, protein). Therefore, the target molecule does not return to a stable structure at room temperature after annealing.
Moreover, since such a simulation needs to handle water molecules explicitly, a simulation using a classical potential is performed. However, in general, even in the case of using a potential that reproduces the physical properties of water molecules well, what is effective is a narrow temperature range of about 10 ° C. to 30 ° C. Therefore, in the simulated annealing, the water molecule network is broken.
That is, in the computer-aided drug discovery system, it is not appropriate to use the simulated annealing for searching for a stable bond structure.
 そこで、次に本発明者は、メタダイナミクスを用いた安定結合構造の探索を検討した。前記メタダイナミクスは、前記シミュレーテッドアニーリングとは異なり、ポテンシャルの谷をペナルティ関数で埋めていくことで、構造空間の探索範囲を広げようとするものである。そのため、前記メタダイナミクスでは、前記シミュレーテッドアニーリングのように、標的分子の変性が起こらず、かつ水分子のネットワークを壊すこともない。なお、前記ペナルティ関数には、ガウス分布が用いられることが多い。
 ただし、前記メタダイナミクスでは、前記ペナルティ関数を用いて、ある安定結合構造から脱出する際にどの安定結合構造を見つけるかは、その時の薬候補分子の速度方向に大きく依存してしまう。
Therefore, the present inventor next examined the search for a stable bond structure using metadynamics. Unlike the simulated annealing, the metadynamics attempts to widen the search range of the structure space by filling a potential valley with a penalty function. Therefore, in the metadynamics, the target molecule is not denatured and the water molecule network is not broken as in the simulated annealing. A Gaussian distribution is often used for the penalty function.
However, in the metadynamics, which stable bond structure is found when escaping from a certain stable bond structure using the penalty function greatly depends on the speed direction of the drug candidate molecule at that time.
 そこで、本発明者は、ある安定結合構造からメタダイナミクスを用いて他の安定結合構造を探索する際に前記ある安定結合構造について複数の状態を用意することにより、効率的に安定な結合構造を探索できることを見出した。 Therefore, the present inventor prepared a plurality of states for the certain stable bond structure when searching for another stable bond structure using metadynamics from a certain stable bond structure, thereby efficiently creating a stable bond structure. I found that I could search.
 前記メタダイナミクスとは、タブーサーチの1手法であり、座標軸に、存在確率に比例したポテンシャルを置く(ペナルティ関数を与える)ことで、一度訪れた領域への存在確率を抑制して座標上に平滑な確率分布を実現する手法である。
 言い換えれば、前記メタダイナミクスとは、系の自由エネルギー曲面(極小)に、ペナルティ関数により微小ポテンシャルを次々と足していき、自由エネルギー表面を平滑化する手法である。
 前記メタダイナミクスを用いることで、通常は稀にしか起きない事象の起きる確率を増大させることができる。
Metadynamics is a method of tabu search. By placing a potential proportional to the existence probability on the coordinate axis (giving a penalty function), the existence probability in the area once visited is suppressed and smoothed on the coordinates. This is a technique for realizing a simple probability distribution.
In other words, the metadynamics is a method of smoothing the free energy surface by successively adding a small potential to the free energy curved surface (minimum) of the system by a penalty function.
By using the metadynamics, it is possible to increase the probability of an event that normally occurs only rarely.
 ここで、ある安定結合構造(結合ポーズA)が存在する自由エネルギー曲面に微小ポテンシャルを追加し、他の安定結合構造(結合ポーズB)を探索する様子の一例を、図2A~図2Dを用いて説明する。
 まず、標的分子と薬候補分子との第1の安定結合構造(結合ポーズA)を任意の方法により決定する(図2A)。第1の安定結合構造(結合ポーズA)は、自由エネルギー曲面の極小に存在し、周囲の構造空間における結合構造よりもエネルギー的に安定である。次に、第1の安定結合構造(結合ポーズA)が存在する自由エネルギー曲面の谷に、ペナルティ関数により微小ポテンシャルを与える(図2B)。そうすると、構造空間の探索範囲が広くなる。第1の安定結合構造(結合ポーズA)が存在する自由エネルギー曲面の谷に微小ポテンシャルを次々と追加していくと、自由エネルギー表面は、自由エネルギー曲面の谷を構成するエネルギー障壁を超える(図2C)。そうすると、構造空間の探索範囲は更に広がり、第1の安定結合構造(結合ポーズA)よりも、より安定な第2の安定結合構造(結合ポーズB)を見つけることができる(図2D)。
Here, an example of adding a small potential to a free energy curved surface where a certain stable bond structure (bonding pose A) exists and searching for another stable bond structure (bonding pose B) is shown in FIGS. 2A to 2D. I will explain.
First, the first stable binding structure (binding pose A) between the target molecule and drug candidate molecule is determined by an arbitrary method (FIG. 2A). The first stable bond structure (bonding pose A) exists at the minimum of the free energy curved surface and is more energetically stable than the bond structure in the surrounding structure space. Next, a micropotential is given to the valley of the free energy curved surface where the first stable coupling structure (coupling pose A) exists (FIG. 2B). Then, the search range of the structure space is widened. When a micropotential is successively added to the valley of the free energy curved surface where the first stable coupling structure (bonding pose A) exists, the free energy surface exceeds the energy barrier constituting the valley of the free energy curved surface (see FIG. 2C). Then, the search range of the structure space is further expanded, and a second stable coupling structure (coupling pose B) that is more stable than the first stable coupling structure (coupling pose A) can be found (FIG. 2D).
 前記第1の安定結合構造は、前記標的分子及び前記薬候補分子の結合構造(結合ポーズ)である。前記第1の安定結合構造の決定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記標的分子及び前記薬候補分子の分子動力学シミュレーションにより決定してもよいし、フレキシブルドッキングにより決定してもよい。また、前記標的分子の結合サイトに、前記薬候補分子を、水素結合、ファンデルワールス力等を考慮して手動で配置してもよい。なお、前記第1の安定結合構造は、エネルギーの極小値であることが好ましいが、エネルギーの極小値である必要はない。 The first stable binding structure is a binding structure (binding pose) of the target molecule and the drug candidate molecule. The method for determining the first stable binding structure is not particularly limited and may be appropriately selected depending on the purpose. For example, it may be determined by molecular dynamics simulation of the target molecule and the drug candidate molecule. However, it may be determined by flexible docking. In addition, the drug candidate molecule may be manually placed at the binding site of the target molecule in consideration of hydrogen bonding, van der Waals force and the like. The first stable coupling structure preferably has a minimum energy value, but need not have a minimum energy value.
 前記分子動力学シミュレーションは、分子動力学計算プログラムを用いて行うことができる。前記分子動力学計算プログラムとしては、例えば、AMBER、CHARMm、GROMACS、GROMOS、NAMD、myPrestoなどが挙げられる。
 前記フレキシブルドッキングは、ドッキングプログラムを用いて行うことができる。前記ドッキングプログラムとしては、例えば、ICM、FlexE、ADAM、FlexX、ASdock、Ph4 dockなどが挙げられる。
The molecular dynamics simulation can be performed using a molecular dynamics calculation program. Examples of the molecular dynamics calculation program include AMBER, CHARMm, GROMACS, GROMOS, NAMD, myPresto, and the like.
The flexible docking can be performed using a docking program. Examples of the docking program include ICM, FlexE, ADAM, FlexX, AS dock, Ph4 dock, and the like.
 前記標的分子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、タンパク質、RNA(リボ核酸、ribonucleic acid)、DNA(デオキシリボ核酸、deoxyribonucleic acid)などが挙げられる。 The target molecule is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include protein, RNA (ribonucleic acid), DNA (deoxyribonucleic acid), and the like.
 前記第1の安定結合構造の決定、及び前記第2の安定結合構造の探索は、溶媒中で行うことが好ましく、水中で行うことがより好ましい。そうすることにより、生体内における結合構造により近い安定結合構造を得ることができる。 The determination of the first stable bond structure and the search for the second stable bond structure are preferably performed in a solvent, more preferably in water. By doing so, a stable bond structure closer to the bond structure in the living body can be obtained.
 計算機を用いた、標的分子及び薬候補分子の安定結合構造の算出に、前記メタダイナミクスを用いる際の、前記メタダイナミクスの具体的手法については、例えば、文献(Francesco Luigi Gervasio, Alessandro Laio, and Michele Parrinello, J. AM. CHEM. SOC. 2005,127, 2600-2607)を参照して行うことができる。 Regarding the specific method of the metadynamics when using the metadynamics for calculating the stable binding structure of the target molecule and drug candidate molecule using a computer, for example, literature (Francesco Luigi Gervasio, Alessandro Laio, and Michelle). Parrinello, J. AM. CHEM. SOC. 2005, 127, 2600-2607).
 前記メタダイナミクスを用いた前記第2の安定結合構造の探索は、例えば、前記標的分子及び前記薬候補分子の分子動力学シミュレーションにおいて、スナップショットにおける結合構造のポテンシャルエネルギーに対して、ペナルティ関数(ペナルティポテンシャル)を付与することにより行うことができる。
 前記ペナルティ関数としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、ガウス分布型の関数である。
 前記ペナルティ関数のパラメータにおける幅、高さとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記ペナルティ関数は、通常、複数回付与される。前記ペナルティ関数を付与する頻度(時間間隔)としては、特に制限はなく、目的に応じて適宜選択することができる。即ち、前記分子動力学シミュレーションにおける時間刻み(time step)毎に前記ペナルティ関数を付与してもよいし、数個の時間刻みを一単位として、その一単位毎に前記ペナルティ関数を付与してもよい。その際、使用される前記ペナルティ関数のパラメータは固定されていることが好ましい。
For example, in the molecular dynamics simulation of the target molecule and the drug candidate molecule, the search for the second stable binding structure using the metadynamics is performed with respect to the potential energy of the binding structure in the snapshot. This can be done by applying a potential.
The penalty function is not particularly limited and can be appropriately selected according to the purpose, but is usually a Gaussian function.
The width and height of the penalty function parameters are not particularly limited and can be appropriately selected depending on the purpose.
The penalty function is usually given a plurality of times. There is no restriction | limiting in particular as frequency (time interval) which provides the said penalty function, According to the objective, it can select suitably. That is, the penalty function may be given for each time step in the molecular dynamics simulation, or several time steps may be taken as one unit, and the penalty function may be given for each unit. Good. In that case, it is preferable that the parameter of the penalty function used is fixed.
 開示の技術においては、前記メタダイナミクスを用いて前記第1の安定結合構造よりも安定な前記第2の安定結合構造を探索する際に、前記第1の安定結合構造について複数の状態を用意する。
 その一例を図3A及び図3Bを用いて説明する。
 図3A及び図3Bは、自由エネルギーの等高線図の概念図である。
 図3Aに示すように、自由エネルギー地形には、例えば、第1の安定結合構造(結合ポーズA)が存在する自由エネルギーの谷と、より安定な第2の安定結合構造(結合ポーズB)が存在する自由エネルギーの谷とが存在する。
 開示の技術では、第1の安定結合構造(結合ポーズA)から、メタダイナミクスを用いてより安定な結合構造を探索する際に、第1の安定結合構造(結合ポーズA)の状態を複数用意する(図3B)。図3Bにおいて、結合ポーズAにおける矢印の1つ1つが、第1の安定結合構造(結合ポーズA)の1つの状態を意味する。
In the disclosed technology, when searching for the second stable bond structure that is more stable than the first stable bond structure using the metadynamics, a plurality of states are prepared for the first stable bond structure. .
An example thereof will be described with reference to FIGS. 3A and 3B.
3A and 3B are conceptual diagrams of free energy contour maps.
As shown in FIG. 3A, the free energy landform includes, for example, a free energy valley in which a first stable coupling structure (coupling pose A) exists and a more stable second stable coupling structure (coupling pose B). There is a valley of free energy that exists.
In the disclosed technology, when searching for a more stable bond structure using metadynamics from the first stable bond structure (bonding pose A), a plurality of states of the first stable bond structure (bonding pose A) are prepared. (FIG. 3B). In FIG. 3B, each one of the arrows in the coupling pose A means one state of the first stable coupling structure (coupling pose A).
 図3A及び図3Bでは、自由エネルギーの等高線図に第1の安定結合構造(結合ポーズA)及び第2の安定結合構造(結合ポーズB)の相対的な位置が示されているが、実際の自由エネルギー地形では、その相対的な位置は不明である。
 そのため、第1の安定結合構造(結合ポーズA)から、メタダイナミクスを用いてより安定な結合構造を探索する際に、第1の安定結合構造(結合ポーズA)の状態が1つであると、第2の安定結合構造(結合ポーズB)を見つけ出すことができない、又は見つけ出すのに非常に時間がかかる。
 一方、第1の安定結合構造(結合ポーズA)から、メタダイナミクスを用いてより安定な結合構造を探索する際に、第1の安定結合構造(結合ポーズA)の状態を複数用意することにより、第2の安定結合構造(結合ポーズB)を早く見つけることができる。
3A and 3B, the relative positions of the first stable coupling structure (coupling pose A) and the second stable coupling structure (coupling pose B) are shown in the free energy contour maps. In free energy terrain, its relative position is unknown.
Therefore, when searching for a more stable bond structure from the first stable bond structure (bonding pose A) using metadynamics, the state of the first stable bond structure (bonding pose A) is one. The second stable bond structure (bonding pose B) cannot be found or is very time consuming to find.
On the other hand, when searching for a more stable bond structure from the first stable bond structure (bonding pose A) using metadynamics, by preparing a plurality of states of the first stable bond structure (bonding pose A) The second stable coupling structure (coupling pose B) can be found quickly.
 図3Bでは、前記複数の状態として、7つの状態を用意したが、開示の技術においては、その数としては、特に制限はなく、計算時間、計算精度等に応じて適宜選択することができる。前記複数の状態の数としては、例えば、2個~60個などが挙げられる。 In FIG. 3B, seven states are prepared as the plurality of states. However, in the disclosed technology, the number is not particularly limited and can be appropriately selected according to calculation time, calculation accuracy, and the like. Examples of the number of the plurality of states include 2 to 60.
 前記複数の状態は、前記第1の安定結合構造における前記薬候補分子の原子の運動量を複数用意することにより、用意されることが好ましい。前記運動量は、手動で決定されてもよいし、乱数により決定されてもよい。例えば、前記薬候補分子を構成する各原子の運動量を、乱数により変化させ、前記複数の状態を用意してもよい。なお、その際、前記複数の状態における前記各原子の座標は、同じである。 The plurality of states are preferably prepared by preparing a plurality of momentums of atoms of the drug candidate molecule in the first stable bond structure. The momentum may be determined manually or by a random number. For example, the plurality of states may be prepared by changing the momentum of each atom constituting the drug candidate molecule by a random number. At that time, the coordinates of each atom in the plurality of states are the same.
 前記メタダイナミクスを用いた前記第2の安定結合構造の探索は、前記標的分子と前記薬候補分子との距離を制限して行われることが好ましい。そうすることにより、前記第1の安定結合構造について複数の状態を用意しても、計算量が膨大になることがない。
 前記標的分子と前記薬候補分子との距離の制限は、前記標的分子の結合サイトと前記薬候補分子との距離の制限であることが好ましく、前記結合サイト内に前記薬候補分子を留める制限であることがより好ましい。前記結合サイトから前記薬候補分子が出る場合には、安定結合構造は望めないためである。前記結合サイト内に前記薬候補分子を留める制限としては、例えば、前記標的分子の結合サイトを構成する原子と前記薬候補分子を構成する原子との距離を、前記結合サイトを構成する前記原子から前記結合サイトの外縁又は外縁の外側近傍までの距離に制限することなどが挙げられる。ここで、前記結合サイト内に前記薬候補分子の少なくとも一部が存在していれば、「前記結合サイト内に前記薬候補分子を留める」に該当する。
 なお、通常、前記第1の安定結合構造において、前記薬候補分子は、前記標的分子の結合サイト内に位置する。
The search for the second stable binding structure using the metadynamics is preferably performed by limiting the distance between the target molecule and the drug candidate molecule. By doing so, even if a plurality of states are prepared for the first stable coupling structure, the calculation amount does not become enormous.
The limitation on the distance between the target molecule and the drug candidate molecule is preferably the limitation on the distance between the binding site of the target molecule and the drug candidate molecule, and the limitation on retaining the drug candidate molecule in the binding site. More preferably. This is because a stable binding structure cannot be expected when the drug candidate molecule comes out of the binding site. Examples of the restriction of retaining the drug candidate molecule in the binding site include, for example, the distance between the atom constituting the binding site of the target molecule and the atom constituting the drug candidate molecule from the atom constituting the binding site. Limiting the distance to the outer edge of the binding site or the vicinity of the outer edge of the outer edge may be mentioned. Here, if at least a part of the drug candidate molecule is present in the binding site, it corresponds to “retain the drug candidate molecule in the binding site”.
Normally, in the first stable binding structure, the drug candidate molecule is located within the binding site of the target molecule.
 前記メタダイナミクスを用いた前記第2の安定結合構造の探索は、例えば、距離及び角度を含む座標空間内で行うことが好ましい。例えば、前記薬候補分子の長軸方向を形成する2つの原子(L1、L2)(ただし水素原子を除く)と、前記標的分子の結合サイトを構成する原子(R1)とを用いて、距離(R1-L1)、及び角度(R1-L1-L2)を定める。そして、前記距離(R1-L1)を前記結合サイトのわずか外側(例えば、0.5Å)までの範囲内にする。 The search for the second stable coupling structure using the metadynamics is preferably performed in a coordinate space including a distance and an angle, for example. For example, by using two atoms (L1, L2) (excluding a hydrogen atom) forming the major axis direction of the drug candidate molecule and an atom (R1) constituting a binding site of the target molecule, a distance ( R1-L1) and angle (R1-L1-L2) are defined. Then, the distance (R1-L1) is set within a range slightly outside the binding site (for example, 0.5 mm).
 前記安定結合構造の算出方法においては、前記第1の安定結合構造から前記第2の安定結合構造を探索する際に、複数の安定結合構造を見つけ出してもよい。そして、それら複数の安定結合構造から最も安定な安定結合構造を前記第2の安定結合構造として選択してもよい。 In the method of calculating the stable bond structure, a plurality of stable bond structures may be found when searching for the second stable bond structure from the first stable bond structure. Then, the most stable stable bond structure may be selected from the plurality of stable bond structures as the second stable bond structure.
 前記安定結合構造の算出方法は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ハードディスク、各種周辺機器等を備えた通常のコンピュータシステム(例えば、各種ネットワークサーバ、ワークステーション、パーソナルコンピュータ等)を用いることによって実現することができる。 The calculation method of the stable coupling structure is, for example, a normal computer system (for example, various network servers, workstations, personal computers) including a CPU (Central Processing Unit), a RAM (Random Access Memory), a hard disk, various peripheral devices, and the like. Etc.) can be realized.
(プログラム)
 開示のプログラムは、コンピュータに、開示の前記安定結合構造の算出方法を実行させるプログラムである。
 前記安定結合構造の算出方法の実行における好適な態様は、前記安定結合構造の算出方法における好適な態様と同じである。
(program)
The disclosed program is a program that causes a computer to execute the disclosed calculation method of the stable bond structure.
A preferable aspect in the execution of the method for calculating the stable bond structure is the same as the preferable aspect in the method for calculating the stable bond structure.
 前記プログラムは、使用するコンピュータシステムの構成及びオペレーティングシステムの種類・バージョンなどに応じて、公知の各種のプログラム言語を用いて作成することができる。 The program can be created using various known programming languages according to the configuration of the computer system to be used and the type / version of the operating system.
 前記プログラムは、内蔵ハードディスク、外付けハードディスクなどの記録媒体に記録しておいてもよいし、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、MOディスク(Magneto-Optical disk)、USBメモリ〔USB(Universal Serial Bus) flash drive〕などの記録媒体に記録しておいてもよい。前記プログラムをCD-ROM、DVD-ROM、MOディスク、USBメモリなどの記録媒体に記録する場合には、必要に応じて随時、コンピュータシステムが有する記録媒体読取装置を通じて、これを直接、又はハードディスクにインストールして使用することができる。また、コンピュータシステムから情報通信ネットワークを通じてアクセス可能な外部記憶領域(他のコンピュータ等)に前記プログラムを記録しておき、必要に応じて随時、前記外部記憶領域から情報通信ネットワークを通じてこれを直接、又はハードディスクにインストールして使用することもできる。
 前記プログラムは、複数の記録媒体に、任意の処理毎に分割されて記録されていてもよい。
The program may be recorded on a recording medium such as an internal hard disk or an external hard disk, a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), or an MO disk ( You may record on recording media, such as a Magneto-Optical disk and USB memory [USB (Universal Serial Bus) flash drive]. When the program is recorded on a recording medium such as a CD-ROM, DVD-ROM, MO disk, USB memory, etc., the program is directly stored on a hard disk or through a recording medium reader included in the computer system as needed. Can be installed and used. In addition, the program is recorded in an external storage area (another computer or the like) that is accessible from the computer system through the information communication network, and if necessary, the program is directly stored in the external storage area through the information communication network, or It can also be installed and used on a hard disk.
The program may be divided and recorded on a plurality of recording media for each arbitrary process.
(コンピュータが読み取り可能な記録媒体)
 開示のコンピュータが読み取り可能な記録媒体は、開示の前記プログラムを記録してなる。
 前記コンピュータが読み取り可能な記録媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、内蔵ハードディスク、外付けハードディスク、CD-ROM、DVD-ROM、MOディスク、USBメモリなどが挙げられる。
 前記記録媒体は、前記プログラムが任意の処理毎に分割されて記録された複数の記録媒体であってもよい。
(Computer-readable recording medium)
The disclosed computer-readable recording medium records the disclosed program.
The computer-readable recording medium is not particularly limited and can be appropriately selected according to the purpose. For example, an internal hard disk, an external hard disk, a CD-ROM, a DVD-ROM, an MO disk, a USB memory, etc. Is mentioned.
The recording medium may be a plurality of recording media on which the program is divided and recorded for each arbitrary process.
(安定結合構造の算出装置)
 開示の安定結合構造の算出装置は、探索部を少なくとも備え、更に必要に応じて、その他の部を備える。
 前記探索部では、標的分子及び薬候補分子の第1の安定結合構造から、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する際に、前記第1の安定結合構造について複数の状態を用意して前記第2の安定結合構造の探索を行う。
 前記複数の状態は、前記第1の安定結合構造における前記薬候補分子の原子の運動量を複数用意することにより、用意されることが好ましい。
 前記メタダイナミクスを用いた前記第2の安定結合構造の探索は、前記標的分子と前記薬候補分子との距離を制限して行われることが好ましい。前記標的分子と前記薬候補分子との距離の制限は、前記標的分子の結合サイトと前記薬候補分子との距離の制限であることが好ましい。前記標的分子の結合サイトと前記薬候補分子との距離の制限は、前記結合サイト内に前記薬候補分子を留める制限であることが好ましい。
(Stable bond structure calculation device)
The disclosed stable coupling structure calculation apparatus includes at least a search unit, and further includes other units as necessary.
In the search unit, the first stable binding structure of the target molecule and drug candidate molecule is searched for a second stable binding structure that is more stable than the first stable binding structure using metadynamics. A plurality of states are prepared for one stable bond structure, and the second stable bond structure is searched.
The plurality of states are preferably prepared by preparing a plurality of momentums of atoms of the drug candidate molecule in the first stable bond structure.
The search for the second stable binding structure using the metadynamics is preferably performed by limiting the distance between the target molecule and the drug candidate molecule. The limitation on the distance between the target molecule and the drug candidate molecule is preferably a limitation on the distance between the binding site of the target molecule and the drug candidate molecule. The limitation on the distance between the binding site of the target molecule and the drug candidate molecule is preferably a limitation that keeps the drug candidate molecule in the binding site.
 前記算出装置は、前記プログラムが任意の処理毎に分割されて記録された複数の記録媒体をそれぞれに備える複数の算出装置であってもよい。 The calculation device may be a plurality of calculation devices each including a plurality of recording media on which the program is divided and recorded for each arbitrary process.
 図4のフローチャートに沿って、開示の前記安定結合構造の算出方法の一例を説明する。
 まず、標的分子及び薬候補分子の第1の安定結合構造を決定する。この決定は、例えば、標的分子の結合サイト内に、水素結合、及びファンデルワールス力を考慮して、薬候補分子を配置することにより行う。これは、例えば、コンピュータに手動で前記標的分子及び前記薬候補分子の座標を入力することにより行われる。
 次に、前記第1の安定結合構造を出発の結合構造として、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する。この際に、前記第1の安定結合構造について複数の状態を用意する。また、この際に、前記標的分子と前記薬候補分子との距離は、前記結合サイト内に前記薬候補分子が留まるように制限される。
An example of the disclosed method for calculating the stable bond structure will be described with reference to the flowchart of FIG.
First, the first stable binding structure of the target molecule and drug candidate molecule is determined. This determination is performed, for example, by placing drug candidate molecules in the target molecule binding site in consideration of hydrogen bonding and van der Waals forces. This is performed, for example, by manually inputting the coordinates of the target molecule and the drug candidate molecule into a computer.
Next, using the first stable bond structure as a starting bond structure, a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics. At this time, a plurality of states are prepared for the first stable coupling structure. At this time, the distance between the target molecule and the drug candidate molecule is limited so that the drug candidate molecule remains in the binding site.
 図5のフローチャートを用いて、開示の前記安定結合構造の算出方法の応用例の一例を説明する。この例は、特定の薬候補分子について、第1の安定結合構造を種々変化させながら、開示の前記安定結合構造の算出方法を利用し、標的分子及び前記薬候補分子の安定結合構造の結合自由エネルギーを計算する例である。
 まず、薬候補分子の設計又は選択を行う。前記薬候補分子の設計は、例えば、de novoデザインにより行うことができる。前記薬候補分子の選択は、例えば、化合物ライブラリーからの選択により行うことができる。
 次に、設計又は選択された前記薬候補分子と、標的分子との第1の安定結合構造を決定する。決定方法は、既述の方法に従って行うことができる。
 次に、前記第1の安定結合構造を出発の結合構造として、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する。探索方法は、既述の方法に従って行うことができる。
 次に、探索を終了するかどうかを判断する。判断の方法は特に制限されない。
 探索を終了しない場合は、第1の安定結合構造を、前の条件とは異なる条件により決定する。即ち、先の第1の安定結合構造とは異なる第1の安定結合構造を決定する。そして、決定された前記第1の安定結合構造を出発の結合構造として、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する。
 次に、探索を終了するかどうかを判断する。
 探索を終了しない場合には、更に、異なる第1の安定結合構造の決定を行う。
 探索を終了する場合には、最終的に探索された第2の安定結合構造について、結合自由エネルギーの計算を行う。
An example of application of the disclosed method for calculating the stable coupling structure will be described with reference to the flowchart of FIG. In this example, for a specific drug candidate molecule, the first stable binding structure is variously changed, and the disclosed method for calculating the stable binding structure is used to bind the target molecule and the drug candidate molecule with a stable binding structure. This is an example of calculating energy.
First, drug candidate molecules are designed or selected. The drug candidate molecule can be designed, for example, by de novo design. The drug candidate molecule can be selected, for example, by selecting from a compound library.
Next, a first stable binding structure between the drug candidate molecule designed or selected and the target molecule is determined. The determination method can be performed according to the method described above.
Next, using the first stable bond structure as a starting bond structure, a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics. The search method can be performed according to the method described above.
Next, it is determined whether or not to end the search. The determination method is not particularly limited.
When the search is not terminated, the first stable bond structure is determined based on conditions different from the previous conditions. That is, a first stable bond structure different from the first stable bond structure is determined. Then, using the determined first stable bond structure as a starting bond structure, a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics.
Next, it is determined whether or not to end the search.
If the search is not terminated, a different first stable bond structure is further determined.
When the search is terminated, the binding free energy is calculated for the second stable bond structure finally searched.
 図6のフローチャートを用いて、開示の前記安定結合構造の算出方法の応用例の他の一例を説明する。この例は、薬候補分子の構造を種々変化させながら、前記安定結合構造の算出方法を利用し、標的分子及び前記薬候補分子の安定結合構造の結合自由エネルギーを計算する例である。
 まず、薬候補分子の設計又は選択を行う。前記薬候補分子の設計は、例えば、de novoデザインにより行うことができる。前記薬候補分子の選択は、例えば、化合物ライブラリーからの選択により行うことができる。
 次に、設計又は選択された前記薬候補分子と、標的分子との第1の安定結合構造を決定する。決定方法は、既述の方法に従って行うことができる。
 次に、前記第1の安定結合構造を出発の結合構造として、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する。探索方法は、既述の方法に従って行うことができる。
 次に、探索を終了するかどうかを判断する。判断の方法は特に制限されない。
 探索を終了しない場合は、再度、薬候補分子の設計又は選択を行う。この設計又は選択は、先の薬候補分子とは異なる薬候補分子の設計又は選択である。
 次に、設計又は選択された前記薬候補分子と、前記標的分子との第1の安定結合構造を決定する。
 次に、前記第1の安定結合構造を出発の結合構造として、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する。
 次に、探索を終了するかどうかを判断する。
 探索を終了しない場合には、更に、異なる薬候補分子の設計又は選択を行う。
 探索を終了する場合には、最終的に探索された第2の安定結合構造について、結合自由エネルギーの計算を行う。
Another example of application of the disclosed method for calculating a stable coupling structure will be described with reference to the flowchart of FIG. In this example, the binding free energy of the stable binding structure of the target molecule and the drug candidate molecule is calculated using the calculation method of the stable binding structure while changing the structure of the drug candidate molecule in various ways.
First, drug candidate molecules are designed or selected. The drug candidate molecule can be designed, for example, by de novo design. The drug candidate molecule can be selected, for example, by selecting from a compound library.
Next, a first stable binding structure between the drug candidate molecule designed or selected and the target molecule is determined. The determination method can be performed according to the method described above.
Next, using the first stable bond structure as a starting bond structure, a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics. The search method can be performed according to the method described above.
Next, it is determined whether or not to end the search. The determination method is not particularly limited.
If the search is not terminated, drug candidate molecules are designed or selected again. This design or selection is the design or selection of a drug candidate molecule different from the previous drug candidate molecule.
Next, a first stable binding structure between the drug candidate molecule designed or selected and the target molecule is determined.
Next, using the first stable bond structure as a starting bond structure, a second stable bond structure that is more stable than the first stable bond structure is searched using metadynamics.
Next, it is determined whether or not to end the search.
If the search is not terminated, a different drug candidate molecule is further designed or selected.
When the search is terminated, the binding free energy is calculated for the second stable bond structure finally searched.
 図7に、開示の装置のハードウエア構成例を示す。
 装置10は、例えば、CPU11、メモリ12、記憶部13、表示部14、入力部15、出力部16、I/Oインターフェース部17等がシステムバス18を介して接続されて構成される。
FIG. 7 illustrates a hardware configuration example of the disclosed apparatus.
For example, the apparatus 10 is configured by connecting a CPU 11, a memory 12, a storage unit 13, a display unit 14, an input unit 15, an output unit 16, an I / O interface unit 17, and the like via a system bus 18.
 CPU(Central Processing Unit)11は、演算(四則演算、比較演算等)、ハードウエア及びソフトウエアの動作制御などを行う。 A CPU (Central Processing Unit) 11 performs operations (four arithmetic operations, comparison operations, etc.), hardware and software operation control, and the like.
 メモリ12は、RAM(Random Access Memory)、ROM(Read Only Memory)などのメモリである。前記RAMは、前記ROM及び記憶部13から読み出されたOS(Operating System)及びアプリケーションプログラムなどを記憶し、CPU11の主メモリ及びワークエリアとして機能する。 The memory 12 is a memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory). The RAM stores an OS (Operating System) and application programs read from the ROM and the storage unit 13, and functions as a main memory and work area of the CPU 11.
 記憶部13は、各種プログラム及びデータを記憶する装置であり、例えば、ハードディスクである。記憶部13には、CPU11が実行するプログラム、プログラム実行に必要なデータ、OSなどが格納される。
 前記プログラムは、記憶部13に格納され、メモリ12のRAM(主メモリ)にロードされ、CPU11により実行される。
The storage unit 13 is a device that stores various programs and data, and is, for example, a hard disk. The storage unit 13 stores a program executed by the CPU 11, data necessary for program execution, an OS, and the like.
The program is stored in the storage unit 13, loaded into the RAM (main memory) of the memory 12, and executed by the CPU 11.
 表示部14は、表示装置であり、例えば、CRTモニタ、液晶パネル等のディスプレイ装置である。
 入力部15は、各種データの入力装置であり、例えば、キーボード、ポインティングデバイス(例えば、マウス等)などである。
 出力部16は、各種データの出力装置であり、例えば、プリンタである。
 I/Oインターフェース部17は、各種の外部装置を接続するためのインターフェースである。例えば、CD-ROM、DVD-ROM、MOディスク、USBメモリなどのデータの入出力を可能にする。
The display unit 14 is a display device, for example, a display device such as a CRT monitor or a liquid crystal panel.
The input unit 15 is an input device for various data, such as a keyboard and a pointing device (for example, a mouse).
The output unit 16 is an output device for various data, and is, for example, a printer.
The I / O interface unit 17 is an interface for connecting various external devices. For example, input / output of data such as a CD-ROM, a DVD-ROM, an MO disk, and a USB memory is enabled.
 以下、開示の技術について説明するが、開示の技術は下記実施例に何ら限定されるものではない。 Hereinafter, the disclosed technology will be described, but the disclosed technology is not limited to the following examples.
(実施例1)
 標的分子としてRNA、及び薬候補分子としてTheophyllineを用いた。これらの結合構造(複合体)の結合自由エネルギーの実験値は、-8.92kcal/molである。
 前記RNA、及びTheophyllineの安定結合構造(結合ポーズ)を、水素結合、及びファンデルワールス力を考慮して決定した。得られた第1の安定結合構造(結合ポーズA)の結合自由エネルギーを、文献〔D.L.Mobley, J.D.Chodera, and K.A.Dill, J.Chem.Phys., 125, 084902, (2006)〕を参照してアルケミカル変換法により求めたところ、-6.01kcal/molであった。
 更に、第1の安定結合構造(結合ポーズA)から、メタダイナミクスを用いて、分子動力学シミュレーションパッケージGROMACSにより第2の安定結合構造(結合ポーズB)を探索した。探索の際、第1の安定結合構造(結合ポーズA)において、6個の状態を用意した。この状態は、Theophyllineを構成する原子の運動量を乱数で決定したものである。得られた第2の安定結合構造(結合ポーズB)の結合自由エネルギーを、前記文献を参照してアルケミカル変換法により求めたところ、-8.90kcal/molであった。
 一般的に、実験を計算機シミュレーションが置き換える目安として、化学精度(±1.4kcal/mol)が必要と言われている。開示の技術を用いない場合(結合ポーズA)よりも、開示の技術を用いた場合(結合ポーズB)の方が、実験値に近く、かつ化学精度を十分に満たすものであった。
(Example 1)
RNA was used as a target molecule, and Theophylline was used as a drug candidate molecule. The experimental value of the bond free energy of these bond structures (complexes) is −8.92 kcal / mol.
The stable binding structure (binding pose) of the RNA and Theophylline was determined in consideration of hydrogen bond and van der Waals force. The bond free energy of the obtained first stable bond structure (bonding pose A) is described in the literature [D. L. Mobley, J.M. D. Chodera, and K.C. A. Dill, J.M. Chem. Phys. , 125, 084902, (2006)], it was found to be −6.01 kcal / mol by the alchemical conversion method.
Furthermore, from the first stable bond structure (bonding pose A), the second stable bond structure (bonding pose B) was searched using the molecular dynamics simulation package GROMACS using metadynamics. In the search, six states were prepared in the first stable coupling structure (coupling pose A). In this state, the momentum of atoms constituting Theophylline is determined by random numbers. The bond free energy of the obtained second stable bond structure (bonding pose B) was determined by the alchemical conversion method with reference to the above-mentioned literature and found to be −8.90 kcal / mol.
In general, it is said that chemical accuracy (± 1.4 kcal / mol) is necessary as a standard for replacing experiments with computer simulation. The case of using the disclosed technique (binding pose B) was closer to the experimental value and sufficiently satisfying the chemical accuracy than the case of not using the disclosed technique (binding pose A).
Figure JPOXMLDOC01-appb-T000001
 表1中の数値の単位は、kcal/molである。
Figure JPOXMLDOC01-appb-T000001
The unit of numerical values in Table 1 is kcal / mol.
 10  装置
 11  CPU
 12  メモリ
 13  記憶部
 14  表示部
 15  入力部
 16  出力部
 17  I/Oインターフェース部
 18  システムバス
10 device 11 CPU
12 Memory 13 Storage Unit 14 Display Unit 15 Input Unit 16 Output Unit 17 I / O Interface Unit 18 System Bus

Claims (11)

  1.  計算機を用いた、標的分子及び薬候補分子の安定結合構造の算出方法であって、
     前記標的分子及び前記薬候補分子の第1の安定結合構造から、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する際に、前記第1の安定結合構造について複数の状態を用意して前記第2の安定結合構造の探索を行うことを特徴とする安定結合構造の算出方法。
    A method for calculating a stable binding structure of a target molecule and a drug candidate molecule using a computer,
    When searching for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and the drug candidate molecule, the first stability A method for calculating a stable bond structure, comprising preparing a plurality of states for a bond structure and searching for the second stable bond structure.
  2.  前記複数の状態が、前記第1の安定結合構造における前記薬候補分子の原子の運動量を複数用意することにより、用意される請求項1に記載の安定結合構造の算出方法。 The method for calculating a stable binding structure according to claim 1, wherein the plurality of states are prepared by preparing a plurality of momentums of atoms of the drug candidate molecule in the first stable binding structure.
  3.  前記第2の安定結合構造の探索が、前記標的分子と前記薬候補分子との距離を制限して行われる請求項1から2のいずれかに記載の安定結合構造の算出方法。 The method for calculating a stable binding structure according to any one of claims 1 to 2, wherein the search for the second stable binding structure is performed by limiting a distance between the target molecule and the drug candidate molecule.
  4.  前記標的分子と前記薬候補分子との距離の制限が、前記標的分子の結合サイトと前記薬候補分子との距離の制限である請求項3に記載の安定結合構造の算出方法。 The method for calculating a stable binding structure according to claim 3, wherein the limitation on the distance between the target molecule and the drug candidate molecule is a limitation on the distance between the binding site of the target molecule and the drug candidate molecule.
  5.  前記標的分子の結合サイトと前記薬候補分子との距離の制限が、前記結合サイト内に前記薬候補分子を留める制限である請求項4に記載の安定結合構造の算出方法。 The method for calculating a stable binding structure according to claim 4, wherein the restriction on the distance between the binding site of the target molecule and the drug candidate molecule is a restriction of retaining the drug candidate molecule in the binding site.
  6.  コンピュータに、
     標的分子及び薬候補分子の第1の安定結合構造から、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する際に、前記第1の安定結合構造について複数の状態を用意して前記第2の安定結合構造の探索を行うこと、を実行させることを特徴とするプログラム。
    On the computer,
    When searching for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and drug candidate molecule, the first stable binding structure A program for executing a search for the second stable coupling structure by preparing a plurality of states for.
  7.  前記複数の状態が、前記第1の安定結合構造における前記薬候補分子の原子の運動量を複数用意することにより、用意される請求項6に記載のプログラム。 The program according to claim 6, wherein the plurality of states are prepared by preparing a plurality of momentums of atoms of the drug candidate molecule in the first stable bond structure.
  8.  前記第2の安定結合構造の探索が、前記標的分子と前記薬候補分子との距離を制限して行われる請求項6から7のいずれかに記載のプログラム。 The program according to any one of claims 6 to 7, wherein the search for the second stable binding structure is performed by limiting a distance between the target molecule and the drug candidate molecule.
  9.  前記標的分子と前記薬候補分子との距離の制限が、前記標的分子の結合サイトと前記薬候補分子との距離の制限である請求項8に記載のプログラム。 The program according to claim 8, wherein the limitation on the distance between the target molecule and the drug candidate molecule is a limitation on the distance between the binding site of the target molecule and the drug candidate molecule.
  10.  前記標的分子の結合サイトと前記薬候補分子との距離の制限が、前記結合サイト内に前記薬候補分子を留める制限である請求項9に記載のプログラム。 10. The program according to claim 9, wherein the restriction on the distance between the binding site of the target molecule and the drug candidate molecule is a restriction of retaining the drug candidate molecule in the binding site.
  11.  標的分子及び薬候補分子の第1の安定結合構造から、メタダイナミクスを用いて前記第1の安定結合構造よりも安定な第2の安定結合構造を探索する際に、前記第1の安定結合構造について複数の状態を用意して前記第2の安定結合構造の探索を行う探索部を備えることを特徴とする安定結合構造の算出装置。 When searching for a second stable binding structure that is more stable than the first stable binding structure using metadynamics from the first stable binding structure of the target molecule and drug candidate molecule, the first stable binding structure And a search unit that prepares a plurality of states and searches for the second stable bond structure.
PCT/JP2014/079635 2014-11-07 2014-11-07 Method of calculating stable bonded structure, calculating device, and program WO2016072027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079635 WO2016072027A1 (en) 2014-11-07 2014-11-07 Method of calculating stable bonded structure, calculating device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079635 WO2016072027A1 (en) 2014-11-07 2014-11-07 Method of calculating stable bonded structure, calculating device, and program

Publications (1)

Publication Number Publication Date
WO2016072027A1 true WO2016072027A1 (en) 2016-05-12

Family

ID=55908779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079635 WO2016072027A1 (en) 2014-11-07 2014-11-07 Method of calculating stable bonded structure, calculating device, and program

Country Status (1)

Country Link
WO (1) WO2016072027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130529A1 (en) * 2017-12-28 2019-07-04 富士通株式会社 Method and device for computing stable binding structure and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257297A (en) * 2009-04-27 2010-11-11 Fujitsu Ltd Device, program, and method for searching molecule stable structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257297A (en) * 2009-04-27 2010-11-11 Fujitsu Ltd Device, program, and method for searching molecule stable structure

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRANCE SCO LUIGI GERVASIO ET AL.: "Flexible Docking in Solution Using Metadynamics", J.AM. CHEM.SOC., vol. 127, no. 8, 2005, pages 2600 - 2607, XP055278536 *
HISAZUMI AKAI, MITSUDO HANKANSU-HO NO HATTEN, 30 June 2012 (2012-06-30), Kazuhiro IKEDA, pages 132 - 134 *
TAKAHISA NAKAI: "Intrinsic Nature of Protein Structures from Distance Geometry Calculation", BIOPHYSICS, vol. 34, no. 1, February 1994 (1994-02-01), pages 33 - 41, XP055278544 *
YUKIHIRO MURATA ET AL.: "The Use of Automated Weighting to Generate an Objective Function by Penalty Method", IPSJ SIG NOTES, vol. 2006, no. 135, 22 December 2006 (2006-12-22), pages 9 - 12 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130529A1 (en) * 2017-12-28 2019-07-04 富士通株式会社 Method and device for computing stable binding structure and program

Similar Documents

Publication Publication Date Title
Chemmangattuvalappil et al. A novel methodology for property-based molecular design using multiple topological indices
Dhanik et al. DINC: a new AutoDock-based protocol for docking large ligands
Nantasenamat et al. Maximizing computational tools for successful drug discovery
Hu et al. Pfizer Global Virtual Library (PGVL): a chemistry design tool powered by experimentally validated parallel synthesis information
JP6186785B2 (en) Binding free energy calculation method, binding free energy calculation device, program, and compound screening method
Luo et al. A fast protein-ligand docking algorithm based on hydrogen bond matching and surface shape complementarity
Brylinski e matchsite: Sequence order-independent structure alignments of ligand binding pockets in protein models
US11501849B2 (en) Method for calculating binding free energy, calculation device, and program
US20200321081A1 (en) Method and device for computing stable binding structure and computer-readable recording medium recording program
JP7379810B2 (en) Binding free energy calculation method, calculation device, and program
Gupta et al. Standardization of virtual-screening and post-processing protocols relevant to in-silico drug discovery
WO2016072027A1 (en) Method of calculating stable bonded structure, calculating device, and program
JP7011144B2 (en) Calculation method and calculation device of bond free energy, and program
JP2017091180A (en) Pretreatment method for binding free energy calculation, calculating method for binding free energy, device, and program
JP6652733B2 (en) Method and apparatus for calculating binding free energy and program
US20190179999A1 (en) Method and device for searching binding site of target molecule
JP6311320B2 (en) CONNECTION STRUCTURE CALCULATION METHOD, CALCULATION DEVICE, PROGRAM, AND RECORDING MEDIUM
JP6488728B2 (en) Anchor point determination method, bond free energy calculation method, calculation device, and program
JP7404705B2 (en) Crystal material analysis equipment, crystal material analysis method, and crystal material analysis program
JP6409880B2 (en) INTERACTION ENERGY CALCULATION METHOD, CALCULATION DEVICE, AND PROGRAM
JP6940752B2 (en) Probe molecule placement method and placement device, target molecule binding site search method, search device, and program
Sasidharan et al. Molecular Dynamics Simulation to Study Protein Conformation and Ligand Interaction
US20210125682A1 (en) Method of determining collective coordinate, information processing device, and computer-readable recording medium recording program
Jayakody et al. Computational elucidation and validation of the three-dimensional structure of humanized aldolase catalytic antibody 38C2
JP2017091179A (en) Interaction energy calculation method, calculation device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP