WO2016071967A1 - Lithium-ion cell and method for manufacturing same - Google Patents

Lithium-ion cell and method for manufacturing same Download PDF

Info

Publication number
WO2016071967A1
WO2016071967A1 PCT/JP2014/079298 JP2014079298W WO2016071967A1 WO 2016071967 A1 WO2016071967 A1 WO 2016071967A1 JP 2014079298 W JP2014079298 W JP 2014079298W WO 2016071967 A1 WO2016071967 A1 WO 2016071967A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
lithium ion
ion battery
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2014/079298
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 加賀
利光 野口
和明 直江
新平 尼崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/079298 priority Critical patent/WO2016071967A1/en
Publication of WO2016071967A1 publication Critical patent/WO2016071967A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion battery and a method for producing the same, and more particularly to a lithium ion battery in which a positive electrode and a negative electrode are separated by a separator.
  • lithium ion secondary batteries have been attracting attention because they have the advantages of high energy density, long cycle life, low self-discharge characteristics, and high operating voltage. Lithium ion secondary batteries have the advantages described above, and are therefore widely used in portable electronic devices such as digital cameras, notebook personal computers, and mobile phones.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-280724 has a laminate formed by sequentially laminating a positive electrode, a separator, and a negative electrode, and at least one of the positive electrode and the negative electrode has a grain structure in consideration of high output.
  • a lithium ion battery is described as an electrochemical device including active material particles having a small diameter. In a lithium ion battery, discharging or charging is performed by moving lithium ions between a positive electrode and a negative electrode through pores opened in a separator.
  • Patent Document 1 provides pores that penetrate the laminate in the stacking direction of the laminate. Moreover, in patent document 1, in order to prevent that a short circuit arises when an active material falls from a positive electrode or a negative electrode, the average diameter of the said pore is made smaller than the average particle diameter of active material particle.
  • the average diameter of the pores opened in the separator is limited to be smaller than the average particle diameter of the active material particles, in order to reduce the internal resistance of the lithium ion battery and improve the output performance of the lithium ion battery It is difficult to improve the diffusibility of lithium ions in the separator.
  • a lithium ion battery has a positive electrode and a negative electrode containing an electrode active material, and a separator that separates the electrodes, and is a groove that penetrates from the front surface to the back surface of the separator, and has a short direction.
  • the slit width is less than the average diameter of the electrode active material and the length in the longitudinal direction is not less than the average diameter of the electrode active material.
  • the width in the short direction is less than the average diameter of the electrode active material, and the length in the longitudinal direction is greater than or equal to the average diameter of the electrode active material.
  • FIG. 8 is an overhead view showing a method for manufacturing the lithium ion battery following FIG. 7.
  • FIG. 9 is an overhead view showing a method for manufacturing a lithium ion battery following FIG. 8.
  • FIG. 10 is an overhead view showing a method for manufacturing the lithium ion battery following FIG. 9. It is an overhead view which shows the manufacturing method of the lithium ion battery following FIG.
  • FIG. 1 is a plan view of a positive electrode plate constituting the lithium ion battery of the present embodiment.
  • FIG. 2 is a plan view of the positive electrode plate constituting the lithium ion battery of the present embodiment.
  • FIG. 2 is a plan view of the negative electrode plate constituting the lithium ion battery of the present embodiment.
  • FIG. 3 is a schematic view showing a laminated structure of a laminated body constituting the lithium ion battery of the present embodiment.
  • FIG. 4 is an overhead view showing a wound body constituting the lithium ion battery according to the present embodiment.
  • FIG. 5 is a bird's-eye view showing a part of the lithium ion battery of the present embodiment.
  • FIG. 6 is a schematic diagram for explaining the operation of the lithium ion battery.
  • FIG. 1 shows a positive electrode sheet PEL constituting the positive electrode of the lithium ion battery of the present embodiment.
  • the positive electrode sheet PEL has a foil-like positive electrode plate PEP. Further, the positive electrode sheet PEL has an electrode material film PEF that is in contact with the positive electrode plate PEP so as to cover the surface of the positive electrode plate PEP and the back surface opposite to the front surface. That is, the positive electrode plate PEP is sandwiched between the pair of electrode material films PEF. In the figure, the electrode material film PEF on the back surface side of the positive electrode plate PEP is not shown.
  • the electrode material film PEF is formed by, for example, applying a slurry obtained by mixing a positive electrode active material PAS made of lithium cobalt oxide with carbon as a conductive additive and a binder to a positive electrode plate PEP, and then drying and solidifying the slurry. Film.
  • the binder (binder) between the positive electrode plate PEP and the positive electrode active material PAS is made of, for example, polyvinylidene fluoride.
  • the slurry of the positive electrode is formed by a solution in which the binder, the positive electrode active material PAS, and carbon as a conductive additive are dissolved in N methylpyrrolidone (NMP).
  • the average particle diameter of the plurality of particles (active material particles) constituting the positive electrode active material PAS is, for example, 10 ⁇ m.
  • the film thickness of the electrode material film PEF in contact with one surface of the positive electrode plate PEP is, for example, 10 to 100 ⁇ m. That is, the particles constituting the plurality of positive electrode active materials PAS are stacked on the surface of the positive electrode plate PEP.
  • the positive electrode sheet PEL made of the positive electrode plate PEP and the electrode material film PEF is a thin sheet extending in one direction. That is, the positive electrode plate PEP and the electrode material film PEF extend in the above-described direction, that is, the longitudinal direction.
  • the longitudinal direction of a sheet such as the positive electrode sheet PEL may be simply referred to as an X direction (first direction).
  • the surface of the electrode material film PEF, that is, the surface opposite to the surface in contact with the positive electrode plate PEP is smoothed.
  • a plurality of current collecting tabs PTAB are formed.
  • the short direction of a sheet such as the positive electrode sheet PEL may be simply referred to as a Y direction (second direction).
  • the plurality of positive electrode current collecting tabs PTAB are arranged along one side of the end of the positive electrode plate PEP in the Y direction, and are formed in an uncoated portion of the positive electrode active material PAS. That is, the positive electrode current collection tab PTAB is exposed from the positive electrode active material PAS, and a plurality of the positive electrode current collection tabs PTAB are arranged in the X direction along one side of the positive electrode sheet PEL.
  • FIG. 2 shows a negative electrode sheet NEL constituting the negative electrode of the lithium ion battery of the present embodiment.
  • the negative electrode sheet NEL has a foil-like negative electrode plate NEP.
  • the negative electrode sheet NEL has an electrode material film NEF that is in contact with the negative electrode plate NEP so as to cover the surface of the negative electrode plate NEP and the back surface opposite to the surface. That is, the negative electrode plate NEP is sandwiched between the pair of electrode material films NEF. In the figure, the electrode material film NEF on the back side of the negative electrode plate NEP is not shown.
  • the electrode material film NEF is formed by applying a slurry obtained by mixing carbon as a conductive additive and a binder (binder) to a negative electrode active material NAS made of a carbon material (carbon material) and then drying the slurry on the negative electrode plate NEP.
  • a binder binder
  • the binder (binder) between the negative electrode plate NEP and the negative electrode active material NAS is made of, for example, polyvinylidene fluoride.
  • the slurry of the negative electrode is formed by a solution in which the binder, the negative electrode active material NAS, and carbon as a conductive additive are dissolved in N methylpyrrolidone (NMP).
  • the average particle diameter of the plurality of particles (active material particles) constituting the negative electrode active material NAS is, for example, 10 ⁇ m.
  • the film thickness of the electrode material film NEF in contact with one surface of the negative electrode plate NEP is, for example, 10 to 100 ⁇ m. That is, the particles constituting the plurality of negative electrode active materials NAS are stacked on the surface of the negative electrode plate NEP.
  • the negative electrode sheet NEL made of the negative electrode plate NEP and the electrode material film NEF is a thin sheet extending in one direction. That is, the negative electrode plate NEP and the electrode material film NEF extend in the above-described direction, that is, the longitudinal direction (X direction).
  • the surface of the electrode material film NEF, that is, the surface opposite to the surface in contact with the negative electrode plate NEP is smoothed.
  • One end of the short direction (Y direction) that is along the surface of the negative electrode plate NEP and perpendicular to the longitudinal direction of the negative electrode plate NEP is cut and protruded in the Y direction.
  • a plurality of tabs NTAB are formed.
  • the plurality of negative electrode current collecting tabs NTAB are arranged along one side of the end of the negative electrode plate NEP in the Y direction, and are formed in an uncoated portion of the negative electrode active material NAS. That is, the negative electrode current collecting tab NTAB is exposed from the negative electrode active material NAS.
  • the electrode winding body WRF (see FIG. 4) is a laminate in which a positive electrode sheet PEL, a separator SP1, a negative electrode sheet NEL, and a separator SP2 are sequentially stacked, as shown in FIG. It is formed by winding.
  • the length of the laminate in the X direction is, for example, several tens of centimeters to several meters.
  • the slit part ST of the separator SP1 is opened between the positive electrode sheet PEL and the negative electrode sheet NEL.
  • the X direction and the Y direction are directions along the surface of the separator SP1 or SP2 facing the positive electrode sheet PEL or the negative electrode sheet NEL.
  • the separator SP1 and the separator SP2 shown in FIG. 3 are sheets made of an insulating material for insulating the positive electrode sheet PEL and the negative electrode sheet NEL.
  • each of the separators SP1 and SP2 is a sheet formed by stretching a resin film.
  • the positive electrode current collecting tab PTAB formed on one side in the short direction of the positive electrode sheet PEL and the negative electrode current collecting tab NTAB formed on one side in the short direction of the negative electrode sheet NEL are arranged on the opposite sides in the Y direction. Has been.
  • the separator SP1 is enlarged and shown in the lower part of the figure.
  • the separator SP2 has the same structure as the separator SP1.
  • Each of the plurality of slit portions ST reaches from the surface of the separator SP1 to the back surface opposite to the surface. That is, the slit part ST penetrates the separator SP1 in the thickness direction of the separator SP1.
  • Each slit part ST is a groove extending in the longitudinal direction of the separator SP1.
  • the shape of the opening of the slit part ST in plan view is a rectangle. However, the shape of the opening of the slit part ST in plan view may be a polygon such as a trapezoid or a hexagon, or an ellipse.
  • the extending direction of the slit part ST that is, the length L1 of each slit part ST in the X direction has a size equal to or larger than the respective average particle diameters of the positive electrode active material PAS and the negative electrode active material NAS, and in the X direction. It has a size smaller than the length of the separator SP1.
  • the width W1 of each slit portion ST in the Y direction is less than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS.
  • the width W1 is 9 ⁇ m.
  • a width W2 between adjacent slit portions ST in the Y direction is, for example, about 1 cm.
  • each of the separators SP1 and SP2 is a sheet formed by stretching a resin film
  • the resin film has a three-dimensional network structure.
  • the resin film has a width larger than the width W1.
  • a large number of small pores (not shown) are opened.
  • the pore diameter is several tens to several hundreds nm. That is, the average diameter of the pores is less than the average particle diameter of each of the positive electrode active material PAS and the negative electrode active material NAS.
  • the material of the resin film for example, polyolefin resin, polyester, polyimide, polyamide, cellulose, or the like can be used.
  • the electrode winding body WRF is obtained by winding a laminated sheet (laminated body) in which a positive electrode sheet PEL, a separator SP1, a negative electrode sheet NEL, and a separator SP2 are superposed on an axis CR. Is formed.
  • the electrode winding body WRF is viewed from above in the extending direction of the axis CR, the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 are wound in a spiral shape around the axis CR. That is, the slit portion ST formed in the electrode winding body WRF extends in a spiral shape on the surface along the direction orthogonal to the extending direction of the shaft core CR.
  • FIG. 5 shows an overhead view of the lithium ion battery LB of the present embodiment.
  • the electrode winding body WRF and the like in the outer can CS are shown through the outer can CS and the cap CP, which are containers constituting the lithium ion battery LB.
  • the lithium ion battery LB has an outer can CS and a cap CP that seals the upper portion of the outer can CS.
  • An electrode winding body WRF is inserted into the outer can CS.
  • the electrolyte EL is injected (filled) into the outer can CS so that the entire electrode winding body WRF is immersed therein.
  • a positive electrode current collection ring PR is provided at one end in a direction (Y direction) along the central axis of the cylindrical electrode winding body WRF. That is, the positive electrode current collection ring PR is disposed at one end in the extending direction of the shaft core CR (see FIG. 4).
  • a plurality of positive current collecting tabs PTAB protruding from the positive electrode sheet PEL (see FIG. 4) constituting the electrode winding body WRF are connected to the positive current collecting ring PR. That is, the positive electrode current collection ring PR is electrically connected to the positive electrode sheet PEL (see FIG. 4) via the positive electrode current collection tab PTAB, and is not connected to the negative electrode sheet NEL.
  • the negative electrode current collector ring NR disposed at the other end in the Y direction of the electrode winding body WRF is electrically connected to the negative electrode sheet NEL (see FIG. 4) via a plurality of negative electrode current collector tabs NTAB. It is connected to the.
  • the side wall of the cylindrical outer can CS is partially recessed to form a groove DT.
  • the groove DT is formed along the side wall of the outer can CS so as to make one round around the central axis of the cylindrical outer can CS.
  • the groove DT is provided to fix the electrode winding body WRF inserted in the outer can CS so as not to move in the vertical direction.
  • the lithium ion battery LB of the present embodiment has a structure as described above.
  • the lithium ion battery is a kind of non-aqueous electrolyte secondary battery, and is a secondary battery in which lithium ions in the electrolyte are responsible for electrical conduction.
  • a lithium metal oxide is used for the positive electrode active material PAS, which is the amount of the positive electrode material
  • a carbon material such as graphite is used for the negative electrode active material NAS, which is the negative electrode material.
  • an organic solvent such as ethylene carbonate and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) are used for the electrolyte EL made of an electrolyte.
  • the electrolyte EL is a liquid filled in order to cause a charge / discharge reaction between the positive electrode PE and the negative electrode NE when a voltage is applied to the positive electrode PE or the negative electrode NE.
  • lithium ions exit from the positive electrode PE and enter the negative electrode NE during charging, and conversely during discharge, the lithium ions exit from the negative electrode NE and enter the positive electrode PE.
  • An Al foil made of Al (aluminum) is used for the positive electrode plate PEP that is the current collector foil of the positive electrode PE, and a Cu foil made of Cu (copper) is used for the negative electrode plate NEP that is the current collector foil of the negative electrode NE. It has been.
  • the lithium ion battery passes through the slit portion ST opened in the separator SP between the positive electrode PE and the negative electrode NE.
  • the separator that separates the positive electrode and the negative electrode is made of a resin film, and the slit portion ST as shown in FIG. 3 is not formed in the separator.
  • the separator of the comparative example is a sheet formed by stretching a resin film
  • the resin film has a three-dimensional network structure, and a lot of very small pores are opened in the resin film.
  • the pore diameter of the pores is several tens to several hundreds nm and is very small. Since the resin film has a three-dimensional network structure, the pores do not penetrate linearly from the front surface to the back surface of the separator.
  • lithium ions move between the electrodes through the pores.
  • the lithium ion battery cannot move linearly in the separator, but moves while meandering in the maze-like pores in the resin film having a three-dimensional network structure. For this reason, there is a problem that the internal resistance of the lithium ion battery increases due to the fact that the linear movement of lithium ions is hindered.
  • the three-dimensional network structure of the separator is changed when lithium ions move. Since it becomes an obstacle, it is disadvantageous in terms of diffusing lithium ions.
  • the pore diameter is very small as described above, the area in which lithium ions can move between the electrodes is small, which also causes the internal resistance of the lithium ion battery to increase.
  • the positive electrode or negative electrode active material of the lithium ion battery is fixed by a binder and is in close contact with an electrode plate such as a positive electrode plate or a negative electrode plate. In some cases, particles of the material may fall off the electrode plate.
  • the average diameter of the holes formed by processing the separator smaller than the average diameter of the active material, it is possible to prevent the active material from passing through the holes of the separator. Thereby, it is possible to prevent the occurrence of a short circuit between the electrodes due to the dropping of the active material.
  • the shape of the opening of the hole of the separator is considered to be, for example, a circle.
  • the average diameter of the pores of the separator is smaller than the average diameter of the active material, the area where lithium ions can move between the electrodes is small, so that the internal resistance of the lithium ion battery can be effectively reduced. Have difficulty.
  • the separator SP1 and the separator SP2 are provided with slit portions ST extending in one direction.
  • the size of the width W1 in the short direction of the slit part ST is less than the average particle diameter of a plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS. Therefore, it is possible to prevent the particles of the positive electrode active material PAS or the negative electrode active material NAS, which have been peeled off, from passing through the slit portions ST opened in the separators SP1 and SP2, and therefore, between the electrodes due to the loss of the active material. The occurrence of a short circuit can be prevented. Thereby, the reliability of a lithium ion battery can be improved and the lifetime of a lithium ion battery can be extended.
  • the average diameter of the slit portion ST is very large compared to the diameter of the pores formed in the three-dimensional network structure constituting the separators SP1 and SP2.
  • the size of the length L1 of the slit part ST is equal to or larger than the average particle diameter of a plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS. That is, the average diameter of the slit part ST is not less than the average particle diameter of the plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS. Therefore, compared with the case where the average diameter of the hole part formed in the separator is smaller than the average diameter of an active material, the area which can move a lithium ion between electrodes can be expanded significantly.
  • the slit portion ST linearly penetrates from the front surface to the back surface of each of the separators SP1 and SP2 in the thickness direction of the separators SP1 and SP2. Therefore, since lithium ions can move linearly between the electrodes, the internal resistance of the lithium ion battery can be greatly reduced. Therefore, the performance of the lithium ion battery can be improved.
  • the separators SP1 and SP2 are made of a resin film having a three-dimensional network structure, and have pores in the gaps of the network structure. For this reason, when charging / discharging the lithium ion battery, lithium ions move between the electrodes through the pores as well as through the slit portions ST. For this reason, the internal resistance of a lithium ion battery can be reduced compared with the case where the slit part ST is provided in the film which does not have a three-dimensional network structure. Therefore, the performance of the lithium ion battery can be improved.
  • the above-described slit portion is provided in the separator to improve the diffusibility of lithium ions in the separator, thereby suppressing a short circuit due to the dropping of the active material.
  • FIG. 7 is a bird's-eye view illustrating the method for manufacturing the lithium ion battery of the present embodiment.
  • 8 to 11 are schematic diagrams for explaining a method of manufacturing the lithium ion battery according to the present embodiment.
  • a positive electrode sheet PEL constituting the lithium ion battery of the present embodiment is formed.
  • a positive electrode active material PAS made of lithium cobalt oxide, carbon as a conductive additive, and a binder (binder) are mixed.
  • a slurry is prepared from a solution obtained by dissolving the mixture thus formed in N-methylpyrrolidone (NMP), and the slurry is applied to the positive electrode plate PEP and dried, so that the electrode material film PEF containing the positive electrode active material PAS is formed.
  • NMP N-methylpyrrolidone
  • the electrode material film PEF is in contact with the positive electrode plate PEP so as to cover each of the surface of the positive electrode plate PEP and the back surface opposite to the front surface.
  • the binder (binder) with the positive electrode plate PEP is made of, for example, polyvinylidene fluoride.
  • the positive electrode active material PAS is composed of a plurality of particles, and the average particle size of these particles is, for example, 10 ⁇ m.
  • the positive electrode sheet PEL formed as described above is pressurized to increase the density of the positive electrode active material PAS applied to the positive electrode plate PEP and smooth the surface. Moreover, after application
  • the negative electrode sheet NEL which comprises the lithium ion battery of this Embodiment is formed.
  • a negative electrode active material NAS made of a carbon material (carbon material), carbon as a conductive additive, and a binder (binder) are mixed.
  • a slurry is prepared from a solution in which the mixture thus formed is dissolved in N-methylpyrrolidone (NMP), and the slurry is applied to the negative electrode plate NEP and dried, whereby the electrode material film NEF containing the negative electrode active material NAS is formed.
  • NMP N-methylpyrrolidone
  • the electrode material film NEF is in contact with the negative electrode plate NEP so as to cover each of the surface of the negative electrode plate NEP and the back surface opposite to the surface.
  • the binder (binder) with the negative electrode plate NEP is made of, for example, polyvinylidene fluoride.
  • the negative electrode active material NAS is composed of a plurality of particles, and the average particle size of these particles is, for example, 10 ⁇ m.
  • the negative electrode sheet NEL formed as described above is pressurized to increase the density of the negative electrode active material NAS applied to the negative electrode plate NEP and to smooth the surface. Moreover, after application
  • the positive electrode sheet PEL and the negative electrode sheet NEL formed as described above are prepared, and further, separators SP1 and SP2 are prepared. Thereafter, an electrode winding body constituting a lithium ion battery is formed by winding the sheet NEL positive electrode sheet, the separator, and the negative electrode sheet NEL.
  • the electrode winding body WRF (see FIG. 4) is formed by sequentially superposing the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2, and this laminated sheet is formed as shown in FIG. It is formed by winding.
  • Separator SP1 and separator SP2 are used to insulate positive electrode sheet PEL and negative electrode sheet NEL.
  • a resin film containing polyolefin resin, polyester, polyimide, polyamide, cellulose, or the like can be used as a material for the separators SP1 and SP2.
  • the positive electrode current collecting tab PTAB formed on the positive electrode sheet PEL and the negative electrode current collecting tab NTAB formed on the negative electrode sheet NEL are arranged on the opposite sides in the Y direction. Further, before winding as described above, a plurality of slit portions ST are formed in each of the separator SP1 and the separator SP2 as described later with reference to FIG.
  • a plurality of slit portions ST are arranged in the short direction (Y direction) of the separator SP1 and the separator SP2. Further, the slit portion ST penetrates from the front surface to the back surface of the separator SP1 and the separator SP2.
  • the width W1 in the Y direction of the slit part ST is less than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS, and is 9 ⁇ m, for example.
  • the length L1 in the longitudinal direction (X direction) of the slit part ST is not less than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS.
  • the electrode winding body WRF is formed by winding the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 around the shaft core CR.
  • the positive electrode sheet PEL from the positive electrode roll PELR, the negative electrode sheet NEL from the negative electrode roll NELR, and the separator SP1 and the separator SP2 from the separator roll SPR are respectively rolled out, and these four sheets are After being stacked while being conveyed via the guide roller GRL, the electrode winding body WRF is formed by winding.
  • the separator SP1 and the separator SP2 are conveyed from the separator roll SPR to the slit forming unit STM before being wound.
  • a slitter blade SCT1 made of a material such as stainless steel, carbon steel, high-speed steel, cemented carbide, ceramic, sapphire, or diamond is disposed.
  • a plurality of cutting edges are provided on the surface of the slitter blade SCT1 and facing the surfaces of the separators SP1 and SP2 so as to be aligned in the short direction (Y direction) of the separators SP1 and SP2.
  • the width of each cutting edge of the slitter blade SCT1 in the Y direction is less than the average particle diameter of the positive or negative active material particles, and is, for example, 9 ⁇ m.
  • the slitter blade SCT1 is pressed against the respective surfaces of the separator SP1 and the separator SP2 while conveying the separator SP1 and the separator SP2 via the guide roller GRL. Thereby, a plurality of slit portions ST extending along the conveying direction of the separator SP1 and the separator SP2 are formed side by side in the Y direction.
  • the slitter blade SCT1 may be either rotating or fixed.
  • a laminated sheet in which the positive electrode sheet PEL and the negative electrode sheet NEL and the separators SP1 and SP2 in which the slit portions ST are opened can be wound. After winding the laminated sheet from several tens of cm to several m, the laminated sheet is cut with a cutter blade CT. Thereby, the electrode winding body WRF is formed.
  • the positive electrode current collecting tab PTAB protruding from the upper end of the electrode winding body WRF is connected to the positive electrode current collecting ring PR.
  • the negative electrode current collecting tab NTAB protruding from the lower end of the electrode winding body WRF is connected to the negative electrode current collecting ring NR.
  • the connection of the positive electrode current collector tab PTAB to the positive electrode current collector ring PR and the connection of the negative electrode current collector tab NTAB to the negative electrode current collector ring NR are performed by, for example, ultrasonic welding.
  • the electrode winding body WRF is inserted into the outer can CS.
  • the exterior can CS is processed and the groove
  • the groove DT is provided to fix the electrode winding body WRF inserted in the outer can CS so as not to move in the vertical direction.
  • electrolyte EL is injected into the exterior can CS into which the electrode winding body WRF is inserted. Thereby, the electrode winding body WRF is immersed in the electrolytic solution EL. Then, the lithium ion battery in this Embodiment can be manufactured by sealing the upper part of the armored can CS with the cap CP.
  • the separator SP1 and the separator SP2 are provided with slit portions ST extending in one direction. Since the size of the width W1 in the short direction of the slit part ST is less than the average particle diameter of the plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS, a short circuit between the electrodes due to the dropping of the active material Can be prevented. Thereby, the reliability of a lithium ion battery can be improved and the lifetime of a lithium ion battery can be extended.
  • the average diameter of the slit part ST is not less than the average particle diameter of the plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS, the average diameter of the holes formed in the separator is larger than the average diameter of the active material. Compared to a small case, the area in which lithium ions can move between the electrodes can be greatly increased.
  • the slit portion ST linearly penetrates from the front surface to the back surface of each of the separators SP1 and SP2 in the thickness direction of the separators SP1 and SP2, lithium ions move linearly between the electrodes. Is possible. Therefore, since the internal resistance of the lithium ion battery can be greatly reduced, the performance of the lithium ion battery can be improved.
  • the separators SP1 and SP2 are made of a resin film having a three-dimensional network structure, and have pores in the gaps of the network structure. For this reason, the internal resistance of a lithium ion battery can be reduced compared with the case where the slit part ST is provided in the film which does not have a three-dimensional network structure. For this reason, the performance of a lithium ion battery can be improved.
  • the extending direction of the slit portions ST in the separators SP1 and SP2 is matched with the direction in which the separators SP1 and SP2 are pulled in the winding step, that is, the longitudinal direction (X direction).
  • a plurality of holes having an average diameter less than the average diameter of the active material are opened in the separator.
  • a plurality of microneedles are attached to the surface of the roller, and the roller is pressed against the separator while rotating the roller according to the transport speed of the separator. It is conceivable to open the hole.
  • the slitter blade SCT1 is made of a material such as stainless steel, carbon steel, high-speed steel, cemented carbide, ceramic, sapphire, or diamond, and is stronger than microneedles (see FIG. 7). Is used to form the slit portion ST (see FIG. 4). For this reason, it is not necessary to delay the conveying speed of the separators SP1 and SP2, and the possibility of damage to the slitter blade SCT1 is small. Therefore, the manufacturing cost of the lithium ion battery can be reduced.
  • the above-described slit portion is provided in the separator to improve the diffusibility of lithium ions in the separator, thereby suppressing a short circuit due to the dropping of the active material.
  • FIG. 12 is a schematic view showing a laminated structure of a laminated body constituting the lithium ion battery of the present embodiment.
  • FIG. 13 is an overhead view showing a wound body constituting the lithium ion battery of the present embodiment.
  • the present embodiment is characterized in that a slit portion is formed intermittently (intermittently or discontinuously) in the separator using a slitter blade having an uneven edge.
  • the electrode winding body WRF (see FIG. 13) is formed by winding the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 in an overlapping manner.
  • a plurality of slit portions ST extending in the extending direction (X direction) of the separators SP1 and SP2 are arranged side by side in the X direction.
  • the shape of each slit portion ST is a rectangle, but the shape may be a polygon such as a trapezoid or a hexagon or an ellipse.
  • the width W1 in the short direction of the slit part ST is less than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS, for example, 9 ⁇ m. Further, the length L2 in the longitudinal direction of each slit part ST is equal to or larger than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS, and is, for example, 5 cm. Moreover, the width W3 between the slit parts ST adjacent in the X direction is, for example, 1 cm. Further, a width W2 between the slit portions ST adjacent in the Y direction is, for example, 1 cm.
  • the electrode wound body WRF is formed by winding the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 around the shaft core CR in an overlapped state.
  • the structure of the lithium ion battery of the present embodiment is the same as that of the first embodiment except for the aspect of the slit part ST.
  • the present embodiment is different from the first embodiment in that a plurality of slit portions ST extending in the X direction are arranged in the X direction in each of the separators SP1 and SP2. . Even if the slit portions ST are intermittently arranged in this way, the same effect as in the first embodiment can be obtained. Moreover, since the slit part ST is intermittently formed in each separator SP1, SP2, the mechanical strength in the longitudinal direction of the separators SP1, SP2 can be improved. Thereby, the reliability of a lithium ion battery can be improved.
  • FIG. 14 is a schematic diagram showing a method for manufacturing a lithium ion battery according to an embodiment of the present invention.
  • the manufacturing process of the lithium ion battery of the present embodiment is the same as the manufacturing process described in the first embodiment, except that the slitter blade SCT2 (see FIG. 14) is used to form the slit portion. That is, as shown in FIG. 13, the electrode winding body WRF is formed by winding the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 on the axis CR in a state where they are sequentially stacked.
  • the electrode winding body WRF is formed by winding in an overlapping manner.
  • each of the separators SP1 and SP2 is conveyed from the separator roll SPR to the slit forming portion STM before being wound.
  • a slitter blade SCT2 made of a material such as stainless steel, carbon steel, high-speed steel, cemented carbide, ceramic, sapphire or diamond is disposed.
  • the slitter blade SCT2 rotates corresponding to the transport speed of the separators SP1 and SP2 transported into the slit forming part STM.
  • the width of a plurality of cutting edges attached to the surface of the slitter blade SCT2 and the width in the direction along the rotation axis of the slitter blade SCT2 is less than the average particle diameter of the positive or negative active material particles.
  • the width of the cutting edge in the same direction is, for example, 9 ⁇ m.
  • the surface of the slitter blade SCT2 has a plurality of cutting edges arranged in the rotation direction of the slitter blade SCT2, the surface of the slitter blade SCT2 including the plurality of cutting edges is uneven.
  • the slitter blade is pressed against each of the separators SP1 and SP2 conveyed via the guide roller GRL. Thereby, slit part ST extended along the conveyance direction of separator SP1, SP2 is formed in each of separator SP1, SP2 intermittently (intermittently).
  • the slit portions ST can be intermittently formed along the longitudinal direction of the separators SP1 and SP2. Thereby, the same effect as the first embodiment can be obtained.
  • the mechanical strength in the longitudinal direction of the separator can be improved by intermittently arranging the slit portions ST in the X direction. Therefore, in the winding process described with reference to FIG. 14, even when tension is applied in the transport direction, the transport speed can be increased and productivity can be improved.
  • the wound type lithium ion battery has been described as an example.
  • the technical idea of the present invention is not limited to the wound type lithium ion battery, and includes a positive electrode, a negative electrode, And it can apply widely to an electrical storage device (for example, a battery or a capacitor etc.) provided with the separator which isolate
  • the present invention can be widely used in, for example, a manufacturing industry for manufacturing a battery typified by a lithium ion battery.
  • the present invention is effective when applied to a battery represented by a lithium ion battery.

Abstract

The present invention makes it possible to improve the output of a lithium-ion cell, and to prevent the occurrence of short circuiting between the positive and negative electrodes caused by dislodging of the electrode active material. A means for accomplishing the above is a lithium-ion cell having a positive electrode, a negative electrode, and a separator for separating the electrodes, wherein a slit section is formed extending in the longitudinal direction of the separator, the slit section being a groove passing from the front surface to the back surface of the separator. The width of the slit section in the short direction is less than the average diameter of the active material, and the length in the long direction is equal to or greater than the average diameter of the active material.

Description

リチウムイオン電池およびその製造方法Lithium ion battery and manufacturing method thereof
 本発明はリチウムイオン電池およびその製造方法に関し、特に、正極と負極とをセパレータにより分離するリチウムイオン電池に関する。 The present invention relates to a lithium ion battery and a method for producing the same, and more particularly to a lithium ion battery in which a positive electrode and a negative electrode are separated by a separator.
 携帯電子機器などの発達に伴い、これらの機器の電力供給源として、繰り返し充電が可能な小型二次電池が使用されている。中でも、エネルギー密度が高く、サイクルライフが長く、自己放電性が低く、かつ、作動電圧が高いという利点を有するリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、上記利点を有するため、デジタルカメラ、ノート型パーソナルコンピュータ、または携帯電話機などの携帯電子機器に多用されている。 With the development of portable electronic devices and the like, small secondary batteries that can be repeatedly charged are used as a power supply source for these devices. Among these, lithium ion secondary batteries have been attracting attention because they have the advantages of high energy density, long cycle life, low self-discharge characteristics, and high operating voltage. Lithium ion secondary batteries have the advantages described above, and are therefore widely used in portable electronic devices such as digital cameras, notebook personal computers, and mobile phones.
 特許文献1(特開2007-280724号公報)には、順に正極、セパレータおよび負極を積層して構成された積層体を有し、前記正極または前記負極の少なくとも一方が高出力化を念頭に粒径の小さい活物質粒子を含む電気化学デバイスとして、リチウムイオン電池が記載されている。リチウムイオン電池では、セパレータに開口された細孔を介して正極および負極間をリチウムイオンが移動することで、放電または充電を行う。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-280724) has a laminate formed by sequentially laminating a positive electrode, a separator, and a negative electrode, and at least one of the positive electrode and the negative electrode has a grain structure in consideration of high output. A lithium ion battery is described as an electrochemical device including active material particles having a small diameter. In a lithium ion battery, discharging or charging is performed by moving lithium ions between a positive electrode and a negative electrode through pores opened in a separator.
特開2007-280724号公報JP 2007-280724 A
 リチウムイオンが通過するセパレータの細孔の径が小さく、セパレータ内のリチウムイオンの通過経路が直線的でない場合、リチウムイオンの移動が妨げられ、リチウムイオン電池(リチウムイオン二次電池)の内部抵抗が高くなる。この問題に対し、特許文献1では、上記積層体の積層方向において当該積層体を貫通する細孔を設けている。また、特許文献1では、活物質が正極または負極から脱落した場合に短絡が生じることを防ぐため、当該細孔の平均径を、活物質粒子の平均粒径よりも小さくしている。 If the pore diameter of the separator through which lithium ions pass is small and the passage route of lithium ions in the separator is not linear, the movement of lithium ions is hindered and the internal resistance of the lithium ion battery (lithium ion secondary battery) Get higher. In order to solve this problem, Patent Document 1 provides pores that penetrate the laminate in the stacking direction of the laminate. Moreover, in patent document 1, in order to prevent that a short circuit arises when an active material falls from a positive electrode or a negative electrode, the average diameter of the said pore is made smaller than the average particle diameter of active material particle.
 しかし、セパレータに開口された当該細孔の平均径が活物質粒子の平均粒径よりも小さく制限されている場合、リチウムイオン電池の内部抵抗の低減およびリチウムイオン電池の出力性能の向上のために、セパレータ内においてリチウムイオンの拡散性を向上させることは困難である。 However, when the average diameter of the pores opened in the separator is limited to be smaller than the average particle diameter of the active material particles, in order to reduce the internal resistance of the lithium ion battery and improve the output performance of the lithium ion battery It is difficult to improve the diffusibility of lithium ions in the separator.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the embodiments disclosed in the present application, the outline of typical ones will be briefly described as follows.
 代表的な実施の形態によるリチウムイオン電池は、電極活物質を含む正極および負極と、それらの電極を分離するセパレータとを有し、セパレータの表面から裏面まで貫通する溝であって、短手方向の幅が電極活物質の平均径未満であり、かつ、長手方向の長さが電極活物質の平均径以上であるスリット部を形成するものである。 A lithium ion battery according to a typical embodiment has a positive electrode and a negative electrode containing an electrode active material, and a separator that separates the electrodes, and is a groove that penetrates from the front surface to the back surface of the separator, and has a short direction. The slit width is less than the average diameter of the electrode active material and the length in the longitudinal direction is not less than the average diameter of the electrode active material.
 さらに、代表的な実施の形態によるリチウムイオン電池の製造方法は、短手方向の幅が電極活物質の平均径未満であり、かつ、長手方向の長さが電極活物質の平均径以上であるスリット部をセパレータに開口した後、電極活物質を含む正極および負極と、それらの電極を分離する当該セパレータとを重ねるものである。 Furthermore, in the method for manufacturing a lithium ion battery according to a typical embodiment, the width in the short direction is less than the average diameter of the electrode active material, and the length in the longitudinal direction is greater than or equal to the average diameter of the electrode active material. After the slit portion is opened in the separator, the positive electrode and the negative electrode containing the electrode active material and the separator separating the electrodes are overlapped.
 代表的な実施の形態によれば、活物質の脱落による短絡を防ぎつつ、電池の内部抵抗の低減・出力性能の向上を図ることができるため、リチウムイオン電池の性能および信頼性を向上させることができる。 According to a typical embodiment, it is possible to reduce the internal resistance of the battery and improve the output performance while preventing a short circuit due to the dropping of the active material, thereby improving the performance and reliability of the lithium ion battery. Can do.
本発明の本実施の形態1であるリチウムイオン電池を構成する正極板の平面図である。It is a top view of the positive electrode plate which comprises the lithium ion battery which is this Embodiment 1 of this invention. 本発明の本実施の形態1であるリチウムイオン電池を構成する負極板の平面図である。It is a top view of the negative electrode plate which comprises the lithium ion battery which is this Embodiment 1 of this invention. 本発明の本実施の形態1であるリチウムイオン電池を構成する積層体の積層構造を示す概略図である。It is the schematic which shows the laminated structure of the laminated body which comprises the lithium ion battery which is this Embodiment 1 of this invention. 本発明の本実施の形態1であるリチウムイオン電池を構成する捲回体を示す俯瞰図である。It is an overhead view which shows the winding body which comprises the lithium ion battery which is this Embodiment 1 of this invention. 本発明の本実施の形態1であるリチウムイオン電池を一部透過して示す俯瞰図である。It is a bird's-eye view which permeate | transmits and shows partially the lithium ion battery which is this Embodiment 1 of this invention. リチウムイオン電池の動作を説明する概略図である。It is the schematic explaining operation | movement of a lithium ion battery. 本発明の実施の形態であるリチウムイオン電池の製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the lithium ion battery which is embodiment of this invention. 図7に続くリチウムイオン電池の製造方法を示す俯瞰図である。FIG. 8 is an overhead view showing a method for manufacturing the lithium ion battery following FIG. 7. 図8に続くリチウムイオン電池の製造方法を示す俯瞰図である。FIG. 9 is an overhead view showing a method for manufacturing a lithium ion battery following FIG. 8. 図9に続くリチウムイオン電池の製造方法を示す俯瞰図である。FIG. 10 is an overhead view showing a method for manufacturing the lithium ion battery following FIG. 9. 図10に続くリチウムイオン電池の製造方法を示す俯瞰図である。It is an overhead view which shows the manufacturing method of the lithium ion battery following FIG. 本発明の本実施の形態2であるリチウムイオン電池を構成する積層体の積層構造を示す概略図である。It is the schematic which shows the laminated structure of the laminated body which comprises the lithium ion battery which is this Embodiment 2 of this invention. 本発明の本実施の形態2であるリチウムイオン電池を構成する捲回体を示す俯瞰図である。It is an overhead view which shows the winding body which comprises the lithium ion battery which is this Embodiment 2 of this invention. 本発明の実施の形態であるリチウムイオン電池の製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the lithium ion battery which is embodiment of this invention.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. In the embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
 (実施の形態1)
 以下に、本発明の実施の形態のリチウムイオン電池の構成について、図1~図6を用いて説明する。図1は、本実施の形態のリチウムイオン電池を構成する正極板の平面図である。図2は、本実施の形態のリチウムイオン電池を構成する正極板の平面図である。図2は、本実施の形態のリチウムイオン電池を構成する負極板の平面図である。図3は、本実施の形態のリチウムイオン電池を構成する積層体の積層構造を示す概略図である。図4は、本実施の形態のリチウムイオン電池を構成する捲回体を示す俯瞰図である。図5は、本実施の形態のリチウムイオン電池を一部透過して示す俯瞰図である。図6は、リチウムイオン電池の動作を説明する概略図である。
(Embodiment 1)
The configuration of the lithium ion battery according to the embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view of a positive electrode plate constituting the lithium ion battery of the present embodiment. FIG. 2 is a plan view of the positive electrode plate constituting the lithium ion battery of the present embodiment. FIG. 2 is a plan view of the negative electrode plate constituting the lithium ion battery of the present embodiment. FIG. 3 is a schematic view showing a laminated structure of a laminated body constituting the lithium ion battery of the present embodiment. FIG. 4 is an overhead view showing a wound body constituting the lithium ion battery according to the present embodiment. FIG. 5 is a bird's-eye view showing a part of the lithium ion battery of the present embodiment. FIG. 6 is a schematic diagram for explaining the operation of the lithium ion battery.
 図1に、本実施の形態のリチウムイオン電池の正極を構成する正極シートPELを示す。正極シートPELは、箔状の正極板PEPを有する。また、正極シートPELは、正極板PEPの表面および当該表面の反対側の裏面のそれぞれを覆うように正極板PEPに接している電極材料膜PEFを有している。つまり、正極板PEPは一対の電極材料膜PEFに挟まれている。なお、図では正極板PEPの裏面側の電極材料膜PEFを図示していない。 FIG. 1 shows a positive electrode sheet PEL constituting the positive electrode of the lithium ion battery of the present embodiment. The positive electrode sheet PEL has a foil-like positive electrode plate PEP. Further, the positive electrode sheet PEL has an electrode material film PEF that is in contact with the positive electrode plate PEP so as to cover the surface of the positive electrode plate PEP and the back surface opposite to the front surface. That is, the positive electrode plate PEP is sandwiched between the pair of electrode material films PEF. In the figure, the electrode material film PEF on the back surface side of the positive electrode plate PEP is not shown.
 電極材料膜PEFは、例えば、コバルト酸リチウムからなる正極活物質PASに導電助剤としてのカーボンと結着剤(バインダ)とを混合したスラリーを、正極板PEPに塗布した後に乾燥させて固化させた膜である。正極板PEPと正極活物質PASとの結着剤(バインダ)は、例えば、ポリフッ化ビニリデンからなる。このバインダと、正極活物質PASと、導電助剤としてのカーボンとを、Nメチルピロリドン(NMP)に溶解させた溶液により、正極の上記スラリーが形成される。 The electrode material film PEF is formed by, for example, applying a slurry obtained by mixing a positive electrode active material PAS made of lithium cobalt oxide with carbon as a conductive additive and a binder to a positive electrode plate PEP, and then drying and solidifying the slurry. Film. The binder (binder) between the positive electrode plate PEP and the positive electrode active material PAS is made of, for example, polyvinylidene fluoride. The slurry of the positive electrode is formed by a solution in which the binder, the positive electrode active material PAS, and carbon as a conductive additive are dissolved in N methylpyrrolidone (NMP).
 正極活物質PASを構成する複数の粒子(活物質粒子)の平均粒径は、例えば、10μmである。正極板PEPの一方の面に接する電極材料膜PEFの膜厚は、例えば10~100μmである。つまり、正極板PEPの表面上には、複数の正極活物質PASを構成する粒子が積層されている。 The average particle diameter of the plurality of particles (active material particles) constituting the positive electrode active material PAS is, for example, 10 μm. The film thickness of the electrode material film PEF in contact with one surface of the positive electrode plate PEP is, for example, 10 to 100 μm. That is, the particles constituting the plurality of positive electrode active materials PAS are stacked on the surface of the positive electrode plate PEP.
 正極板PEPおよび電極材料膜PEFからなる正極シートPELは、一方向に延在する薄いシートである。つまり、正極板PEPおよび電極材料膜PEFは、上記方向、つまり長手方向に延在している。以下では、正極シートPELなどのシートの長手方向を、単にX方向(第1方向)と呼ぶ場合がある。電極材料膜PEFの表面、つまり正極板PEPに接している面の反対側の面は、平滑化されている。 The positive electrode sheet PEL made of the positive electrode plate PEP and the electrode material film PEF is a thin sheet extending in one direction. That is, the positive electrode plate PEP and the electrode material film PEF extend in the above-described direction, that is, the longitudinal direction. Hereinafter, the longitudinal direction of a sheet such as the positive electrode sheet PEL may be simply referred to as an X direction (first direction). The surface of the electrode material film PEF, that is, the surface opposite to the surface in contact with the positive electrode plate PEP is smoothed.
 正極板PEPの表面に沿う方向であって、正極板PEPの長手方向に対して直交する短手方向の一方の端部には、切断加工されて、当該短手方向に突出した矩形形状の正極集電タブPTABが複数形成されている。以下では、正極シートPELなどのシートの短手方向を、単にY方向(第2方向)と呼ぶ場合がある。複数の正極集電タブPTABは、Y方向における正極板PEPの端の一方の辺に沿って並んでおり、正極活物質PASの未塗工部に形成されている。つまり、正極集電タブPTABは正極活物質PASから露出しており、正極シートPELの1辺に沿ってX方向に複数並んでいる。 A rectangular positive electrode that is cut in one direction along the surface of the positive electrode plate PEP and that is perpendicular to the longitudinal direction of the positive electrode plate PEP and that protrudes in the short direction. A plurality of current collecting tabs PTAB are formed. Hereinafter, the short direction of a sheet such as the positive electrode sheet PEL may be simply referred to as a Y direction (second direction). The plurality of positive electrode current collecting tabs PTAB are arranged along one side of the end of the positive electrode plate PEP in the Y direction, and are formed in an uncoated portion of the positive electrode active material PAS. That is, the positive electrode current collection tab PTAB is exposed from the positive electrode active material PAS, and a plurality of the positive electrode current collection tabs PTAB are arranged in the X direction along one side of the positive electrode sheet PEL.
 図2に、本実施の形態のリチウムイオン電池の負極を構成する負極シートNELを示す。負極シートNELは、箔状の負極板NEPを有する。また、負極シートNELは、負極板NEPの表面および当該表面の反対側の裏面のそれぞれを覆うように負極板NEPに接している電極材料膜NEFを有している。つまり、負極板NEPは一対の電極材料膜NEFに挟まれている。なお、図では負極板NEPの裏面側の電極材料膜NEFを図示していない。 FIG. 2 shows a negative electrode sheet NEL constituting the negative electrode of the lithium ion battery of the present embodiment. The negative electrode sheet NEL has a foil-like negative electrode plate NEP. The negative electrode sheet NEL has an electrode material film NEF that is in contact with the negative electrode plate NEP so as to cover the surface of the negative electrode plate NEP and the back surface opposite to the surface. That is, the negative electrode plate NEP is sandwiched between the pair of electrode material films NEF. In the figure, the electrode material film NEF on the back side of the negative electrode plate NEP is not shown.
 電極材料膜NEFは、例えば、炭素材料(カーボン材料)からなる負極活物質NASに導電助剤としてのカーボンと結着剤(バインダ)とを混合したスラリーを、負極板NEPに塗布した後に乾燥させて固化させた膜である。負極板NEPと負極活物質NASとの結着剤(バインダ)は、例えば、ポリフッ化ビニリデンからなる。このバインダと、負極活物質NASと、導電助剤としてのカーボンとを、Nメチルピロリドン(NMP)に溶解させた溶液により、負極の上記スラリーが形成される。 For example, the electrode material film NEF is formed by applying a slurry obtained by mixing carbon as a conductive additive and a binder (binder) to a negative electrode active material NAS made of a carbon material (carbon material) and then drying the slurry on the negative electrode plate NEP. This is a solidified film. The binder (binder) between the negative electrode plate NEP and the negative electrode active material NAS is made of, for example, polyvinylidene fluoride. The slurry of the negative electrode is formed by a solution in which the binder, the negative electrode active material NAS, and carbon as a conductive additive are dissolved in N methylpyrrolidone (NMP).
 負極活物質NASを構成する複数の粒子(活物質粒子)の平均粒径は、例えば、10μmである。負極板NEPの一方の面に接する電極材料膜NEFの膜厚は、例えば10~100μmである。つまり、負極板NEPの表面上には、複数の負極活物質NASを構成する粒子が積層されている。 The average particle diameter of the plurality of particles (active material particles) constituting the negative electrode active material NAS is, for example, 10 μm. The film thickness of the electrode material film NEF in contact with one surface of the negative electrode plate NEP is, for example, 10 to 100 μm. That is, the particles constituting the plurality of negative electrode active materials NAS are stacked on the surface of the negative electrode plate NEP.
 負極板NEPおよび電極材料膜NEFからなる負極シートNELは、一方向に延在する薄いシートである。つまり、負極板NEPおよび電極材料膜NEFは、上記方向、つまり長手方向(X方向)に延在している。電極材料膜NEFの表面、つまり負極板NEPに接している面の反対側の面は、平滑化されている。 The negative electrode sheet NEL made of the negative electrode plate NEP and the electrode material film NEF is a thin sheet extending in one direction. That is, the negative electrode plate NEP and the electrode material film NEF extend in the above-described direction, that is, the longitudinal direction (X direction). The surface of the electrode material film NEF, that is, the surface opposite to the surface in contact with the negative electrode plate NEP is smoothed.
 負極板NEPの表面に沿う方向であって、負極板NEPの長手方向に対して直交する短手方向(Y方向)の一方の端部は、切断加工されて、Y方向に突出した負極集電タブNTABが複数形成されている。複数の負極集電タブNTABは、Y方向における負極板NEPの端の一方の辺に沿って並んでおり、負極活物質NASの未塗工部に形成されている。つまり、負極集電タブNTABは負極活物質NASから露出している。 One end of the short direction (Y direction) that is along the surface of the negative electrode plate NEP and perpendicular to the longitudinal direction of the negative electrode plate NEP is cut and protruded in the Y direction. A plurality of tabs NTAB are formed. The plurality of negative electrode current collecting tabs NTAB are arranged along one side of the end of the negative electrode plate NEP in the Y direction, and are formed in an uncoated portion of the negative electrode active material NAS. That is, the negative electrode current collecting tab NTAB is exposed from the negative electrode active material NAS.
 次に、リチウムイオン電池を構成する電極捲回体WRF(図4参照)の構造について、図3および図4を用いて説明する。 Next, the structure of the electrode winding body WRF (see FIG. 4) constituting the lithium ion battery will be described with reference to FIGS.
 電極捲回体WRF(図4参照)は、図3に示すように、正極シートPELと、セパレータSP1と、負極シートNELと、セパレータSP2とを順に重ね合わせた積層体を、図4に示すように捲回することで形成されている。当該積層体のX方向の長さは、例えば数十cm~数mである。このとき、セパレータSP1のスリット部STは、正極シートPELと、負極シートNELとの間に開口している。また、X方向およびY方向は、正極シートPELまたは負極シートNELに対して対向するセパレータSP1またはSP2の表面に沿う方向である。 As shown in FIG. 3, the electrode winding body WRF (see FIG. 4) is a laminate in which a positive electrode sheet PEL, a separator SP1, a negative electrode sheet NEL, and a separator SP2 are sequentially stacked, as shown in FIG. It is formed by winding. The length of the laminate in the X direction is, for example, several tens of centimeters to several meters. At this time, the slit part ST of the separator SP1 is opened between the positive electrode sheet PEL and the negative electrode sheet NEL. Further, the X direction and the Y direction are directions along the surface of the separator SP1 or SP2 facing the positive electrode sheet PEL or the negative electrode sheet NEL.
 図3に示すセパレータSP1およびセパレータSP2は、正極シートPELおよび負極シートNELを絶縁するための絶縁材料からなるシートである。具体的には、セパレータSP1、SP2のそれぞれは、樹脂膜を引き延ばして形成したシートである。正極シートPELの短手方向の一方に形成されている正極集電タブPTABと、負極シートNELの短手方向の一方に形成されている負極集電タブNTABとは、Y方向において反対側に配置されている。 The separator SP1 and the separator SP2 shown in FIG. 3 are sheets made of an insulating material for insulating the positive electrode sheet PEL and the negative electrode sheet NEL. Specifically, each of the separators SP1 and SP2 is a sheet formed by stretching a resin film. The positive electrode current collecting tab PTAB formed on one side in the short direction of the positive electrode sheet PEL and the negative electrode current collecting tab NTAB formed on one side in the short direction of the negative electrode sheet NEL are arranged on the opposite sides in the Y direction. Has been.
 図3では、セパレータSP1を拡大して図の下方に示している。なお、セパレータSP2はセパレータSP1と同様の構造を有している。箔状のセパレータSP1の表面には、スリット部STが、Y方向に並んで複数形成されている。複数のスリット部STのそれぞれは、セパレータSP1の表面から、当該表面の反対側の裏面まで達している。つまり、スリット部STはセパレータSP1の厚さ方向において、セパレータSP1を貫通している。各スリット部STは、セパレータSP1の長手方向に延在している溝である。スリット部STの開口部の平面視における形状は、矩形である。ただし、スリット部STの開口部の平面視における形状は、台形または六角形などの多角形、または楕円形であってもよい。 In FIG. 3, the separator SP1 is enlarged and shown in the lower part of the figure. The separator SP2 has the same structure as the separator SP1. On the surface of the foil-shaped separator SP1, a plurality of slit portions ST are formed side by side in the Y direction. Each of the plurality of slit portions ST reaches from the surface of the separator SP1 to the back surface opposite to the surface. That is, the slit part ST penetrates the separator SP1 in the thickness direction of the separator SP1. Each slit part ST is a groove extending in the longitudinal direction of the separator SP1. The shape of the opening of the slit part ST in plan view is a rectangle. However, the shape of the opening of the slit part ST in plan view may be a polygon such as a trapezoid or a hexagon, or an ellipse.
 スリット部STの延在方向、つまりX方向における各スリット部STの長さL1は、正極活物質PASおよび負極活物質NASのそれぞれの平均粒径以上の大きさを有し、かつ、X方向におけるセパレータSP1の長さより小さい大きさを有する。また、Y方向における各スリット部STの幅W1の大きさは、正極活物質PASおよび負極活物質NASの平均粒径未満である。例えば、幅W1は9μmである。Y方向において隣り合うスリット部ST同士の間の幅W2は、例えば1cm程度である。 The extending direction of the slit part ST, that is, the length L1 of each slit part ST in the X direction has a size equal to or larger than the respective average particle diameters of the positive electrode active material PAS and the negative electrode active material NAS, and in the X direction. It has a size smaller than the length of the separator SP1. Further, the width W1 of each slit portion ST in the Y direction is less than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS. For example, the width W1 is 9 μm. A width W2 between adjacent slit portions ST in the Y direction is, for example, about 1 cm.
 セパレータSP1、SP2のそれぞれは、樹脂膜を引き延ばして形成したシートであるため、樹脂膜は三次元網目構造を有しており、当該樹脂膜には上記スリット部STの他に、幅W1よりも小さい細孔(図示しない)が多数開口している。当該細孔の孔径は、数十~数百nmである。つまり、当該細孔の平均径は、正極活物質PASおよび負極活物質NASのそれぞれの平均粒径未満である。当該樹脂膜の材料としては、例えばポリオレフィン系樹脂、ポリエステル、ポリイミド、ポリアミドまたはセルロースなどを用いることができる。 Since each of the separators SP1 and SP2 is a sheet formed by stretching a resin film, the resin film has a three-dimensional network structure. In addition to the slit portion ST, the resin film has a width larger than the width W1. A large number of small pores (not shown) are opened. The pore diameter is several tens to several hundreds nm. That is, the average diameter of the pores is less than the average particle diameter of each of the positive electrode active material PAS and the negative electrode active material NAS. As the material of the resin film, for example, polyolefin resin, polyester, polyimide, polyamide, cellulose, or the like can be used.
 図4に示すように、電極捲回体WRFは、正極シートPELと、セパレータSP1と、負極シートNELと、セパレータSP2とを重ね合わせた積層シート(積層体)を、軸芯CRに捲回して形成されている。電極捲回体WRFを軸芯CRの延在方向における上方から見た場合、正極シートPEL、セパレータSP1、負極シートNELおよびセパレータSP2は、軸芯CRを中心に渦巻き状に捲かれている。つまり、電極捲回体WRFに形成されたスリット部STは、軸芯CRの延在方向に対して直交する方向に沿う面において、渦巻き状に延在している。 As shown in FIG. 4, the electrode winding body WRF is obtained by winding a laminated sheet (laminated body) in which a positive electrode sheet PEL, a separator SP1, a negative electrode sheet NEL, and a separator SP2 are superposed on an axis CR. Is formed. When the electrode winding body WRF is viewed from above in the extending direction of the axis CR, the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 are wound in a spiral shape around the axis CR. That is, the slit portion ST formed in the electrode winding body WRF extends in a spiral shape on the surface along the direction orthogonal to the extending direction of the shaft core CR.
 次に、図5に、本実施の形態のリチウムイオン電池LBの俯瞰図を示す。図5では、リチウムイオン電池LBを構成する容器である外装缶CSおよびキャップCPを透過して、外装缶CS内の電極捲回体WRFなどを示している。 Next, FIG. 5 shows an overhead view of the lithium ion battery LB of the present embodiment. In FIG. 5, the electrode winding body WRF and the like in the outer can CS are shown through the outer can CS and the cap CP, which are containers constituting the lithium ion battery LB.
 図5に示すように、リチウムイオン電池LBは外装缶CSと、外装缶CSの上部を封止するキャップCPとを有している。外装缶CS内には、電極捲回体WRFが挿入されている。さらに、外装缶CS内には、電極捲回体WRF全体が浸るように電解液ELが注入(充填)されている。 As shown in FIG. 5, the lithium ion battery LB has an outer can CS and a cap CP that seals the upper portion of the outer can CS. An electrode winding body WRF is inserted into the outer can CS. Furthermore, the electrolyte EL is injected (filled) into the outer can CS so that the entire electrode winding body WRF is immersed therein.
 円筒形の電極捲回体WRFの中心軸に沿う方向(Y方向)における一方の端部には、正極集電リングPRが設けられている。つまり、正極集電リングPRは、軸芯CR(図4参照)の延在方向における一方の端部に配置されている。電極捲回体WRFを構成する正極シートPEL(図4参照)から突出する複数の正極集電タブPTABは、正極集電リングPRに接続されている。つまり、正極集電リングPRは正極集電タブPTABを介して正極シートPEL(図4参照)に電気的に接続されており、負極シートNELには接続されていない。 A positive electrode current collection ring PR is provided at one end in a direction (Y direction) along the central axis of the cylindrical electrode winding body WRF. That is, the positive electrode current collection ring PR is disposed at one end in the extending direction of the shaft core CR (see FIG. 4). A plurality of positive current collecting tabs PTAB protruding from the positive electrode sheet PEL (see FIG. 4) constituting the electrode winding body WRF are connected to the positive current collecting ring PR. That is, the positive electrode current collection ring PR is electrically connected to the positive electrode sheet PEL (see FIG. 4) via the positive electrode current collection tab PTAB, and is not connected to the negative electrode sheet NEL.
 同様に、電極捲回体WRFのY方向におけるもう一方の端部に配置された負極集電リングNRには、複数の負極集電タブNTABを介して負極シートNEL(図4参照)が電気的に接続されている。 Similarly, the negative electrode current collector ring NR disposed at the other end in the Y direction of the electrode winding body WRF is electrically connected to the negative electrode sheet NEL (see FIG. 4) via a plurality of negative electrode current collector tabs NTAB. It is connected to the.
 円筒状の外装缶CSの側壁は一部が凹んで溝DTが形成されている。溝DTは円筒状の外装缶CSの中心軸の周囲を1周するように、外装缶CSの側壁に沿って形成せている。溝DTは、外装缶CSの内部に挿入されている電極捲回体WRFが上下方向に移動しないように固定するために設けられたものである。本実施の形態のリチウムイオン電池LBは、以上に説明したような構造を有している。 The side wall of the cylindrical outer can CS is partially recessed to form a groove DT. The groove DT is formed along the side wall of the outer can CS so as to make one round around the central axis of the cylindrical outer can CS. The groove DT is provided to fix the electrode winding body WRF inserted in the outer can CS so as not to move in the vertical direction. The lithium ion battery LB of the present embodiment has a structure as described above.
 次に、本実施の形態のリチウムイオン電池の動作について、図6を用いて説明する。リチウムイオン電池は、図6に示すように、非水電解質二次電池の一種であり、電解質中のリチウムイオンが電気伝導を担う二次電池である。正極材量である正極活物質PASにはリチウム金属酸化物を用い、負極材料である負極活物質NASにはグラファイトなどの炭素材を用いている。また、電解質からなる電解液ELには、例えば、炭酸エチレンなどの有機溶剤とヘキサフルオロリン酸リチウム(LiPF)などのリチウム塩とを用いる。電解液ELは、正極PEまたは負極NEに電圧を印加した際に、正極PEと負極NEとの間で充放電反応を起こすために充填された液体である。 Next, the operation of the lithium ion battery of this embodiment will be described with reference to FIG. As shown in FIG. 6, the lithium ion battery is a kind of non-aqueous electrolyte secondary battery, and is a secondary battery in which lithium ions in the electrolyte are responsible for electrical conduction. A lithium metal oxide is used for the positive electrode active material PAS, which is the amount of the positive electrode material, and a carbon material such as graphite is used for the negative electrode active material NAS, which is the negative electrode material. In addition, for example, an organic solvent such as ethylene carbonate and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) are used for the electrolyte EL made of an electrolyte. The electrolyte EL is a liquid filled in order to cause a charge / discharge reaction between the positive electrode PE and the negative electrode NE when a voltage is applied to the positive electrode PE or the negative electrode NE.
 電池内では、充電時にリチウムイオンは正極PEから出て負極NEに入り、放電時には逆に、リチウムイオンは負極NEから出て正極PEに入る。正極PEの集電箔である正極板PEPには、Al(アルミニウム)からなるAl箔が用いられ、負極NEの集電箔である負極板NEPには、Cu(銅)からなるCu箔が用いられている。充電時または放電時において、リチウムイオン電池は、正極PEと負極NEとの間のセパレータSPに開口されたスリット部ST内を通る。 In the battery, lithium ions exit from the positive electrode PE and enter the negative electrode NE during charging, and conversely during discharge, the lithium ions exit from the negative electrode NE and enter the positive electrode PE. An Al foil made of Al (aluminum) is used for the positive electrode plate PEP that is the current collector foil of the positive electrode PE, and a Cu foil made of Cu (copper) is used for the negative electrode plate NEP that is the current collector foil of the negative electrode NE. It has been. At the time of charging or discharging, the lithium ion battery passes through the slit portion ST opened in the separator SP between the positive electrode PE and the negative electrode NE.
 次に、本実施の形態のリチウムイオン電池の効果について、比較例のリチウムイオン電池を用いて説明する。ここで説明に用いる比較例のリチウムイオン電池は、正極と負極とを分離するセパレータが樹脂膜からなり、かつ、セパレータに、図3に示すようなスリット部STが形成されていないものである。 Next, the effect of the lithium ion battery of this embodiment will be described using a lithium ion battery of a comparative example. In the lithium ion battery of the comparative example used for the description here, the separator that separates the positive electrode and the negative electrode is made of a resin film, and the slit portion ST as shown in FIG. 3 is not formed in the separator.
 ここで、比較例の当該セパレータは樹脂膜を引き延ばして形成したシートであるため、樹脂膜は三次元網目構造を有し、当該樹脂膜には非常に小さい細孔が多数開口している。当該細孔の孔径は、数十~数百nmであり、非常に小さい。樹脂膜は三次元網目構造を有しているため、当該細孔はセパレータの表面から裏面を直線的に貫通しているわけではない。このような比較例のリチウムイオン電池において充放電を行う際、リチウムイオンは当該細孔内を通って電極間を移動する。 Here, since the separator of the comparative example is a sheet formed by stretching a resin film, the resin film has a three-dimensional network structure, and a lot of very small pores are opened in the resin film. The pore diameter of the pores is several tens to several hundreds nm and is very small. Since the resin film has a three-dimensional network structure, the pores do not penetrate linearly from the front surface to the back surface of the separator. When charging / discharging in the lithium ion battery of such a comparative example, lithium ions move between the electrodes through the pores.
 このとき、リチウムイオン電池はセパレータ内を直線的に移動することができず、三次元網目構造の樹脂膜内において、迷路状の細孔内を蛇行しながら移動する。このため、リチウムイオンの直線的な移動が妨げられることに起因して、リチウムイオン電池の内部抵抗が高くなる問題がある。上記のように、リチウムイオンの電極間の移動経路が、セパレータの三次元網目構造の隙間に形成された細孔のみである場合には、リチウムイオンが移動する際にセパレータの三次元網目構造が障害物となるため、リチウムイオンを拡散させる観点において不利である。 At this time, the lithium ion battery cannot move linearly in the separator, but moves while meandering in the maze-like pores in the resin film having a three-dimensional network structure. For this reason, there is a problem that the internal resistance of the lithium ion battery increases due to the fact that the linear movement of lithium ions is hindered. As described above, when the movement path between the electrodes of lithium ions is only the pores formed in the gaps of the three-dimensional network structure of the separator, the three-dimensional network structure of the separator is changed when lithium ions move. Since it becomes an obstacle, it is disadvantageous in terms of diffusing lithium ions.
 また、細孔の孔径は上記のように非常に小さいため、電極間においてリチウムイオンが移動することができる面積は小さく、このこともリチウムイオン電池の内部抵抗が高くなる原因となる。 In addition, since the pore diameter is very small as described above, the area in which lithium ions can move between the electrodes is small, which also causes the internal resistance of the lithium ion battery to increase.
 これらの問題を解決するために、セパレータを加工して、セパレータの厚さ方向においてセパレータを貫通する孔部を設けることが考えられる。当該孔部の径が大きい程、電極間においてリチウムイオンが移動することができる面積は大きくなる。また、当該孔部を設けることで、リチウムイオンが障害物に阻まれることなく直線的に移動することができる。したがって、リチウムイオン電池の内部抵抗を低減することができる。 In order to solve these problems, it is conceivable to process the separator and provide a hole that penetrates the separator in the thickness direction of the separator. The larger the diameter of the hole, the larger the area in which lithium ions can move between the electrodes. In addition, by providing the hole portion, lithium ions can move linearly without being obstructed by an obstacle. Therefore, the internal resistance of the lithium ion battery can be reduced.
 ここで、リチウムイオン電池の正極または負極の活物質はバインダにより固定され、正極板または負極板などの電極板に密着しているが、リチウムイオン電池を繰り返し充放電させて使用することで、活物質の粒子が電極板から剥がれ落ちる場合がある。 Here, the positive electrode or negative electrode active material of the lithium ion battery is fixed by a binder and is in close contact with an electrode plate such as a positive electrode plate or a negative electrode plate. In some cases, particles of the material may fall off the electrode plate.
 したがって、セパレータを加工して、セパレータを貫通する孔部を形成した場合に、当該孔部の径が活物質の粒子の平均径以上であると、上記のようにして剥がれ落ちた活物質の粒子が電極間に溜まり、正極と負極とを短絡させる虞がある。これに対し、セパレータを加工して形成する孔部の平均径を、活物質の平均径よりも小さくすることで、セパレータの孔部内を活物質が通ることを防ぐことができる。これにより、活物質の脱落に起因する電極間の短絡の発生を防ぐことができる。この場合、セパレータの孔部の開口部の形状は、例えば円形であることが考えられる。 Therefore, when the separator is processed to form a hole that penetrates the separator, the active material particles peeled off as described above when the diameter of the hole is equal to or larger than the average diameter of the active material particles. May accumulate between the electrodes, causing a short circuit between the positive electrode and the negative electrode. On the other hand, by making the average diameter of the holes formed by processing the separator smaller than the average diameter of the active material, it is possible to prevent the active material from passing through the holes of the separator. Thereby, it is possible to prevent the occurrence of a short circuit between the electrodes due to the dropping of the active material. In this case, the shape of the opening of the hole of the separator is considered to be, for example, a circle.
 しかし、セパレータの当該孔部の平均径が活物質の平均径より小さい場合、電極間においてリチウムイオンが移動することができる面積は小さいため、リチウムイオン電池の内部抵抗を効果的に低減することは困難である。 However, when the average diameter of the pores of the separator is smaller than the average diameter of the active material, the area where lithium ions can move between the electrodes is small, so that the internal resistance of the lithium ion battery can be effectively reduced. Have difficulty.
 そこで、本実施の形態では、図3に示すように、セパレータSP1およびセパレータSP2に、1方向に延在するスリット部STを設けている。スリット部STの短手方向の幅W1の大きさは、正極活物質PASおよび負極活物質NASを構成する複数の粒子の平均粒径未満である。よって、セパレータSP1、SP2に開口されたスリット部ST内を、剥がれ落ちた正極活物質PASまたは負極活物質NASの粒子が通ることを防ぐことができるため、活物質の脱落に起因する電極間の短絡の発生を防ぐことができる。これにより、リチウムイオン電池の信頼性を向上させることができ、また、リチウムイオン電池の寿命を延ばすことができる。 Therefore, in the present embodiment, as shown in FIG. 3, the separator SP1 and the separator SP2 are provided with slit portions ST extending in one direction. The size of the width W1 in the short direction of the slit part ST is less than the average particle diameter of a plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS. Therefore, it is possible to prevent the particles of the positive electrode active material PAS or the negative electrode active material NAS, which have been peeled off, from passing through the slit portions ST opened in the separators SP1 and SP2, and therefore, between the electrodes due to the loss of the active material. The occurrence of a short circuit can be prevented. Thereby, the reliability of a lithium ion battery can be improved and the lifetime of a lithium ion battery can be extended.
 また、スリット部STの平均径は、セパレータSP1、SP2を構成する三次元網目構造に形成された細孔の径に比べて非常に大きい。また、スリット部STの長さL1の大きさは、正極活物質PASおよび負極活物質NASを構成する複数の粒子の平均粒径以上である。つまり、スリット部STの平均径は、正極活物質PASおよび負極活物質NASを構成する複数の粒子の平均粒径以上である。よって、セパレータに形成した孔部の平均径が活物質の平均径より小さい場合に比べて、リチウムイオンが電極間を移動することできる面積を大幅に拡大することができる。 Also, the average diameter of the slit portion ST is very large compared to the diameter of the pores formed in the three-dimensional network structure constituting the separators SP1 and SP2. Moreover, the size of the length L1 of the slit part ST is equal to or larger than the average particle diameter of a plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS. That is, the average diameter of the slit part ST is not less than the average particle diameter of the plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS. Therefore, compared with the case where the average diameter of the hole part formed in the separator is smaller than the average diameter of an active material, the area which can move a lithium ion between electrodes can be expanded significantly.
 また、スリット部STは、セパレータSP1、SP2の厚み方向において、セパレータSP1、SP2のそれぞれの表面から裏面に亘って直線的に貫通している。よって、リチウムイオンが電極間を直線的に移動することが可能となるため、リチウムイオン電池の内部抵抗を大きく低減することができる。したがって、リチウムイオン電池の性能を向上させることができる。 Further, the slit portion ST linearly penetrates from the front surface to the back surface of each of the separators SP1 and SP2 in the thickness direction of the separators SP1 and SP2. Therefore, since lithium ions can move linearly between the electrodes, the internal resistance of the lithium ion battery can be greatly reduced. Therefore, the performance of the lithium ion battery can be improved.
 また、セパレータSP1、SP2は三次元網目構造を有する樹脂膜からなり、当該網目構造の隙間に細孔を有する。このため、リチウムイオン電池を充放電する際、リチウムイオンは、スリット部ST内を通る他、当該細孔内を通って電極間を移動する。このため、三次元網目構造を有しないフィルムにスリット部STを設ける場合に比べて、リチウムイオン電池の内部抵抗を低減することができる。よって、リチウムイオン電池の性能を向上させることができる。 The separators SP1 and SP2 are made of a resin film having a three-dimensional network structure, and have pores in the gaps of the network structure. For this reason, when charging / discharging the lithium ion battery, lithium ions move between the electrodes through the pores as well as through the slit portions ST. For this reason, the internal resistance of a lithium ion battery can be reduced compared with the case where the slit part ST is provided in the film which does not have a three-dimensional network structure. Therefore, the performance of the lithium ion battery can be improved.
 以上に述べたように、本実施の形態によれば、セパレータに上記のようなスリット部を設けて、セパレータ内におけるリチウムイオンの拡散性を向上させることで、活物質の脱落による短絡を抑制しつつ、電池の内部抵抗の低減し、電池の出力性能を向上させることができるリチウムイオン電池を実現することができる。 As described above, according to the present embodiment, the above-described slit portion is provided in the separator to improve the diffusibility of lithium ions in the separator, thereby suppressing a short circuit due to the dropping of the active material. On the other hand, it is possible to realize a lithium ion battery that can reduce the internal resistance of the battery and improve the output performance of the battery.
 以下では、本実施の形態のリチウムイオン電池の製造方法について、図1~図4、および図7~図11を用いて説明する。図7は、本実施の形態のリチウムイオン電池の製造方法を説明する俯瞰図である。図8~図11は、本実施の形態のリチウムイオン電池の製造方法を説明する概略図である。 Hereinafter, a method of manufacturing the lithium ion battery according to the present embodiment will be described with reference to FIGS. 1 to 4 and FIGS. 7 to 11. FIG. 7 is a bird's-eye view illustrating the method for manufacturing the lithium ion battery of the present embodiment. 8 to 11 are schematic diagrams for explaining a method of manufacturing the lithium ion battery according to the present embodiment.
 まず、図1に示すように、本実施の形態のリチウムイオン電池を構成する正極シートPELを形成する。ここでは、例えば、コバルト酸リチウムからなる正極活物質PASと、導電助剤としてのカーボンと、結着剤(バインダ)とを混合する。このようにして形成した混合物をNメチルピロリドン(NMP)に溶解させた溶液によりスラリーを作製し、当該スラリーを正極板PEPに塗布・乾燥することで、正極活物質PASを含む電極材料膜PEFを形成する。これにより、電極材料膜PEFと正極板PEPとからなる正極シートPELを形成する。 First, as shown in FIG. 1, a positive electrode sheet PEL constituting the lithium ion battery of the present embodiment is formed. Here, for example, a positive electrode active material PAS made of lithium cobalt oxide, carbon as a conductive additive, and a binder (binder) are mixed. A slurry is prepared from a solution obtained by dissolving the mixture thus formed in N-methylpyrrolidone (NMP), and the slurry is applied to the positive electrode plate PEP and dried, so that the electrode material film PEF containing the positive electrode active material PAS is formed. Form. Thereby, a positive electrode sheet PEL composed of the electrode material film PEF and the positive electrode plate PEP is formed.
 電極材料膜PEFは、正極板PEPの表面および当該表面の反対側の裏面のそれぞれを覆うように正極板PEPに接している。正極板PEPとの結着剤(バインダ)は、例えば、ポリフッ化ビニリデンからなる。正極活物質PASは複数の粒子からなり、それらの粒子の平均粒径は、例えば、10μmである。 The electrode material film PEF is in contact with the positive electrode plate PEP so as to cover each of the surface of the positive electrode plate PEP and the back surface opposite to the front surface. The binder (binder) with the positive electrode plate PEP is made of, for example, polyvinylidene fluoride. The positive electrode active material PAS is composed of a plurality of particles, and the average particle size of these particles is, for example, 10 μm.
 上記のようにして形成した正極シートPELは、加圧することで、正極板PEPに塗着された正極活物質PASの高密度化を図ると共に、表面を平滑化する。また、上記スラリーの塗布および平滑化の後、正極活物質PASの未塗工部の正極板PEPを切断加工し、矩形形状を有する複数の正極集電タブPTABを形成する。 The positive electrode sheet PEL formed as described above is pressurized to increase the density of the positive electrode active material PAS applied to the positive electrode plate PEP and smooth the surface. Moreover, after application | coating and smoothing of the said slurry, the positive electrode plate PEP of the uncoated part of positive electrode active material PAS is cut-processed, and several positive electrode current collection tab PTAB which has a rectangular shape is formed.
 また、図2に示すように、本実施の形態のリチウムイオン電池を構成する負極シートNELを形成する。ここでは、例えば、炭素材料(カーボン材料)からなる負極活物質NASと導電助剤としてのカーボンと結着剤(バインダ)とを混合する。このようにして形成した混合物をNメチルピロリドン(NMP)に溶解させた溶液によりスラリーを作製し、当該スラリーを負極板NEPに塗布・乾燥することで、負極活物質NASを含む電極材料膜NEFを形成する。これにより、電極材料膜NEFと負極板NEPとからなる負極シートNELを形成する。 Moreover, as shown in FIG. 2, the negative electrode sheet NEL which comprises the lithium ion battery of this Embodiment is formed. Here, for example, a negative electrode active material NAS made of a carbon material (carbon material), carbon as a conductive additive, and a binder (binder) are mixed. A slurry is prepared from a solution in which the mixture thus formed is dissolved in N-methylpyrrolidone (NMP), and the slurry is applied to the negative electrode plate NEP and dried, whereby the electrode material film NEF containing the negative electrode active material NAS is formed. Form. Thereby, a negative electrode sheet NEL composed of the electrode material film NEF and the negative electrode plate NEP is formed.
 電極材料膜NEFは、負極板NEPの表面および当該表面の反対側の裏面のそれぞれを覆うように負極板NEPに接している。負極板NEPとの結着剤(バインダ)は、例えば、ポリフッ化ビニリデンからなる。負極活物質NASは複数の粒子からなり、それらの粒子の平均粒径は、例えば、10μmである。 The electrode material film NEF is in contact with the negative electrode plate NEP so as to cover each of the surface of the negative electrode plate NEP and the back surface opposite to the surface. The binder (binder) with the negative electrode plate NEP is made of, for example, polyvinylidene fluoride. The negative electrode active material NAS is composed of a plurality of particles, and the average particle size of these particles is, for example, 10 μm.
 上記のようにして形成した負極シートNELは、加圧することで、負極板NEPに塗着された負極活物質NASの高密度化を図ると共に、表面を平滑化する。また、上記スラリーの塗布および平滑化の後、負極活物質NASの未塗工部の正極板PEPを切断加工し、矩形形状を有する複数の負極集電タブNTABを形成する。 The negative electrode sheet NEL formed as described above is pressurized to increase the density of the negative electrode active material NAS applied to the negative electrode plate NEP and to smooth the surface. Moreover, after application | coating and smoothing of the said slurry, the positive electrode plate PEP of the uncoated part of negative electrode active material NAS is cut-processed, and the some negative electrode current collection tab NTAB which has a rectangular shape is formed.
 次に、図3、図4および図7に示すように、上記のようにして形成した正極シートPELおよび負極シートNELを用意し、さらにセパレータSP1、SP2を用意する。その後、シートNEL正極シートとセパレータと負極シートNELとを重ねて捲回することで、リチウムイオン電池を構成する電極捲回体を形成する。 Next, as shown in FIGS. 3, 4 and 7, the positive electrode sheet PEL and the negative electrode sheet NEL formed as described above are prepared, and further, separators SP1 and SP2 are prepared. Thereafter, an electrode winding body constituting a lithium ion battery is formed by winding the sheet NEL positive electrode sheet, the separator, and the negative electrode sheet NEL.
 すなわち、電極捲回体WRF(図4参照)は、図3に示すように、正極シートPEL、セパレータSP1、負極シートNELおよびセパレータSP2を順に重ね合わせ、この積層シートを、図4に示すように捲回することで形成される。セパレータSP1およびセパレータSP2は、正極シートPELと負極シートNELとを絶縁するために用いられる。セパレータSP1、SP2の材料としては、例えばポリオレフィン系樹脂、ポリエステル、ポリイミド、ポリアミドまたはセルロースなどを含む樹脂膜を用いることができる。 That is, as shown in FIG. 3, the electrode winding body WRF (see FIG. 4) is formed by sequentially superposing the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2, and this laminated sheet is formed as shown in FIG. It is formed by winding. Separator SP1 and separator SP2 are used to insulate positive electrode sheet PEL and negative electrode sheet NEL. As a material for the separators SP1 and SP2, for example, a resin film containing polyolefin resin, polyester, polyimide, polyamide, cellulose, or the like can be used.
 このとき、正極シートPELに形成されている正極集電タブPTABと、負極シートNELに形成されている負極集電タブNTABとは、Y方向において互いに反対側に配置する。また、上記のように捲回する前に、セパレータSP1およびセパレータSP2のそれぞれには、図7を用いて後述するように、スリット部STを複数形成する。 At this time, the positive electrode current collecting tab PTAB formed on the positive electrode sheet PEL and the negative electrode current collecting tab NTAB formed on the negative electrode sheet NEL are arranged on the opposite sides in the Y direction. Further, before winding as described above, a plurality of slit portions ST are formed in each of the separator SP1 and the separator SP2 as described later with reference to FIG.
 セパレータSP1およびセパレータSP2のそれぞれにおいて、スリット部STは、セパレータSP1およびセパレータSP2の短手方向(Y方向)に複数並んでいる。また、スリット部STは、セパレータSP1およびセパレータSP2のそれぞれの表面から裏面に貫通している。スリット部STのY方向の幅W1は、正極活物質PASおよび負極活物質NASの平均粒径未満であり、例えば、9μmである。スリット部STの長手方向(X方向)の長さL1は、正極活物質PASおよび負極活物質NASの平均粒径以上である。 In each of the separator SP1 and the separator SP2, a plurality of slit portions ST are arranged in the short direction (Y direction) of the separator SP1 and the separator SP2. Further, the slit portion ST penetrates from the front surface to the back surface of the separator SP1 and the separator SP2. The width W1 in the Y direction of the slit part ST is less than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS, and is 9 μm, for example. The length L1 in the longitudinal direction (X direction) of the slit part ST is not less than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS.
 図4に示すように、電極捲回体WRFは、正極シートPELと、セパレータSP1と、負極シートNELと、セパレータSP2とを重ね合わせた状態で軸芯CRに捲回して形成される。具体的には、図7に示すように、正極ロールPELRから正極シートPEL、負極ロールNELRから負極シートNEL、セパレータロールSPRからセパレータSP1およびセパレータSP2をそれぞれ捲き出して、それらの4つのシートを、ガイドローラGRLを経由して搬送しながら重ねた後、捲回して電極捲回体WRFを形成する。 As shown in FIG. 4, the electrode winding body WRF is formed by winding the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 around the shaft core CR. Specifically, as shown in FIG. 7, the positive electrode sheet PEL from the positive electrode roll PELR, the negative electrode sheet NEL from the negative electrode roll NELR, and the separator SP1 and the separator SP2 from the separator roll SPR are respectively rolled out, and these four sheets are After being stacked while being conveyed via the guide roller GRL, the electrode winding body WRF is formed by winding.
 このとき、セパレータSP1とセパレータSP2とは、セパレータロールSPRから捲き出された後、捲回される前に、スリット形成部STMに搬送される。スリット形成部STMには、例えばステンレス鋼、カーボン鋼、ハイス鋼、超硬合金、セラミック、サファイヤまたはダイヤモンドなどの材質からなるスリッター刃SCT1が配置されている。スリッター刃SCT1の表面であって、セパレータSP1、SP2の表面に対向する面には、当該セパレータSP1、SP2の短手方向(Y方向)に並ぶように、複数の刃先が設けられている。スリッター刃SCT1の各刃先のY方向における幅は、正極または負極の活物質粒子の平均粒径未満であり、例えば、9μmである。 At this time, the separator SP1 and the separator SP2 are conveyed from the separator roll SPR to the slit forming unit STM before being wound. In the slit forming portion STM, for example, a slitter blade SCT1 made of a material such as stainless steel, carbon steel, high-speed steel, cemented carbide, ceramic, sapphire, or diamond is disposed. A plurality of cutting edges are provided on the surface of the slitter blade SCT1 and facing the surfaces of the separators SP1 and SP2 so as to be aligned in the short direction (Y direction) of the separators SP1 and SP2. The width of each cutting edge of the slitter blade SCT1 in the Y direction is less than the average particle diameter of the positive or negative active material particles, and is, for example, 9 μm.
 そして、ガイドローラGRLを経由してセパレータSP1およびセパレータSP2を搬送しながら、セパレータSP1およびセパレータSP2のそれぞれの表面に、スリッター刃SCT1を押し当てる。これにより、セパレータSP1およびセパレータSP2の搬送方向に沿って延在するスリット部STが、Y方向に並んで複数形成される。この切削工程において、スリッター刃SCT1は回転していても固定されていてもどちらでもよい。 Then, the slitter blade SCT1 is pressed against the respective surfaces of the separator SP1 and the separator SP2 while conveying the separator SP1 and the separator SP2 via the guide roller GRL. Thereby, a plurality of slit portions ST extending along the conveying direction of the separator SP1 and the separator SP2 are formed side by side in the Y direction. In this cutting process, the slitter blade SCT1 may be either rotating or fixed.
 以上のようにして、正極シートPELおよび負極シートNELと、スリット部STが開口されたセパレータSP1およびSP2とを重ねた積層シートを捲回することができる。当該積層シートを数十cm~数m捲回した後、カッター刃CTにより当該積層シートを切断する。これにより、電極捲回体WRFが形成される。 As described above, a laminated sheet in which the positive electrode sheet PEL and the negative electrode sheet NEL and the separators SP1 and SP2 in which the slit portions ST are opened can be wound. After winding the laminated sheet from several tens of cm to several m, the laminated sheet is cut with a cutter blade CT. Thereby, the electrode winding body WRF is formed.
 次に、図8に示すように、電極捲回体WRFの上端部から突出している正極集電タブPTABを正極集電リングPRに接続する。同様に、電極捲回体WRFの下端部から突出している負極集電タブNTABを負極集電リングNRに接続する。ここで、正極集電タブPTABの正極集電リングPRへの接続、および、負極集電タブNTABの負極集電リングNRへの接続は、例えば、超音波溶着によって行う。 Next, as shown in FIG. 8, the positive electrode current collecting tab PTAB protruding from the upper end of the electrode winding body WRF is connected to the positive electrode current collecting ring PR. Similarly, the negative electrode current collecting tab NTAB protruding from the lower end of the electrode winding body WRF is connected to the negative electrode current collecting ring NR. Here, the connection of the positive electrode current collector tab PTAB to the positive electrode current collector ring PR and the connection of the negative electrode current collector tab NTAB to the negative electrode current collector ring NR are performed by, for example, ultrasonic welding.
 次に、図9に示すように、電極捲回体WRFを外装缶CSの内部に挿入する。そして、図10に示すように、外装缶CSを加工して溝DTを形成する。この溝DTは、外装缶CSの内部に挿入されている電極捲回体WRFが上下方向に移動しないように固定するために設けられるものである。 Next, as shown in FIG. 9, the electrode winding body WRF is inserted into the outer can CS. And as shown in FIG. 10, the exterior can CS is processed and the groove | channel DT is formed. The groove DT is provided to fix the electrode winding body WRF inserted in the outer can CS so as not to move in the vertical direction.
 次に、図11に示すように、電極捲回体WRFを挿入した外装缶CSの内部に電解液ELを注入する。これにより、電極捲回体WRFは電解液ELに浸される。その後、外装缶CSの上部をキャップCPで封止することにより、本実施の形態におけるリチウムイオン電池を製造することができる。 Next, as shown in FIG. 11, electrolyte EL is injected into the exterior can CS into which the electrode winding body WRF is inserted. Thereby, the electrode winding body WRF is immersed in the electrolytic solution EL. Then, the lithium ion battery in this Embodiment can be manufactured by sealing the upper part of the armored can CS with the cap CP.
 以下に、本実施の形態のリチウムイオン電池の製造方法の効果について説明する。 Hereinafter, effects of the manufacturing method of the lithium ion battery according to the present embodiment will be described.
 本実施の形態では、図3に示すように、セパレータSP1およびセパレータSP2に、1方向に延在するスリット部STを設けている。スリット部STの短手方向の幅W1の大きさは、正極活物質PASおよび負極活物質NASを構成する複数の粒子の平均粒径未満であるため、活物質の脱落に起因する電極間の短絡の発生を防ぐことができる。これにより、リチウムイオン電池の信頼性を向上させることができ、また、リチウムイオン電池の寿命を延ばすことができる。 In the present embodiment, as shown in FIG. 3, the separator SP1 and the separator SP2 are provided with slit portions ST extending in one direction. Since the size of the width W1 in the short direction of the slit part ST is less than the average particle diameter of the plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS, a short circuit between the electrodes due to the dropping of the active material Can be prevented. Thereby, the reliability of a lithium ion battery can be improved and the lifetime of a lithium ion battery can be extended.
 また、スリット部STの平均径は、正極活物質PASおよび負極活物質NASを構成する複数の粒子の平均粒径以上であるため、セパレータに形成した孔部の平均径が活物質の平均径より小さい場合に比べて、リチウムイオンが電極間を移動することできる面積を大幅に拡大することができる。 Moreover, since the average diameter of the slit part ST is not less than the average particle diameter of the plurality of particles constituting the positive electrode active material PAS and the negative electrode active material NAS, the average diameter of the holes formed in the separator is larger than the average diameter of the active material. Compared to a small case, the area in which lithium ions can move between the electrodes can be greatly increased.
 また、スリット部STは、セパレータSP1、SP2の厚み方向において、セパレータSP1、SP2のそれぞれの表面から裏面に亘って直線的に貫通しているため、リチウムイオンが電極間を直線的に移動することが可能である。よって、リチウムイオン電池の内部抵抗を大きく低減することができるため、リチウムイオン電池の性能を向上させることができる。 Moreover, since the slit portion ST linearly penetrates from the front surface to the back surface of each of the separators SP1 and SP2 in the thickness direction of the separators SP1 and SP2, lithium ions move linearly between the electrodes. Is possible. Therefore, since the internal resistance of the lithium ion battery can be greatly reduced, the performance of the lithium ion battery can be improved.
 また、セパレータSP1、SP2は三次元網目構造を有する樹脂膜からなり、当該網目構造の隙間に細孔を有する。このため、三次元網目構造を有しないフィルムにスリット部STを設ける場合に比べて、リチウムイオン電池の内部抵抗を低減することができる。このため、リチウムイオン電池の性能を向上させることができる。 The separators SP1 and SP2 are made of a resin film having a three-dimensional network structure, and have pores in the gaps of the network structure. For this reason, the internal resistance of a lithium ion battery can be reduced compared with the case where the slit part ST is provided in the film which does not have a three-dimensional network structure. For this reason, the performance of a lithium ion battery can be improved.
 また、図7を用いて説明した捲回工程では、セパレータSP1、SP2を含む各シートに張力を掛けながら搬送・捲回を行う。このため、スリット部STをセパレータSP1、SP2の短手方向(Y方向)に延在する切れ目として形成すると、当該捲回工程においてセパレータSP1、SP2に張力を加えた際に、セパレータSP1、SP2が破れる虞がある。また、セパレータSP1、SP2が破断しなくても、張力によりスリット部STの開口幅が広がるため、スリット部ST内を活物質が通過できるようになり、活物質の脱落に起因する短絡を防げなくなる問題が生じる。 Further, in the winding process described with reference to FIG. 7, conveyance and winding are performed while tension is applied to each sheet including the separators SP1 and SP2. For this reason, when the slit part ST is formed as a cut extending in the short direction (Y direction) of the separators SP1 and SP2, when the tension is applied to the separators SP1 and SP2 in the winding step, the separators SP1 and SP2 There is a risk of tearing. Further, even if the separators SP1 and SP2 are not broken, the opening width of the slit portion ST is widened by the tension, so that the active material can pass through the slit portion ST, and it is impossible to prevent a short circuit due to the dropping of the active material. Problems arise.
 これに対し、本実施の形態では、セパレータSP1、SP2におけるスリット部STの延在方向を、上記捲回工程においてセパレータSP1、SP2を引っ張る方向、つまり長手方向(X方向)に合わせている。これにより、上記のようにセパレータSP1、SP2が破断すること、および、スリット部STの短手方向の幅が広がって短絡防止効果が得られなくなることを回避することができる。 In contrast, in the present embodiment, the extending direction of the slit portions ST in the separators SP1 and SP2 is matched with the direction in which the separators SP1 and SP2 are pulled in the winding step, that is, the longitudinal direction (X direction). Thereby, it can be avoided that the separators SP1 and SP2 are broken as described above and that the width in the short direction of the slit portion ST is widened and the short-circuit preventing effect cannot be obtained.
 また、セパレータに、平均径が活物質の平均径未満の孔部を複数開口することが考えられる。この場合、図7に示すスリッター刃SCT1とは異なり、ローラの面に複数のマイクロニードルを取り付けて、セパレータの搬送速度に合わせて当該ローラを回転させながら、当該ローラをセパレータに押し付けてマイクロニードルにより孔部を開口することが考えられる。 Also, it is conceivable that a plurality of holes having an average diameter less than the average diameter of the active material are opened in the separator. In this case, unlike the slitter blade SCT1 shown in FIG. 7, a plurality of microneedles are attached to the surface of the roller, and the roller is pressed against the separator while rotating the roller according to the transport speed of the separator. It is conceivable to open the hole.
 しかし、破損しやすく、かつ高価なマイクロニードルを多数用いることは、製造コストを低減する観点、および、製品の歩留まりを向上させる観点から不利である。さらに、このように破損しやすいマイクロニードルを用いて孔部を形成するためには、マイクロニードルに負荷が掛かることを防ぐため、セパレータの搬送速度を遅らせる必要がある。よって、製造効率が低下し、製造コストが増大する問題が生じる。 However, it is disadvantageous to use many microneedles that are easily broken and expensive from the viewpoint of reducing the manufacturing cost and improving the yield of the product. Furthermore, in order to form a hole using such a microneedle that is easily damaged, it is necessary to delay the separator conveyance speed in order to prevent the microneedle from being loaded. Therefore, there arises a problem that the production efficiency is lowered and the production cost is increased.
 これに対し、本実施の形態では、例えばステンレス鋼、カーボン鋼、ハイス鋼、超硬合金、セラミック、サファイヤまたはダイヤモンドなどの材質からなり、マイクロニードルに比べて頑丈なスリッター刃SCT1(図7参照)を用いてスリット部ST(図4参照)を形成する。このため、セパレータSP1、SP2の搬送速度を遅らせる必要がなく、スリッター刃SCT1が破損する可能性が小さいため、リチウムイオン電池の製造コストを低減することができる。 In contrast, in the present embodiment, the slitter blade SCT1 is made of a material such as stainless steel, carbon steel, high-speed steel, cemented carbide, ceramic, sapphire, or diamond, and is stronger than microneedles (see FIG. 7). Is used to form the slit portion ST (see FIG. 4). For this reason, it is not necessary to delay the conveying speed of the separators SP1 and SP2, and the possibility of damage to the slitter blade SCT1 is small. Therefore, the manufacturing cost of the lithium ion battery can be reduced.
 以上に述べたように、本実施の形態によれば、セパレータに上記のようなスリット部を設けて、セパレータ内におけるリチウムイオンの拡散性を向上させることで、活物質の脱落による短絡を抑制しつつ、電池の内部抵抗の低減し、電池の出力性能を向上させることができるリチウムイオン電池を実現することができる。 As described above, according to the present embodiment, the above-described slit portion is provided in the separator to improve the diffusibility of lithium ions in the separator, thereby suppressing a short circuit due to the dropping of the active material. On the other hand, it is possible to realize a lithium ion battery that can reduce the internal resistance of the battery and improve the output performance of the battery.
 (実施の形態2)
 本実施の形態では、スリット部をセパレータの延在方向に複数並べて開口することについて、図12および図13を用いて説明する。図12は、本実施の形態のリチウムイオン電池を構成する積層体の積層構造を示す概略図である。図13は、本実施の形態のリチウムイオン電池を構成する捲回体を示す俯瞰図である。本実施の形態は、刃先が凹凸状のスリッター刃を用いて、セパレータに間欠的(断続的、不連続)にスリット部を形成する点に特徴がある。
(Embodiment 2)
In the present embodiment, opening a plurality of slit portions in the extending direction of the separator will be described with reference to FIGS. 12 and 13. FIG. 12 is a schematic view showing a laminated structure of a laminated body constituting the lithium ion battery of the present embodiment. FIG. 13 is an overhead view showing a wound body constituting the lithium ion battery of the present embodiment. The present embodiment is characterized in that a slit portion is formed intermittently (intermittently or discontinuously) in the separator using a slitter blade having an uneven edge.
 図12に示すように、電極捲回体WRF(図13参照)は、正極シートPEL、セパレータSP1、負極シートNEL、およびセパレータSP2を重ね合わせて捲回することにより形成される。セパレータSP1、SP2のそれぞれには、セパレータSP1、SP2の延在方向(X方向)に延在するスリット部STが、X方向に複数並んで配置されている。図において、各スリット部STの形状は矩形であるが、当該形状は、台形、六角形などの多角形または楕円形であってもよい。 As shown in FIG. 12, the electrode winding body WRF (see FIG. 13) is formed by winding the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 in an overlapping manner. In each of the separators SP1 and SP2, a plurality of slit portions ST extending in the extending direction (X direction) of the separators SP1 and SP2 are arranged side by side in the X direction. In the figure, the shape of each slit portion ST is a rectangle, but the shape may be a polygon such as a trapezoid or a hexagon or an ellipse.
 スリット部STの短手方向の幅W1は、正極活物質PASおよび負極活物質NASの平均粒径未満であり、例えば、9μmである。また、各スリット部STの長手方向の長さL2は、正極活物質PASおよび負極活物質NASの平均粒径以上であり、例えば5cmである。また、X方向において隣り合うスリット部ST同士の間の幅W3は、例えば1cmである。また、Y方向において隣り合うスリット部ST同士の間の幅W2は、例えば1cmである。 The width W1 in the short direction of the slit part ST is less than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS, for example, 9 μm. Further, the length L2 in the longitudinal direction of each slit part ST is equal to or larger than the average particle diameter of the positive electrode active material PAS and the negative electrode active material NAS, and is, for example, 5 cm. Moreover, the width W3 between the slit parts ST adjacent in the X direction is, for example, 1 cm. Further, a width W2 between the slit portions ST adjacent in the Y direction is, for example, 1 cm.
 図13に示すように、正極シートPELと、セパレータSP1と、負極シートNELと、セパレータSP2とを重ね合わせた状態で軸芯CRに捲回することで、電極捲回体WRFが形成されている。本実施の形態のリチウムイオン電池の構造は、スリット部STの態様以外は、前記実施の形態1と同様である。 As shown in FIG. 13, the electrode wound body WRF is formed by winding the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 around the shaft core CR in an overlapped state. . The structure of the lithium ion battery of the present embodiment is the same as that of the first embodiment except for the aspect of the slit part ST.
 上記のように、本実施の形態では、セパレータSP1、SP2のそれぞれに、X方向に延在するスリット部STがX方向に複数並んで配置されている点で、前記実施の形態1とは異なる。このようにスリット部STが断続的に並んでいる構造であっても、前記実施の形態1と同様の効果を得ることができる。また、各セパレータSP1、SP2において、断続的にスリット部STが形成されているため、セパレータSP1、SP2の長手方向における機械的強度を向上させることができる。これにより、リチウムイオン電池の信頼性を向上させることができる。 As described above, the present embodiment is different from the first embodiment in that a plurality of slit portions ST extending in the X direction are arranged in the X direction in each of the separators SP1 and SP2. . Even if the slit portions ST are intermittently arranged in this way, the same effect as in the first embodiment can be obtained. Moreover, since the slit part ST is intermittently formed in each separator SP1, SP2, the mechanical strength in the longitudinal direction of the separators SP1, SP2 can be improved. Thereby, the reliability of a lithium ion battery can be improved.
 以下に、本実施の形態のリチウムイオン電池の製造工程を、図13および図14を用いて説明する。図14は、本発明の実施の形態であるリチウムイオン電池の製造方法を示す概略図である。本実施の形態のリチウムイオン電池の製造工程は、スリット部を形成するためにスリッター刃SCT2(図14参照)を用いること以外は、前記実施の形態1において説明した製造工程と同様である。すなわち、図13に示すように、正極シートPELと、セパレータSP1と、負極シートNELと、セパレータSP2とを順に重ね合わせた状態で軸芯CRに捲回して電極捲回体WRFを形成する。 Hereinafter, the manufacturing process of the lithium ion battery according to the present embodiment will be described with reference to FIGS. FIG. 14 is a schematic diagram showing a method for manufacturing a lithium ion battery according to an embodiment of the present invention. The manufacturing process of the lithium ion battery of the present embodiment is the same as the manufacturing process described in the first embodiment, except that the slitter blade SCT2 (see FIG. 14) is used to form the slit portion. That is, as shown in FIG. 13, the electrode winding body WRF is formed by winding the positive electrode sheet PEL, the separator SP1, the negative electrode sheet NEL, and the separator SP2 on the axis CR in a state where they are sequentially stacked.
 具体的には、図14に示すように、正極ロールPELRから正極シートPEL、負極ロールNELRから負極シートNEL、セパレータロールSPRからセパレータSP1、セパレータロールSPRからセパレータSP2をそれぞれ捲き出し、それらのシートを重ねて捲回することで、電極捲回体WRFを形成する。 Specifically, as shown in FIG. 14, a positive electrode sheet PEL from the positive electrode roll PELR, a negative electrode sheet NEL from the negative electrode roll NELR, a separator SP1 from the separator roll SPR, and a separator SP2 from the separator roll SPR, respectively, The electrode winding body WRF is formed by winding in an overlapping manner.
 このとき、セパレータSP1、SP2のそれぞれは、セパレータロールSPRから捲き出された後、捲回される前に、スリット形成部STMに搬送される。スリット形成部STMには、例えばステンレス鋼、カーボン鋼、ハイス鋼、超硬合金、セラミック、サファイヤまたはダイヤモンドなどの材質からなるスリッター刃SCT2が配置されている。スリッター刃SCT2は、スリット形成部STM内に搬送されるセパレータSP1、SP2の搬送速度に対応して回転する。スリッター刃SCT2の表面に複数取付けられた刃先の幅であって、スリッター刃SCT2の回転軸に沿う方向における幅は、正極または負極の活物質粒子の平均粒径未満である。当該刃先の同方向における幅は、例えば、9μmである。 At this time, each of the separators SP1 and SP2 is conveyed from the separator roll SPR to the slit forming portion STM before being wound. In the slit forming part STM, for example, a slitter blade SCT2 made of a material such as stainless steel, carbon steel, high-speed steel, cemented carbide, ceramic, sapphire or diamond is disposed. The slitter blade SCT2 rotates corresponding to the transport speed of the separators SP1 and SP2 transported into the slit forming part STM. The width of a plurality of cutting edges attached to the surface of the slitter blade SCT2 and the width in the direction along the rotation axis of the slitter blade SCT2 is less than the average particle diameter of the positive or negative active material particles. The width of the cutting edge in the same direction is, for example, 9 μm.
 スリッター刃SCT2の表面には、スリッター刃SCT2の回転方向において複数の刃先が並んでいるため、当該複数の刃先を含むスリッター刃SCT2の表面は凹凸になっている。 Since the surface of the slitter blade SCT2 has a plurality of cutting edges arranged in the rotation direction of the slitter blade SCT2, the surface of the slitter blade SCT2 including the plurality of cutting edges is uneven.
 スリット形成部STMでは、ガイドローラGRLを経由して搬送されたセパレータSP1、SP2のそれぞれに対し、スリッター刃を回転させながら押し当てる。これにより、セパレータSP1、SP2のそれぞれには、セパレータSP1、SP2の搬送方向に沿って延在するスリット部STが間欠的(断続的)に形成される。 In the slit forming part STM, the slitter blade is pressed against each of the separators SP1 and SP2 conveyed via the guide roller GRL. Thereby, slit part ST extended along the conveyance direction of separator SP1, SP2 is formed in each of separator SP1, SP2 intermittently (intermittently).
 なお、上記のようにして電極捲回体WRFを形成した後の工程は、前記実施の形態1で説明したものとほぼ同様であるため再度の説明は省略する。 In addition, since the process after forming the electrode winding body WRF as described above is substantially the same as that described in the first embodiment, the description thereof is omitted.
 本実施の形態のリチウムイオン電池の製造方法を用いれば、セパレータSP1、SP2の長手方向に沿って、断続的にスリット部STを形成することができる。これにより、前記実施の形態1と同様の効果を得ることができる。 If the manufacturing method of the lithium ion battery of the present embodiment is used, the slit portions ST can be intermittently formed along the longitudinal direction of the separators SP1 and SP2. Thereby, the same effect as the first embodiment can be obtained.
 さらに、X方向に断続的にスリット部STを並べて設けることで、セパレータの長手方向における機械的強度を向上させることができる。したがって、図14を用いて説明した捲回工程などにおいて、搬送方向に張力が掛かる場合においても、搬送速度を高め、生産性を向上させることができる。 Furthermore, the mechanical strength in the longitudinal direction of the separator can be improved by intermittently arranging the slit portions ST in the X direction. Therefore, in the winding process described with reference to FIG. 14, even when tension is applied in the transport direction, the transport speed can be increased and productivity can be improved.
 以上、本発明者らによってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 As mentioned above, the invention made by the present inventors has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. is there.
 前記実施の形態1、2では、捲回型リチウムイオン電池を例に挙げて説明したが、本発明の技術的思想は、捲回型リチウムイオン電池に限定されるものではなく、正極、負極、および、正極と負極とを電気的に分離するセパレータを備える蓄電デバイス(例えば、電池またはキャパシタなど)に幅広く適用することができる。 In the first and second embodiments, the wound type lithium ion battery has been described as an example. However, the technical idea of the present invention is not limited to the wound type lithium ion battery, and includes a positive electrode, a negative electrode, And it can apply widely to an electrical storage device (for example, a battery or a capacitor etc.) provided with the separator which isolate | separates a positive electrode and a negative electrode electrically.
 本発明は、例えば、リチウムイオン電池に代表される電池を製造する製造業に幅広く利用することができる。 The present invention can be widely used in, for example, a manufacturing industry for manufacturing a battery typified by a lithium ion battery.
 本発明は、リチウムイオン電池に代表される電池に適用して有効である。 The present invention is effective when applied to a battery represented by a lithium ion battery.
NAS  負極活物質
NEL  負極シート
NEF  電極材料膜
NEP  負極板
NTAB  負極集電タブ
PAS  正極活物質
PEF  電極材料膜
PEL  正極シート
PEP  正極板
PTAB  正極集電タブ
SP1、SP2  セパレータ
ST  スリット部
NAS Negative electrode active material NEL Negative electrode sheet NEF Electrode material film NEP Negative electrode plate NTAB Negative electrode current collector tab PAS Positive electrode active material PEF Electrode material film PEL Positive electrode sheet PEP Positive electrode plate PTAB Positive electrode current collector tab SP1, SP2 Separator ST Slit part

Claims (11)

  1.  正極と、
     負極と、
     前記正極および前記負極との間に配置され、前記正極および前記負極を絶縁するセパレータと、
     前記正極および前記負極の間で充放電反応を起こす電解液と、
    を有し、
     前記正極または前記負極の少なくとも一方が複数の活物質粒子を含み、
     前記セパレータが、前記正極および前記負極との間に開口され、第1方向に延在するスリット部を有し、
     前記第1方向における前記スリット部の長さは、前記複数の活物質粒子の平均粒径以上であり、
     前記第1方向と交差する第2方向における前記スリット部の幅は、前記複数の活物質粒子の平均粒径未満であり、
     前記第1方向および前記第2方向は、前記正極または前記負極に対して対向する前記セパレータの表面に沿う、リチウムイオン電池。
    A positive electrode;
    A negative electrode,
    A separator disposed between the positive electrode and the negative electrode and insulating the positive electrode and the negative electrode;
    An electrolyte solution that causes a charge / discharge reaction between the positive electrode and the negative electrode;
    Have
    At least one of the positive electrode or the negative electrode includes a plurality of active material particles,
    The separator has a slit portion that is opened between the positive electrode and the negative electrode and extends in a first direction;
    The length of the slit portion in the first direction is not less than the average particle diameter of the plurality of active material particles,
    The width of the slit portion in the second direction intersecting the first direction is less than the average particle diameter of the plurality of active material particles,
    The lithium ion battery, wherein the first direction and the second direction are along a surface of the separator facing the positive electrode or the negative electrode.
  2.  請求項1に記載のリチウムイオン電池において、
     前記セパレータの前記表面には、前記スリット部が前記第1方向において複数並んで開口している、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    A lithium ion battery in which a plurality of the slit portions are opened side by side in the first direction on the surface of the separator.
  3.  請求項1に記載のリチウムイオン電池において、
     前記第1方向は、前記セパレータの長手方向に沿う方向である、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    Said 1st direction is a lithium ion battery which is a direction along the longitudinal direction of the said separator.
  4.  請求項1に記載のリチウムイオン電池において、
     前記セパレータの前記表面には、前記スリット部が前記第2方向において複数並んで開口している、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    A lithium ion battery in which a plurality of the slit portions are opened side by side in the second direction on the surface of the separator.
  5.  請求項1に記載のリチウムイオン電池において、
     前記セパレータは、三次元網目構造を有し、
     前記三次元網目構造の隙間には孔が形成され、
     前記孔の平均径は、前記複数の活物質粒子の平均粒径未満である、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    The separator has a three-dimensional network structure,
    A hole is formed in the gap of the three-dimensional network structure,
    The lithium ion battery, wherein an average diameter of the holes is less than an average particle diameter of the plurality of active material particles.
  6.  請求項1に記載のリチウムイオン電池において、
     前記セパレータは、ポリオレフィン系樹脂、ポリエステル、ポリイミド、ポリアミドまたはセルロースを含む、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    The separator is a lithium ion battery including a polyolefin resin, polyester, polyimide, polyamide, or cellulose.
  7.  請求項1に記載のリチウムイオン電池において、
     前記正極、前記セパレータおよび前記負極は順に重ねられて積層体を構成し、
     前記積層体は捲回されている、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    The positive electrode, the separator and the negative electrode are stacked in order to form a laminate,
    The said laminated body is a lithium ion battery wound.
  8.  正極と負極と、前記正極および前記負極を絶縁する第1セパレータとを有するリチウムイオン電池の製造方法であって、
    (a)前記正極、前記負極および前記第1セパレータを用意する工程と、
    (b)前記第1セパレータに、第1方向に延在するスリット部を開口する工程と、
    (c)前記(b)工程の後、前記正極、前記第1セパレータおよび前記負極を重ねて積層体を形成する工程と、
    (d)前記積層体および電解液を容器に封入する工程と、
    を有し、
     前記正極または前記負極の少なくとも一方が複数の活物質粒子を含み、
     前記スリット部は、前記正極および前記負極との間に開口され、
     前記第1方向における前記スリット部の長さは、前記複数の活物質粒子の平均粒径以上であり、
     第2方向における前記スリット部の幅は、前記複数の活物質粒子の平均粒径未満であり、
     前記第1方向および前記第2方向は、前記正極または前記負極に対して対向する前記第1セパレータの表面に沿う、リチウムイオン電池の製造方法。
    A method for producing a lithium ion battery, comprising: a positive electrode; a negative electrode; and a first separator that insulates the positive electrode and the negative electrode.
    (A) preparing the positive electrode, the negative electrode and the first separator;
    (B) opening a slit portion extending in the first direction in the first separator;
    (C) After the step (b), a step of stacking the positive electrode, the first separator, and the negative electrode to form a laminate;
    (D) enclosing the laminate and the electrolyte in a container;
    Have
    At least one of the positive electrode or the negative electrode includes a plurality of active material particles,
    The slit portion is opened between the positive electrode and the negative electrode,
    The length of the slit portion in the first direction is not less than the average particle diameter of the plurality of active material particles,
    The width of the slit portion in the second direction is less than the average particle diameter of the plurality of active material particles,
    The method of manufacturing a lithium ion battery, wherein the first direction and the second direction are along a surface of the first separator facing the positive electrode or the negative electrode.
  9.  請求項8に記載のリチウムイオン電池の製造方法において、
     前記(a)工程では、前記正極、前記負極、前記第1セパレータおよび第2セパレータを用意し、
     前記(b)工程は、
    (b1)前記正極、前記負極、前記第1セパレータおよび前記第2セパレータを搬送する工程、
    (b2)搬送される前記第1セパレータおよび前記第2セパレータのそれぞれの表面に、刃先が前記活物質粒子の平均粒径未満のスリッター刃を押し当てることで、前記スリット部を開口する工程、
    を有し、
     前記(c)工程では、前記正極、前記第1セパレータ、前記負極および前記第2セパレータを順に重ねて前記積層体を形成し、前記積層体を捲回することで捲回体を形成し、
     前記(d)工程では、前記捲回体および電解液を容器に封入する、リチウムイオン電池の製造方法。
    In the manufacturing method of the lithium ion battery according to claim 8,
    In the step (a), the positive electrode, the negative electrode, the first separator and the second separator are prepared,
    The step (b)
    (B1) a step of conveying the positive electrode, the negative electrode, the first separator, and the second separator;
    (B2) opening the slit portion by pressing a slitter blade whose blade edge is less than the average particle diameter of the active material particles on the surface of each of the first separator and the second separator to be conveyed;
    Have
    In the step (c), the positive electrode, the first separator, the negative electrode, and the second separator are sequentially stacked to form the laminate, and the laminate is wound to form a wound body,
    In the step (d), a method for manufacturing a lithium ion battery, wherein the wound body and the electrolytic solution are sealed in a container.
  10.  請求項9に記載のリチウムイオン電池の製造方法において、
     前記(b2)工程では、前記第1セパレータに対し、前記第1セパレータの搬送方向に沿って複数の前記スリット部を開口し、前記第2セパレータに対し、前記第2セパレータの搬送方向に沿って複数の前記スリット部を開口する、リチウムイオン電池の製造方法。
    In the manufacturing method of the lithium ion battery according to claim 9,
    In the step (b2), a plurality of slit portions are opened along the transport direction of the first separator with respect to the first separator, and along the transport direction of the second separator with respect to the second separator. A method for producing a lithium ion battery, wherein a plurality of the slit portions are opened.
  11.  請求項9に記載のリチウムイオン電池の製造方法において、
     前記スリッター刃は、ステンレス鋼、カーボン鋼、ハイス鋼、超硬合金、セラミック、サファイヤまたはダイヤモンドを含む、リチウムイオン電池の製造方法。
    In the manufacturing method of the lithium ion battery according to claim 9,
    The said slitter blade is a manufacturing method of a lithium ion battery containing stainless steel, carbon steel, high-speed steel, a cemented carbide, a ceramic, a sapphire, or a diamond.
PCT/JP2014/079298 2014-11-05 2014-11-05 Lithium-ion cell and method for manufacturing same WO2016071967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079298 WO2016071967A1 (en) 2014-11-05 2014-11-05 Lithium-ion cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079298 WO2016071967A1 (en) 2014-11-05 2014-11-05 Lithium-ion cell and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016071967A1 true WO2016071967A1 (en) 2016-05-12

Family

ID=55908722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079298 WO2016071967A1 (en) 2014-11-05 2014-11-05 Lithium-ion cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016071967A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331666A (en) * 1999-05-19 2000-11-30 Nec Corp Separator, assembly for battery and battery provided with the separator
JP2001068085A (en) * 1999-08-27 2001-03-16 Shin Kobe Electric Mach Co Ltd Battery
JP2005100899A (en) * 2003-09-26 2005-04-14 Sony Corp Nonaqueous electrolyte secondary battery
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
WO2009078159A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2010009918A (en) * 2008-06-26 2010-01-14 Toyota Central R&D Labs Inc Lithium-ion secondary battery
JP2011054555A (en) * 2009-09-02 2011-03-17 Samsung Sdi Co Ltd Electrode assembly, and rechargeable battery with the same
JP2011159518A (en) * 2010-02-02 2011-08-18 Toyota Motor Corp Battery and method of manufacturing battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331666A (en) * 1999-05-19 2000-11-30 Nec Corp Separator, assembly for battery and battery provided with the separator
JP2001068085A (en) * 1999-08-27 2001-03-16 Shin Kobe Electric Mach Co Ltd Battery
JP2005100899A (en) * 2003-09-26 2005-04-14 Sony Corp Nonaqueous electrolyte secondary battery
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
WO2009078159A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2010009918A (en) * 2008-06-26 2010-01-14 Toyota Central R&D Labs Inc Lithium-ion secondary battery
JP2011054555A (en) * 2009-09-02 2011-03-17 Samsung Sdi Co Ltd Electrode assembly, and rechargeable battery with the same
JP2011159518A (en) * 2010-02-02 2011-08-18 Toyota Motor Corp Battery and method of manufacturing battery

Similar Documents

Publication Publication Date Title
KR101590217B1 (en) Method for manufacturing electorde assembly and electrode assembly manufactured thereby
JP6292678B2 (en) Secondary battery and electrode manufacturing method
JP5772397B2 (en) Battery electrode manufacturing method and battery electrode
JP2007329050A (en) Sheet type battery and its manufacturing method
JP2012513076A (en) Secondary battery manufacturing method and secondary battery
JP2013187077A (en) Wound type and stack type electrode battery
WO2005013408A1 (en) Lithium ion secondary cell
KR101917661B1 (en) Semi-automatic method for manufacturing an electrochemical Li-ion battery
JPWO2018079817A1 (en) Electrode for electrochemical device, electrochemical device, and production method thereof
JPWO2018138977A1 (en) Stacked secondary battery, method of manufacturing the same, and device
WO2014141640A1 (en) Laminate exterior cell
JP2012248381A (en) Battery
JP4603857B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR102028167B1 (en) Secondary battery and manufacturing method using the same
WO2018180020A1 (en) Method and device for producing secondary battery
WO2016071967A1 (en) Lithium-ion cell and method for manufacturing same
KR20220140417A (en) Electrode assembly, cylindrical battery cell, battery cell cutting device and battery pack and vehicle including the same
JP5334109B2 (en) Laminated battery
KR20220140418A (en) Electrode assembly, cylindrical battery cell, battery cell cutting device and battery pack and vehicle including the same
JP2013149813A (en) Electrode structure for laminate type energy device, method of manufacturing the same, and electric double-layer capacitor
JP2014207359A (en) Lamination structure of laminate-type energy device, electric double-layer capacitor and manufacturing method thereof
JP2010244865A (en) Laminated battery
JP2018045952A (en) Method of manufacturing electrode and electrochemical device, and electrode roll
US20240120555A1 (en) Electrode assembly, battery cell, battery cell processing apparatus, and battery pack and vehicle including same
US11114701B2 (en) Method of producing an electrode-separator winding, electrode-separator winding and button cell with such a winding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP