WO2016071935A1 - Three-dimensional structural system made from spherical joints and beams - Google Patents
Three-dimensional structural system made from spherical joints and beams Download PDFInfo
- Publication number
- WO2016071935A1 WO2016071935A1 PCT/IT2015/000249 IT2015000249W WO2016071935A1 WO 2016071935 A1 WO2016071935 A1 WO 2016071935A1 IT 2015000249 W IT2015000249 W IT 2015000249W WO 2016071935 A1 WO2016071935 A1 WO 2016071935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- beams
- central
- rods
- joint
- hammer
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/19—Three-dimensional framework structures
- E04B1/1903—Connecting nodes specially adapted therefor
- E04B1/1906—Connecting nodes specially adapted therefor with central spherical, semispherical or polyhedral connecting element
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/19—Three-dimensional framework structures
- E04B2001/1924—Struts specially adapted therefor
- E04B2001/1927—Struts specially adapted therefor of essentially circular cross section
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/19—Three-dimensional framework structures
- E04B2001/1957—Details of connections between nodes and struts
- E04B2001/1966—Formlocking connections other than screw connections
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/19—Three-dimensional framework structures
- E04B2001/1981—Three-dimensional framework structures characterised by the grid type of the outer planes of the framework
- E04B2001/1984—Three-dimensional framework structures characterised by the grid type of the outer planes of the framework rectangular, e.g. square, grid
Definitions
- the invention (images 1 -14) consists of a system for spatial reticular structures composed of joints and beams.
- the joints are composed of two semispherical caps (1 ) equipped with square fissure sections (2) and internal cables housing hexadecagonal prismatic shapes in the central part and multifaceted semispherical shapes in the lateral parts (3) equal in size to each other and symmetrically organized round a central plate (7) this is then joined together by a single central screw (13) with nuts (6) through the central hole (10).
- caps converge the ends of the tubular beams (4) composed of hammer heads (12), they also have a prismatic hexadecagonal shape in the central part and a multifaceted semispherical shape in the lateral part (12) and they are supported by a prismatic square stem section (14).
- the external diameter of the joints and the length of beams are variable depending on the reticular structure required and are based geometrically on tetrahedral and semi-octahedron modules.
- the assembly of these modules produces a double (Image 1 ) and triple layer (Image 3), whose diagonal beams take on the name of 'diagonal beams' while the horizontal beams take the name of 'higher horizontal beams' if they are above the plate, and lower horizontal beams if they are below.
- the disadvantages of this system essentially are that the beams can turn around the crux also after their clamping, causing unexpected inclines of the joint axes, consequently creating abnormal position and consecutive fleeting within the spatial reticular structure, especially when in order to achieve particular shapes not all eight or twelve of the beams specified in the patent are attached. This happened especially in the perimeter crux above the double layer plates where only three lower horizontal beams and two diagonals attach.
- These disadvantages are caused by two main factors: 1) the hammer terminals of the beams are of a cylindrical shape with a smooth outside and they are situated in a similar smooth housing situated in the hemispherical cap of the joint; 2) the stem that supports the terminal is also cylindrical in shape.
- the rotation of the beams around the crux after the screwing of the central bolt ( 13) is stopped thanks to the particular shape at the head of the beams.
- the head of the beams are hexadecagonal -prismatic section in the centre and a multifaceted hemisphere in the lateral parts (12) and in the cavity of their housing in the hemispherical cap (3).
- Another (element) characteristic of this invention that prevents the rotations of joints after their clamping is caused by the frame (14) which supports the hammer heads (4) of the beams. They also have a prismatic square shape and they are inserted into the fissures of the cap and the central plate which also has a prismatic square structure (2).
- the hexadecagonal section form (polygon with 16 sides) of the pole's terminals allows one to fix the beams at +45°, +67.5°, +90° and ⁇ 22,5° diagonals, whereas for the lower horizontal beams the allowed positions, in addition to 0°, are ⁇ 22,5°. These beam angles are adequate for realizing any type of reticular spatial structure with semi-tetrahedral and/or tetrahedral module.
- the joint with eight beams (Figg. l and 2) is composed of two equal spherical caps and they are symmetrical ( 1 ) each one provided with four fissures of 67,5° (2) square section and hexadecagonal prismatic cavities in the central part and a multifaceted hemispherical in the lateral parts (3), a central hole (10), a recess (5)for the housing of nut (6) and a central plate (7) it also equipped with parallel-piped square section incisions (8) organized at 90°, a superior side (9) and a central hole (10).
- the locking of the eight beams (1 1 ) is done by inserting the terminals (4) with a prismatic square section stem ( 14) and multifaceted hammer heads (12) into the equivalent fissures of the same stem's form, clamping in the same time with the screw (13) before four horizontal beams with the intern nut (6) and later those diagonal with the external nut(6).
- connection of the terminal (4) into the beams (1 1) is done by inserting the grooves ( 16) into the guide (17) in the tubular beams ( 1 1 ) (Fig.5).
- the joint with twelve beams (Fig.3 and 4) is made up of the same elements, pole and hemispherical caps of joints with eight beams (1 ), whereas the central plate (7) is made up with the plate (15) equipped with a parallel-piped square section and vertical fissures (16) , to which correspond the prismatic hexadecagonal section cavities ( 17) in the central part and a multifaceted hemisphere in the lateral parts and a central hole ( 10), in order to contain the hexadecagonal hammer heads terminals of the other four horizontal beams an extra central disc is also included (16).
- connection between the pole (1 1 ) and the terminals with hammer heads (4) can be achieved through soldering, screwing, pasting, scraping or deep-drawing the tube.
- Fig. 1 and 2 represent the diagram of a double layer reticular spatial structure , in plan and elevation
- Fig.3 represent closed joint axonometry , made up of two spherical caps ( 1 ) and a central plate (7), in which eight beams converge and the plan of a spatial reticular structure with semi-tetrahedron double layer (figg.1 ,2) with an interposed tetrahedron.
- Fig. 4 represents the exploded diagram of the eight pole joints (1 1 ) hidden by two hemispherical caps (1) and a central plate (7) through one single crew (13).
- Fig. 5 and 6 represents the diagram of a triple layer reticular spatial structure with a semi- tetrahedron base module and an interposed tetrahedron , in plan and elevation
- Fig.7 represents the twelve convergent beams(l 1 ) joint axonometry
- Fig.8 represents the exploded diagram the twelve beams joint hidden by two hemispherical caps (1 ), the central plate ( 15), and the disk ( 16) through a single screw (13) and the external nuts (6).
- Fig. 9 represents the pole (1 1) with variable length, diameter and thickness to the extremities of which are fixed, through soldering, screwing, pasting or scraping to the terminals (4) from the hexadecagonal section hammer head in the central part and multifaceted hemispherical in the lateral parts (12) supported by a square section stem (14).
- Fig.10, 1 1 represent the particularity of the pole's terminal (4) fitted with a hammer head with a prismatic hexadecagonal section in the central part and a multifaceted hemisphere in the lateral parts (12) and a support stem with a square parallel-piped shape (14).
- Fig.12 represents the angular positions of the terminals of the beams after the clamping: 0°, ⁇ 22,5°, 45°, 67,5°, 90°.
- Fig. l 3 represents the higher and lower view of the central plate (15) within the hexadecagonal form cavities in the central part and a multifaceted hemisphere in the lateral parts (3), arranged orthogonally and at the external part square section fissures with 22,5° angulations (8) and tooth coupling (9);
- Fig.14 represent the internal and external view of the pole (1 ) within the hexadecagonal form cavities in the central part and a multifaceted hemisphere in the lateral parts (3), arranged orthogonally and at the external part square section fissures with 67,5° (2) and external recess that lock off the joint (6).
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Joining Of Building Structures In Genera (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
The patent consists of a system made up of spherical joints and tubular beams that connect together to make a spatial reticulate construction based on geometries composed of basic tetrahedral and semi-tetrahedral modules used in the steel industry for the roofing of big lights (hangars, airport, stadium, and so on) and for interior decoration and outdoor furniture (example, tables, gazebo, false ceilings). The joint is composed of two equal semispherical caps symmetrically organized around a central plate equipped with four or more square fissure sections, joined together by a single central screw to allow the contemporary clamping of eight, twelve or more hammer terminals present at the end of the beams. These extremities have a prismatic hammer shape with hexadecagonal base in the central part and a multifaceted semi-sphere in the lateral parts, while the frames also have a prismatic square section to allow rotation only in the level where the board of the joint is situated. From the static point of view the joint is schematized as a "cylindrical hinge". The patent is composed of a prismatic shape with a square section of multifaceted pole hammer terminals present both on the hammer head and within the caps which eliminates the structural instability that arises in the reticular structure due to the rotation of the beams around the several crux after clamping. This patent prevents the above instability and allows the realization of various structures by enabling the different angling of beams during the assembly phase. With the cylindrical hinge, it allows the fixing of the beams in the desired direction after the final tightening of the central bolt, changing in this way the joint from a "cylindrical hinge" into a "perfect interlocking joint".
Description
THREE-DIMENSIONAL STRUCTURAL SYSTEM MADE FROM SPHERICAL JOINTS AND BEAMS
The invention (images 1 -14) consists of a system for spatial reticular structures composed of joints and beams. The joints are composed of two semispherical caps (1 ) equipped with square fissure sections (2) and internal cables housing hexadecagonal prismatic shapes in the central part and multifaceted semispherical shapes in the lateral parts (3) equal in size to each other and symmetrically organized round a central plate (7) this is then joined together by a single central screw (13) with nuts (6) through the central hole (10). In these caps converge the ends of the tubular beams (4) composed of hammer heads (12), they also have a prismatic hexadecagonal shape in the central part and a multifaceted semispherical shape in the lateral part (12) and they are supported by a prismatic square stem section (14).
These elements are assembled through the addition of terminals (4) fixed at the extremity of beams ( 1 1), in the housing (13) and in the fissures (2), (8) on the caps (3) and the central plate (7), which achieves a definitive fixing of position due to the central fulcrum (13) which prevents the beams from moving or rotating.
The external diameter of the joints and the length of beams are variable depending on the reticular structure required and are based geometrically on tetrahedral and semi-octahedron modules. The assembly of these modules produces a double (Image 1 ) and triple layer (Image 3), whose diagonal beams take on the name of 'diagonal beams' while the horizontal beams take the name of 'higher horizontal beams' if they are above the plate, and lower horizontal beams if they are below.
There are already two similar patents for spatial reticular structures systems, issued to the same inventors and depositors of this patent, that use joints composed by two semispherical caps equipped with fissures and housing which flow into the terminals of the hammer heads beams, joined by a single central fulcrum: the patent numbers for these systems are n° 01260770, owner Ventrella Ettore and n° 0001389994 owner Ventrella Roberta.
The disadvantages of this system, identified in the innumerable structures made by the same owners of the patent, essentially are that the beams can turn around the crux also after their clamping, causing unexpected inclines of the joint axes, consequently creating abnormal position and consecutive fleeting within the spatial reticular structure, especially when in order to achieve particular shapes not all eight or twelve of the beams specified in the patent are attached. This happened especially in the perimeter crux above the double layer plates where only three lower horizontal beams and two diagonals attach.
These disadvantages are caused by two main factors: 1) the hammer terminals of the beams are of a cylindrical shape with a smooth outside and they are situated in a similar smooth housing situated in the hemispherical cap of the joint; 2) the stem that supports the terminal is also cylindrical in shape. Consequently after the screwing of the central pivot, preventing rotation in the above invention is entrusted only to the low friction between the cylindrical smooth heads of the beams and their housing in the existent hemispherical cap. This friction is insufficient to stop the rotation of the beams after the assembly and prevent the instability problems of the spatial reticular structure.
Instead with this invention the rotation of the beams around the crux after the screwing of the central bolt ( 13) is stopped thanks to the particular shape at the head of the beams. The head of the beams are hexadecagonal -prismatic section in the centre and a multifaceted hemisphere in the lateral parts (12) and in the cavity of their housing in the hemispherical cap (3). Another (element) characteristic of this invention that prevents the rotations of joints after their clamping is caused by the frame (14) which supports the hammer heads (4) of the beams. They also have a prismatic square shape and they are inserted into the fissures of the cap and the central plate which also has a prismatic square structure (2).
The hexadecagonal section form (polygon with 16 sides) of the pole's terminals allows one to fix the beams at +45°, +67.5°, +90° and ± 22,5° diagonals, whereas for the lower horizontal beams the allowed positions, in addition to 0°, are ± 22,5°. These beam angles are adequate for realizing any type of reticular spatial structure with semi-tetrahedral and/or tetrahedral module.
In each joint up to eight or twelve beams can meet together.
The joint with eight beams (Figg. l and 2) is composed of two equal spherical caps and they are symmetrical ( 1 ) each one provided with four fissures of 67,5° (2) square section and hexadecagonal prismatic cavities in the central part and a multifaceted hemispherical in the lateral parts (3), a central hole (10), a recess (5)for the housing of nut (6) and a central plate (7) it also equipped with parallel-piped square section incisions (8) organized at 90°, a superior side (9) and a central hole (10).
The locking of the eight beams (1 1 ) is done by inserting the terminals (4) with a prismatic square section stem ( 14) and multifaceted hammer heads (12) into the equivalent fissures of the same stem's form, clamping in the same time with the screw (13) before four horizontal beams with the intern nut (6) and later those diagonal with the external nut(6).
The connection of the terminal (4) into the beams (1 1) is done by inserting the grooves ( 16) into the guide (17) in the tubular beams ( 1 1 ) (Fig.5).
After the clamping the beams are unable to do further rotations and therefore the aforementioned instability problems for the spatial reticular structure are avoided.
The joint with twelve beams (Fig.3 and 4) is made up of the same elements, pole and hemispherical caps of joints with eight beams (1 ), whereas the central plate (7) is made up with the plate (15) equipped with a parallel-piped square section and vertical fissures (16) , to which correspond the prismatic hexadecagonal section cavities ( 17) in the central part and a multifaceted hemisphere in
the lateral parts and a central hole ( 10), in order to contain the hexadecagonal hammer heads terminals of the other four horizontal beams an extra central disc is also included (16).
The clamping of twelve beams happens through the insert of a central pivot ( 13) that fix at the same time to the terminals of eight beams by nuts(6) and later the other four diagonals through another external nuts(6).
The connection between the pole (1 1 ) and the terminals with hammer heads (4) can be achieved through soldering, screwing, pasting, scraping or deep-drawing the tube.
The invention is shown with diagrams which demonstrate assembly.
Fig. 1 and 2 represent the diagram of a double layer reticular spatial structure , in plan and elevation
Fig.3 represent closed joint axonometry , made up of two spherical caps ( 1 ) and a central plate (7), in which eight beams converge and the plan of a spatial reticular structure with semi-tetrahedron double layer (figg.1 ,2) with an interposed tetrahedron.
Fig. 4 represents the exploded diagram of the eight pole joints (1 1 ) hidden by two hemispherical caps (1) and a central plate (7) through one single crew (13). The median nut(6) and the external nut (6).
Fig. 5 and 6 represents the diagram of a triple layer reticular spatial structure with a semi- tetrahedron base module and an interposed tetrahedron , in plan and elevation
Fig.7 represents the twelve convergent beams(l 1 ) joint axonometry
Fig.8 represents the exploded diagram the twelve beams joint hidden by two hemispherical caps (1 ), the central plate ( 15), and the disk ( 16) through a single screw (13) and the external nuts (6).
Fig. 9 represents the pole (1 1) with variable length, diameter and thickness to the extremities of which are fixed, through soldering, screwing, pasting or scraping to the terminals (4) from the hexadecagonal section hammer head in the central part and multifaceted hemispherical in the lateral parts (12) supported by a square section stem (14).
Fig.10, 1 1 represent the particularity of the pole's terminal (4) fitted with a hammer head with a prismatic hexadecagonal section in the central part and a multifaceted hemisphere in the lateral parts (12) and a support stem with a square parallel-piped shape (14).
Fig.12 represents the angular positions of the terminals of the beams after the clamping: 0°, ± 22,5°, 45°, 67,5°, 90°.
Fig. l 3 represents the higher and lower view of the central plate (15) within the hexadecagonal form cavities in the central part and a multifaceted hemisphere in the lateral parts (3), arranged orthogonally and at the external part square section fissures with 22,5° angulations (8) and tooth coupling (9);
Fig.14 represent the internal and external view of the pole (1 ) within the hexadecagonal form cavities in the central part and a multifaceted hemisphere in the lateral parts (3), arranged orthogonally and at the external part square section fissures with 67,5° (2) and external recess that lock off the joint (6).
Claims
Claims of invention by title:
" STRUCTURAL STSTEM MADE UP OF THREE-DIMENSIONAL SPHERICAL JOINTS AND BEAMS FOR THE MANIFACTURE OF RETICULAR SPATIAL STRUCTURES
1 - Construction system (Figs. 1 -14) for reticular spatial structures composed of tubular rods and three-dimensional spherical joints formed by two equal semi-spherical caps (1) between them and arranged symmetrically around a central plate (7 or 15) (Figs. 3, 4. 7,8, 14) are all characterized by four internal prismatically shaped cavities with a hexadecagonal base in the central part and sixteen- sided semi-sphere in the lateral parts (3) in correspondence with the four slots mutually orthogonal in the squared section (2) for the insertion and locking of the terminals (4) of the eight or twelve diagonals tubular hammer rods of prismatic shape (12) with a basis hexadecagonal in the central part and sixteen-sided semi-sphere in the lateral parts (12 ), supported by a square section shank ( 14) and locked into the positions of 0 °, ± 22.5, 45 °, 67.5 °, 90 ° (fig 12) after tightening with a 'single central screw (13) along the 'axis of the node (19). Said rods (1 1 ) before tightening rotate freely about the transverse axis (18) of the heads of the hammers (12) and are then locked into place by tightening the central pin into the predetermined angles so as to transform and stabilize the joint hinge into a interlocking joint
2 - Construction system for reticular spatial structures according to the preceding claims, characterized by a cylindrical central plate (7) (Figs. 3 and 4) for the coupling, an 8-rod of the same diameter as the caps (1 ) which corresponds with each side and on the tooth coupling to four slots, orthogonal to each other, of square section (8) with an angle of 12.5 degrees, for the 'insertion and subsequent locking of the terminals (4) and of the four horizontal beams (1 1 ) .
3 - Construction system for reticular spatial structures according to the preceding claims, characterized by the cylindrical central plate (15) (Figs. 7, 8) for the coupling rods (12), of the same diameter as the caps (1 ), which has, in correspondence to the lower side, four slots with a square section (8) with an angle of 12.5 degrees, and eight slits in correspondence to the upper side, four with angles at 0 degrees (9), and four with angles of 12.5 degrees (2) ( fig. 13) corresponding to the prismatic cavity with a hexadecagonal base in the central part and sixteen-sided semispherical form on the lateral parts (3) for the insertion of the terminals (4) and the subsequent locking of the four rods stream (1 1 ) .
4 - Construction system for reticular spatial structures according to previous claims, characterized by the terminal (4) (Figs. 9, 10, 1 1 , 12) inserted to the two ends of the rods, consisting of a joining element for joining the tubular rod, by a groove (16) for the coplanar positioning of the two terminals, a central cone for connection to the square section, a prismatic shank with a square base (14), the hammer head with prismatic shape and the hexadecagonal base in the central part and the sixteen-sided semisphere in the lateral parts (12) (Figs. 9, 10, 1 1 , 12).
5 - Construction system for reticular spatial structures according to previous claims, characterized by 'tubular rods of any geometric section (1 1) provided by guide in its interior and for its entire
length (17) (Figs. 10 and 1 1 ) to allow the correct matching with the groove (16) present on the terminal (4) and coplanar alignment of the two terminals.
6 - Construction system for reticular spatial structures according to the preceding claims, characterized by the shape of the hammer head (12) of the terminal (4) (Figs. 9, 10, 1 1 , 12) and its housing (3) into the caps (1 ) and (15), which can be of any polygonal geometrical shape in section (hexagon, octagon, dodecagon, etc.) to increase the friction between the components heads (12) and cavity (3) and allow the rods take multiple positions about the transverse axis (18) of the hammer (12).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580069611.4A CN107109834A (en) | 2014-11-07 | 2015-10-05 | The three-dimensional structure system being made up of globe joint and beam |
US15/524,952 US20170350112A1 (en) | 2014-11-07 | 2015-10-05 | Three-dimensional structural system made from spherical joints and beams |
EP15818068.7A EP3215686A1 (en) | 2014-11-07 | 2015-10-05 | Three-dimensional structural system made from spherical joints and beams |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITNA20140041 | 2014-11-07 | ||
ITNA2014A000041 | 2014-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016071935A1 true WO2016071935A1 (en) | 2016-05-12 |
Family
ID=52232348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IT2015/000249 WO2016071935A1 (en) | 2014-11-07 | 2015-10-05 | Three-dimensional structural system made from spherical joints and beams |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170350112A1 (en) |
EP (1) | EP3215686A1 (en) |
CN (1) | CN107109834A (en) |
WO (1) | WO2016071935A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111033058A (en) * | 2017-07-31 | 2020-04-17 | 阿迈德·穆罕默德·卡法斐 | Universal spider node for space structure frame |
GB2579553A (en) * | 2018-12-02 | 2020-07-01 | Poggi Roberto | Adjustable roofing system |
US11608625B1 (en) * | 2020-03-12 | 2023-03-21 | Peter Lokken | Joint connector |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10443233B2 (en) * | 2017-07-26 | 2019-10-15 | CHARLES M. von GONTEN | System and method for a cuboctahedron structure |
US20190154079A1 (en) * | 2017-11-21 | 2019-05-23 | Robert Shapiro | Geodesic Framework Hub with Strut Holding Mechanism Movable Between Full-Hold and Partial-Hold Positions |
CN109736428B (en) * | 2019-01-09 | 2020-02-14 | 燕山大学 | Large-breadth truss rapid butt joint locking mechanism |
CN110529475B (en) * | 2019-08-22 | 2021-05-25 | 中山大学 | Split type composite material multi-way joint for antenna back frame |
CN110388516A (en) * | 2019-08-27 | 2019-10-29 | 河南奥斯派克科技有限公司 | Para-seismic support early warning system and early warning pull rod |
CN111733968A (en) * | 2020-06-28 | 2020-10-02 | 中建新疆安装工程有限公司 | Arch net rack node ball rotation fixing device and arch net rack mounting system |
US11635107B1 (en) | 2021-04-22 | 2023-04-25 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space | Multi-link spherical joint with collocated centers of rotation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2078614A1 (en) * | 1992-09-18 | 1994-03-19 | Manuel Munoz Puron | Structural system for the construction of three-dimensional structures |
WO1994013895A1 (en) * | 1992-12-10 | 1994-06-23 | Ettore Ventrella | Joint for three-dimensional grid structures |
DE102008056649A1 (en) * | 2008-11-10 | 2010-05-20 | Hofin Gmbh | Demountable latticed framework construction for centering and roofing of e.g. building, has rods whose end areas are clamped with form fit connector between press rings, where connector acts in rod longitudinal direction |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2224875Y (en) * | 1994-12-15 | 1996-04-17 | 开封市华中空间结构有限公司 | Ball joint for space steel frame |
CN2554249Y (en) * | 2002-07-25 | 2003-06-04 | 李福德 | Combined net frame node |
CN101619629A (en) * | 2008-07-04 | 2010-01-06 | 黎彪钦 | Integrate-assembled transformable backbone joint for spatial structure |
-
2015
- 2015-10-05 WO PCT/IT2015/000249 patent/WO2016071935A1/en active Application Filing
- 2015-10-05 US US15/524,952 patent/US20170350112A1/en not_active Abandoned
- 2015-10-05 EP EP15818068.7A patent/EP3215686A1/en not_active Withdrawn
- 2015-10-05 CN CN201580069611.4A patent/CN107109834A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2078614A1 (en) * | 1992-09-18 | 1994-03-19 | Manuel Munoz Puron | Structural system for the construction of three-dimensional structures |
WO1994013895A1 (en) * | 1992-12-10 | 1994-06-23 | Ettore Ventrella | Joint for three-dimensional grid structures |
DE102008056649A1 (en) * | 2008-11-10 | 2010-05-20 | Hofin Gmbh | Demountable latticed framework construction for centering and roofing of e.g. building, has rods whose end areas are clamped with form fit connector between press rings, where connector acts in rod longitudinal direction |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111033058A (en) * | 2017-07-31 | 2020-04-17 | 阿迈德·穆罕默德·卡法斐 | Universal spider node for space structure frame |
CN111033058B (en) * | 2017-07-31 | 2021-04-27 | 阿迈德·穆罕默德·卡法斐 | Universal spider node for space structure frame |
GB2579553A (en) * | 2018-12-02 | 2020-07-01 | Poggi Roberto | Adjustable roofing system |
US11608625B1 (en) * | 2020-03-12 | 2023-03-21 | Peter Lokken | Joint connector |
Also Published As
Publication number | Publication date |
---|---|
EP3215686A1 (en) | 2017-09-13 |
CN107109834A (en) | 2017-08-29 |
US20170350112A1 (en) | 2017-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016071935A1 (en) | Three-dimensional structural system made from spherical joints and beams | |
US7992353B2 (en) | Space frame hub joint | |
US4766712A (en) | Space framing system | |
AU607031B2 (en) | Set of building elements for framework structures | |
EP2766533B1 (en) | A connector system for structural framework | |
EP3017201B1 (en) | A tube connector | |
US4922669A (en) | Modular latticework structure | |
US5430989A (en) | Construction system | |
US20140331591A1 (en) | Multi-Directional Structural Joint | |
US9163390B2 (en) | Supporting framework having connection nodes | |
US9121167B2 (en) | Adjustable frame connector | |
KR200492160Y1 (en) | Spherical tent frame | |
US11022251B1 (en) | Modular rigging system using hexagonal support pieces | |
ITNA20080024A1 (en) | CONSTRUCTION SYSTEM CONSISTING OF THREE-DIMENSIONAL PLASTIC BALL JOINTS AND ALUMINUM RODS FOR DIY CONSTRUCTION OF INTERIOR AND OUTDOOR FURNISHING ELEMENTS. | |
EP0268413B1 (en) | A connector for three-dimensional frame structures | |
RU154891U1 (en) | NODE CONNECTION OF THE RODS OF THE SPATIAL FRAME OF BUILDINGS AND STRUCTURES | |
KR101310328B1 (en) | Connector of geodesic dome | |
US20190119899A1 (en) | Support-frameworks | |
US11248381B1 (en) | Modular rigging system using hexagonal support pieces | |
KR20140018613A (en) | Frame assembly | |
US20190024363A1 (en) | Coupling Connector and Geodome Frame Made Therewith | |
KR101147999B1 (en) | Space truss for constructing cubic structure | |
WO2021111167A1 (en) | Omnidirectional construction system and connectors | |
KR20190118843A (en) | Geodesic structure hub connector | |
KR20150126760A (en) | Structure For Fixing Indian Tent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15818068 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15524952 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015818068 Country of ref document: EP |