WO2016070989A1 - Process for producing synthesis gas - Google Patents
Process for producing synthesis gas Download PDFInfo
- Publication number
- WO2016070989A1 WO2016070989A1 PCT/EP2015/002206 EP2015002206W WO2016070989A1 WO 2016070989 A1 WO2016070989 A1 WO 2016070989A1 EP 2015002206 W EP2015002206 W EP 2015002206W WO 2016070989 A1 WO2016070989 A1 WO 2016070989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- synthesis gas
- process step
- production
- reactor
- gas
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/466—Entrained flow processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/001—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
- C10K3/003—Reducing the tar content
- C10K3/006—Reducing the tar content by steam reforming
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/04—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/061—Methanol production
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0833—Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/085—Methods of heating the process for making hydrogen or synthesis gas by electric heating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0866—Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1609—Post-reduction, e.g. on a red-white-hot coke or coal bed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1656—Conversion of synthesis gas to chemicals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1656—Conversion of synthesis gas to chemicals
- C10J2300/1659—Conversion of synthesis gas to chemicals to liquid hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1656—Conversion of synthesis gas to chemicals
- C10J2300/1665—Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1684—Integration of gasification processes with another plant or parts within the plant with electrolysis of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the invention relates to a process for the production of synthesis gas, wherein as a first process step in a reactor, a high-temperature gasification is performed, is released in the heat energy.
- gaseous raw materials are already known.
- Solid raw materials are advantageously converted into H 2 and CO in so-called gasification processes.
- biological raw materials such as used and residual wood, energy wood or agricultural residues such as straw or peat.
- Processes and plants for the at least partial gasification of solid, organic feedstock are known, for example, from EP 0 745 1 14 B1, DE 41 39 512 A1 and DE 42 09 549 A1.
- the present application relates in particular to such processes or plants which use a low-temperature gasifier and a
- the feedstock for example
- Biomass by partial gasification with a gasification agent at temperatures between about 300 ° C and 600 ° C to coke (so-called in the case of biomass
- oxygen-containing gas for example with more or less pure oxygen, but also with air and / or oxygen-containing exhaust gases, e.g. from gas turbines or
- Low temperature carburetor brought into contact.
- the coke can previously be treated separately (eg by grinding and sifting) and then introduced into the quench unit.
- the latter is cooled to about 900 ° C. This causes partial conversion of the carbon dioxide to carbon monoxide.
- the CO and C0 2 rich synthesis gas thus produced can
- the conditioning includes, for example, a further cooling, a dedusting, a desulfurization, CO to CO 2
- Synthesis gas resulting from such gasification typically has a relatively low 0.8 / 1 H 2 / CO ratio.
- the heat produced by the cooling of the synthesis gas stream to about 200 ° C is converted in most cases by the generation of steam and stored.
- the steam can be heated only to a maximum of 400 ° C in the rule, the material costs, especially for the heat exchanger and
- Synthesis gas can also be produced via the reforming of gaseous and solid substances.
- a steam reforming of methane-rich gases is customary.
- biogas or natural gas with steam is usually reacted on a heterogeneous catalyst to synthesis gas. This usually produces a H 2 / CO ratio of about 3: 1.
- H 2 to CO ratio is achieved by various methods.
- the CO and C0 2 rich synthesis gas from the gasification device for example, H 2 can be mixed from an electrolysis (for example, known from EP2166064 A1). Disadvantages arise, however, from the fact that the electrolysis only at very low electricity prices, for example in excess electricity
- the H 2 rich synthesis gas stream from a reformer and the CO and C0 2 rich synthesis gas stream from a parallel operated carburetor can be mixed in the required ratio.
- part of the CO can be reacted with H 2 O in a water gas shift reaction to CO 2 and H 2 until, for example, an H 2 / CO ratio of about 2: 1 is reached.
- H 2 / CO ratio of about 2: 1
- Object of the present invention is to provide a method of the type mentioned in such a way that an improved heat utilization is achieved.
- Heat transfer fluid always requires further use of heat for other processes. Furthermore, the previously practiced production of steam with a
- Reactor is carried out via a conversion of natural gas or biogas, which is added to the hot synthesis gas of the first process step.
- So can be fed in particular at the upper end of the high-temperature gasifier natural gas or biogas.
- the temperature is still so high that it is sufficient for the direct conversion of the gas to synthesis gas.
- the reactor length can be extended to achieve a sufficient residence time.
- Synthesis gas increases, as in the conversion of natural gas or biogas, more H 2 is formed as CO.
- Another preferred embodiment results if the production of the additional synthesis gas in a second process step is carried out externally, in a second reactor, in particular by means of steam reforming.
- the released thermal energy can be used directly for a further reaction by not being first transferred to steam, but being used directly.
- the resulting synthesis gas from the first step can be mixed in whole or in part with the synthesis gas from the second step. This also allows the stoichiometric ratio of H 2 and CO to be varied.
- the resulting synthesis gas can additionally with H 2
- Ratio of H 2 and CO The process is particularly preferred when the resulting synthesis gas is further processed, in particular in a process for the synthesis of methanol and / or dimethyl ether or for Fischer-Tropsch synthesis.
- a H 2 / CO ratio of 0.8: 1 resulting from a
- a further preferred embodiment is when in the second process step, in addition to the waste heat of the hot synthesis gas, further energy is fed in, in particular regenerative electrical energy.
- further energy is fed in, in particular regenerative electrical energy.
- this metal structure itself can be used as an electrode.
- certain zones can be heated differently and thus specifically the temperatures can be set in certain reactor zones.
- the use of electric current also ensures a short claim time to change the
- Synthesis gas stream can continue to be used for heat transfer steam.
- the H 2 / CO ratio can be optimally adjusted for subsequent production processes. If the reforming of the methane-rich gas is integrated into the upper part of the carburetor, an external steam reformer can be saved.
- the additional use of surplus electricity from renewable energy, in particular from wind turbines and photovoltaic systems, can also contribute to a Stabilization of the power grids are added and the surplus energy is chemically stored.
- the invention is suitable for all processes of syngas production via
- Figure 1 is a schematic view of a high-temperature gasifier with internal second reaction stage
- Figure 2 is a schematic view of a plant for the production of synthesis gas with external second reaction stage
- Figure 3 is a schematic view of a plant for the production of synthesis gas with external second reaction stage with additional heating electrodes
- FIG. 1 the section of a plant is shown schematically, which combines two different syngas production methods and thus effectively uses the resulting heat.
- the product stream 101 from a high temperature gasifier is fed to a quench portion of the gasifier 104 at 1400 ° C.
- coke 102 is usually added, which is also converted to CO and at the same time ensures a certain cooling.
- methane-rich gas 103 is added, which also at the correspondingly high temperatures of about 1000 ° C to synthesis gas is implemented.
- the additional metering of methane-rich gas 103 effectively utilizes the heat in the upper part of the reactor.
- the H 2 content of the entire synthesis gas 105 is increased. Following is the entire
- Synthesis gas 105 in which it is further cooled in particular, desulfurized, dedusted and cleaned. To improve the
- a monolithic catalyst in the upper part of the reactor 104 can be installed.
- FIG. 2 schematically shows a system which produces synthesis gas in two separate stages, the heat for the second stage operation being taken directly from the product stream of the first stage.
- the CO and C0 2 rich synthesis gas 203 originating from the gasification 201 generally has a temperature of> 900 ° C. This is used directly as a heat medium for a steam reformer 204, which is usually operated at about 500 to 850 ° C.
- the cooled synthesis gas 208 can subsequently be prepared by, in particular, being further cooled, desulfurized, dedusted and cleaned.
- the steam reformer 204 is usually operated with a mixture of methane-rich gas and water vapor 202, which is supplied in the case described here via a preheating stage in the steam reformer 204. However, the steam can also be added only after the preheating stage.
- the resulting H 2 -rich synthesis gas 205 is first used to preheat the mixture 202 and then may also be treated similarly to the syngas stream 208.
- Synthesis gas streams can be separated or shared. Further processing of the conditioned synthesis gas stream takes place in particular in one
- FIG. 3 shows the plant already shown in FIG.
- the steam reformer 204 is heated with electrical electrodes 301.
- the electrodes can be inserted in different numbers and lengths in the catalyst bed. When using a metallic monolithic catalyst, these too
- Metal structure can be used directly as an electrode.
- Table 1 shows a comparison of a method from the prior art with the two embodiments, in the event that methanol is to be produced from the synthesis gas obtained.
- Table 1 Comparison of the method used so far and the two
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
The invention relates to a process for the production of synthesis gas, wherein, in a first process step, a high-temperature gasification is carried out in a reactor, in which thermal energy is released, the released thermal energy being used for the additional production of synthesis gas in a second process step which is carried out inside or outside of the reactor.
Description
Beschreibung description
Verfahren zur Produktion von Synthesegas Process for the production of synthesis gas
Die Erfindung betrifft ein Verfahren zur Herstellung von Synthesegas, wobei als erster Prozessschritt in einem Reaktor eine Hochtemperaturvergasung durchgeführt wird, bei der Wärmeenergie freigesetzt wird. The invention relates to a process for the production of synthesis gas, wherein as a first process step in a reactor, a high-temperature gasification is performed, is released in the heat energy.
Verfahren zur Herstellung von Synthesegas aus verschiedenen festen und Process for the production of synthesis gas from various solid and
gasförmigen Rohstoffen sind bereits bekannt. gaseous raw materials are already known.
Feste Rohstoffe werden vorteilhafterweise in sogenannten Vergasungsverfahren zu H2 und CO umgesetzt. Besonders geeignet sind hierfür auch biologische Rohstoffe, wie beispielsweise Alt- und Waldrestholz, Energiehölzer oder Agrarreststoffe wie Stroh oder Torf. Solid raw materials are advantageously converted into H 2 and CO in so-called gasification processes. Particularly suitable for this purpose are biological raw materials, such as used and residual wood, energy wood or agricultural residues such as straw or peat.
Verfahren und Anlagen zur zumindest teilweisen Vergasung von festem, organischem Einsatzmaterial sind beispielsweise aus EP 0 745 1 14 B1 , DE 41 39 512 A1 und DE 42 09 549 A1 bekannt. Die vorliegende Anmeldung betrifft hierbei insbesondere solche Verfahren bzw. Anlagen, die einen Niedertemperaturvergaser und einen Processes and plants for the at least partial gasification of solid, organic feedstock are known, for example, from EP 0 745 1 14 B1, DE 41 39 512 A1 and DE 42 09 549 A1. The present application relates in particular to such processes or plants which use a low-temperature gasifier and a
Hochtemperaturvergaser aufweisen, wie nachfolgend erläutert. Gegenüber anderen Verfahren ermöglichen diese u.a. einen niedrigeren Verbrauch an Einsatzmaterial und weisen einen höheren Kaltgaswirkungsgrad auf. Have high temperature carburetor, as explained below. Compared to other methods, these enable u.a. a lower consumption of feed and have a higher cold gas efficiency.
In einem Niedertemperaturvergaser wird das Einsatzmaterial, beispielsweise In a low-temperature carburetor, the feedstock, for example
Biomasse, durch Teilvergasung mit einem Vergasungsmittel bei Temperaturen zwischen ca. 300 °C und 600 °C zu Koks (im Fall von Biomasse sogenanntem Biomass, by partial gasification with a gasification agent at temperatures between about 300 ° C and 600 ° C to coke (so-called in the case of biomass
Biokoks) und Schwelgas umgesetzt. Das Schwelgas wird anschließend in eine Biokoks) and Schwelgas implemented. The carbonization gas is then in a
Brennkammer des Hochtemperaturvergasers überführt und dort mit einem Combustion chamber of Hochtemperaturvergasers transferred and there with a
sauerstoffhaltigen Gas, beispielsweise mit mehr oder weniger reinem Sauerstoff, aber auch mit Luft und/oder sauerstoffhaltigen Abgasen, z.B. aus Gasturbinen oder oxygen-containing gas, for example with more or less pure oxygen, but also with air and / or oxygen-containing exhaust gases, e.g. from gas turbines or
Verbrennungsmotoren, partiell oxidiert. Durch diese Oxidation freiwerdende Wärme bewirkt einen Temperaturanstieg auf 1.200 °C bis 2.000 °C, beispielsweise 1 .400 °C. Bei derartigen Bedingungen werden in dem Schwelgas enthaltene Aromaten, Teere und Oxoverbindungen vollständig zersetzt. Hierdurch bildet sich ein Synthesegas, das im Wesentlichen aus Kohlenmonoxid, Wasserstoff, Kohlendioxid und Wasserdampf
besteht. In einer weiteren Stufe wird, beispielsweise in einer in dem Internal combustion engines, partially oxidized. By this oxidation released heat causes a temperature increase to 1200 ° C to 2000 ° C, for example 1 .400 ° C. Under such conditions, aromatics, tars and oxo compounds contained in the carbonization gas are completely decomposed. This forms a synthesis gas that consists essentially of carbon monoxide, hydrogen, carbon dioxide and water vapor consists. In a further stage, for example in one in the
Hochtemperaturvergaser integrierten oder in einer diesem nachgeschalteten High temperature carburetor integrated or downstream of this
Quencheinheit, das so erzeugte Synthesegas mit Koks aus dem Quencheinheit, the synthesis gas thus produced with coke from the
Niedertemperaturvergaser in Kontakt gebracht. Der Koks kann zuvor gesondert (z.B. durch Mahlen und Sichten) aufbereitet und dann in die Quencheinheit eingebracht werden. Durch endotherme Reaktionen zwischen Koks und Synthesegas wird letzteres auf etwa 900 °C abgekühlt. Dies bewirkt eine teilweise Umsetzung des Kohlendioxids zu Kohlenmonoxid. Das so erzeugte CO und C02 reiche Synthesegas kann Low temperature carburetor brought into contact. The coke can previously be treated separately (eg by grinding and sifting) and then introduced into the quench unit. By endothermic reactions between coke and syngas, the latter is cooled to about 900 ° C. This causes partial conversion of the carbon dioxide to carbon monoxide. The CO and C0 2 rich synthesis gas thus produced can
anschließend weiter konditioniert werden. Die Konditionierung umfasst beispielsweise eine weitere Abkühlung, eine Entstaubung, eine Entschwefelung, CO zu C02 then be further conditioned. The conditioning includes, for example, a further cooling, a dedusting, a desulfurization, CO to CO 2
Konversion, eine Verdichtung und/oder die Abtrennung von Restkohlendioxid. Conversion, a compression and / or the separation of residual carbon dioxide.
Bei einer derartigen Vergasung entstehendes Synthesegas weist typischerweise ein relativ niedriges H2/CO-Verhältnis von 0,8:1 auf. Die, bei der Abkühlung des Synthesegasstroms auf ca. 200 °C, entstehende Wärme wird in den meisten Fällen durch die Erzeugung von Dampf umgewandelt und gespeichert. Der Dampf kann in der Regel nur auf maximal 400 °C aufgeheizt werden, um die Materialkosten, insbesondere für die Wärmetauscher und Synthesis gas resulting from such gasification typically has a relatively low 0.8 / 1 H 2 / CO ratio. The heat produced by the cooling of the synthesis gas stream to about 200 ° C, is converted in most cases by the generation of steam and stored. The steam can be heated only to a maximum of 400 ° C in the rule, the material costs, especially for the heat exchanger and
Speichereinrichtungen in wirtschaftlich sinnvollem Rahmen zu halten. Dabei wird jedoch höherwertige Energie in weniger wertvolle (mit geringerem Exergieanteil, d.h. sie kann weniger Arbeit verrichten) umgewandelt. Der so produzierte Dampf wird meist nicht vollständig für die Biomassevergasung selbst benötigt, so dass für den überschüssig erzeugten Dampf weitere Abnehmer gefunden werden müssen oder dieser sogar verworfen werden muss. Auch die Wärmeübertragung auf andere Keep storage facilities in an economically reasonable context. However, higher quality energy is converted into less valuable (with less exergy content, i.e. it can do less work). The steam produced in this way is usually not completely needed for the biomass gasification itself, so that for the excess generated steam more customers must be found or this even has to be discarded. Also, the heat transfer to others
Zwischenmedien, wie Wärmeträgeröle, weist ähnliche Nachteile auf. Intermediate media, such as heat transfer oils, has similar disadvantages.
Synthesegas kann auch über die Reformierung von gasförmigen und festen Stoffen hergestellt werden. Üblich ist hierzu insbesondere eine Dampfreformierung von methanreichen Gasen. Dabei wird Biogas oder Erdgas mit Wasserdampf in der Regel an einem heterogenen Katalysator zu Synthesegas umgesetzt. Hierbei entsteht in der Regel ein H2/CO-Verhältnis von etwa 3:1. Synthesis gas can also be produced via the reforming of gaseous and solid substances. For this purpose, in particular a steam reforming of methane-rich gases is customary. In this case, biogas or natural gas with steam is usually reacted on a heterogeneous catalyst to synthesis gas. This usually produces a H 2 / CO ratio of about 3: 1.
Für viele Produktionsverfahren die von Synthesegas ausgehen, insbesondere für die Methanolsynthese, die Fischer-Tropsch Synthese oder die Dimethylethersynthese ist ein ganz spezifisches H2 zu CO Verhältnis notwendig um einen möglichst hohen
Umsatz und eine hohe Selektivität bezüglich der gewünschten Produkte zu erreichen. Das nötige H2 zu CO Verhältnis wird über verschiedene Methoden erreicht. Zum einen kann dem CO und C02 reichen Synthesegas aus der Vergasungseinrichtung beispielsweise H2 aus einer Elektrolyse beigemischt werden (beispielsweise bekannt aus EP2166064 A1). Nachteile ergeben sich jedoch daraus, dass die Elektrolyse nur bei sehr niedrigen Strompreisen, beispielsweise bei Überschussstrom aus For many production processes that start from synthesis gas, in particular for the synthesis of methanol, the Fischer-Tropsch synthesis or the dimethyl ether synthesis, a very specific H 2 to CO ratio is necessary to achieve the highest possible To achieve sales and a high selectivity for the desired products. The necessary H 2 to CO ratio is achieved by various methods. On the one hand, the CO and C0 2 rich synthesis gas from the gasification device, for example, H 2 can be mixed from an electrolysis (for example, known from EP2166064 A1). Disadvantages arise, however, from the fact that the electrolysis only at very low electricity prices, for example in excess electricity
regenerativen Quellen, wirtschaftlich durchgeführt werden kann. Zum anderen können der H2 reiche Synthesegasstrom aus einem Reformierer und der CO und C02 reiche Synthesegasstrom aus einem parallel betriebenen Vergaser im nötigen Verhältnis gemischt werden. regenerative sources, can be carried out economically. On the other hand, the H 2 rich synthesis gas stream from a reformer and the CO and C0 2 rich synthesis gas stream from a parallel operated carburetor can be mixed in the required ratio.
In einer anderen Verfahrensvariante kann ein Teil des CO mit H20 in einer Wassergas- Shift-Reaktion zu C02 und H2 umgesetzt werden, bis beispielsweise ein H2/CO- Verhältnis von etwa 2:1 erreicht ist. Als nachteilig wird angesehen, dass hierbei auch entstehendes C02 für viele anschließende Verfahren, beispielsweise zur Bereitstellung von flüssigen Kohlenstoffwasserstoffen, nicht verwendbar ist, und somit für derartige Prozesse verloren geht. Insbesondere in der Synthese von Methanol führt das C02, bei Nichtabtrennung, zur Bildung von Wasser, welches aufwendig vom Methanol abgetrennt werden muss. Aufgabe der vorliegenden Erfindung ist es, ein Verfahren der eingangs genannten Art so auszugestalten, dass eine verbesserte Wärmenutzung erreicht wird. In another variant of the process, part of the CO can be reacted with H 2 O in a water gas shift reaction to CO 2 and H 2 until, for example, an H 2 / CO ratio of about 2: 1 is reached. A disadvantage is considered that in this case also resulting C0 2 for many subsequent processes, for example, for the provision of liquid hydrocarbons, is not usable, and thus lost for such processes. In particular, in the synthesis of methanol, the C0 2, in the absence of separation, to the formation of water, which must be separated from the methanol consuming. Object of the present invention is to provide a method of the type mentioned in such a way that an improved heat utilization is achieved.
Diese Aufgabe wird dadurch gelöst, dass die freigesetzte Wärmenergie zur This object is achieved in that the released heat energy for
zusätzlichen Herstellung von Synthesegas in einem zweiten Prozessschritt verwendet wird, der innerhalb oder außerhalb des Reaktors durchgeführt wird. additional production of synthesis gas is used in a second process step, which is carried out inside or outside the reactor.
Die bisher verwendete Methode zur Nutzung der freigesetzten Wärmeenergie zur Produktion von Wasserdampf oder einer Übertragung der Energie auf andere The method previously used to use the released thermal energy for the production of water vapor or a transfer of energy to others
Wärmeträger setzt immer eine weitere Verwendung der Wärme für andere Prozesse voraus. Weiterhin führt die bisher praktizierte Erzeugung von Dampf mit einer Heat transfer fluid always requires further use of heat for other processes. Furthermore, the previously practiced production of steam with a
Temperatur von 200-400 °C zwar nicht zu Energieverlusten, aber der Anteil an nutzbarer Hochtemperaturenergie sinkt, während die Entropie zunimmt, wodurch die zu Verfügung stehende Energie nicht optimal genutzt wird. Temperaturen von 1000°C fallen in der Regel nicht als Abwärmen an, sondern müssen meist durch Verbrennung von chemischen Energieträgern wie Kohlenwasserstoffen erzeugt werden. Es gilt daher diese hohe Temperatur der Abwärme möglichst nutzbringend zu verwenden.
Bei der hier gezeigten Wärmeübertragung bietet sich der Vorteil, dass die Ausbeute an gewünschtem Produkt, in diesem Fall dem Synthesegas, direkt erhöht werden kann und die Wärme so direkt auf hohem Niveau genutzt wird. Ein besonderer Vorteil ergibt sich zudem, wenn die Herstellung des zusätzlichen Synthesegases in einem zweiten Prozessschritt intern, innerhalb des gleichen Although temperatures of 200-400 ° C do not lead to energy losses, the proportion of usable high-temperature energy decreases as entropy increases, which means that the available energy is not optimally utilized. Temperatures of 1000 ° C usually do not fall as waste heat, but must usually be generated by combustion of chemical energy sources such as hydrocarbons. It is therefore important to use this high temperature of waste heat as beneficial as possible. In the heat transfer shown here has the advantage that the yield of the desired product, in this case the synthesis gas, can be directly increased and the heat is used directly at a high level. A particular advantage also results if the production of the additional synthesis gas in a second process step internally, within the same
Reaktors über eine Umsetzung von Erdgas oder Biogas durchgeführt wird, welches dem heißen Synthesegas des ersten Prozessschrittes zugegeben wird. Reactor is carried out via a conversion of natural gas or biogas, which is added to the hot synthesis gas of the first process step.
So kann insbesondere am oberen Ende des Hochtemperaturvergasers Erdgas oder Biogas zugeführt werden. Die Temperatur ist dort noch so hoch, dass sie zur direkten Umwandlung des Gases hin zu Synthesegas ausreicht. Gegebenenfalls kann die Reaktorlänge verlängert werden, um eine ausreichende Verweilzeit zu erreichen. Zur Verbesserung der Reaktionsgeschwindigkeit und der Ausbeute, kann zusätzlich ein vorzugsweise monolithischer Katalysator eingebaut werden. Neben der besseren Wärmenutzung ergeben sich noch zwei weitere Vorteile. Zum einen erfolgt durchSo can be fed in particular at the upper end of the high-temperature gasifier natural gas or biogas. The temperature is still so high that it is sufficient for the direct conversion of the gas to synthesis gas. Optionally, the reactor length can be extended to achieve a sufficient residence time. In order to improve the reaction rate and the yield, it is additionally possible to incorporate a preferably monolithic catalyst. In addition to the better use of heat, there are two more advantages. On the one hand done by
Zugabe des kälteren Gases und die endotherme Reaktion die notwendige Abkühlung zur Weiterverarbeitung des Synthesegases. Zum anderen wird der H2 Anteil im Adding the colder gas and the endothermic reaction the necessary cooling for further processing of the synthesis gas. On the other hand, the H 2 content in the
Synthesegas erhöht, da bei der Umsetzung von Erdgas oder Biogas, mehr H2 als CO entsteht. Synthesis gas increases, as in the conversion of natural gas or biogas, more H 2 is formed as CO.
Eine andere bevorzugte Ausführung ergibt sich, wenn die Herstellung des zusätzlichen Synthesegases in einem zweiten Prozessschritt extern, in einem zweiten Reaktor, insbesondere mittels einer Dampfreformierung, durchgeführt wird. Die freigesetzte Wärmeenergie kann so direkt für eine weitere Reaktion genutzt werden, indem sie nicht zuerst auf Dampf übertragen wird, sondern direkt genutzt wird. Zudem kann das resultierende Synthesegas aus dem ersten Schritt mit dem Synthesegas aus dem zweiten Schritt ganz oder in Teilen vermischt werden. Dadurch kann ebenfalls das stöchiometrische Verhältnis von H2 und CO variiert werden. Zweckmäßigerweise kann das resultierende Synthesegas zusätzlich mit H2 Another preferred embodiment results if the production of the additional synthesis gas in a second process step is carried out externally, in a second reactor, in particular by means of steam reforming. The released thermal energy can be used directly for a further reaction by not being first transferred to steam, but being used directly. In addition, the resulting synthesis gas from the first step can be mixed in whole or in part with the synthesis gas from the second step. This also allows the stoichiometric ratio of H 2 and CO to be varied. Conveniently, the resulting synthesis gas can additionally with H 2
angereichert werden, der insbesondere durch Elektrolyse hergestellt wird. Dadurch ergibt sich eine noch bessere Flexibilität bezüglich des stöchiometrischen be enriched, which is produced in particular by electrolysis. This results in an even better flexibility with respect to the stoichiometric
Verhältnisses von H2 und CO.
Besonders bevorzugt wird das Verfahren, wenn das resultierende Synthesegas weiterverarbeitet wird, insbesondere in einem Prozess zur Synthese von Methanol und/oder Dimethylether oder zur Fischer-Tropsch-Synthese. Insbesondere für diese Prozesse ist ein H2/CO-Verhältnis von 0,8:1 , resultierend aus einer Ratio of H 2 and CO. The process is particularly preferred when the resulting synthesis gas is further processed, in particular in a process for the synthesis of methanol and / or dimethyl ether or for Fischer-Tropsch synthesis. In particular, for these processes, a H 2 / CO ratio of 0.8: 1, resulting from a
Vergasungseinrichtung in der Regel nicht hoch genug, so dass zusätzlicher H2 nötig ist. Gasification device usually not high enough, so that additional H 2 is necessary.
Eine weitere bevorzugte Ausführungsform ist es, wenn in dem zweiten Prozessschritt, zusätzlich zur Abwärme des heißen Synthesegases, weitere Energie eingespeist wird, insbesondere regenerative elektrische Energie. Durch die Verwendung von günstigem Überschussstrom kann so mehr Erdgas oder Biogas in diesem Reaktor umgesetzt werden, um zu einem optimalen H2/CO Verhältnis von 2:1 zu kommen. Dies ist insbesondere bei günstiger elektrischer Energie aus regenerativen Quellen eine energetisch sinnvolle Kombination von Abfallwärme und Überschussstrom. Die Energie kann dabei über mindestens eine Elektrode eingebracht werden. Im Falle der A further preferred embodiment is when in the second process step, in addition to the waste heat of the hot synthesis gas, further energy is fed in, in particular regenerative electrical energy. By using a favorable excess flow, more natural gas or biogas can be converted in this reactor in order to achieve an optimum H 2 / CO ratio of 2: 1. This is an energetically meaningful combination of waste heat and surplus electricity, especially with favorable electrical energy from regenerative sources. The energy can be introduced via at least one electrode. In case of
Verwendung eines metallischen monolithischen Katalysators zur Dampfreformierung, kann diese Metallstruktur selbst als Elektrode verwendet werden. Durch die Using a metallic monolithic catalyst for steam reforming, this metal structure itself can be used as an electrode. By the
Verwendung mehrerer Elektroden, welche auch unterschiedliche Längen haben können, bzw. durch die Unterteilung des monolithischen Katalysators können bestimmte Zonen unterschiedlich geheizt werden und so gezielt die Temperaturen in bestimmten Reaktorzonen eingestellt werden. Die Verwendung von elektrischem Strom, gewährleistet zudem eine kurze Anspruchszeit zur Veränderung der Using a plurality of electrodes, which may also have different lengths, or by the subdivision of the monolithic catalyst, certain zones can be heated differently and thus specifically the temperatures can be set in certain reactor zones. The use of electric current also ensures a short claim time to change the
Temperaturen. Die Vorteile der Erfindung ergeben sich insbesondere aus der Möglichkeit, die bei der Abkühlung der Synthesegasströme entstehende Wärme optimal zu nutzen, da kein Zwischenmedium mehr verwendet wird. Selbst bei der externen Anordnung des zweiten Reaktionsschrittes, wird das heiße Synthesegas des ersten Reaktionsschrittes direkt für die Übertragung verwendet. Durch die Abkühlung des zweiten Temperatures. The advantages of the invention result in particular from the possibility of optimally utilizing the heat produced during the cooling of the synthesis gas streams, since no intermediate medium is used any longer. Even with the external arrangement of the second reaction step, the hot synthesis gas of the first reaction step is used directly for the transfer. By the cooling of the second
Synthesegasstromes kann, weiterhin Dampf zur Wärmeübertragung genutzt werden. Zudem, kann das H2/CO-Verhältnis optimal für nachfolgende Produktionsverfahren eingestellt werden. Wird die Reformierung des methanreichen Gases in den oberen Teil des Vergasers integriert, kann ein externer Dampfreformierer eingespart werden. Durch die zusätzliche Verwendung von Überschussstrom aus regenerativen Energien, insbesondere aus Windrädern und Photovoltaikanlagen, kann zudem zu einer
Stabilisierung der Stromnetze beigetragen werden und die Überschussenergie chemisch gespeichert werden. Synthesis gas stream can continue to be used for heat transfer steam. In addition, the H 2 / CO ratio can be optimally adjusted for subsequent production processes. If the reforming of the methane-rich gas is integrated into the upper part of the carburetor, an external steam reformer can be saved. The additional use of surplus electricity from renewable energy, in particular from wind turbines and photovoltaic systems, can also contribute to a Stabilization of the power grids are added and the surplus energy is chemically stored.
Die Erfindung eignet sich für alle Prozesse der Synthesegasherstellung über The invention is suitable for all processes of syngas production via
Vergasungsverfahren unabhängig davon, welche Rohstoffe eingesetzt werden. Es können sowohl biologische als auch fossile Rohstoffe oder Abfälle verwendet werden. Ebenso können für die Reformierung nicht nur Erdgas und Biogas verwendet werden, sondern auch andere kohlenwasserstoffreiche Gase, insbesondere Abgase (Kopfgase) aus weiterverarbeitenden Prozessen. Abhängig vom eingestellten H2/CO Verhältnis des Synthesegasstromes kommen auch zahlreiche Weiterverarbeitungsschritte für das Synthesegas in Frage. Dazu zählen insbesondere die Synthese von Methanol, von Dimethylether, von Ammoniak, Fermentationen oder die Fischer-Tropsch-Synthese Gasification processes regardless of which raw materials are used. Both biological and fossil raw materials or waste can be used. Likewise, not only natural gas and biogas can be used for the reforming, but also other hydrocarbon-rich gases, in particular exhaust gases (overhead gases) from further processing processes. Depending on the H 2 / CO ratio of the synthesis gas stream, numerous further processing steps for the synthesis gas are also possible. These include, in particular, the synthesis of methanol, of dimethyl ether, of ammonia, fermentations or the Fischer-Tropsch synthesis
Im Folgenden soll die Erfindung anhand von in den Figuren schematisch dargestellten Ausführungsbeispielen näher erläutert werden: In the following, the invention will be explained in more detail with reference to embodiments schematically illustrated in the figures:
Es zeigen Show it
Figur 1 eine schematische Ansicht eines Hochtemperaturvergasers mit interner zweiter Reaktionsstufe Figure 1 is a schematic view of a high-temperature gasifier with internal second reaction stage
Figur 2 eine schematische Ansicht einer Anlage zur Herstellung von Synthesegas mit externer zweiter Reaktionsstufe Figur 3 eine schematische Ansicht einer Anlage zur Herstellung von Synthesegas mit externer zweiter Reaktionsstufe mit zusätzlichen Heizelektroden Figure 2 is a schematic view of a plant for the production of synthesis gas with external second reaction stage Figure 3 is a schematic view of a plant for the production of synthesis gas with external second reaction stage with additional heating electrodes
In Figur 1 ist schematisch der Ausschnitt einer Anlage dargestellt, welche zwei verschiedene Synthesegasherstellungsmethoden kombiniert und so die entstehende Wärme effektiv nutzt. Der Produktstrom 101 aus einem Hochtemperaturvergaser wird einem Quenchteil des Vergasers 104, bei 1400 °C zugeführt. Im unteren Teil des Reaktors 104 wird in der Regel Koks 102 zugegeben, der ebenfalls zu CO umgesetzt wird und gleichzeitig für eine gewisse Abkühlung sorgt. Im oberen Teil des Reaktors 104 wird nun zusätzlich methanreiches Gas 103 zugegeben, welches bei den entsprechend hohen Temperaturen von etwa 1000 °C ebenfalls zu Synthesegas
umgesetzt wird. Durch die zusätzliche Zudosierung von methanreichem Gas 103 wird die Wärme im oberen Teil des Reaktors effektiv genutzt. Zusätzlich wird der H2 Anteil des gesamten Synthesegases 105 erhöht. Im Anschluss wird das gesamte In Figure 1, the section of a plant is shown schematically, which combines two different syngas production methods and thus effectively uses the resulting heat. The product stream 101 from a high temperature gasifier is fed to a quench portion of the gasifier 104 at 1400 ° C. In the lower part of the reactor 104 coke 102 is usually added, which is also converted to CO and at the same time ensures a certain cooling. In the upper part of the reactor 104 is now additionally methane-rich gas 103 is added, which also at the correspondingly high temperatures of about 1000 ° C to synthesis gas is implemented. The additional metering of methane-rich gas 103 effectively utilizes the heat in the upper part of the reactor. In addition, the H 2 content of the entire synthesis gas 105 is increased. Following is the entire
Synthesegas 105 aufbereitet, in dem es insbesondere weiter abgekühlt wird, entschwefelt, entstaubt und gereinigt wird. Zur Verbesserung der Synthesis gas 105, in which it is further cooled in particular, desulfurized, dedusted and cleaned. To improve the
Reaktionsgeschwindigkeit und der Ausbeute, kann zusätzlich ein monolithischer Katalysator im oberen Teil des Reaktors 104 eingebaut werden. Reaction rate and yield, in addition, a monolithic catalyst in the upper part of the reactor 104 can be installed.
In Figur 2 ist schematisch eine Anlage dargestellt, welche in zwei separaten Stufen Synthesegas herstellt, wobei die Wärme für die Betreibung der zweiten Stufe direkt aus dem Produktstrom der ersten Stufe entnommen wird. Das aus der Vergasung 201 stammende CO und C02 reiche Synthesegas 203 weist in der Regel eine Temperatur von > 900 °C auf. Dieses wird direkt als Wärmemedium für einen Dampfreformierer 204 verwendet, welcher in der Regel bei ca. 500 bis 850 °C betrieben wird. Das abgekühlte Synthesegas 208 kann anschließend aufbereitet werden, in dem es insbesondere weiter abgekühlt wird, entschwefelt, entstaubt und gereinigt wird. Der Dampfreformierer 204 wird meist mit einer Mischung aus methanreichem Gas und Wasserdampf 202 betrieben, welche im hier beschriebenen Fall über eine Vorheizstufe in den Dampfreformierer 204 zugeführt wird. Der Dampf kann jedoch auch erst nach der Vorheizstufe zugegeben werden. Das resultierende H2 reiche Synthesegas 205 wird zuerst zur Vorheizung des Gemisches 202 verwendet und kann dann ebenfalls ähnlich dem Synthesegasstrom 208 aufbereitet werden. Die Aufarbeitung der FIG. 2 schematically shows a system which produces synthesis gas in two separate stages, the heat for the second stage operation being taken directly from the product stream of the first stage. The CO and C0 2 rich synthesis gas 203 originating from the gasification 201 generally has a temperature of> 900 ° C. This is used directly as a heat medium for a steam reformer 204, which is usually operated at about 500 to 850 ° C. The cooled synthesis gas 208 can subsequently be prepared by, in particular, being further cooled, desulfurized, dedusted and cleaned. The steam reformer 204 is usually operated with a mixture of methane-rich gas and water vapor 202, which is supplied in the case described here via a preheating stage in the steam reformer 204. However, the steam can also be added only after the preheating stage. The resulting H 2 -rich synthesis gas 205 is first used to preheat the mixture 202 and then may also be treated similarly to the syngas stream 208. The workup of the
Synthesegasströme kann getrennt oder gemeinsam erfolgen. Eine Weiterverarbeitung des konditionierten Synthesegasstroms erfolgt insbesondere in einer Synthesis gas streams can be separated or shared. Further processing of the conditioned synthesis gas stream takes place in particular in one
Methanolsynthese, Dimethylethersynthese oder Fischer-Tropsch Synthese. Methanol synthesis, dimethyl ether synthesis or Fischer-Tropsch synthesis.
Figur 3 zeigt die bereits in Figur 2 dargestellte Anlage. Zusätzlich zur Beheizung durch den heißen Synthesegasstrom 203 wird der Dampfreformierer 204 mit elektrischen Elektroden 301 beheizt. Dadurch kann günstiger Überschussstrom zur Beheizung verwendet werden und der Umsatz erhöht werden. Die Elektroden können in unterschiedlicher Anzahl und Länge in das Katalysatorbett eingefügt werden. Bei der Verwendung eines metallischen monolithischen Katalysators, kann auch diese FIG. 3 shows the plant already shown in FIG. In addition to heating by the hot synthesis gas stream 203, the steam reformer 204 is heated with electrical electrodes 301. As a result, favorable surplus stream can be used for heating and the sales can be increased. The electrodes can be inserted in different numbers and lengths in the catalyst bed. When using a metallic monolithic catalyst, these too
Metallstruktur direkt als Elektrode genutzt werden.
Tabelle 1 zeigt einen Vergleich eines Verfahrens aus dem Stand der Technik mit den beiden Ausführungsbeispielen, für den Fall, dass aus dem gewonnen Synthesegas Methanol hergestellt werden soll. Tabelle 1 : Vergleich der bisher verwendeten Methode und der beiden Metal structure can be used directly as an electrode. Table 1 shows a comparison of a method from the prior art with the two embodiments, in the event that methanol is to be produced from the synthesis gas obtained. Table 1: Comparison of the method used so far and the two
Ausführungsbeispiele. Embodiments.
Es zeigt sich deutlich in Tabelle 1 , dass durch das zweistufige Ausführungsbeispiel, insbesondere dem externen Beispiel, mehr Methanol gewonnen werden konnte bei gleichbleibendem Energieeintrag. Grund hierfür ist die energieneutrale Verbesserung des H2/CO Verhältnisses in Richtung der optimalen Synthesegaszusammensetzung von 2:1 statt 0,8:1 , wie es in einem herkömmlichen Vergasungsverfahren entsteht.
It can be clearly seen in Table 1 that more methanol could be obtained by the two-stage embodiment, in particular the external example with constant energy input. The reason for this is the energy-neutral improvement of the H 2 / CO ratio in the direction of the optimal synthesis gas composition of 2: 1 instead of 0.8: 1, as it arises in a conventional gasification process.
Claims
1. Verfahren zur Herstellung von Synthesegas, wobei als erster Prozessschritt in einem Reaktor eine Hochtemperaturvergasung (201) durchgeführt wird, bei der Wärmeenergie freigesetzt wird, dadurch gekennzeichnet, dass die freigesetzte Wärmenergie zur zusätzlichen Herstellung von Synthesegas in einem zweiten Prozessschritt verwendet wird, der innerhalb (104) oder außerhalb (204) des Reaktors durchgeführt wird. 1. A process for the production of synthesis gas, wherein as a first process step in a reactor, a high-temperature gasification (201) is performed, is released in the heat energy, characterized in that the released heat energy for the additional production of synthesis gas is used in a second process step, within (104) or outside (204) of the reactor.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Herstellung des zusätzlichen Synthesegases in einem zweiten Prozessschritt intern, innerhalb des gleichen Reaktors (104) über eine Umsetzung von Erdgas oder Biogas (103) durchgeführt wird, welches dem heißen Synthesegas des ersten 2. The method according to claim 1, characterized in that the production of the additional synthesis gas in a second process step internally, within the same reactor (104) via a reaction of natural gas or biogas (103) is performed, which the hot synthesis gas of the first
Prozessschrittes zugegeben wird. Process step is added.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Herstellung des zusätzlichen Synthesegases (207) in einem zweiten Prozessschritt extern, in einem zweiten Reaktor, insbesondere mittels einer Dampfreformierung (204), durchgeführt wird. 3. The method according to claim 1, characterized in that the production of the additional synthesis gas (207) in a second process step externally, in a second reactor, in particular by means of a steam reforming (204) is performed.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in dem zweiten4. The method according to claim 3, characterized in that in the second
Prozessschritt, zusätzlich zur Abwärme des heißen Synthesegases (203), eine weitere Energie (301) eingespeist wird, insbesondere mittels regenerativer elektrischer Energie. Process step, in addition to the waste heat of the hot synthesis gas (203), a further energy (301) is fed, in particular by means of regenerative electrical energy.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das resultierende Synthesegas zusätzlich mit H2 angereichert wird, der insbesondere durch Elektrolyse hergestellt wird. 5. The method according to any one of claims 1 to 4, characterized in that the resulting synthesis gas is additionally enriched with H 2 , which is produced in particular by electrolysis.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das resultierende Synthesegas weiterverarbeitet wird, insbesondere in einem Prozess zur Synthese von Methanol und/oder Dimethylether oder zur Fischer- Tropsch-Synthese.
6. The method according to any one of claims 1 to 5, characterized in that the resulting synthesis gas is further processed, in particular in a process for the synthesis of methanol and / or dimethyl ether or for Fischer-Tropsch synthesis.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014016407.1 | 2014-11-05 | ||
DE102014016407.1A DE102014016407A1 (en) | 2014-11-05 | 2014-11-05 | Process for the production of synthesis gas |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016070989A1 true WO2016070989A1 (en) | 2016-05-12 |
Family
ID=54478698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/002206 WO2016070989A1 (en) | 2014-11-05 | 2015-11-04 | Process for producing synthesis gas |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102014016407A1 (en) |
WO (1) | WO2016070989A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020002346A1 (en) * | 2018-06-26 | 2020-01-02 | Thyssenkrupp Industrial Solutions Ag | Method for providing synthesis gas by means of an additional electric heater |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070289214A1 (en) * | 2006-06-19 | 2007-12-20 | Siemens Power Generation, Inc. | Systems and methods for integration of gasification and reforming processes |
US20120025140A1 (en) * | 2008-10-08 | 2012-02-02 | Karl-Heinz Tetzlaff | Method and Device for Producing Synthesis Gas from Gaseous Hydrocarbons |
US20120181483A1 (en) * | 2009-06-09 | 2012-07-19 | Sundrop Fuels, Inc. | Various methods and apparatuses for multi-stage synthesis gas generation |
US20130153826A1 (en) * | 2011-07-21 | 2013-06-20 | Antonin Paquet | Use of char particles in the production of synthesis gas and in hydrocarbon reforming |
US20140298953A1 (en) * | 2013-03-14 | 2014-10-09 | John Winter | Method and apparatus for recycling methane |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4139512A1 (en) | 1991-11-29 | 1993-06-03 | Noell Dbi Energie Entsorgung | Thermal recycling of household and industrial waste - by pyrolysis in absence of air, comminution, sizing to obtain coke-like enriched fines, degasifying using oxygen-contg. agent and gas purificn. |
DE4209549A1 (en) | 1992-03-24 | 1993-09-30 | Vaw Ver Aluminium Werke Ag | Processes for the thermal treatment of residues, e.g. for the separation and recycling of metal compounds with organic components, using a combination of pyrolysis and gasification |
DE4404673C2 (en) | 1994-02-15 | 1995-11-23 | Entec Recycling Und Industriea | Process for the production of fuel gas |
EP2166064A1 (en) | 2008-09-19 | 2010-03-24 | Siemens Aktiengesellschaft | A chemical product providing system and method for providing a chemical product |
-
2014
- 2014-11-05 DE DE102014016407.1A patent/DE102014016407A1/en not_active Withdrawn
-
2015
- 2015-11-04 WO PCT/EP2015/002206 patent/WO2016070989A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070289214A1 (en) * | 2006-06-19 | 2007-12-20 | Siemens Power Generation, Inc. | Systems and methods for integration of gasification and reforming processes |
US20120025140A1 (en) * | 2008-10-08 | 2012-02-02 | Karl-Heinz Tetzlaff | Method and Device for Producing Synthesis Gas from Gaseous Hydrocarbons |
US20120181483A1 (en) * | 2009-06-09 | 2012-07-19 | Sundrop Fuels, Inc. | Various methods and apparatuses for multi-stage synthesis gas generation |
US20130153826A1 (en) * | 2011-07-21 | 2013-06-20 | Antonin Paquet | Use of char particles in the production of synthesis gas and in hydrocarbon reforming |
US20140298953A1 (en) * | 2013-03-14 | 2014-10-09 | John Winter | Method and apparatus for recycling methane |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020002346A1 (en) * | 2018-06-26 | 2020-01-02 | Thyssenkrupp Industrial Solutions Ag | Method for providing synthesis gas by means of an additional electric heater |
Also Published As
Publication number | Publication date |
---|---|
DE102014016407A1 (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012015314B4 (en) | Process and plant for the production of carbon monoxide | |
EP2780105B1 (en) | Shell-and-tube reactor for carrying out catalytic gas phase reactions | |
EP3052435B1 (en) | Method for storing electric energy | |
EP3008218B1 (en) | Blast furnace and method for operating a blast furnace | |
EP3080308B1 (en) | Combined system for producing steel and method for operating the combined system | |
DE102019214812A1 (en) | Process and plant for the production of synthesis gas | |
DE102011112093A1 (en) | Producing carbon dioxide-free liquid hydrocarbon-containing energy carrier preferably methanol, comprises converting carbon monoxide-containing gaseous energy carrier to carbon dioxide and hydrogen-containing gas in water-gas shift reaction | |
EP3967654A1 (en) | Method and system for the production of hydrogen through steam reforming and high temperature electrolysis | |
DE202011105262U1 (en) | Plant for low-carbon dioxide, preferably carbon dioxide-free production of a liquid hydrocarbon-containing energy carrier and / or for the direct reduction of metal oxides | |
DE102014007001B4 (en) | Process and plant for the production of H2-rich synthesis gas | |
EP4112540A1 (en) | Method and device for producing hydrogen from ammonia | |
WO2016070989A1 (en) | Process for producing synthesis gas | |
EP4031640B1 (en) | System and method for producing synthetic fuels without fresh water | |
EP0215930B1 (en) | Process for the production of heat energy from synthetic gas | |
DE102018132736A1 (en) | Process and plant for producing one or more gaseous reaction products in a fired reactor | |
DE102013008519A1 (en) | Process and plant for the at least partial gasification of solid, organic feedstock | |
DE102014202803B4 (en) | Process for the preparation of liquid and / or solid hydrocarbon compounds | |
DE102017200435A1 (en) | Process and apparatus for the production of hydrocarbons | |
WO2015014459A1 (en) | Method and system for enriching a synthesis gas with hydrogen, said gas having been produced by gasification | |
EP3075706A1 (en) | Method and a plant for the production of synthesis gas | |
DE102019007672A1 (en) | Process and plant for the production of monoethylene glycol | |
EP3898504B1 (en) | Process for producing hydrogen, carbon monoxide and a carbon -containing product | |
WO2016070988A1 (en) | Method for using co2 in the production of synthesis gas | |
DE102016204331A1 (en) | Process for the production of ammonia from crude gas | |
DE102009030521A1 (en) | Process for the use of waste heat of an industrial process, as well as apparatus and their use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15791502 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15791502 Country of ref document: EP Kind code of ref document: A1 |