WO2016070776A1 - 核电站压力容器筒体电熔成形方法 - Google Patents

核电站压力容器筒体电熔成形方法 Download PDF

Info

Publication number
WO2016070776A1
WO2016070776A1 PCT/CN2015/093634 CN2015093634W WO2016070776A1 WO 2016070776 A1 WO2016070776 A1 WO 2016070776A1 CN 2015093634 W CN2015093634 W CN 2015093634W WO 2016070776 A1 WO2016070776 A1 WO 2016070776A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrofusion
pressure vessel
raw material
heat
Prior art date
Application number
PCT/CN2015/093634
Other languages
English (en)
French (fr)
Inventor
王华明
Original Assignee
南方增材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方增材科技有限公司 filed Critical 南方增材科技有限公司
Priority to EP15857870.8A priority Critical patent/EP3216549A4/en
Priority to US15/524,617 priority patent/US20170320162A1/en
Publication of WO2016070776A1 publication Critical patent/WO2016070776A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K25/00Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined
    • B23K25/005Welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means
    • B23K9/298Supporting devices adapted for making use of shielding means the shielding means being a powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • G21C13/087Metallic vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a nuclear power plant pressure vessel cylinder electrofusion forming method.
  • the reactor pressure vessel is mainly used to hold the reactor core, so that the high temperature and high pressure coolant is kept in a sealed casing, and at the same time, the radiation shielding effect, the strong neutron irradiation makes the material performance constant. Was worsened. Therefore, the harsh working environment, the ever-increasing nuclear power safety requirements and the container itself are not replaceable as part of the nuclear island. As the power generation power increases, the components are very large, and the requirements for nuclear voltage force container materials are very strict. The higher.
  • the pressure vessel material is made of Mn-Mo-Ni low alloy high strength steel (ASME standard SA508Gr3Cl1, RCC-M standard 16MnD5, China corresponding standard 20MnMoNi), and is made by forging and subsequent heat treatment.
  • Typical materials are subjected to quenching and tempering heat treatment on the basis of forging (generally subjected to one or more normalizing and tempering heat treatment in the middle to diffuse residual hydrogen, refine grains, prepare for final heat treatment), and obtain strength and toughness synthesis. Excellent tempering martensite material structure.
  • the pressure vessel material is generally only about 5-7, which is the purpose of improving the mechanical properties, especially the strength and toughness of the refined grain by the refined grain in the current research and development. This process has a large bottleneck.
  • the main object of the present invention is to provide a high-efficiency, low-cost, high-mechanical performance of a nuclear power plant pressure vessel cylinder electrofusion forming method.
  • the nuclear power plant pressure vessel cylinder electrofusion forming method of the invention is a high-energy heat source formed by arc heat, electric resistance heat and electroslag heat, melting the continuously transported metal raw material wire, layer by layer on the substrate. Solidified stacked forming metal parts;
  • the electrofusion head and the substrate are connected to the two poles of the power source, and the metal raw material wire is sent to the surface of the substrate through the conveying mechanism and the electrofusion head during the forming, and an arc is generated between the raw material wire and the substrate under the deposition protection of the granular auxiliary material.
  • the molten part of the piled auxiliary material forms a molten slag pool, the electric current flows through the raw material wire material and the molten auxiliary material slag pool to form electric resistance heat and electroslag heat, and the raw material wire is made under the action of three heat composite high energy heat sources of arc heat, electric resistance heat and electroslag heat.
  • the material is melted, a local molten pool is formed on the surface of the substrate, and the raw material wire and the auxiliary material are continuously conveyed.
  • the relative movement of the electrofusion head and the substrate is controlled by a computer to realize the rapid melting of the molten pool on the substrate.
  • the cooling is solidified layer by layer, and finally the pressure vessel cylinder of the nuclear power plant is formed.
  • a shaped pressure vessel tube is formed according to different nuclear power unit requirements.
  • the body diameter is 3-6 meters and the length is 2-12 meters.
  • the raw material wire used for forming is a low-alloy steel material specially prepared for the pressure vessel member, the raw material wire diameter is 2-10 mm, the C content is 0.08-0.12%, and the workpiece C content after forming is 0.04-0.08%, the workpiece The grain size is 9-10.
  • the current in the power supply parameter is 200A to 3000A
  • the voltage is 20V to 60V
  • the power source can be a direct current or an alternating current power source.
  • the electric fuse head can be connected to the positive pole or the negative pole.
  • the preheating and interlaminar temperature of the control substrate or the deposited metal is 120 to 450 ° C, and the relative movement speed of the electrofusion head and the substrate is 300 to 800 mm/min, thereby realizing rapid solidification of the molten pool, thereby obtaining crystals.
  • Fine-grained, non-macro-segregated, uniform-structured materials greatly improve the mechanical properties of the formed workpiece such as plasticity, toughness and high-temperature creep.
  • the raw material filament forms a molten pool on the surface of the lower metal layer, and the molten droplet enters the molten pool in the form of a jet and solidifies to form the two layers of metal into one body, thereby realizing layer forming and integral fusion, thereby ensuring The overall properties of the formed metal component.
  • the melting efficiency of the single electrofusion head to the raw material wire is 20-50 Kg/h, and in order to achieve rapid formation by increasing the stacking efficiency, the number of the electrofusion heads can be adjusted to 1 to 100 as needed, when multi-electrofusion When the head is arranged, the distance between adjacent electrofusion heads is 50 to 500 mm.
  • the substrate may be cylindrical or cylindrical and have a wall thickness of not less than 5 mm.
  • the (the axis) is horizontally configured to achieve layer-by-layer stacking by controlling the rotation of the substrate and the relative movement of the electrofusion head in the axial and radial directions of the substrate.
  • the substrate may be 308 stainless steel material or carbon steel or alloy steel material. When it is 308 stainless steel material, it can be used as a dissimilar material to join the composite workpiece. When it is carbon steel or alloy steel material, it can be removed in the subsequent machining.
  • the invention is free from the constraints of complex tooling, molds and special tools; the forming is a near-net shape blank, and only a small amount of finishing is required after production, which greatly simplifies the processing process.
  • the product cycle is shortened; the formed workpiece has the mechanical and chemical properties comparable to the traditional forging process, and the strength, toughness, corrosion resistance and the like are all outstanding; at the same time, the integral forming of the pressure vessel cylinder is realized, which breaks through the limitations of the traditional forging process technology. Greatly improved efficiency and saved costs.
  • FIG. 1A is a schematic view for explaining an electrofusion forming method in a specific embodiment
  • Figure 1B is a partial enlarged view of the vicinity of the position shown in A of Figure 1A;
  • Fig. 2 is a schematic view for explaining a method of forming a pressure vessel cylinder in the embodiment.
  • FIG. 1A is a schematic view for explaining an electrofusion forming method in a specific embodiment
  • FIG. 1B is a partial enlarged view of a vicinity of a position shown by A in FIG. 1A. Since the drawings are schematic, the components in the drawings are schematic, and their actual shapes and dimensional relationships are not limited by the drawings.
  • the raw material wire 1 is melted and stacked on the base material 2 layer by layer (in the state shown in FIG. 1 when it is deposited on the N-th layer), thereby finally forming a desired metal member.
  • the wire feeding mechanism 5 feeds the raw material wire 1 to the surface of the substrate 2 placed on the table 21, and is covered with the granular auxiliary material conveyed by the powder feeding mechanism 4.
  • the power supply voltage causes an arc 9 between the raw material wire 1 and the substrate 2 to generate arc heat
  • the arc heat causes part of the auxiliary material 3 to melt, forming an auxiliary slag pool 8, and the current flows through the raw material wire through the electrofusion head 6.
  • Forming resistance heat, and forming electroslag heat through the molten slag pool 8 the three heat sources are combined to form a high-energy heat source, and the raw material wire is melted to form a molten pool 11 on the surface of the substrate 2.
  • the wire feeding mechanism 5 and the powder feeding mechanism 4 continuously convey the raw material wire 1 and the auxiliary material 3.
  • the raw material wire 1 is deposited on the substrate 2 layer by layer, and finally Form the workpiece.
  • control device controls the relative movement manner of the electrofusion head 6 and the substrate 2 based on the layered slice data of the shaped workpiece (numerical simulation, mathematical model).
  • the electrode of the electrofusion head is connected positively, and the workpiece is connected to the negative for only a schematic function, or the electrofusion head is connected negatively, the workpiece is connected positively, or an AC power source is taken.
  • the composition of the excipient, the diameter of the raw material wire, the current, the relative movement speed of the substrate and the raw material wire, etc. can be appropriately adjusted. parameter.
  • the shape of the raw material yarn 1 may be a round bar shape, a belt shape, a solid core or a drug core; the diameter of the raw material wire 1 may be set to 2 to 10 mm according to the size of the formed workpiece; depending on the diameter of the wire material 1,
  • the length of the electric fuse head (electrical length) is 20 mm to 150 mm.
  • the auxiliary material 3 covers a thickness of 15 mm to 120 mm, and the use of the auxiliary material 3 includes: covering the arc 9 to prevent arc splashing; covering the molten pool 11, insulating the air, and protecting the molten pool metal from oxygen, nitrogen and hydrogen in the air. Insulting; forming heat preservation on the molten pool metal; removing impurities and alloying in the metallurgical reaction process; forming the slag pool 8 (slag shell 7) mechanically protecting the deposited metal 10 from forming well.
  • the composition of the auxiliary material 3 contains an oxide or an oxide and a halide, and the auxiliary material 3 participates in the molten pool reaction to adjust the workpiece (metal member, product) component, and thus can be added to the auxiliary material according to the composition and efficiency requirements of the metal member to be formed. Alloy powder and/or elemental metal powder reduce production costs.
  • the operation of recovering the residual excipients and removing the slag shell 7 formed by solidification of the slag pool 8 may be attached.
  • the machine removal or manual removal operation can be started 400 mm to 500 mm behind the relative movement of the raw material yarn 1.
  • the utilization rate of the raw material yarn is close to 100%; compared with the conventional processing technology (forging, casting, etc.), the number of manufacturing processes is small (no complicated heat treatment is required), the cycle is short, and the efficiency is high.
  • the machining allowance of the components is very small, while reducing the finishing time and saving a lot of material.
  • This example describes the overall forming process of a nuclear voltage force container cylinder by a horizontal electrofusion forming method.
  • the inner wall of the cylinder is welded with a thickness of about 308 stainless steel layer of about 8 mm, and the wall thickness of the pressure vessel cylinder is about 200 mm.
  • Equipment includes:
  • Fig. 2 is a schematic explanatory view showing the electrofusion forming method of the present embodiment, in which a device such as a power source or an automatic wire feeder is omitted.
  • the material power parameters are as follows:
  • raw material wire 101 (C: 0.10-0.12%, other elements are consistent with SA508-3), diameter 5mm;
  • auxiliary material 301 the composition is 29.5% CaO+MgO; 30% AL2O3+MnO; 20.5% SiO2+TiO; 20% CaF2;
  • electrofusion heads 601 19 electrofusion heads 601, the electrofusion power source is a DC power source, the electrofusion head 601 is connected to the positive pole of the power source, and the substrate 201 is connected to the negative pole of the power source;
  • the electrofusion process parameters are: fused current 900A, fused voltage 42V, and relative movement speed of the fusion head 601 and the substrate 201 is 600-700 mm/min (melting tank moving speed).
  • the auxiliary material recovery device is started to take back the unmelted auxiliary material, expose the slag shell and remove it, so as to facilitate the next fused deposition (stacking)
  • the cooling device or the heating device is started to cool or heat the fused deposition metal, and the temperature of the substrate (the first layer refers to the substrate 201, and the other layer refers to the former layer of the deposited metal) is controlled at 200 ⁇ . 300 ° C;
  • step (4) After the completion of the second pass, repeat step (4) to complete the formation of the other fused deposition track.
  • the last pass is reached, the last end point of the adjacent fused fuse head is matched with the first start point. Good connection, to complete the first layer of fused deposition;
  • the stainless steel substrate 201 becomes a part of the pressure vessel cylinder, and the direct connection forming of the dissimilar materials is realized, thereby changing the manufacturing method of the conventional process for forging the 308 stainless steel on the inner wall after forging the SA508-3 cylinder.
  • the process is reduced, the work efficiency and quality are improved, and ordinary carbon steel can be removed in the subsequent machining.

Abstract

一种核电站压力容器筒体电熔成形方法,将电熔头与基材接至电源两极,成形时金属原料丝材经由输送机构和电熔头送至基材表面,在颗粒状辅料的堆积保护下,原料丝材与基材间产生电弧,熔化部分堆敷辅料形成熔融渣池,电流流过原料丝材和熔融辅料渣池形成电阻热和电渣热,在电弧热、电阻热、电渣热三种热复合高能热源作用下使原料丝材熔化,在基材表面形成局部熔池,持续输送原料丝材与辅料,根据成形构件的分层切片数据,采用计算机控制电熔头与基材的相对移动,实现熔池在基材上快速冷却逐层凝固堆积,最终成形核电站压力容器筒体。该方法具有效率高、成本低、力学性能良好的优点。

Description

核电站压力容器筒体电熔成形方法 技术领域
本发明涉及一种核电站压力容器筒体电熔成形方法。
背景技术
作为核电站核岛中的心脏设备,反应堆压力容器主要用来盛装反应堆堆芯,使高温高压的冷却剂保持在一个密封的壳体内,同时起辐射屏蔽作用,强烈的中子辐照使材料性能不断被恶化。因此严苛的工况环境,不断提高的核电安全极致要求和容器本身作为核岛部分不可更换的一个随发电功率增大而不断庞大的部件,对核电压力容器材料的要求非常严格,并越来越高。
目前压力容器材料选用Mn-Mo-Ni低合金高强度钢(ASME标准SA508Gr3Cl1,RCC-M标准16MnD5,中国对应标准20MnMoNi),通过锻造和后续热处理工艺制成。典型材料在锻造基础上经受淬火回火热处理(一般中间还要经受一次甚至以上的正火回火热处理,用以扩散残氢,细化晶粒,为最终热处理作准备),获取强度和韧性综合性能优越的回火马氏体材料组织。
尽管此方法在工业生产中被广泛应用,但囿于我国锻造企业现实制造水平,特殊材料部件制造仍有很大的困难,以典型三代核电AP1000压力容器为例,一体化顶盖封头材料生产报废比比皆是,成功率极低。并且因为钢锭冶炼和锻造工艺技术限制,容器筒体以及特殊部件均通过分段锻造并后续将材料组焊而成。显然焊缝的增加割裂了机械纤维的连续性,极大的影响了材料的力学性能。且成形效率低,制造周期长,增加了成 本。
而又因压力容器厚大的截面尺寸,热处理时,芯部与表面在加热和冷却过程中经受不同的热处理速度,容易出现应力开裂,宏观材料相组织不均匀,很难获取良好的全截面性质。另外从该工艺最终的晶粒测度结果看,压力容器材料一般只在5-7级左右,对目前研发生产中所希望的通过细化晶粒提高力学性能尤其是强度和韧性综合性能的目的,该工艺有很大的瓶颈。
因此,如何能够研发出压力容器所需的细晶粒、均组织,且综合力学性能良好的材料和整体成形方法是该类新材料研发需攻克的难点和重要发展方向。
发明内容
有鉴于此,本发明的主要目的在于,提供一种高效、低成本、具有良好力学性能的核电站压力容器筒体电熔成形方法。
为达到上述目的,本发明的核电站压力容器筒体电熔成形方法是采用电弧热、电阻热、电渣热复合而成的高能热源,熔化连续输送的金属原料丝材,在基材上逐层凝固堆积成形制造金属构件;
将电熔头与基材接至电源两极,成形时金属原料丝材经由输送机构和电熔头送至基材表面,在颗粒状辅料的堆积保护下,原料丝材与基材间产生电弧,熔化部分堆敷辅料形成熔融渣池,电流流过原料丝材和熔融辅料渣池形成电阻热和电渣热,在电弧热、电阻热、电渣热三种热复合高能热源作用下使原料丝材熔化,在基材表面形成局部熔池,持续输送原料丝材与辅料,根据成形构件的分层切片数据,采用计算机控制电熔头与基材的相对移动,实现熔池在基材上快速冷却逐层凝固堆积,最终成形核电站压力容器筒体。
在本发明中,根据不同核电机组要求,成形的压力容器筒 体直径3-6米,长度2-12米。
在本发明中,成形所用原料丝材是为压力容器构件而特殊制备的低合金钢材料,原料丝材直径2-10mm,C含量0.08-0.12%,成形后工件C含量0.04-0.08%,工件晶粒度9-10级。
在本发明中,电源参数中的电流为200A~3000A,电压为20V~60V,电源可以是直流或交流电源,在使用直流电源时,电熔头可接正极或负极。
在本发明中,控制基材或堆积金属预热与层间温度为120~450℃,电熔头与基材的相对移动速度为300~800mm/min,实现熔池的快速凝固,从而获得晶粒细密、无宏观偏析、组织均匀的材料,极大的改善成形工件的塑性、韧性和高温蠕变等力学性能。
在本发明中,在逐层成形的过程中,原料丝在下层金属表面形成熔池,熔滴以射流形态进入熔池后凝固使两层金属形成一体,实现分层成形,整体融合,保证了成形金属构件的整体性能。
在本发明中,单个电熔头对原料丝材熔化效率为20~50Kg/h,另外为提高堆积效率实现快速成形,电熔头的数量可以按需要调整为1~100个,当多电熔头排布时,相邻电熔头间距为50~500mm。
在本发明中,所述基材可以为圆筒状或圆柱状,壁厚不小于5mm。(其轴线)水平配置,通过控制基材的转动以及电熔头在基材轴向和径向上的相对移动实现逐层堆积。基材可以是308不锈钢材料或者是碳钢或合金钢材料,当为308不锈钢材料时,可作为异种材料连接合成工件,为碳钢或合金钢材料时可在后续机加工中去除。
本发明摆脱了复杂的工装、模具和专用工具的约束;成形即为近净形坯件,生产后只需少量精加工,大大简化加工工序, 缩短产品周期;所成形工件具有媲美传统锻造工艺的力学和化学性能,强度、韧性、耐蚀等性能均十分突出;同时实现了压力容器筒体的整体成形,突破了传统锻造工艺技术的局限,大大提高了效率,节省了成本。
附图说明
图1A为用于说明具体实施方式中的电熔成形方法的示意图;
图1B为图1A中A所示位置附近的局部放大图;
图2为用于说明实施例中的压力容器筒体成形方法的示意图。
具体实施方式
下面参照附图对本发明的具体实施方式进行说明。图1A为用于说明具体实施方式中的电熔成形方法的示意图;图1B为图1A中A所示位置附近的局部放大图。由于是原理图,因而,图中部件是示意性的,其实际形状与尺寸关系等不受图示限制。
该成形方法是将原料丝材1熔化而逐层(图1中所示为堆积至第N层时的状态)堆积在基础材2上,从而最终形成所需的金属构件。
具体实施工序为:
A.送丝机构5将原料丝材1送至放置于工作台21上的基材2的表面,其上覆盖由送粉机构4输送的颗粒状辅料。
B.启动电源12,电源电压使原料丝材1与基材2间形成电弧9产生电弧热,电弧热使部分辅料3熔融,形成辅料渣池8,电流经由电熔头6流过原料丝材1形成电阻热,并通过熔融渣池8形成电渣热,三种热源复合而成高能热源,熔化原料丝材,在基材2表面形成熔池11。
C.控制电熔头6与基材2的相对移动和基材2的温度,实现熔池11与基材换热凝固沉积。
D.送丝机构5与送粉机构4持续输送原料丝材1和辅料3,在辅料3覆盖熔池11和基材2的状态下,原料丝材1逐层堆积在基材2上,最终成形工件。
其中,控制装置(计算机)根据成形工件的(数值模拟、数学模型)分层切片数据控制电熔头6与基材2的相对移动方式。
在本发明图示中电熔头电极接正,工件接负只作示意作用,也可以电熔头接负,工件接正,或采取交流电源。
在本发明中,为了保证形成良好的高能热源,尤其是为了产生充分的电渣热,可以适当地调节辅料的成分、原料丝材的直径、电流、基材与原料丝材的相对移动速度等参数。
在本发明中,原料丝1的形态可以是圆棒状、带状,实芯或者药芯的;原料丝1的直径可以根据成形工件的尺寸设定为2~10mm;根据丝材1直径不同,伸出电熔头的长度(通电长度)为20mm~150mm。
在本发明中,辅料3覆盖厚度为15mm~120mm,使用辅料3的作用包括:覆盖电弧9,防止电弧飞溅;覆盖熔池11,隔绝空气,使熔池金属免受空气中氧、氮、氢等的侵害;对熔池金属形成保温;冶金反应过程中去除杂质、掺入合金;形成的渣池8(渣壳7)以机械方式保护沉积金属10良好成形等。
辅料3的成分包含氧化物或者氧化物与卤化物,由于辅料3参与熔池反应,调整工件(金属构件、产品)成分,因而根据所要形成的金属构件的成分和效率要求,可以在辅料中添加合金粉末以及/或者单质金属粉末,降低生产成本。
另外,在C工序中,可以附带回收残余辅料以及去除渣池8凝固而形成的渣壳7的操作。去除时,可以在原料丝1的相对移动后方400mm~500mm处开始机器去除或人工去除作业。
采用本实施方式的电熔成形方法,原料丝利用率接近100%;相比现有的加工技术(锻造、铸造等),制造工序少(不需要复杂的热处理),周期短,效率高,金属构件的机械加工余量非常小,同时减少了精加工时间及节约了大量的材料。
【实施例】
本实例描述通过卧式电熔成形方法制作核电压力容器筒体的整体成形过程,传统工艺中该筒体内壁堆焊厚度约8mm的308不锈钢层,压力容器筒体壁厚约200mm,所使用的设备包括:
(1)回转支撑台;
(2)电熔电源;
(3)电熔头;
(4)自动送丝装置;
(5)辅料自动输送与辅料自动回收装置;
(6)加热装置;
(7)冷却装置;
(8)基材;
(9)中央控制装置。
图2为用于表示本实施例的电熔成形方法的示意性说明图,图中省略了电源、自动送丝装置等装置。材料电源参数如下:
1)原料丝材101(C:0.10-0.12%,其它元素与SA508-3一致)、直径5mm;
2)特殊研制的辅料301,成分为29.5%CaO+MgO;30%AL2O3+MnO;20.5%SiO2+TiO;20%CaF2;
3)电熔头数量:19个电熔头601,电熔电源为直流电源,采用电熔头601接电源正极,基材201接电源负极;
4)电熔工艺参数为:电熔电流900A,电熔电压42V,电熔头601与基材201相对移动速度600~700mm/min(熔池移动速度)。
采用金属构件电熔成形方法制作环形金属构件,其实施步骤 如下:
(1)将圆筒形的基材201的轴线水平配置,并支撑在回转支撑台上,将19个电熔头以约350mm的间距(中央控制装置确定精确位置和移动)平均横向布置在基材201的上方,且调整好每个电熔头与基材201表面(外周面)的距离,并选取电熔的起点;
(2)将原料丝材101与辅料送至基材201表面,启动电源,导入高能热源,熔化原料丝材及辅料,同时转动基材201,开始每个电熔头第一层第一道(每一层由轴向排列的多道构成)的电熔沉积;
(3)当电熔头601与电熔起点之间形成一段距离后,开始启动辅料回收装置将其未熔化的辅料收回,露出渣壳并将其清除,以便于下一道的电熔沉积(堆积);随后启动冷却装置或加热装置对电熔沉积金属进行冷却或加热,将其基体(第一层时是指基材201,其他层时是指前一层堆积金属)的温度控制在200~300℃;
(4)当基材201转动一圈完成第一道电熔沉积时,在控制装置的控制下,所有电熔头201同时往左直线移动3/4熔道宽度距离,同时调整各电熔头601尤其是通过中央控制调整编号18-22五个电熔头与基材201的表面之间的距离,以保证电熔的稳定性,之后开始第一层第二道的电熔沉积成形,此过程中要保证其左右圈道间搭接良好;
(5)当第二道完成后,重复步骤(4)再完成其它的电熔沉积道的成形,当达到最后一道时,其相邻电熔头的最后一道结束点与第一道起点要搭接良好,以至完成第一层的电熔沉积;
(6)当完成第一层的电熔沉积后,所有电熔头自动提升一层沉积厚度(即层厚)之高度,开始第二层的第一道电熔沉积,第一层电熔头的结束点即为第二层第一道的开始点,连续沉积;
(7)当第二层第一道电熔沉积完成后,所有电熔头同时往 右直线移动3/4熔道距离,同时各电熔头自动调整其与基材之间的距离,以保证电熔的稳定性,开始第二层第二道的电熔沉积,使其左右圈道间搭接良好;
(8)当完成第二层第二道电熔沉积完成时,重复步骤(7),再完成其它的电熔沉积道,当达到最后一道时,其相邻电熔头的最后一道结束点与第一道起点要搭接良好,以至完成第二层的电熔沉积;
(9)重复步骤(6)至步骤(8),再完成其它电熔沉积层,此过程中,相邻电熔沉积层电熔头的移动方向可以相反,最终连续电熔沉积形成整个金属构件。
电熔成形后,不锈钢基材201成为了压力容器筒体的一部分,实现了异种材料直接连接成形,从而改变了传统工艺在锻造SA508-3筒体后再在其内壁堆焊308不锈钢的制造方式,减少了工艺工序,提高了工作效率和质量,也可用普通碳钢在后续机加工中去除。
本实施例由于是多个(19个)电熔头并排排布整体成形,极大的提高了成形效率;自然也可以根据客户要求调整电熔头数量和排布,分段成形。

Claims (7)

  1. 一种核电站压力容器筒体电熔成形方法,其特征在于:
    该方法是采用电弧热、电阻热、电渣热复合而成的高能热源,熔化连续输送的金属原料丝材,在基材上逐层凝固堆积成形制造金属构件;
    将电熔头与基材接至电源两极,成形时金属原料丝材经由输送机构和电熔头送至基材表面,在颗粒状辅料的堆积保护下,原料丝材与基材间产生电弧,熔化部分堆敷辅料形成熔融渣池,电流流过原料丝材和熔融辅料渣池形成电阻热和电渣热,在电弧热、电阻热、电渣热三种热复合高能热源作用下使原料丝材熔化,在基材表面形成局部熔池,持续输送原料丝材与辅料,根据成形构件的分层切片数据,采用计算机控制电熔头与基材的相对移动,实现熔池在基材上快速冷却逐层凝固堆积,最终成形核电站压力容器筒体。
  2. 根据权利要求1所述的核电站压力容器筒体电熔成形方法,其特征在于:
    根据核电机组类型不同,成形的压力容器筒体直径为3-6m,长度2-12m。
  3. 根据权利要求1所述的核电站压力容器筒体电熔成形方法,其特征在于:
    原料丝材按照ASME中SA508Gr3Cl1材料标准或RCC-M中16MnD5材料标准或其他对应标准制备,丝材直径3-10mm,C含量0.08-0.12%,成形后工件C含量0.04-0.08%,工件晶粒度9-10级。
  4. 根据权利要求1所述的核电站压力容器筒体电熔成形方法,其特征在于:
    根据丝材直径不同,电源参数中的电流为200A~3000A,电压为20V~60V,电源可以是直流或交流电源,在使用直流电源时,电熔头可接正极或负极。
  5. 根据权利要求1所述的核电站压力容器筒体电熔成形方法,其特征在于:
    根据压力容器筒体成形要求,对基材或堆积金属进行加热或冷却,控制基材或堆积金属层的表面温度为120~450℃。
  6. 根据权利要求1所述的核电站压力容器筒体电熔成形方法,其特征在于:
    根据压力容器成形构件尺寸和效率要求,电熔头的数量设定为1~100个,多电熔头排布时,相邻电熔头间距为50~500mm。
  7. 根据权利要求1所述的核电站压力容器筒体电熔成形方法,其特征在于:
    所述基材为压力容器筒体成形提供工装支撑,形状为圆筒状或圆柱状,壁厚不小于5mm。基材材料可以是308不锈钢或其它普通碳钢或合金钢,当为308不锈钢时,工件成形后基材作为成形工件一部分予以保留,当为其它普通碳钢或合金钢时,可在后续机加工中去除。
PCT/CN2015/093634 2014-11-04 2015-11-03 核电站压力容器筒体电熔成形方法 WO2016070776A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15857870.8A EP3216549A4 (en) 2014-11-04 2015-11-03 Electric melting method for forming nuclear power plant pressure vessel cylinder
US15/524,617 US20170320162A1 (en) 2014-11-04 2015-11-03 Electric melting method for forming cylinder of pressure vessel of nuclear power station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410617955.1 2014-11-04
CN201410617955.1A CN104526115B (zh) 2014-11-04 2014-11-04 核电站压力容器筒体电熔成形方法

Publications (1)

Publication Number Publication Date
WO2016070776A1 true WO2016070776A1 (zh) 2016-05-12

Family

ID=52841845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093634 WO2016070776A1 (zh) 2014-11-04 2015-11-03 核电站压力容器筒体电熔成形方法

Country Status (4)

Country Link
US (1) US20170320162A1 (zh)
EP (1) EP3216549A4 (zh)
CN (1) CN104526115B (zh)
WO (1) WO2016070776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220126388A1 (en) * 2017-09-15 2022-04-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) Laminated molding and method of manufacturing laminated molding

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526171B (zh) * 2014-11-04 2016-10-12 南方增材科技有限公司 金属构件电熔成形方法
CN104526115B (zh) * 2014-11-04 2017-01-18 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
CN108698297A (zh) * 2015-12-16 2018-10-23 德仕托金属有限公司 用于增材制造的方法和系统
CN106466766A (zh) * 2016-08-31 2017-03-01 南方增材科技有限公司 核电站稳压器筒体电熔成形方法
CN106271142A (zh) * 2016-08-31 2017-01-04 南方增材科技有限公司 超超临界高中压转子电熔成形方法
CN106271141A (zh) * 2016-08-31 2017-01-04 南方增材科技有限公司 核电常规岛低压转子电熔成形方法
CN106466753A (zh) * 2016-08-31 2017-03-01 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
FR3066935B1 (fr) * 2017-06-01 2019-06-28 Stiral Procede de brasage ou rechargement d'une piece a micro-interstices, et echangeur thermique obtenu par un tel procede.
CN109986282B (zh) * 2017-12-29 2021-06-22 中国核动力研究设计院 一种堆内构件整体式上支承柱结构成形方法
CN109986283B (zh) * 2017-12-29 2021-06-22 中国核动力研究设计院 一种反应堆堆内构件整体式吊篮筒体结构成形方法
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
DE202019004736U1 (de) * 2019-11-21 2020-01-30 Siegfried Gröne Druckspeicher aus Dualwerkstoff, Verwendung derartiger Dualdruckspeicher und Einrichtung zum Herstellen solcher Dualdruckspeicher
CN111319253A (zh) * 2020-03-04 2020-06-23 南宁弗纳姆智能科技有限公司 尾喷管3d打印工艺
CN111761181A (zh) * 2020-07-07 2020-10-13 天津大学 一种大幅提高构件低温韧性的埋弧增材制造方法
CN112792433B (zh) * 2021-01-15 2022-04-12 南方增材科技有限公司 高韧性低合金钢构件的制备方法及高韧性低合金钢构件
CN113976913B (zh) * 2021-10-26 2023-04-21 中国核动力研究设计院 一种核电站整体式不锈钢堆芯围筒构件的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1947202A (zh) * 2004-03-11 2007-04-11 苏洛·卢奥马拉 核电站的压水反应堆的压力容器的制造方法、压力容器以及用于上述目的的多壁式压力容器的应用
CN101906523A (zh) * 2009-06-02 2010-12-08 上海重型机器厂有限公司 核电反应堆压力容器堆芯筒体锻件热处理工艺方法
CN202917186U (zh) * 2012-11-06 2013-05-01 国家核电技术有限公司 事故缓解装置以及核电站压力容器
CN104532236A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电站稳压器筒体电熔成形方法
CN104526115A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
CN104526169A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电站蒸发器筒体电熔成形方法
CN104526172A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电常规岛低压转子电熔成形方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3097979A (en) * 1960-12-05 1963-07-16 Union Carbide Corp Magnetic flux-gas shielded metal arc welding
US3558846A (en) * 1966-04-04 1971-01-26 Mitsubishi Heavy Ind Ltd Method of and apparatus for constructing substantially circular cross section vessel by welding
BE754924A (fr) * 1969-09-03 1971-02-01 Forges De La Loire Saint Chamo Procede et dispositif pour la fabrication de corps cylindriquescreux, en acier allie ou non, avec ou sans revetement interne allie et produitsainsi obtenus
US3885922A (en) * 1972-05-22 1975-05-27 Arcos Corp Pressure vessel and bimetallic components
US4086463A (en) * 1972-11-13 1978-04-25 Tsukishima Kikai Co., Ltd. Flux-cored wire
IT1004255B (it) * 1973-04-19 1976-07-10 August Rhyssen Hutte Ag Procedimento e dispositivo per la produzione di parti strutturali di grandi dimensioni
US4190760A (en) * 1976-05-14 1980-02-26 Kobe Steel, Ltd. Welding apparatus with shifting magnetic field
CH594471A5 (zh) * 1976-07-02 1978-01-13 Bbc Brown Boveri & Cie
US4228337A (en) * 1979-05-03 1980-10-14 Allis-Chalmers Corporation Method of electroslag welding
US4503316A (en) * 1981-08-13 1985-03-05 Kabushiki Kaisha Kobe Seiko Sho DC Welding power supply system
US4508953A (en) * 1982-04-27 1985-04-02 Kabushiki Kaisha Kobe Seiko Sho Method of multi-layer welding
CH664109A5 (de) * 1984-12-14 1988-02-15 Sulzer Ag Verfahren zur herstellung eines zylindrischen hohlkoerpers und anlage zum durchfuehren des verfahrens.
US4734753A (en) * 1985-04-01 1988-03-29 American Telephone And Telegraph Company Thermocompression bonding of copper leads to a metallized ceramic substrate
CA2037660C (en) * 1990-03-07 1997-08-19 Tadashi Kamimura Methods of modifying surface qualities of metallic articles and apparatuses therefor
JPH0647186B2 (ja) * 1990-07-23 1994-06-22 株式会社神戸製鋼所 12%Cr鋼製蒸気タービンロータシャフトとその製造方法
EP0786533B1 (en) * 1993-09-20 2000-05-17 Nippon Steel Corporation Steel plate having low welding strain and good bending workability by linear heating and method for producing the same, and welding material and method for producing the same
ES2129086T3 (es) * 1994-01-29 1999-06-01 Asea Brown Boveri Procedimiento para unir piezas metalicas por medio de soldadura por fusion con arco voltaico.
FR2742369B1 (fr) * 1995-12-18 1998-03-06 Framatome Sa Procede de raccordement par soudage heterogene de deux pieces et utilisation
US6069333A (en) * 1997-02-21 2000-05-30 Lincoln Global, Inc. Method and system for welding railroad rails
US5945014A (en) * 1998-01-05 1999-08-31 Lincoln Global, Inc. Method of arc welding heavy steel plates
DE59800641D1 (de) * 1998-07-18 2001-05-23 Durum Verschleisschutz Gmbh Pulverförmiger Zusatzwerkstoff für eine Verschleisschutzschicht und Verfahren zu deren Aufbringen
US6331694B1 (en) * 1999-12-08 2001-12-18 Lincoln Global, Inc. Fuel cell operated welder
FR2803549B1 (fr) * 2000-01-10 2002-03-29 Air Liquide Procede et installation de coupage laser d'acier doux ou de construction avec optique multifocale
US7863538B2 (en) * 2004-03-19 2011-01-04 Hobart Brothers Company Metal-core gas metal arc welding of ferrous steels with noble gas shielding
GB0418899D0 (en) * 2004-08-24 2004-09-29 Saipem Spa Welding torch
US8266320B1 (en) * 2005-01-27 2012-09-11 Science Applications International Corporation Computer network defense
US8242410B2 (en) * 2006-07-14 2012-08-14 Lincoln Global, Inc. Welding methods and systems
US9044818B2 (en) * 2007-11-08 2015-06-02 Lincoln Global, Inc. Method of welding two sides of a joint simultaneously
US20100089977A1 (en) * 2008-10-14 2010-04-15 Gm Global Technology Operations, Inc. Friction stir welding of dissimilar metals
JP5260268B2 (ja) * 2008-12-26 2013-08-14 日立Geニュークリア・エナジー株式会社 原子力発電プラント用炉心シュラウドの製造方法及び原子力発電プラント構造物
FI20095528A (fi) * 2009-05-11 2010-11-12 Rautaruukki Oyj Menetelmä kuumavalssatun nauhaterästuotteen valmistamiseksi sekä kuumavalssattu nauhaterästuote
US8816238B2 (en) * 2009-06-03 2014-08-26 William L. Bong Electroslag welding with variable balance, constant potential, alternating current, square wave welding power supply
EP2322313A1 (de) * 2009-11-13 2011-05-18 Siemens Aktiengesellschaft Verfahren zum Schweissen von Werkstücken aus hochwarmfesten Superlegierungen mit besonderer Massenzufuhrrate des Schweisszusatzwerkstoffes
WO2012096937A1 (en) * 2011-01-10 2012-07-19 Arcelormittal Investigacion Y Desarrollo S.L. Method of welding nickel-aluminide
AT511232B1 (de) * 2011-03-21 2014-09-15 Andritz Ag Maschf Verfahren zur herstellung eines yankeezylinders
JP5524945B2 (ja) * 2011-12-27 2014-06-18 株式会社神戸製鋼所 炭素鋼用フラックス入り溶接ワイヤ及びアーク溶接方法
CN103801799B (zh) * 2012-11-12 2017-11-21 通用电气公司 制造回转件的方法及用该方法制造的回转件
CN103009015B (zh) * 2013-01-13 2015-01-07 邯郸市永固冶金备件有限公司 双金属复合耐磨冶金轧辊的制造方法
CN103203529B (zh) * 2013-03-28 2015-12-09 北京工业大学 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法
CN103203519A (zh) * 2013-05-07 2013-07-17 贵州钢绳股份有限公司 一种拉丝机卷筒表面堆焊处理方法
CN103273169B (zh) * 2013-05-15 2015-03-11 艾美特国际有限公司 多丝堆焊系统
JP2015038237A (ja) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 積層造形物、粉末積層造形装置及び粉末積層造形方法
US9358629B1 (en) * 2013-09-24 2016-06-07 Siemens Energy, Inc. Tungsten submerged arc welding using powdered flux
US10046419B2 (en) * 2014-01-24 2018-08-14 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1947202A (zh) * 2004-03-11 2007-04-11 苏洛·卢奥马拉 核电站的压水反应堆的压力容器的制造方法、压力容器以及用于上述目的的多壁式压力容器的应用
CN101906523A (zh) * 2009-06-02 2010-12-08 上海重型机器厂有限公司 核电反应堆压力容器堆芯筒体锻件热处理工艺方法
CN202917186U (zh) * 2012-11-06 2013-05-01 国家核电技术有限公司 事故缓解装置以及核电站压力容器
CN104532236A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电站稳压器筒体电熔成形方法
CN104526115A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
CN104526169A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电站蒸发器筒体电熔成形方法
CN104526172A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电常规岛低压转子电熔成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3216549A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220126388A1 (en) * 2017-09-15 2022-04-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) Laminated molding and method of manufacturing laminated molding
US11806820B2 (en) * 2017-09-15 2023-11-07 Kobe Steel, Ltd. Laminated molding and method of manufacturing laminated molding

Also Published As

Publication number Publication date
CN104526115A (zh) 2015-04-22
US20170320162A1 (en) 2017-11-09
EP3216549A1 (en) 2017-09-13
CN104526115B (zh) 2017-01-18
EP3216549A4 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
WO2016070776A1 (zh) 核电站压力容器筒体电熔成形方法
WO2016070778A1 (zh) 金属构件电熔成形方法
WO2016070777A1 (zh) 核电站蒸发器筒体电熔成形方法
WO2016070779A1 (zh) 核电站稳压器筒体电熔成形方法
WO2016070780A1 (zh) 一种金属构件埋弧堆焊成形方法
CN104526167B (zh) 加氢反应器筒体电熔成形方法
CN104625412B (zh) 一种铜合金激光‑冷金属过渡复合热源增材制造的方法
CN111168263B (zh) 旁路热丝熔化极等离子弧梯度材料增材制造的装置与方法
CN104526168B (zh) 一种电熔成形超低碳超细晶合金钢材料
CN104526113B (zh) 超超临界低压转子的电熔成形方法
CN104526172B (zh) 核电常规岛低压转子电熔成形方法
CN104651834B (zh) Cap1400主蒸汽管贯穿件电熔成形方法
CN101032788A (zh) 一种电磁复合场熔化极堆焊方法、设备及其拓展应用
CN101053899A (zh) 大型轴类制品立式铸造与修复装置及使用方法
CN106466766A (zh) 核电站稳压器筒体电熔成形方法
CN112008198B (zh) 一种铝合金电弧增材制造质量控制系统及方法
CN110523980B (zh) 一种三通管件的电熔增材制造方法
CN102248281A (zh) 厚板对接接头的焊接方法
CN108067706A (zh) 金属构件的增材制造设备
CN106466753A (zh) 核电站压力容器筒体电熔成形方法
CN109570697A (zh) 一种环形电极-mig复合的新型焊接设备及成形方法
CN211420274U (zh) 金属电渣重熔用结晶器以及电渣重熔装置
CN106624400A (zh) 加氢反应器筒体电熔成形方法
CN106378540A (zh) 核电站蒸发器筒体电熔成形方法
CN106271143A (zh) Cap1400主蒸汽管贯穿件电熔成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15524617

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015857870

Country of ref document: EP