WO2016070587A1 - 基于trap-3d软件寻找油气藏的方法 - Google Patents

基于trap-3d软件寻找油气藏的方法 Download PDF

Info

Publication number
WO2016070587A1
WO2016070587A1 PCT/CN2015/077283 CN2015077283W WO2016070587A1 WO 2016070587 A1 WO2016070587 A1 WO 2016070587A1 CN 2015077283 W CN2015077283 W CN 2015077283W WO 2016070587 A1 WO2016070587 A1 WO 2016070587A1
Authority
WO
WIPO (PCT)
Prior art keywords
trap
body unit
sand
fault
sand body
Prior art date
Application number
PCT/CN2015/077283
Other languages
English (en)
French (fr)
Inventor
李庆忠
张立彬
张晓敏
Original Assignee
中国石油天然气集团公司
中国石油集团东方地球物理勘探有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团公司, 中国石油集团东方地球物理勘探有限责任公司 filed Critical 中国石油天然气集团公司
Priority to EP15794444.8A priority Critical patent/EP3217192B1/en
Priority to CA2912626A priority patent/CA2912626C/en
Priority to US14/946,466 priority patent/US10228478B2/en
Publication of WO2016070587A1 publication Critical patent/WO2016070587A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • G01V1/302Analysis for determining seismic cross-sections or geostructures in 3D data cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/34Displaying seismic recordings or visualisation of seismic data or attributes
    • G01V1/345Visualisation of seismic data or attributes, e.g. in 3D cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/642Faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/644Connectivity, e.g. for fluid movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/645Fluid contacts

Definitions

  • the invention relates to the technical field of oil and gas exploration, in particular to a method for searching for oil and gas reservoirs based on TRAP-3D software.
  • trap or oil and gas trap
  • the current trap concept is an important theory for finding oil and gas. Without traps, oil and gas cannot exist. However, for a long time, structural traps are still limited to the structural uplift amplitude and structural area as the main content of their trap evaluation. However, it is difficult to quantitatively measure the actual amount of traps from the above two indicators. For fault block traps, the trap area is usually estimated only according to the area of the fault block, but there is no detailed research on the key problem of whether the block has trap conditions.
  • the commercial software for fault sealing, structural overflow points and trap estimation is still in the stage of qualitative analysis or analysis of underground reservoirs through two-dimensional data.
  • the conventional method is to make a sand body structure superimposed map on both sides of the fault on the two-dimensional section, thereby determining the fault layer overflow point of each sand layer, finding each plugging boundary point; projecting the above blocking boundary point to the structure
  • the contour line is connected and connected to calculate the sealing area and the amount of trap.
  • the present invention provides a method for finding a reservoir based on TRAP-3D software, comprising the following steps:
  • the depth slice sequence of the three-dimensional lithology and fault data cubes is input into the TRAP-3D software for oil and gas reservoir evaluation, and specifically includes:
  • the traps of each individual sand body unit in each depth slice are evaluated layer by layer, and the trap size estimates of each individual sand body unit in each depth slice are obtained;
  • the three-dimensional lithology and fault data cubes of the exploration work area are established according to the three-dimensional seismic data and the logging data, and specifically include:
  • the three-dimensional lithology and fault data cubes of the exploration area are established by combining the structural information and fault information obtained from the 3D seismic data with the lithology information obtained from the logging data.
  • the independent sand body unit is separately divided for each depth slice, specifically:
  • the preset connected sand point search rule includes:
  • the adjacent sand points connected to the sand point are searched in four directions.
  • the evaluation method of the present invention further includes: before the layer-by-layer evaluation of each of the individual sand body units in each depth slice, respectively:
  • An initial value of the trap evaluation is set for each individual sand body unit within each depth slice.
  • the method in the process of setting the initial value of the trap evaluation for each individual sand body unit in each depth slice, the method includes:
  • an independent sand body unit of the current depth slice has an upper and lower connection relationship with the sand point in an independent sand body unit of the upper depth slice, an independent sand body unit of the current depth slice The initial value of the trap evaluation of an independent sand body unit directly inheriting the upper depth slice.
  • the trapping evaluation is performed on each individual sand body unit in each depth slice layer by layer, and the trap quantity estimation of each independent sand body unit in each depth slice is obtained, which specifically includes:
  • the trap evaluation update rule includes:
  • the trap evaluation value of each independent sand body unit is adjusted according to different smear blocking effects of mudstones of each individual sand body unit in each depth slice;
  • LEAK is the trap evaluation loss value
  • DDMV is the difference of the trap evaluation value of the independent sand body unit on both sides of the fault
  • YXZH is the sum of the trap evaluation value lithology index of the independent sand body unit on both sides of the fault
  • SEAL is the loss coefficient
  • the invention first combines the structural condition obtained by the three-dimensional seismic data with the situation of the underground lithology obtained by the logging data, and adds the position information of the fault to form a data cube; secondly, divides the data cube into equal depths and divides it into a plurality of depth slices of equal depth, and then performing a trap evaluation on each depth slice in turn, and plotting the dessert map on the plane according to the trap amount estimates of the individual sand body units in each depth slice, and displaying the longitudinal differences
  • the amount of oil and gas traps in the depth, and the total trap value of the stored oil and gas in the exploration area is obtained, so that various traps of oil and gas stored in the work area can be found.
  • the present invention divides the data cube into a plurality of depth slices of equal depth, and sequentially performs a trap evaluation on each of the depth slices, the accuracy of the three-dimensional trap evaluation is improved by the more elaborate trap evaluation, which is advantageous.
  • Accurately searching for oil and gas reservoirs and the present invention can draw a map of the dessert on the plane, and display the amount of oil and gas traps at different depths in the longitudinal direction, and obtain the total trap of the reservoir in the exploration area.
  • FIG. 1 is a flow chart of a method for finding a reservoir based on TRAP-3D software according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a three-dimensional lithology and fault data cube according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the lithology division and fault distribution of a deep-sanded sand-shale rock according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a sandstone communication unit in a depth slice according to an embodiment of the present invention
  • Figure 5 is a plan view of a plane dessert according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method for evaluating trapping and evaluation of each sand body unit in each depth slice from top to bottom according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a method for calculating an interrupted layer leakage amount according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing changes in trap evaluation of two adjacent slices before and after processing by TRAP-3D software according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram showing changes in trap evaluation of two adjacent vertical sections before and after processing by TRAP-3D software according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of five curves outputted after depth domain completion trap evaluation according to an embodiment of the present invention.
  • 11a is a schematic view showing the distribution of reserves before drilling wells of 12 wells in a work area according to an embodiment of the present invention
  • FIG. 11b is a schematic view showing the distribution of remaining reserves after the oil and gas is collected after the well is drilled in 12 wells in a work area according to an embodiment of the present invention
  • Figure 12a is a natural gamma value diagram of a slice of a three-dimensional lithology data cube of a TN field in accordance with one embodiment of the present invention
  • Figure 12b and Figure 13a are schematic diagrams showing the lithology transformation of sand-shale rocks according to the natural gamma value in Figure 12a;
  • Figure 13b is a schematic view of the slice after the insertion of the fault in Figure 13a;
  • Figure 14 is a cross-sectional view showing a trap of a vertical section of a TN field after analysis by TRAP-3D software according to an embodiment of the present invention
  • 15a is a schematic view showing the oil-containing range estimated by the conventional method of a conventional fault block oil field in a TN oil field according to an embodiment of the present invention
  • 15b is a schematic view showing an oil-containing range of a TN oil field treated by TRAP-3D software according to an embodiment of the present invention
  • Figure 16 is a diagram showing the output of the depth domain evaluation result of the TN oil field in one embodiment of the present invention.
  • a TRAP-3D-based reservoir evaluation method includes the following steps:
  • Step S101 Establish a three-dimensional lithology and fault data cube of the exploration work area according to the three-dimensional seismic data and the logging data.
  • the three-dimensional lithology and fault data cubes of the exploration area are established by combining the structural information and fault information obtained from the 3D seismic data with the lithology information obtained from the logging data.
  • the three-dimensional lithology and fault data cube consists of four lithologies of mudstone, siltstone, medium sandstone and good sandstone distinguished by porosity, and the distribution information of fault planes in three-dimensional equally-spaced meshing space, fault It should be a dense (no air shortcoming) fault plane continuously distributed point by point in a three-dimensional equally spaced mesh.
  • the corresponding characteristic parameters can be: mudstone is represented by 0, siltstone is represented by 1, and medium sandstone is used. It is indicated that good sandstone is represented by 3, and fault is represented by 4, and each unit is required to have a unique identification mark (ID number), as shown in FIG.
  • ID number a unique identification mark
  • the lithology classification of the boring rock in the work area is combined with the logging curve (GR) and the acoustic curve.
  • GR logging curve
  • the lithologic filling of the structural model was carried out by means of interwell interpolation, and the results of sedimentary facies interpretation were used as boundary conditions to phase-constrain the model.
  • Control logging is performed by using logging data plus seismic data, and the lithology of sand-shale rocks is classified according to natural gamma values in the work area. According to the size of GR, it is converted into four lithologies: good sandstone 3, medium sandstone 2, siltstone 1 and mudstone. Finally, the three-dimensional lithology and fault data cubes are built, as shown in Figure 2. Among them, TRAP-3D is a three-dimensional trap.
  • Step S102 Divide the three-dimensional lithology and the tomographic data cube into a plurality of depth slices of equal depth, and perform independent sand body unit division for each depth slice respectively.
  • a depth slice of a three-dimensional lithology and fault data cube horizontally The coordinates are the horizontal direction X and the ordinate is the horizontal direction Y.
  • white is good sandstone with characteristic parameters of 3;
  • light gray is medium sandstone with characteristic parameter of 2;
  • dark gray is siltstone with characteristic parameter of 1;
  • light black is mudstone with characteristic parameter of 0;
  • black is fault, characteristic parameter Is 4.
  • each sand slice is divided into separate sand body units, specifically:
  • adjacent sand points in communication with the sand point are searched in four directions (eg, 0 degrees, 90 degrees, 180 degrees, and 270 degrees).
  • Step S103a Perform a trap evaluation on each individual sand body unit in each depth slice layer by layer, and obtain a trap quantity estimate of each independent sand body unit in each depth slice.
  • each independent sand body unit in each depth slice is evaluated by a trap, and the trap quantity estimation of each independent sand body unit in each depth slice is obtained, which specifically includes:
  • the trap evaluation value of each independent sand body unit is adjusted according to the different smear blocking effect of each individual sand body unit in each depth slice;
  • LEAK is the trap value of the trap evaluation
  • DDMV is the difference of the trap evaluation value of the independent sand body unit on both sides of the fault
  • YXZH is the sum of the lithology index of the trap evaluation value of the independent sand body unit on both sides of the fault
  • SEAL is the leakage coefficient.
  • the 101 good sand layer encounters the fault at three places in ABC, the mudstone is opposite to the fault at C, the siltstone is opposite the fault at B, and the sandstone is good opposite A, so it can be evaluated according to the above trap. Update the rules to update.
  • Step S103b drawing an estimate of the amount of traps of each individual sand body unit in each depth slice Dessert maps on the plane, as well as the amount of oil and gas traps at different depths in the longitudinal direction, and obtain a total trap estimate for the oil and gas stored in the exploration area.
  • the trap size estimates for each depth slice are plotted in the depth Z direction to plot the total amount of traps in the plane, as shown in Figure 5, which reflects the amount of traps accumulated at each point in the plane of the work area.
  • the amount of traps is the largest on the plane, the possibility of oil and gas is large. It is possible to make a choice for the exploration well.
  • steps S103a-S103b are to input the TRAP-3D software for the reservoir evaluation process for the depth slice order of the three-dimensional lithology and fault data cubes.
  • the method before the layer-by-layer evaluation of each independent sand body unit in each depth slice, the method further includes:
  • An initial value of the trap evaluation is set for each individual sand body unit within each depth slice. Moreover, in the process of setting the initial value of the trap evaluation for each individual sand body unit in each depth slice, the method further includes:
  • an independent sand body unit of the current depth slice directly inherits The initial value of the trap evaluation of an independent sand body unit of the upper layer.
  • FIG. 8 In the embodiment of the present invention, as shown in FIG. 8, two adjacent slices 41 and 42 are assumed, and the left side of FIG. 8 is a display of the lithology index (Litho-Index) of the adjacent slices 41 and 42 respectively.
  • the trap evaluation values of slices 41 and 42 after trap analysis by TRAP-3D software. It can be seen from the two figures on the right that the evaluation value of the trap is gradually reduced due to the infiltration of the side water and the sandstone on both sides of the fault. The trajectory is indicated by the arrow, and the white arrow indicates the path in which the edge water invades through the fault communication, so that the trap evaluation is lowered.
  • the closed oil content of the slice 42 is reduced more than the slice 41.
  • two adjacent slices 45 and 46 are two adjacent slices of a complex fault block with a complex lithology distribution.
  • the left side of Figure 9 shows the distribution of sandstone mudstones of the lithology index (Litho-Index) of adjacent sections 45 and 46, and the right side of Figure 9 shows the traps of slices 45 and 45 after trap analysis by TRAP-3D software.
  • the value map is evaluated, whereby the distribution of oil and water in each sand layer can be seen (the light color is water). Among them, white is an extremely low water area for trap evaluation, and the oil and water interface is indicated by the arrow.
  • a comparison of the percentage of sand mudstone of each depth slice and the trap amount of each depth slice may be drawn in the depth domain, as shown in FIG. This makes it more intuitive to see at which depth, which formation has the largest trap volume.
  • FIG. 11a and FIG. 11b a schematic diagram of the distribution of reserves and the distribution of remaining unutilized reserves before and after the well 12 is drilled, and 12 wells are uniformly drilled in the work area of the complex fault block model.
  • the oil layer was dried and the result was left with the “dead oil zone” that could not be harvested and the “remaining oil” that was not drilled in 12 wells. It can be seen from Figure 11b that there are still many unutilized reserves available for development. These unutilized reserves can also be calculated by the TRAP-3D software.
  • the TN oilfield is a complex fault block oilfield with an area of about 54 square kilometers and a depth of about 1-2 kilometers. Eight wells have been drilled in the work area. See a small amount of thin oil layer. The depth of this slice analysis is 1300m-1850m.
  • a three-dimensional lithology and tomographic data cube needs to be prepared.
  • the 3D seismic data is subjected to fine fault interpretation, the fault file is derived from the interpreted fault data, and the XYZ coordinates of each fault point are inserted into the interpreted 3D lithology and fault data cube.
  • the lithology index is given to each fault point as 4.
  • Fig. 13b there are four distributions of sand and mudstone division, and the right side is the case after insertion of a fault (black thin line). This figure meets the input requirements of the TRAP-3D program.
  • Figure 15a shows the oil range estimated by the TN oilfield according to the conventional method of the fault block oilfield.
  • the oil range of the TN oilfield treated by TRAP-3D software is basically consistent with the above-mentioned estimated oil content range. It can be seen that the TRAP-3D software of the present application has a more quantitative concept, which includes a lot of lithologic traps and a small anticline trap in the north.
  • the total circulation of the study area is about 0.53 ⁇ 108m 3 .
  • the embodiment of the present invention first combines the structural condition obtained by the three-dimensional seismic data with the situation of the underground lithology obtained by the logging data, and adds the position information of the fault to form a data cube; secondly, the data cube is equally divided into sections. A number of depth slices of equal depth are divided, and then each depth slice is subjected to trap evaluation in turn, so that various traps of oil and gas stored in the work area can be found. Since the embodiment of the present invention divides the data cube into a plurality of depth slices of equal depth, and sequentially performs a trap evaluation on each of the depth slices, the accuracy of the three-dimensional trap evaluation is improved by the more detailed trap evaluation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于TRAP-3D软件寻找油气藏的方法,该方法包括:根据三维地震资料和测井资料建立勘探工区的三维岩性及断层数据立方体(S101);将三维岩性及断层数据立方体划分成若干等深度的深度切片,并分别对每个深度切片进行独立砂体单元划分(S102);将三维岩性及断层数据立方体的深度切片顺序输入TRAP-3D软件进行油气藏评价(S103a,S103b)。该方法提高了三维圈闭评价的精确性,有利于精确寻找油气藏,并且可绘出平面上的甜点图,以及展示纵向不同深度上的油气圈闭量,可得到勘探工区内油气藏的总圈闭量。

Description

基于TRAP-3D软件寻找油气藏的方法
本申请要求于2014年11月05日提交中国专利局、申请号为201410635467.3、发明名称为“基于TRAP-3D软件寻找油气藏的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及油气勘探技术领域,尤其是涉及一种基于TRAP-3D软件寻找油气藏的方法。
背景技术
适合于油气聚集、形成油气藏的场所称为圈闭(或油气圈闭)。目前圈闭概念是寻找石油和天然气的重要理论。没有圈闭,油气无法存在。但是长期以来,对于构造圈闭仍仅限于将构造隆起幅度和构造面积两项作为其圈闭评价的主要内容。但仅从上述两项指标难以定量衡量实际圈闭量的大小。而对于断块圈闭,通常仅根据断块的面积大小对圈闭面积进行估计,而对于该断块是否具备圈闭条件这一关键问题则缺乏精细研究。
目前断层封堵性、构造溢出点以及圈闭量估算研究的商业软件仍停留在定性分析或通过二维资料分析地下储层的阶段。其常规做法是在二维剖面上做断层两侧砂体构造叠合图,据此确定每个砂层的断层面溢出点,找出各封堵边界点;将上述封堵边界点投影至构造等高线平面并连线,以此计算封堵面积和圈闭量。而运用上述常规方法对由许多断层所形成的复杂断块的封堵性进行评价时,仅利用一系列断层两侧岩性二维对接剖面很难准确分析三维空间中砂层的连通及其总体的封堵情况,从而难以得到精确结果。
发明内容
本发明的目的在于提供一种基于TRAP-3D软件寻找油气藏的方法,以提高三维圈闭评价的精确性。
为达到上述目的,本发明提供了一种基于TRAP-3D软件寻找油气藏的方法,包括以下步骤:
根据三维地震资料和测井资料建立勘探工区的三维岩性及断层数据立方体;
将所述三维岩性及断层数据立方体划分成若干等深度的深度切片,并分别对每个深度切片进行独立砂体单元划分;
将所述三维岩性及断层数据立方体的深度切片顺序输入TRAP-3D软件进行油气藏评价,其具体包括:
逐层对每个深度切片内各个独立砂体单元分别进行圈闭评价,获取每个深度切片内的各个独立砂体单元的圈闭量估值;
根据所述每个深度切片内各个独立砂体单元的圈闭量估值绘出平面上的甜点图,以及展示纵向不同深度上的油气圈闭量,并获取所述勘探工区内储藏油气的总圈闭量估值。
本发明的评价方法,所述根据三维地震资料和测井资料建立勘探工区的三维岩性及断层数据立方体,具体包括:
将从三维地震资料中获得的构造信息和断层信息,与从测井资料中获得的岩性信息相结合建立勘探工区的三维岩性及断层数据立方体。
本发明的评价方法,所述分别对每个深度切片进行独立砂体单元划分,具体为:
(1)、选择一个深度切片并将其内的岩性信息和断层信息分别用相应的特征参数表示;
(2)、按照预设的连通砂点搜索规则搜索出该深度切片内所有的由若干相互连通的砂点构成的砂点组,其中所述每个砂点组的边界由泥岩和断层界定;
(3)、将所述每个砂点组内所有砂点的特征参数合并,以作为一个独立砂体单元,并对每个独立砂体单元分别进行唯一性标识;
(4)、重复上述步骤(1)~(3),直至逐层顺序完成所述三维岩性 及断层数据立方体的所有深度切片的独立砂体单元划分。
本发明的评价方法,所述预设的连通砂点搜索规则包括:
对于与断层不相邻的砂点,按照八方向搜索与该砂点相连通的相邻砂点;以及,
对于与断层相邻的砂点,按照四方向搜索与该砂点相连通的相邻砂点。
本发明的评价方法,在所述逐层对每个深度切片内的各个独立砂体单元分别进行圈闭评价之前还包括:
为每个深度切片内的各个独立砂体单元设置圈闭评价初值。
本发明的评价方法,在所述为每个深度切片内的各个独立砂体单元设置圈闭评价初值的过程中,包括:
如果当前深度切片的某个独立砂体单元内的砂点与其上一层深度切片的某个独立砂体单元内的砂点存在上下连通关系,则所述当前深度切片的某个独立砂体单元直接继承所述上一层深度切片的某个独立砂体单元的圈闭评价初值。
本发明的评价方法,所述逐层对每个深度切片内各个独立砂体单元分别进行圈闭评价,获取每个深度切片内的各个独立砂体单元的圈闭量估值,具体包括:
(1)、选择一个深度切片,根据圈闭评价更新规则和该深度切片里的断层两侧的岩性的对置情况,分别对该深度切片内的各个独立砂体单元的圈闭评价初值进行更新,以获得该深度切片内的各个独立砂体单元的最终圈闭评价值,并将对应的最终圈闭评价值赋予对应独立砂体单元内的每个砂点;
(2)、根据公式SSj=Sum{indexi*MVi}获取深度切片的圈闭量估值,其中,SSj为第j个深度切片的圈闭量估值,indexi为第j个深度切片的第i个独立砂体单元的空隙容积,MVi为第j个深度切片的第i个独立砂体单元的最终圈闭评价值;
(3)、重复上述步骤(1)~(2)直至逐层顺序完成所述三维岩性及断层数据立方体的所有深度切片的圈闭量估值的获取。
本发明的评价方法,所述圈闭评价更新规则包括:
若断层对侧为泥岩,则根据每个深度切片内的各个独立砂体单元的泥岩的涂抹封堵效应的不同对应调整所述各个独立砂体单元的圈闭评价值;
若断层对侧为砂岩,则当每个深度切片内的断层一侧的独立砂体单元的圈闭评价值高于该断层对侧的独立砂体单元的圈闭评价值时,按下式计算圈闭评价漏失值:
LEAK=DDMV*(YXZH)/SEAL/4
其中,LEAK为圈闭评价漏失值,DDMV为断层两侧独立砂体单元的圈闭评价值之差,YXZH为断层两侧独立砂体单元的圈闭评价值岩性指数之和,SEAL为漏失系数。
本发明首先把三维地震资料所获得的构造情况与测井资料获得的地下岩性的情况结合起来,加上断层的位置信息,综合成一个数据立方体;其次将数据立方体进行等深度划分,划分出若干等深度的深度切片,然后依次对每个深度切片进行圈闭评价,根据所述每个深度切片内各个独立砂体单元的圈闭量估值绘出平面上的甜点图,以及展示纵向不同深度上的油气圈闭量,并获取所述勘探工区内储藏油气的总圈闭量估值,从而可以将工区储集油气的各种圈闭都找出来。由于本发明将数据立方体划分成若干等深度的深度切片,并依次对每个深度切片进行圈闭评价,从而通过这种更为精细的圈闭评价提高了三维圈闭评价的精确性,有利于精确寻找油气藏,并且本发明可绘出平面上的甜点图,以及展示纵向不同深度上的油气圈闭量,并可得到勘探工区内油气藏的总圈闭量。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1为本发明一个实施例的基于TRAP-3D软件寻找油气藏的方法的流程图;
图2为本发明一个实施例中三维岩性及断层数据立方体的示意图;
图3为本发明一个实施例中一个深度切片的砂泥岩岩性划分及断层分布示意图;
图4为本发明一个实施例中一个深度切片的砂岩联通单元划分图;
图5为本发明一个实施例的平面甜点图;
图6为本发明一个实施例中自上而下的各深度切片内各砂体单元圈闭评价方法与评价传递方法示意图;
图7为本发明一个实施例中断层漏失量计算方法示意图;
图8为本发明一个实施例中经TRAP-3D软件处理前后两个相邻切片的圈闭评价变化示意图;
图9为本发明一个实施例中经TRAP-3D软件处理前后另外两个相邻垂直剖面的圈闭评价变化示意图;
图10为本发明一个实施例中深度域完成圈闭评价后输出的5条曲线示意图。
图11a为本发明一个实施例中某工区均匀打采油井12口的打井前储量分布示意图;
图11b为本发明一个实施例中某工区均匀打采油井12口的打井后,油气采完后的剩余储量分布示意图;
图12a为本发明一个实施例中TN油田的三维岩性数据立方体的一个切片的自然伽马值图;
图12b和图13a均为根据图12a中自然那伽马值推算的的砂泥岩岩性转换示意图;
图13b为在图13a中插入断层后的切片示意图;
图14为本发明一个实施例中TN油田的一个经过TRAP-3D软件分析后的垂直剖面的圈闭分析剖面图;
图15a为本发明一个实施例中TN油田按常规断块油田常规方法冒估的含油范围示意图;
图15b为本发明一个实施例中TN油田经TRAP-3D软件处理后的含油范围示意图;
图16为本发明一个实施例中TN油田的深度域评价结果输出的5条 统计曲线示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
参考图1所示,本发明实施例的基于TRAP-3D的油气藏评价方法包括以下步骤:
步骤S101、根据三维地震资料和测井资料建立勘探工区的三维岩性及断层数据立方体。即将从三维地震资料中获得的构造信息和断层信息,与从测井资料中获得的岩性信息相结合建立勘探工区的三维岩性及断层数据立方体。其中,三维岩性及断层数据立方体由按孔隙度大小区分的泥岩、粉砂岩、中等砂岩和好砂岩四种岩性以及断层面在三维等间距网格剖分空间中的展布信息组成,断层应为在三维空间等间距剖分网格中逐点连续展布的致密(无空缺点)断层面,例如相应的特征参数可以为:泥岩用0表示,粉砂岩用1表示,中等砂岩用2表示,好砂岩用3表示,断层用4表示,要求每个单元具有一个唯一的识别标识(ID编号),如图4所示。具体来说,根据项目需要,在已建立的构造模型的基础上,结合测井曲线(GR)及声波曲线等对工区砕削岩进行岩性分类。解释的结果,以井间插值的方式进行了构造模型的岩性充填,并将沉积相解释结果作为边界条件对该模型进行了相控约束。用测井资料加上地震资料进行控制内插,将工区内按自然伽马值对砂泥岩岩性进行分类。根据GR值的大小,把它转换为好砂岩3,中等砂岩2,粉砂岩1及泥岩0四种岩性。最终,建好的三维岩性及断层数据立方体,如图2所示。其中,TRAP-3D即三维圈闭。
步骤S102、将三维岩性及断层数据立方体划分成若干等深度的深度切片,并分别对每个深度切片进行独立砂体单元划分。
如图3所示,为三维岩性及断层数据立方体的一个深度切片,其横 坐标为水平方向X,纵坐标为水平方向Y。图中白色为好砂岩,特征参数为3;浅灰色为中等砂岩,特征参数为2;深灰色为粉砂岩,特征参数为1;浅黑色为泥岩,特征参数为0;黑色为断层,特征参数为4。其中,分别对每个深度切片进行独立砂体单元划分,具体为:
(1)、选择一个深度切片并将其内的岩性信息和断层信息分别用相应的特征参数表示。
(2)、按照预设的连通砂点搜索规则搜索出该深度切片内所有的由若干相互连通的砂点构成的砂点组,其中每个砂点组的边界由泥岩和断层界定;该预设的连通砂点搜索规则为:
对于与断层不相邻的砂点,按照八方向(例如0度、45度、90度、135度、180度、225度、270度和315度)搜索与该砂点相连通的相邻砂点;以及,
对于与断层相邻的砂点,按照四方向(例如0度、90度、180度和270度)搜索与该砂点相连通的相邻砂点。
(3)、将每个砂点组内所有砂点的特征参数合并,以作为一个独立砂体单元,并对每个独立砂体单元分别进行唯一性标识。
(4)、重复上述步骤(1)~(3),直至逐层顺序完成三维岩性及断层数据立方体的所有深度切片的独立砂体单元划分。
举例来说,假设划分出的若干等深度的深度切片如图6所示。
(a)切片N1为特殊情况(因为它是第一张切片,上面没有评价控制):图中若有两个砂点,由于不知上方是否为泥岩,所以就给以最低评价MV=16;
(b)在切片N2里,泥岩里出现一个小砂点,它被上方N1的泥岩所覆盖,因此,就给以最高评价MV=800;此外,令四周边水侵入。
(c)在切片N3中,小砂点变成大砂饼,它们与上方是相连的,于是将上方N2中砂点的评价MV=800传递给下它。
(d)在切片N4中,大砂饼继续增大,但与边界相连了,于是边水侵入,圈闭破坏,评价降为最小,即MV=16。如果它与右方含水砂岩相连,MV也会降为最小。
步骤S103a、逐层对每个深度切片内各个独立砂体单元分别进行圈闭评价,获取每个深度切片内的各个独立砂体单元的圈闭量估值。其中,逐层对每个深度切片内各个独立砂体单元分别进行圈闭评价,获取每个深度切片内的各个独立砂体单元的圈闭量估值,具体包括:
(1)、选择一个深度切片,根据圈闭评价更新规则和该深度切片里的断层两侧的岩性的对置情况,分别对该深度切片内的各个独立砂体单元的圈闭评价初值进行更新,以获得该深度切片内的各个独立砂体单元的最终圈闭评价值,并将对应的最终圈闭评价值赋予对应独立砂体单元内的每个砂点;其中,圈闭评价更新规则为:
若断层对侧为泥岩,则根据每个深度切片内的各个独立砂体单元的泥岩的涂抹封堵效应的不同对应调整各个独立砂体单元的圈闭评价值;
若断层对侧为砂岩,则当每个深度切片内的断层一侧的独立砂体单元的圈闭评价值高于该断层对侧的独立砂体单元的圈闭评价值时,按下式计算圈闭评价漏失值:
LEAK=DDMV*(YXZH)/SEAL/4
其中LEAK为圈闭评价漏失值,DDMV为断层两侧独立砂体单元的圈闭评价值之差,YXZH为断层两侧独立砂体单元的圈闭评价值岩性指数之和,SEAL为漏失系数,SEAL由用户指定,若SEAL=5就意味遇到对方5颗砂,才漏到和对方一样。
举例来说,例如图7所示,101好砂层在ABC三处遇断层,C处断层对面是泥岩,B处断层对面是粉砂岩,A处对面是好砂岩,于是可以按照上述圈闭评价更新规则进行更新。
(2)、根据公式SSj=Sum{indexi*MVi}获取深度切片的圈闭量估值,其中,SSj为第j个深度切片的圈闭量估值,indexi为第j个深度切片的第i个独立砂体单元的空隙容积,MVi为第j个深度切片的第i个独立砂体单元的最终圈闭评价值。
(3)、重复上述步骤(1)~(2)直至逐层顺序完成三维岩性及断层数据立方体的所有深度切片的圈闭量估值的获取。
步骤S103b、根据每个深度切片内各个独立砂体单元的圈闭量估值绘 出平面上的甜点图,以及展示纵向不同深度上的油气圈闭量,并获取勘探工区内储藏油气的总圈闭量估值。各个深度切片的圈闭量估值在深度Z方向进行累积后绘出平面的总圈闭量,如图5所示,它反映着工区平面里每个点位处地下累计的圈闭量的大小,从该图可以看到,平面上哪里圈闭量最多,其含油气的可能性就大。就可以供布探井做抉择。
上述步骤S103a-S103b即为三维岩性及断层数据立方体的深度切片顺序输入TRAP-3D软件进行油气藏评价过程。此外,本发明实施例中,在上述逐层对每个深度切片内的各个独立砂体单元分别进行圈闭评价之前还包括:
为每个深度切片内的各个独立砂体单元设置圈闭评价初值。并且,在为每个深度切片内的各个独立砂体单元设置圈闭评价初值的过程中,还包括:
如果当前深度切片的某个独立砂体单元内的砂点与其上一层深度切片的某个独立砂体单元内的砂点存在上下连通关系,则当前深度切片的某个独立砂体单元直接继承上一层深度切片的某个独立砂体单元的圈闭评价初值。
本发明实施例中,如图8所示,假设两个相邻的切片41与42,图8左边分别是相邻的切片41与42的岩性指数(Litho-Index)的砂泥岩分布的显示,图8右边是经过TRAP-3D软件进行圈闭分析后,切片41与42的圈闭评价值图。由右边两图可见由于边水渗入,也由于断层两侧砂岩见面,而使圈闭评价值逐步下降。轨迹如箭头所示,白色箭头表示边水通过断层联通而入侵,使圈闭评价降低的路径。
切片42的封闭含油范围比切片41更有所减少。
本发明实施例中,如图9所示,假设两个相邻的切片45与46为复杂岩性分布的复杂断块两条相邻的切片。图9左边分别是相邻的切片45与46的岩性指数(Litho-Index)的砂泥岩分布的显示,图9右边是经过TRAP-3D软件进行圈闭分析后,切片45与45的圈闭评价值图,由此可以看到各砂层中的油水分布的情形(浅亮色是水)。其中,白色为圈闭评价极低的含水区,箭头所示处为油水界面。
此外,本发明实施例中,还可以在深度域绘出各深度切片的砂泥岩百分比及每个深度切片的圈闭量的对比图,如图10所示。这可更直观的看到在哪个深度上,哪个地层中圈闭体积最大。
本发明实施例中,如图11a和图11b所示,为打井12口前后的储量分布及剩余未动用储量分布的示意图,在上述复杂断块模型的工区中均匀打井12口,每口把所遇油层采干,结果还留下不能采到的“死油区”以及12口井未钻遇的“剩余油”,从图11b可以看到还有不少未动用储量可供开发。这些未动用储量也可以由TRAP-3D软件计算出来。
下面以TN油田为例,对本发明实施例进行举例说明:
TN油田是一个复杂断块油田,本次研究面积约54平方千米,含油层系深度约1-2千米。工区内已打井8口。见少量薄油层。本次切片分析的深度为1300m-1850m。
为了提供TRAP-3D软件所需的输入数据格式,需要准备一个三维岩性及断层数据立方体。我们在8口井测井数据的井控条件下作砂层内插,并加上地震解释的断层数据,形成三维岩性及断层数据立方体。假设三维岩性及断层数据立方体中每个单元点的大小为18m*18m*1m,深度方向按每1m为一片切片进行分析。
(i)根据项目需要,在已建立的构造模型的基础上,结合测井曲线(GR)及声波曲线等对工区砕削岩进行岩性分类。解释的结果,以井间插值的方式进行了构造模型的岩性充填,并将沉积相解释结果作为边界条件对该模型进行了相控约束。用测井资料加上地震资料进行控制内插,将工区内按自然伽马值对砂泥岩岩性进行分类。如图12a所示,为TN油田的某切片自然伽马GR值彩色图。根据GR值的大小,把它转换为好砂岩3,砂岩2,粉砂岩1及泥岩0,四种岩性,如图12b和13a图所示,为自然伽马值的转换图。
下一步再根据地震资料解释的断层数据融合进这些切片里去。
用通常的地震资料解释方法,对三维地震数据作过细的断层解释,从解释过的断层数据中导出断层文件,再将每个断层点XYZ坐标插进解释好的三维岩性及断层数据立方体。给于每个断层点标上岩性指数为4。 如图13b所示,是砂泥岩划分的四种分布,右边是插入断层(黑色细线)后的情况。此图符合TRAP-3D程序的输入要求。
当每个切片都做完上述工作后,就完成了整个三维岩性及断层数据立方体的数据准备,就完成了适合于TRAP-3D软件分析的输入数据要求。
(ii)TN油田实际数据TRAP-3D试算结果
如图14所示,对于一条经过TRAP-3D软件处理的深度剖面,可看到砂层虽然很发育,但是只有少数地方具有圈闭。图14中右下方几条长条形黑线是断层,其它深黑色的是岩性圈闭,图14左方有一个背斜构造圈闭,如箭头所示。其中,灰色部分是泥岩,图中除下方两根垂向黑线是断层之外,其它黑色部分均为含油气的构造圈闭及岩性圈闭,白色为含水砂岩。
图15a是TN油田按断块油田常规方法冒估的含油范围,参考图15b所示,TN油田经TRAP-3D软件处理后的含油范围与上述冒估的含油范围基本吻合。由此可见,本申请的TRAP-3D软件更具有定量的概念,它包含了不少岩性圈闭,及北部的小背斜构造圈闭。
如图16所示,TRAP-3D软件计算的按深度统计的各等深度切片中的砂泥岩百分比(曲线1及2),根据Sum{index}计算的每个切片的空隙容积(曲线3),表达储集性能的Sum{MV},(曲线4),以及最右边的曲线5表达着此深度切片中的圈闭量SS=Sum{index*MV}图16中,虽然深度1630m处砂岩百分比高达60%,但是圈闭量却不大,根据曲线4及5可看出深度1420-1520m这一段砂岩虽然不那么多,但是圈闭量却较大,实际开采也证明这正是本油田的主要产层层段。可见TRAP-3D软件给出了较好的定量的结果。
(iii)最后TN油田的圈闭储量计算结果如下:
1)根据资料:平均孔隙度为28.5%;平均含油饱和度为70%;砂岩百分比为47.3%;泥岩百分比为52.7%;中部主体圈闭面积约10.5km2
2)研究范围总圈闭储量为SSS,(即各切片全部加起来)。
SSS=Σ【Sum{index*MV}】×平均孔隙度*立方单元体积/800
TRAP-3D软件计算结果:研究范围总圈闭储量约为0.53×108m3
本发明实施例首先把三维地震资料所获得的构造情况与测井资料获得的地下岩性的情况结合起来,加上断层的位置信息,综合成一个数据立方体;其次将数据立方体进行等深度划分,划分出若干等深度的深度切片,然后依次对每个深度切片进行圈闭评价,从而可以将工区储集油气的各种圈闭都找出来。由于本发明实施例将数据立方体划分成若干等深度的深度切片,并依次对每个深度切片进行圈闭评价,从而通过这种更为精细的圈闭评价提高了三维圈闭评价的精确性。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种基于TRAP-3D软件寻找油气藏的方法,其特征在于,包括以下步骤:
    根据三维地震资料和测井资料建立勘探工区的三维岩性及断层数据立方体;
    将所述三维岩性及断层数据立方体划分成若干等深度的深度切片,并分别对每个深度切片进行独立砂体单元划分;
    将所述三维岩性及断层数据立方体的深度切片顺序输入TRAP-3D软件进行油气藏评价,其具体包括:
    逐层对每个深度切片内各个独立砂体单元分别进行圈闭评价,获取每个深度切片内的各个独立砂体单元的圈闭量估值;
    根据所述每个深度切片内各个独立砂体单元的圈闭量估值绘出平面上的甜点图,以及展示纵向不同深度上的油气圈闭量,并获取所述勘探工区内储藏油气的总圈闭量估值。
  2. 根据权利要求1所述的方法,其特征在于,所述根据三维地震资料和测井资料建立勘探工区的三维岩性及断层数据立方体,具体包括:
    将从三维地震资料中获得的构造信息和断层信息,与从测井资料中获得的岩性信息相结合建立勘探工区的三维岩性及断层数据立方体。
  3. 根据权利要求1所述的方法,其特征在于,所述分别对每个深度切片进行独立砂体单元划分,具体为:
    (1)、选择一个深度切片并将其内的岩性信息和断层信息分别用相应的特征参数表示;
    (2)、按照预设的连通砂点搜索规则搜索出该深度切片内所有的由若干相互连通的砂点构成的砂点组,其中所述每个砂点组的边界由泥岩和断层界定;
    (3)、将所述每个砂点组内所有砂点的特征参数合并,以作为一个独立砂体单元,并对每个独立砂体单元分别进行唯一性标识;
    (4)、重复上述步骤(1)~(3),直至逐层顺序完成所述三维岩性及断层数据立方体的所有深度切片的独立砂体单元划分。
  4. 根据权利要求3所述的方法,其特征在于,所述预设的连通砂点搜索规则包括:
    对于与断层不相邻的砂点,按照八方向搜索与该砂点相连通的相邻砂点;以及,
    对于与断层相邻的砂点,按照四方向搜索与该砂点相连通的相邻砂点。
  5. 根据权利要求1所述的方法,其特征在于,在所述逐层对每个深度切片内的各个独立砂体单元分别进行圈闭评价之前还包括:
    为每个深度切片内的各个独立砂体单元设置圈闭评价初值。
  6. 根据权利要求5所述的方法,其特征在于,在所述为每个深度切片内的各个独立砂体单元设置圈闭评价初值的过程中,包括:
    如果当前深度切片的某个独立砂体单元内的砂点与其上一层深度切片的某个独立砂体单元内的砂点存在上下连通关系,则所述当前深度切片的某个独立砂体单元直接继承所述上一层深度切片的某个独立砂体单元的圈闭评价初值。
  7. 根据权利要求5所述的方法,其特征在于,所述逐层对每个深度切片内各个独立砂体单元分别进行圈闭评价,获取每个深度切片内的各个独立砂体单元的圈闭量估值,具体包括:
    (1)、选择一个深度切片,根据圈闭评价更新规则和该深度切片里的断层两侧的岩性的对置情况,分别对该深度切片内的各个独立砂体单元的圈闭评价初值进行更新,以获得该深度切片内的各个独立砂体单元的最终圈闭评价值,并将对应的最终圈闭评价值赋予对应独立砂体单元内的每个砂点;
    (2)、根据公式SSj=Sum{indexi*MVi}获取深度切片的圈闭量估值,其中,SSj为第j个深度切片的圈闭量估值,indexi为第j个深度切片的第i个独立砂体单元的空隙容积,MVi为第j个深度切片的第i个独立砂体单元的最终圈闭评价值;
    (3)、重复上述步骤(1)~(2)直至逐层顺序完成所述三维岩性及断层数据立方体的所有深度切片的圈闭量估值的获取。
  8. 根据权利要求7所述的方法,其特征在于,所述圈闭评价更新规则包括:
    若断层对侧为泥岩,则根据每个深度切片内的各个独立砂体单元的泥岩的涂抹封堵效应的不同对应调整所述各个独立砂体单元的圈闭评价值;
    若断层对侧为砂岩,则当每个深度切片内的断层一侧的独立砂体单元的圈闭评价值高于该断层对侧的独立砂体单元的圈闭评价值时,按下式计算圈闭评价漏失值:
    LEAK=DDMV*(YXZH)/SEAL/4,其中,LEAK为圈闭评价漏失值,DDMV为断层两侧独立砂体单元的圈闭评价值之差,YXZH为断层两侧独立砂体单元的圈闭评价值岩性指数之和,SEAL为漏失系数。
PCT/CN2015/077283 2014-11-05 2015-04-23 基于trap-3d软件寻找油气藏的方法 WO2016070587A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15794444.8A EP3217192B1 (en) 2014-11-05 2015-04-23 Method for looking for oil and gas reservoir on the basis of trap-3d software
CA2912626A CA2912626C (en) 2014-11-05 2015-04-23 3d trap evaluation method of searching for oil-gas reservoir
US14/946,466 US10228478B2 (en) 2014-11-05 2015-11-19 Method of searching for oil-gas reservoir based on trap-3D software

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410635467.3 2014-11-05
CN201410635467.3A CN104375179B (zh) 2014-11-05 2014-11-05 基于trap‑3d软件寻找油气藏的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/946,466 Continuation-In-Part US10228478B2 (en) 2014-11-05 2015-11-19 Method of searching for oil-gas reservoir based on trap-3D software

Publications (1)

Publication Number Publication Date
WO2016070587A1 true WO2016070587A1 (zh) 2016-05-12

Family

ID=52554207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077283 WO2016070587A1 (zh) 2014-11-05 2015-04-23 基于trap-3d软件寻找油气藏的方法

Country Status (3)

Country Link
EP (1) EP3217192B1 (zh)
CN (1) CN104375179B (zh)
WO (1) WO2016070587A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228478B2 (en) 2014-11-05 2019-03-12 China National Petroleum Corporation Method of searching for oil-gas reservoir based on trap-3D software
CN111505720A (zh) * 2020-05-21 2020-08-07 中国海洋石油集团有限公司 一种岩性圈闭的刻画方法
CN112034513A (zh) * 2020-09-03 2020-12-04 中海石油(中国)有限公司 一种已开发油田周边潜力资源量的定量评价方法
CN112255676A (zh) * 2020-10-15 2021-01-22 中国海洋石油集团有限公司 旋向相反的共轭走滑断层共轭区有利圈闭定量寻找方法
CN112360444A (zh) * 2020-10-16 2021-02-12 中国石油天然气股份有限公司 圈闭目标的量化排序处理方法及装置
CN112883554A (zh) * 2021-01-22 2021-06-01 中国科学技术大学 一种构造圈闭识别方法及系统
CN113514875A (zh) * 2021-06-03 2021-10-19 德仕能源科技集团股份有限公司 一种基于大数据的岩性油气藏的勘测和描述方法及系统
CN113514883A (zh) * 2021-06-18 2021-10-19 中国石油化工股份有限公司 一种断层-岩性油藏刻画方法
CN113589371A (zh) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 碳酸盐岩内断层的封闭性评价方法
CN114594518A (zh) * 2020-12-04 2022-06-07 中国石油化工股份有限公司 基于井震交替的开发后期复杂断块精细地层对比方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375179B (zh) * 2014-11-05 2017-02-15 中国石油天然气集团公司 基于trap‑3d软件寻找油气藏的方法
CN106443779B (zh) * 2016-08-17 2018-08-07 中国石油化工股份有限公司 一种中小型砂砾岩体的储层预测方法
CN109343115B (zh) * 2018-11-21 2019-12-03 成都理工大学 一种基于测井约束的含气储层刻画方法
CN109738947B (zh) * 2018-12-12 2020-11-20 核工业北京地质研究院 一种圈定砂岩型铀矿找矿远景区的物化探组合方法
CN109597129B (zh) * 2019-01-07 2019-12-17 中国地质大学(武汉) 基于目标检测的缝洞型油藏串珠状反射特征识别方法
CN109917455B (zh) * 2019-02-19 2021-03-30 中国石油天然气集团有限公司 一种地层圈闭的刻画方法及系统
EP3926368B1 (en) 2020-06-15 2024-01-10 TotalEnergies OneTech Analyzing a hydrocarbon trap
CN112983401B (zh) * 2021-04-30 2021-07-30 西南石油大学 一种边水气藏水侵边界确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008459A (en) * 1975-07-18 1977-02-15 Texaco Inc. Method of seismic surveying for stratigraphic traps
US5563513A (en) * 1993-12-09 1996-10-08 Stratasearch Corp. Electromagnetic imaging device and method for delineating anomalous resistivity patterns associated with oil and gas traps
CN1138902A (zh) * 1994-12-12 1996-12-25 阿莫科公司 地震信号处理及勘探方法
CN102369460A (zh) * 2009-01-16 2012-03-07 岩石形变研究有限公司 断层分析系统
WO2014065891A1 (en) * 2012-10-26 2014-05-01 Chevron U.S.A. Inc. System and method for analysis of trap integrity
CN104375179A (zh) * 2014-11-05 2015-02-25 中国石油天然气集团公司 基于trap-3d软件寻找油气藏的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909200B1 (fr) * 2006-11-23 2009-07-03 Total Sa Procede, programme et systeme informatique de simulation de chenaux
CN101520517B (zh) * 2008-02-25 2011-06-22 中国石油集团东方地球物理勘探有限责任公司 一种能准确评价碎屑岩盆地含油气目标的方法
BR112012028653B1 (pt) * 2010-05-28 2020-11-10 Exxonmobil Upstream Research Company método para análise sísmica de sistema de hidrocarbonetos
CN103792592A (zh) * 2013-03-14 2014-05-14 中国石油大学(北京) 一种确定陆相断陷盆地油气藏分布最有利范围的方法
CN103604916B (zh) * 2013-11-21 2016-01-20 中国石油大学(北京) 一种连续型致密砂岩气藏含气范围的测量方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008459A (en) * 1975-07-18 1977-02-15 Texaco Inc. Method of seismic surveying for stratigraphic traps
US5563513A (en) * 1993-12-09 1996-10-08 Stratasearch Corp. Electromagnetic imaging device and method for delineating anomalous resistivity patterns associated with oil and gas traps
CN1138902A (zh) * 1994-12-12 1996-12-25 阿莫科公司 地震信号处理及勘探方法
CN102369460A (zh) * 2009-01-16 2012-03-07 岩石形变研究有限公司 断层分析系统
WO2014065891A1 (en) * 2012-10-26 2014-05-01 Chevron U.S.A. Inc. System and method for analysis of trap integrity
CN104375179A (zh) * 2014-11-05 2015-02-25 中国石油天然气集团公司 基于trap-3d软件寻找油气藏的方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228478B2 (en) 2014-11-05 2019-03-12 China National Petroleum Corporation Method of searching for oil-gas reservoir based on trap-3D software
CN113589371B (zh) * 2020-04-30 2023-03-21 中国石油化工股份有限公司 碳酸盐岩内断层的封闭性评价方法
CN113589371A (zh) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 碳酸盐岩内断层的封闭性评价方法
CN111505720B (zh) * 2020-05-21 2023-03-28 中国海洋石油集团有限公司 一种岩性圈闭的刻画方法
CN111505720A (zh) * 2020-05-21 2020-08-07 中国海洋石油集团有限公司 一种岩性圈闭的刻画方法
CN112034513B (zh) * 2020-09-03 2023-03-14 中海石油(中国)有限公司 一种已开发油田周边潜力资源量的定量评价方法
CN112034513A (zh) * 2020-09-03 2020-12-04 中海石油(中国)有限公司 一种已开发油田周边潜力资源量的定量评价方法
CN112255676B (zh) * 2020-10-15 2023-12-19 中国海洋石油集团有限公司 旋向相反的共轭走滑断层共轭区有利圈闭定量寻找方法
CN112255676A (zh) * 2020-10-15 2021-01-22 中国海洋石油集团有限公司 旋向相反的共轭走滑断层共轭区有利圈闭定量寻找方法
CN112360444A (zh) * 2020-10-16 2021-02-12 中国石油天然气股份有限公司 圈闭目标的量化排序处理方法及装置
CN112360444B (zh) * 2020-10-16 2023-08-22 中国石油天然气股份有限公司 圈闭目标的量化排序处理方法及装置
CN114594518B (zh) * 2020-12-04 2023-04-07 中国石油化工股份有限公司 基于井震交替的开发后期复杂断块精细地层对比方法
CN114594518A (zh) * 2020-12-04 2022-06-07 中国石油化工股份有限公司 基于井震交替的开发后期复杂断块精细地层对比方法
CN112883554A (zh) * 2021-01-22 2021-06-01 中国科学技术大学 一种构造圈闭识别方法及系统
CN112883554B (zh) * 2021-01-22 2024-03-29 中国科学技术大学 一种构造圈闭识别方法及系统
CN113514875B (zh) * 2021-06-03 2024-04-02 德仕能源科技集团股份有限公司 一种基于大数据的岩性油气藏的勘测和描述方法及系统
CN113514875A (zh) * 2021-06-03 2021-10-19 德仕能源科技集团股份有限公司 一种基于大数据的岩性油气藏的勘测和描述方法及系统
CN113514883A (zh) * 2021-06-18 2021-10-19 中国石油化工股份有限公司 一种断层-岩性油藏刻画方法
CN113514883B (zh) * 2021-06-18 2023-03-17 中国石油化工股份有限公司 一种断层-岩性油藏刻画方法

Also Published As

Publication number Publication date
EP3217192B1 (en) 2021-02-24
EP3217192A4 (en) 2018-06-27
EP3217192A1 (en) 2017-09-13
CN104375179A (zh) 2015-02-25
CN104375179B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2016070587A1 (zh) 基于trap-3d软件寻找油气藏的方法
US10228478B2 (en) Method of searching for oil-gas reservoir based on trap-3D software
AU2009260453B2 (en) Heterogeneous earth models for a reservoir field
US11209560B2 (en) Assignment of systems tracts
US20150066460A1 (en) Stratigraphic function
CN109388817A (zh) 一种储层裂缝三维建模方法
CN109541685B (zh) 一种河道砂体识别方法
Gherabati et al. Assessment of hydrocarbon in place and recovery factors in the Eagle Ford Shale play
WO2015023947A1 (en) Identifying and extracting fault blocks in one or more bodies representing a geological structure
CN109763814B (zh) 基于多维测井数据的地层匹配可视分析方法
Yamada et al. Revisiting porosity analysis from electrical borehole images: integration of advanced texture and porosity analysis
US20220163692A1 (en) Modeling and simulating faults in subterranean formations
Schneider et al. Interpretation of fractured zones using seismic attributes—Case study from Teapot Dome, Wyoming, USA
Iltaf et al. Facies and petrophysical modeling of Triassic Chang 6 tight sandstone reservoir, Heshui oil field, Ordos basin, China
Lyu et al. Classification, modeling and characterization of marine carbonate paleokarst reservoirs in Tahe Oilfield, Tarim Basin, China
EP3186665B1 (en) Method of characterising a subsurface volume
US11947071B2 (en) Fault radiation based grid compartmentalization
CN115880455A (zh) 基于深度学习的三维智能插值方法
EP2863242A2 (en) Classification and visualization of time-series data
Li et al. Three-dimensional reservoir architecture modeling by geostatistical techniques in BD block, Jinhu depression, northern Jiangsu Basin, China
CN107991702B (zh) 正断层时序的简单精准判定方法
CN106405638A (zh) 一种含气饱和度确定方法和装置
Freeman et al. A New Facies Classification Scheme Using Gamma Ray and Bulk Density Logs, With Multiple Practical Applications in North Kuwait Heavy Oil Fields
Miranda et al. A Study of Dynamic and Static Factors That are Critical to Multi-Well Reservoir Simulation of Liquid Rich Shale Plays
Zeynalov et al. Petro physical Modeling of the Tertiary Reservoirs in the Small Giant Bai Hassan Oil Field, Northern Iraq

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2912626

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015794444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015794444

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15794444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE