WO2016070563A1 - 空口测试装置、系统、空口测试方法和存储介质 - Google Patents

空口测试装置、系统、空口测试方法和存储介质 Download PDF

Info

Publication number
WO2016070563A1
WO2016070563A1 PCT/CN2015/075845 CN2015075845W WO2016070563A1 WO 2016070563 A1 WO2016070563 A1 WO 2016070563A1 CN 2015075845 W CN2015075845 W CN 2015075845W WO 2016070563 A1 WO2016070563 A1 WO 2016070563A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
degree
signal
ports
air interface
Prior art date
Application number
PCT/CN2015/075845
Other languages
English (en)
French (fr)
Inventor
陈侃浩
李刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016070563A1 publication Critical patent/WO2016070563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present invention relates to an air interface testing technology in the field of wireless communications, and in particular, to an air interface testing device, a system, an air interface testing method, and a storage medium.
  • the existing multi-stream beamforming air port detection methods generally include two types:
  • the first type the drive test method, which requires the terminal to be distributed in a plurality of different directions for the pull distance test.
  • This method can reflect the actual situation of the practical application of multi-stream beamforming technology, but the project is huge, time-consuming and laborious, can not be used frequently, and it is not convenient to check the positioning problem.
  • the second type channel simulation mode, but the channel simulator supporting multi-antenna beamforming test needs uplink and downlink balance, and the number of channels required is also large. Therefore, the equipment cost is not generally high, and there are high requirements for calibration. Therefore, it is difficult to apply in a large amount, which is not conducive to finding problems through large samples.
  • embodiments of the present invention are expected to provide an air interface test apparatus, system, air interface test method, and storage medium to reduce hardware cost and simplify test operations.
  • a first aspect of the embodiments of the present invention provides an air interface testing device, where the device includes a power dividing unit and a phase shifting unit connected to the power dividing unit;
  • the power dividing unit includes N first ports and M second ports; the M is greater than the N; The M and the N are both integers greater than 2;
  • the phase shifting unit includes M third ports and N fourth ports;
  • One of the second ports is connected to one of the third ports, and the connection is formed with M phase shifting branches;
  • the phase shifting unit is configured to phase shift a signal input to the power dividing unit or a signal output by the power dividing unit according to a mapping relationship between an orthogonal matrix and a phase offset degree;
  • the orthogonal matrix includes M elements, and one of the elements corresponds to one of the phase shifting branches; the value of the element has a mapping relationship with the phase offset degree.
  • each of the first ports is connected to each of the fourth ports through the phase shifting branch.
  • the power dividing unit includes at least two power splitters
  • Each of the power splitters is configured to split one input signal into at least two equal phase output signals or phase-integrate at least two input signals into one output signal.
  • the phase shifting unit includes at least two hybrid couplers
  • Each of the hybrid couplers is configured to divide an input signal into at least two output signals having a certain phase relationship or to at least two input signals according to a certain phase according to a mapping relationship between an orthogonal matrix and a phase offset degree. The relationship is combined with one output signal.
  • the phase shifting unit includes:
  • the power splitter is configured to divide one input signal into at least two equal phase output signals or phase-integrate at least two input signals into one output signal;
  • the phase shifting module is configured to phase shift the signal according to a mapping relationship between the orthogonal matrix and the phase offset degree.
  • the phase shifting module includes a phase shifter and/or a phase shifting cable.
  • a second aspect of the embodiments of the present invention provides an air interface testing system, where the system includes the air interface testing device as described above; the air interface testing device includes N first ports and N fourth ports;
  • One of the first ports is connected to one terminal, one of the fourth ports is connected to one antenna port of the test base station; or one of the fourth ports is connected to one terminal, and one of the first ports is connected to one antenna port of the test base station.
  • An air interface testing method is provided in the embodiment of the present invention, where the method includes:
  • N downlink signals that are sent by beamforming according to a phase relationship of the uplink component
  • phase offset phase shifting the uplink signal component or the downlink signal component according to a mapping relationship between an orthogonal matrix and a phase offset degree
  • the orthogonal matrix includes M elements, one of the elements corresponding to one of the uplink signal components or one of the downlink signal components; the value of the element has a mapping relationship with the phase offset degree.
  • the method is applied to an air interface test device including N first ports and N fourth ports; wherein M phase shift branches are formed between N first ports and N fourth ports a phase shifting branch for phase offset of one of the uplink signal components or one of the downlink signal components;
  • the uplink signal component is sent to the test base station through the fourth port; when the air interface testing device is from the When the fourth port receives the uplink signal, the upper port is used to pass the upper port.
  • the line signal component is sent to the test base station.
  • a fourth aspect of the embodiments of the present invention provides an air interface testing method, where the method includes:
  • the test terminal sends an uplink signal
  • the air interface testing device receives the uplink signal, divides each of the uplink signals into N uplink signal components, and performs phase offset processing on each of the uplink signal components according to a mapping relationship between an orthogonal matrix and a phase offset degree;
  • the air interface test device transmits the uplink signal component subjected to the phase offset processing to the N antenna ports of the test base station;
  • the test base station determines the shaping value of the downlink signal according to the phase of the uplink signal
  • the test base station generates and sends a downlink signal according to the shaping value
  • the air interface testing device divides each of the downlink signals into N downlink signal components, and performs phase offset processing on each downlink signal component according to a mapping relationship between the orthogonal matrix and the phase offset degree;
  • the air interface testing device performs signal synthesis on the downlink signal component and sends the signal to the terminal;
  • Each terminal receives the downlink signal
  • the orthogonal matrix includes M elements, and the one element corresponds to one uplink signal component or one downlink signal component; the value of the element has a mapping relationship with the phase offset degree;
  • the downlink signal received by the terminal is used to determine an effect of orthogonal beamforming of the test base station.
  • Embodiments of the present invention are also a computer storage medium having stored therein computer executable instructions for performing at least the method as described above one of them.
  • the air interface testing device, system, air interface testing method and storage medium provide an air interface testing device composed of a power dividing unit and a phase shifting unit, which can provide multiple phase shifting branches and phase shifting
  • the phase offset degree of the branch has a mapping relationship with the orthogonal matrix.
  • FIG. 1 is a schematic structural diagram of an air interface testing device according to an embodiment of the present invention.
  • FIG. 2 is a second schematic structural diagram of an air interface testing device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an air interface testing system according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for testing an air interface according to an embodiment of the present invention.
  • FIG. 5 is a second schematic flowchart of an air interface testing method according to an embodiment of the present disclosure.
  • FIG. 6 is a second schematic structural diagram of an air interface test system according to an example of the present invention.
  • FIG. 7 is a schematic structural diagram of an air interface testing device according to an example of the present invention.
  • FIG. 8 is a second schematic structural diagram of an air interface testing device according to an example of the present invention.
  • FIG. 9 is a third structural schematic diagram of an air interface testing device according to an example of the present invention.
  • FIG. 10 is a fourth structural schematic diagram of an air interface testing device according to an example of the present invention.
  • FIG. 11 is a fifth structural schematic diagram of an air interface testing device according to an example of the present invention.
  • FIG. 12 is a fifth structural diagram of an air interface testing device according to an example of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • this embodiment provides an air interface testing device, the device includes a power dividing unit 110 and a phase shifting unit 120 connected to the power dividing unit 110;
  • the power dividing unit 110 includes N first ports 111 and M second ports 112; the M is greater than the N; and the M and the N are integers greater than 2;
  • the phase shifting unit 120 includes M third ports 113 and N fourth ports 114;
  • One of the second ports 112 is connected to one of the third ports 113, and is connected with M phase shifting branches;
  • the phase shifting unit 120 is configured to phase shift a signal input to the power dividing unit or a signal output by the power dividing unit according to a mapping relationship between an orthogonal matrix and a phase offset degree;
  • the orthogonal matrix includes M elements, and one of the elements corresponds to one of the phase shifting branches; the value of the element has a mapping relationship with the phase offset degree.
  • the orthogonal matrix is a real-specialized unitary matrix, and in the embodiment, the orthogonal matrix may be an orthogonal matrix composed of 1, -1, i, and -i.
  • the air interface test device shown in FIG. 2 includes four phase shifting branches, and the corresponding orthogonal matrix is
  • first phase shifting branch of the air interface testing device corresponds to an element of the first row and the first column of the orthogonal matrix; the second phase shifting branch of the air interface testing device and the positive Corresponding to the elements of the second row and the first column of the intersection matrix; the third phase shifting branch of the air interface testing device corresponds to the elements of the first row and the second column of the orthogonal matrix; the air interface testing device The fourth phase shifting branch corresponds to the elements of the second row and the second column of the orthogonal matrix.
  • phase offset degree corresponding to 1 is 0°; the phase shift degree corresponding to -1 is 180°, the phase shift degree of the first phase shifting branch is 0°, and the phase of the second phase shifting branch
  • the degree of offset is 0°
  • the phase shift degree of the third phase shifting branch is 180°
  • the phase shifting degree of the fourth phase shifting branch is 0°.
  • the i may represent 90°
  • the -i represents ⁇ 90° or 270°.
  • each element of the orthogonal matrix and the phase offset degree may also be changed, such as 1 for 180°, -1 for 0°, and the like. For example, where 1 represents 45° and -1 represents 135°, then i can represent -135° and the -i represents -45°.
  • the first phase shifting branch may also correspond to an element of the first row and the first column in the orthogonal matrix
  • the second phase shifting branch may also be in the orthogonal matrix.
  • the elements of the first row and the second column correspond to each other;
  • the third phase shifting branch may also correspond to an element of the second row and the first column of the orthogonal matrix, and the fourth phase shifting branch may also be positive Corresponding to the elements of the second row and the second column in the intersection matrix; then the orthogonal matrix may be
  • the correspondence between the respective phase shifting branches and the elements in the orthogonal matrix may be predetermined in advance. If the elements of the orthogonal matrix can be counted in rows, the first row and the first column are the first element, the first row and the second column are the elements of the second element, and the xth row and the yth are the first ( X-1) *Y+y elements; the Y is the number of elements in each row; then the zth phase shifting branch corresponds to the zth element.
  • the first row and the first column are the first element, the second row, the first column, the element number, the second element, the xth row, the yth
  • each of the first ports is connected to each of the fourth ports by N pieces of phase shifting branches.
  • the air interface testing device of this embodiment After the signal sent from a first port passes through the phase shifting branch, it is divided into N signal components and respectively enters a fourth port, wherein each of the fourth ports A signal component can be received; after the signal sent from a fourth port passes through the phase shifting branch, it will be divided into N signal components respectively into the first port, wherein each of the first ports will receive One of the signal components.
  • the power dividing unit 110 includes at least two power splitters
  • Each of the power splitters is configured to split one input signal into at least two equal phase output signals or combine at least two input signals into one phase to form an output signal.
  • the method further divides an input signal into at least two equal-phase output signals, for example, dividing one input signal into at least two signals having the same phase; the two signals are not phase-shifted. At least two input signals are synthesized in one phase, and if one input signal has a starting phase of 90° and the other input signal has a starting phase of 0°, the power splitter does not phase shift any of the input signals. Signal synthesis under the premise.
  • the power splitter described herein is a device that splits a signal into a plurality of signals or combines a plurality of signals into one signal, but does not perform phase shift processing on the signals.
  • the phase shifting unit 120 may include at least two hybrid couplers; wherein the hybrid coupler is also referred to as a hybrid bridge circuit.
  • Each of the hybrid couplers is configured to divide an input signal into at least two output signals having a certain phase relationship or to at least two input signals according to a certain phase according to a mapping relationship between an orthogonal matrix and a phase offset degree. The relationship is combined with one output signal.
  • the hybrid coupler also has the function of splitting one signal into multiple signals or combining a plurality of signals into one signal. Unlike the above-mentioned power splitter, the coupler will also be offset from the phase according to the orthogonal matrix. The mapping relationship phase shifts the signals in each phase shifting branch.
  • the phase shifting unit may further comprise a power splitter and a phase shifting module; wherein the phase shifting module may be at least one of a phase shifter and a phase shifting cable.
  • the power splitter is configured to split an input signal into at least two equal phase output signals or phase-integrate at least two input signals into one output signal;
  • the phase shifting module is configured to follow an orthogonal matrix and a phase offset The mapping of the shift numbers phase shifts the signal.
  • phase shifter can also be formed by a phase shifting cable in combination with the power splitter to form the phase shifting unit.
  • the present embodiment provides a simple air interface testing device, which can be composed of an electronic device with low cost and simple structure, such as a power dividing unit and a phase shifting unit, with respect to an existing expensive channel simulator.
  • the composition of electronic components has the advantage of low cost, and does not need to enter A tedious road test.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides an air interface testing system, where the system includes the air interface testing device 100 according to any technical solution in the previous embodiment; the air interface testing device includes N first ports and N Fourth port;
  • One of the first ports is connected to one terminal, and one of the fourth ports is connected to one antenna port of the test base station 200;
  • One of the fourth ports is connected to one terminal, and one of the first ports is connected to one antenna port of the test base station 200.
  • the test base station includes at least N antenna ports.
  • the air interface testing device 100 includes two first ports and two fourth ports; four phase shifting branches are formed between the first port and the fourth port, respectively being the first phase shifting branch a second phase shifting branch, a third phase shifting branch, and a fourth phase shifting branch.
  • two terminals 3101, 3201 and one test base station 200 having at least two antenna ports are connected.
  • the terminal sends an uplink signal to the test base station through the air interface testing device 100; after the processing of the uplink signal signal by the power dividing unit 110, it will become M signals; M models are subjected to phase shifting After the processing of the path, the N signals that have undergone the phase offset are transmitted to the test base station 200.
  • the test base station 200 determines the shaping value according to the phase relationship of the received uplink signal, and sends a downlink signal to the terminal according to the shaping value.
  • the downlink signal After the downlink signal is processed by the air interface testing device 100, it is sent to the terminal; when the M signal components that are divided into the downlink signal are processed by the power dividing unit 110, the in-phase addition and reverse phase are opposite, if the beam shaping value is correct (That is, the beamforming effect of the test base station is good. Then the terminal will only receive its corresponding signal, and will not receive the signal that the test base station originally sends to another terminal, otherwise a beamforming abnormality may occur.
  • the system further includes N first attenuators;
  • the air interface test device is connected to the test base station by the first attenuator.
  • the first attenuator is configured to perform uplink attenuation on each uplink signal transmitted to the test base station to simulate signal attenuation in a real wireless environment.
  • the attenuator can be an adjustable attenuator.
  • system further includes N second attenuators
  • the air interface test device is connected to the terminal through the second attenuator.
  • the second attenuator can be an adjustable attenuator.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • this embodiment provides an air interface testing method, where the method includes:
  • Step S110 Receive an uplink signal sent by the terminal.
  • Step S120 dividing each of the uplink signals into N uplink components
  • Step S130 Perform phase offset processing on each of the uplink components.
  • Step S140 Send the uplink component that has undergone phase offset processing to the test base station;
  • Step S150 Receiving, by the test base station, N downlink signals that are sent by beamforming according to a phase relationship of the uplink component;
  • Step S160 Dividing the N downlink signals into M downlink components and performing phase offset processing on the M downlink components.
  • Step S170 Perform signal synthesis processing on the M downlink components, and send the downlink components to the terminal.
  • phase offset phase shifting the uplink signal component or the downlink signal component according to a mapping relationship between an orthogonal matrix and a phase offset degree
  • the orthogonal matrix includes M elements, one of the elements corresponding to one of the uplink signal components or one of the downlink signal components; the value of the element has a mapping relationship with the phase offset degree.
  • the method is applied to an air interface testing device including N first ports and N fourth ports (specifically, the air interface testing device according to any one of the first embodiments); M phase shifting branches are formed between the first port and the N fourth ports; and one of the phase shifting branches is used for phase offset of one of the uplink signal components or one of the downlink signal components;
  • the air interface testing device receives the uplink signal from the first port, sending the uplink signal component to the test base station by using the fourth port; when the air interface testing device is from the fourth When the port receives the uplink signal, the uplink signal component is sent to the test base station by using the first port.
  • the method described in this embodiment is a signal processing operation performed when performing air interface detection based on the air interface testing device described in the first embodiment.
  • the terminal 3101 and the terminal 3201 respectively send an uplink signal to the air interface testing device 100 through the first port; the air interface testing device 100 receives the uplink signal, and divides each uplink signal into two uplink signal components, and these The uplink signal component is phase-shifted by different phase-shifting branches and then sent to each antenna port of the test base station, and the test base station determines the beamforming value according to the phase relationship of the components of the two uplink signals received by the respective antenna ports. And transmitting a downlink signal to the terminal through the air interface testing device 100.
  • One of the antenna ports will transmit a downlink signal, and usually the downlink signal component is a composite signal, and the signal component of the composite signal is sent to the terminal 3101, and the signal component is sent to the terminal 3201; the air interface testing device 100 receives After the downlink signal, each signal is divided into two downlink signal components, and a total of four downlink signal components are formed, and one downlink signal component is transmitted by one phase shifting branch, and processed by phase shifting of the phase shifting unit, and then In-phase addition in signal synthesis, inversion cancellation, and finally transmission to terminal 3101 and terminal 3201.
  • the terminal 3101 Under the premise that the phase of the uplink signal received by the base station is correct, if the beamforming of the test base station is normal, in an ideal state, the terminal 3101 will only receive the signal sent by the base station to the terminal 3101, and the terminal 3201 will only receive The signal sent to the terminal 3201 by the base station, otherwise the beamforming is abnormal. In a specific implementation process, if the terminal 3101 receives the signal sent by the base station to the terminal 3201 due to some error factors of signal processing, if the signal strength is lower than a certain threshold Value, it can also be considered that the beamforming of the test base station is normal.
  • the air interface test device is used for air interface detection, which has the advantages of simple implementation compared with the existing road test method, and has hardware cost compared with the existing measurement method using a common channel simulator. Low advantage.
  • phase offset angle relationship of the phase shifting of the hollow port device of this embodiment refer to the detailed description in the first embodiment.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • this embodiment provides an air interface testing method, where the method includes:
  • Step S210 The test terminal sends an uplink signal.
  • Step S220 The air interface test apparatus receives the uplink signal, divides each of the uplink signals into N uplink signal components, and performs phase shift on each of the uplink signal components according to a mapping relationship between an orthogonal matrix and a phase offset degree. deal with;
  • Step S230 The air interface testing device sends the uplink signal component subjected to the phase offset processing to the N antenna ports of the test base station;
  • Step S240 The test base station receives an uplink signal sent by the terminal.
  • Step S250 The test base station determines the shaping value of the downlink signal according to the phase of the uplink signal
  • Step S260 The test base station generates and sends a downlink signal according to the shaping value.
  • Step S270 The air interface testing device divides each of the downlink signals into N downlink signal components, and performs phase offset processing according to a mapping relationship between the orthogonal matrix and the phase offset degree;
  • Step S280 The air interface testing device combines the downlink signal components and sends the signals to the terminal.
  • Step S290 Each terminal receives the downlink signal.
  • the downlink signal received by each terminal is used to determine an effect of orthogonal beamforming of the test base station.
  • the air interface test device will form P*N downlink signal components, and when the downlink signal is sent to the terminal, the P* will be The N downlink signal components are combined into P signals and sent to the terminal.
  • the orthogonality of the beamforming of the test base station is abnormal.
  • the beamforming of the test base station is abnormal
  • the m+n is an integer greater than 1 and not greater than the total number of terminals that the air interface testing device can connect; the m and the n are integers less than one.
  • the orthogonal beamforming effect of the test base station is determined according to the strength of each downlink signal received by the terminal.
  • the method may further include determining a signal to noise ratio of the downlink signal received by each terminal; and determining a signal to noise ratio of the downlink signal for determining The effect of orthogonal beamforming of the test base station; generally, the higher the signal to noise ratio, the better effect of orthogonal beamforming of the test base station.
  • the test base station transmits the downlink signal to one terminal by one antenna interface for the first time; the downlink signal is sent to the terminal by the multiple antenna ports for the second time; the strength of the downlink signal received by the terminal may be compared by determining the strength of the downlink signal received by the terminal.
  • the gain of the downlink signal determining the effect of the orthogonal beamforming of the test base station based on the gain. If the gain is less than the preset value, the effect of the orthogonal beamforming of the test base station may be poor.
  • the method described in this embodiment is based on the air interface test device according to the first embodiment, and has the advantages of simple implementation compared with the existing road test method, compared with the existing common channel simulator.
  • the measurement method has the advantage of low hardware cost.
  • the uplink signal may be processed by an attenuator and sent to the air.
  • the mouth test device is further processed by the air interface test device to send the attenuator, and then the attenuator is subjected to the attenuation process and then sent to the test base station.
  • the downlink signal may also be processed by the attenuator and then sent to the air interface test device, and then processed by the air interface test device to send the attenuator, and then the attenuator is sent to the terminal after being attenuated.
  • the air interface test system shown in FIG. 6 includes a base station, a terminal 1, a terminal 2, a terminal 3, a terminal 4, and an air interface test device surrounded by a broken line frame.
  • the system further includes an adjustable attenuator connected to the terminal, an attenuator 2, an attenuator 3 and an attenuator 4, an attenuator a connected to the base station, an attenuator b, an attenuator c and an attenuator d .
  • FIG. 6 The application block diagram of the simple device suitable for multi-stream beamforming air interface testing according to the present invention is shown in FIG.
  • the structure in the virtual frame is that the ports a, b, c, and d of the air interface test device are respectively connected to the antenna ports of the multi-antenna base station (through the attenuator). Ports 1, 2, 3, and 4 of the air port test device are connected to terminals (through an adjustable attenuator).
  • the uplink signals of each terminal are divided into 4 channels through the air interface test device, and respectively enter a certain phase relationship to enter each antenna port of the base station.
  • the base station determines the downlink signals of each antenna according to the phase relationship of the uplink signals of each antenna port.
  • the shape of the shaped signals after the shaped downlink signals are passed through the device, respectively, because the respective phase relationships are added in phase or reversed, respectively, and finally a data stream signal corresponding to the terminal is formed at each terminal antenna port, if the base station If the shaping value is correct, the downlink signal corresponding to other terminals will be screened off, and thus it can be used for air interface testing of multi-stream beamforming.
  • the ports a, b, c and d of the air interface test device are respectively connected to the antenna ports of the base station and the ports 1, 2, 3 and 4 are respectively connected to the terminals, in fact, the ports 1, 2, 3 and 4 of the air interface test device are connected to the base station.
  • Antenna ports and a, b, c and d port terminations are also possible.
  • the air port detecting device provided by the present example has the following structure:
  • the 90 degree branch of the 90 degree coupler (201) is connected to the 90 degree coupler (205), 90 degree coupler The 0 degree branch of (201) is connected to the 90 degree coupler (206).
  • the 90 degree branch of the 90 degree coupler (205) is connected to the power divider (213), the 0 degree branch of the 90 degree coupler (205) and the 90 degree branch of the 90 degree coupler (206) are respectively connected to the power divider. (214) and the power divider (216), the 0 degree branch of the 90 degree coupler (206) is connected to the power divider (215).
  • the 90 degree branch of the 90 degree coupler (202) is connected to the 90 degree coupler (207), and the 0 degree branch of the 90 degree coupler (202) is connected to the 90 degree coupler (208).
  • the 90 degree branch of the 90 degree coupler (207) is connected to the power divider (214), the 0 degree branch of the 90 degree coupler (207) and the 90 degree branch of the 90 degree coupler (208) are respectively connected to the power divider. (213) and the power divider (215), the 0 degree branch of the 90 degree coupler (208) is connected to the power divider (216).
  • the 90 degree branch of the 90 degree coupler (203) is connected to the 90 degree coupler (209), and the 0 degree branch of the 90 degree coupler (203) is connected to the 90 degree coupler (210).
  • the 90 degree branch of the 90 degree coupler (209) is connected to the power divider (215), the 0 degree branch of the 90 degree coupler (209) and the 90 degree branch of the 90 degree coupler (210) are respectively connected to the power divider. (214) and the power divider (216), the 0 degree branch of the 90 degree coupler (210) is connected to the power divider (213).
  • the 90 degree branch of the 90 degree coupler (204) is connected to the 90 degree coupler (211), and the 0 degree branch of the 90 degree coupler (204) is connected to the 90 degree coupler (212).
  • the 90 degree branch of the 90 degree coupler (211) is connected to the power divider (216), the 0 degree branch of the 90 degree coupler (211) and the 90 degree branch of the 90 degree coupler (212) are respectively connected to the power divider. (213) and the power divider (215), the 0 degree branch of the 90 degree coupler (212) is connected to the power divider (214).
  • the devices a, b, c, and d ports shown in FIG. 7 are the fourth ports described in the above embodiments, and are used for connecting to the antenna ports of the base station, and the ports 1, 2, 3, and 4 in this example are implemented as described above.
  • the first port in the example is connected to the terminal 1, the terminal 2, the terminal 3, and the terminal 4.
  • the downlink signals sent by the base station to the terminals 1, 2, 3, and 4 are T1, T2, T3, and T4, respectively.
  • the signal to terminal 2 is:
  • the signal to terminal 3 is:
  • the signal arriving at terminal 4 is the same as the signal arriving at terminal 4.
  • the testing apparatus of the present invention if the base station detects the phase of the uplink signal of each terminal correctly, and the shaping value of the downlink signal of each terminal is correct, an independent undisturbed downlink signal can be obtained at each terminal port.
  • Example 7 This example is a subset of Example 7.
  • the air interface testing device described in this example has the following structure:
  • the two branches of the power divider (301) are connected to a 180 degree coupler (305) and an in-phase coupler (306), respectively.
  • the 180 degree branch of the 180 degree coupler (305) is connected to the power divider (316)
  • the 0 degree branch of the 180 degree coupler (305) and the two branches of the in-phase coupler (306) are respectively connected to the power divider ( 313), a power splitter (314), and a power splitter (315).
  • the two branches of the power divider (302) are connected to a 180 degree coupler (307) and an in-phase coupler (308), respectively.
  • the 180 degree branch of the 180 degree coupler (307) is connected to the power divider (315), the 0 degree branch of the 180 degree coupler (307) and the two branches of the in-phase coupler (308) are respectively connected to the power divider ( 313), a power splitter (314) and a power splitter (316).
  • the two branches of the power divider (303) are connected to a 180 degree coupler (309) and an in-phase coupler (310), respectively.
  • the 180 degree branch of the 180 degree coupler (309) is connected to the power divider (314), the 0 degree branch of the 180 degree coupler (309) and the two branches of the in-phase coupler (310) are respectively connected to the power divider ( 313), a power splitter (315) and a power splitter (316).
  • the two branches of the power divider (304) are connected to a 180 degree coupler (311) and an in-phase coupler (312), respectively.
  • the 180 degree branch of the 180 degree coupler (311) is connected to the power divider (313), the 0 degree branch of the 180 degree coupler (311) and the two branches of the in-phase coupler (312) are respectively connected to the power divider ( 314), Power splitter (315) and power splitter (316).
  • This example can be a subset of the example 5.
  • the air interface testing device described in this example has the following structure:
  • the 90 degree branch of the 90 degree coupler (401) is coupled to the in-phase coupler (405), and the 0 degree branch of the 90 degree coupler (401) is coupled to the 180 degree coupler (406).
  • the two branches of the in-phase coupler (405) are connected to a power divider (414) and a power divider (416), respectively.
  • the 180 degree branch of the 180 degree coupler (406) is connected to the power divider (413), and the 0 degree branch of the 180 degree coupler (406) is connected to the power divider (415).
  • the 90 degree branch of the 90 degree coupler (402) is coupled to the in-phase coupler (407), and the 0 degree branch of the 90 degree coupler (402) is coupled to the 180 degree coupler (408).
  • the two branches of the in-phase coupler (407) are respectively connected to a power divider (413) and a power divider (415).
  • the 180 degree branch of the 180 degree coupler (408) is connected to the power divider (414), and the 0 degree branch of the 180 degree coupler (408) is connected to the power divider (416).
  • the 90 degree branch of the 90 degree coupler (403) is coupled to the in-phase coupler (409), and the 0 degree branch of the 90 degree coupler (403) is coupled to the 180 degree coupler (410).
  • the two branches of the in-phase coupler (409) are connected to a power divider (414) and a power divider (416), respectively.
  • the 180 degree branch of the 180 degree coupler (410) is connected to the power divider (415), and the 0 degree branch of the 180 degree coupler (410) is connected to the power divider (413).
  • the 90 degree branch of the 90 degree coupler (404) is coupled to the in-phase coupler (411), and the 0 degree branch of the 90 degree coupler (404) is coupled to the 180 degree coupler (412).
  • the two branches of the in-phase coupler (411) are respectively connected to a power divider (413) and a power divider (415).
  • the 180 degree branch of the 180 degree coupler (412) is connected to the power divider (416), and the 0 degree branch of the 180 degree coupler (412) is connected to the power divider (414).
  • the air interface testing device of the present example has the following structure:
  • the two branches of the in-phase coupler (501) are respectively connected to a power divider (503) and a power divider (504).
  • the 180 degree branch of the 180 degree coupler (502) is connected to the power divider (504), and the 0 degree branch of the 180 degree coupler (502) is connected to the power divider (503).
  • the structure of the air interface testing device described in this example is as follows:
  • the four branches of the power divider (601) are connected to the in-phase coupler (609), (610) and the 180-degree coupler (611), (612), respectively.
  • the branches of the in-phase couplers (609), (610) and the 0-degree branches of the 180-degree couplers (611), (612) are connected to the power dividers (641), (642), (643), (645), respectively. ), (646), (647).
  • the 180 degree branches of the 180 degree couplers (611) and (612) are connected to the power dividers (644) and (648), respectively.
  • the four branches of the power divider (602) are coupled to in-phase couplers (613), (614), and 180-degree couplers (615), (616), respectively.
  • the branches of the in-phase couplers (613), (614) and the 0-degree branches of the 180-degree couplers (615), (616) are connected to the power dividers (641), (642), (644), (645), respectively. ), (646), (648).
  • the 180 degree branches of the 180 degree couplers (615) and (616) are respectively connected to the power dividers (643) and (647).
  • the four branches of the power divider (603) are connected to the in-phase coupler (617), (618) and the 180-degree coupler (619), (620), respectively.
  • the branches of the in-phase couplers (617), (618) and the 0-degree branches of the 180-degree couplers (619) and (620) are respectively connected to the power dividers (641), (643), (644), (645). ), (647), (648).
  • the 180 degree branches of the 180 degree couplers (619) and (620) are respectively connected to the power dividers (642) and (646).
  • the four branches of the power divider (604) are coupled to the in-phase couplers (621), (622), and 180-degree couplers (623), (624), respectively.
  • the branches of the in-phase couplers (621), (622) and the 0-degree branches of the 180-degree couplers (623) and (624) are respectively connected to the power dividers (642), (643), (644), (646). ), (647), (648).
  • the 180 degree branches of the 180 degree couplers (623) and (624) are connected to the power dividers (641) and (645), respectively.
  • the four branches of the power divider (605) are connected to the 180 degree couplers (625), (626), (627), (628), respectively.
  • the 0 degree branch of the 180 degree coupler (625), (626), (627), (628) respectively receives the work Distributors (641), (642), (643), (648).
  • the 180 degree branches of the 180 degree couplers (625), (626), (627), and (628) are connected to the power dividers (644), (645), (646), and (647), respectively.
  • the four branches of the power divider (606) are connected to the 180 degree couplers (629), (630), (631), (632), respectively.
  • the 0 degree branches of the 180 degree couplers (629), (630), (631), and (632) are connected to the power dividers (641), (642), (644), and (647), respectively.
  • the 180 degree branches of the 180 degree couplers (629), (630), (631), and (632) are connected to the power dividers (643), (645), (646), and (648), respectively.
  • the four branches of the power splitter (607) are connected to the 180 degree couplers (633), (634), (635), (636), respectively.
  • the 0 degree branches of the 180 degree couplers (633), (634), (635), and (636) are connected to the power dividers (641), (643), (644), and (646), respectively.
  • the 180 degree branches of the 180 degree couplers (633), (634), (635), (636) are connected to the power dividers (642), (645), (647), (648), respectively.
  • the four branches of the power divider (608) are connected to the 180 degree couplers (637), (638), (639), (640), respectively.
  • the 0 degree branches of the 180 degree couplers (637), (638), (639), and (640) are connected to the power dividers (642), (643), (644), and (645), respectively.
  • the 180 degree branches of the 180 degree couplers (637), (638), (639), and (640) are connected to the power dividers (641), (646), (647), and (648), respectively.
  • the air port test devices a, b, c, d, e, f, g, and h ports of the present example in FIG. 11 are respectively connected to the antenna ports of the base station, and the air port test devices 1, 2, 3, 4, 5, 6, and 7 of the present example.
  • the eight ports are respectively connected to the terminal 1, the terminal 2, the terminal 3, the terminal 4, the terminal 5, the terminal 6, the terminal 7, and the terminal 8.
  • phase of the terminal 1 reaching the antennas a, b, c, d, e, f, g, and h of the base station is M1a, M1b, M1c, M1d, M1e, M1f, M1g, M1h, and then it is not difficult to obtain between them.
  • the downlink signals sent by the base station to the terminal 1, the terminal 2, the terminal 3, the terminal 4, the terminal 5, the terminal 6, the terminal 7, and the terminal 8 are T1, T2, T3, T4, T5, T6, T7, and T8, respectively.
  • the testing device of the present invention if the base station detects the phase of the uplink signal of each terminal correctly, and the shaping value of the downlink signal of each terminal is correct, an independent undisturbed downlink signal can be obtained at each terminal port; If the shape value is abnormal, the terminal 6 may receive a signal received by another terminal, such as a signal such as T1, T2 or T3.
  • the structure of the air interface testing device described in this example is as follows:
  • the 90 degree branch of the 90 degree coupler (701) is connected to the power divider (703), and the 0 degree branch of the 90 degree coupler (701) is connected to the power divider (704).
  • the 90 degree branch of the 90 degree coupler (702) is connected to the power divider (704), and the 0 degree branch of the 90 degree coupler (702) is connected to the power divider (703).
  • the air interface testing device described in this example has the following structure:
  • the two branches of the power divider (801) are connected to a 180 degree coupler (809) and an in-phase coupler (810), respectively.
  • the 180 degree branch of the 180 degree coupler (809) is connected to the 90 degree coupler (825).
  • the 0 degree branch of the 180 degree coupler (809) and the two branches of the in-phase coupler (810) are connected to the 90 degree couplers (826), (827), (828), respectively.
  • the 90 degree branch of the 90 degree coupler (825) is connected to the power divider (864).
  • the 0 degree branch of the 90 degree coupler (825) is connected to the power divider (857).
  • the 90 degree branches of the 90 degree couplers (826), (827), and (828) are connected to the power dividers (858), (860), and (862), respectively.
  • the 0 degree branches of the 90 degree couplers (826), (827), and (828) are connected to the power dividers (859), (861), and (863), respectively.
  • the two branches of the power divider (802) are connected to a 180 degree coupler (811) and an in-phase coupler (812), respectively.
  • the 180 degree branch of the 180 degree coupler (811) is connected to a 90 degree coupler (829).
  • the 0 degree branch of the 180 degree coupler (811) and the 2 branches of the in-phase coupler (812) are connected to the 90 degree couplers (830), (831), (832), respectively.
  • the 90 degree branch of the 90 degree coupler (829) is connected to the power divider (863).
  • the 0 degree branch of the 90 degree coupler (829) is connected to the power divider (858).
  • the 90 degree branches of the 90 degree couplers (830), (831), and (832) are connected to the power dividers (857), (859), and (861), respectively.
  • the 0 degree branches of the 90 degree couplers (830), (831), and (832) are connected to the power dividers (860), (862), and (864), respectively.
  • the two branches of the power divider (803) are connected to a 180 degree coupler (813) and an in-phase coupler (814), respectively.
  • the 180 degree branch of the 180 degree coupler (813) is connected to a 90 degree coupler (833).
  • the 0 degree branch of the 180 degree coupler (813) and the two branches of the in-phase coupler (814) are connected to the 90 degree couplers (834), (835), (836), respectively.
  • the 90 degree branch of the 90 degree coupler (833) is connected to the power divider (862).
  • the 0 degree branch of the 90 degree coupler (833) is connected to the power divider (859).
  • the 90 degree branch of (836) is connected to the power dividers (858), (860), and (864).
  • the 0 degree branches of the 90 degree couplers (834), (835), and (836) are connected to the power dividers (857), (861), and (863), respectively.
  • the two branches of the power divider (804) are connected to a 180 degree coupler (815) and an in-phase coupler (816), respectively.
  • the 180 degree branch of the 180 degree coupler (815) is connected to a 90 degree coupler (837).
  • the 0 degree branch of the 180 degree coupler (815) and the two branches of the in-phase coupler (816) are connected to the 90 degree couplers (838), (839), (840), respectively.
  • the 90 degree branch of the 90 degree coupler (837) is connected to the power divider (861).
  • the 0 degree branch of the 90 degree coupler (837) is connected to the power divider (860).
  • the 90 degree branches of the 90 degree couplers (838), (839), and (840) are connected to the power dividers (857), (859), and (863), respectively.
  • the 0 degree branches of the 90 degree couplers (838), (839), and (840) are connected to the power dividers (858), (862), and (864), respectively.
  • the two branches of the power divider (805) are connected to a 180 degree coupler (817) and an in-phase coupler (818), respectively.
  • the 180 degree branch of the 180 degree coupler (817) is connected to a 90 degree coupler (841).
  • the 0 degree branch of the 180 degree coupler (817) and the two branches of the in-phase coupler (818) are connected to the 90 degree couplers (842), (843), (844), respectively.
  • the 90 degree branch of the 90 degree coupler (841) is connected to the power divider (860).
  • the 0 degree branch of the 90 degree coupler (841) is connected to the power divider (861).
  • the 90 degree branches of the 90 degree couplers (842), (843), and (844) are connected to the power dividers (858), (862), and (864), respectively.
  • the 0 degree branches of the 90 degree couplers (842), (843), and (844) are connected to the power dividers (857), (859), and (863), respectively.
  • the two branches of the power divider (806) are connected to a 180 degree coupler (819) and an in-phase coupler (820), respectively.
  • the 180 degree branch of the 180 degree coupler (819) is connected to a 90 degree coupler (845).
  • the 0 degree branch of the 180 degree coupler (819) and the two branches of the in-phase coupler (820) are connected to the 90 degree couplers (846), (847), (848), respectively.
  • the 90 degree branch of the 90 degree coupler (845) is connected to the power divider (859).
  • the 0 degree branch of the 90 degree coupler (845) is connected to the power divider (862).
  • the 90 degree branches of the 90 degree couplers (846), (847), and (848) are connected to the power dividers (857), (861), and (863), respectively.
  • the 0 degree branches of the 90 degree couplers (846), (847), and (848) are connected to the power dividers (858), (860), and (864), respectively.
  • the two branches of the power splitter (807) are connected to a 180 degree coupler (821) and an in-phase coupler (822), respectively.
  • the 180 degree branch of the 180 degree coupler (821) is connected to a 90 degree coupler (849).
  • 180 degree The 0 degree branch of the coupler (821) and the 2 branches of the in-phase coupler (822) are connected to the 90 degree couplers (850), (851), (852), respectively.
  • the 90 degree branch of the 90 degree coupler (849) is connected to the power divider (858).
  • the 0 degree branch of the 90 degree coupler (849) is connected to the power divider (863).
  • the 90 degree branches of the 90 degree couplers (850), (851), and (852) are connected to the power dividers (860), (862), and (864), respectively.
  • the 0 degree branches of the 90 degree couplers (850), (851), and (852) are connected to the power dividers (857), (859), and (861), respectively.
  • the two branches of the power divider (808) are connected to a 180 degree coupler (823) and an in-phase coupler (824), respectively.
  • the 180 degree branch of the 180 degree coupler (823) is connected to a 90 degree coupler (853).
  • the 0 degree branch of the 180 degree coupler (823) and the 2 branches of the in-phase coupler (824) are connected to 90 degree couplers (854), (855), (856), respectively.
  • the 90 degree branch of the 90 degree coupler (853) is connected to the power divider (857).
  • the 0 degree branch of the 90 degree coupler (853) is connected to the power divider (864).
  • the 90 degree branches of the 90 degree couplers (854), (855), and (856) are connected to the power dividers (859), (861), and (863), respectively.
  • the 0 degree branches of the 90 degree couplers (854), (855), and (856) are connected to the power dividers (858), (860), and (862), respectively.
  • the present invention also discloses a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute at least one of the above-mentioned air interface detecting methods, specifically as shown in FIG. 4 and/ Or the method shown in Figure 5.
  • the computer storage medium in this embodiment may be a dynamic storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • the medium of the computer storage medium in the embodiment may be a non-transitory storage medium; conveniently storing the program code stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种空口测试装置、系统及空口测试方法和计算机存储介质,所述装置包括功分单元(110)以及与所述功分单元(110)相连的移相单元(120);所述功分单元包括N个第一端口(111)和M个第二端口(112);所述M大于所述N;所述M和所述N均为大于2的整数;所述移相单元包括M个第三端口(113)和N个第四端口(114);一个所述第二端口(112)与一个所述第三端口(113)相连,连接形成有M条移相支路;所述移相单元(120),用于依照正交矩阵与相位偏移度数的映射关系将输入所述功分单元(110)的信号或所述功分单元(110)输出的信号进行相位偏移;其中,所述正交矩阵包括M个元素,一个所述元素对应一条所述移相支路;所述元素的值与所述相位偏移度数具有映射关系。

Description

空口测试装置、系统、空口测试方法和存储介质 技术领域
本发明涉及无线通信领域的空口测试技术,尤其涉及一种空口测试装置、系统、空口测试方法和存储介质。
背景技术
随着多天线技术的发展,无线通讯越来越多地采用波束成型技术,并朝高速多流的方向演进。但如何以较简便的方式和较低的成本对多流波束空口进行验证和测试成为严重的挑战,现有的多流波束成型空口检测方法一般包括两种:
第一种:路测方式,这需要将终端分布在多个不同的方向进行拉距测试。这种方式比较能反映多流波束成型技术实际应用的真实情况,但工程浩大、费时费力,不能经常采用,也不方便排查定位问题。
第二种:信道模拟方式,但支持多天线波束成型测试的信道模拟仪需要上下行平衡,且需要的通道数也较多。故设备成本不是一般的高,对校准也有较高要求。因此较难大量应用,这不利于通过大样本发现问题。
发明内容
有鉴于此,本发明实施例期望提供一种空口测试装置、系统、空口测试方法和存储介质,以降低硬件成本和简化测试操作。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例第一方面提供一种空口测试装置,所述装置包括功分单元以及与所述功分单元相连的移相单元;
所述功分单元包括N个第一端口和M个第二端口;所述M大于所述N; 所述M和所述N均为大于2的整数;
所述移相单元包括M个第三端口和N个第四端口;
一个所述第二端口与一个所述第三端口相连,连接形成有M条移相支路;
所述移相单元,配置为依照正交矩阵与相位偏移度数的映射关系将输入所述功分单元的信号或所述功分单元输出的信号进行相位偏移;
其中,所述正交矩阵包括M个元素,一个所述元素对应一条所述移相支路;所述元素的值与所述相位偏移度数具有映射关系。
基于上述方案,各所述第一端口均通过所述移相支路与每一个所述第四端口相连。
基于上述方案,所述功分单元包括至少两个功分器;
每一个所述功分器,均配置为将一路输入信号分成至少两路等相的输出信号或将至少两路输入信号等相地合成一路输出信号。
基于上述方案,所述移相单元包括至少两个混合耦合器;
每一个所述混合耦合器,均配置为依照正交矩阵与相位偏移度数的映射关系,将一路输入信号分成至少两路具有一定相位关系的输出信号或将至少两路输入信号按一定的相位关系合成一路输出信号。
基于上述方案,所述移相单元包括:
功分器,配置为将一路输入信号分成至少两路等相的输出信号或将至少两路输入信号等相地合成一路输出信号;
移相模块,配置为依照正交矩阵与相位偏移度数的映射关系对信号进行相位偏移。
基于上述方案,所述移相模块包括移相器和/或移相电缆。
本发明实施例第二方面提供一种空口测试系统,所述系统包括如上所述的空口测试装置;所述空口测试装置包括N个第一端口和N个第四端口;
一个所述第一端口连接一个终端,一个所述第四端口连接测试基站的一个天线端口;或一个所述第四端口连接一个终端,一个所述第一端口连接测试基站的一个天线端口。
本发明实施例一种空口测试方法,所述方法包括:
接收终端发送的上行信号;
将每一个所述上行信号分成N个上行分量;
对每一个所述上行分量进行相位偏移处理;
将经过相位偏移处理的所述上行分量发送给测试基站;
接收测试基站依据所述上行分量的相位关系经过波束赋形发送的N个下行信号;
将所述N个下行信号分成M个下行分量并对所述M个下行分量进行相位偏移处理;
将所述M个下行分量进行信号合成处理后发送给终端;
其中,在进行所述相位偏移时,依照正交矩阵与相位偏移度数的映射关系将所述上行信号分量或所述下行信号分量进行相位偏移;
所述正交矩阵包括M个元素,一个所述元素对应于一路所述上行信号分量或一路所述下行信号分量;所述元素的值与所述相位偏移度数具有映射关系。
基于上述方案,所述方法应用于包括N个第一端口和N个第四端口的空口测试装置中;其中,在N个第一端口和N个第四端口之间形成有M条移相支路;一条所述移相支路用于一路所述上行信号分量或一路所述下行信号分量的相位偏移;
其中,当所述空口测试装置从所述第一端口接收所述上行信号时,则通过所述第四端口将所述上行信号分量发送到所述测试基站;当所述空口测试装置从所述第四端口接收上行信号时,则通过所述第一端口将所述上 行信号分量发送到所述测试基站。
本发明实施例第四方面提供一种空口测试方法,所述方法包括:
测试终端发送上行信号;
空口测试装置接收所述上行信号,将每一个所述上行信号分成N个上行信号分量,依照正交矩阵与相位偏移度数的映射关系对每一个所述上行信号分量进行相位偏移处理;
空口测试装置将经过相位偏移处理的上行信号分量,发送给测试基站的N个天线端口;
测试基站接收终端发送的上行信号;
测试基站依据上行信号的相位确定下行信号的赋形值;
测试基站依据所述赋形值生成并发送下行信号;
空口测试装置将每一个所述下行信号分成N个下行信号分量,并依照正交矩阵与相位偏移度数的映射关系将每一个下行信号分量进行相位偏移处理;
空口测试装置将所述下行信号分量进行信号合成后发送给终端;
各终端接收所述下行信号;
其中,所述正交矩阵包括M个元素,一个所述元素对应于一路所述上行信号分量或一路所述下行信号分量;所述元素的值与所述相位偏移度数具有映射关系;
终端接收到的所述下行信号用于确定所述测试基站正交波束赋形的效果。
基于上述方案,当一个终端有接收到发送给其他终端的下行信号的强度大于预设阈值时,则所述测试基站的正交波束赋形出现异常。
本发明实施例还一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述方法的至少 其中之一。
本发明实施例所述空口测试装置、系统、空口测试方法和存储介质,提供了一种由功分单元和移相单元构成的空口测试装置,该装置可以提供多条移相支路,移相支路的相位偏移度数与正交矩阵具有映射关系。该装置用于空口检测时,能够提供互不干扰的传输信道;用于进行空口测试相对于现有的信道模拟仪能够大大的降低硬件成本,且相对于路测方法具有测试简便的优点。
附图说明
图1为本发明实施例所述的空口测试装置的结构示意图之一;
图2为本发明实施例所述的空口测试装置的结构示意图之二;
图3为本发明实施例所述的空口测试系统的结构示意图之一;
图4为本发明实施例所述的空口测试方法的流程示意图之一;
图5为本发明实施例所述的空口测试方法的流程示意图之二;
图6为本发明示例所述的空口测试系统的结构示意图之二;
图7为本发明示例所述的空口测试装置的结构示意图之一;
图8为本发明示例所述的空口测试装置的结构示意图之二;
图9为本发明示例所述的空口测试装置的结构示意图之三;
图10为本发明示例所述的空口测试装置的结构示意图之四;
图11为本发明示例所述的空口测试装置的结构示意图之五;
图12为本发明示例所述的空口测试装置的结构示意图之五。
具体实施方式
以下结合附图对本发明的优选实施例进行详细说明,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例一:
如图1所示,本实施例提供一种空口测试装置,所述装置包括功分单元110以及与所述功分单元110相连的移相单元120;
所述功分单元110包括N个第一端口111和M个第二端口112;所述M大于所述N;所述M和所述N均为大于2的整数;
所述移相单元120包括M个第三端口113和N个第四端口114;
一个所述第二端口112与一个所述第三端口113相连,连接形成有M条移相支路;
所述移相单元120,配置为依照正交矩阵与相位偏移度数的映射关系将输入所述功分单元的信号或所述功分单元输出的信号进行相位偏移;
其中,所述正交矩阵包括M个元素,一个所述元素对应一条所述移相支路;所述元素的值与所述相位偏移度数具有映射关系。
具体的所述正交矩阵是实数特殊化的酉矩阵,在本实施例中所述正交矩阵可由1、-1,i以及-i组成的正交矩阵。
如图2所示的空口测试装置包括4条移相支路,其对应的正交矩阵为
Figure PCTCN2015075845-appb-000001
若所述空口测试装置的第一条移相支路与所述正交矩阵中的第1行第1列的元素相对应;所述空口测试装置的第二条移相支路与所述正交矩阵中第2行第1列的元素相对应;所述空口测试装置的第三条移相支路与所述正交矩阵中第1行第2列的元素相对应;所述空口测试装置的第四条移相支路与所述正交矩阵中第2行第2列的元素相对应。若1对应的相位偏移度数为0°;-1对应的相位偏移度数为180°,则第一条移相支路的相位偏移度数为0°,第二条移相支路的相位偏移度数为0°,第三条移相支路的相位偏移度数为180°,第四条移相支路的相位偏移度数为0°。当所述1表示0°,所述-1表示180°时,则所述i可以表示90°,所述-i表示-90°即270°。
在具体的实现过程中,正交矩阵各元素与相位偏移度数的对应关系还可以发送变更,如1表示180°,-1表示0°等。在比如,1表示45°,所述-1表示135°时,则所述i可以表示-135°,所述-i表示-45°。
在具体的实现时,所述第一移相支路也可以是与正交矩阵中的第1行第1列的元素对应,所述第二移相支路也可以是与正交矩阵中的第1行第2列的元素对应;所述第三移相支路也可以是与正交矩阵中的第2行第1列的元素对应,所述第四移相支路也可以是与正交矩阵中的第2行第2列的元素对应;则所述正交矩阵可为
Figure PCTCN2015075845-appb-000002
综合上述各条移相支路与正交矩阵中各元素的对应关系可以是事先预定好。如可以将正交矩阵的各元素按行计数,则第1行第1列为第1个元素,第1行第2列的元素的序号第2个元素,第x行第y个为第(x-1)*Y+y个元素;所述Y为每一行的元素个数;则第z条移相支路与第z个元素对应。再比如,如可以将正交矩阵的各元素按列计数,则第1行第1列为第1个元素,第2行第1列的元素的序号第2个元素,第x行第y个为第(y-1)*X+x个元素;所述X为每一列的元素个数;则第z条移相支路与第z个元素对应。
基于上述方案,各个所述第一端口均分别通过N条所述移相支路与每一个所述第四端口相连。采用本实施例所述的空口测试装置,从一个第一端口发出的信号经过所述移相支路后,将被分成N个信号分量分别进入第四端口,其中,每一个所述第四端口都能接收到一个信号分量;从一个第四端口发出的信号经过所述移相支路后,将被分成N个信号分量分别进入第一端口,其中,每一所述第一端口将接收到一个所述信号分量。
基于上述方案,所述功分单元110包括至少两个功分器;
每一个所述功分器,均配置为将一路输入信号分成至少两路等相的输出信号或将至少两路输入信号等相的合成一路输出信号。
所述将一路输入信号分成至少两路等相的输出信号,具体如将一路输入信号分成至少两路相位相同的信号;这两路信号不会由相位偏移。至少两路输入信号等相的合成一路输出信号,若一路输入信号的起始相位为90°、另一路输入信号的起始相位为0°,功分器在不对任何一路输入信号进行相位偏移的前提下进行信号合成。总而言之,该处所述的功分器为将一个信号分成多个信号或将多个信号合成一个信号的装置,但是不会对信号进行相位偏移的处理。
所述移相单元120可包括至少两个混合耦合器(Hybrid coupler);其中,所述混合耦合器又称为混合桥电路。
每一个所述混合耦合器,均配置为依照正交矩阵与相位偏移度数的映射关系,将一路输入信号分成至少两路具有一定相位关系的输出信号或将至少两路输入信号按一定的相位关系合成一路输出信号。
所述混合耦合器同样具有将一个信号分成多个信号或将多个信号合成一个信号的作用,与上述功分器不同的是:所述耦合器还将根据正交矩阵与相位偏移角度的映射关系对每一条移相支路中的信号进行相位偏移。
在具体实现时,所述移相单元还可包括功分器和移相模块构成;其中,所述移相模块可以是移相器及移相电缆的至少其中之一。
所述功分器,配置为将一路输入信号分成至少两路等相的输出信号或将至少两路输入信号等相地合成一路输出信号;所述移相模块用于依照正交矩阵与相位偏移度数的映射关系对信号进行相位偏移。
此外,所述移相器还可以由移相电缆替代与所述功分器共同构成所述移相单元。
本实施例提供了一种简易的空口测试装置,该装置的相对于现有的昂贵的信道模拟仪来将,通过功分单元和移相单元等可以由造价成本低及结构简单的电子设备构成的电子元器件构成,具有成本低的优点,且不用进 行繁琐的路测。
实施例二:
如图3所示,本实施例提供一种空口测试系统,所述系统包括上一实施例中任意技术方案所述的空口测试装置100;所述空口测试装置包括N个第一端口和N个第四端口;
一个所述第一端口连接一个终端,一个所述第四端口连接测试基站200的一个天线端口;
一个所述第四端口连接一个终端,一个所述第一端口连接测试基站200的一个天线端口。
其中,所述测试基站至少包括N个天线端口。
在图3中,所述空口测试装置100包括2个第一端口和2个第四端口;第一端口和第四端口之间形成有4条移相支路,分别是第一移相支路、第二移相支路、第三移相支路及第四移相支路。在图3所示的系统中,连接有2个终端3101、3201和1个具有至少两个天线端口的测试基站200。
在具体测试时,所述终端通过所述空口测试装置100向测试基站发送上行信号;所述上行信信号经过功分单元110的处理后,将变成M个信号;M个型号经过移相支路的处理后将形成进行了相位偏移的N个信号传输到测试基站200;测试基站200根据接收到的上行信号的相位关系,确定赋形值,依据所述赋形值向终端发送下行信号;所述下行信号经过所述空口测试装置100处理后,发送到终端;下行信号被分成的M个信号分量通过功分单元110处理时,同相相加反向相抵,若波束赋形值正确(即测试基站的波束赋形效果好)则终端将仅接收到其对应的信号,不会接收到测试基站本来发送给另一终端的信号,否则可能出现了波束赋形异常。
可选地,所述系统还包括N个第一衰减器;
所述空口测试装置通过所述第一衰减器与所述测试基站连接。
其中,所述第一衰减器用于对每一个上行传输到测试基站的信号进行上行衰减,模拟真实无线环境中的信号衰减。所述衰减器可以为可调衰减器。
再进一步地,所述系统还包括N个第二衰减器;
所述空口测试装置通过所述第二衰减器与所述终端连接。所述第二衰减器可为可调衰减器。
实施例三:
如图4所示,本实施例提供一种空口测试方法,所述方法包括:
步骤S110:接收终端发送的上行信号;
步骤S120:将每一个所述上行信号分成N个上行分量;
步骤S130:对每一个所述上行分量进行相位偏移处理;
步骤S140:将经过相位偏移处理的所述上行分量发送给测试基站;
步骤S150:接收测试基站依据所述上行分量的相位关系经过波束赋形发送的N个下行信号;
步骤S160:将所述N个下行信号分成M个下行分量并对所述M个下行分量进行相位偏移处理;
步骤S170:将所述M个下行分量进行信号合成处理后发送给终端;
其中,在进行所述相位偏移时,依照正交矩阵与相位偏移度数的映射关系将所述上行信号分量或所述下行信号分量进行相位偏移;
所述正交矩阵包括M个元素,一个所述元素对应于一路所述上行信号分量或一路所述下行信号分量;所述元素的值与所述相位偏移度数具有映射关系。
所述方法应用于包括N个第一端口和N个第四端口的空口测试装置(具体如实施例一中任意技术方案所述的空口测试装置)中;其中,在N 个第一端口和N个第四端口之间形成有M条移相支路;一条所述移相支路用于一路所述上行信号分量或一路所述下行信号分量的相位偏移;
当所述空口测试装置从所述第一端口接收所述上行信号时,则通过所述第四端口将所述上行信号分量发送到所述测试基站;当所述空口测试装置从所述第四端口接收上行信号时,则通过所述第一端口将所述上行信号分量发送到所述测试基站。
本实施例所述的方法,是基于实施例一中所述的空口测试装置,在进行空口检测时进行的信号处理操作。
具体如,终端3101和终端3201分别通过第一端口向空口测试装置100发送了上行信号;空口测试装置100接收所述上行信号,并将每一个上行信号分为2个上行信号分量,并将这些上行信号分量通过不同的移相支路进行移相处理后通发送到测试基站的每一天线端口,测试基站根据各个天线端口接收的2个上行信号的分量的相位关系,确定波束赋形值,并通过空口测试装置100向终端发送下行信号。其中一个天线端口将发送一个下行信号,且通常这个下行信号分量为一个复合信号,及所述复合信号中有信号分量是发送给终端3101,有信号分量是发送给终端3201;空口测试装置100接收到下行信号后,将每一个信号分成2个下行信号分量,共形成4个下行信号分量,一个下行信号分量由一条移相支路进行传输,并通过移相单元的相位偏移处理后,再进行信号合成中的同相相加,反相抵消,最终将发送到终端3101和终端3201。
在测试基站接收到的上行信号的相位正确的前提下,若测试基站的波束赋形正常,在理想状态下则终端3101将仅能接收到基站发给终端3101的信号,终端3201将仅能接收到基站发给终端3201的信号,否则就是波束赋形出现异常。在具体实现过程中,由于信号处理的一些误差因素,若终端3101接收到基站发送给终端3201的信号,若信号强度低于一定的阈 值,也可认为测试基站的波束赋形是正常的。
本实施例采用实施例一所述的空口测试装置进行空口检测,相对于现有的路测方法,具有实现简便的优点,相对于现有的采用常见的信道模拟仪的测量方法,具有硬件成本低的优点。
本实施例中空口装置进行相位偏移的相位偏移角度关系可以参见实施例一中的详细描述。
实施例四:
如图5所示,本实施例提供一种空口测试方法,所述方法包括:
步骤S210:测试终端发送上行信号;
步骤S220:空口测试装置接收所述上行信号,将每一个所述上行信号分成N个上行信号分量,依照正交矩阵与相位偏移度数的映射关系对每一个所述上行信号分量进行相位偏移处理;
步骤S230:空口测试装置将经过相位偏移处理的上行信号分量,发送给测试基站的N个天线端口;
步骤S240:测试基站接收终端发送的上行信号;
步骤S250:测试基站依据上行信号的相位确定下行信号的赋形值;
步骤S260:测试基站依据所述赋形值生成并发送下行信号;
步骤S270:空口测试装置将每一个所述下行信号分成N个下行信号分量,依照正交矩阵与相位偏移度数的映射关系并将每一个下行信号分量进行相位偏移处理;
步骤S280:空口测试装置将所述下行信号分量进行信号合成后发送给终端;
步骤S290:各终端接收所述下行信号;
各终端接收到的所述下行信号用于确定所述测试基站正交波束赋形的效果。
在具体实现时,若所述测试基站通过P个天线端口发送了P个下行信号,则空口测试装置将形成P*N个下行信号分量,在向终端发送下行信号时,又会将该P*N个下行信号分量合成P个信号发送给终端。
当一个终端有接收到发送给其他终端的下行信号的强度大于预设阈值时,则所述测试基站的波束赋形的正交性出现异常。
例如,当第m+n终端有接收到发送给第m终端的第m下行信号,且该第m下行信号的强度大于预设阈值时,则所述测试基站的波束赋形出现异常;
例如所述第m+n为大于1且不大于所述空口测试装置能够连接的终端总数的整数;所述m和所述n均为小于1的整数。
此处,是依据终端接收到的各下行信号的强度来确定所述测试基站的正交波束赋形效果。
当一个终端将接收到测试基站发送给其他终端的信号视为噪声时,所述方法还可包括确定每一个终端接收到的下行信号的信噪比;所述下行信号的信噪比用于确定所述测试基站的正交波束赋形的效果;通常信噪比越高,说明所述测试基站正交波束赋形的效果好。
当测试基站第一次由一个天线接口向一个终端发送下行信号;第二次由多个天线端口分别向该终端发送下行信号;可以通过比较这两次该终端接收到的下行信号的强度,确定下行信号的增益;依据该增益确定测试基站正交波束赋形的效果。若增益小于预设值,则可能所述测试基站正交波束赋形的效果差。
本实施例所述的方法,是基于实施例一所述的空口测试装置进行空口检测,相对于现有的路测方法,具有实现简便的优点,相对于现有的采用常见的信道模拟仪的测量方法,具有硬件成本低的优点。
在具体的实现过程中,所述上行信号可以通过衰减器处理后发送到空 口测试装置,再由空口测试装置处理后发送衰减器,再有衰减器经过衰减处理后发送给测试基站。所述下行信号也可以通过衰减器处理后发送给空口测试装置,再由空口测试装置处理后发送衰减器,再有衰减器经过衰减处理后发送给终端。
如图6所示的空口测试系统,包括基站、终端1、终端2、终端3、终端4及由虚线框围成的空口测试装置。此外,所述系统还包括可调的与终端连接的衰减器1、衰减器2、衰减器3及衰减器4、连接在基站连接的衰减器a、衰减器b、衰减器c及衰减器d。本发明所述适合多流波束成型空口测试简便装置的应用框图见附图1。
虚框中的结构即为所述空口测试装置的端口a、b、c和d分别接多天线基站的天线端口(通过衰减器)。空口测试装置的端口1、2、3和4分别接终端(通过可调的衰减器)。各终端上行信号经本空口测试装置后分为4路,并分别保持一定的相位关系进入基站各天线端口,基站按波束成型的原理,根据各天线端口上行信号的相位关系,确定各天线下行信号的赋形值,赋形后的各路下行信号经本装置后,由于各自的相位关系分别同相相加或反向抵消,最终在各终端天线口形成对应于该终端的数据流信号,若基站赋形值正确的话,则将屏除对应于其他终端的下行信号,因而可用于多流波束成型的空口测试。
虽然空口测试装置的a、b、c和d端口分别接基站的天线端口而1、2、3和4端口分别接终端,但实际上空口测试装置的1、2、3和4端口接基站的天线端口而a、b、c和d端口接终端也是可行的。
以下结合上述任一实施例提供几个具体示例:
示例1:
参见图7,本示例提供的空口检测装置的结构如下:
90度耦合器(201)的90度支路接90度耦合器(205),90度耦合器 (201)的0度支路接90度耦合器(206)。90度耦合器(205)的90度支路接功分器(213),90度耦合器(205)的0度支路及90度耦合器(206)的90度支路分别接功分器(214)和功分器(216),90度耦合器(206)的0度支路接功分器(215)。
90度耦合器(202)的90度支路接90度耦合器(207),90度耦合器(202)的0度支路接90度耦合器(208)。90度耦合器(207)的90度支路接功分器(214),90度耦合器(207)的0度支路及90度耦合器(208)的90度支路分别接功分器(213)和接功分器(215),90度耦合器(208)的0度支路接功分器(216)。
90度耦合器(203)的90度支路接90度耦合器(209),90度耦合器(203)的0度支路接90度耦合器(210)。90度耦合器(209)的90度支路接功分器(215),90度耦合器(209)的0度支路和90度耦合器(210)的90度支路分别接功分器(214)和功分器(216),90度耦合器(210)的0度支路接功分器(213)。
90度耦合器(204)的90度支路接90度耦合器(211),90度耦合器(204)的0度支路接90度耦合器(212)。90度耦合器(211)的90度支路接功分器(216),90度耦合器(211)的0度支路和90度耦合器(212)的90度支路分别接功分器(213)和功分器(215),90度耦合器(212)的0度支路接功分器(214)。
图7中所示装置a、b、c和d端口为上述实施例中所述的第四端口,用于与接基站的天线端口,本示例中的1、2、3和4端口为上述实施例中的第一端口,分别接终端1、终端2、终端3和终端4。
记终端1到达基站各天线a、b、c和d端口的相位依次为M1a、M1b、M1c、M1d,那么各相位之间的相位关系:M1a=π/2+π/2=π,M1b=0+π/2=π/2,M1c=0+0=0,M1d=0+π/2=π/2。
同样可以得到终端2到基站各天线a、b、c和d端口的相位关系依次为:M2a=π/2,M2b=π,M2c=π/2,M2d=0。
终端3到基站各天线a、b、c和d端口的相位关系依次为:M3a=0,M3b=π/2,M3c=π,M3d=π/2。
终端4到基站各天线a、b、c和d端口的相位关系依次为:M4a=π/2,M4b=0,M4c=π/2,M4d=π。
假定基站发送给终端1、2、3和4的下行信号分别为T1、T2、T3、T4,根据多流波束成型的工作原理,基站天线a实际发送的赋形后的复合下行信号为:ANTa=T1*exp(-M1a*i)+T2*exp(-M2a*i)+T3*exp(-M3a*i)+T4*exp(-M4a*i)=-T1-iT2+T3-iT4。
基站天线b实际发送的赋形后的复合下行信号为:ANTb=T1*exp(-M1b*i)+T2*exp(-M2b*i)+T3*exp(-M3b*i)+T4*exp(-M4b*i)==-iT1-T2-iT3+T4。
基站天线c实际发送的赋形后的复合下行信号为:ANTc=T1-iT2-T3-iT4。
基站天线d实际发送的赋形后的复合下行信号为:ANTd=-iT1+T2-iT3-T4。
基站各天线下行信号经本示例空口测试装置后到达终端1的下行信号为:ANTa*exp(π/2+π/2)+ANTb*exp(π/2+0)+ANTc*exp(0+0)+ANTd*exp(π/2+0)=4T1
到达终端2的信号为:
ANTa*exp(π/2+0)+ANTb*exp(π/2+π/2)+ANTc*exp(π/2+0)+ANTd*exp(0+0)=4T2。
到达终端3的信号为:
ANTa*exp(0+0)+ANTb*exp(0+π/2)+ANTc*exp(π/2+π/2)+ANTd*exp(0+π/2)=4T3
到达终端4的信号为
ANTa*exp(0+π/2)+ANTb*exp(0+0)+ANTc*exp(0+π/2)+ANTd*exp(π/2+π/2)=4T4。
这样通过本发明测试装置,如果基站对各终端上行信号的相位检测正确,并且对各终端下行信号的赋形值正确,则可在各终端端口能得到独立的未受干扰下行信号。
本示例是示例7的一个子集。
示例2:
参见图8,本示例所述的空口测试装置的结构如下:
功分器(301)的2个支路分别接180度耦合器(305)和同相耦合器(306)。180度耦合器(305)的180度支路接功分器(316),180度耦合器(305)的0度支路及同相耦合器(306)的两个支路分别接功分器(313)、功分器(314)和功分器(315)。
功分器(302)的2个支路分别接180度耦合器(307)和同相耦合器(308)。180度耦合器(307)的180度支路接功分器(315),180度耦合器(307)的0度支路及同相耦合器(308)的两个支路分别接功分器(313)、功分器(314)和功分器(316)。
功分器(303)的2个支路分别接180度耦合器(309)和同相耦合器(310)。180度耦合器(309)的180度支路接功分器(314),180度耦合器(309)的0度支路及同相耦合器(310)的两个支路分别接功分器(313)、功分器(315)和功分器(316)。
功分器(304)的2个支路分别接180度耦合器(311)和同相耦合器(312)。180度耦合器(311)的180度支路接功分器(313),180度耦合器(311)的0度支路及同相耦合器(312)的两个支路分别接功分器(314)、 功分器(315)和功分器(316)。
本示例可为是示例5的一个子集。
示例3:
参见图9,本示例所述的空口测试装置的结构如下:
90度耦合器(401)的90度支路接同相耦合器(405),90度耦合器(401)的0度支路接180度耦合器(406)。同相耦合器(405)的2个支路分别接功分器(414)和功分器(416)。180度耦合器(406)的180度支路接功分器(413),180度耦合器(406)的0度支路接功分器(415)。
90度耦合器(402)的90度支路接同相耦合器(407),90度耦合器(402)的0度支路接180度耦合器(408)。同相耦合器(407)的2个支路分别接功分器(413)和功分器(415)。180度耦合器(408)的180度支路接功分器(414),180度耦合器(408)的0度支路接功分器(416)。
90度耦合器(403)的90度支路接同相耦合器(409),90度耦合器(403)的0度支路接180度耦合器(410)。同相耦合器(409)的2个支路分别接功分器(414)和功分器(416)。180度耦合器(410)的180度支路接功分器(415),180度耦合器(410)的0度支路接功分器(413)。
90度耦合器(404)的90度支路接同相耦合器(411),90度耦合器(404)的0度支路接180度耦合器(412)。同相耦合器(411)的2个支路分别接功分器(413)和功分器(415)。180度耦合器(412)的180度支路接功分器(416),180度耦合器(412)的0度支路接功分器(414)。
示例4:
参见图10,本示例的空口测试装置的结构如下:
同相耦合器(501)的2个支路分别接功分器(503)和功分器(504)。
180度耦合器(502)的180度支路接功分器(504),180度耦合器(502)的0度支路接功分器(503)。
本示例可看作示例2和5的基础,示例2和5可认为是本示例的变形。
示例5:
参见图11,本示例所述的空口测试装置的结构如下:
功分器(601)的4个支路分别接同相耦合器(609)、(610)和180度耦合器(611)、(612)。同相耦合器(609)、(610)的各支路和180度耦合器(611)、(612)的0度支路分别接功分器(641)、(642)、(643)、(645)、(646)、(647)。180度耦合器(611)、(612)的180度支路分别接功分器(644)、(648)。
功分器(602)的4个支路分别接同相耦合器(613)、(614)和180度耦合器(615)、(616)。同相耦合器(613)、(614)的各支路和180度耦合器(615)、(616)的0度支路分别接功分器(641)、(642)、(644)、(645)、(646)、(648)。180度耦合器(615)、(616)的180度支路分别接功分器(643)、(647)。
功分器(603)的4个支路分别接同相耦合器(617)、(618)和180度耦合器(619)、(620)。同相耦合器(617)、(618)的各支路和180度耦合器(619)、(620)的0度支路分别接功分器(641)、(643)、(644)、(645)、(647)、(648)。180度耦合器(619)、(620)的180度支路分别接功分器(642)、(646)。
功分器(604)的4个支路分别接同相耦合器(621)、(622)和180度耦合器(623)、(624)。同相耦合器(621)、(622)的各支路和180度耦合器(623)、(624)的0度支路分别接功分器(642)、(643)、(644)、(646)、(647)、(648)。180度耦合器(623)、(624)的180度支路分别接功分器(641)、(645)。
功分器(605)的4个支路分别接180度耦合器(625)、(626)、(627)、(628)。180度耦合器(625)、(626)、(627)、(628)的0度支路分别接功 分器(641)、(642)、(643)、(648)。180度耦合器(625)、(626)、(627)、(628)的180度支路分别接功分器(644)、(645)、(646)、(647)。
功分器(606)的4个支路分别接180度耦合器(629)、(630)、(631)、(632)。180度耦合器(629)、(630)、(631)、(632)的0度支路分别接功分器(641)、(642)、(644)、(647)。180度耦合器(629)、(630)、(631)、(632)的180度支路分别接功分器(643)、(645)、(646)、(648)。
功分器(607)的4个支路分别接180度耦合器(633)、(634)、(635)、(636)。180度耦合器(633)、(634)、(635)、(636)的0度支路分别接功分器(641)、(643)、(644)、(646)。180度耦合器(633)、(634)、(635)、(636)的180度支路分别接功分器(642)、(645)、(647)、(648)。
功分器(608)的4个支路分别接180度耦合器(637)、(638)、(639)、(640)。180度耦合器(637)、(638)、(639)、(640)的0度支路分别接功分器(642)、(643)、(644)、(645)。180度耦合器(637)、(638)、(639)、(640)的180度支路分别接功分器(641)、(646)、(647)、(648)。
假设图11中本示例空口测试装置a、b、c、d、e、f、g、h端口分别接基站的天线端口,本示例空口测试装置1、2、3、4、5、6、7、8端口分别接终端1、终端2、终端3、终端4、终端5、终端6、终端7、终端8。
记终端1到达基站各天线a、b、c、d、e、f、g、h端口的相位依次为M1a、M1b、M1c、M1d、M1e、M1f、M1g、M1h,那么不难得到它们之间的相位关系:M1a=0,M1b=0,M1c=0,M1d=π,M1e=0,M1f=0,M1g=0,M1h=π。
同样可以得到终端2到基站各天线a、b、c、d、e、f、g、h端口的相位关系依次为:M2a=0,M2b=0,M2c=π,M2d=0,M2e=0,M2f=0,M2g=π,M2h=0。
终端3到基站各天线a、b、c、d、e、f、g、h端口的相位关系依次为: M3a=0,M3b=π,M3c=0,M3d=0,M3e=0,M3f=π,M3g=0,M3h=0。
终端4到基站各天线a、b、c、d、e、f、g、h端口的相位关系依次为:M4a=π,M4b=0,M4c=0,M4d=0,M4e=π,M4f=0,M4g=0,M4h=0。
终端5到基站各天线a、b、c、d、e、f、g、h端口的相位关系依次为:M5a=0,M5b=0,M5c=0,M5d=π,M5e=π,M5f=π,M5g=π,M5h=0。
终端6到基站各天线a、b、c、d、e、f、g、h端口的相位关系依次为:M6a=0,M6b=0,M6c=π,M6d=0,M6e=π,M6f=π,M6g=0,M6h=π。
终端7到基站各天线a、b、c、d、e、f、g、h端口的相位关系依次为:M7a=0,M7b=π,M7c=0,M7d=0,M7e=π,M7f=0,M7g=π,M7h=π。
终端8到基站各天线a、b、c、d、e、f、g、h端口的相位关系依次为:M8a=π,M8b=0,M8c=0,M8d=0,M8e=0,M8f=π,M8g=π,M8h=π。
假定基站发送给终端1、终端2、终端3、终端4、终端5、终端6、终端7、终端8的下行信号分别为T1、T2、T3、T4、T5、T6、T7、T8,根据多流波束成型的工作原理,基站天线a实际发送的赋形后的复合下行信号为:ANTa=T1+T2+T3-T4+T5+T6+T7–T8。
基站天线b实际发送的赋形后的复合下行信号为:ANTb=T1+T2-T3+T4+T5+T6-T7+T8。
基站天线c实际发送的赋形后的复合下行信号为:ANTc=T1-T2+T3+T4+T5-T6+T7+T8。
基站天线d实际发送的赋形后的复合下行信号为:ANTd=-T1+T2+T3+T4-T5+T6+T7+T8。
基站天线e实际发送的赋形后的复合下行信号为:ANTe=T1+T2+T3-T4-T5-T6-T7+T8。
基站天线f实际发送的赋形后的复合下行信号为:ANTf=T1+T2-T3+T4-T5-T6+T7-T8。
基站天线g实际发送的赋形后的复合下行信号为:ANTg=T1-T2+T3+T4-T5+T6-T7-T8。
基站天线h实际发送的赋形后的复合下行信号为:ANTh=-T1+T2+T3+T4+T5-T6-T7-T8
基站各天线下行信号经本示例空口测试装置后到达终端1的下行信号为:ANTa+ANTb+ANTc-ANTd+ANTe+ANTf+ANTg–ANTh=8T1。
到达终端2的信号为:ANTa+ANTb-ANTc+ANTd+ANTe+ANTf-ANTg+ANTh=8T2。
到达终端3的信号为:ANTa-ANTb+ANTc+ANTd+ANTe-ANTf+ANTg+ANTh=8T3。
到达终端4的信号为:-ANTa+ANTb+ANTc+ANTd-ANTe+ANTf+ANTg+ANTh=8T4。
到达终端5的信号为:ANTa+ANTb+ANTc-ANTd-ANTe-ANTf-ANTg+ANTh=8T5。
到达终端6的信号为:ANTa+ANTb-ANTc+ANTd-ANTe-ANTf+ANTg-ANTh=8T6。
到达终端7的信号为:ANTa-ANTb+ANTc+ANTd-ANTe+ANTf-ANTg-ANTh=8T7。
到达终端8的信号为:-ANTa+ANTb+ANTc+ANTd+ANTe-ANTf-ANTg-ANTh=8T8。
这样通过本发明测试装置,如果基站对各终端上行信号的相位检测正确,并且对各终端下行信号的赋形值正确,则可在各终端端口能得到独立的未受干扰下行信号;若波束赋形值异常,则终端6可能接收到其他终端接收到信号,具体如T1、T2或T3等信号。
示例6:
参见图12,本示例所述的空口测试装置的结构如下:
90度耦合器(701)的90度支路接功分器(703),90度耦合器(701)的0度支路接功分器(704)。
90度耦合器(702)的90度支路接功分器(704),90度耦合器(702)的0度支路接功分器(703)。
示例7:
参见图8,本示例所述的空口测试装置的结构如下:
功分器(801)的2个支路分别接180度耦合器(809)和同相耦合器(810)。180度耦合器(809)的180度支路接90度耦合器(825)。180度耦合器(809)的0度支路和同相耦合器(810)的2个支路分别接90度耦合器(826)、(827)、(828)。90度耦合器(825)的90度支路接功分器(864)。90度耦合器(825)的0度支路接功分器(857)。90度耦合器(826)、(827)、(828)的90度支路分别接功分器(858)、(860)、(862)。90度耦合器(826)、(827)、(828)的0度支路分别接功分器(859)、(861)、(863)。
功分器(802)的2个支路分别接180度耦合器(811)和同相耦合器(812)。180度耦合器(811)的180度支路接90度耦合器(829)。180度耦合器(811)的0度支路和同相耦合器(812)的2个支路分别接90度耦合器(830)、(831)、(832)。90度耦合器(829)的90度支路接功分器(863)。90度耦合器(829)的0度支路接功分器(858)。90度耦合器(830)、(831)、(832)的90度支路分别接功分器(857)、(859)、(861)。90度耦合器(830)、(831)、(832)的0度支路分别接功分器(860)、(862)、(864)。
功分器(803)的2个支路分别接180度耦合器(813)和同相耦合器(814)。180度耦合器(813)的180度支路接90度耦合器(833)。180度耦合器(813)的0度支路和同相耦合器(814)的2个支路分别接90度耦合器(834)、(835)、(836)。90度耦合器(833)的90度支路接功分器(862)。90度耦合器(833)的0度支路接功分器(859)。90度耦合器(834)、(835)、 (836)的90度支路分别接功分器(858)、(860)、(864)。90度耦合器(834)、(835)、(836)的0度支路分别接功分器(857)、(861)、(863)。
功分器(804)的2个支路分别接180度耦合器(815)和同相耦合器(816)。180度耦合器(815)的180度支路接90度耦合器(837)。180度耦合器(815)的0度支路和同相耦合器(816)的2个支路分别接90度耦合器(838)、(839)、(840)。90度耦合器(837)的90度支路接功分器(861)。90度耦合器(837)的0度支路接功分器(860)。90度耦合器(838)、(839)、(840)的90度支路分别接功分器(857)、(859)、(863)。90度耦合器(838)、(839)、(840)的0度支路分别接功分器(858)、(862)、(864)。
功分器(805)的2个支路分别接180度耦合器(817)和同相耦合器(818)。180度耦合器(817)的180度支路接90度耦合器(841)。180度耦合器(817)的0度支路和同相耦合器(818)的2个支路分别接90度耦合器(842)、(843)、(844)。90度耦合器(841)的90度支路接功分器(860)。90度耦合器(841)的0度支路接功分器(861)。90度耦合器(842)、(843)、(844)的90度支路分别接功分器(858)、(862)、(864)。90度耦合器(842)、(843)、(844)的0度支路分别接功分器(857)、(859)、(863)。
功分器(806)的2个支路分别接180度耦合器(819)和同相耦合器(820)。180度耦合器(819)的180度支路接90度耦合器(845)。180度耦合器(819)的0度支路和同相耦合器(820)的2个支路分别接90度耦合器(846)、(847)、(848)。90度耦合器(845)的90度支路接功分器(859)。90度耦合器(845)的0度支路接功分器(862)。90度耦合器(846)、(847)、(848)的90度支路分别接功分器(857)、(861)、(863)。90度耦合器(846)、(847)、(848)的0度支路分别接功分器(858)、(860)、(864)。
功分器(807)的2个支路分别接180度耦合器(821)和同相耦合器(822)。180度耦合器(821)的180度支路接90度耦合器(849)。180度 耦合器(821)的0度支路和同相耦合器(822)的2个支路分别接90度耦合器(850)、(851)、(852)。90度耦合器(849)的90度支路接功分器(858)。90度耦合器(849)的0度支路接功分器(863)。90度耦合器(850)、(851)、(852)的90度支路分别接功分器(860)、(862)、(864)。90度耦合器(850)、(851)、(852)的0度支路分别接功分器(857)、(859)、(861)。
功分器(808)的2个支路分别接180度耦合器(823)和同相耦合器(824)。180度耦合器(823)的180度支路接90度耦合器(853)。180度耦合器(823)的0度支路和同相耦合器(824)的2个支路分别接90度耦合器(854)、(855)、(856)。90度耦合器(853)的90度支路接功分器(857)。90度耦合器(853)的0度支路接功分器(864)。90度耦合器(854)、(855)、(856)的90度支路分别接功分器(859)、(861)、(863)。90度耦合器(854)、(855)、(856)的0度支路分别接功分器(858)、(860)、(862)。
本发明实施还公开了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述空口检测方法的至少其中之一,具体如图4和/或图5所示的方法。
本实施例所述的计算机存储介质可为动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,在本实施例中所述计算机存储介质可为非瞬间存储介质;方便稳定存储所述程序代码。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。

Claims (12)

  1. 一种空口测试装置,所述装置包括功分单元以及与所述功分单元相连的移相单元;
    所述功分单元包括N个第一端口和M个第二端口;所述M大于所述N;所述M和所述N均为大于2的整数;
    所述移相单元包括M个第三端口和N个第四端口;
    一个所述第二端口与一个所述第三端口相连,连接形成有M条移相支路;
    所述移相单元,配置为依照正交矩阵与相位偏移度数的映射关系将输入所述功分单元的信号或所述功分单元输出的信号进行相位偏移;
    其中,所述正交矩阵包括M个元素,一个所述元素对应一条所述移相支路;所述元素的值与所述相位偏移度数具有映射关系。
  2. 根据权利要求1所述的装置,其中,
    各所述第一端口均通过所述移相支路与每一个所述第四端口相连。
  3. 根据权利要求1或2所述的装置,其中,
    所述功分单元包括至少两个功分器;
    每一个所述功分器均配置为将一路输入信号分成至少两路等相的输出信号或将至少两路输入信号等相地合成一路输出信号。
  4. 根据权利要求1、2或3所述的装置,其中,
    所述移相单元包括至少两个混合耦合器;
    每一个所述混合耦合器,均配置为依照正交矩阵与相位偏移度数的映射关系,将一路输入信号分成至少两路具有一定相位关系的输出信号或将至少两路输入信号按一定的相位关系合成一路输出信号。
  5. 根据权利要求1、2或3所述的装置,其中,
    所述移相单元包括:
    功分器,配置为将一路输入信号分成至少两路等相的输出信号或将至少两路输入信号等相地合成一路输出信号;
    移相模块,配置为依照正交矩阵与相位偏移度数的映射关系对信号进行相位偏移。
  6. 根据权利要求5所述的装置,其中,
    所述移相模块包括移相器和/或移相电缆。
  7. 一种空口测试系统,所述系统包括如权利要求1至4任一项所述的空口测试装置;所述空口测试装置包括N个第一端口和N个第四端口;
    一个所述第一端口连接一个终端,一个所述第四端口连接测试基站的一个天线端口;或一个所述第四端口连接一个终端,一个所述第一端口连接测试基站的一个天线端口。
  8. 一种空口测试方法,所述方法包括:
    接收终端发送的上行信号;
    将每一个所述上行信号分成N个上行分量;
    对每一个所述上行分量进行相位偏移处理;
    将经过相位偏移处理的所述上行分量发送给测试基站;
    接收测试基站依据所述上行分量的相位关系经过波束赋形发送的N个下行信号;
    将所述N个下行信号分成M个下行分量并对所述M个下行分量进行相位偏移处理;
    将所述M个下行分量进行信号合成处理后发送给终端;
    其中,在进行所述相位偏移时,依照正交矩阵与相位偏移度数的映射关系将所述上行信号分量或所述下行信号分量进行相位偏移;
    所述正交矩阵包括M个元素,一个所述元素对应于一路所述上行信号 分量或一路所述下行信号分量;所述元素的值与所述相位偏移度数具有映射关系。
  9. 根据权利要求8所述的方法,其中,
    所述方法应用于包括N个第一端口和N个第四端口的空口测试装置中;其中,在N个第一端口和N个第四端口之间形成有M条移相支路;一条所述移相支路用于一路所述上行信号分量或一路所述下行信号分量的相位偏移;
    其中,当所述空口测试装置从所述第一端口接收所述上行信号时,则通过所述第四端口将所述上行信号分量发送到所述测试基站;当所述空口测试装置从所述第四端口接收上行信号时,则通过所述第一端口将所述上行信号分量发送到所述测试基站。
  10. 一种空口测试方法,所述方法包括:
    测试终端发送上行信号;
    空口测试装置接收所述上行信号,将每一个所述上行信号分成N个上行信号分量,依照正交矩阵与相位偏移度数的映射关系对每一个所述上行信号分量进行相位偏移处理;
    空口测试装置将经过相位偏移处理的上行信号分量,发送给测试基站的N个天线端口;
    测试基站接收终端发送的上行信号;
    测试基站依据上行信号的相位确定下行信号的赋形值;
    测试基站依据所述赋形值生成并发送下行信号;
    空口测试装置将每一个所述下行信号分成N个下行信号分量,并依照正交矩阵与相位偏移度数的映射关系将每一个下行信号分量进行相位偏移处理;
    空口测试装置将所述下行信号分量进行信号合成后发送给终端;
    各终端接收所述下行信号;
    其中,所述正交矩阵包括M个元素,一个所述元素对应于一路所述上行信号分量或一路所述下行信号分量;所述元素的值与所述相位偏移度数具有映射关系;
    终端接收到的所述下行信号用于确定所述测试基站正交波束赋形的效果。
  11. 根据权利要求9所述的方法,其中,
    当一个终端有接收到发送给其他终端的下行信号的强度大于预设阈值时,则所述测试基站的正交波束赋形出现异常。
  12. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求8至11所述方法的至少其中之一。
PCT/CN2015/075845 2014-11-03 2015-04-03 空口测试装置、系统、空口测试方法和存储介质 WO2016070563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410614068.9A CN105554783B (zh) 2014-11-03 2014-11-03 空口测试装置、系统及空口测试方法
CN201410614068.9 2014-11-03

Publications (1)

Publication Number Publication Date
WO2016070563A1 true WO2016070563A1 (zh) 2016-05-12

Family

ID=55833668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075845 WO2016070563A1 (zh) 2014-11-03 2015-04-03 空口测试装置、系统、空口测试方法和存储介质

Country Status (2)

Country Link
CN (1) CN105554783B (zh)
WO (1) WO2016070563A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181660A (zh) * 2020-01-22 2020-05-19 南京捷希科技有限公司 一种信道模拟装置及方法
CN111817806B (zh) * 2020-07-09 2022-09-09 中国信息通信研究院 一种汽车空口通信性能测试方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299858A (zh) * 2007-04-30 2008-11-05 大唐移动通信设备有限公司 信号处理装置、方法和采用该装置的智能天线测试系统
CN101415199A (zh) * 2007-10-15 2009-04-22 中兴通讯股份有限公司 一种模拟无线信道的切换测试系统及其方法
WO2009117926A1 (zh) * 2008-03-28 2009-10-01 华为技术有限公司 虚拟外场的无线测试系统
CN102340786A (zh) * 2010-07-26 2012-02-01 中兴通讯股份有限公司 一种用于波束成形校准和能力测试的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7412373B2 (en) * 2005-12-08 2008-08-12 Accton Technology Corporation Channel emulating device
US8063822B2 (en) * 2008-06-25 2011-11-22 Rockstar Bidco L.P. Antenna system
CN102130753B (zh) * 2010-01-20 2014-01-29 美国博通公司 一种处理信号的方法和系统
US8805300B2 (en) * 2012-03-19 2014-08-12 Intel Mobile Communications GmbH Agile and adaptive wideband MIMO antenna isolation
EP2959653B1 (en) * 2013-02-22 2018-05-30 Octoscope Inc. Radio frequency multipath channel emulation system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299858A (zh) * 2007-04-30 2008-11-05 大唐移动通信设备有限公司 信号处理装置、方法和采用该装置的智能天线测试系统
CN101415199A (zh) * 2007-10-15 2009-04-22 中兴通讯股份有限公司 一种模拟无线信道的切换测试系统及其方法
WO2009117926A1 (zh) * 2008-03-28 2009-10-01 华为技术有限公司 虚拟外场的无线测试系统
CN102340786A (zh) * 2010-07-26 2012-02-01 中兴通讯股份有限公司 一种用于波束成形校准和能力测试的方法和装置

Also Published As

Publication number Publication date
CN105554783A (zh) 2016-05-04
CN105554783B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
US11516813B2 (en) Method and apparatus for sending transmission configuration indicator, method and apparatus for receiving transmission configuration indicator, storage medium, base station, and terminal
JP5607237B2 (ja) 無線通信を用いる試験システム
CN107104742A (zh) 一种面向并行多通道无线信道测量的校准方法及其系统
EP3101971A1 (en) Beam selection method, apparatus and communication system
US10771172B2 (en) Base station test system and method based on 3D massive MIMO and storage medium
US9407381B2 (en) Radio channel emulation
US20160337052A1 (en) System and method for test and/or calibration of multi-channel rf communication devices
US10735158B2 (en) Reference signal mapping method and device
WO2016070563A1 (zh) 空口测试装置、系统、空口测试方法和存储介质
US20220399975A1 (en) Indication method and device, indication information receiving method and device, communication node, and medium
CN101213520A (zh) 并行输入/输出自测试电路和方法
CN107819527A (zh) 一种大规模天线基站设备的测试装置及测试方法
CN108120917B (zh) 测试时钟电路确定方法及装置
CN101278494A (zh) 用于用户设备中极化校正的方法和装置
KR20170128452A (ko) 빔 정보를 취득하는 방법, 장치 및 통신 시스템
CN106357583A (zh) 分布式mimo‑ofdm系统下基于cazac序列的定时同步方法
US20230370108A1 (en) Lo phase correction for aas with multiple rfic
US8798124B2 (en) Method of measuring error vector magnitude
EP2597794A1 (en) Device for simulating MIMO environment
CN108736939A (zh) 波束训练的方法和设备
WO2020093209A1 (en) Method for antenna calibration and active antenna system for use in antenna calibration
CN106230527B (zh) 一种用于多输入多输出信道测试方法和装置
TWI739486B (zh) 背板測試系統及其方法
JP7191960B2 (ja) 無線周波数チャネル接続検出方法および無線周波数チャネル接続検出装置
CN111464280B (zh) 一种多路信号处理系统、方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856203

Country of ref document: EP

Kind code of ref document: A1