WO2016068361A1 - Method for refurbishing spent ruthenium or ruthenium alloy-based sputtering target, and refurbished ruthenium or ruthenium alloy-based sputtering target with uniform grains prepared thereby - Google Patents

Method for refurbishing spent ruthenium or ruthenium alloy-based sputtering target, and refurbished ruthenium or ruthenium alloy-based sputtering target with uniform grains prepared thereby Download PDF

Info

Publication number
WO2016068361A1
WO2016068361A1 PCT/KR2014/010373 KR2014010373W WO2016068361A1 WO 2016068361 A1 WO2016068361 A1 WO 2016068361A1 KR 2014010373 W KR2014010373 W KR 2014010373W WO 2016068361 A1 WO2016068361 A1 WO 2016068361A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium
target
raw material
alloy
based sputtering
Prior art date
Application number
PCT/KR2014/010373
Other languages
French (fr)
Korean (ko)
Inventor
권오집
홍길수
양승호
윤원규
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Publication of WO2016068361A1 publication Critical patent/WO2016068361A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a method for refurbishing a metal target used in a sputtering process, and more particularly, to fill a used portion of a ruthenium (Ru) sputtering waste target with high purity metal powder.
  • Sputtering targets are used for forming wafers, glasses, and electrode or seed layers on semiconductors (RAM, MRAM, FeRAM), heads (MR, TMR), and capacitors do. In addition, it is used to form a thin film for forming a media recording layer of a magnetic recording device (MRD) to enable recording and storage of data.
  • RAM semiconductors
  • MRAM magnetic RAM
  • MR magnetic recording device
  • mass-capacity PMR hard disk media currently in mass production uses ruthenium (Ru) and ruthenium alloy (Ru alloy) layers as intermediate layers.
  • the basic characteristic of Ru is that the vertical orientation of the magnetic recording surface formed on the upper layer is possible because the vertical orientation is possible due to the hexagonal close packing (HCP) structure.
  • HCP hexagonal close packing
  • the use of Ru and Ru alloy layers is indispensable to produce high capacity media capable of recording larger amounts of data in such limited space, which leads to higher purity and grain refinement of ruthenium or ruthenium alloy based sputtering targets. Is an essential element. Therefore, the development of a ruthenium or ruthenium alloy-based sputtering target having high purity while controlling the size of the grains is urgently required.
  • the metal sputtering target such as ruthenium (Ru) described above forms a thin film layer through a sputtering process.
  • This sputtering process is generally a process in which ions accelerated by a plasma collide with a target, atoms bounce off the target surface, and these atoms are deposited on the substrate surface to form a thin film layer.
  • the consumption amount of the sputtering target is less than 50%, and most of the sputtering targets remain unusable.
  • the sputtering target is different depending on the process conditions or the raw material of the target, but generally only about 30 to 40% is used.
  • sputtering waste targets used in the sputtering process are discarded, or some waste targets are recovered and redissolved or refined and powdered, and then sintered to prepare new sputtering targets.
  • the waste target is powdered through various complex processes described above, a lot of time and cost are consumed. Impurities may also be included when powdering the waste target, which may adversely affect the purity of the final sputtering target.
  • the conventionally known process for powdering the waste target is a high risk of the process because it uses a strong acid, such as a large amount of waste liquid is generated, there is also a problem that carbon dioxide is generated during the treatment process is not environmentally friendly.
  • the present invention has been made to solve the above-described problems, and instead of powdering and regenerating the conventional waste target through a number of complex processes, the raw material of the same component in the article portion of the ruthenium (Ru) -based sputtering waste target
  • An object of the present invention is to provide a novel method for producing a ruthenium-based sputtering target which is partially filled with powder and then pressurized at a predetermined pressure.
  • the temperature during sintering can be lowered, and at the same time, it is easy to grow particles at the interface portion located between the sputtering waste target portion and the newly filled raw powder portion. Can be controlled to increase the uniformity and provide a recycled sputtering target having fine crystal grains.
  • Another object of the present invention is to provide a ruthenium or an alloy-based sputtering target thereof manufactured by the regeneration method of the above-described waste target to ensure high purity and control fine grains.
  • the present invention comprises the steps of (a) washing or cutting ruthenium (Ru) or ruthenium alloy-based sputtering waste target; (b) injecting the washed or cut waste target into a mold; (c) filling the planarized raw material powder with the same components as the waste target and flattening the waste target into a mold to form a laminate; (d) applying pressure to the laminate to form a molded body; And (e) provides a method for regenerating ruthenium or ruthenium alloy-based sputtering waste target comprising the step of sintering the molded body.
  • ruthenium ruthenium
  • ruthenium alloy-based sputtering waste target comprising the step of sintering the molded body.
  • the raw material powder of step (c) is ruthenium (Ru); Or ruthenium (Ru) and at least one selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) It is preferable that it is a powder of the mixed form containing an element.
  • the raw powder of step (c) comprises the steps of (i) injecting ruthenium or ruthenium-containing raw material into the mold; (ii) plasma treating the ruthenium or ruthenium containing raw material to form a primary raw material powder; (iii) disposing the primary raw material powder on a bed coated with the same component and then jet milling to form a secondary raw material powder; And (iv) hydrogen reduction heat treatment of the secondary raw material powder.
  • the step (d) may be performed for 1 to 60 minutes under pressure conditions in the range of 100 to 300 MPa.
  • the step (e) may be to sinter for 1 to 20 hours at a temperature of 700 to 2000 °C, pressure conditions of 10 to 80 MPa.
  • the present invention also provides a ruthenium or ruthenium alloy-based sputtering target produced by the above-described method.
  • the target is ruthenium (Ru); Or ruthenium (Ru) and at least one element selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) It is preferable that it is an alloy containing.
  • the sputtering target is a recycling unit of ruthenium or ruthenium alloy-based sputtering waste target; And a packing part filled in the consumed part of the recycling part and composed of the same raw material powder as the recycling part, wherein the size of the crystal grains located at the interface between the recycling part and the packing part is 130 compared to the particle size of the recycling part. It is preferable to adjust it to% or less.
  • the gas content in the target is preferably 100 ppm or less of oxygen, 100 ppm or less of carbon, nitrogen, sulfur, hydrogen of 10 ppm or less, respectively.
  • the ruthenium or ruthenium alloy-based sputtering target manufactured in the present invention can be used for forming a thin film layer of semiconductor or magnetic recording device media, or for forming semiconductor wiring.
  • ruthenium (Ru) sputtering waste target is filled with a high-purity raw material powder of the same composition and then molded at a constant pressure, and then sintered, thereby lowering the temperature during sintering and shortening the sintering time, thereby ruthenium (Ru) ) Ruthenium (Ru) sputtering targets having uniform grains can be easily controlled by controlling particle growth between the surface portion of the sputtering waste target and the powder portion newly filled in the ruthenium (Ru) sputtering waste target. Can be played with
  • the regeneration method uses less raw material powder than producing a new sputtering target, not only the manufacturing cost of the sputtering target can be reduced but also the manufacturing time can be shortened.
  • the present invention is environmentally friendly and economical because it is possible to recycle the sputtering waste target that is generally discarded, and to reduce the emission of carbon dioxide due to the reduction of the manufacturing time of the sputtering target.
  • FIG. 1 is a diagram showing a media layer thin film structure in a high capacity hard disk of a vertical magnetic recording (PMR) method.
  • PMR vertical magnetic recording
  • 2 (a) and 2 (b) are graphs of the ruthenium (Ru) sputtering waste target used and the thickness of the Ru waste target, respectively.
  • FIG 3 is a view schematically showing a regeneration process of the ruthenium sputtering waste target according to the present invention.
  • FIG. 4 is a FESEM photograph of the sputtering target reproduced in Example 1.
  • FIG. 4 is a FESEM photograph of the sputtering target reproduced in Example 1.
  • FIG. 5 is a FESEM photograph of the sputtering target of Comparative Example 1.
  • FIG. 6 is an FESEM photograph of the sputtering target of Comparative Example 2.
  • FIG. 7 is a FESEM photograph of each part of the sputtering target reproduced in Example 1.
  • ruthenium (Ru) or ruthenium (Ru) alloy layer having an hexagonal dense (HCP) structure and vertically oriented as an intermediate layer.
  • Such an intermediate layer is formed mainly through a sputtering process of a ruthenium-based target, and the conventional ruthenium-based sputtering target is manufactured by filling a ruthenium (Ru) raw powder directly into a sintering mold and sintering, thereby limiting the refinement of grains in the target.
  • the conventional metal sputtering target is powdered through various complex processes, and then recycled to the target through the same process.
  • impurities are included in the powdering process, thereby improving the purity of the final target. May adversely affect
  • the portion consumed through surface cleaning is filled with the raw material powder of the same component and then sintered, thereby sputtering waste target through an environmentally friendly and economical simple process.
  • ruthenium (Ru) sputtering waste target used for the surface
  • the portion consumed through surface cleaning is filled with the raw material powder of the same component and then sintered, thereby sputtering waste target through an environmentally friendly and economical simple process.
  • Ru ruthenium
  • the present invention is characterized in that the ruthenium-based sputtering waste target is filled with a powder of the same ingredient and then pressed before pressing and sintered at a predetermined pressure.
  • the sintering temperature can be lowered and the sintering time can be shortened. Accordingly, the interface between the sputtering waste target portion and the newly filled powder portion Particle growth of the portion can be easily controlled to increase the uniformity and obtain a sputtering target having fine crystal grains.
  • the present invention by using a plasma-treated high-purity ruthenium-based metal powder as the raw material powder, it is possible to further increase the high purity and fine grain effect of the sputtering target.
  • the ruthenium or alloy-based sputtering waste target is prepared by the method of filling the raw powder of the same component and molding at a constant pressure, and then sintering such a molded body Can be.
  • ruthenium ruthenium
  • ruthenium alloy-based sputtering waste target (a) washing or cutting ruthenium (Ru) or ruthenium alloy-based sputtering waste target; (b) injecting the washed or cut waste target into a mold; (c) filling the planarized raw material powder with the same components as the waste target and flattening the waste target into a mold to form a laminate; (d) applying pressure to the laminate to form a molded body; And (e) sintering the molded body.
  • ruthenium ruthenium
  • ruthenium alloy-based sputtering waste target (b) injecting the washed or cut waste target into a mold; (c) filling the planarized raw material powder with the same components as the waste target and flattening the waste target into a mold to form a laminate; (d) applying pressure to the laminate to form a molded body; And (e) sintering the molded body.
  • the raw material powder of step (c), the plasma-treated primary ruthenium-containing raw material powder is placed in a bed coated with the same component and then jet mill pulverized to form a secondary raw material powder, and then prepared by reduction heat treatment It may have been.
  • FIG. 3 is a conceptual diagram illustrating a method of regenerating ruthenium (Ru) or an alloy-based sputtering waste target thereof in accordance with the present invention.
  • the manufacturing method will be described with reference to FIG. 3 by dividing each process step as follows.
  • step S1 impurities are removed from the surface of the spent sputtering waste target.
  • the waste target is not particularly limited as long as it is a previously used target.
  • the target may be 27% used, or the target used 35%.
  • ruthenium (Ru) or ruthenium alloy-based waste target is used as the waste target.
  • the ruthenium alloy is not particularly limited as long as it is a component capable of forming an alloy with Ru, and conventional components known in the art may be used.
  • the present invention is not limited to the Ru-based target described above, and other sputtering waste targets that are generally recovered after being used in the sputtering process, for example, gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), and chromium
  • a waste metal target made of an element selected from the group consisting of (Cr), cobalt (Co) and tungsten (W), or a waste alloy target made of two or more kinds thereof can be used without limitation.
  • debonding may be performed before removing impurities in the sputtering waste target. At this time, the debonding may proceed at a temperature of 200 ⁇ 300 °C.
  • the temperature is increased.
  • the temperature may be increased to 200 to 300 ° C at a temperature of 5 to 10 ° C / min.
  • the temperature is rapidly raised to a temperature exceeding 10 °C / min, there is a possibility that deformation of the backing plate may occur, it is preferable to increase the temperature to 10 °C / min or less.
  • the temperature reaches 200 ⁇ 300 °C to maintain 30 ⁇ 60 minutes to perform the debonding.
  • Impurities such as oxides and carbides exist on the surface of the sputtering waste target described above. Therefore, in this step, it is possible to remove impurities from the surface of the sputtering waste target through a conventional method for removing impurities known in the art.
  • impurities such as oxides and carbides may be removed through a cleaning method using an acid, alcohol, and / or distilled water, an ultrasonic cleaning method, a plasma surface cleaning method, or the like.
  • the surface of the sputtering waste target can be machined to within about 1 mm (preferably 0 to 1 mm) by removing the surface with a machine such as CNC, MCT, grinder, etc. to remove impurities.
  • a machine such as CNC, MCT, grinder, etc.
  • a specimen in order to check whether impurities attached to the surface are removed during the process, a specimen may be taken for each time and subjected to ICP analysis.
  • the sputtering waste target from which impurities are removed is introduced into the mold.
  • the material of the mold that can be used in the step (S2) is not particularly limited, and examples thereof include tool steel (Steel Tool Die, SKD or STD) steel, stainless steel (Stainless Steel).
  • tool steel Step Tool Die, SKD or STD
  • stainless steel stainless Steel
  • the waste target when the sputtering waste target is put into the mold, the waste target may be cut.
  • the sputtering waste target put into the mold in the previous step S2 is filled and planarized with a raw material powder of the same component to form a laminate.
  • the raw material powder used in the step S3 is not particularly limited as long as it is a raw material powder of the same component as the sputtering waste target, and for example, ruthenium (Ru) alone or ruthenium (Ru); and gold (Au), silver ( Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) may be a mixed form or alloy form powder containing one or more elements selected from the group. .
  • the ruthenium-containing raw material powder may be powdered by using a commercially available metal powder or by regenerating a ruthenium or ruthenium alloy-based waste target.
  • the content (filling amount) of the raw material powder may be adjusted by calculating by density calculation method according to the weight of the sputtering waste target and the desired regeneration sputtering target from which impurities are removed in the step S1. For example, when the weight of the regenerated sputtering target to be manufactured is 3 kg, and the weight of the sputtered waste target is 1.5 kg, the sputtering waste target is regenerated with the content of the raw material powder as 2 kg. At this time, 0.5 kg is the part removed during the final processing.
  • the ruthenium-containing raw material powder of the present invention may be prepared by the following method, wherein in addition to the following method, a method of powdering an existing sputtering waste target through conventional dry or wet methods known in the art may also be obtained. Belongs to the category.
  • Preferred examples of preparing the ruthenium-containing raw material powder include: (i) injecting ruthenium or ruthenium-containing raw material into a mold ('S31 step'); (ii) plasma treatment of ruthenium or ruthenium-containing raw material to form a primary raw material powder ('S32 step'); And (iii) disposing the primary raw material powder on a bed coated with the same ingredient as the raw material and then jet milling to form a secondary raw material powder ('S33 step'). At this time, if necessary, (iv) may further comprise the step of hydrogen reduction heat treatment of the secondary raw material powder ('S34 step').
  • the manufacturing method of the ruthenium containing raw material powder using the above-mentioned plasma is a kind of new dry method.
  • the production time of the ruthenium-based raw material powder is shorter than that of the conventional wet method, the process is less risky and environmentally friendly, and the particle size is smaller than that of the conventional dry method. Small high purity ruthenium-containing raw material powders can be produced.
  • the ruthenium-based raw material is put into a mold (or crucible) for plasma treatment ('S31 step').
  • the ruthenium-based raw material may be a sputtering waste target itself or a bulk state obtained by sintering or dissolving a metal (alloy).
  • impurities such as sodium (Na), copper (Cu), carbon (C), and silicon (Si) may be present on the surface of the raw material or may be exposed to air for a long time. It may be in a state where oxidation has occurred, so it is preferable to clean it before putting it into the mold.
  • the method for cleaning the raw material is not particularly limited, and the surface of the sputtering waste target may be washed or cut as in the aforementioned step S1. For example, a method of immersion in sodium hypochlorite (NaOCl) for 5 minutes may be used.
  • the material of the mold into which the ruthenium-based raw material is added is not particularly limited, and it is preferable to use the same material as the raw material (for example, Ru) to be injected.
  • the raw material for example, Ru
  • a mold of a different material from the raw material such as a conventional carbon (C) mold
  • C carbon
  • it is accompanied by a queue treatment in a post process.
  • a subsequent process is added to perform the heat treatment two or more times.
  • grain growth occurs, and the grain size of the final product grows above the reference value.
  • the content of gas impurities for example, oxygen or carbon
  • the waste target and the new gas content is different from each other in the manufacture of the final product, which results in the use of only one.
  • the atmospheric heat treatment process for carbon removal is It does not need to be carried out separately, which can shorten the manufacturing process time of the powder.
  • high quality ruthenium (Ru) powder can be produced.
  • the raw material powder can be manufactured in a short time safely and environmentally friendly compared to the conventional wet method.
  • the power, time and working vacuum conditions in the plasma treatment step are not particularly limited, and may be appropriately adjusted within the conditions known in the art. In one example, it is preferably in the range of 5 to 60 Kw (preferably 15 to 30 Kw), 10 to 240 minutes, and 50 to 600 torr.
  • the plasma treatment step (S12) when the power is less than 5 Kw, the yield of the primary ruthenium-containing raw material powder may be reduced, and when it exceeds 60 Kw, the particle size of the primary raw material powder may be increased.
  • the plasma distribution is widened to shorten the lifetime of the anode mold for plasma formation, and when the working vacuum exceeds 600 torr, the particle size of the primary raw material powder may be increased and the oxygen content may be increased. Therefore, the plasma treatment is preferably performed within the above-described conditions.
  • the plasma is applied to the direct current (DC) transfer plasma
  • the applied voltage is preferably adjusted to 50 to 200V, the applied current in the range of 100 to 300A.
  • the components of the gas for forming an inert atmosphere are not particularly limited, and examples thereof include argon (Ar), nitrogen (N 2 ), hydrogen (H 2 ), methane (CH 4 ), helium (He), and the like. . These can be used individually or in mixture of 2 or more types.
  • the components of the reaction gas used for plasma formation are also not particularly limited, and examples thereof include argon (Ar), nitrogen (N 2 ), hydrogen (H 2 ), helium (He), and the like. These can be used individually or in mixture of 2 or more types.
  • the gas flow rate of the reaction gas is preferably 20 to 200 SLM, but is not particularly limited thereto.
  • the particle size of the primary ruthenium-containing raw material powder formed by the plasma treatment is not particularly limited, and may be, for example, in the range of about 1 to 1,000 ⁇ m. At this time, about 0.3% of the formed primary raw material powder may have a particle size exceeding 1,000 ⁇ m, which may be used again as a raw material.
  • step S32 the primary raw material powder formed in step S32 is placed on a bed coated with the same ingredients as the raw material, and then jet mill is milled to form secondary raw material powder ('S33 step'). ).
  • the gas source used in the jet mill grinding in step S33 is not particularly limited, and examples thereof include argon (Ar), nitrogen (N 2 ), hydrogen (H 2 ), helium (He), or a mixture thereof. Since the gas source does not contain oxygen, it is possible to prevent oxidation of the ruthenium raw material powder, thereby suppressing the increase of the surface energy of the powder when the secondary raw material powder is formed.
  • the speed of the blade (Blade) used for the classification of the jet mill can be appropriately adjusted within the conventional range known in the art, for example, about 1,000 to 20,000 rpm, it is preferable to shorten the grinding time. In addition, when the grinding gas pressure is 5 to 10 bar, it is preferable to shorten the grinding time.
  • the particle size of the secondary ruthenium-containing raw material powder formed by jet mill grinding as described above is not particularly limited, and may be, for example, about 10 ⁇ m or less, and preferably about 0.1 to 10 ⁇ m.
  • the secondary raw material powder formed in step S33 may optionally further include a step (iv) of hydrogen reduction heat treatment ('step S34').
  • oxygen or nitrogen contained in the secondary raw material powder may be removed to increase the purity of the secondary raw material powder.
  • the hydrogen reduction heat treatment conditions are not particularly limited, for example, it is preferably carried out for 2 to 10 hours in a range of 500 to 1,000 °C in hydrogen (H 2 ) atmosphere. If the temperature and time conditions of the hydrogen reduction heat treatment step are smaller than the above-described numerical range, oxygen or nitrogen may not be sufficiently removed, and if it exceeds the range, the powder may aggregate.
  • the material of the mold used for the hydrogen reduction heat treatment is not particularly limited, and conventional mold components known in the art may be used without limitation. Examples include alumina (Al 2 O 3 ), stainless steel (Stainless Steel series), tantalum (Ta), molybdenum (Mo), tungsten (W), zirconia (ZrO 2 ), yttria (Y 2 O 3 ), and the like. .
  • alumina Al 2 O 3
  • stainless steel stainless Steel series
  • Ta tantalum
  • Mo molybdenum
  • W tungsten
  • ZrO 2 zirconia
  • yttria yttria
  • the mold formed of the material selected from the group consisting of alumina, zirconia and yttria is oxidatively stabilized, oxidation of the raw material powder (increase in oxygen content) does not occur.
  • the gas used in the hydrogen reduction heat treatment step (S34) is not particularly limited, and examples thereof include hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), helium (He), and the like. Two or more kinds may be mixed and used.
  • the ruthenium-based raw material powder prepared as described above is filled in a waste target put into a mold, and then flattened. At this time, in order to reduce the thickness variation of the final sputtering target, it is preferable to adjust the horizontality of the surface filled with the raw material powder within the flattening within ⁇ 0.1 mm.
  • a molded body is formed by applying a predetermined pressure to the laminate formed in the step S3.
  • the present invention by performing the forming step (S4) before the sintering step (S5), it is possible to lower the sintering temperature in the following sintering step (S5), thereby the recycled portion of the sputtering target to be regenerated and newly filled Particle growth at the interface portion between the portions can be easily controlled.
  • the recycled particles of the sputtering waste target recycled in the following sintering step (S5) may be coarse, the particles of the filling portion may be fine, but in the present invention, the recycling portion and the filling through the forming step (S4) Since the grain growth can be controlled to a size of 130% or less than the recycled portion, the size of the interfacial grains located in the interfacial portion between the portions can be separated. It is prevented, and therefore, a high density target can be obtained stably.
  • the method for forming the molded article is not particularly limited, and conventional molding methods known in the art may be used without limitation.
  • conventional molding methods known in the art may be used without limitation.
  • the pressurization condition of the molding step (S4) is not particularly limited, for example, the pressure is in the range of 100 to 300 MPa, the time is preferably in the range of about 1 to 60 minutes.
  • the relative density of the molded body can be increased while maintaining the shape of the target.
  • the molded body obtained in step S4 may be sintered to reduce the oxidized powder in the molded body and to reduce the gas content in the target.
  • the method of sintering the molded body is not particularly limited, and conventional methods known in the art may be used without limitation.
  • a hot press method a hot isostatic press method, a spark plasma sintering method, a gas pressure sintering method, and the like are available.
  • the molded body is sintered by the hot press method (Hot Press)
  • the oxidized powder in the molded body can be reduced, which is preferable.
  • the sintering conditions of the molded body is not particularly limited, can be appropriately adjusted within a conventional range.
  • the sintering temperature is preferably sintered below the temperature corresponding to 80% of the melting point (Tm: Melting Point) of the ruthenium-based sputtering waste target material.
  • the material of the mold used in the sintering step (S5) of the molded body is not particularly limited, for example, carbon (C), molybdenum (Mo), tungsten (W), tantalum (Ta), chromium (Cr), niobium (Nb) ), Zirconium (Zr), platinum (Pt) and the like. These may be used alone or in combination of two or more thereof.
  • ruthenium (Ru) target or a ruthenium alloy (alloy) target is described mainly, but other components used for forming a thin film layer of semiconductor, HDD, magnetic recording device media, for example, gold (Au), silver (Ag) ), Platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) may be used in place of powders of components selected from the group consisting of or their waste targets, respectively.
  • the powder is manufactured by the wet method during the regeneration of the Ru target, and the prepared wet powder is used as it is, the gas characteristics between the waste target and the packed powder are different, so that the upper and lower gas component values are different when the final product is manufactured. Is generated, and thus, only one of the upper and lower sides is adopted and used.
  • the same sintering process is performed twice, resulting in the growth of grains.
  • the present invention satisfies the same gas spec.
  • the waste target according to the dry process and lowers the sintering temperature and time through the intermediate forming process, thereby controlling grain growth even if the waste target portion undergoes two sintering processes. It can be used as a final product, there is an advantage of a new manufacturing process.
  • the present invention provides a ruthenium (Ru) or ruthenium alloy-based sputtering target regenerated by the regeneration method as described above.
  • the crystal grains of the newly filled portion may be fine, while the crystal grains of the recycled portion (recycling portion) may be coarser than the crystal grains of the filling portion.
  • each of the internal grains has an energy-low free energy, so the size of the grains is independently.
  • the interface portions which are in contact with each other cause the growth of grains to reduce the high energy state due to the high free energy energy. Accordingly, the recycling portion (regeneration portion) and the filling portion can maintain the existing grains as it is, the interface portion between them can be promoted by the high energy (for example, interfacial energy, Gibbs free energy, etc.) growth of the grains .
  • the grain growth of the interface portion between the filled portion and the recycled portion is increased by regeneration through the above-described manufacturing process. Since it can be adjusted in the range of 130% or less, preferably 110 to 130%, the separation phenomenon due to the difference in grain size between the filling part and the recycling part can be prevented, thereby stably regenerating the regeneration sputtering target in the sputtering process. It is available.
  • the gas content in the target may be 100 ppm or less of oxygen, 100 ppm or less of carbon, nitrogen, sulfur, hydrogen may be 10 ppm or less, respectively, and purity may be 4N.
  • the uniformity of the product may be increased when applied to the sputtering process, and particle formation may be suppressed to reduce the defect rate of the product. .
  • the ruthenium (Ru) -based sputtering target may be used as a sputtering target for forming a thin film layer of an HDD, a semiconductor memory (RAM, MRAM, FeRAM), a head (MR, TMR), or a magnetic recording device media (for example, a hard disk platter). It can be used for the wiring formation of a semiconductor process. It can also be used to manufacture compounds, hardening materials, electrical contact materials, resistive materials, catalytic materials, photosensitive materials or anticancer materials, and can be applied to other technical fields where Ru-based targets can be usefully applied. have.
  • a core seed layer capable of storing a large amount of bits per square inch (in 2 ) of data in order to increase recording density in accordance with the progress of high performance (capacity and miniaturization) of hard disk drive media. ) Is used for formation.
  • the primary ruthenium (Ru) powder obtained above is placed on a ruthenium (Ru) coated bed (coated stainless steel with ruthenium (Ru) powder), followed by jet mill pulverization and classification to form secondary ruthenium (Ru). ) Powder was prepared.
  • the jet mill milling gas source was nitrogen (N2)
  • the grinding gas pressure is 7 bar
  • the classification blade speed was 2,000 rpm.
  • the secondary ruthenium (Ru) powder was subjected to hydrogen reduction heat treatment at 900 ° C. for 8 hours using a molybdenum (Mo) mold to prepare a final ruthenium (Ru) powder (center particle size: less than 10 ⁇ m).
  • the surface of the ruthenium (Ru) sputtering waste target of purity 3N5 or more was immersed in sodium hypochlorite (NaOCl) for 5 minutes and washed.
  • 1.5 kg of the cleaned sputtering waste target was placed in a mold, and then 2.0 kg of Ru powder prepared in Example 1-1 was filled and the surface was flattened so that the surface level was within ⁇ 0.1 mm to obtain a laminate.
  • the laminate was press-molded at a pressure of 180 MPa for 10 minutes to obtain a molded body, and then the molded body was separated from the mold.
  • the reconstituted ruthenium (Ru) sputtering target was produced by hot press sintering at a temperature of 1,450 ° C. and a pressure of 20 MPa for 3 hours.
  • the regenerated ruthenium (Ru) sputtering target of Example 1 was almost the same shape of the ruthenium (Ru) sputtering target of Comparative Example 1 and Comparative Example 2.
  • the ruthenium (Ru) sputtering target of Example 1 has an average particle diameter of about 8.5 ⁇ m
  • the ruthenium (Ru) sputtering target of Comparative Example 1 using a powder prepared by a wet method average particle size of crystal particles: about 13.3 ⁇ m
  • the size of crystal grains was smaller than that of.
  • the cross section of the regenerated ruthenium (Ru) sputtering target of Example 1 was confirmed by FESEM, respectively, a filling part, an interface, and a regeneration part. This is shown in FIG. 7.
  • the regenerated ruthenium (Ru) sputtering target of Example 1 was controlled to have an average particle diameter of 8.0 ⁇ m, an interface average particle diameter of 16.1 ⁇ m, and an average particle diameter of 13.1 ⁇ m of the regenerated portion, respectively. It was found that the particle uniformity had uniform crystal grains of 4.09% in total.
  • the filling part is a portion filled with the raw material powder
  • the recycling portion is a portion where the raw powder is not filled with the used sputtering waste target portion
  • the interface portion means a boundary portion of the filling portion and the recycling portion, respectively.
  • the purity of the ruthenium (Ru) sputtering target of Example 1 was the same as or higher than that of the ruthenium (Ru) sputtering target of Comparative Examples 1 and 2, and the total amount of impurities compared to the ruthenium (Ru) sputtering target of Comparative Example 1 Low (see Table 1).
  • the filling part, the interface part and the recycling part of the sputtering Ru target of Example 1 all showed a high purity result with a low total amount of impurities compared to the sputtering Ru target of Comparative Example 1 prepared by the wet method, and manufactured by the dry method.
  • the result of the same level as the ruthenium (Ru) sputtering target of Comparative Example 2 was shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention provides a method for refurbishing a spent ruthenium (Ru) or Ru alloy-based sputtering target and an Ru or Ru alloy-based sputtering target refurbished by the method, the method comprising the steps of: (a) washing or cutting a spent Ru or Ru alloy-based sputtering target; (b) inserting the washed or cut spent target into a mold; (c) forming a laminate by charging a raw material powder having the same ingredient as the spent target into the mold in which the spent target has been inserted, and by flattening same; (d) forming a green compact by applying pressure to the laminate; and (e) sintering the green compact.

Description

루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재생방법 및 이로부터 제조된 균일한 결정립을 갖는 루테늄 또는 루테늄 합금계 재활용 스퍼터링 타겟Regeneration method of ruthenium or ruthenium alloy-based sputtering waste target and ruthenium or ruthenium alloy-based recycle sputtering target having uniform grains prepared therefrom
본 발명은 스퍼터링 공정(Sputtering Process)에 사용되는 금속 타겟(Metal Target)을 재생(Refurbishing)하는 방법에 관한 것으로, 보다 상세하게는 루테늄(Ru) 스퍼터링 폐타겟의 사용된 부분에 고순도 금속분말을 채워 스퍼터링 타겟을 재생하는 신규 제조방법 및 이로부터 제조된 균일한 결정립을 갖는 루테늄계 재생 타겟에 관한 것이다.The present invention relates to a method for refurbishing a metal target used in a sputtering process, and more particularly, to fill a used portion of a ruthenium (Ru) sputtering waste target with high purity metal powder. A novel production method for regenerating a sputtering target and a ruthenium-based regeneration target having uniform grains prepared therefrom.
스퍼터링 타겟은 반도체 메모리(RAM, MRAM, FeRAM), 헤드(MR, TMR) 및 캐패시터(Capacitor) 제조를 위한 웨이퍼(Wafer)나 글라스(Glass), 대상물질(Substrate) 상의 전극층 또는 시드층 형성 등에 사용된다. 또한 자기기록매체(MRD: Magnetic Recording Device)의 미디어 기록층을 형성하는 박막형성에 사용되어 데이터(Data)의 기록 및 저장을 가능하게 해준다.Sputtering targets are used for forming wafers, glasses, and electrode or seed layers on semiconductors (RAM, MRAM, FeRAM), heads (MR, TMR), and capacitors do. In addition, it is used to form a thin film for forming a media recording layer of a magnetic recording device (MRD) to enable recording and storage of data.
최근 하드디스크 전문 제조업체는 기존의 수평 자기기록(LMR, Longitudinal Magnetic Recording) 방식에서 수직 자기기록 (PMR, Perpendicular Magnetic Recording) 방식으로 변경하여 기록밀도를 1Tb/in2 까지 기록할 수 있는 저장 매체를 개발하였다. 참고로, 1Tb/in2 의 용량은 1조 비트(bit)의 데이터를 저장할 수 있는 것으로, 은하계의 별의 숫자(2천억개 ~ 4천억개로 추정) 보다 더 많은 데이터를 불과 1평방 인치의 디스크 표면 위에 저장할 수 있는 수치이다. 더 나아가, 단일 자기기록(SMR, Singled Magnetic Recording) 방식으로 3Tb/in2, 열 자기기록 (HAMR, Heat Assisted Magnetic Recording(or TAMR : Thermal Assist magnetic Recording)) 방식으로 5Tb/in2 까지 기록밀도를 증가할 수 있다. 상기와 같이 기록 밀도의 증가가 가능해진 핵심적인 요소는 기존의 수평자화에서(LMR) 수직자화(PMR) 방식으로 변경이 가능하도록 했던 중간층(Intermediate Layer)의 재질 변경 때문이다. Recently, hard disk manufacturers have developed storage media that can record recording density up to 1Tb / in 2 by changing from conventional horizontal magnetic recording (LMR) to vertical magnetic recording (PMR). It was. For reference, the capacity of 1 Tb / in 2 is capable of storing one trillion bits of data, meaning that only one square inch of disk contains more data than the number of stars in the galaxy (estimated from 200 billion to 400 billion). The number that can be stored on the surface. Furthermore, a single magnetic recording (SMR, Singled Magnetic Recording) scheme 3Tb / in 2, thermal magnetic recording (HAMR, Heat Assisted Magnetic Recording ( or TAMR: Thermal Assist magnetic Recording)) the recording density to 5Tb / in 2 in such a way Can increase. The key factor that enables the increase in recording density as described above is due to the change of the material of the intermediate layer, which can be changed from the conventional horizontal magnetization (LMR) to the vertical magnetization (PMR) method.
하기 도 1에 도시된 바와 같이, 현재 양산되는 대용량 PMR 방식의 하드디스크 미디어는 중간층(Intermediate Layer)으로서 루테늄(Ru) 및 루테늄 합금(Ru alloy)층을 사용하고 있다. 이러한 Ru의 기본적인 특성은 육방 밀집(HCP, Hexagonal Close Packing: 육방밀집구조) 구조로 인해 수직방향으로 배향이 가능하므로, 그 상위층에 형성되는 자기기록면의 수직 배향이 가능했기 때문이다. 이와 같이 한정된 공간에 더 많은 양의 데이터를 기록할 수 있는 고용량의 미디어를 제조하기 위해서는 Ru 및 Ru 합금층의 사용이 반드시 요구되며, 이는 곧 사용되는 루테늄 또는 루테늄 합금계 스퍼터링 타겟의 고순도 및 결정립 미세화가 필수적인 요소가 된다. 따라서 결정립의 크기가 미세하게 제어되면서 고순도를 갖는 루테늄 또는 루테늄 합금계 스퍼터링 타겟의 개발이 절실히 요구되고 있는 실정이다.As shown in FIG. 1, mass-capacity PMR hard disk media currently in mass production uses ruthenium (Ru) and ruthenium alloy (Ru alloy) layers as intermediate layers. The basic characteristic of Ru is that the vertical orientation of the magnetic recording surface formed on the upper layer is possible because the vertical orientation is possible due to the hexagonal close packing (HCP) structure. The use of Ru and Ru alloy layers is indispensable to produce high capacity media capable of recording larger amounts of data in such limited space, which leads to higher purity and grain refinement of ruthenium or ruthenium alloy based sputtering targets. Is an essential element. Therefore, the development of a ruthenium or ruthenium alloy-based sputtering target having high purity while controlling the size of the grains is urgently required.
한편 전술한 루테늄(Ru) 등의 금속 스퍼터링 타겟은 스퍼터링 공정을 통해 박막층을 형성하게 된다. 이러한 스퍼터링 공정(sputtering process)은 일반적으로 플라즈마에 의해 가속된 이온들이 타겟에 충돌하며 타겟 표면으로부터 원자가 튕겨 나오고, 이러한 원자가 기판 표면에 증착됨으로서 박막층이 형성되는 공정이다. 다만, 스퍼터링 공정에서 스퍼터링 타겟의 소모량은 50% 미만으로, 스퍼터링 타겟의 대부분은 사용되지 못하고 남는다. 도 2에 도시된 바와 같이, 스퍼터링 타겟은 공정 조건이나 타겟의 원료마다 차이가 있으나, 대체적으로 30 ~ 40% 정도만 사용될 뿐이다. 이에 따라, 종래에는 스퍼터링 공정에서 사용되고 남은 스퍼터링 폐타겟을 폐기하거나, 또는 일부 폐타겟을 회수하여 재용해시키거나 또는 정련시키고 분말화시킨 다음, 이를 소결하여 새로운 스퍼터링 타겟을 제조하였다. 그러나 상술한 여러 복잡한 공정을 거쳐 폐타겟을 분말화시킬 경우, 많은 시간과 비용이 소비되는 문제가 있다. 또한 폐타겟을 분말화할 때 불순물이 포함될 수 있는데, 이는 최종 스퍼터링 타겟의 순도에 악영향을 미칠 수 있다. 아울러, 종래 알려진 폐타겟을 분말화하는 공정은 강산 등을 사용하기 때문에 공정의 위험성이 높으며, 상당량의 폐액이 발생될 뿐 아니라, 처리 과정에서 이산화탄소가 발생하여 친환경적이지 못하다는 문제점도 있다. Meanwhile, the metal sputtering target such as ruthenium (Ru) described above forms a thin film layer through a sputtering process. This sputtering process is generally a process in which ions accelerated by a plasma collide with a target, atoms bounce off the target surface, and these atoms are deposited on the substrate surface to form a thin film layer. However, in the sputtering process, the consumption amount of the sputtering target is less than 50%, and most of the sputtering targets remain unusable. As shown in Figure 2, the sputtering target is different depending on the process conditions or the raw material of the target, but generally only about 30 to 40% is used. Accordingly, conventionally, sputtering waste targets used in the sputtering process are discarded, or some waste targets are recovered and redissolved or refined and powdered, and then sintered to prepare new sputtering targets. However, when the waste target is powdered through various complex processes described above, a lot of time and cost are consumed. Impurities may also be included when powdering the waste target, which may adversely affect the purity of the final sputtering target. In addition, the conventionally known process for powdering the waste target is a high risk of the process because it uses a strong acid, such as a large amount of waste liquid is generated, there is also a problem that carbon dioxide is generated during the treatment process is not environmentally friendly.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 종래 폐타겟을 여러 복잡한 공정을 통해 분말화하여 재생하는 대신, 루테늄(Ru)계 스퍼터링 폐타겟의 기사용된 부분에, 이와 동일한 성분의 원료분말을 일부 충진시킨 후 일정 압력을 가압(pressing)하여 소결하는 루테늄계 스퍼터링 타겟의 신규 제조방법을 제공하는 것을 목적으로 한다. The present invention has been made to solve the above-described problems, and instead of powdering and regenerating the conventional waste target through a number of complex processes, the raw material of the same component in the article portion of the ruthenium (Ru) -based sputtering waste target An object of the present invention is to provide a novel method for producing a ruthenium-based sputtering target which is partially filled with powder and then pressurized at a predetermined pressure.
상기와 같은 방법을 통해 폐타겟을 재활용하는 경우, 소결시 온도를 낮출 수 있으며, 이와 동시에 스퍼터링 폐타겟부와 새롭게 충진된 원료분말부 사이에 위치하는 계면부(界面部)에서의 입자 성장이 용이하게 제어되어 균일도가 증가되고, 미세 결정입자를 갖는 재활용 스퍼터링 타겟을 제공할 수 있다. When the waste target is recycled through the above method, the temperature during sintering can be lowered, and at the same time, it is easy to grow particles at the interface portion located between the sputtering waste target portion and the newly filled raw powder portion. Can be controlled to increase the uniformity and provide a recycled sputtering target having fine crystal grains.
또한 본 발명은 전술한 폐타겟의 재생방법에 의해 제조되어 고순도가 확보되고 미세 결정립이 제어된 루테늄 또는 이의 합금계 스퍼터링 타겟을 제공하는 것을 또 다른 목적으로 한다. Another object of the present invention is to provide a ruthenium or an alloy-based sputtering target thereof manufactured by the regeneration method of the above-described waste target to ensure high purity and control fine grains.
상기한 목적을 달성하기 위해, 본 발명은 (a) 루테늄(Ru) 또는 루테늄 합금계 스퍼터링 폐타겟을 세척 또는 절삭 가공하는 단계; (b) 상기 세척 또는 절삭가공된 폐타겟을 몰드에 투입하는 단계; (c) 상기 폐타겟이 투입된 몰드에, 상기 폐타겟과 동일한 성분의 원료분말을 충진하고 평탄화하여 적층체를 형성하는 단계; (d) 상기 적층체에 압력을 가하여 성형체를 형성하는 단계; 및 (e) 상기 성형체를 소결하는 단계를 포함하는 루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재생방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) washing or cutting ruthenium (Ru) or ruthenium alloy-based sputtering waste target; (b) injecting the washed or cut waste target into a mold; (c) filling the planarized raw material powder with the same components as the waste target and flattening the waste target into a mold to form a laminate; (d) applying pressure to the laminate to form a molded body; And (e) provides a method for regenerating ruthenium or ruthenium alloy-based sputtering waste target comprising the step of sintering the molded body.
여기서, 상기 단계 (c)의 원료분말은 루테늄(Ru); 또는 루테늄(Ru);과 금(Au), 은(Ag), 백금(Pt), 탄탈륨(Ta), 크롬(Cr), 코발트(Co) 및 텅스텐(W)으로 이루어진 군에서 선택되는 1종 이상의 원소를 포함하는 혼합 형태의 분말인 것이 바람직하다. Here, the raw material powder of step (c) is ruthenium (Ru); Or ruthenium (Ru) and at least one selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) It is preferable that it is a powder of the mixed form containing an element.
본 발명의 바람직한 일례에 따르면, 상기 단계 (c)의 원료분말은 (i) 몰드에 루테늄 또는 루테늄 함유 원료 물질을 투입하는 단계; (ii) 루테늄 또는 루테늄 함유 원료 물질을 플라즈마 처리하여 1차 원료 분말을 형성하는 단계; (iii) 상기 1차 원료 분말을 이와 동일한 성분으로 코팅된 베드에 배치한 후 제트밀 분쇄하여 2차 원료 분말을 형성하는 단계; 및 (iv) 상기 2 차 원료 분말을 수소환원 열처리하는 단계를 포함하는 방법에 의해 제조된 것이 바람직하다. According to a preferred embodiment of the present invention, the raw powder of step (c) comprises the steps of (i) injecting ruthenium or ruthenium-containing raw material into the mold; (ii) plasma treating the ruthenium or ruthenium containing raw material to form a primary raw material powder; (iii) disposing the primary raw material powder on a bed coated with the same component and then jet milling to form a secondary raw material powder; And (iv) hydrogen reduction heat treatment of the secondary raw material powder.
본 발명의 바람직한 다른 일례에 따르면, 상기 단계 (d)는 100 내지 300 MPa 범위의 압력 조건 하에서, 1 내지 60 분 동안 실시되는 것일 수 있다. According to another preferred embodiment of the present invention, the step (d) may be performed for 1 to 60 minutes under pressure conditions in the range of 100 to 300 MPa.
본 발명의 바람직한 또 다른 일례에 따르면, 상기 단계 (e)는 700 내지 2000℃의 온도, 10 내지 80 MPa의 압력 조건 하에서 1 내지 20 시간 동안 소결하는 것일 수 있다. According to another preferred embodiment of the present invention, the step (e) may be to sinter for 1 to 20 hours at a temperature of 700 to 2000 ℃, pressure conditions of 10 to 80 MPa.
또한 본 발명은 전술한 방법에 의해 제조된 루테늄 또는 루테늄 합금계 스퍼터링 타겟을 제공한다.The present invention also provides a ruthenium or ruthenium alloy-based sputtering target produced by the above-described method.
여기서, 상기 타겟은 루테늄(Ru); 또는 루테늄(Ru);과 금(Au), 은(Ag), 백금(Pt), 탄탈륨(Ta), 크롬(Cr), 코발트(Co) 및 텅스텐(W)으로 이루어진 군에서 선택된 1종 이상의 원소를 포함하는 합금(alloy)인 것이 바람직하다.Here, the target is ruthenium (Ru); Or ruthenium (Ru) and at least one element selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) It is preferable that it is an alloy containing.
본 발명의 바람직한 일례에 따르면, 상기 스퍼터링 타겟은 루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재활용부; 및 상기 재활용부의 소모된 부분에 충진되고, 재활용부와 동일한 성분의 원료분말로 구성된 충진부를 포함하며, 상기 재활용부와 충진부 사이의 계면부에 위치하는 결정입자의 크기가 재활용부의 입자 크기 대비 130% 이하로 조절하는 것이 바람직하다. According to a preferred embodiment of the present invention, the sputtering target is a recycling unit of ruthenium or ruthenium alloy-based sputtering waste target; And a packing part filled in the consumed part of the recycling part and composed of the same raw material powder as the recycling part, wherein the size of the crystal grains located at the interface between the recycling part and the packing part is 130 compared to the particle size of the recycling part. It is preferable to adjust it to% or less.
또한 상기 타겟 내 가스 함량이 산소 100 ppm 이하, 탄소 100 ppm 이하, 질소, 황, 수소가 각각 10 ppm 이하인 것이 바람직하다. In addition, the gas content in the target is preferably 100 ppm or less of oxygen, 100 ppm or less of carbon, nitrogen, sulfur, hydrogen of 10 ppm or less, respectively.
아울러, 본 발명에서 제조된 루테늄 또는 루테늄 합금계 스퍼터링 타겟은 반도체 또는 자기기록장치 미디어의 박막층 형성 용도나, 혹은 반도체 배선형성 용도로 사용될 수 있다.In addition, the ruthenium or ruthenium alloy-based sputtering target manufactured in the present invention can be used for forming a thin film layer of semiconductor or magnetic recording device media, or for forming semiconductor wiring.
본 발명에서는 루테늄(Ru) 스퍼터링 폐타겟에 이와 성분이 동일한 고순도 원료 분말을 충진시킨 다음 일정 압력으로 성형한 후 소결시킴으로써, 소결시 온도가 낮아지고 소결 시간을 단축할 수 있으며, 이로 인해 루테늄(Ru) 스퍼터링 폐타겟의 표면 부분과 루테늄(Ru) 스퍼터링 폐타겟에 새롭게 충진된 분말 부분 간의 입자 성장을 용이하게 제어하여, 종래 루테늄(Ru) 스퍼터링 폐타겟을 균일한 결정립을 갖는 루테늄(Ru) 스퍼터링 타겟으로 재생시킬 수 있다.In the present invention, ruthenium (Ru) sputtering waste target is filled with a high-purity raw material powder of the same composition and then molded at a constant pressure, and then sintered, thereby lowering the temperature during sintering and shortening the sintering time, thereby ruthenium (Ru) ) Ruthenium (Ru) sputtering targets having uniform grains can be easily controlled by controlling particle growth between the surface portion of the sputtering waste target and the powder portion newly filled in the ruthenium (Ru) sputtering waste target. Can be played with
또한, 상기 재생방법은 새로운 스퍼터링 타겟을 제조하는 것에 비해 원료 분말을 적게 사용하기 때문에, 스퍼터링 타겟의 제조단가가 절감될 뿐만 아니라 제조시간이 단축될 수 있다. In addition, since the regeneration method uses less raw material powder than producing a new sputtering target, not only the manufacturing cost of the sputtering target can be reduced but also the manufacturing time can be shortened.
아울러, 본 발명은 일반적으로 폐기되는 스퍼터링 폐타겟을 재활용하고, 스퍼터링 타겟의 제조시간 단축에 따른 이산화탄소의 배출량을 감소시킬 수 있기 때문에, 친환경적이며 경제적이다.In addition, the present invention is environmentally friendly and economical because it is possible to recycle the sputtering waste target that is generally discarded, and to reduce the emission of carbon dioxide due to the reduction of the manufacturing time of the sputtering target.
도 1은 수직 자기기록(PMR) 방식의 대용량 하드디스크 내에서 미디어 층 박막 구조를 나타내는 도면이다.FIG. 1 is a diagram showing a media layer thin film structure in a high capacity hard disk of a vertical magnetic recording (PMR) method.
도 2(a) 및 도 2(b)는 각각 사용된 루테늄(Ru) 스퍼터링 폐타겟의 사진과 상기 Ru 폐타겟의 두께를 측정한 그래프이다.2 (a) and 2 (b) are graphs of the ruthenium (Ru) sputtering waste target used and the thickness of the Ru waste target, respectively.
도 3은 본 발명에 따른 루테늄 스퍼터링 폐타겟의 재생공정을 개략적으로 나타낸 도면이다.3 is a view schematically showing a regeneration process of the ruthenium sputtering waste target according to the present invention.
도 4는 실시예 1에서 재생된 스퍼터링 타겟의 FESEM 사진이다.4 is a FESEM photograph of the sputtering target reproduced in Example 1. FIG.
도 5은 비교예 1의 스퍼터링 타겟의 FESEM 사진이다.5 is a FESEM photograph of the sputtering target of Comparative Example 1. FIG.
도 6은 비교예 2의 스퍼터링 타겟의 FESEM 사진이다.6 is an FESEM photograph of the sputtering target of Comparative Example 2. FIG.
도 7은 실시예 1에서 재생된 스퍼터링 타겟의 부위별 FESEM 사진이다.7 is a FESEM photograph of each part of the sputtering target reproduced in Example 1. FIG.
이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.
고용량 하드디스크 미디어를 제조하기 위해서는, 육방밀집(HCP) 구조를 가져 수직방향으로 배향이 가능한 루테늄(Ru) 또는 루테늄(Ru) 합금층을 중간층으로 사용하는 것이 반드시 필요하다. 이러한 중간층은 주로 루테늄계 타겟을 스퍼터링 공정을 통해 형성되는데, 종래 루테늄계 스퍼터링 타겟은 루테늄(Ru) 원료분말을 소결 몰드에 직접 충진한 후 소결하여 제조되므로, 상기 타겟 내 결정립의 미세화에 한계가 있었다. 또한 종래 금속 스퍼터링 타겟을 여러 복잡한 공정을 통해 분말화한 후, 동일한 공정을 거쳐 타겟으로 재활용하기도 하였으나, 이 경우 많은 시간과 비용이 소비될 뿐만 아니라 분말화 공정에서 불순물이 포함되어 최종 타겟의 순도에 악영향을 미칠 수 있다. In order to manufacture high capacity hard disk media, it is necessary to use a ruthenium (Ru) or ruthenium (Ru) alloy layer having an hexagonal dense (HCP) structure and vertically oriented as an intermediate layer. Such an intermediate layer is formed mainly through a sputtering process of a ruthenium-based target, and the conventional ruthenium-based sputtering target is manufactured by filling a ruthenium (Ru) raw powder directly into a sintering mold and sintering, thereby limiting the refinement of grains in the target. . In addition, the conventional metal sputtering target is powdered through various complex processes, and then recycled to the target through the same process. However, in this case, not only a lot of time and cost are consumed but also impurities are included in the powdering process, thereby improving the purity of the final target. May adversely affect
한편 본 발명에서는 기사용된 루테늄(Ru) 스퍼터링 폐타겟을 이용하여 표면 세정을 거쳐 소모된 부분을, 이와 동일한 성분의 원료 분말로 충진시키고 이후 소결함으로써, 친환경적이며 경제적으로 단순 공정을 통해 스퍼터링 폐타겟을 재생하고자 하였다. 이때 4N급 루테늄(Ru) 원료분말을 사용하여 스퍼터링 타겟을 제조할 경우, 공정조건 조절을 통해 전술한 순도 및 결정립의 제어가 가능하였으나, 스퍼터링 폐타겟의 잔여 부분(재활용 부분)과 스퍼터링 폐타겟에 새롭게 충진된 원료분말 부분(충진부)간의 입자 성장이 상이하여 재활용 부분과 충진 부분 간의 계면 부분에서의 결정립 제어가 쉽지 않은 문제가 있었다.Meanwhile, in the present invention, by using a ruthenium (Ru) sputtering waste target used for the surface, the portion consumed through surface cleaning is filled with the raw material powder of the same component and then sintered, thereby sputtering waste target through an environmentally friendly and economical simple process. Was to play. At this time, when manufacturing sputtering target using 4N-grade ruthenium (Ru) raw powder, it was possible to control the purity and crystal grain described above by adjusting the process conditions, but the remaining part (recycling part) of the sputtering waste target and the sputtering waste target There was a problem in that grain control at the interface between the recycled portion and the filled portion was not easy due to different grain growth between the newly filled raw powder portion (filling portion).
이에, 본 발명에서는 루테늄(Ru)계 스퍼터링 폐타겟에 동일한 성분의 원료 분말을 충진시킨 후 소결하기 전에, 일정 압력으로 가압하여 프레싱(Pressing)하는 공정을 추가하는 것을 특징으로 한다. 이와 같이 1차 가압을 통해 성형체(적층체)를 형성한 후 소결하는 경우, 소결시 온도를 낮출 수 있고 소결 시간을 단축시킬 수 있으며, 이에 따라 스퍼터링 폐타겟 부분과 새롭게 충진된 분말 부분 사이의 계면 부분의 입자 성장이 용이하게 제어되어 균일도가 증가되고, 미세 결정입자를 갖는 스퍼터링 타겟을 얻을 수 있다.Accordingly, the present invention is characterized in that the ruthenium-based sputtering waste target is filled with a powder of the same ingredient and then pressed before pressing and sintered at a predetermined pressure. As such, when the molded product (laminate) is formed through sintering and then sintered, the sintering temperature can be lowered and the sintering time can be shortened. Accordingly, the interface between the sputtering waste target portion and the newly filled powder portion Particle growth of the portion can be easily controlled to increase the uniformity and obtain a sputtering target having fine crystal grains.
또한, 제조공정의 단순성을 통해 경제성 및 양산성을 높일 수 있으며, 기존 스퍼터링 폐타겟을 이용하여 균일한 미세 결정입자를 갖는 신규 스퍼터링 타겟으로 용이하게 재생시킬 수 있다. In addition, it is possible to increase the economics and mass productivity through the simplicity of the manufacturing process, it can be easily regenerated into a novel sputtering target having uniform fine crystal grains using the existing sputtering waste target.
아울러, 본 발명에서는 상기 원료분말로서, 플라즈마 처리된 고순도 루테늄계 금속분말을 사용함으로써, 스퍼터링 타겟의 고순도 및 미세결정립 효과를 보다 상승시킬 수 있다. In addition, in the present invention, by using a plasma-treated high-purity ruthenium-based metal powder as the raw material powder, it is possible to further increase the high purity and fine grain effect of the sputtering target.
<루테늄(Ru) 또는 루테늄(Ru) 합금계 스퍼터링 타겟의 제조방법><Method for manufacturing ruthenium (Ru) or ruthenium (Ru) alloy-based sputtering target>
이하, 본 발명에 따른 루테늄(Ru) 또는 루테늄 합금 스퍼터링 폐타겟의 재생방법에 대해 설명한다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다. Hereinafter, a method for regenerating a ruthenium (Ru) or ruthenium alloy sputtering waste target according to the present invention will be described. However, it is not limited only by the following manufacturing method, and the steps of each process may be modified or optionally mixed as necessary.
본 발명에 따른 Ru 또는 Ru 합금 폐타겟의 제조방법은, 루테늄 또는 이의 합금계 스퍼터링 폐타겟에 이와 동일한 성분의 원료분말을 충진시키고 일정압력으로 성형한 후, 이러한 성형체를 소결하는 방식에 의해 제조될 수 있다. Method for producing Ru or Ru alloy waste target according to the present invention, the ruthenium or alloy-based sputtering waste target is prepared by the method of filling the raw powder of the same component and molding at a constant pressure, and then sintering such a molded body Can be.
상기 제조방법의 바람직한 일 실시예를 들면, (a) 루테늄(Ru) 또는 루테늄 합금계 스퍼터링 폐타겟을 세척 또는 절삭 가공하는 단계; (b) 상기 세척 또는 절삭가공된 폐타겟을 몰드에 투입하는 단계; (c) 상기 폐타겟이 투입된 몰드에, 상기 폐타겟과 동일한 성분의 원료분말을 충진하고 평탄화하여 적층체를 형성하는 단계; (d) 상기 적층체에 압력을 가하여 성형체를 형성하는 단계; 및 (e) 상기 성형체를 소결하는 단계를 포함하여 구성될 수 있다. In one preferred embodiment of the manufacturing method, (a) washing or cutting ruthenium (Ru) or ruthenium alloy-based sputtering waste target; (b) injecting the washed or cut waste target into a mold; (c) filling the planarized raw material powder with the same components as the waste target and flattening the waste target into a mold to form a laminate; (d) applying pressure to the laminate to form a molded body; And (e) sintering the molded body.
여기서, 상기 단계 (c)의 원료분말은, 플라즈마 처리된 1차 루테늄 함유 원료분말을 이와 동일 성분으로 코팅된 베드에 배치한 후 제트밀 분쇄하여 2차 원료분말을 형성하고, 이후 환원 열처리하여 제조된 것일 수 있다.Here, the raw material powder of step (c), the plasma-treated primary ruthenium-containing raw material powder is placed in a bed coated with the same component and then jet mill pulverized to form a secondary raw material powder, and then prepared by reduction heat treatment It may have been.
한편 도 3은 본 발명에 따라 루테늄(Ru) 또는 이의 합금계 스퍼터링 폐타겟을 재생하는 방법을 각 단계별로 도시한 개념도이다. 이하, 도 3을 참고하여 상기 제조방법을 각 공정 단계별로 나누어 설명하면 다음과 같다.Meanwhile, FIG. 3 is a conceptual diagram illustrating a method of regenerating ruthenium (Ru) or an alloy-based sputtering waste target thereof in accordance with the present invention. Hereinafter, the manufacturing method will be described with reference to FIG. 3 by dividing each process step as follows.
(1) 루테늄(Ru) 또는 이의 합금계 스퍼터링 폐타겟의 불순물 제거(이하, 'S1 단계'라 함).(1) Impurity removal of ruthenium (Ru) or an alloy-based sputtering waste target thereof (hereinafter referred to as 'S1 step').
본 S1 단계에서는 기사용된 스퍼터링 폐타겟의 표면으로부터 불순물을 제거한다.In this step S1, impurities are removed from the surface of the spent sputtering waste target.
상기 폐타겟은 기존에 사용된 타겟이기만 하면 특별한 제한이 없다. 일례로 27% 사용된 타겟일 수 있으며, 또는 35% 사용된 타겟을 사용할 수 있다. The waste target is not particularly limited as long as it is a previously used target. For example, the target may be 27% used, or the target used 35%.
본 발명에서는 상기 폐타겟으로 루테늄(Ru) 또는 루테늄 합금계 폐타겟을 사용한다. 이때 상기 루테늄 합금은 Ru과 합금(alloy)을 형성할 수 있는 성분이라면 특별히 한정되지 않으며, 당 분야에 알려진 통상적인 성분을 사용할 수 있다. 그러나 전술한 Ru계 타겟으로 제한하지 않으며, 그 외 일반적으로 스퍼터링 공정에 사용된 후 회수되는 스퍼터링 폐타겟, 일례로 금(Au), 은(Ag), 백금(Pt), 탄탈륨(Ta), 크롬(Cr), 코발트(Co) 및 텅스텐(W)으로 이루어진 군에서 선택된 원소로 이루어진 폐금속 타겟이거나 또는 이들의 2종 이상 원소로 이루어진 폐합금 타겟을 제한 없이 사용할 수 있다.In the present invention, ruthenium (Ru) or ruthenium alloy-based waste target is used as the waste target. In this case, the ruthenium alloy is not particularly limited as long as it is a component capable of forming an alloy with Ru, and conventional components known in the art may be used. However, the present invention is not limited to the Ru-based target described above, and other sputtering waste targets that are generally recovered after being used in the sputtering process, for example, gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), and chromium A waste metal target made of an element selected from the group consisting of (Cr), cobalt (Co) and tungsten (W), or a waste alloy target made of two or more kinds thereof can be used without limitation.
필요에 따라, 상기 스퍼터링 폐타겟의 불순물을 제거하기 전에 디본딩을 진행할 수 있다. 이때 디본딩은 200~300℃ 온도에서 진행될 수 있다. If necessary, debonding may be performed before removing impurities in the sputtering waste target. At this time, the debonding may proceed at a temperature of 200 ~ 300 ℃.
여기서, 디본딩을 진행하기 전에, 폐타겟 부분에 인듐 및 불순물 오염을 방지하기 위해 고온용 테이프를 이용하여 부착할 수 있다. 상기 폐타겟에 고온용 테이프를 부착한 후 승온을 하게 되는데, 일례로 5~10℃/min 온도로 200~300℃까지 승온을 실시할 수 있다. 이때 10℃/min를 초과하는 온도로 급격히 승온을 실시하면 Backing Plate 변형이 발생할 가능성이 있으므로, 10℃/min 이하의 온도로 승온하는 것이 바람직하다. 또한 200~300℃ 온도에 도달하면 30~60분 간을 유지한 후 디본딩을 실시하도록 한다. Here, before proceeding to debonding, it may be attached to the waste target portion using a high temperature tape to prevent contamination of indium and impurities. After the high temperature tape is attached to the waste target, the temperature is increased. For example, the temperature may be increased to 200 to 300 ° C at a temperature of 5 to 10 ° C / min. At this time, if the temperature is rapidly raised to a temperature exceeding 10 ℃ / min, there is a possibility that deformation of the backing plate may occur, it is preferable to increase the temperature to 10 ℃ / min or less. In addition, when the temperature reaches 200 ~ 300 ℃ to maintain 30 ~ 60 minutes to perform the debonding.
전술한 스퍼터링 폐타겟의 표면에는 산화물, 탄화물 등과 같은 불순물이 존재하고 있다. 이에, 본 단계에서는 당 업계에 알려진 통상적인 불순물 제거방법을 통해 스퍼터링 폐타겟의 표면으로부터 불순물을 제거할 수 있다.Impurities such as oxides and carbides exist on the surface of the sputtering waste target described above. Therefore, in this step, it is possible to remove impurities from the surface of the sputtering waste target through a conventional method for removing impurities known in the art.
일례로, 산(Acid), 알코올 및/또는 증류수를 이용하는 세척방법, 초음파 세척 방법, 플라즈마 표면 세척법 등과 같은 세척 방법을 통해 산화물, 탄화물 등의 불순물을 제거할 수 있다. 또한, CNC, MCT, 연마기 등과 같이 기계로 표면을 깎아 내는 방법을 통해 스퍼터링 폐타겟의 표면을 약 1 ㎜ 이내(바람직하게는 0. 내지 1 ㎜)로 가공하여 불순물을 제거할 수 있다. 이때, 제거되는 폐타겟의 두께가 너무 얇을 경우에는 불순물이 깨끗하게 제거되지 않을 수 있고, 너무 두꺼울 경우에는 원료 물질의 충진량이 증가하여 재생 비용이 증가될 수 있다.For example, impurities such as oxides and carbides may be removed through a cleaning method using an acid, alcohol, and / or distilled water, an ultrasonic cleaning method, a plasma surface cleaning method, or the like. In addition, the surface of the sputtering waste target can be machined to within about 1 mm (preferably 0 to 1 mm) by removing the surface with a machine such as CNC, MCT, grinder, etc. to remove impurities. In this case, when the thickness of the waste target to be removed is too thin, impurities may not be removed cleanly, and when too thick, the filling amount of the raw material may be increased, thereby increasing the regeneration cost.
본 발명에서는 상기 공정 중 표면에 부착된 불순물이 제거되는지를 확인하기 위해서, 시간 별로 시편을 채취하여 ICP 분석을 실시할 수도 있다. In the present invention, in order to check whether impurities attached to the surface are removed during the process, a specimen may be taken for each time and subjected to ICP analysis.
(2) 루테늄(Ru) 또는 이의 합금계 스퍼터링 폐타겟을 몰드에 투입(이하, 'S2 단계'라 함).(2) Ruthenium (Ru) or an alloy-based sputtering waste target thereof is put into a mold (hereinafter referred to as 'S2 step').
본 S2 단계에서는 불순물이 제거된 스퍼터링 폐타겟을 몰드에 투입한다. In the step S2, the sputtering waste target from which impurities are removed is introduced into the mold.
상기 단계(S2)에서 사용 가능한 몰드의 재료는 특별히 한정되지 않으며, 일례로 공구강(Steel Tool Die, SKD or STD) 강종, 스테인리스 스틸(Stainless Steel) 강종 등이 있다. 특히, 성형하고자 하는 원료분말, 예컨대 루테늄(Ru)과 동일한 성분으로 이루어지거나 또는 코팅된 몰드를 사용하는 것이 바람직하다. The material of the mold that can be used in the step (S2) is not particularly limited, and examples thereof include tool steel (Steel Tool Die, SKD or STD) steel, stainless steel (Stainless Steel). In particular, it is preferable to use a mold made of or coated with the same components as the raw powder to be molded, such as ruthenium (Ru).
이때 상기 몰드에 스퍼터링 폐타겟을 투입하는 경우, 상기 폐타겟을 절삭가공할 수 있다. In this case, when the sputtering waste target is put into the mold, the waste target may be cut.
(3) 몰드에 원료분말 충진 및 평탄화하여 적층체 형성 (이하, 'S3 단계'라 함).(3) Filling and planarizing the raw powder in the mold to form a laminate (hereinafter referred to as 'S3 step').
본 S3 단계에서는 이전 S2 단계에서 몰드에 투입된 스퍼터링 폐타겟에, 이와 동일한 성분의 원료 분말을 충진하고 평탄화하여 적층체를 형성한다.In the step S3, the sputtering waste target put into the mold in the previous step S2 is filled and planarized with a raw material powder of the same component to form a laminate.
본 S3 단계에서 사용되는 원료 분말은 스퍼터링 폐타겟과 동일한 성분의 원료 분말이기만 하면 특별히 한정되지 않으며, 일례로 루테늄(Ru)을 단독으로 사용하거나 또는 루테늄(Ru);과 금(Au), 은(Ag), 백금(Pt), 탄탈륨(Ta), 크롬(Cr), 코발트(Co) 및 텅스텐(W)으로 이루어진 군에서 선택되는 1종 이상의 원소를 포함하는 혼합 형태이거나 합금 형태의 분말일 수 있다. The raw material powder used in the step S3 is not particularly limited as long as it is a raw material powder of the same component as the sputtering waste target, and for example, ruthenium (Ru) alone or ruthenium (Ru); and gold (Au), silver ( Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) may be a mixed form or alloy form powder containing one or more elements selected from the group. .
또한 상기 루테늄 함유 원료 분말은 상용화된 금속분말을 사용하거나 또는 종래 루테늄 또는 루테늄 합금계 폐타겟을 재생하여 분말화된 것일 수 있다. In addition, the ruthenium-containing raw material powder may be powdered by using a commercially available metal powder or by regenerating a ruthenium or ruthenium alloy-based waste target.
본 발명에서, 상기 원료 분말의 함량(충진량)은 상기 S1 단계에서 불순물이 제거된 스퍼터링 폐타겟 및 원하는 재생 스퍼터링 타겟의 무게에 따라 밀도 계산법에 의해 계산하여 조절될 수 있다. 일례로, 제조하고자 하는 재생 스퍼터링 타겟의 무게가 3kg이고, 스퍼터링 폐타겟의 무게가 1.5kg인 경우, 원료 분말의 함량을 2 kg으로 하여 스퍼터링 폐타겟을 재생하게 된다. 이때, 0.5 kg은 최종 가공시 제거되는 부분이다. In the present invention, the content (filling amount) of the raw material powder may be adjusted by calculating by density calculation method according to the weight of the sputtering waste target and the desired regeneration sputtering target from which impurities are removed in the step S1. For example, when the weight of the regenerated sputtering target to be manufactured is 3 kg, and the weight of the sputtered waste target is 1.5 kg, the sputtering waste target is regenerated with the content of the raw material powder as 2 kg. At this time, 0.5 kg is the part removed during the final processing.
본 발명의 루테늄 함유 원료 분말은, 하기와 같은 방법을 통해 제조될 수 있는데, 이때 하기 방법 이외에 기존 스퍼터링 폐타겟을 당 업계에 알려진 통상적인 건식법 또는 습식법 등을 통해 분말화시켜 얻는 방법도 본 발명의 범주에 속한다. The ruthenium-containing raw material powder of the present invention may be prepared by the following method, wherein in addition to the following method, a method of powdering an existing sputtering waste target through conventional dry or wet methods known in the art may also be obtained. Belongs to the category.
상기 루테늄 함유 원료분말을 제조하는 바람직한 일례를 들면, (i) 몰드에 루테늄 또는 루테늄 함유 원료 물질을 투입하는 단계('S31 단계'); (ii) 루테늄 또는 루테늄 함유 원료 물질을 플라즈마 처리하여 1차 원료 분말을 형성하는 단계('S32 단계'); 및 (iii) 상기 1차 원료 분말을 상기 원료 물질과 동일한 성분으로 코팅된 베드에 배치한 후 제트밀 분쇄하여 2차 원료 분말을 형성하는 단계('S33 단계')를 포함하여 구성될 수 있다. 이때 필요에 따라, (iv) 상기 2 차 원료 분말을 수소환원 열처리하는 단계('S34 단계')를 더 포함할 수 있다. Preferred examples of preparing the ruthenium-containing raw material powder include: (i) injecting ruthenium or ruthenium-containing raw material into a mold ('S31 step'); (ii) plasma treatment of ruthenium or ruthenium-containing raw material to form a primary raw material powder ('S32 step'); And (iii) disposing the primary raw material powder on a bed coated with the same ingredient as the raw material and then jet milling to form a secondary raw material powder ('S33 step'). At this time, if necessary, (iv) may further comprise the step of hydrogen reduction heat treatment of the secondary raw material powder ('S34 step').
전술한 플라즈마를 이용한 루테늄 함유 원료분말의 제조방법은 새로운 건식법의 일종이다. 이와 같은 방법에 의해 루테늄계 스퍼터링 폐타겟으로부터 원료 분말을 제조할 경우, 종래 습식법에 비해 루테늄계 원료 분말의 제조시간이 단축되며, 공정의 위험성이 적고 친환경적일 뿐만 아니라, 종래 건식법에 비해 입자 크기가 작은 고순도의 루테늄 함유 원료 분말을 제조할 수 있다.The manufacturing method of the ruthenium containing raw material powder using the above-mentioned plasma is a kind of new dry method. When the raw material powder is manufactured from the ruthenium-based sputtering waste target by the above method, the production time of the ruthenium-based raw material powder is shorter than that of the conventional wet method, the process is less risky and environmentally friendly, and the particle size is smaller than that of the conventional dry method. Small high purity ruthenium-containing raw material powders can be produced.
(i) 먼저, 루테늄계 원료 물질을 플라즈마 처리하기 위해 몰드(또는 도가니(Crucible))에 투입한다('S31 단계'). (i) First, the ruthenium-based raw material is put into a mold (or crucible) for plasma treatment ('S31 step').
상기 루테늄계 원료 물질은 스퍼터링 폐타겟 자체이거나, 또는 금속(합금)을 소결하거나 용해시켜 얻은 벌크(bulk) 상태일 수 있다. 다만, 상기 원료 물질이 스퍼터링 폐타겟인 경우, 원료 물질의 표면에는 나트륨(Na), 구리(Cu), 탄소(C), 실리콘(Si) 등의 불순물이 존재하거나, 또는 장시간 대기에 노출되어 표면에 산화가 일어난 상태일 수 있으므로, 몰드에 투입하기 전에 세정하는 것이 바람직하다. 상기 원료 물질을 세정하는 방법은 특별히 한정되지 않으며, 전술한 S1 단계에서와 같이 스퍼터링 폐타겟의 표면을 세척하거나 또는 절삭가공할 수 있다. 일례로 차염소산나트륨(NaOCl)에 5분 동안 침적시키는 방법을 사용할 수 있다. The ruthenium-based raw material may be a sputtering waste target itself or a bulk state obtained by sintering or dissolving a metal (alloy). However, when the raw material is a sputtering waste target, impurities such as sodium (Na), copper (Cu), carbon (C), and silicon (Si) may be present on the surface of the raw material or may be exposed to air for a long time. It may be in a state where oxidation has occurred, so it is preferable to clean it before putting it into the mold. The method for cleaning the raw material is not particularly limited, and the surface of the sputtering waste target may be washed or cut as in the aforementioned step S1. For example, a method of immersion in sodium hypochlorite (NaOCl) for 5 minutes may be used.
한편, 상기 루테늄(Ru)계 원료 물질이 투입되는 몰드의 재료는 특별히 한정되지 않으며, 투입되는 원료 물질(예, Ru)과 동일한 물질을 사용하는 것이 바람직하다. 종래 탄소(C) 몰드 등과 같이 원료물질과 다른 성분의 몰드를 사용하는 경우, 후공정으로 대기열처리를 수반하게 된다. 이와 같이 대기열처리를 진행하게 되면 후속공정이 추가되어 열처리를 2회 이상 진행하게 되는데, 이 과정 중에 결정립 성장이 발생하여 최종제품의 결정립 크기가 기준치 이상으로 성장하게 된다. 또한 가스 불순물 (예컨데, 산소 또는 탄소)의 함량이 증가하여 최종 제품 제조시, 폐타겟과 신규의 가스 함량이 서로 상이하여 어느 한쪽만을 사용할 수 밖에 없는 결과를 초래하게 된다. Meanwhile, the material of the mold into which the ruthenium-based raw material is added is not particularly limited, and it is preferable to use the same material as the raw material (for example, Ru) to be injected. In the case of using a mold of a different material from the raw material, such as a conventional carbon (C) mold, it is accompanied by a queue treatment in a post process. In this way, when the queue process is performed, a subsequent process is added to perform the heat treatment two or more times. During this process, grain growth occurs, and the grain size of the final product grows above the reference value. In addition, the content of gas impurities (for example, oxygen or carbon) is increased, the waste target and the new gas content is different from each other in the manufacture of the final product, which results in the use of only one.
이에 비해, 본 발명에서 몰드 재료와 투입되는 원료 물질의 성분을 동일하게 사용할 경우, 분말 제조시 불순물(예컨대, 탄소)의 함량 증가를 인위적으로 방지할 수 있기 때문에, 탄소 제거를 위한 대기 열처리 공정이 별도로 수행될 필요가 없으며, 이로 인해 분말의 제조 공정시간이 단축될 수 있다. 또한 고품질의 루테늄(Ru) 분말을 제조할 수 있다. In contrast, in the present invention, when using the same ingredients of the mold material and the input material, it is possible to artificially prevent the increase in the content of impurities (for example, carbon) during powder manufacturing, the atmospheric heat treatment process for carbon removal is It does not need to be carried out separately, which can shorten the manufacturing process time of the powder. In addition, high quality ruthenium (Ru) powder can be produced.
(ii) 상기 S31 단계에서 몰드에 투입된 루테늄(Ru) 함유 원료 물질을 플라즈마 처리하여 1차 원료 분말을 형성한다('S32 단계'). (ii) plasma treatment of the ruthenium (Ru) -containing raw material introduced into the mold in step S31 to form a primary raw material powder ('S32 step').
이와 같이 플라즈마 처리하여 1차 원료 분말을 형성할 경우, 종래 습식법에 비해 안전하고 친환경적으로 단시간에 원료 분말을 제조할 수 있다.When the primary raw material powder is formed by plasma treatment as described above, the raw material powder can be manufactured in a short time safely and environmentally friendly compared to the conventional wet method.
여기서, 플라즈마 처리 단계에서 전력, 시간 및 작업 진공도 조건은 특별히 한정되지 않으며, 당 업계에 공지된 조건 내에서 적절히 조절할 수 있다. 일례로, 5 내지 60 Kw(바람직하게는 15 내지 30 Kw), 10 내지 240 분, 및 50 내지 600 torr 범위인 것이 바람직하다. 상기 플라즈마 처리 단계(S12)에서, 전력이 5 Kw 미만인 경우 1차 루테늄 함유 원료 분말의 수율이 감소할 수 있으며, 60 Kw를 초과하면 1차 원료 분말의 입자크기가 커질 수 있다. 또한, 상기 작업 진공도가 50torr 미만이면 플라즈마 분포가 넓어져 플라즈마 형성을 위한 양극 몰드의 수명이 짧아지고, 600 torr를 초과하면 1차 원료 분말의 입자크기가 커지며 산소의 함량이 증가될 수 있다. 따라서, 플라즈마 처리는 상술한 조건 내에서 이루어지는 것이 바람직하다.Here, the power, time and working vacuum conditions in the plasma treatment step are not particularly limited, and may be appropriately adjusted within the conditions known in the art. In one example, it is preferably in the range of 5 to 60 Kw (preferably 15 to 30 Kw), 10 to 240 minutes, and 50 to 600 torr. In the plasma treatment step (S12), when the power is less than 5 Kw, the yield of the primary ruthenium-containing raw material powder may be reduced, and when it exceeds 60 Kw, the particle size of the primary raw material powder may be increased. In addition, when the working vacuum degree is less than 50torr, the plasma distribution is widened to shorten the lifetime of the anode mold for plasma formation, and when the working vacuum exceeds 600 torr, the particle size of the primary raw material powder may be increased and the oxygen content may be increased. Therefore, the plasma treatment is preferably performed within the above-described conditions.
또한 본 S32 단계에서, 플라즈마는 직류(DC) 이송식 플라즈마를 적용하고, 인가 전압은 50 내지 200V로, 인가 전류는 100 내지 300 A 범위로 조절하는 것이 바람직하다.In addition, in the step S32, the plasma is applied to the direct current (DC) transfer plasma, the applied voltage is preferably adjusted to 50 to 200V, the applied current in the range of 100 to 300A.
플라즈마 처리가 진공 및 불활성 분위기하에서 수행될 경우, 1차 루테늄 함유 원료 분말의 산화가 방지되어 바람직하다. 이때, 불활성 분위기를 조성하기 위한 가스의 성분은 특별히 한정되지 않으며, 예를 들어 아르곤(Ar), 질소(N2), 수소(H2), 메탄(CH4), 헬륨(He) 등이 있다. 이들을 단독으로 또는 2종 이상이 혼합하여 사용할 수 있다. When the plasma treatment is performed under vacuum and inert atmosphere, oxidation of the primary ruthenium-containing raw material powder is prevented, which is preferable. At this time, the components of the gas for forming an inert atmosphere are not particularly limited, and examples thereof include argon (Ar), nitrogen (N 2 ), hydrogen (H 2 ), methane (CH 4 ), helium (He), and the like. . These can be used individually or in mixture of 2 or more types.
또한, 플라즈마 형성을 위해 사용되는 반응가스의 성분 역시 특별히 한정되지 않으며, 일례로 아르곤(Ar), 질소(N2), 수소(H2), 헬륨(He) 등이 있다. 이들을 단독으로 사용하거나 또는 2종 이상 혼합하여 사용할 수 있다. 이때, 상기 반응가스의 가스유량은 20 내지 200 SLM인 것이 바람직하나, 이에 특별히 제한되지 않는다.In addition, the components of the reaction gas used for plasma formation are also not particularly limited, and examples thereof include argon (Ar), nitrogen (N 2 ), hydrogen (H 2 ), helium (He), and the like. These can be used individually or in mixture of 2 or more types. At this time, the gas flow rate of the reaction gas is preferably 20 to 200 SLM, but is not particularly limited thereto.
상기 플라즈마 처리로 형성된 1차 루테늄 함유 원료 분말의 입자 크기는 특별히 한정되지 않으며, 일례로 약 1 내지 1,000 ㎛ 범위일 수 있다. 이때, 형성된 1차 원료 분말의 약 0.3 %는 입자 크기가 1,000 ㎛를 초과할 수 있는데, 이들은 원료 물질로 다시 사용될 수 있다.The particle size of the primary ruthenium-containing raw material powder formed by the plasma treatment is not particularly limited, and may be, for example, in the range of about 1 to 1,000 μm. At this time, about 0.3% of the formed primary raw material powder may have a particle size exceeding 1,000 μm, which may be used again as a raw material.
(iii) 이어서, 상기 S32 단계에서 형성된 1차 원료 분말을 해당 원료물질과 동일한 성분으로 코팅된 베드에 배치한 다음, 제트밀(Jet Mill) 분쇄하여 2차 원료 분말을 형성한다('S33 단계'). (iii) Subsequently, the primary raw material powder formed in step S32 is placed on a bed coated with the same ingredients as the raw material, and then jet mill is milled to form secondary raw material powder ('S33 step'). ).
상기와 같이 제트밀 분쇄하여 2차 루테늄 함유 원료 분말을 형성할 경우, 종래 건식법에 비해 입자 크기가 작은 원료 분말을 제조할 수 있다. When forming a secondary ruthenium-containing raw material powder by pulverizing the jet mill as described above, it is possible to produce a raw material powder having a smaller particle size than the conventional dry method.
또한 본 발명에서는 제트밀 분쇄시, 원료 물질과 동일한 성분으로 코팅된 베드를 사용하기 때문에, 스테인레스 스틸(Stainless Steel) 재질의 베드를 사용하는 경우와 달리, 베드로부터 철(Fe), 크롬(Cr), 니켈(Ni) 등의 불순물이 유래되어 원료 분말에 혼입되는 것을 최소화시킬 수 있다. 따라서 고순도의 루테늄 함유 원료 분말을 얻을 수 있다. In addition, in the present invention, when using a bed coated with the same ingredients as the raw material during jet mill grinding, iron (Fe), chromium (Cr) from the bed, unlike when using a bed of stainless steel (Stainless Steel) Impurities such as nickel (Ni) and the like can be minimized from being mixed in the raw material powder. Therefore, high purity ruthenium-containing raw material powder can be obtained.
본 S33 단계에서 제트밀 분쇄시 사용되는 가스원은 특별히 한정되지 않으며, 일례로 아르곤(Ar), 질소(N2), 수소(H2), 헬륨(He) 또는 이들의 혼합 형태 등이 있다. 이러한 가스원은 산소를 함유하고 있지 않기 때문에, 루테늄 원료분말의 산화를 방지할 수 있고, 이로 인해 2차 원료 분말의 형성시 분말의 표면 에너지 증가를 억제할 수 있다. The gas source used in the jet mill grinding in step S33 is not particularly limited, and examples thereof include argon (Ar), nitrogen (N 2 ), hydrogen (H 2 ), helium (He), or a mixture thereof. Since the gas source does not contain oxygen, it is possible to prevent oxidation of the ruthenium raw material powder, thereby suppressing the increase of the surface energy of the powder when the secondary raw material powder is formed.
또한 제트밀의 분급에 사용되는 블레이드(Blade)의 속도는 당 업계에 알려진 통상적인 범위 내에서 적절히 조절할 수 있으며, 일례로 약 1,000 내지 20,000 rpm일 경우, 분쇄 시간을 단축할 수 있어 바람직하다. 또한, 상기 분쇄 가스압은 5 내지 10 bar일 경우, 분쇄 시간을 단출할 수 있어 바람직하다. In addition, the speed of the blade (Blade) used for the classification of the jet mill can be appropriately adjusted within the conventional range known in the art, for example, about 1,000 to 20,000 rpm, it is preferable to shorten the grinding time. In addition, when the grinding gas pressure is 5 to 10 bar, it is preferable to shorten the grinding time.
상기와 같이 제트밀 분쇄로 형성된 2차 루테늄 함유 원료 분말의 입자크기는 특별히 한정되지 않으며, 일례로 약 10 ㎛ 이하, 바람직하게는 약 0.1 내지 10 ㎛일 수 있다.The particle size of the secondary ruthenium-containing raw material powder formed by jet mill grinding as described above is not particularly limited, and may be, for example, about 10 μm or less, and preferably about 0.1 to 10 μm.
한편 본 발명에서는 상기 S33 단계에서 형성된 2차 원료 분말을 수소환원 열처리하는 단계(iv)를 선택적으로 더 포함할 수 있다('S34 단계'). Meanwhile, in the present invention, the secondary raw material powder formed in step S33 may optionally further include a step (iv) of hydrogen reduction heat treatment ('step S34').
이와 같이 상기 2차 원료 분말을 수소환원 열처리를 할 경우, 2차 원료 분말에 함유되어 있는 산소 또는 질소가 제거되어 2차 원료 분말의 순도를 보다 높일 수 있다. As described above, when the secondary raw material powder is subjected to a hydrogen reduction heat treatment, oxygen or nitrogen contained in the secondary raw material powder may be removed to increase the purity of the secondary raw material powder.
상기 S34 단계에서, 수소환원 열처리 조건은 특별히 한정되지 않으며, 일례로 수소(H2) 분위기에서 500 내지 1,000℃ 범위로 2~10시간 동안 실시하는 것이 바람직하다. 만약, 상기 수소환원 열처리 단계의 온도 및 시간 조건이 전술한 수치범위 보다 작을 경우 산소 또는 질소가 충분히 제거되지 않을 수 있고, 상기 범위를 초과할 경우 분말이 응집될 수 있다.In the step S34, the hydrogen reduction heat treatment conditions are not particularly limited, for example, it is preferably carried out for 2 to 10 hours in a range of 500 to 1,000 ℃ in hydrogen (H 2 ) atmosphere. If the temperature and time conditions of the hydrogen reduction heat treatment step are smaller than the above-described numerical range, oxygen or nitrogen may not be sufficiently removed, and if it exceeds the range, the powder may aggregate.
또한, 수소환원 열처리를 위해 사용되는 몰드의 재질은 특별히 한정되지 않으며, 당 분야에 알려진 통상적인 몰드 성분을 제한 없이 사용할 수 있다. 일례로 알루미나(Al2O3), 스테인레스 스틸(Stainless Steel series), 탄탈륨(Ta), 몰리브덴(Mo), 텅스텐(W), 지르코니아(ZrO2), 이트리아(Y2O3) 등이 있다. 여기서, 알루미나, 지르코니아 및 이트리아로 이루어진 군에서 선택된 재질로 형성된 몰드는 산화 안정화 상태이기 때문에, 원료 분말의 산화(산소의 함량 증가)가 일어나지 않는다. 또한, 수소환원 열처리 단계(S34)에서 사용되는 가스도 특별히 한정되지 않으며, 일례로 수소(H2), 질소(N2), 아르곤(Ar), 헬륨(He) 등이 있는데, 이들은 단독으로 또는 2종 이상이 혼합되어 사용될 수 있다.Further, the material of the mold used for the hydrogen reduction heat treatment is not particularly limited, and conventional mold components known in the art may be used without limitation. Examples include alumina (Al 2 O 3 ), stainless steel (Stainless Steel series), tantalum (Ta), molybdenum (Mo), tungsten (W), zirconia (ZrO 2 ), yttria (Y 2 O 3 ), and the like. . Here, since the mold formed of the material selected from the group consisting of alumina, zirconia and yttria is oxidatively stabilized, oxidation of the raw material powder (increase in oxygen content) does not occur. In addition, the gas used in the hydrogen reduction heat treatment step (S34) is not particularly limited, and examples thereof include hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), helium (He), and the like. Two or more kinds may be mixed and used.
전술한 바와 같이 제조된 루테늄계 원료 분말을, 몰드에 투입된 폐타겟에 충진한 다음, 평탄화한다. 이때, 최종 스퍼터링 타겟의 두께 편차를 줄이기 위해, 상기 평탄화시 원료 분말이 충진된 표면의 수평도를 ±0.1 mm 이내로 조절하는 것이 바람직하다.The ruthenium-based raw material powder prepared as described above is filled in a waste target put into a mold, and then flattened. At this time, in order to reduce the thickness variation of the final sputtering target, it is preferable to adjust the horizontality of the surface filled with the raw material powder within the flattening within ± 0.1 mm.
(4) 성형체 형성 (이하, 'S4 단계'라 함).(4) forming a molded body (hereinafter referred to as 'S4 step').
본 S4 단계에서는 상기 S3 단계에서 형성된 적층체에 일정 압력을 가하여 성형체를 형성한다.In the step S4, a molded body is formed by applying a predetermined pressure to the laminate formed in the step S3.
이와 같이 본 발명에서는 소결단계(S5) 이전에 성형단계(S4)를 수행함으로써, 하기 소결 단계(S5)에서의 소결 온도를 낮출 수 있으며, 이로 인해 재생되는 스퍼터링 타겟의 재활용되는 부분과 새롭게 충진된 부분 간의 계면 부분에서의 입자 성장을 용이하게 제어할 수 있다. 보다 구체적으로, 하기 소결 단계(S5)에서 재생되는 스퍼터링 폐타겟의 재활용부의 입자는 조대화될 수 있고, 충진부의 입자는 미세할 수 있으나, 본 발명에서는 성형단계(S4)를 통해 재활용부와 충진부 사이의 계면부에 위치하는 계면 결정입자의 크기를 상기 재활용부 대비 130% 이하의 크기로 입자 성장을 조절할 수 있기 때문에, 재활용부와 충진부 사이의 계면 결정입자의 크기 차이로 인한 분리 현상이 방지되고, 따라서 안정적으로 고밀도의 타겟을 얻을 수 있다.As described above, in the present invention, by performing the forming step (S4) before the sintering step (S5), it is possible to lower the sintering temperature in the following sintering step (S5), thereby the recycled portion of the sputtering target to be regenerated and newly filled Particle growth at the interface portion between the portions can be easily controlled. More specifically, the recycled particles of the sputtering waste target recycled in the following sintering step (S5) may be coarse, the particles of the filling portion may be fine, but in the present invention, the recycling portion and the filling through the forming step (S4) Since the grain growth can be controlled to a size of 130% or less than the recycled portion, the size of the interfacial grains located in the interfacial portion between the portions can be separated. It is prevented, and therefore, a high density target can be obtained stably.
상기 성형체를 형성하는 방법은 특별히 한정되지 않으며, 당 업계에 공지된 통상적인 성형방법을 제한 없이 사용할 수 있다. 일례로, 가압 성형법, 냉간 등방압 성형법 (CIP, Cold Isostatic Pressing) 등이 있다. The method for forming the molded article is not particularly limited, and conventional molding methods known in the art may be used without limitation. As an example, there exists a pressure molding method, a cold isostatic pressing method (CIP, Cold Isostatic Pressing), etc.
상기 성형단계(S4)의 가압 조건은 특별히 한정되지 않으며, 일례로 압력이 100 내지 300 MPa 범위이고, 시간이 약 1 내지 60분 범위인 것이 바람직하다. 상기 조건을 유지할 경우, 타겟의 형상을 유지하면서 성형체의 상대밀도를 증가시킬 수 있다.The pressurization condition of the molding step (S4) is not particularly limited, for example, the pressure is in the range of 100 to 300 MPa, the time is preferably in the range of about 1 to 60 minutes. When the above conditions are maintained, the relative density of the molded body can be increased while maintaining the shape of the target.
(5) 성형체의 소결 단계 (이하, 'S5 단계'라 함).(5) Sintering step of the molded body (hereinafter referred to as 'S5 step').
본 단계에서는 상기 S4 단계에서 얻은 성형체를 소결하여 성형체 내 산화된 분말을 환원처리하고, 타겟 내 가스 함량을 감소시킬 수 있다. In this step, the molded body obtained in step S4 may be sintered to reduce the oxidized powder in the molded body and to reduce the gas content in the target.
상기 성형체를 소결하는 방법은 특별히 한정되지 않으며, 당 분야에 알려진 통상적인 방법을 제한없이 사용할 수 있다. 일례로, 열간 프레스법(Hot Press), 열간 정수압 프레스법(Hot Isostatic Press), 방전 플라즈마 소결법(Spark Plasma Sintering), 가스 압력 소결법(Gas Pressure Sintering) 등이 있다. 이 중에서 열간 프레스법(Hot Press)에 의해 성형체를 소결시킬 경우, 성형체 내 산화된 분말을 환원 처리할 수 있어 바람직하다.The method of sintering the molded body is not particularly limited, and conventional methods known in the art may be used without limitation. For example, a hot press method, a hot isostatic press method, a spark plasma sintering method, a gas pressure sintering method, and the like are available. Among these, when the molded body is sintered by the hot press method (Hot Press), the oxidized powder in the molded body can be reduced, which is preferable.
본 발명의 소결단계(S5)에서, 상기 성형체의 소결 조건은 특별히 한정되지 않으며, 통상적인 범위 내에서 적절히 조절할 수 있다. 이때, 약 10 내지 80 MPa 범위의 압력하에서 약 700 내지 2,000℃의 온도로 1 내지 20시간 동안 성형체를 소결할 경우, 상대밀도가 높으면서 결정 입자의 크기가 작은 타겟을 제조할 수 있다. 본 발명에서, 상기 소결 온도는 루테늄계 스퍼터링 폐타겟 재료의 용융점(Tm: Melting Point)의 80%에 해당되는 온도 이하로 소결하는 것이 바람직하다. In the sintering step (S5) of the present invention, the sintering conditions of the molded body is not particularly limited, can be appropriately adjusted within a conventional range. At this time, when the molded body is sintered for 1 to 20 hours at a temperature of about 700 to 2,000 ℃ under a pressure in the range of about 10 to 80 MPa, it is possible to produce a target having a high relative density and a small crystal grain size. In the present invention, the sintering temperature is preferably sintered below the temperature corresponding to 80% of the melting point (Tm: Melting Point) of the ruthenium-based sputtering waste target material.
상기 성형체의 소결 단계(S5)에서 사용되는 몰드의 재료는 특별히 한정되지 않으며, 일례로 탄소(C), 몰리브덴(Mo), 텅스텐(W), 탄탈륨(Ta), 크롬(Cr), 니오븀(Nb), 지르코늄(Zr), 백금(Pt) 등이 있다. 이들을 단독으로 사용하거나 또는 2종 이상 혼합하여 사용될 수 있다.The material of the mold used in the sintering step (S5) of the molded body is not particularly limited, for example, carbon (C), molybdenum (Mo), tungsten (W), tantalum (Ta), chromium (Cr), niobium (Nb) ), Zirconium (Zr), platinum (Pt) and the like. These may be used alone or in combination of two or more thereof.
이후, 제조된 루테늄 또는 루테늄계 합금 타겟을 이용하여 당 업계에 알려진 공정에 따라 가공을 실시한다. Thereafter, using the prepared ruthenium or ruthenium-based alloy target is processed according to a process known in the art.
본 발명에서는 루테늄(Ru) 타겟 또는 루테늄 합금(alloy) 타겟을 중심으로 하여 기재하였으나, 그 외 반도체, HDD, 자기기록장치 미디어의 박막층 형성에 사용되는 성분, 일례로 금(Au), 은(Ag), 백금(Pt), 탄탈륨(Ta), 크롬(Cr), 코발트(Co) 및 텅스텐(W)으로 구성된 군으로부터 선택되는 성분의 분말 또는 이들의 폐타겟으로 각각 대체하여 사용될 수 있다. In the present invention, a ruthenium (Ru) target or a ruthenium alloy (alloy) target is described mainly, but other components used for forming a thin film layer of semiconductor, HDD, magnetic recording device media, for example, gold (Au), silver (Ag) ), Platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) may be used in place of powders of components selected from the group consisting of or their waste targets, respectively.
실제로, 종래 Ru 타겟 재생시에는 습식법에 의해 분말을 제조하고, 제조된 습식분말을 그대로 사용하기 때문에, 폐타겟과 충진 분말 사이의 가스 특성이 상이하여 최종 제품 제조시 상, 하의 가스 성분치가 다르게 되는 문제가 발생하고, 이로 인해 상, 하 중 어느 한쪽만을 채택하여 사용하였다. 또한 기존 폐타겟의 경우 결과적으로 동일한 소결 공정을 두 번 진행하여 결정립의 성장을 초래하게 되므로, 제품으로 NG(사용할 수 없음) 처리되어 사용할 수 없었다.In fact, since the powder is manufactured by the wet method during the regeneration of the Ru target, and the prepared wet powder is used as it is, the gas characteristics between the waste target and the packed powder are different, so that the upper and lower gas component values are different when the final product is manufactured. Is generated, and thus, only one of the upper and lower sides is adopted and used. In addition, in the case of the existing waste targets, the same sintering process is performed twice, resulting in the growth of grains.
반면, 본 발명에서는 건식법으로 제조함에 따라 폐타겟과 동일한 가스 Spec.을 만족하며, 중간 공정인 성형 공정을 거쳐 소결 온도 및 시간을 낮추어 폐타겟 부분이 두 번 소결 공정을 거쳐도 결정립 성장을 제어할 수 있어, 최종 제품으로 사용하여도 무방한 신규 제조공정이라는 이점이 있다.On the other hand, the present invention satisfies the same gas spec. As the waste target according to the dry process, and lowers the sintering temperature and time through the intermediate forming process, thereby controlling grain growth even if the waste target portion undergoes two sintering processes. It can be used as a final product, there is an advantage of a new manufacturing process.
한편, 본 발명은 전술한 바와 같은 재생 방법에 의해 재생된 루테늄(Ru) 또는 루테늄 합금(alloy)계 스퍼터링 타겟을 제공한다.On the other hand, the present invention provides a ruthenium (Ru) or ruthenium alloy-based sputtering target regenerated by the regeneration method as described above.
재생 스퍼터링 타겟의 경우, 새롭게 충진된 부분(충진부)의 결정입자는 미세한 반면, 재활용된 부분(재활용부)의 결정입자는 충진 부분의 결정입자에 비해 조대할 수 있다. 보다 구체적으로, 금속의 경우 일반적으로 큰 결정립을 가지는 금속과 동일한 성분의 작은 결정립을 가지는 금속을 붙여 가압소결을 할 경우, 각각의 내부 결정립은 에너지적으로 낮은 자유에너지를 가지므로 독립적으로 결정립의 크기가 동일하게 성장 또는 유지하는 반면, 서로 맞닿은 계면(界面) 부분은 에너지적으로 자유에너지가 높음으로 인하여 높은 에너지상태를 줄이고자 결정입의 성장을 초래하게 된다. 이에 따라, 재활용부(재생부)와 충진부는 기존 결정립을 그대로 유지할 수 있지만, 이들 사이의 계면부는 전술한 높은 에너지(예컨대, 계면에너지, 깁스 자유에너지 등)에 의해 결정립의 성장이 촉진될 수 있다.In the case of the regenerated sputtering target, the crystal grains of the newly filled portion (filling portion) may be fine, while the crystal grains of the recycled portion (recycling portion) may be coarser than the crystal grains of the filling portion. More specifically, in the case of metals, when pressurizing and sintering metals having small grains of the same constituents as the metals having large grains, each of the internal grains has an energy-low free energy, so the size of the grains is independently. While the growth or maintenance is the same, the interface portions which are in contact with each other cause the growth of grains to reduce the high energy state due to the high free energy energy. Accordingly, the recycling portion (regeneration portion) and the filling portion can maintain the existing grains as it is, the interface portion between them can be promoted by the high energy (for example, interfacial energy, Gibbs free energy, etc.) growth of the grains .
이에 비해, 본 발명에서는 상기 계면부의 결정립 성장이 촉진된다 하더라도, 전술한 제조공정을 통해 재생함에 따라, 충진 부분과 재활용 부분 사이의 계면 부분의 결정입자 성장을 스퍼터링 폐타겟층(재활용부)의 결정입자 대비 130% 이하, 바람직하게는 110~130% 범위로 조절할 수 있으므로, 상기 충진 부분과 재활용 부분 간의 결정입자 크기 차이로 인한 분리 현상이 방지될 수 있고, 이에 따라 안정적으로 재생 스퍼터링 타겟을 스퍼터링 공정에서 이용할 수 있다. In contrast, in the present invention, even if the grain growth of the interface portion is promoted, the grain growth of the interface portion between the filled portion and the recycled portion is increased by regeneration through the above-described manufacturing process. Since it can be adjusted in the range of 130% or less, preferably 110 to 130%, the separation phenomenon due to the difference in grain size between the filling part and the recycling part can be prevented, thereby stably regenerating the regeneration sputtering target in the sputtering process. It is available.
또한 상기와 같이 계면 결정립 성장이 촉진되더라도, 실제 사용되는 부분은 최대 계면까지의 위치에 해당되므로, 스퍼터링 타겟 제품으로의 사용에 문제가 없다In addition, even if the interfacial grain growth is promoted as described above, since the portion actually used corresponds to the position up to the maximum interface, there is no problem in using the sputtering target product.
또한 본 발명에서, 상기 타겟 내 가스 함량은 산소 100 ppm 이하, 탄소 100 ppm 이하, 질소, 황, 수소가 각각 10 ppm 이하일 수 있으며, 순도는 4N일 수 있다.In addition, in the present invention, the gas content in the target may be 100 ppm or less of oxygen, 100 ppm or less of carbon, nitrogen, sulfur, hydrogen may be 10 ppm or less, respectively, and purity may be 4N.
이러한 본 발명의 루테늄 또는 이의 합금계 스퍼터링 타겟은 결정입자의 크기가 미세하고 균일하기 때문에, 스퍼터링 공정에 적용시 제품의 균일도를 상승시킬 수 있고, 파티클 형성이 억제되어 제품의 불량률도 저하시킬 수 있다.Since the ruthenium or an alloy-based sputtering target of the present invention has a fine and uniform crystal grain size, the uniformity of the product may be increased when applied to the sputtering process, and particle formation may be suppressed to reduce the defect rate of the product. .
상기 루테늄(Ru)계 스퍼터링 타겟은 HDD, 반도체 메모리(RAM, MRAM, FeRAM), 헤드(MR, TMR), 또는 또는 자기기록장치 미디어(예컨대, 하드디스크 플래터)의 박막층 형성을 위한 스퍼터링 타겟으로 사용될 수 있으며, 반도체 공정의 배선 형성용으로 사용될 수 있다. 또한 화합물을 제조하거나 경화재료, 전기접점재료, 저항재료, 촉매재료, 광감재료 또는 항암재료를 제조할 때도 사용될 수 있으며, 그 외 Ru계 타겟이 유용하게 적용될 수 있는 다른 기술분야에도 제한 없이 적용될 수 있다. 바람직하게는 최종적으로 하드디스크 드라이브 미디어의 고성능화(대용량화 및 소형화)의 진행에 맞추어 기록밀도를 높이고자 평방인치당(in2) 많은 양의 비트(bit)의 데이터를 저장할 수 있는 핵심 씨드레이어(Seed layer) 형성에 사용되는 것이다. The ruthenium (Ru) -based sputtering target may be used as a sputtering target for forming a thin film layer of an HDD, a semiconductor memory (RAM, MRAM, FeRAM), a head (MR, TMR), or a magnetic recording device media (for example, a hard disk platter). It can be used for the wiring formation of a semiconductor process. It can also be used to manufacture compounds, hardening materials, electrical contact materials, resistive materials, catalytic materials, photosensitive materials or anticancer materials, and can be applied to other technical fields where Ru-based targets can be usefully applied. have. Preferably, a core seed layer capable of storing a large amount of bits per square inch (in 2 ) of data in order to increase recording density in accordance with the progress of high performance (capacity and miniaturization) of hard disk drive media. ) Is used for formation.
이하, 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예는 본 발명의 한 형태를 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the following Examples are merely illustrative of one embodiment of the present invention, and the scope of the present invention is not limited by the following Examples.
[실시예 1]Example 1
1-1. 원료 분말의 제조1-1. Preparation of Raw Powder
순도가 3N5 이상인 루테늄(Ru) 스퍼터링 폐타겟 2 kg을 절단기로 분할한 후, 알코올에 5분 동안 침적하여 세정하였다. 세정된 루테늄(Ru) 스퍼터링 폐타겟을, 60 kw급 DC 이송식 플라즈마 장비 내의 루테늄(Ru)으로 이루어진 몰드에 투입하였다. 이어서, 플라즈마 장비에 부착된 진공펌프로 10-2 torr까지 감압한 후 질소(N2)와 아르곤(Ar)의 혼합 반응가스(가스 유량: 150 SLM)로 하여 작업 진공도(200 torr)를 설정하고, 질소(N2), 아르곤(Ar)와 수소(H2)의 플라즈마 반응 가스(가스유량: 50 SLM)를 사용하며, 30 kW의 전력을 가하여 플라즈마를 형성시켜 1차 루테늄(Ru) 분말을 제조하였다.2 kg of ruthenium (Ru) sputtering waste targets having a purity of 3N5 or more were divided by a cutter, and then washed by dipping for 5 minutes in alcohol. The cleaned ruthenium (Ru) sputtering waste target was put into a mold made of ruthenium (Ru) in a 60 kw DC transport plasma apparatus. Subsequently, after reducing the pressure to 10 -2 torr with a vacuum pump attached to the plasma equipment, the working vacuum degree (200 torr) was set using a mixed reaction gas (gas flow rate: 150 SLM) of nitrogen (N 2 ) and argon (Ar). , Plasma reaction gas (gas flow rate: 50 SLM) of nitrogen (N 2 ), argon (Ar) and hydrogen (H 2 ) is used, and a primary ruthenium (Ru) powder is formed by applying plasma at 30 kW. Prepared.
이후, 상기에서 얻은 1차 루테늄(Ru) 분말을 루테늄(Ru)이 코팅된 베드(스테인레스 스틸을 루테늄(Ru) 분말로 코팅함)에 배치한 후, 제트밀 분쇄하고 분급하여 2차 루테늄(Ru) 분말을 제조하였다. 이때, 제트밀 분쇄시 가스원은 질소(N2)를 사용하였고, 분쇄 가스압은 7 bar이고, 분급 블레이드 속도는 2,000 rpm이었다.Subsequently, the primary ruthenium (Ru) powder obtained above is placed on a ruthenium (Ru) coated bed (coated stainless steel with ruthenium (Ru) powder), followed by jet mill pulverization and classification to form secondary ruthenium (Ru). ) Powder was prepared. At this time, the jet mill milling gas source was nitrogen (N2), the grinding gas pressure is 7 bar, the classification blade speed was 2,000 rpm.
이어서, 상기 2차 루테늄(Ru) 분말을 몰리브덴(Mo) 몰드를 사용하여 900℃에서 8시간 동안 수소환원 열처리하여 최종 루테늄(Ru) 분말(중심입도: 10 ㎛ 미만)을 제조하였다.Subsequently, the secondary ruthenium (Ru) powder was subjected to hydrogen reduction heat treatment at 900 ° C. for 8 hours using a molybdenum (Mo) mold to prepare a final ruthenium (Ru) powder (center particle size: less than 10 μm).
1-2. 스퍼터링 타겟의 재생1-2. Play Sputtering Target
순도가 3N5 이상인 루테늄(Ru) 스퍼터링 폐타겟의 표면을 차염소산나트륨(NaOCl)에 5분 동안 침적하여 세정하였다. 세정된 스퍼터링 폐 타겟 1.5 kg을 몰드에 투입한 다음, 상기 실시예 1-1에서 제조된 Ru 분말 2.0 kg을 충진하고 표면의 수평도가 ±0.1 ㎜ 이내가 되도록 표면을 평탄화하여 적층체를 얻었다. 이후, 10 분 동안 180 MPa의 압력으로 상기 적층체를 가압 성형하여 성형체를 얻은 다음, 몰드에서 상기 성형체를 분리하였다. 이어서, 분리된 성형체에 3 시간 동안 1,450 ℃의 온도 및 20 MPa의 압력으로 핫프레스 소결하여 재생된 루테늄(Ru) 스퍼터링 타겟을 제조하였다.The surface of the ruthenium (Ru) sputtering waste target of purity 3N5 or more was immersed in sodium hypochlorite (NaOCl) for 5 minutes and washed. 1.5 kg of the cleaned sputtering waste target was placed in a mold, and then 2.0 kg of Ru powder prepared in Example 1-1 was filled and the surface was flattened so that the surface level was within ± 0.1 mm to obtain a laminate. Thereafter, the laminate was press-molded at a pressure of 180 MPa for 10 minutes to obtain a molded body, and then the molded body was separated from the mold. Subsequently, the reconstituted ruthenium (Ru) sputtering target was produced by hot press sintering at a temperature of 1,450 ° C. and a pressure of 20 MPa for 3 hours.
[비교예 1]Comparative Example 1
습식법으로 제조된 독일 heraeus社의 스퍼터링 루테늄(Ru) 타겟 (Ref. Nr: HERG 5611/12)을 비교예 1로 사용하였다.A sputtering ruthenium (Ru) target (Ref. Nr: HERG 5611/12) manufactured by the German heraeus company prepared by the wet method was used as Comparative Example 1.
[비교예 2]Comparative Example 2
건식법으로 제조된 한국 HSM 社의 스퍼터링 루테늄(Ru) 타겟 (HSM-Ru001)을 비교예 2로 사용하였다.A sputtering ruthenium (Ru) target (HSM-Ru001) manufactured by the Korean HSM Co., Ltd., manufactured by the dry method, was used as Comparative Example 2.
[실험예 1]Experimental Example 1
실시예 1 및 비교예 1 ~2에서 제조된 스퍼터링 타겟의 단면을 각각 주사 전자 현미경(field emission scanning electron microscope, FESEM)으로 확인하였다. 이를 도 4 내지 6에 각각 나타내었다. The cross sections of the sputtering targets prepared in Example 1 and Comparative Examples 1 and 2 were respectively confirmed by a field emission scanning electron microscope (FESEM). These are shown in FIGS. 4 to 6, respectively.
도 4 내지 도 6에서 알 수 있는 바와 같이, 실시예 1의 재생된 루테늄(Ru) 스퍼터링 타겟은 결정입자의 형상이 비교예 1 및 비교예 2의 루테늄(Ru) 스퍼터링 타겟과 거의 동일하였다. 다만, 실시예 1의 루테늄(Ru) 스퍼터링 타겟은 결정입자의 평균 입경이 8.5㎛ 정도로서, 습식법으로 제조된 분말을 사용한 비교예 1의 루테늄(Ru) 스퍼터링 타겟(결정입자의 평균 입경: 약 13.3 ㎛)에 비해 결정입자의 크기가 작았다. As can be seen in Figures 4 to 6, the regenerated ruthenium (Ru) sputtering target of Example 1 was almost the same shape of the ruthenium (Ru) sputtering target of Comparative Example 1 and Comparative Example 2. However, the ruthenium (Ru) sputtering target of Example 1 has an average particle diameter of about 8.5 μm, and the ruthenium (Ru) sputtering target of Comparative Example 1 using a powder prepared by a wet method (average particle size of crystal particles: about 13.3 μm) The size of crystal grains was smaller than that of.
또한, 건식법으로 제조하였지만, 성형공정 없이 제조된 비교예 2의 루테늄(Ru) 스퍼터링 타겟의 결정입자(평균 입경: 약 9.2㎛) 보다 작아 보다 미세한 결정립을 가졌음을 알 수 있었다.In addition, although manufactured by the dry method, it was found that the crystal grains of the ruthenium (Ru) sputtering target of Comparative Example 2 prepared without a molding process (fine particle size: about 9.2 μm) were smaller and had finer grains.
[실험예 2]Experimental Example 2
실시예 1 의 재생된 루테늄(Ru) 스퍼터링 타겟의 단면을 각각 충진부, 계면, 재생부를 FESEM으로 확인하였다. 이를 도 7 에 나타내었다.The cross section of the regenerated ruthenium (Ru) sputtering target of Example 1 was confirmed by FESEM, respectively, a filling part, an interface, and a regeneration part. This is shown in FIG. 7.
도 7에서 알 수 있는 바와 같이, 실시예 1의 재생된 루테늄(Ru) 스퍼터링 타겟은 충진부 평균 입경이 8.0 ㎛, 계면 평균 입경이 16.1 ㎛ 및 재생부 평균 입경이 13.1㎛로 각각 제어되었으며, 결정입 균일도가 전체 4.09%로 균일한 결정입자를 가지는 것을 알 수 있었다.As can be seen in FIG. 7, the regenerated ruthenium (Ru) sputtering target of Example 1 was controlled to have an average particle diameter of 8.0 μm, an interface average particle diameter of 16.1 μm, and an average particle diameter of 13.1 μm of the regenerated portion, respectively. It was found that the particle uniformity had uniform crystal grains of 4.09% in total.
[실험예 3]Experimental Example 3
본 발명에 따라 재생된 스퍼터링 타겟 내 불순물의 함량 및 순도를 확인하기 위해서, 유도 결합 플라즈마(ICP: Inductively coupled plasma)를 이용하여 실시예 1 및 비교예 1 내지 2의 스퍼터링 타겟 내 불순물의 함량 및 순도를 각각 분석하였으며, 그 결과를 하기 표 1~2에 나타내었다. In order to confirm the content and purity of the impurity in the sputtering target regenerated according to the present invention, the content and purity of the impurity in the sputtering target of Example 1 and Comparative Examples 1 and 2 using an inductively coupled plasma (ICP) Were respectively analyzed, and the results are shown in Tables 1 and 2 below.
하기 표 2에서, 충진부는 원료 분말이 충진된 부분이고, 재활용부는 사용된 스퍼터링 폐타겟 부분으로 원료 분말이 충진되지 않은 부분이며, 계면부는 충진부와 재활용부의 경계 부분을 각각 의미한다.In the following Table 2, the filling part is a portion filled with the raw material powder, the recycling portion is a portion where the raw powder is not filled with the used sputtering waste target portion, and the interface portion means a boundary portion of the filling portion and the recycling portion, respectively.
표 1
불순물 실시예 1 비교예 1 비교예 2
Gas Impurity C 25 77 42
S 0 0 0
O 27 58 45
N 0 0 0
H 0 0 0
Al 13 11 12
Fe 29 96 34
Si 19 0 18
Ni 3 0 3
Mo 11 4 10
Mg 2 3 2
Cr 13 16 9
Co 0 0 0
Ti 2 3 5
Zr 0 0 0
Ag 0 0 0
Cu 1 8 2
Sn 0 0 0
Zn 2 0 1
불순물 총합(Gas 제외) 95 141 96
최종순도 4N 3N8 4N
※불순물 단위: ppm(weight)
※기타 불순물: Li, Be, F, Na, P, B, Cl, K, Ca, W, Rh, Os, Ir, Sc, V, Mn, Ga, Ge, As, Se, Br, Rb, Sr, Nb, Cd, Sb, Te, I, Cs, Ba, Hf, Ta, Hg, Bi, Re, U, La, Ce
Table 1
impurities Example 1 Comparative Example 1 Comparative Example 2
Gas impurity C 25 77 42
S 0 0 0
O 27 58 45
N 0 0 0
H 0 0 0
Al 13 11 12
Fe 29 96 34
Si 19 0 18
Ni 3 0 3
Mo 11 4 10
Mg 2 3 2
Cr 13 16 9
Co 0 0 0
Ti 2 3 5
Zr 0 0 0
Ag 0 0 0
Cu One 8 2
Sn 0 0 0
Zn 2 0 One
Total impurities (excluding Gas) 95 141 96
Final purity 4N 3N8 4N
* Impurity Unit: ppm (weight)
※ Other impurities: Li, Be, F, Na, P, B, Cl, K, Ca, W, Rh, Os, Ir, Sc, V, Mn, Ga, Ge, As, Se, Br, Rb, Sr, Nb, Cd, Sb, Te, I, Cs, Ba, Hf, Ta, Hg, Bi, Re, U, La, Ce
표 2
불순물 실시예 1
새로 소결된 부분(충진부) Interface 부분(계면부) 재활용 부분(재생부)
Gas Impurity C 21 18 27
S 0 0 0
O 25 21 35
N 0 0 0
H 0 0 0
Al 13 15 15
Fe 26 28 28
Si 18 19 19
Ni 3 3 3
Mo 8 9 7
Mg 2 2 3
Cr 12 12 19
Co 0 0 0
Ti 2 2 0
Zr 0 0 0
Ag 0 0 0
Cu 0 1 2
Sn 0 0 0
Zn 2 0 0
불순물 총합(Gas 제외) 86 91 96
최종순도 4N 4N 4N
※불순물 단위: ppm(weight)
※기타 불순물: Li, Be, F, Na, P, B, Cl, K, Ca, W, Rh, Os, Ir, Sc, V, Mn, Ga, Ge, As, Se, Br, Rb, Sr, Nb, Cd, Sb, Te, I, Cs, Ba, Hf, Ta, Hg, Bi, Re, U, La, Ce
TABLE 2
impurities Example 1
Newly Sintered Part (Filling Part) Interface part (interface part) Recycle part (recycling part)
Gas impurity C 21 18 27
S 0 0 0
O 25 21 35
N 0 0 0
H 0 0 0
Al 13 15 15
Fe 26 28 28
Si 18 19 19
Ni 3 3 3
Mo 8 9 7
Mg 2 2 3
Cr 12 12 19
Co 0 0 0
Ti 2 2 0
Zr 0 0 0
Ag 0 0 0
Cu 0 One 2
Sn 0 0 0
Zn 2 0 0
Total impurities (excluding Gas) 86 91 96
Final purity 4N 4N 4N
* Impurity Unit: ppm (weight)
※ Other impurities: Li, Be, F, Na, P, B, Cl, K, Ca, W, Rh, Os, Ir, Sc, V, Mn, Ga, Ge, As, Se, Br, Rb, Sr, Nb, Cd, Sb, Te, I, Cs, Ba, Hf, Ta, Hg, Bi, Re, U, La, Ce
측정 결과, 실시예 1의 루테늄(Ru) 스퍼터링 타겟의 순도가 비교예 1~2의 루테늄(Ru) 스퍼터링 타겟과 동일하거나 높았으며, 불순물의 총량은 비교예 1의 루테늄(Ru) 스퍼터링 타겟에 비해 낮았다(표 1 참조).As a result of the measurement, the purity of the ruthenium (Ru) sputtering target of Example 1 was the same as or higher than that of the ruthenium (Ru) sputtering target of Comparative Examples 1 and 2, and the total amount of impurities compared to the ruthenium (Ru) sputtering target of Comparative Example 1 Low (see Table 1).
또한, 실시예 1의 스퍼터링 Ru 타겟의 충진부, 계면부 및 재활용부는 모두 습식법으로 제조된 비교예 1의 스퍼터링 Ru 타겟에 비해 불순물의 총량이 낮으면서 높은 순도의 결과를 나타내었으며, 건식법으로 제조된 비교예 2의 루테늄(Ru) 스퍼터링 타겟과 동일한 수준의 결과를 나타내었다.In addition, the filling part, the interface part and the recycling part of the sputtering Ru target of Example 1 all showed a high purity result with a low total amount of impurities compared to the sputtering Ru target of Comparative Example 1 prepared by the wet method, and manufactured by the dry method. The result of the same level as the ruthenium (Ru) sputtering target of Comparative Example 2 was shown.
이와 같이, 본 발명에 따라 스퍼터링 폐타겟을 재활용하여 스퍼터링 타겟을 제조하더라도 스퍼터링 타겟이 오염되지 않는다는 것을 확인할 수 있었다.As such, even when the sputtering target was manufactured by recycling the sputtering waste target, it was confirmed that the sputtering target was not contaminated.

Claims (11)

  1. (a) 루테늄(Ru) 또는 루테늄 합금계 스퍼터링 폐타겟을 세척 또는 절삭 가공하는 단계;(a) washing or cutting the ruthenium (Ru) or ruthenium alloy-based sputtering waste target;
    (b) 상기 세척 또는 절삭가공된 폐타겟을 몰드에 투입하는 단계;(b) injecting the washed or cut waste target into a mold;
    (c) 상기 폐타겟이 투입된 몰드에, 상기 폐타겟과 동일한 성분의 원료분말을 충진하고 평탄화하여 적층체를 형성하는 단계; (c) filling the planarized raw material powder with the same components as the waste target and flattening the waste target into a mold to form a laminate;
    (d) 상기 적층체에 압력을 가하여 성형체를 형성하는 단계; 및(d) applying pressure to the laminate to form a molded body; And
    (e) 상기 성형체를 소결하는 단계(e) sintering the molded body
    를 포함하는 루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재생방법.Ruthenium or ruthenium alloy-based sputtering waste target regeneration method comprising a.
  2. 제1항에 있어서, The method of claim 1,
    상기 단계 (c)의 원료분말은 The raw material powder of step (c) is
    루테늄(Ru); 또는 Ruthenium (Ru); or
    루테늄(Ru);과 금(Au), 은(Ag), 백금(Pt), 탄탈륨(Ta), 크롬(Cr), 코발트(Co) 및 텅스텐(W)으로 이루어진 군에서 선택되는 1종 이상의 원소를 포함하는 혼합 형태인 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재생방법.Ruthenium (Ru) and at least one element selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) Ruthenium or ruthenium alloy-based sputtering waste target regeneration method characterized in that the mixed form comprising a.
  3. 제1항에 있어서,The method of claim 1,
    상기 단계 (c)의 원료분말은 The raw material powder of step (c) is
    (i) 몰드에 루테늄 또는 루테늄 함유 원료 물질을 투입하는 단계;(i) injecting ruthenium or ruthenium-containing raw material into the mold;
    (ii) 루테늄 또는 루테늄 함유 원료 물질을 플라즈마 처리하여 1차 원료 분말을 형성하는 단계;(ii) plasma treating the ruthenium or ruthenium containing raw material to form a primary raw material powder;
    (iii) 상기 1차 원료 분말을 상기 원료 물질과 동일한 성분으로 코팅된 베드에 배치한 후 제트밀 분쇄하여 2차 원료 분말을 형성하는 단계; 및(iii) disposing the primary raw material powder on a bed coated with the same ingredients as the raw material and then jet milling to form a secondary raw material powder; And
    (iv) 상기 2 차 원료 분말을 수소환원 열처리하는 단계(iv) hydrogen reduction heat treatment of the secondary raw material powder
    를 포함하는 방법에 의해 제조된 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재생방법.Ruthenium or ruthenium alloy-based sputtering waste target regeneration method, characterized in that produced by the method comprising a.
  4. 제1항에 있어서,The method of claim 1,
    상기 단계 (d)는 100 내지 300 MPa 범위의 압력 조건 하에서, 1 내지 60 분 동안 실시하는 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재생방법.The step (d) is a ruthenium or ruthenium alloy-based sputtering waste target regeneration method, characterized in that carried out for 1 to 60 minutes under pressure conditions in the range of 100 to 300 MPa.
  5. 제1항에 있어서,The method of claim 1,
    상기 단계 (e)는 700 내지 2000℃의 온도, 10 내지 80 MPa의 압력 조건 하에서 1 내지 20 시간 동안 소결하는 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재생방법.The step (e) is a method for regenerating ruthenium or ruthenium alloy-based sputtering waste target, characterized in that the sintering for 1 to 20 hours at a temperature of 700 to 2000 ℃, pressure conditions of 10 to 80 MPa.
  6. 제1항에 있어서, The method of claim 1,
    상기 Ru 폐타겟과 원료분말은 금(Au), 은(Ag), 백금(Pt), 탄탈륨(Ta), 크롬(Cr), 코발트(Co) 및 텅스텐(W)으로 구성된 군으로부터 선택되는 성분을 가진 폐타겟과 원료분말로 각각 대체하여 사용될 수 있는 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재생방법. The Ru waste target and the raw material powder is a component selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W). Recycling method of ruthenium or ruthenium alloy-based sputtering waste target, characterized in that can be used to replace each of the waste target and the raw powder having.
  7. 제1항 내지 제6항 중 어느 한 항의 재생방법에 의하여 제조된 루테늄 또는 루테늄 합금계 스퍼터링 타겟.Ruthenium or ruthenium alloy-based sputtering target produced by the regeneration method of any one of claims 1 to 6.
  8. 제7항에 있어서, 상기 스퍼터링 타겟은 The method of claim 7, wherein the sputtering target is
    루테늄(Ru); 또는 Ruthenium (Ru); or
    루테늄(Ru);과 금(Au), 은(Ag), 백금(Pt), 탄탈륨(Ta), 크롬(Cr), 코발트(Co) 및 텅스텐(W)으로 이루어진 군에서 선택된 1종 이상의 원소를 포함하는 합금(alloy)인 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 타겟. Ruthenium (Ru) and at least one element selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), tantalum (Ta), chromium (Cr), cobalt (Co) and tungsten (W) Ruthenium or ruthenium alloy-based sputtering target, characterized in that the alloy (alloy) comprising.
  9. 제7항에 있어서, 상기 스퍼터링 타겟은 The method of claim 7, wherein the sputtering target is
    루테늄 또는 루테늄 합금계 스퍼터링 폐타겟의 재활용부; 및 Recycling unit of ruthenium or ruthenium alloy-based sputtering waste target; And
    상기 재활용부의 소모된 부분에 충진되고, 재활용부와 동일한 성분의 원료분말로 구성된 충진부Filling part is filled in the consumed portion of the recycling unit, consisting of the same raw material powder as the recycling unit
    를 포함하며, 상기 재활용부와 충진부 사이의 계면부에 위치하는 결정입자의 크기가 재활용부의 입자 크기 대비 130% 이하인 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 타겟.The ruthenium or ruthenium alloy-based sputtering target, characterized in that the size of the crystal grain located in the interface portion between the recycling portion and the filling portion is 130% or less than the particle size of the recycling portion.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 타겟 내 가스 함량이 산소 30 ppm 이하, 탄소 30 ppm 이하, 질소, 황, 수소가 각각 5 ppm 이하인 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 타겟. A ruthenium or ruthenium alloy-based sputtering target, wherein the gas content in the target is 30 ppm or less of oxygen, 30 ppm or less of carbon, nitrogen, sulfur, and hydrogen of 5 ppm or less, respectively.
  11. 제7항에 있어서, The method of claim 7, wherein
    반도체 또는 자기기록장치 미디어의 박막층 형성에 사용되는 것을 특징으로 하는 루테늄 또는 루테늄 합금계 스퍼터링 타겟.A ruthenium or ruthenium alloy-based sputtering target, used for forming a thin film layer of semiconductor or magnetic recording device media.
PCT/KR2014/010373 2014-10-29 2014-10-31 Method for refurbishing spent ruthenium or ruthenium alloy-based sputtering target, and refurbished ruthenium or ruthenium alloy-based sputtering target with uniform grains prepared thereby WO2016068361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0148694 2014-10-29
KR1020140148694A KR20160050491A (en) 2014-10-29 2014-10-29 Refurbishing method of ruthenium or ru alloy spent target and reuse ru or ru alloy target having uniform grain size prepared thereby

Publications (1)

Publication Number Publication Date
WO2016068361A1 true WO2016068361A1 (en) 2016-05-06

Family

ID=55857690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010373 WO2016068361A1 (en) 2014-10-29 2014-10-31 Method for refurbishing spent ruthenium or ruthenium alloy-based sputtering target, and refurbished ruthenium or ruthenium alloy-based sputtering target with uniform grains prepared thereby

Country Status (3)

Country Link
KR (1) KR20160050491A (en)
TW (1) TW201615858A (en)
WO (1) WO2016068361A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002167A1 (en) * 2019-07-01 2021-01-07 株式会社フルヤ金属 Ruthenium-based sputtering target and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342562A (en) * 2000-06-01 2001-12-14 Hitachi Metals Ltd Target material and manufacturing method
JP2004035919A (en) * 2002-07-01 2004-02-05 Nippon Steel Corp Target material
KR20080109272A (en) * 2007-06-12 2008-12-17 삼성코닝정밀유리 주식회사 Zinc oxide target and manufacturing method of producing the same
KR20090003100A (en) * 2007-07-02 2009-01-09 헤래우스 인코포레이티드 Brittle metal alloy sputtering targets and method of fabricating same
KR20120124803A (en) * 2011-05-04 2012-11-14 희성금속 주식회사 Method of manufacturing ruthenium powder for fabricating Ru Sputtering Target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342562A (en) * 2000-06-01 2001-12-14 Hitachi Metals Ltd Target material and manufacturing method
JP2004035919A (en) * 2002-07-01 2004-02-05 Nippon Steel Corp Target material
KR20080109272A (en) * 2007-06-12 2008-12-17 삼성코닝정밀유리 주식회사 Zinc oxide target and manufacturing method of producing the same
KR20090003100A (en) * 2007-07-02 2009-01-09 헤래우스 인코포레이티드 Brittle metal alloy sputtering targets and method of fabricating same
KR20120124803A (en) * 2011-05-04 2012-11-14 희성금속 주식회사 Method of manufacturing ruthenium powder for fabricating Ru Sputtering Target

Also Published As

Publication number Publication date
TW201615858A (en) 2016-05-01
KR20160050491A (en) 2016-05-11

Similar Documents

Publication Publication Date Title
KR100572262B1 (en) Manufacturing method of high purity zirconium or hafnium
TW201641727A (en) Magnetic-material sputtering target and method for producing same
KR20180008447A (en) Sputtering target
KR101206416B1 (en) Method of manufacturing ruthenium powder for fabricating Ru Sputtering Target
WO2016068361A1 (en) Method for refurbishing spent ruthenium or ruthenium alloy-based sputtering target, and refurbished ruthenium or ruthenium alloy-based sputtering target with uniform grains prepared thereby
US7871564B2 (en) High-purity Ru alloy target, process for producing the same, and sputtered film
KR101285284B1 (en) Manufacturing method of a high purity Ru powder and target using a waste Ru target
WO2016068362A1 (en) Method for preparing ruthenium or ruthenium alloy-based sputtering target, and ruthenium or ruthenium alloy-based sputtering target prepared thereby
JP4409216B2 (en) Recycling method of target material
JP5526282B2 (en) Method for producing highly purified and refined ruthenium (Ru) powder using used ruthenium (Ru) target
KR101143860B1 (en) Manufacturing method of a Ru powder and Ru target material using a waste-Ru target
KR20170016090A (en) Metal sputtering target and method for manufacturing the same
TW201516169A (en) Method for regenerating spent sputtering target and sputtering target regenerated thereby
KR20160109917A (en) Preparation method of reuse tantalum target and the reuse tantalum target prepared thereby
KR20170044343A (en) Preparation method of reuse tungsten target and the reuse tungsten target prepared thereby
KR20150049884A (en) Method for regenerating a spent precious metal sputtering target and a precious metal sputtering target regenerated thereby
KR20160073216A (en) Manufacturing method of nickel alloy targetfor semiconductor and nickel alloy target for semiconductor manufactured thereby
KR20160078112A (en) Method of manufacturing Reuse Ta target using a Cold spray
KR20160050968A (en) Method for direct reuse gold sputtering target of a spent gold sputtering target using cold spray technique
EP2050724A1 (en) Method of manufacturing a silica glass block
KR20160067490A (en) Refurbishing method of tungsten spent target and reuse tungsten target for forming wiring and electrode prepared thereby
KR20160133263A (en) Sintered body for reducing raw material, sputtering target comprising the same, and the preparation thereof
RU2644223C1 (en) METHOD FOR MAKING SPRAY COMPOSITE TARGET FROM HEUSLER ALLOY Co2FeSi
JP2004346392A (en) Ruthenium sputtering target, method for manufacturing the same
TW201502081A (en) Manufacturing method of ruthenium powder and ruthenium target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904932

Country of ref document: EP

Kind code of ref document: A1